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Abstract

Computed tomography (CT) ranks amongst the most popular, non-invasive medical
imaging techniques. It makes use of computer-processed combinations of X-ray mea-
surements, taken from different angles, in order to provide a detailed reconstruction
of the inner structure of the body. The focus of this thesis is a particular setup of
CT, called limited-angle CT (LA-CT), where the X-ray measurements are restricted
to a small angular range. This task, which arises naturally in a number of important,
practical applications such as breast tomosynthesis or dental X-ray scanning, presents
the advantage of lowering the X-ray radiation dose and reducing the scanning time,
and has thus become one of the predominant research topics in CT.

The main challenge inherent to LA-CT comes from the fact that the incompleteness
of the collected data makes the reconstruction problem extremely ill-posed. As a
consequence, classical methods, such as the filtered-backprojection (FBP), show poor
performance and result most frequently in undesirable artefacts. Iterative algorithms
as well as machine learning approaches have also been proposed in the literature to
address this problem, but they still present drawbacks and limitations.

The purpose of this thesis is to propose a novel algorithm that combines both
the trustworthiness of traditional, variational methods, and the powerful technology
of deep learning strategies, in order to provide stable and reliable LA-CT reconstruc-
tions. More generally, the convolutional neural network (CNN) presented in this work,
called ΨDONet, is designed to learn pseudodifferential operators (ΨDOs) in the broad
context of linear inverse problems. Thus, although in this thesis, ΨDONet is mainly
investigated in the special case of LA-CT, the theoretical results presented here can be
extended to the broader case of convolutional Fourier integral operators (FIOs) and
ΨDOs.

We formulate the LA-CT reconstruction problem as a regularised optimisation
problem, in which the objective function to be minimised is the sum of a data-fidelity
measure and a regularisation term that promotes sparsity in the wavelet basis. A
well-known iterative technique for the solution of such a problem is the Iterative Soft-
Thresholding Algorithm (ISTA) which, in the case of LA-CT, involves a ΨDO at each
of its iterations. The convolutional nature of this very operator makes it possible
to implement the unfolded iterations of ISTA as the successive layers of a CNN. We
show, furthermore, that it is possible to compute the exact values of the parameters
of the CNN in such a way that it reproduces the behaviour of standard ISTA, or
a perturbation thereof. The strength of ΨDONet thus rests upon the fact that its
parameters can be initialised with such values, and then trained through a learning
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process made particularly efficient thanks to the CNN technology.
Two implementations of ΨDO-Net are investigated: Filter- Based ΨDONet (ΨDO-

Net-F), where the pseudodifferential operator is approximated by means of a set of
filters, whose central part is trainable; and Operator-Based ΨDONet (ΨDONet-O),
where the pseudodifferential operator is not approximated but explicitly computed,
and the learnable parameters are implemented as an additional operator. Numerical
tests are conducted on different datasets of simulated data from limited-angle geome-
try. Both implementations provide similarly good and noteworthy results that clearly
outperform the quality of standard ISTA reconstructions, the main difference being a
greater computational efficiency for ΨDONet-O.

The presented approach offers promising perspectives and paves the way to applying
the same idea to other convolutional FIOs or ΨDOs.



Sintesi

La tomografia computerizzata (CT) si colloca tra le tecniche di imaging medico non
invasivo più diffuse. Si basa su combinazioni elaborate al computer di misurazioni a
raggi X, prese da diverse angolazioni, al fine di fornire una ricostruzione dettagliata
della struttura interna del corpo. Il fulcro di questa tesi è una particolare configurazione
della CT, chiamata CT ad angolo limitato (LA-CT), dove le misurazioni dei raggi X
sono limitate ad un piccolo intervallo angolare. Questa, che si presenta naturalmente
in una serie di applicazioni pratiche come la tomosintesi mammaria o la radiografia
dentale a raggi X, offre il vantaggio di abbassare la dose di radiazioni di raggi X e di
ridurre il tempo di scansione, ed è cos̀ı diventato uno dei temi di ricerca predominanti
in CT.

La sfida principale intrinseca alla LA-CT deriva dal fatto che l’incompletezza dei
dati raccolti rende il problema della ricostruzione estremamente mal posto. Di con-
seguenza, i metodi classici, come la filtered-backprojection (FBP), presentano scarse
prestazioni e si traducono solitamente in artefatti indesiderati. Algoritmi iterativi e
approcci di apprendimento automatico sono anche stati proposti in letteratura per
affrontare questo problema, ma presentano ancora svantaggi e limitazioni.

Lo scopo di questa tesi è di proporre un nuovo algoritmo, che combina sia l’affidabilità
dei metodi variazionali tradizionali, sia la potente tecnologia delle strategie di ap-
prendimento profondo, al fine di fornire ricostruzioni LA-CT stabili e attendibili. Più
generalemente, la rete neurale convoluzionale (CNN) presentata in questo lavoro, chia-
mata ΨDONet, è progettata per apprendere gli operatori pseudodifferenziali (ΨDOs)
nel contesto generico dei problemi inversi lineari. Pertanto, sebbene in questa tesi,
ΨDONet sia prinpipalmente indagato nel caso speciale di LA-CT, i risultati teorici qui
presentati possono essere estesi al caso più ampio degli operatori integrali di Fourier
(FIOs) e ΨDOs convoluzionali.

Formuliamo il problema di ricostruzione LA-CT come un problema di ottimiz-
zazione regolarizzato, in cui la funzione obiettivo da minimizzare è la somma di una
misura di fedeltà ai dati e un termine di regolarizzazione che promuove la sparsità
nella base della wavelet. Una tecnica iterativa nota per la soluzione di tale problema
è l’Iterative Soft-Thresholding Algorithm (ISTA) che, nel caso di LA-CT, coinvolge
un ΨDO a ciascuna delle sue iterazioni. La natura convoluzionale di questo operatore
consente di implementare le iterazioni ’srotolate’ di ISTA come i successivi strati di
una CNN. Mostriamo, inoltre, che è possibile calcolare i valori esatti dei parametri
della CNN in modo tale da riprodurre il comportamento di standard ISTA, o una sua
perturbazione. Il punto di forza di ΨDONet risiede quindi nel fatto che i suoi parametri
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possono essere inizializzati con tali valori, e poi addestrati attraverso un processo di
apprendimento reso particolarmente efficiente grazie alla tecnologia dei CNNs.

Vengono indagate due implementazioni di ΨDO-Net: Filter- Based ΨDONet (ΨDO-
Net-F), dove l’operatore pseudodifferenziale è approssimato mediante un insieme di
filtri, la cui parte centrale è addestrabile; e Operator-Based ΨDONet (ΨDONet-O),
dove l’operatore pseudodifferenziale non è approssimato ma esplicitamente calcolato,
e i parametri apprendibili sono implementati come un operatore aggiuntivo. I test
numerici vengono condotti su diversi set di dati simulati con geometria ad angolo
limitato. Entrambe le implementazioni forniscono risultati simili e degni di nota, che
superano nettamente la qualità delle ricostruzioni ISTA standard, essendo la differenza
principale una maggiore efficienza computazionale per ΨDONet-O.

L’approccio presentato offre prospettive promettenti ed apre la strada per applicare
la stessa idea ad altri FIOs o ΨDOs convoluzionali.
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1 Introduction

Computed tomography (CT), also known as Computerised Axial Tomography (CAT)
scanning, was historically the first method enabling to non-invasively acquire images
of the inner structure of an object. In practice, it makes use of a number of X-ray
measurements, taken from different angles, and combines the resulting attenuation
profiles in such a way as to recover the internal features of the object of interest. This
breakthrough, made possible by the discovery of X-rays and the advent of modern
computers, opened up a whole host of new prospects in the scientific community. In
particular, it revolutionised diagnostic medicine, allowing for the first time to get clear
and accurate pictures of the inside of the human body without surgical intervention.
Nowadays, CT is routinely used in medicine for diagnostic purpose and, despite the
existence of competing methods such as magnetic resonance imaging (MRI), it is still
to date the most widely used imaging technology in hospital departments and trauma
clinics [31].

The progress allowed by the development of CT was not limited to radiology and
on the contrary, has extended to many non-medical application domains. Inasmuch it
allows the measurement of a specimen’s geometrical dimensions (of both external and
internal features), CT has proven to be of particular use for industrial nondestructive
testing. As a result, it nowadays contributes to geometric analysis and dimensional
inspection for technology companies spanning a variety of industries such as automo-
tive, aerospace, electronics, and metalworking [207]. Additionally, anthropomorphic,
forensic and archaeological as well as palaeontological applications of CT have also
been developed over the past decades [31].

As of today, X-ray based imaging techniques have been the subject of almost 130
years of active research, starting from W. C. Röntgen’s findings about X-rays and
their properties in 1895 up to the present. Yet, research in the field of CT is still as
exciting as at the beginning of its development during the 1960s and 1970s. In par-
ticular, the challenging task of image reconstruction from limited data, for a long time
believed to inevitably generate artefacts throughout the reconstructed image, aroused
a renewed interest in the early 21th century, when the first examples of accurate par-
tial reconstructions from incomplete data appeared. This turning point brought about
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6 Introduction

new mathematical problems as well as the potential for enthralling new applications.
It notably resulted in the possibility to reduce the scanning time and lower the X-ray
radiation dose as well as to handle large object while maintaining a high resolution in
the reconstructions [41].

The focus of this thesis is a particular subset of limited data problems, the so-
called limited-angle CT (LA-CT), which is a classical problem from the early days
of tomography [127]. It frequently appears in important applications, such as breast
tomosynthesis [233, 160], dental X-ray scanning [125, 156], electron tomography [64],
damage detection in concrete structures [95] and luggage scanners.

1.1 Historical perspective

The history of X-ray imaging starts in 1895 with the accidental discovery of a new kind
of radiation by the German scientist W. C. Röntgen. While he was exploring the path
of electrical rays passing from an induction coil through a partially evacuated glass
tube, he noticed that a screen coated with fluorescent material was illuminated by
the rays, although the tube was covered in black paper and the room was completely
dark. He later realised that a number of objects could be penetrated by these rays and
soon, conducted a series of experiments to understand and demonstrate the exciting
properties of what would quickly be famous as X-rays, so named on account of their
unknown nature [179, 180]. For his discoveries, Röntgen was awarded a Nobel Prize in
1901, the first one in the field of physics.

Inasmuch as it enabled the observation of internal features of a person without the
necessity of surgery, the technique of making X-ray photographs rapidly met with suc-
cess amongst the doctors and spread around the whole world. X-ray imaging devices
for medical purposes started to be built and were improved over the years in order to
obtain better and better 2-D images of the inside of the human body. However, the
enthusiasm that the diagnostic possibilities of X-radiation had created progressively
gave way to a realisation of the limitations of medical imaging methods in only two
dimensions. In practice, initial radiographs contained the superimposition of the 2D
shadows of all the 3D structures composing the object. The interpretation of the image
was thus troublesome, as the level at which the shadows were situated could not be
determined, and no precise information about a particular internal feature could be
recovered. Therefore, many attempts were carried out to dissociate the superimposed
shadows and offer clear reconstructions of cross-sections of the body. In the 1920s, the
technique of analog tomography saw the light of day, in which the X-ray tube and the
detector moved in synchrony to image a motionless patient. In that manner, the plane
in focus could be sharply displayed while the out of focus planes where blurred by the
motion of the tube and detector. Quite interestingly, many researchers from differ-
ent countries investigated this technique without being aware of the studies already
performed, which resulted in a large number of patent applications (Baese in 1915
[8], Bocage in 1921 [20], Portes and Chausse in 1922 [167] and Pohl in 1927 [165], to
name but a few) and journal papers rediscovering similar concepts. As a consequence,
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the technique of analog tomography became known under several names: it was re-
spectively called laminography by J. Kieffer [120], stratography by A. Vallebona [201]
and planigraphy by A.E.M. Bocage and B.G. Ziedses des Plantes [58]. It is the term
tomography, from the the Greek words tomos (slice) and graphia (writing, drawing),
widely inspired by Grossmann’s tomograph [84], that was ultimately retained.

In spite of the numerous innovations that followed the discovery of X-rays, the
real rise of CT was not possible before the advent of modern computers, during the
second half of the 20th century. The first person credited for the invention of the
actual CT was Allan Cormack, at the time medical physicist in South Africa. In the
early 1960s, he posited that the internal structure of a body could be pieced together
by taking X-rays images of it from multiple directions. To give a proof of concept, he
built a prototype scanner and developed two algorithms for CT reconstruction [44, 45].
These results remained relatively unnoticed for several years, but surfaced and were
acknowledged as prescient after the creation of the first clinical CT scanner. The latter
was built and then patented in 1968 by Sir Godfrey N. Hounsfield [103], engineer in
the British firm EMI, who, unaware of Cormack’s contributions, had developed his
own approach to the problem of image reconstruction. In 1971, an improved prototype
scanner, at the time known as EMI-scanner, was installed at the Atkinson’s Morley’s
Hospital in Wimbledon, and shortly after, the first tomographic examination of patient
took place: on the image obtained, the round, dark pathological areas of the patient’s
brain, suspected to have a tumor, could be clearly distinguished from the healthy
areas. By the end of 1973, the first commercial CT scanner was on the market and
Hounsfield, along with Cormack, received the 1979 Nobel Prize in Medecine. During
the subsequent decades, several generations of CT scanners were designed: fan-beam
CT scanners appeared in 1976, followed by the spiral or helical CT scanners in 1989 and
superseded in the early 1990s by the cone-beam and multislice CT scanners. Nowadays,
CT images are also used with other modalities, such as SPECT-CT and PET-CT.

From its early stages to these days, CT technology has experienced an uncommonly
fast progress. By way of example, contemporary CT scanners can scan in a few hundred
milliseconds and reconstruct an image of 2048×2048 pixels. An achievement that would
have sounded absolutely unattainable in the early 1970s: Hounsfield’s first scanner
needed up to 4.5 min to reconstruct a 80× 80 image.

However, there are still numerous active research directions to explore. In par-
ticular, current predominant research topics in CT include the lessening of the X-ray
radiation and time exposure, the reduction of the slice thickness for scanning and the
further development of 3-D image reconstruction and visualisation.

More information about the history of CT can be found, inter alia, in [31, 40, 197,
96].

1.2 The fundamental mathematics of CT

The problem of CT consists essentially in reconstructing an object from its shadows,
also named projections. The fundamental concepts at its origin stem from the ob-
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(a) Axial CT slice. (b) Simulated sinogram.

Figure 1.1: Example of a CT slice from DeepLesion dataset [224] and a simulated,
noise-free sinogram thereof. In this simulation, the sinogram is composed of 1000
projections, within the full angular range (0-179◦).

servation that different tissues, materials, absorb X-ray in a different way and thus,
result in more or less dark shadows. In practice, the measurement of such projections
is made possible by the synchronised use of an X-ray source and an array of X-ray
detectors, positioned opposite each other in a donut-shaped structure (gantry). In
clinical CT, the patient is placed on a bed, located in the opening of the gantry and
kept stationary while the tube and the detector array rotate simultaneously around it.
For a number of rotation angles, the CT apparatus shoots X-ray beams through the
body and collects the attenuated X-rays that, once gathered, constitute the so-called
sinogram. The latter, as it can be observed in fig. 1.1b, is not medically interpretable
as it is and needs to be processed in order to recover an approximation of the inner
structure of the object to image. This scenario belongs to the class of inverse problems
and the search of its solution, generally complex, involves techniques of mathematics,
physics and computer science [14, 97].

To solve this problem, the main variable of interest is the linear attenuation co-
efficient u, which describes the local X-ray absorbing capacity of the object. Since
different anatomical structures have different densities, and thus different attenuation
coefficients, the knowledge of u would directly lead to the knowledge of the inner
structure of the object.

In physical terms, the photons contained in the X-ray beams are partially absorbed
by the object, according to the density of the matter they encounter. The Beer-Lambert
law [155] establishes a relation of proportionality between the linear attenuation coef-
ficient u and the X-ray intensity measured by the detector through a formula whose
integration reads:

ln
(
I0

I1

)
=
∫
x∈`

u(x)dx, (1.1)
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Figure 1.2: Schematic illustration of computed tomography (CT). A object, or phan-
tom, u(x, y) is exposed with X-ray under the projection angles ω1 and ω2. Each
projection angle produces a specific shadow pω(s), which, measured with the detector
array, represents the integral X-ray attenuation profile. Mathematically, this shadow
is modelled by the Radon transform: pω(s) = Ru(s, ω) where R is as described in
eq. (1.3).

where I0 is the intensity at the X-ray emitter, I1 is the intensity at the detector, and
` is the line along which X-rays travel. As the sinogram contains all the measured
information about the left member of eq. (1.1), the inverse problem of CT comes down
to recovering u from the knowledge of its line integrals.

A detailed, mathematical basis to the solution of this problem had already been
published in 1917 by the Austrian mathematician Johann Radon [169]. Due to the
depth and complexity of the publication and the fact that it was written in German,
however, the consequences of his pioneering work were revealed only many decades
later [31]. In his paper, Radon defined the Radon transform as being the integral of a
function along a particular line. By describing the line of interest ` as:

`(s, ω) = {x ∈ R2 : 〈x, ω〉 = s}, s ∈ R, ω ∈ S1, (1.2)
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the Radon Transform reads:

Ru(s, ω) =
∫
x∈`(s,ω)

u(x)dx =
∫ +∞

−∞
u(sω⊥ + tω)dt, s ∈ R, ω, ω⊥ ∈ S1, (1.3)

where ω⊥ denotes the vector in the unit sphere S1 obtained by rotating ω counterclock-
wise by 90◦ [127]. As part of its ground-breaking results, Radon had shown that, in the
continuous setup, it is possible to exactly retrieve u from R(u) thanks to the Radon
inversion formula. This analytical method, also known in the imaging domain as the
filtered back-projection (FBP) algorithm, provides very satisfactory reconstructions in
the case of complete tomographic data, that is, when data are collected on a fairly
even distributed set of lines throughout the object. However, it rapidly becomes im-
practical when dealing with limited tomographic data, such as sparse-view CT, where
the number of measured projections is low, or LA-CT, in which the projections are
acquired only over a limited angular range. In those cases, FBP fails to produce a
good reconstruction and leads to the appearance of streaking artefacts [152].

In order to better understand the singularities, i.e. the sharp features of u that
can be stably recovered based on a partial knowledge of R(u), microlocal analysis
proves particularly helpful [127]. The latter can notably be used to read the part of
the wavefront set of the target corresponding to the missing angular range from the
measurement geometry. The field of microlocal analysis, which appeared in the 1960s
as part of the study of linear partial differential equations, led to the emergence of
different theories, amongst which the theory of pseudodifferential operators (ΨDOs),
defined by Nirenberg and Kohn in 1965 [124], and Fourier integral operators (FIOs),
introduced by Hörmander in 1971 [108]. More information about ΨDOs and FIOs can
be found in Appendix A.

In the context of complete data CT, microlocal analysis can be used to show (see,
e.g. [168]) that the normal operator R∗R of the Radon Transform is an elliptic pseu-
dodifferential operator of order −1 and a convolutional operator associated with the
Calderón-Zygmund kernel:

K(x, y) = 1
|x− y|

, for x 6= y. (1.4)

When it comes to LA-CT, the normal operator R∗ΓRΓ of the limited-angle Radon
transform RΓ, where Γ stands for the limited angular range [−Γ,Γ], is no longer a
ΨDO, but belongs to the wider class of FIOs, which includes operators associated with
a kernel showing discontinuities along lines [109]. In addition, R∗ΓRΓ is a convolutional
operator associated with the kernel:

K(x, y) = 1
|x− y|

χΓ(x− y), for x 6= y. (1.5)

where χΓ denotes the indicator function of the cone in R2 between the angles −Γ and
Γ.

As it is further explained in chapter 3, the convolutional nature of the operator
R∗ΓRΓ is the cornerstone of the approach presented in this work. It indeed allows the
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connection between the conventional interpretation of the normal operator of RΓ and
the theory of Convolutional Neural Networks (CNNs), presented in chapter 2.

Although this thesis will focus on the particular case of LA-CT and the correspond-
ing Radon transform, it is important to note that the theoretical results presented
thereafter can be extended to all the ΨDOs and FIOs meeting the specified conditions.

1.3 Inverse Problems and Variational Methods
Historically, CT images provided the first example of images obtained by solving a
mathematical problem that belongs to the class of the so-called inverse problems [14].
Since then, and especially over the last decades, the field of inverse problems has
experienced an exponential growth. Thanks to the availability of ever more powerful
computers, and the development of reliable and fast numerical methods to perform
the solution process, inverse problems received much attention from mathematicians
and engineers who continually contributed to the broadening of the range of their
applications. Nowadays, they appear in a wide variety of domains, which span from
finance and economy to biomedecine and geophysics, astronomy and life science in
general.

Inverse problems owe their denomination to Joseph B. Keller who, in his 1976
article [119] since then frequently quoted, stated:

”We call two problems inverse of one another if the formulation of each
involves all or part of the solution of the other.”

This definition however engenders a certain ambiguity in the distinction between the
so-called direct problem and its associated inverse problem, mainly due to the duality
connecting the two: namely, one problem can be obtained from the other by inter-
changing the role of the data and that of the unknowns, so that it may seem arbitrary
to determine which is the direct problem and which is the inverse one. For historical
reasons, it was agreed that the direct problem would usually refer to the simpler one
or the one that was studied earlier.

In many instances, the direct problem can be viewed as being oriented along a cause-
effect sequence; its inverse problem then corresponds to the reversal of the cause-effect
sequence and aims at identifying the unknown causes of known consequences. In other
words, solving an inverse problem consists in using the outcomes of actual observations
or indirect measurements to infer the model or an estimation of a number of parameters
describing the system of interest. In practice, the physical process leading from the
unknowns of the inverse problem to its data entails a loss of information and thus
makes it generally particularly complex to solve.

By way of example, one of the direct problems in the field of classical mechanics
is the computation of particle trajectories from the knowledge of the forces at work.
Therefore, the corresponding inverse problem is the determination of the forces from the
knowledge of the trajectories. Analogously, in radio astronomy, one aims at estimating
the shape of celestial objects emitting radio waves from the waves detected by radio
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Figure 1.3: Schematic illustration of the inverse problem posed by CT. Attenuation
profiles pω(s) have been measured for a set of projection angulations, ω1 and ω2. The
unknown geometry, or the linear attenuation coefficient u, is then to be recovered from
the set of attenuations profiles.

telescopes on the surface of Earth. In life sciences, classical inverse problems include
inverse protein folding problems and in finance, one seeks to assess the volatility of the
stock price, which expresses the degree of variation of a trading price series over time.

In CT, the meaning of the terms direct and inverse problems is immediately appar-
ent. While the former describes the ’simple’ task of measuring the sinogram of a given
object, the latter consists in recovering the spatial structure of the object, not known a
priori, from the acquired projections. Figures 1.2 and 1.3 respectively illustrate those
situations.

In most of the cases, external factors affect the empirical measurements, which re-
sults in observations composed of approximate values: it is said that data are corrupted
with noise. This phenomenon may bring about significant errors in the computed so-
lution, and the estimation process then falls into the category of ill-posed problems.
The concept of ill-posedness, as opposed to the concept of well-posedness introduced
by the French mathematician Hadamard in [86], encompasses all the problems whose
solution may not exist and/or might not be unique and/or might not depend contin-
uously on the data. In the particular case of incomplete data CT, due to the (very)
limited amount of acquired information as well as the unwanted fluctuations altering
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the measurement process, the inverse problem proves to be severely ill-posed and all
the more uneasy to solve as the narrowness of the angular range and/or the sparsity
of the projections increase.

How to tackle ill-posedness is still an open research field and remains a tricky topic
inasmuch as it is problem-dependent. Nevertheless, it rapidly became clear to the
scientific community that, in order to optimally solve problems of this kind, it would be
judicious to search for approximate solutions satisfying additional constraints coming
from the physics of the problem. In other words, the lost information that, de facto,
could not be derived from the collected data, should be added to the fullest extent
possible, under the form of a priori knowledge expressing some physical properties of
the object. With this goal in mind, the mathematician A.N. Tikhonov proposed a
novel approach [198] in 1963, baptised regularisation theory, which has since become
one of the most powerful tools for the solution of inverse problems. This technique
aims at approximating an ill-posed problem by a family of neighbouring well-posed
problems. Amongst other things, it allows to reduce the set of the reconstructions
compatible with the data as well as to discriminate between interesting objects and
erroneous ones, resulting from an uncontrolled propagation of the noise affecting the
image.

Inverse and ill-posed problems as well as their regularised variational formulations
have given rise to an extensive literature, including books, reference proceedings and
dedicated journals. Seminal works include inter alia [14, 62, 83, 88, 209] and more
references can be found therein. The more recent [184] offers an overview of inverse
problems and their applications in the field of imaging science.

This framework provides a broad range of appealing methods for the study of
limited data CT problems. In this thesis, we focus on a regularisation approach that
promotes the sparsity of the reconstructed object when represented in the wavelet
basis.

In concrete terms, we consider the mathematical model:

m = RΓu
† + ε, (1.6)

where m ∈ Y is the set of measurements gathered in the sinogram, u† ∈ X is the sought
image, ε ∈ Y stands for the perturbation noise and RΓ : X → Y is the limited-angle
Radon transform.

In order to find an adequate solution to the ill-posed problem arising from eq. (1.6),
the sought signal can be approximated by the minimiser of a regularised objective
function, expressed as the sum of a data-fidelity term, which measures the faithfulness
of the solution to the observation model, and an additional regularisation term, which
orients the reconstruction process towards a solution with some desired characteristics
and improves stability to noise. In particular, one of the simplest and surprisingly
effective way to remove noise is to expand the signal in an orthogonal wavelet basis
and to enforce the sparsity of such expansion. The justification of such an approach
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is that in the wavelet domain, the signal gets usually concentrated in a few significant
coefficients while the noise is spread out in smaller and diffuse values that can be more
easily suppressed. This a priori information can be mathematically incorporated to
the model and results in the following variational minimisation problem:

min
w∈`1(N)

‖RΓW
∗w −m‖2

Y + λ‖w‖`1 , (1.7)

where λ ∈ R+ is the trade-off between the data-fidelity term and the regularisation
term, and W : X → `2(N) is the transform mapping any u ∈ X to the sequence of
its components with respect to the wavelet basis, in such a way that Wu = w. As it
is straightforward to compute an image based on its wavelet representation and vice
versa, the solution w of 1.7, once computed, provides an immediate and unambiguous
solution to eq. (1.6).

A well-known reconstruction algorithm for the solution of eq. (1.7), dubbed Iterative
Soft-Thresholding Algorithm (ISTA), was introduced in 2004 in the seminal paper by
Daubechies, Defrise and De Mol [52]. It iteratively creates the sequence {w(n)}Nn=1 as
follows:

w(n) = Sλ/L
(
w(n−1) − 1

L
K(n)w(n−1) + 1

L
b(n)

)
, (1.8)

where K(n) = WR∗ΓRΓW
∗, b(n) = WR∗Γm and Sβ(w) is the component-wise soft-

thresholding operator. Further details of this algorithm, which greatly inspired our
work, as well as a full description of the formulation of the inverse problem under
consideration are given in chapter 3.

1.4 Machine Learning
The emergence of Artificial Intelligence (AI) in the last century allowed the develop-
ment of brand-new techniques, said to be data-driven, as opposed to the class of model-
based approaches to which belongs, for instance, the aforementioned ISTA. Those new
methods indeed do not rely on the mathematical modelling of a problem but instead
learn from their environment which actions to take in order to maximise their chance of
success. The appearance of such a new strategy has undoubtedly opened up fascinating
new perspectives in the field of inverse problems and more generally in a broad range
of applications covering not only the areas of engineering, science and mathematics,
but also medicine, business, finance and even literature [57].

The first operational definition of intelligence was provided by Allan Turing through
the eponymous test [199] which allowed to assess a machine’s ability to exhibit intelli-
gent behaviour equivalent to, or indistinguishable from that of human. The capabilities
that the computer would need to possess come down to: natural language processing,
knowledge representation, automated reasoning and machine learning. The latter,
which refers to the ability of a machine to acquire its own knowledge by extracting
patterns from raw data, gave its name to one of the predominant fields of AI.

Basically, a machine learning system is designed to learn and improve with expe-
rience in such a way that it is able to make predictions or decisions without being
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explicitly programmed to do so. For this purpose, the machine learning algorithm first
experiences a set of training examples that come from some generally unknown prob-
ability distribution, and then builds a mathematical model that enables it to produce
sufficiently accurate predictions on new cases or situations coming from that same
probability distribution. While machine learning in general has been having an enor-
mous impact on the recent scientific and industrial advances, the particular subset of
deep learning methods have drawn even more attention.

The concept of deep learning originated from the computational modelling of bi-
ological learning, that is, the modelling of how learning happens or could happen in
the brain. Inasmuch as they were engineered systems inspired by the biological brain,
deep learning systems became known, inter alia, under the name of Artificial Neural
Networks (ANNs). They consist of a collection of connected basic units, also called
nodes or neurons, arranged in layers whose number allows the ANN to model functions
with different degrees of complexity.

Although the field of deep learning has become recognised as a crucial technology
only recently, its story actually goes back to the 1940s and has since then experienced
several waves of development before reaching its current popularity. The seminal work
on neural networks is credited to Warren McCulloch and Walter Pitts in their 1943
paper [146], where they showed that ANNs could, in principle, compute any arith-
metic or logical function. The first practical application of ANNs, however, emerged
only about fifteen years later, with the invention of the perceptron network and asso-
ciated learning rule, by Frank Rosenblatt [176]. In spite of those exciting discoveries,
learning algorithms were limited to quite simple problems and interest in ANNs fal-
tered during the late 1960s, because of the lack of new ideas and potent computers
with which to conduct the experiments. As both of these impediments were overcome
in the 1980s, a second wave of development brought about new breakthroughs that
reinvigorated neural networks. Amongst them, the back-propagation algorithm [177]
provided an effective way to train multilayer perceptron networks and even today, re-
mains the dominant approach to train ANNs. ANN research experienced a second
decrease of popularity in the mid-1990s which lasted until 2006, with the invention of
the actual deep learning. Until then, ANNs had been built with shallow-structured
architectures (that is, containing very few layers) and consequently, could not surpass
more traditional approaches, except for a few specialised problems. The possibility
to aggregate more and more layers in an ANN, thus said to be deep neural networks
(DNNs), constituted a veritable milestone. Subsequently, the availability of ever-more
powerful computers and larger datasets, as well as the development of efficient tech-
niques to train deeper and deeper networks, have contributed to the dramatic growth
in popularity and usefulness of deep learning methods.

Since the 1980s, deep learning has been the subject of thousand of papers and
has constantly been applied with success to broader and broader sets of applications.
DNNs can now handle tasks as complex as self-driving cars, helping the diagnosis of
life-threatening diseases such as cancer and automatically translating written or spoken
contents into other languages, to name but a few. They are used by many cutting-
edge technology companies, including Google, Facebook, Microsoft, Apple and Netflix.
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More information about the history, functioning and applications of deep learning
techniques can be found, inter alia in the books [178, 77, 90, 57, 3] and the references
therein.

The wide-ranging list of applications in which DNNs have established themselves
as an indispensable tool include the field of imaging inverse problems. In particular,
the so-called Convolutional Neural Networks (CNNs) have shown outstanding results
in different topics, such as denoising [232], deblurring [222], super-resolution [59] and
even CT-reconstruction [115].

1.5 Our proposed method

In spite of their numerous alluring abilities, however, DNNs and CNNs present the
drawback of a questionable explainability and reliability when used as mere black-
boxes. Many research works have thus proposed to merge machine or deep learning
techniques with more traditional, model-based methods. The resulting hybrid strate-
gies would therefore allow to take advantage of the performance of the former, while
benefiting from the trustworthiness of the latter.

Amongst the strategies so far explored in that direction, a straightforward and yet
provably efficient way to connect variational models to deep learning techniques consists
in unfolding an iterative algorithm into a network structure, by turning each iteration
into a layer of the network. Deep unfolding has been applied inter alia to primal-dual
solvers [171, 208, 210], bilevel optimisation [158], proximal interior point algorithm [15]
and proximal gradient methods [122, 145, 225]. Other unrolling approaches have drawn
inspiration from nonlinear diffusion processes, such as the network introduced in [36],
based on a discrete Partial Differential Equation (PDE) solver, and the residual neu-
ral network proposed in [34], making use of a discrete Ordinary Differential Equation
(ODE) solver. As far as probabilistic models are concerned, they also provide an inter-
esting support for deep unfolding. Notable unrolled architectures encompass Markov
Random Fields (MRFs) [98], Conditional Random Fields (CRFs) [139, 185, 234] and
topic models [38], to name but a few. Further examples of recent methods employing
algorithm unrolling in practical signal and image processing can be found in [151].

In our work, we propose a novel CNN architecture called ΨDONet [29], which is
obtained by unfolding ISTA over a finite number of iterations. It is actually already well
known that the unrolled iterations of ISTA can be considered as the layers of a neural
network. Nevertheless, to the best of our knowledge, no approach has so far offered
to implement the operator K in eq. (1.8) in such a way that each unfolded iteration
can be considered as the layer of a CNN while allowing to recover standard ISTA for
a specific choice of the parameters involved. Those two interesting properties implies
that our algorithm can not only imitate the behaviour of standard ISTA, but also and
above all, it can learn how to improve it, through a learning process made particularly
efficient thanks to the CNN technology. The concrete development of such a strategy
rests upon the convolutional nature of the operator K, whose implementation is thus
perfectly compatible with the framework of CNNs. Our algorithm can be applied to
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the special instance of the Radon transform as it is further investigated in this thesis,
but it can also be extended to the broader case of convolutional FIOs and ΨDOs,
whence its name.

The key feature of ΨDONet is the splitting of the convolutional kernel into K =
K0 +K1, where K0 is the known part of the model (in the limited angle case, K0 stands
for R∗ΓRΓ) and K1 is an unknown ΨDO to be determined, or better, to be learnt. This
splitting has mainly two interesting consequences. First, K1 provides the potential to
add information to the known (fixed) part of the model K0 in the reconstruction process
and as such, can be seen as an adjunct for the direct improvement of the back-projection
operator. Secondly, the operators of ΨDONet offer the possibility to be encoded as
a combination of upscaling, downscaling and convolution operations, as it is common
practice in deep learning. Remarkably, we show that such operations can be exactly
determined combining the convolutional nature of the limited angle Radon transform
and basic properties defining an orthogonal wavelet system. All the parameters to be
learnt can thus be initialised in such a way that ΨDONet before training is exactly
equivalent to standard ISTA; the learning process then allows the modification of K1
so that the output reconstructions present an ever improving image quality. While this
may appear contrary to the machine learning philosophy, which finds its strength in
avoiding any predefined structure for neural networks, our recipe imparts a veritable
interpretability of the results of the proposed CNN without actually penalising its
training process. At the same time, the possibility to deploy such operations with
small convolutional filters enables a significant reduction of the parameters involved,
specifically when compared to the standard interpretation of ISTA as a recurrent neural
network: this is crucial when it comes to a practical numerical implementation of the
proposed algorithm.

We provide two different implementations of ΨDONet: Filter-Based ΨDONet (ΨDO
Net-F), where the back-projection operator is approximated by its filter-equivalent, and
Operator-Based ΨDONet (ΨDONet-O), where the back-projection operator encoded
in K0 is not approximated but explicitly computed. Numerical experiments are then
conducted on different sets of simulated data to validate the theoretical results.

1.6 State-of-the-art

From a historical perspective, the FBP algorithm was the first analytical method for
CT reconstruction and it has remained one of the predominant approaches in the case
of complete tomographic data. Nonetheless, when it comes to sparse-view or limited-
angle CT, FBP provides reconstructions with streaking artefacts and view aliasing due
to missing data. This is the reason why reconstruction with incomplete projections
has attracted more and more interests and have finally resulted in a vast and still
flourishing literature.

To overcome the limitations of analytical methods, and thanks to the ever-increasing
growth of computer technology that enabled the employment of computationally heav-
ier techniques, iterative reconstruction approaches for CT started to be elaborated.
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One of the main reasons to prefer the latter over analytical methods is the possibil-
ity to complement the insufficient measurements by imposing a priori information on
the solution. Incidentally, reconstruction of the very first clinical image was generated
with an iterative algorithm, called Algebraic Reconstruction Technique (ART) [80] and
based on the Kaczmarz method for solving linear systems of equations. Although at
the time, ART did not involve a complex modelling of the CT system, it nevertheless
demonstrated the efficacy of iterative techniques for X-ray CT. One variant of ART is
the Simultaneous ART (SART) [5], which performs updates for complete raw data pro-
jections instead of processing a single pixel at the time. Compared to the original ART,
SART reconstructed images are smoother and the stripe-shaped artefacts are better
suppressed. Other ART-based methods were proposed, such as the Simultaneous It-
erative Reconstruction Technique (SIRT) [75], its variant Ordered Subsets SIRT (OS-
SIRT) [221] or else the Multiplicative Algebraic Reconstruction Technique (MART)
[7]. Iterative algorithms also boasts statistical techniques, which can be subdivided
into two groups: maximum likelihood (ML) principle based methods and least squares
(LS) principle based methods. One of the most popular approaches among the ML
class is undoubtedly the Maximum-Likelihood Expectation-Maximisation (ML-EM)
algorithm [130]. It consists of two alternating steps: the E-step, which computes the
expected log-likelihood function, and the M-step, which searches for the next estimate
by maximising the previously computed function. Several variants of this approach
were introduced with the aim to speed convergence and enable an easy parallelisation:
the OS-EM [144] and Ordered Subset Convex Algorithm (OSC) [117, 63, 11], for in-
stance. As far as the class of LS methods is concerned, noteworthy algorithms include
the LS Conjugate Gradient (LSCG) algorithm [162, 163, 65], the iterative coordinate
descent (ICD) [182, 25, 196] and its faster variant OS-ICD [134, 237]. Parallelising
such methods however proves to be hard as single pixels or coordinates are iteratively
updated to minimise a cost function. Finally, the family of iterative methods encom-
passes the model-based iterative reconstruction techniques (MBIR) [196, 229], in which
the acquisition process is sought to be modelled as accurately as possible, by taking
into account both photon statistics and geometry modelling. More detailed review
and comparison of analytical and iterative reconstruction techniques can be found in
[55, 12, 104].

The advent of the Compressed Sensing (CS) theory [32], which provided new tech-
niques for finding solutions to under-determined linear systems, fostered the emergence
of Total-Variation (TV) regularised iterative algorithms for limited data CT. Such al-
gorithms make use of a sparsity prior on the image gradient. The wide literature
relating to this strategy include, inter alia ASD-POCS [186], soft-thresholding TV
[228], improved TV (iTV) [172], spatio-temporal TV (STTV) [195], anisotropic TV
(aTV) [37] and reweighted aTV [211], scale space anisotropic TV (ssaTV) [106] and
total generalised variation (TGV) [157]. Those techniques however are based on a
piecewise constant image model and as such, they may lose some fine features and
generate a blocky appearance in incomplete and noisy cases. The use of sparsity priors
in other domains than the image domain has also been investigated. For instance, the
approach introduced in [141] seeks for sparsity both through TV and wavelet tight
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frame regularisations, while the work in [69] offers a sparse regularisation of curvelet
coefficients as a reconstruction method.

Although the above-mentioned iterative techniques prove to be successful in a num-
ber of cases, they still present some limitations, such as the expensive time consumption
required by the successive iterative steps and the complexity of the parameter selection.

Another class of techniques for limited data CT reconstruction that deserves men-
tion is the class of inpainting-like approaches. Unlike the previously-mentioned meth-
ods which take place in the image domain, they focus on the interpolation or completion
of the missing data in the projection domain. Noteworthy attempts in this field en-
compass sinusoid-like curves [136], which mainly consists in S-curve-based sinogram
discretization, sinusoid fitting, and eigenvector-guided interpolation; PDE based in-
painting [126], which considers diffusion based regularisers coupled with optical flow
information; directional interpolation [16] which uses a structure tensor approach; to
name but a few. Such approaches achieved enhanced image quality for certain scanning
configurations and particular subjects only, but present limited performance when it
comes to clinical applications.

More recently, the appearance of machine learning has brought a breath of fresh
air to CT reconstruction methods. Among the new methods that have arisen, some,
for example, form part of the dictionary learning theory, which aims at finding a
sparse representation of the image in terms of a redundant dictionary, learnt from
data [223]. But most importantly, it is the emergence of deep learning that marked a
real turning point in the history of image reconstruction techniques. Several lines of
investigation where considered to make the most of deep learning for insufficient data
CT problems: artefact post-processing in the image domain and image transformed
domains (image-to-image reconstruction) [218, 87, 51, 226], sinogram inpainting in
the projection domain (sinogram-to-sinogram reconstruction)[74, 6, 138, 133, 60], and
direct projection-to-image reconstruction (sinogram-to-image reconstruction)[236, 220,
70, 137]. While some approaches rest upon the exclusive use of deep DNNs such
as the U-Net architecture [175] or generative adversarial networks (GANs) [78, 227],
other techniques draw their strength from the merging of deep learning and variational
approaches [2, 30, 105]. The latter present the advantage of a better explainability
and reliability, as they make use of a mathematical understanding of the problem and
involve a data-driven strategy only in a limited but thoughtful manner. A straight-
forward way to do so is to unfold an iterative algorithm into a network structure.

In the general context of sparse coding, Gregor and LeCun [81] explored the un-
folding of ISTA (see [35] for theoretical linear convergence results) and offered to learn
two matrices of standard ISTA instead of using pre-computed ones. Their proposed
Learned ISTA (LISTA), which is aimed at calculating good approximations of optimal
sparse codes, inspired many papers, all deriving from the unrolling of ISTA: the al-
gorithm in [116] is intended to fine-tune the thresholding functions of standard ISTA
thanks to DNNs; trainable ISTA (TISTA) [111] is based on an error variance estimator
and learns only a very small number of parameters; deep `0 encoders [213] address an
`0-regularisation of the minimisation problem; analytic LISTA (ALISTA) [140] is a
neural network whose weights are not to be trained, but rather analytically calculated;
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while ISTA-Net [231] is designed to learn a non-linear transform function to sparsify the
image. Except for the two last ones, the above-mentioned algorithms are not CNNs,
which make them essentially different from our approach. The convolutional version
of ALISTA, conv ALISTA, offers to learn only the stepsize and threshold of each iter-
ation, while the convolutional weights are analytically determined. It thus differs from
ΨDONet, where the convolutional filters are to be trained, at least partially. As for
ISTA-Net, it mainly aims at learning the transform defining the representation domain
in which the image is sought to be sparse. In ΨDONet, we do not seek to learn such a
transform, as we assume it to be the wavelet transform and instead, we seek to improve
the back-projection operator in the wavelet domain. In [115], the authors investigate
the relationship between CNNs and iterative optimisation techniques, including ISTA,
for the case of normal operators associated with a forward model that is a convolution.
Nevertheless, the resulting U-net, dubbed FBPConvNet, does not aim at imitating an
unrolled version of an iterative method and is thus fundamentally different in spirit to
the methodology we propose.

1.7 Thesis outline

This thesis consists of four chapters and three appendices. The present chapter serves
as an introduction to this doctoral dissertation. It includes an extensive summary of
the historical development of CT and a description of its mathematical principles. It
furthermore contains a presentation of inverse problems as a general framework for the
limited-angle CT problem and a historical description of machine learning. It finally
presents the general outline of the proposed approach and offers a literature review on
reconstruction strategies for the LA-CT problem.

The purpose of chapter 2 is to provide the reader with the fundamental notions
of machine learning and deep learning, necessary for a proper understanding of the
proposed algorithm. The first part of the chapter is dedicated to the description of the
machine learning framework with a particular focus on the supervised learning setup.
We inter alia explore concepts such as loss functions, risks, generalisation, and capacity,
and provide a brief summary of existing regularisation techniques and gradient-based
optimisation strategies. The second part of chapter 2 offers an overview of the theory
of deep learning, and in particular, aims at presenting the functioning of the so-called
artificial neural networks. The main notions subtending the learning process of the
latter are investigated through the fundamental example of multilayer perceptrons. We
also give a glimpse of the training challenges and optimisation strategies widespread
in the domain of deep learning. Finally, the third part of that chapter deals with a
particular kind of networks, called convolutional neural networks, which have shown
remarkable results and efficiency in solving imaging problems, and are at the core of
the proposed algorithm.

In chapter 3, we review the theoretical background of sparsity promoting regularisa-
tion, and recall the formulation of the Iterative Soft-Thresholding Algorithm. We then
detail the key idea of our approach, that is, the convolutional interpretation of ISTA
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using the wavelet transform. Finally, we describe the general design of the proposed
CNN, ΨDONet, and the convergence results thereof. The discussions contained in that
chapter involve inter alia microlocal analysis and wavelet theory, whose general con-
cepts are briefly summarised in Appendix A and Appendix B respectively. Appendix
C provides some further proofs of the results presented in chapter 3.

Chapter 4 explores the implementational aspects of ΨDONet when applied to the
special case of LA-CT. We first provide a numerical verification of the theoretical results
posited in chapter 3 and then offer a detailed description of two different implemen-
tations of ΨDONet, thoroughly investigated: Filter-based ΨDONet (ΨDONet-F) and
Operator-based ΨDONet (ΨDONet-O). Numerical experiments are then conducted on
simulated data: the testing setups as well as the obtained results are presented, and
a final discussion is provided, where the results achieved with ΨDONet are compared
with FBP and ISTA reconstructions.

The last chapter summarises the conclusions and gives suggestions for further work
and perspectives.

The research presented in this doctoral thesis appears in the following publication:

T.A. Bubba, M. Galinier, M. Lassas, M. Prato, L. Ratti, S. Siltanen, 2020.
Deep neural networks for inverse problems with pseudodifferential opera-
tors: an application to limited-angle tomography, arXiv:2006.01620. To
appear in SIAM Journal on Imaging Sciences (SIIMS).

All the codes of the proposed algorithm are available at the link: https://github.
com/megalinier/PsiDONet/.





2 Machine and deep learning theory

The purpose of this self-contained chapter is to introduce the fundamental principles
of machine learning and to provide an overview of the theory and applications of deep
learning.

Essentially, building a machine learning algorithm amounts to specifying a model
that represents certain beliefs and conceiving a cost function that quantifies the cor-
rectness of those beliefs with respect to reality. Training such an algorithm then means
to minimise this cost function by exploiting the information contained in the provided
training set. This basic procedure and its underlying concepts, inherent to all machine
learning approaches, are presented in section 2.1.

Being a specific kind of machine learning, deep learning inherits the same main
components, namely a model, a cost function, an optimisation algorithm and a dataset.
Its distinctive feature lies in the particular structure of its model, which is built as a
network of artificial neurons. Section 2.2 presents the functioning of ANNs as well
as their evolution through history. We also provide a detailed description of the so-
called back-propagation, a fundamental tool of the learning process, and give some
examples of gradient-based learning algorithms. We finally introduce some methods
for the regularisation of DL techniques, and practical issues that can be encountered
when dealing with such algorithms.

In section 2.3, a particular attention is given to CNNs, which are part of the ANN
family, since a clear understanding of their functioning is needed to apprehend the
choices of the design of ΨDONet and the challenges that had to be faced.

2.1 Machine learning basics

2.1.1 Learning algorithms
Inasmuch as they can learn and improve with experience, machine learning algorithms
are particularly exciting for two main reasons. The first one is that they offer the
possibility to tackle problems that are too complex to be solved by fixed programs
designed and implemented by human beings. The second one is that developing a

23
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Figure 2.1: A Venn diagram showing the relation between convolutional neural net-
works, deep learning artificial neural networks, machine learning and artificial intelli-
gence.

better understanding of machine learning involves developing a better understanding
of the principles subtending intelligence.

A formal definition of such algorithms was proposed by Tom M. Mitchell in [150],
where he stated:

”A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T , as measured by P, improves with experience E.”

As such, learning can be interpreted as the process leading to the capability of per-
forming a task (T). A very broad range of tasks can be addressed with machine learning
techniques, including e.g. classification, where the computer program is asked to indi-
cate which of k categories some input belongs to; regression which aims at predicting
a numerical value given some input; machine translation where the input consists of
a sequence of symbols in some language that the computer program is intended to
convert into a sequence of symbols in another language; and anomaly detection where
the program sifts through a set of objects or events and reports some of them as be-
ing atypical or abnormal. Direct real-life applications of the above-mentioned tasks
respectively encompass object recognition such as the automatic tagging of people and
objects in photo collections, price prediction in the context of insurance or trading, au-
tomatic text translation and credit card fraud detection. Those are only few examples
of the numerous problems that have contributed to the success of machine learning in
recent years.

The ability of a machine learning algorithm to perform the task of interest can be
evaluated by means of a performance measure (P). Generally speaking, this perfor-
mance measure, which is usually task-specific, is intended to assess how relevant are
the outputs generated by the algorithm given a set of inputs. The purpose of machine
learning algorithms being to be deployed in the real world and thus to perform as well
as possible on data that has not been seen before, their efficiency is measured on a test
set of examples, which is separate from the data used during the training process. A
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common way to quantify the performance of a model is to measure its accuracy, that
is, the proportion of examples for which the model produces the correct output over
the total number of examples [147]. This performance measure proves to be indeed
well suited for tasks such as classification, but finds its limits when it comes to more
complex problems such as density estimation or regression. In these cases, it is more
judicious to use a performance metric that, instead of assigning a binary value (1:
correct output, 0: otherwise) to each example, give them a continuous-valued score.
For image reconstruction tasks, the Mean Squared Error (MSE) and the Peak Signal-
to-Noise Ratio (PSNR) are useful performance measures, but related works have also
proposed alternative metrics such as the Structural SImilarity Measure (SSIM) [212]
or the Haar wavelet-based Perceptual Similarity Index (HaarPSI) [170], which aim at
evaluating the perceptual difference between two similar images. Those performance
measures have been applied to the test set of our numerical experiments in order to
gauge the effectiveness of our proposed algorithm and compare the different variants
of its implementation (cf chapter 4).

As for the experience (E), it relies upon a dataset, that is, a set of examples of
objects or events related to the task to be performed. If we consider a dataset of S
elements, {x1, · · · , xS}, each example, represented as a vector xi ∈ Rp, is a collection of
p features that have been quantitatively measured from the object or event of interest.
When the examples of the dataset are images, as it is the case in image deblurring,
image denoising, or image reconstruction, the features to be processed are the values
of the pixels.

Depending of the kind of dataset they are allowed to experience during their train-
ing, learning algorithms can be roughly divided into 3 categories: unsupervised learning,
supervised learning, and reinforcement learning.

• Unsupervised learning algorithms are aimed at learning to make sense of the data
without any guidelines nor human supervision. The examples they are trained
on are said to be unclassified, or unlabelled, as no information about the ex-
pected output of the network is available. Such algorithms are able to classify,
organise, or correctly process data by identifying previously unknown patterns
that appear in the examples of the training set. As such, they prove useful for
learning properties or relevant characteristics of the dataset structure: by observ-
ing several examples of a random variable, unsupervised learning algorithms can
get information on the corresponding probability distribution that generated the
dataset. A classic unsupervised learning task is to find the simplest and most
condensed way to represent the data while preserving as much information as
possible about the input. The well-known Principal Component Analysis (PCA)
algorithm, which reduces the dimensionality of a multivariate data to few princi-
pal components, provides a good illustration of unsupervised learning algorithm
[77]. Unsupervised learning can also be used to find a manifold to which the data
lies near, cluster the data into groups of related examples, or draw new samples
from the distribution (leading inter alia to fascinating applications in the field
of art and photography, such as [73, 219, 118]).
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• Supervised learning algorithms experience a dataset in which each example has
not only features xi, but also a corresponding label or target yi. This target,
supplied by an instructor or a teacher, shows the machine learning system what
output it is expected to generate from a given input. Labels can be of different
types, depending on the kind of task that is to be carried out: in the case of
classification for example, the target is the scalar symbolising the correct class,
while in image reconstruction, it usually consists of the complete, clean signal.
Those input-output pairs are analysed by the learning algorithm and used to
infer the underlying function that maps the features to the proper label. Thus, it
is hoped that the training of the given examples will enable the algorithm to pro-
duce the correct outputs also for unobserved inputs. This may not be as simple
as it appears, as it entails the learning algorithm to be able to generalise from the
training data to unseen events (cf section 2.1.3). Supervised learning is often in-
volved in tasks such as classification and regression, and is now widely employed
for applications including medical diagnoses, handwriting or speech recognition,
weather forecasting, spam detection and many other tasks. In addition to most of
the ANNs, supervised learning algorithms encompass Support Vector Machines
(SVM) [22, 46], decision trees [174], or the k-nearest neighbours [4]. It is to be
noted that the boundary between supervised and unsupervised learnings may
be not well defined and in-between learning paradigms are possible, such as the
so-called semi-supervised learning, where some, but not all, examples include a
supervision target.

• Reinforcement learning does not experience a fixed dataset, unlike the above-
mentioned paradigms. Instead, the algorithm continuously interacts with its
environment and thus benefits from a feedback loop between the learning system
and its experiences. In practice, a reinforcement learning algorithm receives a
numerical reward that encodes the success of its actions’ outcome, and it seeks
to learn the behaviour that maximises this reward, based on its past experiences
(exploitation) as well as new choices (exploration). It thus can learn what is the
best action to select based on its current state. Some common reinforcement
learning methods are for example Q-learning [214, 215] or Temporal Difference
(TD) [192]. Reinforcement learning is studied in a very broad range of disciplines,
from robot navigation to information theory and from game theory to statistics
and simulation-based optimisation. Amongst the applications that made rein-
forcement learning particularly popular, we may mention the field of self-driving
cars as well as the area of board games played by computer (Chess, Go). More
information can be found in the reference books [17, 193]

In the remainder of this thesis, we will consider a purely supervised learning frame-
work.
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2.1.2 From theory to a practical framework
One of the major problems of supervised machine learning can be formulated in the
following terms: how to estimate the value of an unknown function at a new point
given the values of this function at a set of sample points? From a statistical point
of view, the learning problem can be seen as getting the best possible understanding
of the unknown probability distributions from which the samples have been drawn, in
such a way to be able to determine from which distribution some new sample comes
from. The framework of statistical learning theory [205, 206], which aims at studying
the concept of inference in machine learning, provides useful tools to apprehend and
solve those problems.

2.1.2.1 Data generating distribution and hypothesis space

Formally, let X ⊆ Rp represent the vector space of all possible inputs, drawn inde-
pendently from a fixed but unknown probability distribution pX(x). Furthermore, let
Y ⊆ Rq be the vector space of all possible outputs, such that for every input vector x,
an output y ∈ Y is returned, according to a conditional distribution function pY (y|x),
also fixed but unknown. The probabilistic relationship between X and Y can then be
formalised in the form of a joint probability distribution pXY (x, y), defined over the
set X × Y , such that pXY (x, y) = pX(x)pY (y|x). Such a distribution is called the data
generating distribution. Implicitly, the main goal of supervised learning is to collect
enough knowledge about pXY (x, y) in order to infer the function mapping the inputs
to the correct outputs. In other words, the inference problem consists in providing a
function or estimator fθ such that for every sample (x, y) drawn from pXY (x, y), the
output value y can be accurately predicted by the value fθ(x).

Such an estimator fθ is sought by the algorithm through a family H of prediction
functions, also called the hypothesis space,

H := {fθ : X → Y |θ ∈ Θ}, (2.1)

parametrised by θ in the space of all possible parameter values Θ. As further discussed
in section 2.1.3, the choice of H is of particular importance as it determines the shape
and characteristics of the candidate estimators, and thus influences the ability of the
model to correctly infer the outputs.

2.1.2.2 Loss function

In order to find an accurate estimator fθ through all the possible functions in H, one
needs to determine a criterion on which to base the quality assessment of an estimator.
Usually, the sought estimator is intended to minimise the errors caused by incorrect
predictions. As such, the quality criterion is most often chosen to be a loss function that
quantifies the inaccuracy of the prediction with respect to the true output. Formally,
a loss function is a function L(x, y, fθ(x)) : X × Y × Y → [0,+∞) such that:

L(x, y, y) = 0, ∀x ∈ X, ∀y ∈ Y. (2.2)
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In so far as it must dependably condense all aspects of the model down into a single
number such that improvements on that scalar are a sign of a better model, the loss
function has a significant impact on the solution fθ∗ found by the learning algorithm
and is thus to be carefully chosen. Several factors may influence this choice, such as the
task under consideration or the kind of model that is used. Moreover, a loss function
may be required to have some specific properties. For instance, it may be necessary
to use a loss function with a gradient large and predictable enough to be used in the
training process of gradient-based learning algorithms, introduced in 2.2.3.

The possibilities for the choice of a loss function are multiple, not to say endless
as it can be tailored to the problem of interest. We list the most commonly used ones
hereunder, starting with the classic loss functions for binary classification, that is,
when Y = {−1, 1}. Typically, such loss functions exploit the product yfθ(x) of the
true and the predicted output values.

• the 0-1 indicator function:

L(x, y, fθ(x)) = H(−yfθ(x)), (2.3)

where H : R→ {0, 1} is the Heaviside step function, defined as:

H(t) =
{

0 if t < 0
1 if t ≥ 0. (2.4)

When the 0-1 loss is used, it is usually assumed that the set of predicted outputs
is the same as Y, that is, fθ(x) ∈ {−1, 1}. Then, this loss function takes the
value 0 if the predicted output fθ(x) is the same as the true output y, and 1
otherwise. Although it seems to be a natural choice, the 0-1 loss proves quite
intractable inasmuch as it is discontinuous and non-convex, and therefore pre-
vents (sub)gradient methods from being applied. Most often, machine learning
algorithms are based on continuous, convex loss functions, such as the functions
mentioned below.

• the Hinge loss, or soft-margin loss:

L(x, y, fθ(x)) = max(0, 1− yfθ(x)) =: |1− yfθ(x)|+. (2.5)

Unlike the 0-1 loss, the Hinge function is designed for situations in which the
predicted outputs fθ(x) are not restricted to the set {−1, 1} and instead are
allowed to assume real values. This setup is useful when, given an input x, one
needs not only to predict which class the corresponding output y belongs to, but
also to provide a certain confidence interval for this estimate. In that case, the
label of the class is given by the sign of the function fθ(x), while the absolute value
of fθ(x) offers a measure of prediction confidence. The Hinge function penalises
the predictions such that |yfθ(x)| < 1, that is, it penalises the cases where the
prediction has a sign different from the true output as well as the cases where
they have the same signs but the confidence interval is too small. The Hinge
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function is an example of smooth, convex loss function that is frequently used
for maximum-margin classification and most notably by the well-known Support
Vector Machines for Classification (SVMC) approach [48].

In the case of multi-class classification problems, the true labels are generally
encoded as one-hot vectors, that is: each label y is represented as a vector whose length
is equal to the number k of classes and all its entries are zeros, except for the entry
corresponding to the class it belongs to, which is set to one. As for the outputs of
the learning algorithm, they constitutes probabilities to belong to the different classes.
The loss function most commonly employed in this situation is:

• the cross-entropy loss, or log-loss:

L(x, y, fθ(x)) = −
k∑
i=1

yi log (fθ(x)i) . (2.6)

The true output y being a one-hot vector, the only value resulting from this
loss function for a given sample (x, y) is actually the negative logarithm of the
predicted probability to belong to the true class. In the ideal case where this
probability is predicted by the model to be 1, the loss function returns 0. On the
contrary, the smaller this probability, the larger the penalisation. Fig. 2.2 shows
the evolution of the cross-entropy loss as a function of the predicted probability
to belong to the true class.

When it comes to regression problems, the output space is extended to real values:
Y ⊆ R and as such, the quality of an estimate is not based anymore on the product
yfθ(x) but rather on the difference y− fθ(x). Some of the most popular loss functions
for regression include:

• the MSE, or `2-norm:

L(x, y, fθ(x)) = (y − fθ(x))2. (2.7)

This widely used loss function, which minimises the sum of squared residuals,
is usually involved when the outputs y are assumed to be corrupted by additive
Gaussian noise.

• the ε-insensitive loss function:

L(x, y, fθ(x)) = max(0, |y − fθ(x)| − ε) =: |y − fθ(x)|ε. (2.8)

The ε-insensitive loss, which can be seen as an extension of the soft-margin loss
defined in eq. (2.5), penalises the predictions when the distance between the true
outputs and the predicted ones is greater than some scalar ε > 0. Such choice
is for example adopted by the Support Vector Machines for Regression (SVMR)
methodology [48].
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Figure 2.2: Cross-entropy loss, for multi-class classification. The label y is considered
to be a one-hot vector, that is: it has only zero-valued entries, except for the entry
that represents the class the sample belongs to, which is set to 1. We represent L̃(t) =
L(x, y, fθ(x)) = −∑k

i=1 yi log (fθ(x)i), where k is the number of different classes, and
t stands for the probability predicted by the learning system for the sample to belong
to the right class. Mathematically, t = fθ(x)j, where j is such that yj = 1. The other
components of fθ(x) actually do not affect the cross-entropy loss, as they are multiplied
by the zero entries of y.

• the absolute value loss, or `1-norm:

L(x, y, fθ(x)) = |y − fθ(x)|. (2.9)

This loss can actually be seen as an ε-insensitive loss for the particular case in
which ε = 0.

Fig. 2.3 illustrates the aforementioned loss functions for binary classification and
regression. As for the loss functions involved in image processing problems, the `2-
norm constitutes an interesting and prevalent choice. Further options are detailed in
section 4.2.1.5.

2.1.2.3 Expected and empirical risks

The loss function, once chosen, provides a clear way to penalise each triple (x, y, fθ(x)).
The following question is then: how to combine these penalties in order to evaluate a
particular estimate fθ? The answer is given by the expected risk, or generalisation error,
which measures the global predictive capability of the estimator fθ. In other words,
it is the expectation of the loss function with respect to the underlying probability
distribution pXY (x, y):

J (θ) := E[L(x, y, fθ(x))] =
∫
X×Y
L(x, y, fθ(x))pXY (x, y)dxdy. (2.10)

The learning process aims at minimising such a function J (θ), also called the
objective function or cost function, over the set of candidate estimators H.



Machine learning basics 31

−2 −1 1 2

1

2

3

t

L̃(t) 01-loss
Hinge-loss

(a) Loss functions for binary classification.
The variable t is such that t = yfθ(x).
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(b) Loss functions for regression. The vari-
able t is such that t = fθ(x)− y.

Figure 2.3: Graphics of different loss functions. We represent L̃(t) = L(x, y, fθ(x)),
where t depends on y and fθ(x), according to the task under consideration.

In the ideal case, the data generating distribution pXY (x, y) is known and the min-
imisation of J (θ) can be significantly simplified. Even though such model may still
incur some error, the so-called Bayes error [71], on problems where there is some noise
in the distribution, finding an accurate estimator fθ is likely to become a straightfor-
ward problem to solve.

In most situations, however, the data generating distribution is not known, and
minimising such a cost function is thus impracticable. Instead, the available informa-
tion consists of a dataset of S training examples, that is, a set of random independent
identically distributed (i.i.d) samples drawn from pXY (x, y). Let us call such a training
set:

S = {(xi, yi) | xi ∈ X, yi ∈ Y, i = 1, . . . , S}, (2.11)
where every xi is an input vector with p features, and yi is the corresponding label. As
the training set provides a certain number of examples of the probabilistic relationship
between X and Y , the unknown distribution pXY (x, y) can be replaced with an empir-
ical probability distribution. This alternative leads to the empirical risk minimisation
(ERM), formulated in [204] where Vapnik suggests to minimise an approximation of
the expected risk J (θ), constructed by averaging the loss function on the available
examples of the training set S. The resulting surrogate JS : Θ → R, called training
error, or empirical risk, reads:

JS(θ) = 1
S

S∑
i=1
L(xi, yi, fθ(xi)). (2.12)

It can be shown, using the law of large numbers, that the empirical risk converges in
probability to the expected risk for a sufficiently high number of examples [206]. This
entails that for a fairly large training set, the minimisation of the empirical risk JS
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can lead to a good estimate of the minimum expected risk J . Therefore, the learning
process comes down to find the best parameter θ in such a way that the corresponding
function fθ ∈ H minimises the empirical risk JS.

2.1.3 Generalisation and capacity

2.1.3.1 Generalisation, overfitting and underfitting

The central challenge in machine learning consists in finding an estimator fθ that is
able to predict outputs from inputs that do not belong to the training set. This ability
to accurately perform on new, previously unseen inputs, is called generalisation.

The generalisation ability of a model is usually assessed by measuring its perfor-
mance on a set of new examples, different from those used in the training process. To
this aim, the dataset initially available is partitioned into two distinct subsets: the
training set, used for the learning process, and the test set, exclusively employed to
evaluate the performance of the model. This is known as the hold-out method [123].
In this manner, the examples forming the test set are independent from the examples
on which the model is trained but they follow the same probability distribution.

When training the algorithm, one seeks to minimise the empirical risk on the train-
ing set, i.e. one seeks to reduce the so-called training error. However, unlike classic
optimisation problems, machine learning requires more than a low training error: it
also needs its generalisation error, that is, the error computed on the test set, to be
small as well. The factors determining how well a trained model will perform come
down to:

- its ability to make the training error small

- its aptitude to make the gap between test and training error small

These two factors are closely related to two of the main issues in machine learning:
underfitting and overfitting. Underfitting occurs when the model does not achieve a
sufficiently low error value on the training set. This means that the model is not able to
fit the data. Overfitting happens when the gap between the test error and the training
error is too large. This, one the other hand, entails that the model has memorised
some properties of the training set but will not be able to generalise to other data.
The main challenge of machine learning is therefore to select and train a model while
avoiding those two phenomena.

2.1.3.2 Model capacity

The propensity of a model to fall into overfitting or underfitting can be controled
by modifying its capacity. Informally, a model’s capacity is its ability to fit a wide
variety of functions. Models with insufficient capacity may struggle to fit the training
set, while models with a too high capacity may fit too closely to the training set and
therefore fail to perform well on unseen data. Hence the importance of opting for a
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Figure 2.4: Consider a set of training samples generated by a quadratic function. On
the left: the linear predictor is not able to capture the data curvature (underfitting).
At the center: a quadratic predictor matches the underlying function (appropriate
capacity). On the right: a degree-8 predictor pass exactly through all the training
points, but does not extract the correct structure (overfitting).

capacity adequate to the complexity of the task and the amount of training data on
hand.

An illustrative example of the link between the concepts of underfitting and over-
fitting and the capacity of the model is shown in fig. 2.4. We compare a linear, a
quadratic and a degree-8 predictors attempting to fit a set of samples generated by a
quadratic function. The linear predictor is not able to seize the curvature in the true
underlying problem and results in an underfitted model. On the contrary, the degree-8
polynomial, which is defined by more parameters than there are training examples,
is capable of representing infinitely many functions that do pass through the training
points. Thus, the probability of selecting a solution that generalises well is low, given
the endless number of different solutions that exist: the model is said to overfit. In this
example, the appropriately chosen capacity of the model is given by the quadratic pre-
dictor, which perfectly matches the underlying function and is thus able to generalise
well to data.

Generally speaking, when increasing the capacity, the training error decreases until
it asymptotes to the minimum possible error value. As for the test error, it assumes
a U-shaped curve, as illustrated in fig. 2.5. As it can be observed, the gap between
the two errors increases and eventually outweighs the decrease of the training error.
In short, simpler models are more likely to generalise while more complex models are
more likely to achieve low training error.

It has been shown, thanks to major advances in the field of statistical learning
theory, that the gap between training error and generalisation error is bounded from
above by a quantity that increases as the model capacity increases, but narrows as the
number of training examples grows [205]. These bounds offer a theoretical justification
that machine learning algorithm can work. They are, however, rarely employed in
the context of deep learning, which is the framework of the research presented in this
thesis. The main reason is that determining the capacity of a deep learning algorithm
is often an arduous task due to the little theoretical understanding of the non-convex
optimisation problems involved in the training of DNNs, [77].
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Figure 2.5: Illustration of the relationship between capacity and error. When the
model has a too small capacity, both the training error and the generalisation error
are high, which corresponds to the underfitting regime. As the capacity increases, the
training error decreases but the gap between the training and generalisation errors
increases. When this generalisation gap becomes too large, the model enters the over-
fitting regime. The optimal capacity offers a compromise between a low training error
and a small generalisation gap. Illustration inspired from [77].

One way to adjust the model’s capacity is to wisely select the hypothesis space H of
the functions the learning algorithm can consider as candidate solutions. Inasmuch as
it controls the shape and complexity of potential solutions, the choice of the hypothesis
space is of critical importance. In our previous example, we saw that a linear predictor
is unable to fit a problem where the true underlying function is quadratic, and with
good reason: if H allows only linear models, it is clear that the learning algorithm
cannot do otherwise than merely discover functional dependencies of the linear type.
Extending H to polynomials with a degree d ≥ 1 is, for example, a way to increase the
model’s capacity and thus avoid underfitting.

The breadth of the hypothesis space H actually defines what is called the repre-
sentational capacity of the model, which can be thought of as the theoretical capacity
of the model. In practice, finding the best function within the whole hypothesis space
is usually a difficult optimisation problem and the learning algorithm confines itself
to finding a solution that reduces the training error at best. Limitations, such as the
imperfection of the optimisation algorithm, thus imply that the learning algorithm’s
effective capacity may be less than the representational capacity of the model family.
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2.1.3.3 Bias-variance trade-off

The field of statistics offers diverse tools to understand generalisation and characterise
the notions of underfitting and overfitting. We recall concepts such as bias and variance,
which measure different sources of error in an estimator.

By definition, an estimator θ̂S is a function or variable that aims at providing a
prediction of some quantity of interest θ. In general, the quantity of interest, which is
assumed to be fixed but unknown, can be a single parameter or a vector of parameters
in some parametric model, such as the weights of a neural network, or even a whole
function. More formally, given a set {x1, · · · , xS} of S i.i.d. data points, an estimator
or statistic θ̂S is any function of the data:

θ̂S = g(x1, · · · , xS). (2.13)

According to this general definition, almost any function qualifies an estimator,
since it is not required that g return a value that is close to the true θ, or even that
the range of g be the same as the set of admissible values of theta. However, a good
estimator is such that its output is close to the true underlying θ that generated the
data.

As a function of data drawn from a random process, the estimate θ̂S can be consid-
ered as a random variable and as such, can be investigated from a statistical point of
view. Below, we report some commonly studied properties of estimators and discuss
what kind of useful information they provide.

A first characteristic of random variables and estimators is their bias. It measures
the expected deviation of the estimator from the true value θ:

bias(θ̂S) = E(θ̂S)− θ, (2.14)

where the expectation is over the data (seen as samples of a random variable) and θ is
the true underlying value used to define the data generating distribution. Informally,
the bias quantifies the error that comes from flawed assumptions in the learning al-
gorithm. A high bias can cause the learning algorithm to miss the relevant relations
between features and labels, and thus fall into underfitting. Thus, one of the qualities
desired for an estimator is a low, not to say nil bias. If bias(θ̂S) = 0, the estimator
is said to be unbiased, which implies that E(θ̂S) = θ. It is said to be asympotically
unbiased if limS→∞ bias(θ̂S) = 0, which entails that limS→∞ E(θ̂S) = θ.

Another property of the estimator we may be interested in is how much we ex-
pect it to vary as a function of the data sample. This can be evaluated through the
computation of the variance. The variance of an estimator is simply the variance

Var(θ̂S) = E[(θ̂S − E(θ̂S))2]. (2.15)
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Alternatively, one can consider the square root of the variance, called the standard
error. The variance, or the standard error, of an estimator gives a measure of the
deviation from the expected estimator value that any particular sampling of the data
is likely to cause. In other words, the variance can be seen as the error related to
the sensitivity of the model to small fluctuations in the training set. A high variance
estimator may lead to overfitting and is thus to be avoided.

Just as we might like an estimator to have low bias, we would also like it to exhibit
a fairly low variance. A way to strike a balance is the MSE of the estimates.

MSE = E[(θ̂S − θ)2] (2.16)
= E[θ̂2

S + θ2 − 2θ̂Sθ] (2.17)
= E[θ̂2

S] + θ2 − 2θE[θ̂S] (2.18)
= bias(θ̂S)2 + Var(θ̂S). (2.19)

The MSE measures the overall expected deviation between the true value of the pa-
rameter θ and the estimator θ̂S. As it can be seen in eq. (2.19), the MSE incorporates
both the bias and the variance. Thus, desirable estimators have low MSE, as it ensures
they have both low bias and low variance.

The relationship between bias and variance is intimately linked to the machine
learning concepts of capacity, overfitting and underfitting. At the beginning of the
training process, the data has little influence on the learnt function and therefore, the
model output is far from the desired function: the bias is large and the variance is
low (underfitting). Then, as the model capacity increases, bias tends to decrease and
variance tends to increase. If trained too long, the algorithm eventually learns the
noise specific to the dataset, and the variance becomes large (overfitting). Fig. 2.6
illustrates these phenomena and shows again the U-shaped curve of generalisation as
a function of capacity.

To summarise this subsection, the choice of the appropriate model capacity is a
crucial issue in machine learning: if the model is too simple, it will not be able to
capture the relevant information in the data; if the model is too complex, it will
generalise poorly to unseen data. The happy medium between those two phenomena,
respectively called underfitting and overfitting, is tightly linked to the so-called bias-
variance trade-off. The strategies to control such a trade-off, known under the name
of regularisation, are introduced in section 2.1.4.

2.1.4 Regularisation techniques

Regularising a learning algorithm consists in modifying some of its characteristics,
such as its objective function, its capacity or even its training set, with the purpose
of reducing its generalisation error but not its training error. In other words, regular-
isation offers a way to solve overfitting. We report some of the most commonly used
regularisation techniques below.
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Figure 2.6: Representation of the relationship between bias, variance and generalisation
error in function of the model capacity. As capacity increases, bias tends to decrease
and variance tends to increase, resulting in U-shaped curve for generalisation error.
Illustration inspired from [77].

2.1.4.1 Regularised objective function

We have already mentioned that the performance of the learning algorithm can be
modified by adding or removing functions from the hypothesis space H of candidate
solutions. It is true that the behaviour of the algorithm is strongly affected by how
large is H, but not only: it also greatly depends on the kind of functions the learning
system is allowed to pick from H. It is possible, for instance, to specify a preference
for one solution over another in the hypothesis space. This means that both functions
are eligible, but one may be preferred, and the unpreferred solution will be selected
only if it performs a significantly better fitting of the training data than the preferred
one.

More specifically, one can narrow the set within which the parameters are chosen
by adding a norm penalty R(θ), also called regulariser, to the objective function. This
regularisation strategy, which aims at limiting the model capacity, is broadly used
in diverse machine learning approaches, such as neural networks, linear regression or
logistic regression. The regularised objective function is denoted J̃S(θ) and reads:

J̃S(θ) = JS(θ) + λR(θ), (2.20)

where λ ∈ [0; +∞) is a hyperparameter that weights the contribution of the norm
penalty term R, relative to the standard cost function JS. If λ is set to 0, the model
is not regularised, that is, we impose no preference about the functions to pick from
H. Larger values of λ results in more regularisation. Different choices for the norm
penalty can lead to different solutions being preferred.
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A classic choice for the regulariser R(θ) is the `2-norm of the parameters θ, which
promotes weight decay: R(θ) = θT θ. This approach, known as the Tikhonov regu-
larisation leads to the so-called structural risk minimisation problem. In that case,
large values of λ force the weights to become smaller and minimising J̃S(θ) amounts
to finding weights that make a trade-off between fitting the training data and being
small. The preferred solutions are thus solutions that have a smaller slope, or that put
weight on fewer of the features. In short, even though the model is able to represent
functions with much more complex shape, weight decay encourages the use of simpler
functions and thus constrains the predictor to be more stable with respect to data
fluctuations.

2.1.4.2 Early stopping

We mentioned in section 2.1.3 that during the training process, the training error tends
to decrease while the generalisation error presents a U-shaped curve, whose minimum
defines the boundary between the underfitting and overfitting regimes. It thus appears
judicious to stop the learning process at the very moment when the generalisation error
is the smallest possible, before it starts to increase again. How to carry out such a
technique, known as early stopping?

Earlier we discussed how a hold-out test set, which consists of examples coming from
the same distribution as the training set, can be employed to estimate the generalisation
error of a learner. However, it is crucial that these test examples are not involved in any
way in the choices about the model, including the moment when to stop the training
process. For this reason, the generalisation error is always assessed during the learning
process on a different set, the validation set, which is built from the training data.
Specifically, the training set is split into two disjoint subsets: one of these subsets
is used to learn the parameters, the other one is used to estimate the generalisation
error. Usually, the subset of data employed to learn the parameters is still called the
training set, although this may be confused with the bigger collection of examples used
for the entire training process. The second subset of data is the validation set. It not
only enables to apply early stopping methods, but also allows for a sound choice of
the algorithm hyperparameters, which will be introduced in section 2.1.6. Generally,
80% of the training data are assigned to the training set, and 20% are assigned to
the validation set [77]. Once the hyperparameters have been definitely selected and
the resulting model has been trained according to the early stopping method, the
generalisation error can finally be estimated on the test set, so far not used in any way
by the learner.

In practice, applying early stopping methods entails to periodically evaluate the
error on the validation set during the minimisation process. Every time this error
decreases, a copy of the model parameters θ is saved, in order to be able to restore
the best parameter setup at the end of the training. The learning process stops when
no set of parameters significantly improves the error on the validation set for some
number of iterations.

Inasmuch as they allow for the training process to be stopped even if a minimum
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of the empirical risk has not been reached yet, early stopping methods may lead to
a reduction of the computational cost and training time while effectively regularising
the model. The only cost of early stopping is caused by the periodic evaluation of the
error on the validation set. Nevertheless, this cost is generally negligible compared to
the total training time. Besides, it can be further reduced by using a smaller validation
set, or by decreasing the frequency of these observations, although this may lead to a
worst estimate of the optimal parameters.

2.1.4.3 Data augmentation

The best way to help a machine learning model generalise better is to train it on
more data. In practice, however, the amount of available data is limited. One way to
circumvent this problem is to generate fake data and incorporate it to the training set.

A specific problem for which data augmentation has been particularly effective is
object recognition. The high dimensionality of images, as well as the fact they include
a wide range of factors of variation, many of which can be easily simulated, make
them particularly suitable for data augmentation. Operations such as translating the
training image a few pixels in each direction, rotating or scaling the image may often
greatly improve generalisation. Injecting a small random noise in the input can also
be seen as a form of data augmentation [187]. In the overall, many data augmentation
strategies can be thought of, but it is important that the chosen transformations do
not change the correct output. For example, optical character recognition tasks require
recognising the difference between ’6’ and ’9’, or between ’b’ and ’d’, so vertical or
horizontal flips are not suitable ways of augmenting datasets in those cases.

Although data augmentation is not applicable to all machine learning tasks, it has
proven quite effective for several problems beyond object classification, such as speech
recognition [113] for instance.

2.1.4.4 Further techniques

There exist many other ways to make a machine learning model generalise better.
Bagging (short for bootstrap aggregating), for example, is a technique for reducing
generalisation error by combining several models [28]. It consists in training several
different models independently and then use all the trained models to predict the
outputs of the test set.

Another example is the dropout technique, popular in the field of neural networks
[190]. It entails randomly ”dropping out”, or omitting, units of neural network during
its training. It actually can be thought of as a special kind of bagging.

A detailed review of existing regularisation techniques for deep learning algorithms
can be found in [129] and the references therein.
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2.1.5 Gradient-based optimisation

2.1.5.1 Gradient-based general strategy

Minimising the empirical risk (2.12) or its regularised form (2.20) is not a trivial task.
Most of the time, calculating a closed form solution is impracticable and the optimisa-
tion problem needs to be solved through an iterative process. Prominent approaches,
said to be gradient-based, aim at exploiting information about the objective function’s
gradient in order to generate a sequence of iterates {θ(k)}k∈N ⊂ Θ so that JS(θ(k))
decreases along the iterations.

The simplest gradient-based minimisation method, known as gradient descent (GD),
offers to iteratively adjust the internal parameters θ(k) by making small steps in the
direction opposite to the first-order gradient of JS. Moving along that direction means
following the so-called steepest descent, that is, the direction in which the function is
locally decreasing the most from the current point. This strategy, attributed to Cauchy
[33], can be formally written in the general form of algorithm 1.

Algorithm 1 Gradient descent update
Input: S = {(xi, yi)| xi ∈ X, yi ∈ Y, i = 1, . . . , S}, training set

θ(0), initial set of parameters
α(0), initial steplength

for k = 0, 1, . . . do
Compute gradient estimate gk(θ(k))
Define steplength α(k)

Update parameters: θ(k+1) = θ(k) − α(k)gk(θ(k))
end for

In algorithm 1, gk(θ(k)) stands for the gradient of the objective function JS with re-
spect to the internal parameters θ, evaluated at θ(k). There exist three broad categories
of gradient descent algorithms, which differ in the amount of data used to compute
gradient gk. Those variants are detailed in section 2.1.5.2.

As for the steplength α(k), it represents the size of the move that is made at each
iteration k in the parameter space Θ. It is also called learning rate in the special
context of deep learning. A brief review of existing methods to determine such a scalar
is given in section 2.1.5.3.

2.1.5.2 Stochastic, batch and minibatch gradient-descent methods

The essential difference between the gradient descent categories detailed in this section
rests upon the number of training examples they exploit to compute the gradient gk at
each iteration k. Broadly speaking, the amount of data chosen for such a computation
offers a trade-off between the accuracy of the parameter update and the computational
cost needed to perform the update.
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Batch gradient descent Standard GD algorithm computes the gradient gk of the
cost function over the entire training set. For this reason, it is usually referred to as
batch gradient descent, since an entire batch of data is used to update the parameters
θ(k) at each iteration. Mathematically, the gradient gk is an average over all the training
examples:

gk(θ(k)) = 1
S
∇θ

S∑
i=1
L(xi, yi, fθ(k)(xi)). (2.21)

Such an algorithm guarantees, under some conditions about α(k), to converge to
a local minimum of JS [23]. When the cost function is convex, all local minima are
also global minima and therefore, gradient descent can converge to the global solution.
When the cost function is non-convex, as it is the case in deep learning applications,
it is hoped that the found local minimum performs nearly as well as the global one.
Specialised gradient descent methods designed to deal with this challenge are further
detailed in section 2.2.4.

The main drawback of batch GD comes from the fact that computing the average of
the gradients over the whole training set at each iteration is burdensome and requires
significant computer resources. Although it can benefit from parallelisation due to the
sum structure of the objective function, such an approach remains expensive, not to
say impracticable when the training set and the number of input features are very
large.

Stochastic gradient descent The online or stochastic gradient descent approach
(SGD), initially proposed by Robbins and Monro [173], overcomes the aforementioned
problem. Instead of averaging the gradient of the cost function over the complete
training set, it computes the gradient on a single sample (xik , yik) ∈ S, randomly
chosen at each iteration, and updates the parameters θ(k) accordingly. In that case, gk
can be regarded as an estimate of the actual gradient of JS and reads:

gk(θ(k)) = ∇θL(xik , yik , fθ(k)(xik)). (2.22)

SGD is not deterministic as its behaviour relies on the random sequence {ik}k. In
practice, the training set is usually shuffled in advance and a new example is picked
from that mixed training set at each iteration. In this way, it is ensured that all training
examples are seen while guaranteeing their randomisation. In case the training set is
to be observed several times by the learning algorithm, it can be shuffled before each
pass, to prevent cycles.

As each iteration of SGD involves the computation of the gradient on a single train-
ing example, this strategy does reduce the computational burden and allows to carry
out iterations significantly faster than batch GD. This simplification of the gradient,
however, introduces some random noise in the minimisation process, as illustrated in
fig. 2.7. Concretely, each direction −∇θL(xik , yik , fθ(k)(xik)) is not necessarily a descent
direction of JS(θ(k)). Therefore, parameter updates have a greater variance that can
cause large fluctuations in the objective function and it is not guaranteed that a mini-
mum (even local) will be reached in a reasonable amount of time. On the other hand,
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(a) Batch GD. (b) Stochastic GD. (c) Minibatch GD.

Figure 2.7: Illustration of the behaviour of a gradient-descent algorithm according to
the amount of data used to compute the gradient. The grey ellipses represent the
level sets of a convex function. In the case of batch GD, all the training examples are
employed at each iteration and the optimisation algorithm converges to the minimum.
When using SGD or minibatch GD, the gradient is computed on much less examples
of the training set: this approximation tends to cause fluctuations in the optimisation
process.

this noise can also prove useful to find better solutions, in particular if the objective
function has numerous local minima, as it is the case in deep learning. While batch
GD converges to the minimum of the basin in which the initial parameters were placed,
even if its value is high with respect to that of the global minimum, the noise generated
by stochastic learning may enable the parameters to jump into another basin, with a
possibly deeper local minimum [24, 99].

It has been shown that if the learning rate α(k) is gradually decreased during the
training and subject to relatively mild assumptions, SDG converges almost surely to
a global or local minimum, in the convex and non-convex case respectively [23]. Even
better, the comparison between the convergence rates of batch GD and SGD is in
favour of the latter for big data regime [24].

Middle ground: minibatch gradient descent A compromise between the exact
calculation of the gradient of JS and its approximation made on a single example is
given by the average of the gradients over a small subset of the training samples. This
kind of algorithm, called minibatch gradient descent, combines the best properties of
deterministic and stochastic methods and as such, has become the algorithm of choice
in many machine and deep learning applications.

At each iteration k, a minibatch of S ′ examples:

Sk = {(xi, yi) | i ∈ Ik ⊂ {1, . . . , S}, ]Ik = S ′ < S} ⊂ S (2.23)

is drawn uniformly from the training set S. These minibatch selections are performed
without repetitions, until the training set has been entirely seen by the algorithm. The
estimate of the gradient gk reads:

gk(θ(k)) = 1
S ′
∇θ

∑
i∈Ik
L(xi, yi, fθ(k)(xi)). (2.24)

The size of the minibatch offers a way to balance the accuracy of the parameter
update and the generalisation abilities of the learning system, as well as the com-
putational resources and time it requires. A minibatch usually contains tens or few
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hundreds examples, depending on the context. This choice generally relies on the
considerations listed below.

Larger minibatches provide a more accurate estimate of the gradient, and reduce
the variance of the parameter updates, leading to a possibly more stable convergence
(see fig. 2.7). Smaller minibatches, on the contrary, add some noise to the learning
process, which can result in a beneficial regularising effect [217]. The generalisation
error thus shows better results for small minibatches and often proves best for a mini-
batch size of 1 [77], which actually corresponds to the SGD setup. Training such small
minibatches, however, might require a very small learning rate to ensure the stability
of the algorithm, due to the high variance in the estimate of the gradient. As a con-
sequence, the training may demand a very high running time caused by the reduced
learning rate and the greater number of steps needed to observe the entire training set.

From a practical point of view, minibatch GD has the advantage of using a rel-
atively small number S ′ < S of examples that remains fixed even when the training
set grows, making possible the handling of very large datasets. Furthermore, this ap-
proach enables some degree of parallelisation to be exploited in the computation of
the minibatch gradients. Nowadays, such computations can be made notably efficient
thanks to the modern parallel computing architectures as well as the state-of-the-art
machine and deep learning libraries. In particular, for a proper choice of the minibatch
size, minibatch GD allows to make the most of multicore architectures, while those are
underutilised in the case of extremely small minibatches and SGD.

2.1.5.3 Determining the steplength

The choice of the steplength α(k) is fundamental for the convergence of GD algorithms.
If the α(k) is too small, significant updates of parameters may be extremely slow and
thus reaching an acceptable value for the cost function may take a very long time. On
the other hand, if α(k) is too large, the local information carried by the gradient at
the current point may not be relevant anymore and the parameters may never reach
acceptable loss at all. Fig. 2.8 illustrates the behaviour of the optimisation algorithm
in function of the steplength.

Several strategies were proposed to judiciously choose α(k) at each iteration k. The
simplest one, known as exact line search selects the steplength such that:

α(k) = min
α>0
JS(θ(k) − αgk(θ(k))). (2.25)

Alternative approaches intend to determine α(k) at a lower cost. For instance, inexact
line search techniques make use of sets of inequalities to restrict the domain of the
steplength search, such as Wolfe rules or Goldstein conditions [67]. More recently, the
two-point step size algorithm proposed by Barzilai and Borwein [10] opened up new
interesting perspectives about computationally cheap steplength search methods.

While those approaches have become widely spread in several machine learning
applications, they are little popular in the special context of deep learning, partly due
to the computational cost they add to the training process while a simpler update
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(a) Steplength too small. (b) Optimal steplength. (c) Steplength too large.

Figure 2.8: Illustration of the influence of the steplength (also called learning rate) on
the convergence of the optimisation algorithm. When it is too small, the convergence
becomes very slow. On the contrary, when it is too large, it may lead to the divergence
of the gradient-descent algorithm.

rule may already perform very well. Instead, a learning rate schedule is usually hand-
designed before starting the training, according to few simple rules. When using a
batch GD algorithm, the learning rate can actually be constant over the training, as
the exact gradient becomes small and then zero when getting closer to the minimum.
In the case of stochastic or minibatch GD, however, the approximation of the gradient
results in fluctuations that do not vanish around a minimum. In fact, the variance of
such fluctuations around a local minimum is proportional to the learning rate [23, 153].
This is why, it is usual practice to gradually decay the learning rate over the iterations
of the training. Formally, it has been demonstrated that the following conditions about
the learning rate α(k):

∞∑
k=1

α(k) =∞, (2.26)

and
∞∑
k=1

(α(k))2 <∞, (2.27)

are sufficient to guarantee the convergence of SGD [173]. Intuitively, the first condition
(2.26) ensures that the parameters θ(k) will reach the basin of attraction of a minimum,
while the second constraint (2.27) guarantees that the learning rate decays sufficiently
for the parameters to converge to the minimum instead of just oscillating around it
[216]. In other words, the initial noisy optimisation may be beneficial inasmuch as
it enables to explore a larger fraction of the parameter space, while keeping a low
probability to be trapped in local minima. Once a promising region of the parameter
space has been found, reducing the learning rate, and thereby the gradient fluctuations,
allows to fine-tune the parameters.

By way of example, the following update rule is part of the step decay methods
commonly used in deep learning:

α(k) = α(0) · qb
k
t c, (2.28)
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where q < 1 is the factor by which the initial learning rate α(0) is reduced every
t iteration. Another approach, fully heuristic, consists in monitoring the validation
error while training with a fixed learning rate and decrease the latter by a constant
whenever the validation error stops improving.

2.1.6 Hyperparameter selection
Most machine learning systems are characterised by a set of special parameters, which
are called hyperparameters. They are distinguishable from the parameters θ of the
model in that they are not learnt by the system and instead, need to be tuned before
starting the training process. They are usually used to control the algorithm behaviour,
as they partly define the minimisation process or the architecture of the algorithm itself.
Thus, they may significantly affect the performance of the resulting model as well as
the time required by the training process [42].

The regularisation parameter λ in eq. (2.20), used to control the trade-off between
the data-fidelity cost function and the regulariser, provides a first example of hyper-
parameter. Other examples include inter alia the (initial) steplength of the iterative
learning algorithm, the minibatch size, the amount of times (called epochs) the training
set is seen by the learning system or else the parameters describing the loss function,
such as the threshold ε in the case of the ε-insensitive loss function. Hyperparameters
specific to the field of deep learning also encompass the number and size of the layers
in the neural network.

There are mainly two reasons to consider a setting as a hyperparameter that the
learning algorithm does not learn. The first one is that this setting may be difficult
to optimise. The second reason, which applies in particular to the settings controlling
model capacity, is that it is not appropriate to learn this hyperparameter on the training
set. Such hyperparameters, if learnt on the training set, would always select the
maximum possible model capacity and thus bring about overfitting. To illustrate
this phenomenon, let us consider the polynomial example in fig. 2.4. If the degree
of the polynomial function used to fit the data is regarded as a trainable parameter,
the learning algorithm will tend to increase the degree until the model perfectly fits
the data, resulting in a small training error, but poor generalisation performance.
This is why the polynomial degree should be seen as a hyperparameter and chosen
independently of the training.

The simplest way to select proper hyperparameters is to train different models (de-
scribed by different hyperparameters) and choose the setup leading to the smallest
generalisation error [19]. As in the case of early stopping, however, hyperparameter
tuning cannot depend on the test examples and as such, the generalisation errors used
to compare the trained models are computed on the validation set. In the polynomial
example, the algorithm is to be trained on the training examples for different polyno-
mial degrees. The polynomial leading to the best generalisation error on the validation
set determines the best version of the model, whose final performance is evaluated on
the test set.

Although hyperparameter search is still performed manually in most of the cases,
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the field of hyperparameter optimisation (HO) has been receiving an increasing atten-
tion over the last years. While the most intuitive and widely spread HO methods are
grid search and random search [13], several alternative procedures that aim at auto-
matically finding the best hyperparameter setting in a low-cost manner have recently
emerged [189, 68].

2.2 Deep learning theory
Although most traditional machine learning algorithms perform well on a wide variety
of important tasks, they have not succeeded in solving central problems of AI, such as
object or speech recognition. Partly motivated by the failure of classic algorithms on
such tasks, a new branch of machine learning was developed, with greater power and
flexibility, and was given the name of deep learning due to the depth of its models.
Such a class of algorithms provides a potent framework in which previous obstacles,
such as the generalisation to new examples when working with high-dimensional data,
or the learning of complicated functions in high-dimensional spaces, can be overcome.

Deep feedforward networks, also called multilayer perceptrons (MLPs), are the
quintessential deep learning models. In this section, we introduce the mathemati-
cal theories underlying such structures and the algorithms used to train them. We also
provide some historical perspectives about neural network development and briefly
introduce more advanced ANN architectures.

2.2.1 The power of deep learning
One way to introduce feedforward networks is to consider some of the limitations of
simpler machine learning algorithms and contemplate how to overcome them. Let us
start with the simplest configuration: linear models. Linear models, such as linear
regression or logistic regression, present the advantage of fitting efficiently and de-
pendably, whether by closed form or by convex optimisation. However, they also have
the evident defect their model capacity is restricted to linear functions. This implies
amongst others, that the model cannot understand (and thus take advantage of) the
interaction between any two input variables.

To overcome this first limitation, and extend linear models to represent nonlinear
functions of x, it is possible to apply the linear model not to x itself, but to a trans-
formed input Φ(x), Φ being a nonlinear transformation. Such a function Φ can be
regarded as providing a new representation of x, for which it is hoped that the linear
model can be successfully applied. Fig. 2.9 shows an illustrative example of such a
process.

The question is then: how to choose the mapping Φ?

1. A first option, which remained the dominant approach until the advent of deep
learning, consists in manually engineering Φ. Such a strategy however gives
rise, at the cost of tremendous amounts of time and energy, to models that are
designed for specific tasks only, with little transfer between domains.
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Figure 2.9: Illustration of the trick that allows linear models to be used on initially
nonlinear functions. The transformation Φ applied to the inputs x provides a new
representation thereof in which a linear model can be successfully applied.

2. A second approach, which was inter alia employed in machine learning algorithms
such as SVM or more generally in kernel methods, consists in using a very generic
Φ. In that case, one usually selects Φ amongst a variety of finite or infinite-
dimensional popular functions whose properties have already been studied in a
broad context. If Φ is chosen of high enough dimension, the model capacity is
large enough to allow a proper fitting of the training set, but generalisation to
the test set often remains poor. In fact, very generic mappings usually depend
on the principle of local smoothness, that is, on the implicit assumption that the
function being learnt should not change significantly within a small region on
the input space, and do not encode enough prior information to solve advanced
problems.

3. The breakthrough proposed by deep learning approaches is to learn Φ. In that
case, the mapping Φ is described by a set of parameters that are to be trained
through an optimisation process, such as the ones described in section 2.1.5,
until it offers a good representation transformation. This strategy is the only
one of the three that gives up on the convexity of the optimisation problem,
but the advantages outweigh the harms. It can capture the benefit of the first
approach: human practitioners can encode their knowledge to help generalisation
by designing families of candidate functions Φ that are likely to perform well,
but they do not need to find the exact right function, providing a good general
function family is enough. Moreover, this strategy can also capture the benefit
of the second approach, as Φ can be chosen to be highly generic. Thanks to
the countless possibilities it opened up in the learning domain, it has nowadays
become the predominant approach.

Learning the function Φ in deep learning can take different forms. In the specific
context of artificial neural networks, this process draws inspiration from biological
learning mechanisms.

In human brain, the nervous system is composed of cells, which are referred to as
neurons. The neurons are connected to one another thanks to dendrites and axons, as
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(a) Biological neuron (b) Formal neuron

Figure 2.10: Schematic illustration of a biological neuron (left), and the formal neuron
(right). The functioning of the latter was inspired by that of the former, inasmuch
as it receives input signals from previous neurons, applies a nonlinear function to the
weighted sum of those signals, and sends the resulting activation value to the next
neurons.

illustrated in fig. 2.10a. The regions connecting axons and dendrites, called synapses,
allow to convey signals from a neuron to the next one. Roughly speaking, a neuron
receives multiple signals from a set of other neurons with which it shares synapses.
Each input signal has its own amplitude, which is weighted by the so-called synaptic
weight that defines the level of influence of each synapse. If the sum of these weighted
signals is high enough, the neuron is activated, meaning that it fires an output signal
to the following neurons; it remains inactivated otherwise. Studies showed that the
strengths of synaptic connections (the synaptic weights) often change in response to
external stimuli, and it is this continual modification that allows living organisms to
learn [3].

Inasmuch as their structure is highly inspired by the aforementioned biological
mechanism, ANNs are commonly believed to reproduce human brain functioning and
their popularity has undeniably benefited from this advantageous biological compari-
son. The parallel between ANNs and neuroscience is however often criticised as a poor
caricature of the workings of the human brain, and in spite of the popular belief, ANNs
are not designed to be realistic models of biological function. Nonetheless, it is true
that the principles of neuroscience have proven useful in designing neural networks and
motivating innovative architectures, such as CNNs.

Fundamentally, ANNs are built as networks of interconnected computational nodes,
called neurons in reference to the biological units they draw inspiration from. The
neurons are connected to one another through weights, which are the equivalent of
synaptic weights in living organisms. An artificial neuron receives several signals from
its inputs neurons, process them in order to compute its own activation number, and
propagates the computed value to its output neurons, using the weights as intermediate
parameters (cf fig. 2.10b). The process of learning then comes down to changing the
weights connecting the neurons. Just as external stimuli are needed for biological
organisms to learn, ANNs receive external stimuli by means of the training set and,
by exploiting the training input-output pairs through some optimisation process, they
can gradually adjust the weights until they reach a satisfactory generalisation error.
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Figure 2.11: An illustrative comparison between the accuracy of a conventional ma-
chine learning algorithm and that of a large ANN. Deep learners are essentially more
appealing than traditional methods as long as they are provided sufficiently large
datasets and powerful computers. Thanks to the recent dramatic increase in data
availability and computational power, deep learning technology has become the tech-
nology of choice in a large number of applications. Figure inspired from [3].

A network can be described by three main characteristics: i) the type of operations
the neurons perform, ii) the values of the weights in the connections between neurons,
iii) its architecture, that is, the number of nodes, their arrangement in multiple layers,
the type of connections. When a neural network is used in its most basic form, with-
out combining multiple units, the learning system often reduces to a classical machine
learning model. The real power of an ANN manifests when these elementary compu-
tational nodes are hooked up and the weights are simultaneously trained, using their
dependencies on one another. The predominant (and so far most powerful) way to
combine such units is to incorporate them in a multi-layered graph. By augmenting
the number of neurons within each layer and the number of those layers, one increases
the ability of the model to learn more complicated functions. The fact that neural
networks offer such a simple way to adjust the complexity of a model, which is then
chosen in function of the availability of training data and computational capacity, gives
them a real asset over traditional machine learning algorithms. Actually, most of the
recent success of ANNs are attributable to the fact that the ever-growing power of mod-
ern computers and data availability have outgrown the limitations of classic machine
learning systems, which fail to make the most of what is now possible [3]. Fig. 2.11
illustrates such a situation. While traditional machine learning may achieve better re-
sults for small datasets, due to greater ease to interpret the model and the possibility
to hand-craft interpretable features, it is clearly outperformed by deep learning as soon
as the dataset or the input space are high-dimensional.

Nowadays, most tasks that involve mapping an input vector to an output vector
can be performed by deep learning algorithms, as long as they are provided sufficiently
large models and sufficiently large datasets of labelled training samples. For the future,
the rapid advances associated with the ever increasing amount of data collections, the
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development of increasingly powerful computers that can handle such large datasets,
and the ever greater speed of computation that results in reduced training and testing
times, have lead to very optimistic perspectives for deep learning.

2.2.2 From perceptron to deep MLPs
The origin of the neural network field is usually attributed to Warren McCullock and
Walter Pitts [146], who showed in 1943 that networks of artificial neurons could, the-
oretically, compute any logical or arithmetic function. Their work inspired the percep-
tron network, developed by Frank Rosenblatt [176] in the late 1950s. Although such
an algorithm generated a great deal of interest in the machine learning community due
to its ability to perform pattern recognition, it rapidly became clear that the basic per-
ceptron network could solve only a limited class of problems. The necessity to consider
more complex structures gave later rise to the multilayer perceptrons. This section
aims at giving an overview of such an evolution of the ANNs, from their simplest form
to the architectures widely used nowadays.

2.2.2.1 Formal neuron

In their work, McCulloch and Pitts defined the simplest form of the artificial neuron,
or formal neuron, according to the following principle: the inputs of a neuron are
multiplied by weights, and the weighted sum of those signals is compared to a threshold
value. If the computed value is larger than the threshold, the neuron outputs 1; it
outputs -1 (or 0) otherwise. In mathematical terms, if we denote x ∈ Rp the input
vector, y ∈ {1,−1} its corresponding output, w ∈ Rp the vector of weights and ξ ∈ R
the threshold value, the output of the formal neuron w.r.t. its input reads:

y(x) = g

( p∑
i=1

wixi − ξ
)

= g(wTx− ξ), (2.29)

where g is called the activation function of the neuron. It can be, for instance, the
Heaviside step function, defined in eq. (2.4), which outputs a value g(t) ∈ {0, 1}, or
else, the function sign : R→ {−1, 1}, defined as:

g(t) = sign(t) =
{

1 if t ≥ 0
−1 if t < 0. (2.30)

The structure of the formal neuron is shown in fig. 2.10b.

2.2.2.2 Rosenblatt’s single layer perceptron

The first practical application of artificial neurons was proposed by Rosenblatt in 1958.
He reinterpreted the formal neuron as a binary classifier, able to sort the elements of
a given dataset into two groups. Indeed, the artificial neuron, even in its simplest
form, is able to perform binary classification by assigning to a generic vector x ∈ Rp

described by p features, the value y(x) = 1 or y(x) = −1 according to the sign of the
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linear function wTx− ξ. The accuracy of such a classification then relies on the value
of the weights w and threshold ξ. Rosenblatt’s major achievement was precisely the
intuition that those parameters can be learnt from data. He designed a fairly simple
algorithm that allows the training of w and ξ through an iterative process based on a
dataset of S input-output pairs:

S = {(xi, yi) | xi ∈ Rp, yi ∈ {−1, 1}, i = 1, . . . , S}. (2.31)

Once trained on the dataset S, such a network can then be used to classify new inputs
x that do not belong to S. The neural architecture thus devised was given the name
perceptron.

The training algorithm of the perceptron network, described in algorithm 2, was
designed according to the following considerations. A proper binary classification will
be achieved on the training samples as long as the parameters w and ξ are such that:w

Txi − ξ > 0 if yi = 1,
wTxi − ξ < 0 if yi = −1,

s = 1, ..., S. (2.32)

From a geometric point of view, system (2.32) can be interpreted as the search for
the separating hyperplane H = {x ∈ Rp | wTx = ξ} that divides the training samples
into the two sets:

A = {xi | (xi, yi) ∈ S, yi = 1} and B = {xi | (xi, yi) ∈ S, yi = −1}.

The existence weights w and threshold ξ that solve (2.32) is ensured if and only
if the sets A and B are linearly separable. If this is indeed the case, solving problem
(2.32) is equivalent to solving:w

Txi − ξ > 0 if xi ∈ A
wTxi − ξ < 0 if xi ∈ B.

s = 1, ..., S. (2.33)

At this point, it is common practice to add fictitious components x0 = 1 and
w0 = −ξ to the input and weight vectors so that they read xi = [1, xi1 , . . . , xip ]T ,∀i ∈
{1, . . . , S} and w = [−ξ, w1, . . . , wp]. In this manner, the threshold is regarded an
additional bias term with weight ξ, and the system to be solved comes down to:w

Txi > 0 if xi ∈ A
wTxi < 0 if xi ∈ B.

s = 1, ..., S. (2.34)

in which it can be assumed, without loss of generality, that ‖xi‖ = 1, ∀i = 1, . . . , S.
In order to automatically determine the parameters w that meet the conditions

in eq. (2.34), Rosenblatt provided an iterative training algorithm (algorithm 2) that
adjusts its parameters by repeatedly observing the samples of the training set, until
all the samples are classified properly. At each iteration, the parameter vector w is
updated if the currently observed sample is misclassified, by adding a correction term
to the value of w.
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Algorithm 2 Perceptron training algorithm, from [82]
Input: S = {(xi, yi)| xi ∈ Rp+1 s.t. ‖xi‖ = 1, yi ∈ {−1, 1}, i = 1, . . . , S} training set

Set w(0) = 0, k = 0, nbclass= 0.

while nbclass < S do
for i = 0, 1, . . . do

if sign
(
w(k)Txi

)
= yi then

nbclass = nbclass +1
else
w(k+1) = w(k) + yixi
k = k+1

end if
end for
if nbclass < S then

nbclass = 0
end if

end while

It can be demonstrated that if the setA and B are linearly separable, the perceptron
algorithm can determine a weight vector w̄ in a finite number of iterations [82], such
that all the training samples are classified correctly, that is, satisfying:

yi = sign(w̄Txi), i = 1, . . . , S. (2.35)

However, although it proves efficient to solve a variety of simple problems, the
perceptron network exhibits a rather arbitrary behaviour as soon as the data is not
linearly separable, and thus suffers from major limitations. A well-known example is
provided by the XOR function, a logical operation on binary inputs that returns 1
if and only if the input features differ, and 0 otherwise. The image space of such a
function is represented on fig. 2.12. It can be intuited that no linear model is able to
represent the XOR function, as there is no straight line able to separate the outputs
into two sets of same value.

Some of those limitations can be overcome by applying a nonlinear transformation
Φ to the input space in order to represent the data in a linearly separable space, as
already mentioned in section 2.2.1. In that case, the input-output mapping of the
formal neuron becomes:

y(x) = g

p+1∑
i=1

wiΦi(x)
 . (2.36)

Even such a possibility, already proposed in Rosenblatt’s perceptron, is still subject
to important limitations. The restricted expressiveness of perceptrons was in particular
criticised in the famous book by Minsky and Papert [148], which resulted in a drastic
lessening of the scientific interest in neural networks in the 1970s.



Deep learning theory 53

Figure 2.12: XOR function.

2.2.2.3 Multilayer perceptrons

The limitations of the perceptron, that is, of networks containing only one layer of
formal neurons, motivated the study of more complex architectures. The development
of MLPs, which consist of several layers of artificial neurons connected in chain, rein-
vigorated the field of deep learning, giving rise to a second wave of development of
neural networks in the 1980s. This new kind of ANNs, also called feedforward neural
networks inasmuch as they propagate one-way information from inputs to outputs,
without feedback connections, indeed provided a way to approximate a very broad
range of functions and thus to solve a wide variety of complex problems. Although
they are not the only existing ANN architecture, MLPs constitute the quintessen-
tial deep learning models and offer a very good initial framework to understand the
fundamental principles underlying ANN functioning.

MLP architecture A MLP consists of N ≥ 2 layers of artificial nodes, organised in
a chain structure. The first layer, which is actually not counted as part of the N layers
of the MLP inasmuch as it has no processing capacity, is called the input layer : its role
is to contain the features of the input examples of the dataset xi ∈ Rp, i = 1, . . . , S.
It is therefore composed of p units.

The last layer, or the output layer, returns the value(s) computed by the ANN and
has as many nodes as outputs desired by the user. Even in the case of classification, this
number may not necessarily be 1: for instance in multi-class classification, the ANN is
usually designed not to output the exact predicted class but rather the probability to
belong to each of the k classes of interest and has thus k output nodes.

The remaining N − 1 internal layers are said to be hidden, since the training data
does not give explicitly information about the desired output for each of these layers.
Each hidden unit, that is, each node of a hidden layer, represents a vector-to-scalar
function. It receives inputs from the neurons of the previous layer, computes its own
activation value, and sends the output as a contribution to the inputs of the neurons
in the subsequent layer. As such, MLPs are said to be fully connected: all the neurons
of a layer are connected to the neurons of the next layer. An example of MLP is
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Figure 2.13: Example of a feedforward neural network with depth N = 2 and a width
of 3. The oriented edge between the jth neuron of the (n−1)th layer and the kth neuron
of the nth layer has a weight w[n]

kj . Although they are not explicitly represented, ANNs
usually involve additional biases. The values reported inside the nodes of the graph
are the preactivation and postactivation values resulting from the forward operations
of the neural network applied to an input (x, y) ∈ S of the dataset. The predicted
output is denoted ŷ.

illustrated in fig. 2.13.
The depth of the model, which strongly influences the capacity of the MLP, is given

by the length N of the chain. As for its width, it is determined by the number of hidden
units in the largest hidden layer: maxn∈[[1,N−1]] dn, where dn is the dimension of the nth

layer. As mentioned in section 2.1.6, both the depth of the MLP and the number
of hidden units in each layer are hyperparameters, meaning that they are not learnt
through the training process and instead need to be tuned by the user.

Weights and hidden units The oriented connections between nodes are charac-
terised by weights, which define the influence of the information respectively propa-
gated from the neurons of a layer to the neurons of the next one. We will denote
w

[n]
kj the weight of the connection between the jth neuron of the (n − 1)th layer and

the kth neuron of the nth layer (cf fig. 2.13). Although they are usually not explicitly
represented on ANN schemes, biases are also included as part of the parameters to be
learnt. As one usually adds one bias per layer, we will use the notation b[n]

k to represent
the contribution of such an additive parameter to the kth neuron of the nth layer.

A hidden unit makes use of those weights and biases to compute a weighted sum
of the inputs it receives from the previous layer. However, if its role were limited to
computing such a linear combination of its inputs, an MLP, even deep, would come
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down to a simple linear model, and one would miss all the interest of using a deep
learning structure. The ability of MLPs to represent complex nonlinear functions
substantially rests upon the fact that each unit applies a nonlinear function to the
weighted sum of its inputs before outputting it to the next neurons. Such functions
are called activation functions and will be denoted g[n] : R → R. We respectively call
preactivation value and (post)activation value the values computed before and after
applying the activation function. An overview of the most commonly used activation
functions is given in the next paragraph.

Formally, for a given input vector xi ∈ Rp, the output ai,k [n] of the kth neuron of
the nth layer is obtained as follows:zi,k

[n] = ∑dn−1
j=1 w

[n]
kj a

[n−1]
i,j + b

[n]
k

ai,k
[n] = g[n]

(
zi,k

[n]
)
, for k = 1, . . . , dn, n = 1, . . . , N.

(2.37)

provided that in the input layer ai,k [0] = xi,k for k = 1, . . . , d0 = p. Formula (2.37) can
be reformulated in matrix form, as follows:zi

[n] = W [n]a
[n−1]
i + b[n]

ai
[n] = g[n]

(
zi

[n]
)
, for n = 1, . . . , N.

(2.38)

where W [n] ∈ Rdn×dn−1 is the weight matrix of the kth layer and b[n] ∈ Rdn is the bias
vector. Thus, given an input vector xi ∈ Rp that determines the values of the neurons
ai

[0] in the first layer, one can use eq. (2.38) to compute the final output ŷi = ai
[N ] of

the neural network.

Activation functions The design of activation functions is a highly active area of
research. So far, there are not many definitive guiding theoretical principles for the
choice of such functions and although a wide variety of nonlinear functions may perform
well, only a small subset of them is actually used in practice.

Sigmoids constitute a first family of popular activation functions. They monoton-
ically increase between two finite values by describing a S-shaped curve, or sigmoid
curve. This family mainly encompasses the logistic function:

g(t) = 1
1 + e−t

, t ∈ R, (2.39)

and the hyperbolic tangent function:

g(t) = tanh(t) = et − e−t

et + e−t
, t ∈ R, (2.40)

which are plotted on fig. 2.14a. As it can be observed, they essentially differ in the
range of their outputs: while the former returns a value in (0; 1), the latter outputs a
number in (−1; 1).

For a long time, sigmoidal functions have been used as the default activation func-
tions as they offer appealing properties, amongst which their continuity, differentiabil-
ity and the fixed range of their output. However, they also present a major drawback:
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Figure 2.14: Graphics of different activation functions.

they saturate across most of their domain, as soon as |t| is large, and are only strongly
sensitive to their input when t is close to 0. As this widespread saturation phenomenon
may make gradient-based learning very difficult, the use of such functions in hidden
units is now discouraged. They may only be employed in the output layer if suitable.

The sigmoidal functions have mainly been supplanted by a second family of activa-
tion functions, which provide better performance: the Rectified Linear Units (ReLU)
and their generalisations. The ReLU function is defined by:

g(t) = max{0, t}, t ∈ R. (2.41)

Being a piecewise linear function, ReLU preserves many of the properties that make
linear units easy to optimise with gradient-based methods. It also has the advantage of
being less computationally expensive than sigmoidal functions since it involves simpler
mathematical operations. In the overall, ReLU is considered as an excellent default
choice of hidden unit and has indeed proved its efficiency on many problems [154, 230].
It is to be noted that ReLU is not differentiable at t = 0, and may thus appeared as
not eligible in the framework of gradient-based learning. In practice, gradient descent
still performs well enough in spite of this indifferentiability, since usually ANN training
algorithms do not reach a local minimum of the cost function but instead merely reduce
its value significantly. Thus, it is not expected to arrive at a point where the gradient
is zero and the fact that the true minima of the cost function correspond to points
with undefined gradient is considered as acceptable. The actual drawback of ReLUs
rather rests upon the fact that they cannot learn via gradient-based method when their
preactivation value is negative.

Various generalisations of ReLU have been proposed to overcome this zero-gradient
plateau and guarantee the possibility to learn even from nonpositive preactivation



Deep learning theory 57

values. Part of them are based on using a nonzero slope ν when t < 0:

g(t, ν) = max{0, t}+ ν min{0, t}, t ∈ R. (2.42)

Examples of such a strategy include the absolute value rectification [114], which fixes ν
to −1, leaky ReLU [142] which fixes ν to a small value like 0.01, and parametric ReLU
[91] which treats ν as a learnable parameter. Standard ReLU and its leaky variant are
plotted on fig. 2.14b.

So far, we have mainly discussed the activation functions employed for hidden
units, but the functions used in the output layer may be different from the former.
Such a choice is actually tightly linked to the choice of the cost function and the
form of the desired output. The most popular functions encompass inter alia linear
functions, since nonlinearity is not necessary in the last layer, sigmoid functions which
prove particularly useful for binary classification, and the softmax function, which can
be employed to represent a probability distribution over a discrete variable with k

possible values. Formally, the latter is given by:

g(t)k = softmax(t)k = etk∑dN
j=1 e

tj
, k = 1, . . . , dN , t ∈ RdN , (2.43)

where t is a multi-dimensional vector composed of all the preactivation values of the
last layer.

Training an MLP Once the global architecture of the MLP as well as its activation
functions have been chosen, one can see the network as a composition of functions con-
nected in chain that outputs ŷi = fθ(xi), θ denoting the set of all trainable parameters
{(W [1], b[1]), . . . , (W [N ], b[N ])}. For the predicted value ŷi to be close to the true label
yi, the weights and bias are intended to be trained through an optimisation process,
following the procedure explained in section 2.1. Namely, a cost function L is designed,
so that its minimisation

min
θ

1
S

S∑
i=1
L(xi, yi, fθ(xi)) (2.44)

over the provided training set S = {(xi, yi) | i = 1, . . . , S} leads to an accurate approx-
imation of the mapping between the input vectors and their corresponding outputs.
Again, the neural network is not only expected to perform well on the training set, but
also and above all to provide a low test error, thus demonstrating good generalisation
abilities.

The minimisation of the objective function (2.44) is usually performed by means of
gradient-descent techniques and the computation of the gradient w.r.t. the parameters
θ, needed at each iteration of such methods, is made possible by the back-propagation
algorithm. The latter is described in greater detail in section 2.2.3.

Fundamentally, one of the largest differences between neural networks and tradi-
tional machine learning algorithms is that the nonlinearity of ANNs leads most in-
teresting cost functions to become nonconvex. This implies that the gradient-based
optimisers used to train ANNs are not guaranteed to converge to the global minimum
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and instead merely drive the cost function to a very low value. Furthermore, the suc-
cess of ANN optimisation process strongly depends on the choice of the initial value
of the parameters, as well as some hyperparameters, such as the learning rate. Those
challenges and some of the popular methods developed to remedy them are presented
in section 2.2.4.

MLPs as universal approximators It has been demonstrated [102] that a feed-
forward network with a linear output layer and at least one hidden layer of nonlinear
units (with a wide ranging choice of ’squashing’ functions, such as the logistic sigmoid
activation function) can approximate any continuous function on a compact set of Rp.
Furthermore, a MLP may also approximate any function mapping from any finite di-
mensional discrete space to another. As a consequence, MLPs are often referred to as
universal function approximators.

While the original theorem was first stated for MLPs with activation functions that
saturate for both very positive and very negative inputs, the universal approximation
theorem has also been demonstrated for a broader class of activation functions, which
includes the ReLU function [135].

In short, the universal approximation theorem guarantees that, regardless of the
function that is aimed to be learnt, a large MLP will be able to represent this func-
tion. Such a theoretical claim, however, is not always easy to translate into practical
usefulness, for several reasons. First, there is no guarantee that the learning system
will actually find that function. The optimisation algorithm may not converge to the
value of the parameters that corresponds to the wanted function, whether because it
finds another local minimum, or because it selects an improper function as a result
of overfitting. Secondly, although the universal approximation theorem states that
there exists an ANN large enough to achieve any degree of complexity, it does not
give any information about how large the network needs to be. In the worst-case, up
to an exponential number of hidden nodes may be required [9]. As a consequence,
although single-layer feedforward networks are theoretically sufficient to approximate
any function, their hidden layer may need to be unfeasibly large and may not be con-
cretely trainable. For this reason, deeper MLPs are usually preferred, as they reduce
the number of hidden units required in each layer to represent the desired function,
as well as the overall number of parameters. A greater depth has furthermore shown
better generalisation results in a wide variety of tasks (see [77] and references therein),
suggesting that the use of deep architectures does express a useful prior about the kind
of function the model learns.

2.2.2.4 Other architectural considerations

So far, we have described ANNs as being simple chains of layers, mainly characterised
by their depth and width. However, neural networks are not restricted to this archi-
tecture, and actually show a far greater diversity.

In general, connecting the layers in a chain is indeed the most common practice,
but many architectures have also explored alternative connections. The residual ANNS
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[92], for instance, contain a main chain but not only: extra architectural features, such
as skip connections going from layer n to layer n + 2 or higher have been added with
the aim to facilitate the back-propagation of the gradient through the layers of the
model.

Many of the architectural innovations have emerged in response to the difficulties of
MLPs to solve specific tasks. For example, standard neural networks fail in applications
in which the data is sequential, such as text processing, speech recognition or DNA
sequences. In such cases, the output strongly depends on all the previous computations,
but the static architecture of feedforward ANNs do not allow to take advantage of
this information. Recurrent neural networks (RNNs) provide a way to overcome this
limitation by using feedback cycles, or recurrent connections, which enable them to
learn temporal dependencies.

Another key consideration of architecture design relates to the kind of connection
that links two consecutive layers. So far, we referred to fully connected neural net-
works, in which every input unit is connected to every output unit. In many specialised
ANNs, the possibility to use fewer connections has been considered, in such a way that
each input unit is actually connected to only a small subset of units in the output
layer. Inasmuch as they reduce the number of connections, these approaches result
in a smaller number of parameters to learn and therefore require much less compu-
tations. They are generally highly problem dependent, but have given rise to very
efficient models. Convolutional neural networks (CNNs), which have revolutionised
the field of computer vision by using specialised patterns of sparse connections based
on convolutions, are a case in point. A detailed description of their functioning is
provided in section 2.3.

2.2.3 Back-propagation algorithm

Training a deep learning system essentially means solving the minimisation problem
(2.44) in order to find suitable values for the parameters θ. Most of the time, this is
performed thanks to gradient-descent methods, which require computing the gradient
of the objective function w.r.t. to θ. In single-layer neural networks, this process proves
relatively straightforward as the objective function is built as a direct function of the
parameters and thus allows easy gradient computation. In the case of deeper ANNs,
however, the loss is a complicated composition function of all the parameters in the
hidden layers, making the gradient computation much more arduous. Actually, one of
the reasons why neural network research was historically suspended for many years is
precisely because no efficient algorithm had been devised to train multi-layer ANNs.
The groundbreaking back-propagation algorithm, mainly attributed to David Rumel-
hart and James McClelland [177], provided a powerful response to that challenging
topic.

In this section, we describe such a gradient computation method and illustrate it
in the specific case of MLPs.
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2.2.3.1 Chain rule of calculus

The training of an ANN is essentially divided into two phases. The first phase consists
in computing an output ŷ, given an input x of the training set. This results in a forward
cascade of computations across the layers, based on the current set of parameters θ.
The final predicted output can then be quantitatively compared to that of the training
instance y thanks to the loss function. This first phase, called forward propagation, is
formulated in eq. (2.38) and illustrated in fig. 2.13 of section 2.2.2.3. The second phase
of the training, called back-propagation, is intended to learn the gradients of the cost
function w.r.t. the different parameters of the ANN. To do so, the information from
the cost function flows backward through the network according to the chain rule of
differential calculus. The computed gradients are then used to update the weights and
biases of the model.

It is to be mentioned that the back-propagation algorithm, inasmuch as it is a
generic method for computing derivatives, is actually not restricted to ANNs and on
the contrary, can be applied to a broad range of machine learning tasks.

It essentially rests upon the chain rule of calculus, which states how to compute the
derivatives of composite functions. Formally, given x ∈ Rp, y ∈ Rq and two functions
g : Rp → Rq, f : Rq → R, if y = g(x) and z = f(y) = f(g(x)), then according to the
chain rule:

∂z

∂xk
=
∑
j

∂z

∂yj

∂yj
∂xk

, k = 1, . . . , p. (2.45)

which can be equivalently written in vector notation:

∇xz =
(
∂y

∂x

)T
∇yz. (2.46)

where ∂y
∂x

is the q × p Jacobian matrix of g.
The back-propagation algorithm consists in performing such Jacobian-gradient

products for each operation in the computational graph associated to the network.
The great efficiency of such an algorithm lies in the specific order in which it executes
the operations while travelling through the graph. In particular, the fact that it it-
erates backwards from the output layer towards the input layer enables it to avoid
redundant calculations of intermediate terms involved in the chain rule: it is called
dynamic programming.

2.2.3.2 Illustration of back-propagation in MLPs

In order to get a better intuition of back-propagation, let us illustrate its functioning
through the example of an MLP with N layers. For the sake of simplicity, we consider
a single training example at a time, denoted (x, y) ∈ S, although again, one might
want to train the learning system on multiple examples simultaneously.
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We recall that the system defining the forward propagation is given by:
z[n] = W [n]a[n−1] + b[n],

a[n] = g[n](z[n]), for n = 1, . . . , N.
a[0] = x, ŷ = a[N ].

(2.47)

where z[n] is the preactivation value of layer n, and a[n] is its (post)activation value.
The predicted output ŷ = fθ(x) and the corresponding loss L(x, y, ŷ) can therefore be
computed with algorithm 3.

Algorithm 3 Forward propagation through a typical MLP, and computation of the
loss function. For the sake of simplicity, only a single training example (x, y) ∈ S is
considered, although in practical applications, multiple examples are often processed
simultaneously.
Input: (x, y) ∈ S, training example

N , network depth
θ = {(W [1], b[1]), . . . , (W [N ], b[N ])}, network parameters (weights and biases)
{g[1], . . . , g[N ]}, network activation functions

a[0] = x

for n=1,. . . ,N do
z[n] = W [n]a[n−1] + b[n]

a[n] = g[n](z[n])
end for
ŷ = a[N ]

Compute the loss function L(x, y, ŷ)

Once the loss has been computed, and knowing the preactivation and postactiva-
tion values of each hidden layer, one can apply the chain rule of calculus to compute
the gradients of the loss w.r.t. the parameters of the network ∇θL(x, y, fθ(x)). The
computations are performed backwards, in order to reduce the gradient to a product
of straightforward, easy-to-compute derivatives. Thus, the very first step of the back-
propagation algorithm consists in computing the gradient of the loss w.r.t. the output
of the network ∇ŷL(x, y, fθ(x)). From this point, the gradient of the loss w.r.t. to the
weights and biases of a particular hidden layer n is given by propagating the derivatives
backwards according to the formulas:∇W [n]L(x, y, fθ(x)) = ∇z[n]L(x, y, fθ(x))a[n−1]T ,

∇b[n]L(x, y, fθ(x)) = ∇z[n]L(x, y, fθ(x)), for n = N, . . . , 1.
(2.48)

provided that the derivatives of the loss w.r.t. to the pre- and post-activation
values, for n = N − 1, . . . , 1, are given by:

∇z[n]L(x, y, fθ(x)) = ∇a[n]L(x, y, fθ(x))� g[n]′(z[n]),
∇a[n]L(x, y, fθ(x)) = W [n+1]T∇z[n+1]L(x, y, fθ(x)),
∇a[N ]L(x, y, fθ(x)) = ∇ŷL(x, y, fθ(x)).

(2.49)
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Figure 2.15: Illustration of back-propagation (in red) through the graph of an MLP
with 2 layers, in order to compute the gradient of the loss w.r.t its particular weight
w

[1]
11 . For the sake of simplicity, we denote dz the derivative of the loss w.r.t. to any

variable z: dz = ∂L(x,y,ŷ)
∂z

.

where � is the element-wise product.
The back-propagation procedure for MLPs is formally reported in algorithm 4. In

addition, fig. 2.15 provides an illustration its functioning on a MLP with 2 layers.
The gradients thus computed can be interpreted as an indication of how each pa-

rameter should be changed in order to reduce the cost function. We recall that such
a parameter modification is then performed by another algorithm, such as the generic
ones presented in section 2.1.5 or their variants described in section 2.2.4.

2.2.3.3 General back-propagation

Although they are MLP-specific, algorithms 3 and 4 provide a good illustration of the
way back-propagation is performed in ANNs. Abstractly, an ANN can be thought of
as a computational graph, composed of nodes that are connected by oriented edges.
To obtain the gradient of a variable z w.r.t. one of its ancestors x in the graph, one
computes the gradient w.r.t. to each parent of z in the graph by multiplying the current
gradient by the Jacobian of the operation that generated z. This process is performed
at each node encountered while travelling backwards from z through the graph, until
x is reached. For any node that may be reached two or more times while travelling
backwards, the respective gradients are simply summed at the node in question.

More formally, each node in the computational graph corresponds to a tensor, that
is, a variable that can have any number of dimensions (scalar, vector, matrix, etc.).
An oriented edge between two tensors of the graph represents a forward operation
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Algorithm 4 Back-propagation for MLPs, associated with the forward algorithm
described in algorithm 3. It computes the gradients of the loss function∇θL(x, y, fθ(x))
w.r.t to the parameters θ of the network. Again, for simplicity we consider only one
training sample (x, y) ∈ S. From [77].
Input: Training example (x, y) ∈ S

N , network depth
θ = {(W [1], b[1]), . . . , (W [N ], b[N ])}, network parameters (weights and biases)
{g[1]′, . . . , g[N ]′}, first-order derivatives of the activation functions
{(z[1], a[1]), . . . , (z[N ], a[N ])}, preactivation and postactivation values
L = L(x, y, ŷ), loss from the forward step.

Compute the gradient on the output layer: s = ∇ŷL
for n=N,. . . ,1 do

Convert the gradient w.r.t the postactivation value into a gradient w.r.t. the
preactivation value:
s = s� g[n]′(z[n])
Compute the gradient w.r.t. the weights and biases:
∇W [n]L = s a[n−1]T

∇b[n]L = s

Propagate the gradients w.r.t the previous layer:
s = W [n]T s

end for
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op.forward which, applied to the first tensor, results in the second one. Each operation
is actually also associated with its corresponding backward operation op.backward,
which computes the Jacobian-vector product as described in eq. (2.46). In other words,
each operation is responsible for knowing how to back-propagate information to its
ancestors in the graph. In this way, the back-propagation algorithm itself does not
need to know any differentiation rule, but only necessitate calling each operation’s
op.backward rules with the appropriate arguments. This is how the back-propagation
algorithm is able to achieve great generality.

Specifically, op.backward(inputs,x,g) must return:∑
i

∇xop.forward(inputs)i · gi (2.50)

which is simply an implementation of the chain rule. Here, inputs is a list of inputs
supplied to the operation, x is the input with respect to which the gradient is to be
computed, and g is the gradient w.r.t. the output of the forward operation.

Software libraries, such as Tensorflow or PyTorch, provide a broad range of already-
implemented operations, with the forward and corresponding backwards methods. The
implementation of ANNs is thus facilitated as most of the operations useful to define
a neural network do not need to be explicitly written by the user.

2.2.4 Training challenges and optimisation strategies
Training a neural network ranks among the most difficult optimisation problems in-
volved in deep learning. In this section, we first provide a brief overview of the promi-
nent challenges encountered when training a deep neural network through the minimi-
sation of the generally nonconvex objective function:

JS(θ) = 1
S

S∑
i=1
L(xi, yi, fθ(xi)) (2.51)

over the provided training set S = {(xi, yi) | i = 1, . . . , S}. We then describe sev-
eral of the specialised optimisation strategies developed to overcome the mentioned
limitations.

2.2.4.1 Prominent challenges

Ill-conditioning of the Hessian matrix The ill-conditioning of the Hessian matrix
of JS is actually a general problem that affects most optimisation tasks, convex or
otherwise, and the training of neural networks is no exception. An ill-conditioned
Hessian matrix may cause stochastic or minibatch GD to get stuck, in the sense that
even very small steps may increase the objective function.

Nonconvexity, local minima and saddle points Optimisation in general is an ex-
tremely challenging task. Traditional machine learning algorithms usually circumvent
the main difficulties of general optimisation by cautiously designing the cost function
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in such a way to ensure the convexity of the problem. Although convex optimisation
is not devoid of complications, it offers a framework relatively straightforward to deal
with. Neural networks, however, do not benefit from such an appealing setup: on the
contrary, they suffer from a severe nonconvexity that makes their training all the more
difficult.

A first non-desirable consequence of nonconvexity is that the optimisation algo-
rithm may be trapped in sub-optimal local minima. In fact, nearly any deep ANN
is guaranteed to have an exceedingly large number of local minima. This could be
problematic for gradient-based methods if many of those local minima have a cost
significantly higher than the global minimum. It is unclear, however, whether local
minima are indeed a major problem when optimising networks of practical interest.
Although this still remains an open question, experts tend to think that, for sufficiently
large ANNs, most local minima have a low cost value, and that it is acceptable to find
one of those local minima instead of the true global minimum [79, 39].

One of the major challenges entailed by nonconvexity in high-dimensional spaces
is actually due to another kind of points with zero gradient, namely the saddle points.
It has been shown experimentally [53] that the cost function of ANNs contains an
extremely large number of high-cost saddle points. Although empirical observations
suggest that in many cases, gradient-descent algorithms are capable of escaping them
[79], the proliferation of such high-cost critical points remains generally problematic: as
they are usually surrounded by flat regions of constant value, they may drastically slow
down learning, and give the illusory impression of the existence of a local minimum.

Cliffs of the cost function Besides its flat regions, the cost function JS of many
neural networks is also characterised by a number of extremely steep regions, resem-
bling cliffs, which result from the multiplication of several large weights together. Such
a structure, illustrated in fig. 2.16, is problematic when using gradient-based methods
since first-order derivatives do not provide a sufficient amount of information to capture
the complexity of the loss surface and may cause the gradient updates to perform in
an unanticipated way. Fortunately, most serious consequences of this phenomenon can
be circumvented thanks to the gradient clipping heuristic, described in section 2.2.4.5.

Poor correspondence between local and global structures Gradient descent,
and more generally all learning algorithms that prove effective for training ANNs rest
upon small local moves performed in the parameter space. As aforementioned, it may
be tricky to compute a local move if, for example, the current point is near a cliff or a
saddle point surrounded by a flat region. Those are not, however, the only difficulties
that are to be faced when optimising a neural network cost function. In fact, it is
possible to overcome the local problems at a single point and still perform poorly at
a global level: although the gradient descent direction is locally the best, there is no
guarantee it actually points towards regions of globally low cost, especially if they are
distant. The local steps performed by the optimisation algorithm can therefore lead
along a path that moves downhill, but far from any desirable low-cost region, or along
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Figure 2.16: Illustrative example of a cliff on the loss surface. The gradient may
undershoot if the learning rate is small, and overshoot if the learning rate is large.
Illustration inspired from [3].

a trajectory that does lead to an acceptable solution, but at very high computational
cost. The several problems caused by the poor correspondence between local and
global structures constitute an active area of research. Most of them, however, might
be avoided if there exists a region of the parameter space that is connected to an
acceptable solution by a path that local descent can follow. This is the reason why
many current studies are intended to find good initial points, rather than developing
algorithms based on nonlocal moves [77]. Some insight of prominent initialisation
methods is given in section 2.2.4.2.

Vanishing and exploding gradients Optimisation algorithms applied to very deep
computational graphs may also suffer from the so-called vanishing or exploding gradi-
ent phenomena. The latter appear if the derivatives that are being back-propagated
through the graph get either extremely small, or extremely large. Sometimes indeed,
gradients may become vanishingly small and prevent the weights from changing their
value. In the worst case, this may even completely stop the ANN from further train-
ing. This first phenomenon can arise, for example, when using activation functions
with a widespread saturation domain, such as the sigmoid functions. It corresponds to
flat regions of the cost function. On the contrary, when the activation functions can
assume very large derivatives or when the ANN encodes the multiplication of many
large weights together, the accumulated gradients may become considerable and result
in exceedingly large parameter updates. This manifests for instance in the form of cliff
structures, as the ones described earlier. In the overall, exploding gradients make the
learning process unstable and are thus a phenomenon to be avoided.
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2.2.4.2 Techniques for parameter initialisation

The process of training a neural network usually rests upon iterative algorithms, which
require to specify an initial point from which to begin the iterations. The choice of
this initialisation is actually determinant for the learning process, and may directly
affect the convergence of the algorithm, its convergence rate as well as the quality of
the solution it converges to.

The design of advanced initialisation strategies is actually not straightforward, inas-
much as ANN optimisation is not yet well understood. For example, although most
initialisation techniques aim at providing desirable properties to the ANN at its ini-
tialisation state, it is not clear to what extent the network will keep those beneficial
properties after some parameter updates. Furthermore, there is still little understand-
ing of the way initialisation influences generalisation [77].

Empirical methods In practice, most popular initialisation strategies are simple
and based on heuristic rules. The main property they are required to possess is to
ensure that initial parameters break the symmetry between the different units of the
network. This means that if two hidden units with the same activation function are
connected to the same inputs, then they must be initialised with different parameters,
so that they are not always updated in the same way. This may help not to lose
important patterns during the forward or backwards propagations.

The simplest and cheapest way to break symmetry is probably to initialise the
weights of the network randomly. Most often, they are initialised to random values
drawn from a Gaussian or uniform distribution. Selecting one distribution or the
other does not seem to be of great importance but no exhaustive studies have been
conducted on this matter. What does have a significant effect on both the result of the
optimisation process and the generalisation abilities of the network is the choice of the
scale of the initial distribution. Essentially, a good trade-off is to be found in such a way
that the initial weights are large enough to sufficiently break symmetry and avoid losing
signal during forward or back-propagation through the linear components of each layer,
without being too large in order to avert exploding gradients and activation function
saturation.

Several heuristic rules have been developed. A first approach, for example, consists
in initialising the weights of each neuron with din inputs and dout outputs by sampling
a uniform distribution:

Wi,j ∼ U
(
− 1√

din
,

1√
din

)
, (2.52)

or similarly, by drawing random values from a Gaussian distribution:

Wi,j ∼ N
(

0, 1√
din

)
. (2.53)

More sophisticated rules offer a compromise to initialise all layers with both the
same activation variance and the same gradient variance. The normalised initialisation,
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for instance, proposed in [76], relies on the following sampling:

Wi,j ∼ U
(
−
√

6
din + dout

,

√
6

din + dout

)
. (2.54)

Its Gaussian equivalent, known under the name of Xavier initialisation, is based on
a Gaussian distribution with standard deviation

√
2

din+dout . In practice, some initial-
isation strategies are used in preference depending on the activation functions of the
hidden units. Strategy (2.54), for example, is particularly powerful when using hyper-
bolic tangent but performs poorly with ReLU functions. In the latter case, one of the
popular choices is given by the He initialisation [91].

As for the biases, they are typically set to heuristically chosen constants, the se-
lection of these constants being tightly linked to the approach adopted for setting the
weights. In most of the cases, however, setting the biases to zero proves compatible
with the weight initialisation scheme.

Pretraining Another possibility to find a proper parameter initialisation is referred
to as pretraining. It mainly consists in using either supervised or unsupervised training
on shallow sub-networks of the original ANN with the aim of computing the initial
weights. The training of such sub-networks is then performed in a layer-wise fashion,
meaning that only one layer is trained at a time. This initialisation strategy may
result in a faster convergence and better generalisation abilities. A prominent example
of unsupervised pretraining was proposed in [101].

2.2.4.3 Momentum-based learning

In section 2.1.5, we introduced the standard stochastic and minibatch GD algorithms,
which make use of the gradient of the cost function, evaluated at the current point,
to update the parameters of the learning system. Those techniques are extremely
spread in the field of machine learning in general, and remain very popular in most
deep learning applications. However, due to the highly nonconvex structure of the cost
function in ANNs, standard SGD-like techniques may suffer from a slow convergence
rate, partly as a result of their strong oscillating behaviour. Momentum-based learning
techniques have thus been developed with the aim to accelerate learning, essentially
by updating the parameters in an averaged direction of the last few steps, so that the
oscillations in the parameter space are smoothed out.

Momentum The main idea underlying the method of momentum can be illustrated
as follows: let us regard the cost function of interest as a rolling terrain, with hills and
plains. In order to find the lowest point of this rolling terrain, one may place a ball
at a judicious point of the terrain (parameter initialisation), and let it roll downhill
(optimisation process). This is broadly what a gradient-based optimisation algorithm
is intended to do. Nonetheless, this physical analogy is accurate to a limited extent.
When using standard gradient descent techniques, the parameter updates only depend
on the current point and on the gradient at that point. The physical ball, however,
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(a) Descent without momentum. (b) Descent with momentum.

Figure 2.17: Illustration of the effect of momentum in navigating complex loss surfaces.
On the left, the pure gradient descent algorithm slows down in flat regions and gets
finally trapped in a local minimum. On the right, the momentum helps the gradient
descent algorithm to avoid slowdowns and local basins. Figure inspired from [3].

when it rolls down, benefits in addition from some momentum, which depends on its
mass and on its velocity. This momentum is particularly interesting from an optimisa-
tion point of view inasmuch as it can prevent the ball (the parameters of the network)
from being trapped in a local minimum (see fig. 2.17). The momentum algorithm
[166] precisely draws its inspiration from such a physical phenomenon. Formally, it
introduces a variable v that plays the role of velocity, meaning that it indicates the
speed and direction in which the parameters move through the parameter space. In
an optimisation algorithm of the form of algorithm 1, the parameter update is thus
replaced by the system: v

(k+1) = βv(k) − αgk(θ(k))
θ(k+1) = θ(k) + v(k+1) (2.55)

Where gk si defined as in eq. (2.22) or eq. (2.24), α is the learning rate, and β ∈ [0, 1) is
a hyperparameter that determines how quickly the contributions of previous gradients
exponentially decay. The larger β is w.r.t. α, the more previous gradients influence
the current direction. This strategy allows to give greater preference to consistent
directions over multiple steps, and thus causes the parameters to move in a direction
that often points to an optimal solution while mitigating oscillations. The resulting
learning process is therefore accelerated, compared to standard SGD.

Nesterov momentum A variant of the momentum algorithm was introduced in
[191] under the name of Nesterov momentum. In this case, the update rule reads:v

(k+1) = βv(k) − αgk(θ(k) + βv(k))
θ(k+1) = θ(k) + v(k+1) (2.56)

As it can be observed, the only difference from the standard momentum method is
where the gradient is computed. The fact that the gradient is evaluated after the
current velocity is applied can lead to faster convergence. In the previous analogy of
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the rolling ball, such a strategy could be informally thought of as starting to apply the
brakes on the gradient-descent procedure when the ball gets near the lowest point of
the valley, because the lookahead will warn it about the reversal in gradient direction.

2.2.4.4 Adaptive learning rates

Due to its high-dimensional, nonconvex nature, the cost function of deep ANNs may
be strongly sensitive to some directions in the parameter space, and insensitive to
others. The aforementioned cliffs are an example of such a phenomenon, which is
problematic inasmuch as it can bring a harmful instability to the optimisation process.
The momentum methods can somewhat alleviate those issues, but another kind of
algorithms were developed to provide an even more explicit and efficient way to deal
with such a situation. The latter, referred to as adaptive learning rate algorithms,
essentially make use of a separate learning rate for each parameter, and adapt those
learning rates throughout the optimisation procedure in an automatic fashion.

An early heuristic method, which was proposed in this direction, was the delta-bar-
delta method [112]. According to this approach, if the partial derivative of the cost
function w.r.t. a given parameter keeps a constant sign, then the learning rate of this
parameter should be increased. It is decreased otherwise. Such a strategy, however,
cannot be applied to stochastic or minibatch optimisation, as it may magnify the errors
of the gradient approximation. Several alternative adaptive learning rate algorithms,
compatible with minibatch optimisation, have been proposed more recently, some of
which are presented hereinafter.

AdaGrad In the AdaGrad algorithm [61], the learning rates corresponding to all
the network parameters are scaled inversely proportional to the square root of the sum
of all the previous squared gradients. Therefore, the parameters causing large partial
derivatives of the cost function have a learning rate that decreases much faster than
parameters resulting in smaller partial derivatives. Mathematically, the parameter
update is formulated:

θ(k+1) = θ(k) − α

δI +
√

diag(Gk)
� gk(θ(k)). (2.57)

Here, we denote I the identity matrix, δ > 0 a smoothing term that avoids division by
zero, and Gk is the outer product matrix:

Gk =
k∑
t=1

gt(θ(t))gt(θ(t))T , (2.58)

whose diagonal elements are the sum of the squared gradients up to the current iteration
k. The implementation of AdaGrad is detailed in algorithm 5.

Fundamentally, this approach encourages the updates to be performed along gently
sloped directions of the parameter space and can therefore benefit from some appealing
properties. Its main weakness comes from its accumulation of squared gradients in
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the denominator: as every added term is positive, the accumulated sum keeps growing
throughout the course of training. This may cause an excessive decrease of the learning
rates and prematurely slow down, or even stop, the learning process.

Algorithm 5 AdaGrad algorithm, from [77]
Input: S = {(xi, yi)| xi ∈ X, yi ∈ Y, i = 1, . . . , S}, training set

S ′ < S, size of the minibatches
θ(0), initial set of parameters
α, global learning rate
δ ∼ 10−7, small constant introduced for numerical stability

Initialise gradient accumulation variable Gk = 0
for k = 0, 1, . . . do

Sample a minibatch Sk = {(xi, yi) | i ∈ Ik ⊂ {1, . . . , S}, ]Ik = S ′ < S} ⊂ S
Compute gradient gk = 1

S′
∇θ

∑
i∈Ik L(xi, yi, fθ(k)(xi))

Accumulate squared gradient Gk = Gk + gk � gk
Compute update ∆θ(k) = − α

δI+
√
Gk
� gk (operations applied element-wise)

Apply update θ(k+1) = θ(k) + ∆θ(k)

end for

RMSProp algorithm The RMSProp algorithm [100] overcomes the limitations of
AdaGrad by converting the gradient accumulation into an exponentially weighted mov-
ing average. In this manner, the contributions that are old enough to be considered
as irrelevant are discarded, and the algorithm can converge rapidly when it reaches
a convex basin. The standard RMSProp method is described in algorithm 6. It can
also be coupled with Nesterov momentum. In practice, the RMSProp algorithm has
proven efficient in the context of nonconvex functions, and is nowadays one of the most
popular optimisation methods used by deep learning practitioners, [77].

Adam Adam algorithm [121], whose name derives from the terms ‘adaptive mo-
ments’, can be regarded as a variant of RMSProp with momentum. It not only makes
use of an exponential moving average v(k) of the squared gradients, as does RMSProp,
but it also involves an exponential moving average m(k) of the gradients themselves,
which can be seen as a momentum term. Formally,

m(k+1) = ρ1m
(k) + (1− ρ1)gk(θ(k))

v(k+1) = ρ2v
(k) + (1− ρ2)gk(θ(k))� gk(θ(k)), k = 0, . . . , K − 1.

m(0) = 0, v(0) = 0.
(2.59)

where the hyperparemeters ρ1, ρ2 ∈ [0, 1) determine the exponential decay rates, and
mk and vk are respectively the first-order moment (the mean) and the second-order
raw moment (the uncentered variance) of the gradients. The authors of [121], however,
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Algorithm 6 RMSProp algorithm, from [77]
Input: S = {(xi, yi)| xi ∈ X, yi ∈ Y, i = 1, . . . , S}, training set

S ′ < S, size of the minibatches
θ(0), initial set of parameters
α, global learning rate (suggested default: 0.001)
ρ, decay rate (suggested default: 0.9)
δ ∼ 10−6, small constant introduced for numerical stability

Initialise gradient accumulation variable Gk = 0
for k = 0, 1, . . . do

Sample a minibatch Sk = {(xi, yi) | i ∈ Ik ⊂ {1, . . . , S}, ]Ik = S ′ < S} ⊂ S
Compute gradient gk = 1

S′
∇θ

∑
i∈Ik L(xi, yi, fθ(k)(xi))

Accumulate squared gradient Gk = ρGk + (1− ρ)gk � gk
Compute update ∆θ(k) = − α

δI+
√
Gk
� gk (operations applied element-wise)

Apply update θ(k+1) = θ(k) + ∆θ(k)

end for

observed that the moving estimates defined in eq. (2.59), inasmuch as they were ini-
tialised with zeros, led to moment estimates that are biased towards zero, in particular
over the first iterations of the training. As a consequence, they suggest to compute
bias-corrected estimates instead:

m̂(k) = m(k)

1−ρk1
v̂(k) = v(k)

1−ρk2
, k = 1, . . . , K.

(2.60)

Based on these corrected moving averages, the parameters are updated according to
the rule:

θ(k+1) = θ(k) − α m̂(k+1)

δ +
√
v̂(k+1)

. (2.61)

Adam offers the advantage of being generally fairly robust to the choice of hyperpa-
rameters, and is part of the optimisation algorithms of choice for the training of neural
networks. Its implementation details are given in algorithm 7.

2.2.4.5 Gradient clipping

Gradient clipping is another technique employed in cases where partial derivatives along
different directions of the parameter space have exceedingly different magnitudes. In
some sense, this strategy is based on a similar principle to that of adaptive learning
rate algorithms, in that it attempts to make the different components of the partial
derivatives more even. Gradient clipping, however, involves only the current values of
the gradients and does not keep track of their historical values. This approach stems
from the fact that the gradient does not bring any information about the steplength to
adopt, it only indicates the optimal direction within an infinitesimal region. When the
optimisation algorithm is at a point near a cliff of the cost function, for example, the
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Algorithm 7 Adam algorithm, from [121]
Input: S = {(xi, yi)| xi ∈ X, yi ∈ Y, i = 1, . . . , S}, training set

S ′ < S, size of the minibatches
θ(0), initial set of parameters
α, global learning rate (suggested default: 0.001)
ρ1, ρ2,, exponential decay rates (suggested defaults: 0.9 and 0.999 resp.)
δ ∼ 10−8, small constant introduced for numerical stability

Initialise first and second-order moment vectors m(0) = 0, v(0) = 0
for k = 1, 2, . . . do

Sample a minibatch Sk = {(xi, yi) | i ∈ Ik ⊂ {1, . . . , S}, ]Ik = S ′ < S} ⊂ S
Compute gradient gk = 1

S′
∇θ

∑
i∈Ik L(xi, yi, fθ(k−1)(xi))

Update biased moment estimates
m(k) = ρ1m

(k−1) + (1− ρ1)gk
v(k) = ρ2v

(k−1) + (1− ρ2)gk � gk
Compute bias-correct moments
m̂(k) = m(k)

1−ρk1
v̂(k) = v(k)

1−ρk2
Compute update ∆θ(k) = −α m̂(k)

δ+
√
v̂(k) (operations applied element-wise)

Apply update θ(k) = θ(k−1) + ∆θ(k)

end for
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computed gradient may be extremely large in at least one direction, and a traditional
parameter update may totally overshoot. In those cases, gradient clipping intervenes
and scales down the computed gradient, making it more likely to have a reasonable
behaviour. The most common forms of gradient clipping are value-based clipping and
norm-based clipping. This technique allows inter alia to avoid exploding gradients. A
detailed exploration is provided in [161].

2.2.4.6 Batch normalisation

Several further optimisation techniques have been devised in order to improve the
training of deep learning models. Here, we only mention batch normalisation, since it
is highly popular in the field of ANNs, but other methods can be found in [77].

Batch normalisation [110], is actually not an optimisation algorithm, but rather a
subroutine of adaptive reparametrisation that can be incorporated into many different
algorithms. It may prevent vanishing or exploding gradients but above all, it addresses
the problem of internal covariate shift. The latter emerges from the fact that all the
parameters are updated simultaneously at each iteration of the training algorithm,
while the gradients employed to do so are computed under the assumption that the
parameters in the neighbouring layers do not change. This may cause any parameter
update to bring about unexpected results, and lead to a slower convergence. Batch
normalisation offers a solution to this problem by introducing additional normalisation
layers between hidden layers. Those additional layers are intended to standardise
the mean and variance of each unit and thus results in a more stable learning. It
is furthermore possible to incorporate two trainable parameters into each unit of the
normalisation layers, so they can regulate the precise level of normalisation.

2.3 Convolutional Neural Networks

One of the most popular and efficacious kinds of deep learning models is undoubtedly
the class of convolutional neural networks. The latter are designed to process grid-
structured data, such as images or time-series data. Qua ANNs, they can be trained
through the gradient-descent techniques, the back-propagation algorithm and the op-
timisation strategies presented in the previous sections. Actually, the main difference
between CNNs and MLPs rests upon the fact that CNNs use convolution instead of
general matrix multiplication in at least one of their layers. Inasmuch as a convolution
can be thought of as a multiplication by a circulant matrix, one can perceive that, on
a theoretical level, a CNN is equivalent to a fully connected neural network in which
several units would be constrained to be equal to other units. In practice however, the
convolution-based architecture of CNNs provides them extremely appealing properties
and results in a computationally highly efficient structure that has proven successful
in a number of applications. This section describes the functioning and main charac-
teristics of such models, which are a keystone of the research work presented in this
thesis.
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2.3.1 Historical perspective and neuroscientific inspiration

CNNs have played a substantial role in the history of deep learning. They were actually
the first deep models to perform well, long before recent technological advancements
led to enhanced performance in other types of architectures. They were also part of
the first neural networks to prove successful in a number of important commercial
applications and have thus largely contributed to the current intensity of commercial
interest in deep learning. The prominence of CNNs, and their extremely broad range of
application, show how biologically inspired artificial intelligence models can sometimes
lead to ground-breaking results.

The history of convolutional networks indeed started with neuroscientific exper-
iments, conducted by the neuropsychologists David Hubel and Torsten Wiesel on a
cat’s visual cortex [107]. Their findings helped to characterise many aspects of brain
function and had a considerable impact on contemporary deep learning models. In
particular, they discovered that the visual cortex is constituted by small regions of
cells that are sensitive to specific patterns in the visual field, and totally insensitive to
other patterns. In other words, the activation of the cells in the visual cortex depends
on the shape and orientation of the objects in the visual field. For example, horizontal
edges cause some neuronal cells to be excited, while vertical edges cause different neu-
rons to be activated. Furthermore, the observation that those cells are connected via
a layered-architecture suggested that these layers allow the brain to process portions
of the image at different levels of abstraction. This phenomenon, also known as hier-
archical feature extraction, appeared particularly interesting and indeed inspired the
design of CNNs. More information about this property is given in section 2.3.3.

Historically, the earliest neural model based upon the above-mentioned biological
observations was the neocognitron [72]. Although it differs from the current CNNs,
inter alia in that it does not take advantage of weight sharing, it nonetheless paved
the way for the development of the highly efficient, modern convolutional architectures.
Amongst the latter, LeNet-5 [131] was one of the first to draw commercial interest, and
soon became a widely spread method to identify hand-written digits on bank checks.
Since then, other convolutional architectures have been devised and the number of
tasks for which CNNs have proven useful has continued to grow. One of the factors
that played a significant role in increasing the prominence of CNNs is the annual
ImageNet contest, which has been consistently won by CNNs since 2012. As of today,
some convolutional networks are even able to exceed human-level performance, an
achievement that would have appeared impossible to most experts in computer vision
few decades ago.

2.3.2 Structural description

Convolutional networks are designed to process multi-dimensional grid-structured in-
puts that have strong spatial dependencies in local regions of the grid. As such, they
are particularly well-suited for imaging problems, since images do exhibit spatial de-
pendencies (adjacent pixels often have similar colour values). In the remainder of this
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chapter, we will mostly illustrate the concepts underlying CNNs through imaging ex-
amples. Convolutional networks can, however, be applied to other kinds of data, and
are indeed also used in video recognition, natural language processing and financial
time series, for instance.

The functioning of a CNN is very similar to that of a traditional feed-forward ANN,
except that the operations in its layers are spatially organised with sparse connections
between layers. This architecture allows a drastic reduction in terms of trainable
parameters, and thus contributes to the appealing computational efficiency of CNNs.

Typically, a CNN involves three types of operations, which are interleaved in order
to increase the expressive power of the network: convolution, ReLU and pooling. In
addition, it is not uncommon to append a final set of fully connected layers, according
to the task under consideration. Below, we introduce those layers and the related
operations.

2.3.2.1 Convolutional layer and ReLU

As its name suggests, a convolutional layer fundamentally rests upon convolution com-
putations. Informally, a convolution is an operation taking two functions as arguments,
and outputting a third function that expresses how the shape of one is modified by the
other. Such an operation is usually denoted by an asterisk ∗ between the two functions
it is applied to. Its mathematical 1-D definition is reported below.

Definition 2.1. Let f, g ∈ L1(R). The convolution of f and h is defined as:

(f ∗ h)(t) =
∫ ∞
−∞

f(t− t′)h(t′)dt′ =
∫ ∞
−∞

f(t′)h(t− t′)dt′. (2.62)

A way to interpret f∗h is to regard it as a weighted mean of the values of f , in which
the weights are defined by the values of h. In other words, computing f ∗h for a given
t amounts to shifting f by t, multiplying it by h, and integrating the product over the
real line. The resulting function is thus a transformed representation of f , whose shape
depends on the features of h. Although there are some differences between the 1-D
mathematical definition in eq. (2.62) and the practical implementation of convolutions
in CNNs, this interpretation gives a first good insight of the principles underlying a
convolutional layer.

In practice, the data to which a CNN is applied is digital, meaning that the functions
of interest are not continuous, but discrete. The mathematical definition of 1-D discrete
convolution is given by:

(f ∗ h)(t) =
∞∑

t′=−∞
ft−t′ht′ =

∞∑
t′=−∞

ft′ht−t′ (2.63)

As it can be observed, the mathematical convolution is commutative. This property
arises because one of the arguments is ’flipped’, meaning that as the index of the sum
increases, the index of one of the arguments increases as well, while the index of the
flipped one decreases. Although the commutative property is helpful for writing proofs,
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Figure 2.18: Illustration of a 2-D convolution between a 6×6×1-input and a 3×3×1-
filter. Each coefficient of the 4 × 4 × 1-output is equal to the dot product between
the entries of the filter and the corresponding entries of the input. For instance, the
top-left coefficient of the output is equal to: 1 × 0 + 1 × 1 + 2 × (−1) + 2 × 2 + 0 ×
1 + 1× 0− 2× (−1) + 1× 0− 1× 2 = 3. In this example, no padding is used and the
stride is equal to 1.

it is not usually a necessary property for the implementation of neural networks. This
is the reason why most ANN libraries actually implement a related function, which is
essentially a convolution without flipping any of the arguments. Thus, in 1-dimension,
the term convolution in machine learning actually corresponds to the operation:

(f ∗ h)(t) =
∞∑

t′=−∞
ft′ht+t′ (2.64)

In convolutional network terminology, the first argument is often referred to as the
input and the second one as the filter, or kernel. As for the output of the convolution, it
is usually called feature map. As all the elements of the input and kernel are variables
to be stored, it is usually assumed that these functions are zero everywhere but in the
finite set of points whose values are stored. This means that in practice, the infinite
summation is actually implemented as a summation over a finite number of elements.

Most frequently, convolutions in CNNs are employed over more than one axis at
the time and involve 3-D variables1, called tensors, which have a width, a height and a
depth. Typically, the inputs are 3-D arrays of data (such as multi-channel images), and
the kernels are 3-D arrays of parameters that are to be trained by a learning algorithm.
Computing a convolution comes down to placing the kernel at each possible position
in the image (or hidden layer) so that the filter fully overlaps with the image, and
performing a dot product between the parameters in the filter, and the matching grid
in the input volume. The number of alignments between the filter and the image (or

1In practice, software implementations process several inputs in parallel. This means that the
variables actually have four dimensions, where the fourth one indexes the different examples of the
batch. For simplicity, we omit the batch axis in our description.
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hidden layer) thus defines the spatial height and width of the next hidden layer. As
for its depth, it is defined by the number of filters applied to the current hidden layer.

More formally, a convolution in a CNN is defined as follows. We denote W [p,q] =(
w

[p,q]
ijk

)
the tensor of the trainable parameters in the pth filter of the qth layer, where

the indices i, j, and k indicate the positions along the height, width and depth of the
filter. We assume that this filter is of dimensions Fq×Fq×dq. Furthermore, we denote
Z [q] =

(
z

[q]
ijk

)
the tensor containing the feature maps in the qth layer, and we assume it

is of size Hq × Lq × dq. Then, the convolution between the feature maps and the pth

filter at the qth layer outputs the pth feature map of the (q + 1)th layer according to
the formula:

z
[q+1]
ijp =

Fq∑
r=1

Fq∑
s=1

dq∑
k=1

w
[p,q]
rsk z

[q]
i+r−1,j+s−1,k (2.65)

for all i ∈ {1, . . . , Hq − Fq + 1}, j ∈ {1, . . . , Lq − Fq + 1} and p ∈ {1, . . . , dq+1}.
Although equation (2.65) might appear somewhat complex from a notational point of
view, it is nothing but the expression of the dot-product between the feature maps and
the filter, which is repeated over all the spatial positions (i, j) of the current hidden
layer. The set of convolutions using one given filter thus produces a new 2-D feature
map. By employing several filters and stacking the results along the depth dimension,
one obtains the 3-D volume of all the feature maps of the next hidden layer. This
procedure is illustrated in the 2-D case in fig. 2.18 and in the 3-D case in fig. 2.19. It
is not uncommon, furthermore, to add a bias term to each 2-D feature map computed.
Most of the time, the filters are chosen to be spatially small. Their number, on the
contrary, is usually very large (from few hundreds to several thousands). The larger the
number of filters, the larger the number of trainable parameters, and thus the higher
the capacity of the network.

The convolution, when performed as explained above, reduces the size of the (q+1)th

layer in comparison to the size of the qth layer. This kind of size reduction is not
desirable in that it causes a loss of information along the borders of the image or
internal feature maps and, in the case of deep CNNs, may result in extremely small
hidden layers. Such a phenomenon can be bypassed by using padding. This technique
consists in adding external rows and columns of zeros to the input of the convolution,
in order to make it wider. It allows the filter to ’stick out’ from the borders of the layer
during the convolution operation: the dot product is then computed only on the portion
of the layer where the values are defined, since the padded portions do not contribute
to the final dot product as their values are 0. One of the advantages of padding is
that the size of the output of the convolutions can be easily tuned, in function of
the number of zeros added all around the borders of the input (cf eq. (2.66)). There
exist different types of padding implemented in the commonly used libraries. One is
the extreme case in which no padding is used and the convolutional filter visits only
positions where it is entirely contained within the image: this is the valid-padding.
Another type, amongst the most frequent, is called same-padding: in that case, just
enough zeros are added so that the size of the output is equal to the size of the input.
An example of same-padding is given in fig. 4.7 of chapter 4.
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Figure 2.19: Illustration of 3-D convolution between a 6×6×3-input and two 3×3×3-
filters. Each filter, when convolved with the input, produces a 2-D feature map. The
two resulting feature maps are then reassembled and the final output is a 4 × 4 × 2-
tensor. In this example, no padding is used and the stride is equal to 1.

There are other ways to modify the size of the output of a convolution. It is possible,
for example, to tune the so-called stride. The stride defines the amount of pixels by
which the filter is shifted after each operation. So far, we have implicitly assumed
that the slide is equal to 1, but it is possible, and not uncommon, to use a larger
stride. In general, larger strides can be useful, for example, to reduce overfitting if the
spatial resolution is needlessly high. As strides greater than 1 result in a reduction of
the spatial dimension of the hidden layers, they may also prove helpful in memory-
constrained setups.

If we denote Sq the stride and Pq the padding, at the qth layer, the dimensions of
the output of a convolution are equal to:

Hq+1 = Hq − Fq + 2Pq
Sq

+ 1, Lq+1 = Lq − Fq + 2Pq
Sq

+ 1. (2.66)

The use of the convolutional operator instead of a standard matrix multiplication
as it is the case in fully connected ANNs, gives CNNs appealing properties. In par-
ticular, it allows the network to use each parameter for more than one function in the
model: this is called parameter sharing. Such a characteristic not only entails a drastic
reduction in the number of trainable parameters, but it also gives CNNs the property
of equivariance to linear translations. In a network, equivariance essentially means
that if the input image is translated, the activations of the network in each layer will
translate the same way. This is advantageous when we know that some function of a
small number of neighbouring pixels is to be applied to multiple input locations. For
instance, in image processing, if one filter of the CNN learns how to detect horizontal
edges, it is practical to share this filter across the entire image, which very likely will
contain many horizontal edges in different locations. In the overall, the properties of
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Figure 2.20: Example of max-pooling operation on a single depth slice with stride
S = 3 and F = 3. The output is composed of the maximum pixel value of each spatial
region of size 3× 3 in the input.

the convolution operation significantly reduce the memory requirements of CNNs in
comparison to fully connected ANNs, and impart them a higher statistical efficiency.

The output of a convolutional layer is essentially a linear combination of the input
values. Therefore, it is important to apply some nonlinear function to those values
before transmitting them to the next layer, just as in the framework of MLPs. This
function is applied to all the feature maps computed, and does not change their di-
mensions as it is a simple one-to-one mapping of activation values. Although in the
early years, saturating activation functions like sigmoid ones were used, it has been
shown [128] that ReLU has considerable advantages over the latter, both in terms of
speed and accuracy, and it has thus become the default option in CNNs.

2.3.2.2 Pooling layer

Most commonly in CNN architectures, convolutional layers are interleaved with pooling
layers. The latter differ from the former for two main reasons. First, pooling layers do
not contain any trainable parameters. Secondly, unlike convolutional operations, which
simultaneously use all the dq feature maps in combination with a filter to generate a
single value, the pooling function is independently applied to each feature map to
generate another feature map. Therefore, pooling is applied to spatial regions of each
hidden layer, and produces another layer with the same depth as the current one.

Essentially, the function of pooling layers is to reduce the spatial size of the fea-
ture maps, without loosing too much information. In practice, the pooling operation
outputs a summary statistic of each small spatial region it is applied to. For example,
the max pooling function [235] returns the maximum pixel value within a rectangular
neighbourhood, as illustrated in fig. 2.20. Other popular pooling operations encom-
pass the average of a rectangular neighbourhood (average pooling), the `2-norm, or a
weighted average based on the distance from the central pixel. Some guidance, based on
theoretical considerations, about which kind of pooling should be employed in various
situations, is given in [26].
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Either way, a pooling layer performs a downsampling operation along the spatial
axis, while the depth dimension remains unchanged. The pooling operation is described
by two hyperparameters: the stride Sq, and the side Fq of the square neighbourhood in
which to apply the downsampling operation (or the length and width if the neighbour-
hood of interest is assumed to be rectangular). The output dimensions of a pooling
layer, applied to a Hq × Lq feature map then read:

Hq+1 = Hq − Fq
Sq

+ 1, Lq+1 = Lq − Fq
Sq

+ 1. (2.67)

Since it reduces the spatial sizes of the feature maps, the pooling operation allows a
reduction of the amount of parameters and computations needed in the next layers. It
thus enhances the computational efficiency of the network while reducing its memory
requirements for storing the parameters. Furthermore, pooling make it possible for
a same network to handle inputs of varying size. In the case of image classification,
for instance, the input of the classification layer must have a fixed size, independently
of the size of the input image. It is then possible to define the final pooling layer in
such a way that it outputs four set of summary statistics, one for each quadrant of the
feature map, regardless of the image size.

Another important characteristic of pooling is that it helps to make the representa-
tion invariant to translation, since slightly shifting the input will not change the values
of most of the pooled outputs. This property proves helpful if, given the task under
consideration, it appears more important to know whether some feature is present in
the image rather than identifying its exact location. For instance, when determining if
an image contains a bird, there is no need to know the location of the beak and wings
with pixel-perfect accuracy, it is just sufficient to detect their presence in the image.

Finally, pooling increases the size of the receptive field across the layers and thus
allows the network to capture larger and larger regions of the image. It therefore highly
contributes to the hierarchical feature extraction abilities of CNNs, as explained in
section 2.3.3.

2.3.2.3 Fully connected layers

It it possible to append several layers of fully connected neurons to the final layers of
a CNN. They function in the exact same way as a traditional feed-forward network.
As they are densely connected, those layers may actually contain the vast majority of
the CNN parameters. By way of example, if each of two fully connected layers has
4096 hidden units (which corresponds to no more than the flattened pixels of a 64×64
feature map), then the connections between them have more than 16 million weights.
Whether to add fully connected layers to a CNN as well as their number and widths
is sensitive to the application at hand. When the output of the CNN must be another
image, for example, no such layers are employed.
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Figure 2.21: Example of horizontal edge detection by means of convolution. We con-
sider a 6×6 input, whose three upper rows have high intensity, whereas the three lower
rows have low intensity. Such an input can be thought of as a simple image, composed
of two regions of different colours delimited by a horizontal edge. By applying a wisely
designed convolutional filter, such as the one presented in the image, it is possible
to detect the horizontal edge: the output of the convolution has indeed two non-zero
value rows, whose location corresponds to that of the discontinuity in the image.

2.3.3 Hierarchical feature extraction

It is interesting to observe the activations of trained filters when applied to real-world
images. Generally, the activations in the early layers are low-level features, such as
edges, while those in later layers are more and more complex features. In fact, each
layer puts together the features learnt in earlier layers in a semantically coherent way
in order to learn increasingly complex and interpretable visual features.

In order to get an intuition about this process, let us first give an illustration about
how early layers are able to detect edges, and then how this kind of features can be
exploited by later layers. Fig. 2.21 shows how a carefully designed filter can detect an
horizontal edge on a grey-scale image with one channel. As it can be seen, the resulting
feature has high activation at the positions where a horizontal edge is detected. If that
same filter were applied to an image containing perfectly vertical edges, those would
give zero activation, while a tilted edge would result in intermediate activations. Thus,
the application of horizontal and vertical edge detector filters across an entire image
generates very different activation feature maps, locating all the horizontal and vertical
edges respectively. The fact that small portions of an image activate hidden layers in
a different way depending on the features they contain is reminiscent of the biological
model of Hubel and Wiesel in which different shapes in the visual field activate different
neurons.

The next layer can then make use of those primitive features to detect more complex
features. For instance, fig. 2.22 illustrates how the second layer can assemble the edges
detected in the first one, in order to identify a rectangle. A later layer may then
combine the rectangles of the second layer to detect a brick wall, and so on.

This hierarchical feature extraction ability is inter alia made possible by the fact
that both the convolution operation and the pooling function increase the receptive
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Figure 2.22: Illustration of how filters can detect edges and combine them to create a
rectangle. Figure inspired from [3].

field of the features across the network. In other words, each feature in a layer q
captures a larger spatial region in the layer (q− 1). For example, if we apply a simple
3×3 filter convolution to three successive layers, the activations thereof will respectively
capture pixel regions of size 3 × 3, 5 × 5 and 7 × 7 in the original input image. The
same phenomenon occurs within a pooling layer. In this way, later layers can capture
the characteristics of the image over larger and larger spatial regions, and a sufficiently
deep CNN can thus combine enough complex patterns to process a whole real-world
image containing very sophisticated shapes.

The values of the filter parameters are determined through a learning process that
allies back-propagation and gradient-descent optimisation as explained in 2.2. They
may heavily depend on the task at hand. For instance, if one is interested in training
a CNN to classify images as containing a car or not, the first layers may learn how to
put together arcs to detect a circle, and the successive ones might combine circles with
other shape to create a car wheel.

Like in the case of MLPs, the initialisation of the convolutional filters can signifi-
cantly impact the quality of the results. A first strategy consists in initialising them
with random values. Several works empirically demonstrated how this kind of initial-
isation work surprisingly well in CNNs [114, 164, 47]. In particular, [183] shows that
convolutional layers interleaved with pooling ones naturally become frequency selec-
tive and translation invariant when assigned random weights. A second initialisation
strategy is to design the filters by hand. Those two first approaches are investigated in
the work presented in this thesis. Finally, one can initialise the filters using a greedy
layer-wise pretraining or learn them through an unsupervised process.
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2.3.4 Conclusion
In this section, we have described the fundamental principles underlying convolutional
neural networks. Most popular CNN architectures make use of the aforementioned
operations and strategies, and mainly differ in the arrangement of those operations in
the network. In fact, the main changes from the seminal LeNet-5 architecture [131]
to modern models come essentially from the use of ReLU activation, the explosion of
depth, and the training efficiency made possible by modern computers and optimisa-
tion enhancements. Nowadays, CNNs are increasingly deep and are built according to
a range of computational, architectural and hardware tricks that make their training
possible and efficient. By way of example, prominent CNN models for image classifi-
cation include AlexNet [128] and VGG [188], which are composed of several convolu-
tional layers interleaved with max-pooling layers, and two additional fully connected
layers. More advanced architectures have also provided remarkable results, such as
the GoogleNet [194], which has proposed the concept of inception architecture, that is,
a network within a network. Finally, noteworthy CNN design possibilities encompass
the use of skip connections, which allow feature maps to be copied from one layer to
a next one and thus introduce an iterative view of feature engineering (as opposed to
hierarchical view). This approach was inter alia investigated in ResNet [92].

The notions discussed in this chapter are fundamental for a clear understanding
of the research work presented in the two following chapters. The proposed model,
ΨDONet, is a CNN; it makes use of the aforementioned convolutional and pooling
operations and is furthermore trained through the back-propagation and optimisation
algorithms described in this chapter. However, its global architecture differs from many
popular CNN architectures in that it does not make use of an arbitrary number of filters
and layers, but instead is designed according to the unfolding of a variational method
(ISTA). The advantages of such an approach are multiple: first, this gives ΨDONet
more explainability and reliability, inasmuch as its structure can be justified from a
mathematical point of view. Secondly, this means that its convolutional filters can be
initialised to values computed beforehand, based on the physical understanding of the
operators involved. An efficient training of such filters can then lead to an increasingly
good quality of the reconstructions.
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The deep learning techniques presented in chapter 2 offer an extremely powerful frame-
work which, inter alia, has already provided remarkable results for a number of inverse
problems. In particular, CNNs have become a prominent tool in the field of computer
vision and imaging [232, 222, 59, 115]. However, DNNs and CNNs present the draw-
back of a questionable explainability and reliability when used as mere black-boxes.
In medical applications in particular, where it is crucial for the model to be both ex-
plainable and dependable, algorithms that rest upon the exclusive use of deep neural
networks may not be considered as a satisfactory option.

In this doctoral thesis, we present an approach that takes advantage of the perfor-
mance of the deep learning framework, while benefiting from the trustworthiness of a
more traditional, variational method. Our model, ΨDONet, can thus incorporate both
the physical understanding of the problem under consideration and a prior leveraged
for the regularisation of the solution, while making use of a learning process to extract
meaningful information from a set of training examples.

ΨDONet is a CNN inspired from the well-known ISTA [52], and it is designed to
learn convolutional ΨDOs or FIOs in the broad context of linear inverse problems. In
particular, it can be applied to the case of LA-CT, whose essential operator belongs
indeed to the class of FIOs. This application, which is the main focus of this thesis,
will be extensively investigated in chapter 4.

In the current chapter, we aim at presenting the theoretical principles underlying
the proposed algorithm ΨDONet. In order to provide a general description of the
abilities and characteristics of our approach, we will present the following results in
the broad context of linear inverse problems, where we call A the general operator
defining the inverse problem. It is clear, however, that all the convergence results
and observations noted in this chapter apply to the particular case of LA-CT, where
A = RΓ.

First, section 3.1 is dedicated to the formulation of the general inverse problem
and the theoretical background of sparsity promoting regularisation. In section 3.2, we
detail the key idea subtending our approach, namely the convolutional interpretation
of ISTA using the wavelet transform. Finally, in section 3.3, we present the general
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design of the proposed CNN, ΨDONet, and the main theoretical results thereof.

3.1 Inverse problem and sparsity promoting regu-
larisation

3.1.1 Preamble: wavelets in 2D
Before entering the details of the problem formulation and its sparsity promoting reg-
ularisation, we provide a quick reminder of important characteristics of the wavelet
basis in R2. The notions presented here are useful for the understanding of the results
provided in this chapter. Further details about the functioning of wavelets are provided
in Appendix B.

A wavelet basis in R2 can be fully described by means of two real functions φ and
ϕ, respectively defined as the mother wavelet and the scaling function, whose support
is in [0, 1]. The different elements ψI of the basis are then defined as the multiplication
of those two functions, applied to a scaled, translated input. Formally, we identify any
ψI by its scale j, its translation k ∈ N2

0 and its type (t) ∈ {(v), (h), (d), (f)}, standing
for the vertical, horizontal, diagonal and low-pass filters respectively. We denote ψI(x)
as ψ(t)

j,k(x) = 2jψ(t)(2jx− k), x ∈ [0, 1]2, where:

ψ(v)(x1, x2) = ϕ(x1)φ(x2), ψ(h)(x1, x2) = φ(x1)ϕ(x2),
ψ(d)(x1, x2) = ϕ(x1)ϕ(x2), ψ(f)(x1, x2) = φ(x1)φ(x2).

For a given J , representing the maximum scale under consideration, and J0 < J

the coarsest scale, we can define a wavelet basis of p = 22J elements as follows: take
j ∈ {J0, . . . , J1 = J − 1}; for each j 6= J0, consider wavelets of the types (v), (h) and
(d), whereas for j = J0 include also the type (f). For each level j and type (t), consider
offsets k = (k1, k2), k1 = 0, . . . , 2j − 1, k2 = 0, . . . , 2j − 1.

The wavelets basis functions can thus be grouped in 3(J−J0)+1 different subbands,
each of which is identified by a scale j and a type (t).

3.1.2 Problem formulation

We consider the inverse problem of determining u† ∈ X from the measurements:

m = Au† + ε, (3.1)

where A : X → Y is a linear bounded operator between the Hilbert spaces X and Y ,
and ε ∈ Y is a perturbation such that ‖ε‖Y ≤ δ. In the particular case of LA-CT, the
operator A stands for the Radon transform RΓ, which is a continuous linear operator
that maps the set X = L2(Ω), where Ω ⊂ R2, onto Y = L2([−Γ,Γ] × [−S, S]), where
[−Γ,Γ] defines the limited angular range and [−S, S] is the range of signed distances
from the origin.
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In order to find an adequate solution to the ill-posed problem arising from eq. (3.1),
the sought signal can be approximated by the minimiser of a regularised objective
function, expressed as the sum of a data-fidelity term, which measures the faithfulness
of the solution to the observation model, and an additional regularisation term, which
orients the reconstruction process towards a solution with some desired characteristics
and improves stability to noise. In particular, one of the simplest and surprisingly
effective way to remove noise is to expand the signal in an orthogonal basis and to
enforce the sparsity of such expansion.

Here, we consider the orthogonal wavelet basis {ψI}I∈N in X. Let W : X → `2(N)
denote the transform mapping any u ∈ X to the sequence of its components w.r.t. the
wavelet basis: (Wu)I = 〈u, ψI〉X , where 〈·, ·〉X denotes the inner product in X. We
assume to know a priori that the exact solution u† is sparse w.r.t. the wavelet basis
{ψI}I :

Wu† = w† ∈ `0(N). (3.2)

The justification of such an approach is that in the wavelet domain, the signal gets usu-
ally concentrated in a few significant coefficients while the noise is spread out in smaller
and diffuse values that can be more easily suppressed. However, the `0-pseudonorm
can prove very troublesome to deal with from an optimisation point of view. Instead,
it is common practice to encode the a priori information regarding the sparsity of
w† through the `1-norm. Such a convex relaxation results in the following variational
minimisation problem:

min
w∈`1(N)

‖AW ∗w −m‖2
Y + λ‖w‖`1 , (3.3)

where λ > 0 is a scalar defining the trade-off between the data-fidelity term and the
regularisation term.

Problem (3.3) can equivalently be formulated in the image domain:

min
u∈Z
‖Au−m‖2

Y + λ‖u‖Z , (3.4)

where Z ⊂ X is defined such that Z = {u ∈ X : Wu ∈ `1(N)}. In particular, in the
case of LA-CT, it is possible to show that the `1-norm ‖w‖`1 of the components of the
wavelet representation of a L2(Ω) function u is equivalent to the Besov norm B1

1,1(Ω)
of u, ‖u‖B1

1,1
(see, e.g., [52, section 1.4.1]). As problems (3.3) and (3.4) are mathemat-

ically equivalent, the solution of one of the two problems provides an immediate and
unambiguous solution to the second one. In the remainder of this document, we will
focus on the formulation in (3.3), without loss of generality.

The `1-norm relaxation in the minimisation problem (3.3) shows appealing prop-
erties, not only in terms of convexity, but also in terms of consistence of the solution
w.r.t. the noise level. In particular, if the noise level δ tends to 0, there exists a suitable
choice of the regularisation parameter λ = λ(δ) that ensures the convergence of the
solution wδλ of (3.3) to the exact wavelet coefficients w†. Furthermore, it can be proven
that such convergence occurs with linear rate, as reported in Proposition 3.1.
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Proposition 3.1. Let w† satisfy (3.2), and suppose A : X → Y is an injective se-
quentially weak*-to-weak continuous bounded linear operator. Define wλδ a solution of
problem (3.3) associated with a regularisation parameter λ and a noise level δ. For
sufficiently small δ, provided that λ is chosen such that λ = c0δ, then there exists a
positive constant c1 = c1(c0, A, ‖w†‖`0) such that

‖w† − wλδ ‖`1 ≤ c1δ. (3.5)

This proposition is an immediate consequence of [66, Corollary 2] which, interest-
ingly, does not require w† to satisfy a classical source condition, but instead mainly
relies on the sparsity assumption (3.2) and on the injectivity of the operator A. Such
property may be restrictive in some applications and consequently, numerous alterna-
tive results require some weaker assumptions, such as the Restricted Isometry Property
(RIP). In the tomographic application, however, the injectivity of the Radon transform
is verified, even in the limited-angle case.

From now on, we assume that λ is chosen as a linear function of δ and, for the sake
of simplicity, we omit it in the notations: uλδ is denoted uδ and wλδ is denoted wδ.

We now introduce a finite-dimensional approximation of the regularised problem
(3.3). We consider the subspaces Xp = span{ψI}pI=1 ⊂ X and Yq = span{ϕj}qj=1 ⊂ Y ,
where {ϕj}qj=1 is an orthogonal wavelet basis of Y . The finite-dimensional wavelet
transform Wp is defined such that Wp = {w ∈ RN | wI = 0, ∀I > p} and we call Pp
the orthogonal projection of `2(N) onto Wp. Furthermore, we denote the orthogonal
projection of X onto Xp by P̃p = W ∗PpW and the orthogonal projection of Y onto Yq
by Pq. Finally, let Ap,q be the representation of the operator A in the subspaces Xp, Yq
for any choice of p, q > 0, that is: Ap,q = PqAP̃∗p. The finite-dimensional minimisation
problem then reads:

min
w∈Wp

‖Ap,qW ∗w − Pqm‖2
Y + λ‖w‖`1 . (3.6)

The solution of (3.6), denoted wδ,p,q, benefits from the convergence results formu-
lated in Proposition 3.2.

Proposition 3.2. Let w† satisfy (3.2) and A be an injective operator. Suppose more-
over that for a suitable choice of p, q it is possible to ensure that ‖w† − Ppw†‖`2 ≤ cpδ

and ‖(I − Pq)A‖X→Y ≤ cqδ. Then, provided that λ is chosen as λ = c0δ, there exists
a positive constant c2 (depending on ‖A‖, ‖w†‖`1, on the choice of {ψI}, {ϕj} and on
the constants c0, c1,cp,cq) such that:

‖wδ,p,q − w†‖`1 ≤ c2δ. (3.7)

The proof, which is inspired from an application of the variational source condition
reported in [66, Section 3], is reported in Appendix C.
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Figure 3.1: Block diagram illustrating the functioning of ISTA. The corresponding
implementation is given in algorithm 8.

3.1.3 Iterative Soft-Thresholding Algorithm

A well-known technique to solve the minimisation problem (3.6) is the Iterative Soft-
Thresholding Algorithm (ISTA), proposed by Daubechies et al. in 2004 [52]. It essen-
tially consists in selecting an initial guess w(0) ∈ Rp(∼= Wp) and in iteratively building
the sequence {w(n)}Nn=1 as follows:

w(n) = Sλ/L
(
w(n−1) − 1

L
WA∗p,qAp,qW

∗w(n−1) + 1
L
WA∗p,qm

)
, (3.8)

where 1
L
> 0 can be interpreted as a (fictitious) time step, and Sβ(w) is the component-

wise soft-thresholding operator, defined for any β > 0 as:

[Sβ(w)]I = Sβ(wI), Sβ(wI) =


wI + β if wI < −β

0 if |wI | ≤ β

wI − β if wI > β

.

The detailed implementation of ISTA is given in algorithm 8 and fig. 3.1 shows a block
diagram illustrating its functioning.

Algorithm 8 Standard ISTA
Input: m, acquired measurements

λ, regularisation parameter
L, positive constant
w(0), initial guess
N , maximum number of iterations
tol, tolerance

for n = 1, . . . , N do
Compute intermediate iterate r(n) = w(n−1) − 1

L
WA∗p,qAp,qW

∗w(n−1) + 1
L
WA∗p,qm

Apply soft-thresholding: w(n) = Sλ/L
(
r(n)

)
if ‖w(n) − w(n−1)‖2

2/‖w(n−1)‖2
2 < tol then

End computations
end if

end for
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The convergence of the sequence {w(n)}Nn=1 to a minimiser wδ,p,q of (3.6) has been
studied in an infinite dimensional context, in [27]. As for the discrete setting, con-
vergence results have been proposed in [21], which can be translated in our case as
follows:
Proposition 3.3. If L is chosen such that L ≥ ‖WA∗p,qAp,qW

∗‖/2 then the sequence
{w(n)}Nn=1 generated via (3.8) by any w(0) ∈ Rp converges in `2 to the solution wδ,p,q
of (3.6). Moreover, there exist c3 > 0 and 0 ≤ a < 1 (both depending on Ap,q, L and
‖w†‖`2) such that

‖w(N) − wδ,p,q‖`2 ≤ c3a
N . (3.9)

3.1.4 A perturbation of ISTA
In order to best apprehend the convolutional interpretation of ISTA detailed in next
section, we also present a modification of ISTA and the consequences thereof in terms
of convergence.

Let us consider an operator Z : `2(N)→ `2(N) such that:

‖WA∗p,qAp,qW
∗ − Z‖`2→`2 ≤ ρ. (3.10)

We then replace WA∗p,qAp,qW
∗ with Z in eq. (3.8). Such a perturbation of ISTA results

in a slightly different sequence {w(n)
ρ }, obtained by selecting w(0)

ρ ∈ Rp and by iterating:

w(n)
ρ = Sλ/L

(
w(n−1)
ρ − 1

L
Zw(n−1)

ρ + 1
L
WA∗p,qm

)
. (3.11)

It is first possible to show that the convergence of the sequence {w(n)
ρ } to the

minimiser wδ,p,q depends on the magnitude of the perturbation ρ. The proof of such a
result is reported in Appendix C.
Proposition 3.4. Let w(0) = w(0)

ρ , L ≥ ‖WA∗p,qAp,qW
∗‖ and consider N0, η0 > 0.

Then there exists a constant c̃4, depending on L,A,w(0), ‖w†‖`2 and on N0, η0, such
that if N ≥ N0 and ρN ≤ η0 then

‖w(N)
ρ − wδ,p,q‖`2 ≤ c3a

N + c̃4ρN. (3.12)

If, moreover, N, ρ are chosen as N > ln(δ−1)
ln(a−1) and ρ < δ

N
, then (for c4 = c3 + c̃4):

‖w(N)
ρ − wδ,p,q‖`2 ≤ c4δ. (3.13)

Finally, by combining the results obtained in Proposition 3.2 and Proposition 3.4,
we obtain the following convergence estimate:
Theorem 3.1. Let w† satisfy (3.2) and let A be injective. For sufficiently small δ,
select a regularisation parameter λ = c0δ. Select p, q s.t. ‖w† − Ppw†‖ ≤ cpδ and
‖(I − Pq)A‖X→Y ≤ cqδ. Let L ≥ ‖WA∗p,qAp,qW

∗‖ and consider the perturbed ISTA
iterations (3.11), where the operator Z satisfies (3.10), N = loga δ and ρ = δ

N
. Then,

there exists a positive constant c5 (depending on the previously introduced constants
c0, c1, c2, c3, c4, cp, cq) such that, for sufficiently small δ,

‖w(N)
ρ − w†‖`2 ≤ c5δ. (3.14)
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3.2 ISTA as a convolutional neural network

3.2.1 ISTA interpreted as a neural network
It is already well-known in the literature that the unfolded iterations of ISTA can be
considered as the layers of a neural network (see, e.g. [81]). Mathematically, the nth

iteration of ISTA can indeed be written as:

w(n) = S λ
L

(
w(n−1) − 1

L
K(n)w(n−1) + 1

L
b(n)

)
, n = {1, · · · , N}, (3.15)

where K(n) = WA∗p,qAp,qW
∗ and b(n) = WA∗p,qm. It can be observed that eq. (3.15)

exhibits a structure similar to that of an MLP layer (see eq. (2.38)). It thus appears
clearly that the nth iteration of ISTA can be interpreted as the nth layer of a fully
connected neural network, where K(n) stands for the matrix of weights and b(n) is
the bias vector. More precisely, since K(n) and b(n) are actually independent of n in
eq. (3.15), such an ANN falls into the class of recurrent neural networks. As for the
soft-thresholding operator Sβ, it plays the role of the nonlinear activation function. In
particular, the analogy between Sβ and more traditional activation functions, such as
the ReLU (eq. (2.41)) or sigmoid functions, can be highlighted with the observation
that the soft-thresholding operator can be written in terms of rectified linear units:

Sβ(x) = max(0, x− β)−max(0,−x− β) (3.16)
= ReLU(x− β)− ReLU(−x− β), (3.17)

for any x ∈ R (it is applied component-wise if x is a multi-dimensional vector).
This similarity between the iterations in eq. (3.15) and the structure of traditional

ANNs suggests that deep learning strategies can be incorporated to ISTA in order
to improve the performance thereof. To do so, it is possible, for example, to replace
the entries of K(n) = WA∗p,qAp,qW

∗ with trainable parameters. In addition, one may
also want to learn further parameters, such as the regularisation parameter λ or the
steplength L. Formally, let θ ∈ Θ denote the vector containing all the trainable
parameters of the neural network, and fθ : Y → `1(N) the map parameterised by
θ ∈ Θ, which takes as input m ∈ Yq and computes N iterations according to (3.15),
where, for each n, K(n) ∈ Rp×p is specified in θ and b(n) = WA∗p,qm. The resulting
neural network, which is therefore composed of N layers corresponding to the N first
iterations of ISTA, can then be trained through an optimisation process, such as the
ones described in chapter 2.

The strength of such a strategy is that it combines the mathematically justified
structure of a variational method while allowing the incorporation of meaningful in-
formation extracted from a dataset of examples. Furthermore, for any p, q and N , it
is possible to choose a particular value θ0 of the parameters such that each layer of
fθ0(m) is exactly equivalent to the ISTA iterations associated with the measurements
m. This is particularly interesting inasmuch as such parameters θ0, which can easily
be calculated, may serve as initial parameters for the optimisation process. From that
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point, the learning algorithm will then be able to gradually modify the entries of K(n)

as well as the additional trainable parameters in order for the neural network to provide
an ever improving image quality in the reconstructions.

However, such an approach still presents a significant drawback: depending of the
value of p, the matrix K(n) at each layer n may be exceedingly large, and the training
of the resulting neural network is therefore likely to rapidly become impractical. It
is possible to circumvent this problem by interpreting the unfolded iterations of ISTA
in eq. (3.15) no longer as the layers of a fully connected neural network, but as the
layers of a CNN. The advantages of such a modification are multiple, as discussed
in section 2.3. In particular, using a CNN instead of a fully connected ANN brings
about a drastic reduction in terms of memory requirements, a higher computational
efficiency, and furthermore imparts the model appealing properties such as parameter
sharing and equivariance.

In the next subsections, we provide a detailed description of the operations that
allow to translate the unfolded iterations of ISTA in terms of layers of a CNN. We
thus provide a convolutional architecture that can reproduce the exact behaviour of
ISTA (or a perturbation of the kind described by (3.10)), for a specific choice of the
parameters.

From now on, we focus on the case X = L2(Ω). Furthermore, although our ap-
proach is sufficiently general to handle higher-dimensional spaces, we will focus on the
two-dimensional case, that is, Ω ⊂ R2 (e.g., Ω = [0, 1]2).

3.2.2 Convolutional interpretation of ISTA
Encoding the iterations of ISTA as a CNN essentially rests upon the convolutional
nature of the normal operator A∗A under consideration. From now on, we therefore
assume that A∗A is a convolutional kernel operator, i.e.,

KI,I′ = (WA∗AW ∗)I,I′ = 〈A∗AψI , ψI′〉X =
∫
R2

∫
R2
K(x, x′)ψI(x)ψI′(x′)dxdx′, (3.18)

where K(x, x′) = K(x− x′). The fact that the wavelet basis can be split in subbands,
each of which is identified by a couple j,(t) (see section 3.1.1), implies that the matrix
K representing A∗A in the wavelet domain can be seen as a block matrix. We now
aim at describing the application of each block K(t)→(t′)

j→j′ w
(t)
j by means of the following

operations:
1. Discrete convolution. Let B ∈ Rb×b, C ∈ R(2b−1)×(2b−1), and denote the

elements of C with indices i, j , being i = −b + 1, . . . , 0, . . . , b − 1, j = −b +
1, . . . , 0, . . . , b− 1. Then, C ∗B ∈ Rb×b:

(C ∗B)k,l =
b−1∑
i=0

b−1∑
j=0

Ck−i,l−jBi,j (3.19)

2. Upsampling. Let B ∈ Rb×b; then, U (B) ∈ R2b×2b satisfies:

U (B)[2k : 2k + 1, 2l : 2l + 1] =
[
Bk,l 0

0 0

]
∀k, l = 0, . . . , b− 1, (3.20)
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where the notation U (B)[2k : 2k + 1, 2l : 2l + 1] is used to denote a submatrix
of U (B) containing the rows from 2k to 2k + 1 and all the columns from 2l to
2l + 1. We call U η the iterated application of U : U η = U ◦ . . . ◦U (η times).

3. Downsampling. Let B ∈ R2b×2b; then, D(B) ∈ Rb×b satisfies:

D(B)k,l = B2k,2l ∀k, l = 0, . . . , b− 1. (3.21)

We call Dη the iterated application of D : Dη = D ◦ . . . ◦D (η times).

As it can be observed, such operations are very similar to the traditional CNN oper-
ations described in section 2.3.2. In particular, the downsampling operation is nothing
but a form of pooling. As for the upsampling, it can be interpreted as an ’unpooling’
operation, whose implementation is straightforward and completely suitable for the
CNN framework. The key idea of our approach is precisely to translate the application
of the matrix K exclusively in terms of the aforementioned convolution, upsampling
and downsampling operations, in such a way to make the unfolded ISTA iterations
compatible with the CNN technology. Such a procedure is described in proposition
3.5, which provides the full description of the convolutional interpretation of the ma-
trix representing A∗A in the wavelet domain. The presented result can be compared to
the ones already known in literature (see e.g. [50, Formula (4.2)]), although the more
complicated structure of the wavelet basis implies some substantial differences.

Proposition 3.5. Let K ∈ Rp×p be the matrix representing an operator A∗A satisfying
(3.18) in a 2D wavelet basis {ψI}pI=1. For a vector w ∈ Rp, let w(t)

j be the vector of
the wavelet components related to basis functions of scale j and type (t). Let K(t)→(t′)

j→j′

denote the block of K corresponding to the j, (t) subset of the column indices and the
j′, (t′) subset of the row indices. Then:

K(t)→(t′)
j→j′ w

(t)
j =


Dδ(K̃(t)→(t′)

j→j′ ∗W (t)
j ) if j > j′,

K̃(t)→(t′)
j→j′ ∗W (t)

j if j = j′,

K̃(t)→(t′)
j→j′ ∗U δ(W (t)

j ) if j < j′,

(3.22)

where δ = |j′ − j|, and K̃(t)→(t′)
j→j′ ∈ R(2ĵ+1−1)×(2ĵ+1−1) (with ĵ = max(j, j′)) defined such

that: [
K̃(t)→(t′)
j→j′

]
d

=
∫
R2

∫
R2
K(x− x′ − 2−ĵd) ψ(t)

j,0(x) ψ(t′)
j′,0(x′)dxdx′, (3.23)

for d = (d1, d2); d1, d2 = {−2ĵ + 1, . . . , 0, . . . , 2ĵ − 1}. The matrix W (t)
j ∈ R2j×2j is

obtained by reshaping the vector w(t)
j ∈ R22j so that [W (t)

j ]d is the component wI whose
index is identified by (j, (t), d).



94 Chapter 3 From ISTA to ΨDONet: theoretical results

Proof. Let I, I ′ be identified by (j, (t), k) and (j′, (t′), k′), respectively. Then,

[K]I′,I =
∫
R2

∫
R2
K(x− x′) ψ(t′)

j,k′(x′) ψ
(t)
j,k(x)dxdx′

=
∫
R2

∫
R2
K(x− x′) ψ(t′)

j,0 (x′ − 2−j′k′) ψ(t)
j,0(x− 2−jk)dxdx′

=
∫
R2

∫
R2
K(x+ 2−jk − x′ − 2−j′k′)ψ(t′)

j,0 (x)ψ(t)
j,0(x)dxdx′

=
∫
R2

∫
R2
K(x− x′ − 2−ĵ(2δ−k′ − 2δ+

k))ψ(t′)
j,0 (x)ψ(t)

j,0(x)dxdx′ =
[
K̃(t)→(t′)
j→j′

]
d
,

where δ+ = max(0, j − j′), δ− = max(0, j′ − j), and d = 2δ−k′ − 2δ+
k. For the sake of

simplicity, we use K instead of K(t)→(t′)
j→j′ , K̃ instead of K̃(t)→(t′)

j→j′ , w instead of w(t)
j , W

instead of W (t)
j . Moreover, we call I the set of indices I ⊂ {1, . . . , p} belonging to the

wavelet scale j and type (t).
First, consider the case j = j′. Then δ = δ+ = δ− = 0, and it holds

[K]I′,I =
[
K̃
]
d
, d = k′ − k.

Therefore,
[Kw]I′ =

∑
I∈I

[K]I′,I wI =
∑
I∈I

[
K̃
]
k′−k(I)

wI

=
2j∑

k1=−2j

2j∑
k2=−2j

[
K̃
]
k′1−k1,k′2−k2

Wk1,k2 = [K ∗W ]I′ .

Let now j < j′. Then δ = δ+ > 0, δ− = 0, and

[Kw]I′ =
∑
I∈I

[K]I′,I wI =
∑
I∈I

[
K̃
]
k′−2δ+k(I)

wI

=
2j′∑

k1=−2j′

2j′∑
k2=−2j′

[
K̃
]
k′1−2δ+k1,k′2−2δ+k2

U δ+(W )2δ+k1,2δ+k2
= [K ∗U δW ]I′ .

Finally, let j > j′. Then δ+ = 0, δ = δ− > 0, and

[Kw]I′ =
∑
I∈I

[K]I′,I wI =
∑
I∈I

[
K̃
]

2δ−k′−k(I)
wI

=
2j∑

k1=−2j

2j∑
k2=−2j

[
K̃
]

2δ−k′1−k1,2δ−k′2−k2
Wk1,k2 = [Dδ(K ∗W )]I′ .

Thanks to the convolutional interpretation detailed in Proposition 3.5, one can
substitute the multiplication K(n)w(n−1) in the neural network architecture proposed
in eq. (3.15) by the operations encoded in eq. (3.22), namely: decomposition of w(n−1)

in wavelet subbands, upscaling, application of convolutional filters, downscaling. In
other words, we have demonstrated that it is possible to build a CNN that, for a special
choice of its parameters θ0, is able to reproduce the exact application of ISTA.
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The possibility to translate the iterations of ISTA into such a CNN architecture
opens up new interesting perspectives for solving linear inverse problems with sparse-
promoting regularisation. In the same way as mentioned in section 3.2.1, one can
consider converting some of the coefficients involved in the convolutional interpretation
of ISTA into learnable parameters, and train them through a learning process that uses
θ0 as initialisation point. The major asset of such a CNN w.r.t. the fully connected
neural network previously described is the considerable reduction in the number of
parameters it involves. Specifically, the fully connected ANN described in section 3.2.1
rests upon the standard, finite-dimensional representation of A∗A, which, inasmuch as
it is a matrix of Rp×p, necessitates O(p2) coefficients. The convolutional representation
of the operator A∗A presented in Proposition 3.5, in contrast, requires only O(p)
elements.

The approach proposed in this doctoral thesis precisely takes advantage of this
appealing framework. Before presenting the details of its underlying principles in
section 3.3, we illustrate the convolutional representation of ISTA reported in (3.22)
by means of a short example, and, in a second time, we study the extent to which
such representation is affected if we employ convolutional filters smaller than the ones
described in eq. (3.23).

3.2.3 Illustrative example
We provide an illustrative example of the convolutional representation of ISTA reported
in (3.23). Let us consider the case of 64 × 64 images, thus corresponding to J = 6
and p = 212. Create a wavelet basis consisting of three scales of wavelets, from J0 = 3
to J1 = 5. The resulting basis {ψI}pI=1 can be therefore split into 3(6 − 3) + 1 = 10
subbands: 4 associated to the scale j = 3 (types: (h), (v), (d) and (f)), 3 associated
to the scales j = 4 (types: (h), (v), (d)) and 3 with j = 5. Each subband is composed
of 22j elements.

According to section 3.2.2, if we call K ∈ Rp×p the matrix representing the op-
erator A∗A in the wavelet basis {ψI}, then, following the procedure described below
is equivalent to applying the matrix K to a vector w ∈ Rp (representing the wavelet
transform of an image).

1. The first step consists in splitting the vector w into its 10 wavelet subbands,
each of which identified by a scale j and a type (t). This process is illustrated
in fig. 3.2. In practice, the vector w(t)

j ∈ R2j can be interpreted as a matrix
W

(t)
j ∈ Rj×j. Each element [W (t)

j ]d = [W (t)
j ](d1,d2) is the component associated to

the basis function ψ
(t)
j,d(x) = 2jψ(t)(2jx1 − d1, 2jx2 − d2).

2. Then, for each subband j, (t), compute the 10 vectors K(t)→(t′)
j→j′ w

(t)
j , where each

matrix K(t)→(t′)
j→j′ is a 22j′ × 22j block of the matrix K. Those vectors represent

the contributions of w(t)
j on the subband j′, (t′) of the vector Kw. As shown in

(3.22), these computations can be performed via downsampling, upsampling and
convolution. Consider the case j = J0 = 3:



96 Chapter 3 From ISTA to ΨDONet: theoretical results

W
(h)
4

decomposition

Figure 3.2: Interpretation of (3.22). Step 1: decomposition of the wavelet representa-
tion in subbands.

• if j′ = 3, then ĵ = 3 and δ = 0. Thus, by computing the convolution of the
8× 8 matrix W (t)

3 with the 15× 15 filter K̃(t)→(t′)
3→3 , we obtain a 8× 8 matrix

representing the vector K(t)→(t′)
3→3 w

(t)
3 ∈ R64 .

• if j′ = 4, then ĵ = 4 and δ = 1. Since j < j′, we shall apply the third
variant in formula (3.22), to compute the 16 × 16 matrix associated with
K(t)→(t′)

3→4 w
(t)
3 . This means that we must first upsample the matrix W (t)

3 , and
then convolve it with the 31× 31 filter K̃(t)→(t′)

3→4 .

• if j′ = 5, then ĵ = 5 and δ = 2. Again, j < j′, meaning that we make use of
the third variant of (3.22). Here, the matrix W (t)

3 must be upsampled twice
before being convolved with the 63× 63 filter K̃(t)→(t′)

3→5 .

Consider now the case j = 4:

• if j′ = 3, then ĵ = 4 and δ = 1. Since j > j′, we shall employ the first
variant in (3.22), meaning that we first compute the convolution between
the 16× 16 matrix W (t)

4 and the 31× 31 filter K̃(t)→(t′)
4→3 , and then downscale

the result to recover the 8× 8 matrix describing K(t)→(t′)
4→3 w

(t)
4 .

• the case j′ = 4 is analogous to 3→ 3, using 31× 31 filters K̃(t)→(t′)
4→4 .

• the case j′ = 5 is analogous to 3 → 4: we first perform upsampling and
then convolution.

Finally, in the case j = J1 = 5,

• if j′ = 3, then we first compute the convolution between the 32× 32 matrix
W

(t)
5 and the 63× 63 filter K̃(t)→(t′)

5→3 , and then downsample twice.

• if j′ = 4, we only downsample once, as in the case 4→ 3.

• if j′ = 5, we only apply convolution, as in the cases 3 → 3 and 4 → 4, but
with 63× 63 filters.

These operations are depicted in fig. 3.3.
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Figure 3.3: Interpretation of (3.22). Step 2: downsampling, upsampling and convolu-
tion.

3. The last step amounts to computing each j′, (t′) subband of the vector Kw, by
summing up all the related contributions coming from the vectors w(t)

j . Each
subband thus computed is a 2j′ × 2j′ matrix. An illustration of this operation is
provided in fig. 3.4.

3.2.4 Smaller convolutional filters

When designing a CNN, it is common practice to make use of a large number of
small-sized convolutional filters. The architecture defined by (3.22) and (3.23), on the
contrary, is based on a rather small number of filters that are usually bigger than the
wavelet subbands they are applied to. More precisely, it employs (3(J−J0)+1)2 filters,
each of which being of dimensions (2ĵ+1 − 1)2. Furthermore, each part of the vector
w(n−1) interacts only with (3(J − J0) + 1) of the filters. Although this design is still
totally compatible with the CNN technology, it is possible that in practice, the use of
such large filters brings about some speed reduction in the training process. This is due
to the fact that, to the best of our knowledge, convolutions with filters that are larger
than the input have not been optimised yet in the existing deep learning libraries. In
this section, we investigate the possibility of substituting such large filters with smaller
ones, and analyse the effect of such a modification in terms of convergence results.

We consider filters of dimensions τ × τ , where τ = 2ξ + 1 and ξ > 1, obtained by
extracting the central elements of the large filters K̃(t)→(t′)

j→j′ . We define K̃τ = (K̃(t)→(t′)
j→j′ )τ

such that: [
K̃τ
]
d

=


[
K̃(t)→(t′)
j→j′

]
d

if ‖d‖∞ ≤ ξ,

0 if ‖d‖∞ > ξ.
(3.24)
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sum

Figure 3.4: Interpretation of (3.22). Step 3: collecting all the wavelet subbands.

We claim that this modification amounts to performing a perturbation of ISTA,
such as the one described in Proposition 3.4, where the parameter ρ is a suitable
function of τ . This can be demonstrated by providing a bound on the coefficients of
the filters that are discarded due to (3.24).

It is possible to obtain such an estimate by making further assumptions on the
operator A. More precisely, suppose that A∗A is a convolutional operator of kernel K,
as in (3.18). Assume furthermore that for x 6= x′, the kernel K(x, x′) is smooth and
such that:

K(x, x′) ≤ C

|x− x′|
, and |∇xK(x, x′)|+ |∇x′K(x, x′)| ≤ C

|x− x′|2
. (3.25)

Equation (3.27) is in particular satisfied whenever A∗A is a ΨDO of order −1 with
constant coefficients, that is

A∗Af = F−1 {a(ξ)F {f} (ξ)} , a(ξ) ∼ 1
|ξ|

as ξ → 0.

In addition, equation (3.27) is also surely satisfied by the Radon transform RΓ, since
its normal operator R∗ΓRΓ is associated with the kernel K(x, x′) = χΓ(x− x′)/|x− x′|,
as mentioned in section 1.2.

We furthermore assume first-order vanishing moment property for wavelet basis
functions: ∫

R2
ψI(x)dx = 0. (3.26)

This property is for example verified by the 2D Haar wavelets, except for the subbands
of type (f).

Proposition 3.6. Let the operator A satisfy (3.18) and (3.25). Let the indices I, I ′
denote two wavelets of scales j, j′, type (t), (t′) and offsets k, k′. Let ψI and ψI′ meet
the condition (3.26) and let dI,I′ be the distance between the supports of ψI and ψI′.
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Whenever dI,I′ > 0, it holds:

KI,I′ = (A∗AψI , ψI′)X ≤ c
2−2(j+j′)

d3
I,I′

(3.27)

It can be noted that the decay reported in (3.27) is reminiscent of formula (9.4.5)
in [49], for the specific choice of n = 2, d̃ = 1, r = 2t = −1, as well as formula (4.26)
in [18], for M = 2.

Proof. According to (3.25), and to (3.26), for any x0 ∈ suppψI , x′0 ∈ suppψI′ , there
exist two points ξ, ξ′ respectively belonging to the same supports such that:

KI,I′ =
∫
R2

∫
R2

(K(x, x′)−K(x, x′0))ψI(x)ψI′(x′)dxdx′

≤
∫
R2

∫
R2
|∇x′K(x, ξ′)||x′ − x′0|ψI(x)ψI′(x′)dxdx′

≤ C
∫
R2

∫
R2

|x′−x′0|
|x− ξ′|2

ψI(x)ψI′(x′)dxdx′ ≤ C
∫
R2

∫
R2

|x−x0||x′−x′0|
|ξ − ξ′|3

ψI(x)ψI′(x′)dxdx′.

The quantity |ξ − ξ′| is bounded from below by dI,I′ by definition. Moreover, |x −
x0| ≤ diam (suppψI) = c2−j, and finally

∫
R2 ψI(x)dx ≤ 2j| suppψI | = 2−j (analogous

arguments hold on I ′).

From (3.27) and (3.23), one can infer a bound on the elements of the convolutional
filters: [

K̃(t)→(t′)
j→j′

]
d
≤ c

2−ĵ
(‖d‖∞ − 1)3 , (3.28)

provided that ‖d‖∞ > 1. Based on this result as well as on (3.22), it is possible to
obtain an explicit bound of the type of (3.13), on the perturbation induced by the
thresholding (3.24).

3.3 ΨDONet: theoretical principles
The theoretical results presented in sections 3.1 and 3.2 pave the way to a novel convolu-
tional network architecture, called ΨDONet. Here, we report the general idea inspiring
such a reconstruction algorithm for sparsity-promoting regularisation. We furthermore
provide a theoretical result ensuring the convergence of the proposed algorithm.

3.3.1 ΨDONet: a CNN to learn pseudodifferential operators
As mentioned in section 3.2.2, whenever the operator A∗A is of convolutional type, it
is possible to design a reconstruction algorithm based on a CNN architecture with N

layers, each of which is described in (3.15). More specifically, the bias vectors appearing
in (3.15) are b(n) = WA∗p,qm, whereas the linear operators K(n) are interpreted as
a combination of downscaling, upscaling, and convolution, as shown in (3.22). As
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demonstrated in Proposition 3.5, if the entries of the convolutional filters are chosen
as in (3.23), such a CNN is equivalent to performing N iterations of ISTA.

The key idea of the proposed algorithm is to incorporate deep learning processes
in such a convolutional structure, by converting some of the filter coefficients into
trainable parameters. To do so, we split each one of the 3(J − J0) + 1 filters involved
in each layer into two parts: a central τ × τ submatrix (where τ is a predefined
hyperparameter of the algorithm) and the outer frame. We then consider the entries
of the external frame as fixed, that is, non learnable, and we assume that their values
are specified by (3.23). Conversely, we define the central filter coefficients as trainable
parameters, meaning that their values will be gradually modified throughout a learning
process. Splitting the filter entries into trainable and non-trainable coefficients as it
is suggested presents several advantages. In particular, it offers the possibility to
control the trade-off between the complexity of the CNN model, that is, the number
of parameters to be learnt, and the level of likeness between the network and standard
ISTA, thanks to the hyperparameter τ . We will see furthermore that learning only the
central part of the filters is particularly judicious in the case of ΨDOs and FIOs.

The trainable part of the filters involved in each layer n are collected in a vector
ζn, and ultimately stored in the global vector θ, possibly together with additional
learnable parameters. The resulting network is denoted f τθ . The goal of the proposed
CNN-based algorithm is then to find a parameter θ such that the network f τθ is a good
approximation of the map that, given some measurements m, outputs the solution
w† = Wu† that satisfies eq. (3.1).

It is clear that, among all the possible choices of the optimal parameter, the net-
work could select the vector θ0 which exactly replicates the ISTA iterations, that is, the
vector such that also the central entries of each filter are specified by (3.23). However,
if the optimal choice of θ differs from θ0, this implies that the network has extracted
helpful information from the training examples it could observe, and has learnt ’some-
thing more’ than the ISTA iterations associated with the operator A∗A. Such an
improvement can be apprehended as follows: the aforementioned splitting between
the central part of the convolutional filters and their outer frame in the network f τθ
allows to regard the kernel K of the operator under consideration as the sum of two
kernels K0 + K1, where K0 is the known part of the model, and K1 is the kernel of
an operator to be learnt. Due to its trainable nature, K1 thus provides the potential
to add information to the known (fixed) part of the model K0 and as such, can be
seen as an adjunct for the direct betterment of the normal operator A∗A within the
reconstruction process. Since the difference between standard ISTA and the trained
network will only occur in the central entries of the convolutional filters, and according
to the analysis of section 3.2.4, we can argue that the learnt operator is a suitable
approximation of a pseudodifferential operator, hence the name we propose for this
novel CNN-based reconstruction algorithm: ΨDONet.

There are multiple reasons for which the learning process could lead to a better
performance than that of ISTA. First, a better choice of the parameters enables to
lower the numerical errors caused by the discrete representation of A∗A, which might
have a significant effect due to the error propagation amongst the iterations. Secondly,
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we may also reduce model errors that come from the definition of the operator A itself.
Finally, this perturbation could be seen as providing a representation of A∗A w.r.t. a
slightly different basis, which may allow to better satisfy the sparsity assumption on
the solutions.

For such reasons, the proposed algorithm ΨDONet is specifically recommended
whenever the original operator A∗A is a ΨDO itself: its kernel representation by means
of convolutional filters indeed contains all its most significant entries in the centre of its
filters. Focusing the learning process on those particular coefficients thus ensures that
the learnt corrections will affect the most important elements defining the operator
while allowing the reduction in the number of trainable parameters via the tuning of
τ .

The use of ΨDONet is also highly recommended if the normal operator A∗A is a
FIO: in such event, the largest entries of its convolutional filters are situated in the
centre and along some lines, possibly stretching away from the centre. This is the case
of the limited-angle Radon transform, whose kernel reads:

K(x, y) = 1
|x− y|

χΓ(x− y),

where χΓ is the indicator function of the cone in R2 between the angles −Γ and Γ.
As it is numerically verified in chapter 4, the convolutional filters associated with this
operator exhibit large values only in their central coefficients and along two lines having
the same slope of the ones delimiting the cone. This results in a somewhat curious
shape for the filters, which evokes that of a bowtie. We will show that the application
of ΨDONet to this operator, which brings learnt corrections only to the centre of the
bowties, is still remarkably effective.

3.3.2 Convergence results of ΨDONet

In this subsection, we present a theoretical result that holds true for ΨDONet, regard-
less of its particular implementation.

We first introduce the following probabilistic framework, in analogy with the ap-
proach in [54]: let B = {u ∈ Xp : Wu ∈ `1(N); ‖Wu‖`1 ≤ CB} and u be a random
variable with a probability distribution µ on the space B, where µ represents some
prior information on the solution of the inverse problem. We define furthermore ε as
a random variable in Yq with distribution ν, modelling the measurement error. We
suppose that u and ε are independent. Then, the measurement m = Ap,qu + ε is also
a random variable, defined on the product space Xp× Yq with density A∗µ⊗ ν, where
A∗µ denotes the pushforward of µ to Y via the linear map A.

As detailed in section 2.1.2, the performance of a learning system can be measured
by means of a loss function. In the present case, we propose to define the loss function
associated to the network f τθ as:

L(θ;µ, ν) = Eu∼µ,ε∼ν
[
‖f τθ (Ap,qu+ ε)−Wu‖2

`2

]
(3.29)
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Then, the optimal neural network is the one described by the parameters θ∗ that
satisfy:

θ∗ = argmin
θ∈Θ

L(θ;µ, ν). (3.30)

In order to provide some convergence results of the optimal network f τθ∗ , it is con-
venient to first analyse the properties of f τθ0 , where θ0 is such that the network is
equivalent to performing N iterations of (modified) ISTA. In particular, we will make
use of the following rough estimate:

Lemma 3.1. There exist two constants k1, k2 > 0 (depending on CB, L, ρ, ‖Ap,q‖,
w(0),N) such that, for all u ∈ B and ε ∈ Yq,

‖f τθ0(Ap,qu+ ε)−Wu‖`2 ≤ k1 + k2‖ε‖Yq (3.31)

Proof. According to (3.15), defining κ = 1 + ‖A∗p,qAp,q‖+ρ
L

, we get

‖f τθ0(Ap,qu+ ε)−Wu‖`2 ≤ ‖f τθ0(Ap,qu+ ε)‖`2 + ‖u‖Xp
≤ κN‖w(0)‖+

(
1+κ+ . . .+κN−1

)
‖Ap,qu+ ε‖Yq+CB

≤ κN‖w(0)‖+ CB + κN − 1
κ− 1 (‖Ap,q‖CB + ‖ε‖Yq)

We now focus on the special case in which the noise ε is a Gaussian random vector,
meaning that ν = N (0, σ2Iq), where Iq the identity matrix in Rq×q. We recall that in
such event:

E[‖ε‖2
Yq ] = qσ2, E[‖ε‖4

Yq ] ≤ 3q2σ4. (3.32)

From this point, we can rely both on Lemma 3.1 and on Theorem 3.1, introduced
in section 3.1.4, to provide a more refined estimate. We can indeed observe that the
convergence result reported in (3.14) is independent of the choice of ε = m − Au, as
long as ‖ε‖ ≤ δ. Furthermore, the constant c5 appearing in (3.14) can depend on u,
but only through an upper bound on ‖w†‖`1 . This enables to come to the following
conclusion:

Lemma 3.2. Suppose ε ∼ N (0, σ2Iq) and let δ = σ1/η, being η > 1. There exists
σ0 > 0 such that, for σ < σ0, then for every u ∈ B

Eε∼ν
[
‖f τθ0(Au+ ε)−Wu‖2

`2

]
≤ c2

5δ
2 + 2

√
2k2

1δ
η−1 + 2

√
6k2

2qδ
3η−1.

If, moreover, η = 3 and σ < min{σ0, q
−1/2}, then there exists a constant c∗ (depending

on c5, k1, k2) such that

Eε∼ν
[
‖f τθ0(Au+ ε)−Wu‖2

`2

]
≤ c∗δ2. (3.33)
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Proof. We start by considering that

Eε∼ν
[
‖f τθ0(Au+ ε)−Wu‖2

`2

]
=
∫
Yq
‖f τθ0(Au+ ε)−Wu‖2

`2dν(ε)

=
∫
‖ε‖<δ

‖f τθ0(Au+ ε)−Wu‖2
`2dν(ε) +

∫
‖ε‖>δ

‖f τθ0(Au+ ε)−Wu‖2
`2dν(ε).

We now employ (3.14) on the first term and Hölder inequality on the second term.
Moreover, in view of Chebyshev’s inequality, ν({‖ε‖ > δ}) ≤ σ2

δ2 . Therefore,

Eε∼ν
[
‖f τθ0(Au+ ε)−Wu‖2

`2

]
≤ c2

5δ
2
(

1− σ2

δ2

)
+ σ

δ

(
Eε∼ν

[
‖f τθ0(Au+ ε)−Wu‖4

`2

]) 1
2

≤ c2
5δ

2 + σ

δ

(
8k4

1 + 8k4
2E
[
‖ε‖4

Yq

]) 1
2 .

By (3.32) and using the fact that σ = δη, we immediately verify the first thesis, and
imposing η = 3 and δ2ηq < 1 we get (3.33) with c∗ = c2

5 + 2
√

2k2
1 + 2

√
6k2

2.

On the basis of Lemma 3.2, we can easily deduce the following convergence result
concerning the optimal network f τθ∗ :
Proposition 3.7. Consider ε ∼ N (0, σ2Iq) with δ = σ1/3 and let θ∗ satisfy (3.30).
There exists σ1 > 0 such that, for σ ≤ min{σ1, q

1/2}, it holds

L(θ∗;µ, ν) ≤ c∗δ2. (3.34)

In particular, this implies that the random variable f τθ∗(Ap,qu+ ε) converges to Wu in
mean as δ → 0.
Proof. By definition of θ∗ and by Lemma 3.2,

L(θ∗;µ, ν) ≤ L(θ0;µ, ν) =
∫
B

∫
Yq
‖f τθ0(Ap,qu+ ε)−Wu‖2

`2dν(ε)dµ(u)

≤
∫
B
c∗δ2dµ(u) = c∗δ2.

Thus, the optimal network f τθ∗ can provide a good approximation of the solution
map underlying the inverse problem of interest. However, in the same way as explained
in section 2.1.2, solving the minimisation problem stated in (3.30) is impracticable
inasmuch as the probability distributions µ and ε are unknown in practice. Instead,
the available information on which the training can be performed consists of a set of
i.i.d samples of the random variables u and ε drawn from their respective distributions
µ and ν. The learning task is therefore addressed by minimising a discretised loss
functional, and eventually leads to a parameter θ that corresponds to a local minimum
of such a cost function. At the end of the training process, the quality of the trained
network can be assessed by analysing its generalisation abilities (see section 2.1.3).
Such an analysis has been proposed in detail in [54], and can be extended, in spite of
some differences in the assumptions w.r.t. the ones in this work, to the problem under
consideration.

As a proof of concept, the concrete application of ΨDONet is investigated in next
chapter, in the particular case of limited-angle tomography.





4 ΨDoNet in practice: application to the
case of LA-CT

In this chapter, we explore the implementational aspects of ΨDONet when applied to
the special case of LA-CT with discrete setting. The practical design of the proposed
architectures directly derives from the theoretical results presented in chapter 3, which
hold true when the general operator Ap,q in eq. (3.1) is interpreted as the limited-angle
Radon transform RΓ.

Formally, we assume that, after suitable discretisation, we are given some measure-
ments m ∈ Rq, also called sinogram, such that:

m = RΓu† + ε, (4.1)

where u† ∈ Rp denotes the (unknown) discrete and vectorised image, RΓ ∈ Rq×p

describes a discretised version of the Radon transform where the angles are limited in
the arc specified by Γ, and ε ∈ Rq models the measurement noise. We call w† the Rp-
vector such that Wu† = w† where W ∈ Rp×p represents a discretisation of the wavelet
transform. Thus, the regularised minimisation problem under consideration reads:

min
w∈Rp

‖RΓW∗w−m‖2
2 + λ‖w‖1 (4.2)

As detailed in chapter 3, the proposed reconstruction algorithm ΨDONet rests upon
the unfolding of ISTA, in which each iteration is converted into the layer of a trainable
CNN. Implementing such a CNN first requires to numerically verify the theoretical
results of section 3.2.2. Section 4.1 thus provides the convolutional filter building pro-
cedure and the result of their application to a simple phantom. In the second part
of that section, we propose a detailed description of two different implementations of
ΨDONet, namely Filter-Based ΨDONet (ΨDONet-F) and Operator-based ΨDONet
(ΨDONet-O). Those architectures are then tested on different sets of simulated data:
the testing setups as well as the corresponding numerical results are presented in sec-
tion 4.2.
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Wavelet

W∗

Image

R∗ΓRΓ

Image

W

Wavelet

Figure 4.1: Illustration of the proposed way to compute the filters of the convolutional
kernel operator K in the LA-CT case. The initial object (left) is generated in the
wavelet domain by setting all its entries but one to zero. The only non-zero entry
is situated at the centre of one of its wavelet subbands. By applying the operator
WR∗ΓRΓW∗ to this initial object, one obtains a new object in the wavelet domain,
whose subbands exhibit a bowtie-shaped structure. Those bowtie subbands constitute
a first set of convolutional filters. The complete collection of convolutional filters
required for the approximation of WR∗ΓRΓW∗ is formed by reiterating such procedure
until the central entry of all the wavelet subbands in the initial object has been visited.
In this illustration, we have considered a three-scale wavelet decomposition (J1 =
J0 + 2), meaning that the total number of convolutional filters amounts to ((J1− J0 +
1)2 + 1)2 = (32 + 1)2 = 100.

4.1 Implementational description

4.1.1 Convolutional interpretation of the LA-CT normal op-
erator

The design of a CNN-based algorithm that is able to reproduce the behaviour of ISTA
for a special choice of its parameters rests upon the demonstration that a convolutional,
normal operator can be translated in terms of upscaling, downscaling and convolution
operations, as described in Proposition 3.5. In this section, we provide a numerical
verification of such theoretical results in the case of the limited-angle Radon trans-
form. For this purpose, we first need to identify the various blocks of the matrix K in
eq. (3.18), representing the back-projection operator in the wavelet domain. In other
words, we wish to determine the convolutional filters described in eq. (3.23), which,
once applied as defined in eq. (3.22), provide a reliable approximation of the operator
WR∗ΓRΓW∗.

One way to compute such convolutional filters that proves to be a numerically
advantageous alternative to eq. (3.23), is illustrated in fig. 4.1. Let us consider an
object whose representation in the wavelet domain has only one non-zero entry, situated
at the centre of one of its wavelet subbands. Applying the operator WR∗ΓRΓW∗ to
this initial object results in a new object, whose subbands exhibit a bowtie-shaped
structure. Those bowtie subbands form a first set of convolutional filters. The entire
collection of convolutional filters necessary for the approximation of WR∗ΓRΓW∗ can
then be obtained by reiterating this process until the central pixel of all the wavelet
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Figure 4.2: Illustration of the way the convolutional filters, computed as described
in fig. 4.1, are applied to each wavelet subband of the initial object, after up- and
down-sampling operations, in order to approximate the operator WR∗ΓRΓW∗.

subbands in the initial object has been visited. A numerical example of convolutional
filter is provided in fig. 4.4.

Once computed, such convolutional filters can be applied to the wavelet subbands
of any object as illustrated in fig. 4.2, in order to imitate the behaviour of the oper-
ator WR∗ΓRΓW∗. First, each wavelet subband of the object under consideration is
replicated 3(J1 − J0 + 1) + 1 times. Those replicas are then either downsampled, or
upsampled, or kept with the same dimensions, depending on the scale of the filter they
are to be convolved with. The set of convolutional filters employed on the replicas of
a wavelet subband of scale j and type (t) is the set of filters beforehand generated by
applying the operator WR∗ΓRΓW∗ to an object whose only non-zero pixel is located
at the centre of its wavelet subband of exact same scale j and type (t). After the
convolutions between the replicas and the filters have been carried out, the resulting
subbands are reassembled to constitute the wavelet representation of a new object.
This operation is repeated for all the subbands of the initial object and ultimately, the
3(J1− J0 + 1) + 1 resulting items are summed. The final outcome is an approximation
of the operator WR∗ΓRΓW∗ applied to the initial object. Fig. 4.3 illustrates such
a procedure when the object under consideration is a circular phantom, and fig. 4.5
shows the numerical results thus obtained, in the image domain.

Two observations are worth mentioning with regards to the creation and application
of the above-defined convolutional filters. First, our practical implementation very
slightly differs from the theory presented in eq. (3.22) as far as the downsampling is
concerned. In our codes, downsampling is indeed applied before convolving the filter
and the wavelet subband replica, and not after, as it is indicated in the theory. This
choice is motivated by the diminution in terms of storage needs and running time such
a change enables while preserving the correctness of the approximation. Secondly,
both the theoretical analysis and the experimental tests proved that the dimensions
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Wavelet
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Figure 4.3: Figure illustrating the effect of the convolutional filters, computed as de-
scribed in (fig. 4.1), when applied to a circular phantom (second from the left). As
theoretically demonstrated in Proposition 3.5 and numerically verified in fig. 4.5, the
application of R∗ΓRΓ to the phantom can be approximated by the following procedure:
first, decompose the image in the wavelet domain (left), then apply the convolutional
filters to the wavelet subbands (according to fig. 4.2) and use the subbands thus com-
puted (right) to recompose the final image. The latter, which exhibits bowtie-shaped
artefacts, offers a reliable approximation of the image obtained by directly applying
the normal operator R∗ΓRΓ to the initial phantom.

of the convolutional filters employed for the approximation of WR∗ΓRΓW∗ do affect
the accuracy of the results. Initially, we assumed that the convolutional filters should
be generated from only-one-non-zero-pixel objects with the same size 2J × 2J as the
image of interest (recall that p = 22J). However, we reached the conclusion that they
actually have to be generated from twice bigger objects, that is of size 2J+1 × 2J+1, in
order to obtain an accurate approximation of the operator WR∗ΓRΓW∗. The effects
of the filter dimensions are shown in fig. 4.5.

4.1.2 Proposed implementations
The above described method for generating and applying the filters of the kernel oper-
ator K makes the concrete implementation of a convolutional algorithm that imitates
the behaviour of ISTA possible. Mathematically, the convolutional implementation of
ISTA, result-wise equivalent to the standard one, can be deduced both from eq. (3.15)
and eq. (3.22), and reads:

w(n+1) = S λ
L

(
w(n) + 1

L

(
WR∗Γm−Kw(n)

))
, n = {0, . . . , N}, (4.3)

where K stands for the combination of downscaling, upscaling and convolution opera-
tions summarised in fig. 4.2. As previously mentioned, the interest of such an algorithm
is that it presents the merits of the iterative, model-based method ISTA, while allowing
the incorporation of data-driven approaches. We thus propose to take full advantage of
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Figure 4.4: Example of a bowtie subband that can be employed as a convolutional filter
of the kernel operator K. It was generated from a 256×256 initial object, according to
the procedure detailed in section 4.1.1 and illustrated in fig. 4.1. Theory suggests that
the pixels with highest intensities are spread according to a bowtie-shaped structure.
In practice, they are even more condensed: most of the energy is concentrated along
two diagonal lines that intersect in the center and whose inclination is defined by the
limited angle: 95.8% of the `2-norm of the filter is concentrated along those two lines,
from which 94.8% are inside the central red square.

this compatibility and profit from the remarkable potentials of deep neural networks by
converting the hitherto fixed operator K into a partially trainable CNN. More specifi-
cally, we now consider the centre of the convolutional filters so far precomputed with
the deterministic method presented in section 4.1.1 as parameters to be learnt from
data, while the outer frame of the filters keeps unchanged. The theoretical considera-
tions regarding such an architectural choice are provided in section 3.3.1. From a more
computational point of view, learning only the central part of the convolutional filters
of K rather than the whole filters offers the possibility to reduce the model complexity
which, in the latter case, makes the training process burdensome if not impractical.

In practice, we propose to split the operator K into two operators: a first one,
K0, standing for the fixed, known part of the model; and a second, trainable operator
referred to as K1 := Λτ

ζ , where τ is a tunable hyperparameter and ζ represents the set
of parameters to be learnt. In order to further improve reconstruction performance,
we also decide to learn the soft-thresholding parameter as well as the ISTA time step,
so far set to 1/L. The convolutional network thus defined is none other than our
proposed algorithm ΨDONet applied to the discretised LA-CT case. In section 4.1.2.1
and section 4.1.2.2, we investigate two different implementations of ΨDONet, which
prove to be result-wise similar as it can be observed in section 4.2.2, but differ in their
computational needs.

4.1.2.1 ΨDONet-F

The most natural way to implement ΨDONet consists in building two operators K0
and K1 with the same architecture as the convolutional operator K, and whose filters
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(a) (b) (c) RE: 0.121

(d) (e) (f) RE: 0.003

Figure 4.5: Effect of the standard back-projection operator and of its approximations
with convolutional filters of different sizes. (a) shows the ground truth u† under con-
sideration and (d) its standard back-projection R?

ΓRΓu†, computed with the basic
functions of the Python package scikit-image. (b) (resp. (e)) represents the approx-
imation Ku† obtained with the convolutional filters beforehand generated from 2J×2J
(resp. 2J+1 × 2J+1) only-one-non-zero-pixel object. (c) and (f) show the absolute dif-
ferences between the approximation of the back-projection operator and the expected
value (d). The dynamic range of the plot is modified for better contrast.

are such that their sum, before any training, is strictly equivalent to the filters of K:
K = K0 + K1. The operator K0 := K̆τ is non trainable and its filters are a copy
of the filters of K, with the exception that the τ × τ central entries of each filter are
set to zero. The operator K1 := Λτ

ζ , in contrast, involves τ × τ -trainable filters that
are initialised with the τ × τ central part of the filters of K (see fig. 4.6), and then
gradually modified during to training process. This first implementation of ΨDONet,
referred to as Filter-Based ΨDONet or ΨDONet-F, is formulated as:

w(n+1) = Sγn
(
w(n) + αn

(
WR∗Γm− βn

(
K̆τw(n) + Λτ

ζnw
(n)
)))

, (4.4)

for n = {0, . . . , N}, where the parameters to be learnt are {γ0, α0, β0, ζ0,. . . ,γN , αN ,
βN , ζN}. The parameters {β0, . . . , βN} have been added in such a way that the influence
of the fixed operator K̆τ w.r.t. the constant term WR∗Γm can be adjusted in order to
maximise the accuracy of the results. It is worth mentioning that for the particular
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Figure 4.6: Figure illustrating how the convolutional filters of K are to be split to
generate the filters of the operators K0 := K̆τ and K1 := Λτ

ζ in ΨDONet-F. Each filter
of K is partitioned into two filters whose sum is equivalent to the initial one. The filter
of K̆τ is a copy of the filter of K with the exception that the τ × τ central weights are
set to zero. The filter of Λτ

ζ has dimensions τ × τ and is initialised with the central
τ × τ central weights of the filter of K.

choice of γn = λ
L
, αn = 1

L
, βn = 1, for any n = {0, . . . , N}, this model before any

training is exactly equivalent to standard ISTA.
The trade-off between the number of parameters that can be improved through

the learning process and the trainability of the model is controlled by τ . For a sound
choice of such a hyperparameter, the complexity of the model is sufficiently reduced to
enable the convergence of the learning algorithm while allowing the enhancement of a
significant number of weights in the filters.

This implementation has the merit of offering a clear interpretation of the role
and meaning of the convolutional filters belonging to K̆τ and Λτ

ζ . Those filters are
indeed initialised with the filters of the operator K, which reproduces the behaviour
of WR∗ΓRΓW∗. Thus, modifying their weights through the training process can be
regarded as a direct improvement of the back-projection operator in the wavelet do-
main.

ΨDONet-F has led to very satisfactory preliminary results, presented in section 4.2.
However, training such a model on big images may quickly become extremely onerous
in terms of running time and storage requirements. Such problems may arise while
training ΨDONet-F on images of dimensions greater or equal to 256 × 256. Unlike
typical CNNs, which usually make use of small-sized convolutional filters, the filters
of K̆τ in our proposed algorithm are much bigger than the wavelet subbands they
are convolved with. This uncommon procedure implies the padding, i.e., the addition
of many extra pixels to the edge of each wavelet subband, as illustrated in fig. 4.7.
As, to the best of our knowledge, convolutions with filters that are significantly larger
than the input have not been optimised yet in the existing software libraries, such
computations may cause a severe speed reduction in the training process as well as the
necessity of a substantial memory space. The alternative implementation of ΨDONet,
described in section 4.1.2.2 , addresses these shortcomings.
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Figure 4.7: Convolving an F × F input with a 2F × 2F filter, as it is needed in
ΨDONet-F, implies the addition of 2F − 1 external rows (resp. columns) of zeros to
the input: such process is called padding. This figure illustrates the padding required if
F = 4 (for the sake of simplicity, we consider only a single depth slice). The numerous
zero pixels that have to be added when convolving with filters that are significantly
larger than the input may bring about some speed reduction in the training process as
well as the necessity of a substantial memory space.

4.1.2.2 ΨDONet-O

The main flaw of ΨDONet-F rests upon the use of the operator K̆τ , which implies
numerous burdensome convolutions. This issue is worked around in ΨDONet-O, as
K̆τ is not involved anymore. Here, the back-projection operator is not approximated,
meaning that WR∗ΓRΓW∗ is indeed implemented as the succession of the inverse
wavelet, Radon, inverse Radon and direct wavelet transforms applied to the iterate
w(n). As for the learnable part of the network, a trainable, convolutional operator
Λτ
ζn is added to each unfolded ISTA iteration, just as in ΨDONet-F. Conceptually,

this second implementation of ΨDONet can still be interpreted as the splitting of
the kernel operator K into two operators: the first one, K0 := WR∗ΓRΓW∗, is the
exact back-projection operator in the wavelet domain and stands for the known part
of the model; the second operator, K1 := Λτ

ζn , whose architecture is the same as K,
provides the potential to improve the reconstruction process. Fig. 4.8 shows how this
splitting can be thought of. We however insist on the fact that it only illustrates the
theoretical concept underlying ΨDONet-O, and not its actual implementation as the
fixed operator K0 does not involve convolutional filters anymore, but instead makes
use of the classic transforms.

The second implementation of ΨDONet, named Operator-Based ΨDONet or ΨDO-
Net-O, reads:

w(n+1) = Sγn
(
w(n) + αn

(
WR∗Γm−WR∗ΓRΓW∗w(n)

)
+ βnΛτ

ζnw
(n)
)
, (4.5)
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Figure 4.8: Conceptual illustration of the splitting of K in ΨDONet-O into two opera-
tors: K0 := WR∗ΓRΓW∗ and K1 := Λτ

ζ . Each filter of K can be thought of as the sum
of a fixed filter, representing the known part of the model, and a trainable filter with
dimensions τ×τ , interpreted as an adjunct for improving the back-projection operator.
It is crucial to note, however, that this figure is only intended to provide a theoreti-
cal comprehension of the concept underlying ΨDONet-O, but does not represent the
actual implementation thereof, since the operator K0 does not involve convolutional
filters, but instead makes use of the classic wavelet and Radon transforms.
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Figure 4.9: Block diagram of the proposed model (4.5). The contribution of the
trainable operators Λτ

ζ1 , . . . , Λτ
ζN

can be highlighted by comparing this architecture
with that of standard ISTA, illustrated in fig. 3.1.

for n = {0, . . . , N}, where the parameters to be learnt are {γ0, α0, β0, ζ0, . . . , γN ,αN ,
βN , ζN}. The operator Λτ

ζn is initialised with random values, according to the Xavier
initialisation presented in section 2.2.4.2. The block diagram of the algorithm is rep-
resented in fig. 4.9. For the special choice of γn = λ

L
, αn = 1

L
, βn = 0, for any

n = {0, . . . , N}, this model is exactly equivalent to standard ISTA. The only con-
volutions involved in this alternative implementation are the ones composing the CNN
Λτ
ζn , whose filters can be chosen to be small enough to avoid any running time or stor-

age issue. In that sense, ΨDONet-O offers an implementation numerically preferable to
ΨDO-Net-F, while retaining the same properties on a theoretical level. Furthermore,
such a model keeps offering a clear interpretation of its post-processing abilities since
Λτ
ζn , on account of its architecture, can still be seen as an adjunct for improving the

back-projection operator.
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(a) Soft-thresholding function with
non-negative parameter: γ ≥ 0.
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(b) Soft-thresholding function with
negative parameter: γ < 0.

Figure 4.10: Plots of the soft-thresholding function as defined in section 4.1.2.3.

4.1.2.3 Note on soft-thresholding parameters

From a theoretical point of view, the parameters γ0, . . . , γN in ΨDONet-F and ΨDONet-
O have to be non-negative, as they represent the soft-thresholding parameters. In order
to stick to the operator originally involved in standard ISTA, it is possible to enforce
the positivity of the coefficient by replacing each γn by 10γ̃n , where γ̃n becomes the
actual trainable parameter. However, with the aim to allow a greater degree of free-
dom in the learning process, we propose to implement the operator Sγn in such a way
that it is also interpretable for negative values of its parameter γn. In such a case, we
define the function Sγn<0 as the symmetric of the soft-thresholding curve w.r.t. y = x,
while for non-negative values of γn, Sγn≥0 is exactly equivalent to the soft-thresholding
operator. Formally, Sγn becomes:

For γn ≥ 0 :

Sγn(x) =


x− γn, if x ≥ γn

0, if |x| < γn

x+ γn, if x ≤ −γn

For γn < 0 :

Sγn(x) =

x− γn, if x ≥ 0
x+ γn, if x < 0

The resulting functions Sγn≥0 and Sγn<0 are plotted in fig. 4.10. The two imple-
mentations ΨDONet-F and ΨDONet-O are tested with and without the positivity
constraint on γ (see results in section 4.2.2).

4.1.3 Supervised Learning

We denominate f τθ the N -layer CNN that, given m, computes the final output w(N+1)

according to one of the two proposed architectures. We aim at learning the optimal
high-dimensional vector θ = {γ0, α0, β0, ζ0, . . . , γN , αN , βN , ζN} that ideally satisfies
the relation:

f τθ (m) ≈Wu† (4.6)
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More formally, we regard the tuple
(
m,u†

)
∈ Rq ×Rp as a random variable with a

joint probability distribution Ξ, as detailed in section 3.3.2. Ideally, we would like to
find a parameter vector θ∗ minimising the expected risk:

min
θ

(
E(m,u†)∼Ξ‖f τθ (m)−Wu†‖2

2

)
(4.7)

Other loss functions, such as the weighted l2-norm, where the wavelet coefficients are
weighted depending on their scale, have been tested and lead to results similar to the
non-weighted l2-norm. For the sake of brevity, we will stick to the basic form of (4.7).

In practice, computing the expectation w.r.t. Ξ is not possible (see section 2.1.2.3).
Instead, we are given a finite set of independent drawings (m1,u†1), . . . , (mS,u†S) and
we consider the minimisation of the empirical risk:

min
θ

1
S

S∑
i=1
‖f τθ (mi)−Wu†i‖2

2 (4.8)

We propose to solve the optimisation problem (4.8) by means of minibatch gradient
descent (see section 2.1.5.2), where the gradients are computed via backpropagation
(see section 2.2.3). The final performance (i.e., the generalisation ability) of the trained
network f τθ is evaluated on a separate set of independent drawings, the test set, that
has not been used during the learning process.

The two implementations ΨDONet-F and ΨDONet-O have been trained and tested
on different datasets of simulated data. The testing setups and the obtained numerical
results are presented in section 4.2.

4.2 Experiments and results
In this section, we evaluate the performance of the proposed reconstruction schemes
and compare it with that of standard ISTA.

4.2.1 Preliminaries
To begin with, we describe the considered experimental scenario, the implementation
of the used operators and the training procedure.

4.2.1.1 Datasets

Different sets of simulated data have been used to test the proposed algorithm ΨDONet.
They are divided into two categories, called Ellipses and Apples. Within each category,
several setups have been considered, for different image resolutions and different miss-
ing wedges. Table 4.1 summarises the configurations of interest, as well as the number
of images for the training, validation and testing sets in each category. The next para-
graphs describe the composition of the different datasets as far as the groundtruth
images are concerned.
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dataset Ellipses Apples
resolution 128× 128 256× 256 512× 512 128× 128 256× 256

missing wedge 60◦ 80◦ 80◦ 60◦ 80◦
train/val/test 10000/500/500 25319/3259/3773

Table 4.1: Table summarising the experimental setups considered. The last row spec-
ifies the number of images contained in the training set, the validation set and the
testing set respectively.

Ellipses The Ellipses-dataset consists of 11000 synthetic images of ellipses, generated
with Matlab. In each image, the number, locations, sizes and intensity gradients of
the ellipses are chosen randomly.

Apples The Apples-dataset contains 32351 tomographic scans that belong to the
dataset of the Apples-CT challenge of the Code Sprint 2020 [43] They correspond to
the slices of 52 different apples. The original 972 × 972 images have been resized to
128× 128 and 256× 256 images.

For all the aforementioned setups, the projections are simulated thanks to the
Matlab’s routine radon. The measurements are first computed at a higher resolution
and then downsampled to their actual resolution, in such a way to avoid inverse crime
[152]. We furthermore corrupt all the simulated sinograms with white Gaussian noise
with zero mean and a variance equal to 1% of the sinogram maximum value.

4.2.1.2 Operators

For the implementation of the discrete limited angle operator RΓ we use the radon
routine of the Python package scikit-image [203], and the 2D parallel beam ge-
ometry of the Operator Discretization Library (ODL) library [1], which is based on
the Astra toolbox [202]. The former is employed for generating the back-projections
WR∗Γm provided as inputs to ΨDONet-F and ΨDONet-O, while the latter is used
for the implementation of WR∗ΓRΓW∗ in ΨDONet-O. The direct and inverse Radon
transform operators are multiplied by a constant so that their norm is equal to one.
This constant is computed through the Von Mises iteration [149], with a number of
iterations equal to 10. Regarding the wavelet transform, we make use of the Python
package pywt [132] to decompose the inputs before providing them to the network, and
to recompose the outputs produced by the model. The wavelet transforms involved
in the network itself, however, are implemented thanks to a modified version of the
package tf-wavelets [89]. In all our experiments, we use Haar wavelets and consider
the case J0 = J1 + 2, implying that the wavelet decomposition Wu has 10 subbands.
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4.2.1.3 Network structure and training

The two schemes ΨDONet-F and ΨDONet-O have been implemented and tested on
128× 128 images. As mentioned in section 4.1.2, however, the training of ΨDONet-F
becomes rapidly impractical for ’big’ images; thus, only the operator-based implemen-
tation has been tested on 256× 256 and 512× 512 images.

Regardless of the choice of ΨDONet’s implementation, the architecture of the net-
work is determined by a set of hyperparameters, which are to be manually tuned
before starting the training process. The hyperparameter settings are summarised in
table 4.2.

For example, the hyperparameter τ determines the size of the filters of the trainable
operator Λτ

ζn (see section 4.1.2). Note that according to theory, τ is supposed to be
odd, however, in practice we prefer it to be even. This very slight modification has no
effect on the results. Another important hyperparameter is the number N of layers
in the network, which can be interpreted as the unrolling of the first N iterations of
ISTA. In practice, with the purpose of reducing the number of parameters to be learnt,
we choose to use Ns (< N) different sets of trainable parameters {ζn, γn, αn, βn}, each
of which are used over nr consecutive layers of the network. Therefore, the number
of layers N is actually determined by the two hyperparameters Ns and nr, such that
N = Ns × nr.

The aforementioned hyperparameters concern the structure of the network. Other
hyperparameters that do not define the network architecture but rather the course
of the training process are also of great importance. They include e.g. the learning
rate, the number of epochs and the minibatch size. We recall that the learning rate
represents the steplength in the gradient descent algorithm employed to minimise the
cost function (see section 2.1.5). The initial learning rates, reported in table 4.2, are
scaled down by a factor of 0.9 at each epoch. The number of epochs is the number of
times all the examples of the training set are shown to the network, and the minibatch
size is the number of samples that are simultaneously provided to the network at each
iteration of the training process. More information about these concepts are given in
chapter 2.

The implementation and the training of our algorithms have been performed using
Tensorflow with an Adam optimiser (see section 2.2.4.4). The trainings have been run
on a NVIDIA Quadro P6000 GPU. The running times for each configuration are re-
ported in table 4.2. All the codes are available at https://github.com/megalinier/
PsiDONet.

4.2.1.4 Compared Methods

We compare the results achieved with the proposed architectures to the reconstructions
provided by ISTA. In the implementation of the latter, we make use of the formula
introduced in [52] and the number of iterations for ISTA is determined by the stopping
criterion:

‖u(n+1) − u(n)‖2
2/‖u(n)‖2

2 < tol (4.9)
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resolution 128× 128 256× 256 512× 512
dataset Ellipses Apples Ellipses Apples Ellipses
scheme F O F O O O
τ 32 64 64
Ns 40 30 25
nr 3 4 4

learning rate 0.005 0.005 0.005 0.001 0.001 0.001
epochs 3 2 3 2 1

minibatch size 25 15 5
running time 12h 15h 20h 24h 34h 50h 146h

Table 4.2: Table summarising the network hyperparameters employed for the exper-
imental tests of ΨDONet and the corresponding running times (in hours) required
by the training processes. The ’scheme’ row specifies which of the two implementa-
tions has been tested: the letter F stands for ΨDONet-F and the letter O stands for
ΨDONet-O. In practice, the training of ΨDONet-F becomes rapidly impractical for
’big’ images; this is the reason why only the operator-based implementation has been
tested on 256 × 256 and 512 × 512 images. The hyperparameter τ defines the size of
the τ × τ filters of the trainable operator Λτ

ζn (see section 4.1.2) in both implementa-
tions. In all the setups, the network is built as a succession of N layers, which can be
interpreted as unrolled iterations of ISTA. In order to reduce the number of param-
eters to be learnt, we choose to use Ns (< N) different sets of trainable parameters
{ζn, γn, αn, βn}, each of which being used over nr consecutive layers of the network.
Thus, Ns and nr are such that N = Ns × nr. The ’learning rate’ row provides the
values of the initial learning rate for each training, which are then scaled by a factor
of 0.9 at each epoch.

resolution 128× 128 256× 256 512× 512
dataset Ellipses Apples Ellipses Apples Ellipses
λ 2.10−6 1.10−6

L 5 2
tol 2.10−4 8.10−4

Table 4.3: Table summarising the values of the regularisation parameter λ, the con-
stant L and the tolerance tol, chosen when applying ISTA to each dataset under
consideration.
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The values of the regularisation parameter λ, the constant L and the tolerance tol

chosen for each configuration are summarised in table 4.3.
Below, we give a list of the abbreviations henceforth used for the different recovery

methods.

uista Standard ISTA reconstruction.

uFBP Standard filtered back-projection with the ’ramp’ filter of scikit-image.

u+
Ψdo-F Solution provided by ΨDONet-F with positivity-constraint on the soft-

thresholding parameter (γn = 10γ̃n ,∀n).

uΨdo-F Solution provided by ΨDONet-F without positivity-constraint on the soft-
thresholding parameter.

u+
Ψdo-O Solution provided by ΨDONet-O with positivity-constraint on the soft-

thresholding parameter (γn = 10γ̃n ,∀n).

uΨdo-O Solution provided by ΨDONet-O without positivity-constraint on the soft-
thresholding parameter.

4.2.1.5 Similarity Measures

For the assessment of image quality, we use the following quantitative measures (where
u† denotes the reference image and u its reconstruction):

• the relative error (RE):

RE(u†,u) = ‖u
† − u‖2

‖u†‖2
(4.10)

• the peak signal-to-noise ratio (PSNR):

PSNR(u†,u) = 10 log10

(
d2

MSE(u†,u)

)
, (4.11)

where d is the maximum possible pixel value of the image (1 in our case), and
MSE is the mean squared error defined as:

MSE(u†,u) = 1
p

p∑
i=1

(u†i − ui)2 (4.12)

• the structured similarity index (SSIM) [212]:

SSIM(u†,u) = (2µuµu† + c1)(2σuσu† + c2)(2 covuu† +c3)
(µ2

u + µ2
u† + c1)(σ2

u + σ2
u† + c2)(σuσu† + c3) (4.13)

where (µu† , σu†) and (µu, σu) are the mean and standard deviation of u† and
u respectively, covuu† is the cross-variance of u† and u and c1, c2 and c3 are
constants. SSIM offers a measure of the perceived visual quality, based on how
the human eye extracts structural information from an image. It is thus more
discriminating with regards to artefacts than the mean square error for instance.
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• the Haar wavelet-based perceptual similarity index (Haar-PSI), recently proposed
in [170], which also offers to assess the perceptual similarity between two images
w.r.t. a human viewer.

4.2.2 Numerical results
In the following, we report and discuss the results of our numerical experiments. For
the sake of clarity, we will distinguish the different datasets by their category (Ellipses,
Apples) and their resolution (128 × 128, 256 × 256 or 512 × 512). For example, the
dataset of Ellipses composed by 128 × 128 images will be denoted by Ellipses-128.
This name is sufficient to uniquely determine the dataset configuration (see table 4.1).

The average image quality measures of the reconstructed test images are reported
in tables 4.4 to 4.8, for each setup under consideration. Furthermore, examples of
reconstructions obtained with the different methods of interest are shown in figures
4.11 to 4.15. The measurements m, or sinograms, are represented with black strips on
their left and right sides, corresponding to the missing angular range. In addition to the
obtained reconstructions, we also provide the visualisation of the absolute difference
of each reconstructed image and its ground truth, in order to better evaluate the
performance of the proposed method.

As it can be seen on the aforementioned figures, due to the large missing angle
(60◦ and 80◦), the FBP images are contaminated with contrast changes and streaking
artefacts (see fig. 4.11c for instance). The latter are reminiscent of the bowtie-shaped
artefacts illustrated in 4.3, and indeed stem directly from the very nature of the nor-
mal operator R∗ΓRΓ. Although ISTA offers better quality reconstructions (see e.g.
fig. 4.11d), it still leads to streaking artefacts, and impurities due to the noise in the
measurements can be noticed in the reconstructions. Besides, ISTA images are toned
down, meaning that for the most part, the intensity of the pixels remain significantly
lower than the expected values.

With the proposed implementations, whether with positivity constraint on the
soft-thresholding parameter or without, it is possible to substantially reduce those
artefacts and contrast issues. As it can be observed in figs. 4.11 to 4.15, the proposed
methods lead to undeniably enhanced reconstructions, with a meaningful diminution
of the relative error. As reported in tables 4.4 to 4.8, the ΨDONet reconstructions also
show significantly better PSNR, SSIM and HaarPSI values when compared to ISTA
and FBP. Furthermore, it can be remarked that the reconstructions achieved with the
proposed methods are less corrupted by the measurement noise. However, in some
cases, as it can be seen on fig. 4.14, the ΨDONet images exhibit a somewhat ’blocky’
structure. This can be explained by the fact that the wavelet basis employed for the
decomposition of the images is the Haar wavelet basis. Choosing a smoother kind of
wavelets, such as the Daubechies wavelets with some number of vanishing moments,
may soften this ’blocky’ effect. Exploring such a possibility is left to future works.

Although the training of the operator-based models requires less computational
resources than the filter-based ones, the two kinds of implementation provide similar
reconstruction qualities (see figs. 4.11 and 4.14 and tables 4.4 and 4.5), and in that
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Method RE PSNR SSIM HaarPSI

uista 0.40 23.43 0.50 0.40
uFBP 0.52 21.31 0.45 0.36
u+

Ψdo-F 0.23 28.41 0.84 0.60
uΨdo-F 0.22 28.45 0.87 0.64
u+

Ψdo-O 0.25 27.70 0.78 0.55
uΨdo-O 0.24 28.04 0.84 0.57

Table 4.4: Comparison of reconstruction methods applied to the Ellipses-128 testset.

Method RE PSNR SSIM HaarPSI

uista 0.24 19.34 0.55 0.37
uFBP 0.34 16.32 0.42 0.31
u+

Ψdo-F 0.07 29.85 0.83 0.73
uΨdo-F 0.07 29.88 0.84 0.74
u+

Ψdo-O 0.12 25.52 0.74 0.62
uΨdo-O 0.07 29.83 0.83 0.73

Table 4.5: Comparison of reconstruction methods applied to the Apples-128 testset.

sense, can be considered as result-wise equivalent. As for the positivity constraint
on the soft-thresholding parameter, one can note that, in comparison with ΨDONet-
F and ΨDONet-O respectively, ΨDONet-F+ and ΨDONet-O+ may produce slightly
smoother reconstructions, with the potential presence of streaking artefacts. The lat-
ter, however, are greatly lessened when compared with the ones in the ISTA images
(see fig. 4.12f or fig. 4.14i for example). In fact, the SSIM measures of the constrained
model reconstructions are significantly greater than in the ISTA case, but always below
the SSIM measures of their non-constrained alternative. The latter do a noteworthy job
in removing the artefacts and sharpening the edges, as it can be seen e.g. in fig. 4.11j
and fig. 4.11e. Overall, due to the quality of its reconstructions and the practicability
of its training on relatively big images, ΨDONet-O appears as the best method over
the four proposed.

For illustration purposes, we provide a visualisation of the learnt parameters αn, βn
and γn for each proposed method when trained on the Ellipses-128 dataset, in fig. 4.16
and fig. 4.17.
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Method RE PSNR SSIM HaarPSI

uista 0.47 23.36 0.48 0.38
uFBP 0.63 20.69 0.42 0.32

u+
Ψdo-O 0.33 26.33 0.70 0.43

uΨdo-O 0.26 28.30 0.83 0.48

Table 4.6: Comparison of reconstruction methods applied to the Ellipses-256 testset.

Method RE PSNR SSIM HaarPSI

uista 0.36 18.64 0.45 0.31
uFBP 0.42 14.63 0.25 0.25

u+
Ψdo-O 0.10 27.32 0.76 0.58

uΨdo-O 0.08 29.68 0.82 0.65

Table 4.7: Comparison of reconstruction methods applied to the Apples-256 testset.

Method RE PSNR SSIM HaarPSI

uista 0.50 23.67 0.51 0.38
uFBP 0.72 20.39 0.28 0.29

u+
Ψdo-O 0.34 26.99 0.75 0.41

uΨdo-O 0.29 28.33 0.84 0.40

Table 4.8: Comparison of reconstruction methods applied to the dataset Ellipses-512.
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(a) Sinogram m 0 (b) Ground truth u† 0

(c) uFBP
RE: 0.55, SSIM: 0.41

(d) uista
RE: 0.45, SSIM: 0.46

(e) uΨdo-O
RE: 0.21, SSIM: 0.79

0
0

(f) |u† − uFBP| (g) |u† − uista| (h) |u† − uΨdo-O| 0

(i) u+
Ψdo-O

RE: 0.23, SSIM: 0.74
(j) uΨdo-F

RE: 0.19, SSIM: 0.84
(k) u+

Ψdo-F
RE: 0.21, SSIM: 0.83

0
0

(l) |u† − u+
Ψdo-O| (m) |u† − uΨdo-F| (n) |u† − u+

Ψdo-F| 0
Figure 4.11: Sinogram and corresponding results for one test image from the

Ellipses-128 dataset.
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(a) Sinogram m 0 (b) Ground truth u† 0

(c) uFBP
RE: 0.65, SSIM: 0.41

(d) uista
RE: 0.52, SSIM: 0.43

(e) uΨdo-O
RE: 0.28, SSIM: 0.81

(f) u+
Ψdo-O

RE: 0.39, SSIM: 0.66
0
0

(g) |u† − uFBP| (h) |u† − uista| (i) |u† − uΨdo-O| (j) |u† − u+
Ψdo-O| 0

Figure 4.12: Sinogram and corresponding results for one test image from the Ellipses-256 dataset.



Experiments and results 125

(a) Sinogram m 0 (b) Ground truth u† 0

(c) uFBP
RE: 0.71, SSIM: 0.30

(d) uista
RE: 0.43, SSIM: 0.54

(e) uΨdo-O
RE: 0.28, SSIM: 0.84

(f) u+
Ψdo-O

RE: 0.34, SSIM: 0.74
0
0

(g) |u† − uFBP| (h) |u† − uista| (i) |u† − uΨdo-O| (j) |u† − u+
Ψdo-O| 0

Figure 4.13: Sinogram and corresponding results for one test image from the Ellipses-512 dataset.



126 Chapter 4 ΨDoNet in practice: application to the case of LA-CT

(a) Sinogram m 0 (b) Ground truth u† 0

(c) uFBP
RE: 0.35, SSIM: 0.42

(d) uista
RE: 0.25, SSIM: 0.52

(e) uΨdo-O
RE: 0.07 , SSIM: 0.84

0
0

(f) |u† − uFBP| (g) |u† − uista| (h) |u† − uΨdo-O| 0

(i) u+
Ψdo-O

RE: 0.10, SSIM: 0.75
(j) uΨdo-F

RE: 0.07, SSIM: 0.84
(k) u+

Ψdo-F
RE: 0.07, SSIM: 0.83

0
0

(l) |u† − u+
Ψdo-O| (m) |u† − uΨdo-F| (n) |u† − u+

Ψdo-F| 0
Figure 4.14: Sinogram and corresponding results for one test image from the

Apples-128 dataset.
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(a) Sinogram m 0 (b) Ground truth u† 0

(c) uFBP
RE: 0.60, SSIM: 0.36

(d) uista
RE: 0.39, SSIM: 0.44

(e) uΨdo-O
RE: 0.11, SSIM: 0.87

(f) u+
Ψdo-O

RE: 0.13, SSIM: 0.82
0
0

(g) |u† − uFBP| (h) |u† − uista| (i) |u† − uΨdo-O| (j) |u† − u+
Ψdo-O| 0

Figure 4.15: Sinogram and corresponding results for one test image from the Apples-256 dataset.
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Figure 4.16: Plots of the parameters (αn)0≤n≤Ns−1, (βn)0≤n≤Ns−1 and (γn)0≤n≤Ns−1, learnt by
the Filter-based implementation of ΨDONet, with and without positivity constraint on γn (the
models are respectively called ΨDONet-F+ and ΨDONet-F), when trained on the Ellipses-128
dataset. The y-axis represents the Ns = 40 different sets of trainable parameters. Each set is
then to be employed over nr = 3 consecutive layers, resulting in N = Ns × nr = 40 × 3 = 120
unrolled iterations of ISTA. The black dots on the graph show the values that the parameters
should take in order to imitate the exact behaviour of ISTA: γn = λ

L
, αn = 1

L
, βn = 1 (see

section 4.1.2.1). Those values are chosen as initialisation for each parameter.
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Figure 4.17: Plots of the parameters (αn)0≤n≤Ns−1, (βn)0≤n≤Ns−1 and (γn)0≤n≤Ns−1, learnt by the
Operator-based implementation of ΨDONet, with and without positivity constraint on γn (the
models are respectively called ΨDONet-O+ and ΨDONet-O), when trained on the Ellipses-128
dataset. The y-axis represents the Ns = 40 different sets of trainable parameters. Each set is
then to be employed over nr = 3 consecutive layers, resulting in N = Ns × nr = 40 × 3 = 120
unrolled iterations of ISTA. The black dots on the graph show the values that the parameters
should take in order to imitate the exact behaviour of ISTA: γn = λ

L
, αn = 1

L
, βn = 0 (see

section 4.1.2.2). Those values are chosen as initialisation for each parameter.



5 Conclusions

The research activity presented in this doctoral thesis was dedicated to the development
of a novel CNN, named ΨDONet, designed to learn convolutional ΨDOs and FIOs in
the broad context of linear inverse problems. In particular, we investigated such a new
method through the practical case of limited-angle computed tomography. Due to the
incompleteness of the acquired data, this X-based data imaging acquisition modality
is a severely ill-posed inverse problem for which classical methods usually show poor
performance.

The strength of the proposed approach rests upon the fact that it takes advantage
of the powerful deep learning technology, whose fundamental principles are detailed in
chapter 2, while benefiting from the trustworthiness of a more traditional, variational
method: the well-known ISTA. ΨDONet, can thus incorporate both the physical un-
derstanding of the problem under consideration and a prior leveraged for the regular-
isation of the solution, while making use of a learning process to extract meaningful
information from a set of training examples.

The theoretical principles underlying ΨDONet stem from the demonstration, pro-
vided in chapter 3 and numerically verified in chapter 4, that the unrolled iterations
of ISTA can be interpreted as layers of a CNN. More interestingly, the downsampling,
upsampling and convolution operations, typically defining a CNN, can be exactly spec-
ified by combining the convolutional nature of the normal operator under consideration
and basic properties defining an orthogonal wavelet system. This analysis allows to
gain understanding and interpretability of the results. We furthermore proved that, for
a specific choice of the parameters involved, ΨDONet recovers ISTA, or a perturbation
thereof. From the viewpoint of learning, such a characteristic represents a real asset
inasmuch as those parameters offer a good initialisation point for the training process.

As a proof of concept, two different implementations of ΨDONet were proposed and
tested on several sets of simulated data generated from a limited angle geometry. Both
implementations produce equally good and noteworthy results, and show a significant
improvement when compared to ISTA and FBP.

The work presented in this thesis opens up new prospects for CT, and more gener-
ally for a whole class of inverse problems arising from FIO or ΨDO. The main directions
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that can be contemplated for future research include:

• The generalisation of the theoretical results presented in chapter 3, in light of
recent contributions such as [54].

• The application of ΨDONet to other inverse problems with ΨDOs and FIOs, such
as the geodesic X-ray transform [200], and its applications in seismic imaging, or
synthetic-aperture radar (SAR) [159].

• Investigating the possibility of inserting more advanced features in the ΨDONet
architecture, such as skip connections or extra residual blocks, with the aim of
improving the reconstruction process while preserving full interpretability of the
network.

• A further optimisation of the proposed implementations, in particular that of
ΨDONet-O, in order to make its training on ’big’ images (512× 512 and bigger)
faster.

• The application of hyperparameter optimisation methods to the ΨDONet archi-
tecture, in order to find the hyperparameters (including the number of layers, for
instance) that lead to the best reconstructions.

• Exploring smoother types of wavelets and different cost functions JS(θ). For
instance, one could consider to add a regularisation term to JS(θ), in order to
provide the network with some additional prior knowledge.

• The application of ΨDONet to real data, where the visible wedges are usually
smaller and sparser. In breast CT for example, the visible wedge covers only 20◦
and the number of sampled angles is equal to 11.



Appendix A: Microlocal analysis

In this appendix, we provide some background material concerning microlocal analysis,
for the reader’s convenience, with a special focus on ΨDOs and FIOs and their role
in CT. We only give a glimpse of the general theory, recalling the basic definitions.
Most of the material presented here comes from [181, 109, 127, 168] and the reader is
referred to them for a deeper discussion on these topics.

Microlocal analysis originated in the 1950s and has since become a substantial
mathematical theory whose fields of application include inter alia scattering theory,
the study of chaotic system behaviour, inverse problems and general relativity. One
might regard microlocal analysis as a kind of ’variable coefficient Fourier analysis’ for
solving variable coefficient PDEs. Another way to apprehend it is to consider microlocal
analysis as a time-frequency approach for the study of functions or operators, and
their singularities (wave front sets). In particular, it has allowed the definition and the
analysis of the so-called ΨDOs and FIOs. The former were introduced by Kohn and
Nirenberg [124] in 1965, whereas the latter were defined, together with wave front sets
in their standard form, by Hörmander [108] in 1971.

In the case of tomography problems, microlocal analysis is used to understand the
singularities that can be stably recovered, and helps to explain the presence of artefacts
in certain image reconstruction methods. It can thus provide tools particularly useful
in setups such as that of limited-angle CT.

Notation and Fourier formulas
In this appendix, we will use the following notation. Let N0 = {0, 1, 2, . . . } be the
set of natural numbers. Then Nn

0 consists of n-tuples of the form α = (α1, . . . , αn)
where the components αj are nonnegative integers. We define |α| = α1 + · · ·+αn, and
ξα = ξα1

1 · · · ξαnn , for ξ ∈ Rn. Regarding the partial derivatives, we will write:

∂j = ∂

∂xj
, Dj = 1

i
∂j, D = 1

i
∇,

and we define:
Dα = Dα1

1 · · ·Dαn
n .

If Ω ⊂ Rn is a bounded domain with C∞ boundary, we denote C∞(Ω̄) the set
of infinitely differentiable functions in Ω whose all derivatives extend continuously to
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Ω̄. The space C∞c (Ω) consists of C∞ functions having compact support in Ω. In this
appendix, all coefficients and boundaries are assumed to be C∞ for ease of presentation.

We call S(Rn) the Schwartz space of rapidly decreasing functions, that is the set of
smooth functions that decrease (along with all their derivatives) faster than any power
of 1/|x| at infinity.

We recall the following facts about the Fourier transform:

Definition A.1. Given a function u ∈ S(Rn). Its Fourier transform is the function:

û(ξ) := F{u}(ξ) :=
∫
Rn
e−ix·ξu(x)dx, ∀ξ ∈ Rn. (A.1)

Definition A.2. Given a function û integrable in Rn. Its inverse Fourier transform
is the function:

F−1{û}(x) := (2π)−n
∫
Rn
eix·ξû(ξ)dξ, ∀x ∈ Rn. (A.2)

It is possible to recover a function u ∈ S(Rn) from its Fourier transform û thanks
to the Fourier inversion formula:

u = F−1{û}. (A.3)

Finally, we recall that, if u ∈ S(Rn):

(D̂ju)(ξ) = ξjû(ξ). (A.4)

Roughly speaking, this means that the Fourier transform converts derivatives into
polynomials.

Singularities and wavefront set
We first discuss the singular support of u, which consists of the points x0 such that u
is not a smooth function in any neighbourhood of x0.

Definition A.3. A function or a distribution u is said to be C∞ near x0 if there is a
ϕ ∈ C∞c (Rn) with ϕ ≡ 1 near x0 such that ϕu is in C∞(Rn). We define the singular
support as:

sing supp(u) = Rn \ {x0 ∈ Rn; u is C∞ near x0}. (A.5)

Example A.1. Consider the square S = [0, 1]2 in R2. Let u be the characteristic
function:

u(x, y) =
{

1 if (x, y) ∈ S;
0 otherwise.

Then sing supp(u) is the boundary of the square because that is where u is not smooth.
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In some applications, knowing the singularities of u can already provide a useful
information. In general, if u represents an image, then its singularities determine the
’sharp features’ of the image. In the case of medical imaging, u may represent some
internal properties of the body to image: its singularities can then help to locate the
interfaces between different tissues.

A more refined notion of singularity is given by the wavefront set, which tells not
only where the function u is singular (information already described by its singular
support), but also how it is singular, by being more exact about the direction in which
the singularity occurs.

Definition A.4. A distribution u of Rn is said to be microlocally C∞ near (x0, ξ0) if
there exist ϕ ∈ C∞c (Rn) with ϕ ≡ 1 near ξ0 and an open cone Γξ0, such that:

∀N,∃CN > 0 s.t. |ϕ̂u(ξ)| ≤ CN(1 + |ξ|)−N , ξ ∈ Γξ0 . (A.6)

The wavefront set WF(u) consists of the points (x0, ξ0) where u is not microlocally C∞.

The wavefront set describes singularities more precisely than the singular support
since it is always true that

π(WF (u)) = sing supp(u), (A.7)

where π : (x, ξ) 7→ x is the projection to x-space.

Pseudodifferential operators
Wavefront sets and singularities have been particularly investigated for operators falling
into the category of ΨDOs. To motivate the definition of ΨDOs, let us first consider a
differential operator

P =
∑
|α|≤m

pα(x)Dα.

Then, the result Pu of P applied to a function u ∈ S(Rn) can be expressed as:

Pu(x) = P
[
F−1{û(ξ)}

]
=

∑
|α|≤m

pα(x)Dα
[
(2π)−n

∫
Rn
eix·ξû(ξ)dξ

]

= (2π)−n
∫
Rn
eix·ξ

 ∑
|α|≤m

pα(x)ξα
 û(ξ)dξ

= (2π)−n
∫
Rn
eix·ξp(x, ξ)û(ξ)dξ

where p(x, ξ) = ∑
|α|≤m pα(x)ξα is the symbol of P . In this case, p(x, ξ) is polyno-

mial in ξ.

Studying the operator P proves helpful in imaging problems for the following rea-
sons:



134 Chapter A Appendix A: Microlocal analysis

1. Assuming that the symbol of P satisfies some estimates, one can describe pre-
cisely the action of P on the singularities of u.

2. If one has a procedure to invert or approximately invert the operator P by another
operator Q that exhibits a similar integral representation as that of P , then the
singularities of QPu are identical to those of u. In other words, this approximate
inversion process offers a way to recover the singularities of u.

Under some assumptions, the theory of differential operators (such as P ) can be
generalised to a larger class of operators that are not necessarily defined by symbols
polynomial in ξ: this broader category is that of ΨDOs.

Definition A.5. A pseudodifferential operator (ΨDO) is an operator A of the form:

Au(x) = (2π)−n
∫
Rn
eix·ξa(x, ξ)û(ξ)dξ (A.8)

where a(x, ξ) is a symbol with certain properties. The most standard symbol class
Sm = Sm1,0(Rn) is defined as follows:

Definition A.6. The symbol class Sm consists of a functions a ∈ C∞(Rn × Rn) such
that:

∀α, β ∈ Nn
0 ,∃Cα,β > 0, s.t. |∂αx∂

β
ξ a(x, ξ)| ≤ Cα,β(1 + |ξ|)m−|β|, ξ ∈ Rn. (A.9)

If a ∈ Sm, the corresponding ΨDO A = Op(a) is defined by eq. (A.8). We denote the
set of ΨDOs corresponding to Sm by Ψm.

We also define the concept of principal symbol, which represents the part of the
symbol containing the highest order derivatives:

Definition A.7. The principal symbol of the operator A = Op(a) is:

σpr(A) :=
∑
|α|=m

aα(x)ξα. (A.10)

We say that A is elliptic if its principal symbol is nonvanishing for ξ 6= 0.

The class of ΨDOs includes inter alia differential operators as well as approxi-
mate inverses of elliptic operators. It also encompasses normal operators of common
transforms, such as the X-ray or the Radon transforms (see below).

Amongst the important properties of a ΨDO, it is to be noted that, when applied
to a function or a distribution, it never creates new singularities:

Theorem A.1. Any A ∈ Ψm has the pseudolocal property:

sing supp(Au) ⊂ sing supp(u), (A.11)

and the microlocal property:
WF (Au) ⊂ WF (u). (A.12)
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In particular, elliptic operators are those that completely preserve singularities:

Theorem A.2. Let A ∈ Ψm be elliptic. Then, for any u:

sing supp(Au) = sing supp(u), (A.13)

WF (Au) = WF (u). (A.14)
Thus, any solution u of Au = f is singular precisely at those points where f is singular.

Fourier integral operators
As previously mentioned, the class of ΨDOs includes approximate inverses of elliptic
operators. In order to handle approximate inverses of hyperbolic and transports equa-
tions, it is required to consider a larger class of operators: the class of Fourier Integral
Operators (FIOs).

An example of FIO is given by operators A of the form:

Au(x) = (2π)−n
∫
Rn
eiϕ(x,ξ)a(x, ξ)û(ξ)dξ (A.15)

where a(x, ξ) is a symbol (for instance in Sm), and ϕ(x, ξ) is a real value function
meeting some conditions. The class of FIOs includes inter alia ΨDOs (for which
ϕ(x, ξ) = x · ξ) as well as approximate inverses of hyperbolic and transport operators.

An important property of FIOs is that, unlike ΨDOs, they can move singularities.
In general, any FIO has an associated canonical relation that describes how the FIO
affects the singularities. The canonical relation of the FIO A in eq. (A.15) is:

C = {(x, ξ,∇xϕ(x, ξ),∇ξϕ(x, ξ)) | (x, ξ) ∈ T ∗Rn \ 0}, (A.16)

where T ∗Rn\0 := {(x, ξ) | x, ξ ∈ Rn, ξ 6= 0}. Then, A moves the singularities according
to the rule:

WF (Au) ⊂ C(WF (u)), (A.17)
where

C(WF (u)) := {(x, ξ) | (x, ξ, y, η) ∈ C for some (y, η) ∈ WF (u)}. (A.18)

The case of the Radon transform
In this section, we provide some useful microlocal analysis results about the Radon
transform in the plane, whose definition is:

Definition A.8. If u ∈ C∞c (Rn), then the Radon transform of u is the function:

Ru(s, ω) :=
∫ +∞

−∞
u(sω⊥ + tω)dt, s ∈ R, ω, ω⊥ ∈ S1, (A.19)

where ω⊥ denotes the vector in the unit sphere S1 obtained by rotating ω counterclock-
wise by 90◦.
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If we call (R̃u)(·, ω) the Fourier transform of Ru w.r.t. s, then the Fourier slice
theorem establishes a relationship between the Radon transform Ru and the Fourier
transform û, namely:

(R̃u)(σ, ω) = û(σω⊥). (A.20)

This result gives the proof of injectivity of the Radon transform: if u ∈ C∞c (R2) is
such that Rf ≡ 0, then û ≡ 0 and consequently f ≡ 0.

We now define the adjoint of the Radon transform:

Definition A.9. The adjoint R∗ : C∞(R × S1) → C∞(R) of the Radon transform is
such that:

R∗h(y) :=
∫
S1
h(y · ω⊥, ω)dω. (A.21)

The following result shows that the normal operator R∗R is a classical ΨDO of
order −1 in R2, and gives an inversion formula.

Theorem A.3. (Normal operator) One has that:

R∗R = F−1
{

4π
|ξ|
F(·)

}
, (A.22)

and u can be recovered from Ru by the formula:

u = 1
4π |D|R

∗Ru, (A.23)

where |D|u := F−1 {|ξ|û(ξ)}.

The proof of this theorem is based on computing 〈Ru,Rg〉L2(R×S) using the Parseval
identity, Fourier slice theorem, symmetry and polar coordinates. The symbol of R∗R
is equal to 2

|ξ| and is homogeneous and nonwhere zero. Thus, R∗R is a classical elliptic
ΨDO. Furthermore, since the symbol is homogeneous of degree −1, R∗R is a ΨDO of
degree −1.

The Filtered Backprojection (FBP), based on a similar inversion formula, provides
an efficient way to recover u where the measurements have been acquired on a full-
range angle and with relatively small noise. However, if one is mainly interested in
the singularities (sharp features) of the image, it is possible to use an even simpler
method that only consists i applying the operator R∗ to the data Ru. This method is
called backprojection. Since R∗R is an elliptic ΨDO, Theorem A.2 guarantees that the
singularities are recovered:

sing supp(R∗Ru) = sing supp(u) (A.24)

Moreover, as R∗R is a ΨDO of order −1, hence smoothing operator of order 1, R∗Ru
provides a slightly blurred version of u where the main singularities are still visible.

In the case where the measurements are acquired over a limited angular range
[−Γ,Γ], the Radon transform R∗ΓRΓ is not a ΨDO anymore, but still belongs to the
class of FIOs. Thus, there exists a precise relationship between the singularities of u
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and that of R∗ΓRΓu. We do not spell out this relationship in this appendix, but mention
some of its consequences.

Although u ∈ C∞c (R2) is uniquely determined by limited angle data (Fourier slice
and Paley-Wiener theorems), the inverse problem is very unstable. The concept of
visibility enables to distinguish the singularities that can be stably recovered:

Definition A.10. Let A represent the integral lines to which the Radon transform RΓ
is limited (that is A is such that RΓu = Ru|A). Then, a singularity at (x0, ξ0) is called
visible from A if the line through x0 in direction ξ⊥0 is in A.

One has the following dichotomy:

• If (x0, ξ0) is visible fromA, then from the singularities of Ru|A, one can determine
whether or not (x0, ξ0) ∈ WF (u). If Ru|A uniquely determines u, one expects
the reconstruction of visible singularities to be stable.

• If (x0, ξ0) is not visible from A, then this singularity is smoothed out in the
measurement Ru|A. Even if Ru|A uniquely determines u, the inversion is not
Lipschitz stable in any Sobolev norms.





Appendix B: Wavelet theory

In this appendix, we recall the general concepts underlying the wavelet theory, both in
the continuous and discrete setups.For the sake of simplicity, we limit this presentation
to the 1-D case. The material presented here mainly comes from [143, 56]. The reader
is invited to consult them, as well as the references therein, for a fuller presentation of
this topics.

Wavelets are defined as a family of functions constructed by using translation and
dilation of a single function. Since the 1980s, they have been more and more studied
and their range of application has not stopped to extend: signal and image processing,
sampling theory, differential equations, turbulence, statistics, computer graphics, qual-
ity control, finance and economics, neural networks, astrophysics, geophysics, quantum
mechanics, medicine, neuroscience, and chemistry.

The Continuous Wavelet Transform

We first give the formal definition of a wavelet.

Definition B.1. A wavelet is a function ψ ∈ L2(R) which satisfies the condition:

Cψ ≡
∫ ∞
−∞

|ψ̂(ξ)|2
|ξ|

dξ <∞, (B.25)

where ψ̂(ξ) is the Fourier transform of ψ(ξ) (see definition of Fourier transform in
eq. (A.1)).

Example B.1. (The Haar wavelet). The Haar wavelet, introduced in 1910 by A. Haar
[85], is the first known wavelet. It is defined as an odd rectangular pulse pair, an as
such is the simplest orthonormal wavelet with compact support:

ψ(t) =


1 if 0 ≤ t < 1

2 ,

−1 if 1
2 ≤ t < 1,

0 otherwise.
(B.26)

It can be shown that the Haar wavelet does meet condition (B.25).
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Condition (B.25), called admissibility condition, guarantees the existence of the
inversion formula for the continuous wavelet transform. Further properties may also
prove useful in certain applications. For example, ψ may be required to have a certain
number of vanishing moments, which represent the regularity of the wavelet functions
and ability of a wavelet transform to capture localised information. A wavelet ψ(t) has
n-vanishing moments if it satisfies:∫ ∞

−∞
tkψ(t)dt = 0, k = 0, 1, . . . , n. (B.27)

Or equivalently: dkψ̂(ξ)
dξk


ξ=0

= 0, k = 0, 1, . . . , n. (B.28)

Wavelets can be seen as a family of functions built from translation and dilation of
a single function ψ, the mother function. Formally, they are defined by:

ψa,b(t) = 1√
|a|
ψ
(
t− a
b

)
, a, b ∈ R, a 6= 0, (B.29)

where a is the scaling parameter measuring the degree of compression, or scale, and
b is the translation parameter, determining the time location of the wavelet. In other
words, as scale parameter a varies, wavelet ψa,b(t) covers different frequency ranges.
As for the the translation parameter b, it defines the point around which the wavelet
is centred.

Definition B.2. If ψ ∈ L2(R) and ψa,b(t) is given by eq. (B.29), then the integral
transformation Wψ defined on L2(R) by:

(Wψf)(a, b) = 〈f, ψa,b〉 =
∫ ∞
−∞

f(t)ψa,b(t)dt (B.30)

is called a continuous wavelet transform of f(t).

Continuous wavelet transforms benefit from the following properties:

Theorem B.1. If ψ and φ are wavelets, and f and g are functions of L2(R), then:

1. Linearity: Wψ(αf + βg)(a, b) = α(Wψf)(a, b) + β(Wψg)(a, b), α, β ∈ R,

2. Translation: (Wψ(Tcf))(a, b) = (Wψf)(a, b− c),

3. Dilation: (Wψ(Dcf)) (a, b) = 1√
c
(Wψf)

(
a
c
, b
c

)
, c > 0,

4. Symmetry: (Wψf)(a, b) = (Wfψ)
(

1
a
,− b

a

)
, a 6= 0 ,

5. Antilinearity: (Wαψ+βφf)(a, b) = ᾱ(Wψf)(a, b) + β̄(Wφf)(a, b),

6. (WTcψf)(a, b) = (Wψf)(a, b+ ca),
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7. (WDcψ)(a, b) = 1√
c
(Wψf)(ac, b), c > 0.

where Tc is the translation operator: Tcf(t) = f(ta−c), and Dc is the dilation operator:
Dc(t) = 1√

|c|
f( t

c
).

Theorem B.2. If f ∈ L2(R), then f can be reconstructed by the inversion formula:

f(t) = 1
Cψ

∫ ∞
−∞

∫ ∞
−∞

(Wψf) (a, b)ψa,b(t)
dbda
a2 , (B.31)

where the inequality holds almost everywhere.

The Discrete Wavelet Transform
In many applications, and in particular in signal processing, data are represented by
a finite number of values. It is necessary, therefore, to consider discrete versions of
the continuous wavelet transform (B.30). For convenience in the discretisation, and
without loss of generality, we restrict a to positive values, and we choose it such that
a = am0 , where m ∈ Z and the dilation step a0 6= 1 is fixed. Furthermore, we discretise
b such that b = nb0a

m
0 , where n ∈ Z and the positive constant b0 is fixed. With such

choices of a and b, the continuous family of wavelets ψa,b as defined in (B.29) becomes:

ψm,n(t) = a
−m/2
0 ψ

(
a−m0 t− nb0

)
, (B.32)

Then, the Discrete Wavelet Transform (DWT) of a function f is defined by:

(Wψf) = 〈f, ψm,n〉 = a
−m/2
0

∫ ∞
−∞

f(t)ψ(a−m0 t− nb0)dt, (B.33)

where both f and ψ are continuous and ψ0,0(t) = ψ(t). Thus, the DWT represents a
function by a countable set of wavelet coefficients. If the set {ψm,n | m,n ∈ Z} defined
by (B.32) is complete in L2(R) for some choice of ψ, a0 and b0, then the set is an affine
wavelet and any function f ∈ L2(R) can be expressed as the superposition:

f(t) =
∑
m∈Z

∑
n∈Z
〈f, ψm,n〉ψm,n(t). (B.34)

For computational efficiency, a0 = 1
2 and b0 = 1 are typically employed so that the

results lead to a binary dilation of 2m and a dyadic translation of n2−m. Therefore, a
common sampling method is:

ψm,n(t) = 2m/2ψ (2mt− n) , (B.35)

Often, it may be useful to build an orthogonal family {ψm,n | m,n ∈ Z}, that is:

〈ψm,n, ψk,l〉 =
∫ ∞
−∞

ψm,n(t)ψk,l(t)dt = δm,kδn,l, m, n, k, l ∈ Z. (B.36)

Definition B.3. A wavelet ψ ∈ L2(R) is called orthonormal if the family of functions
ψm,n generated from ψ given by (B.35) is orthonormal.
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Proof of Proposition 3.2
Proof. According to [66, Section 3], the following variational source condition is satis-
fied by every w ∈ `1(N):

β‖w − w†‖`1 ≤ ‖w‖`1 − ‖w†‖`1 + C‖AW ∗w − AW ∗w†‖Y . (C.37)

We aim at applying it to w = wδ,p,q ∈ Wp ⊂ `1(N). First consider the term ‖w‖`1 −
‖w†‖`1 in the right-hand side. Since wδ,p,q is a solution of (3.6),

λ‖wδ,p,q‖`1 =
(
‖Ap,qW ∗wδ,p,q − Pqm‖2

Y + λ‖wδ,p,q‖`1
)
− ‖Ap,qW ∗wδ,p,q − Pqm‖2

Y

≤ ‖Ap,qW ∗Ppw† − Pqm‖2
Y + λ‖Ppw†‖`1 − ‖Ap,qW ∗wδ,p,q − Pqm‖2

Y ,

whence

‖wδ,p,q‖`1 − ‖w†‖`1 ≤
1
λ
‖Ap,qW ∗Ppw† − Pqm‖2

Y −
1
λ
‖Ap,qW ∗wδ,p,q − Pqm‖2

Y .

We can easily check that Ap,qW ∗Pp = PqAW ∗Pp; then, since ‖Pq‖Y→Y ≤ 1, denoting
by Q = ‖Ap,qW ∗wδ,p,q − Pqm‖Y , we have

‖wδ,p,q‖`1 − ‖w†‖`1 ≤
1
λ
‖AW ∗Ppw† −m‖2

Y −
1
λ
Q2

≤ 1
λ
‖AW ∗(Ppw† − w†)‖2

Y + 1
λ
‖AW ∗w† −m‖2

Y −
1
λ
Q2.

In conclusion,

‖wδ,p,q‖`1 − ‖w†‖`1 ≤
1
λ
‖A‖2‖w† − Ppw†‖2

`2 + 1
λ
δ2 − 1

λ
Q2. (C.38)

The second term in the right-hand side of (C.37), instead, can be bounded as follows:

‖AW ∗(wδ,p,q−w†)‖Y = ‖PqAW ∗(wδ,p,q−w†)‖Y +‖(I−Pq)AW ∗(wδ,p,q−w†)‖Y
≤ ‖Ap,qW ∗wδ,p,q − Pqm‖Y + δ + ‖(I − Pq)A‖X→Y ‖wδ,p,q − w†‖`1 + δ

≤ Q+M‖(I − Pq)A‖X→Y + δ,

(C.39)

where the positive constant M depends on ‖w†‖`2 . In order to get an estimate for
Q = ‖Ap,qW ∗wδ,p,q − Pqm‖Y , we use (C.37): since 0 ≤ β‖wδ,p,q − w†‖`1 , using (C.38)
and (C.39) we have

0 ≤ 1
λ
‖A‖‖w† − Ppw†‖2

`2 + 1
λ
δ2 − 1

λ
Q2 +Q+M‖(I − Pq)A‖X→Y + δ.
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By solving this second-order inequality we get

Q ≤ λ

2 + λ

2

(
1 + 4

λ2‖A‖
2‖w† − Ppw†‖2

`2
4
λ
δ2 + 4M

λ
‖(I − Pq)A‖X→Y

4
λ
δ
) 1

2

≤ λ+ δ + ‖A‖‖w† − Ppw†‖`2 +M‖(I − Pq)A‖X→Y
(C.40)

Combining (C.37), (C.38), (C.39), and (C.40) we easily conclude the proof.

Proof of Proposition 3.4

Proof. Consider the sequence en = ‖w(n+1)
ρ −w(n+1)‖`2 . Thanks to the nonexpansivity

of the operator Sλ/L, it holds that

e0 = ‖TZ(w(0))− T (w(0))‖`2 ≤
1
L
‖WA∗p,qAp,qW

∗ − Z‖‖w(0)‖`2 ≤
1
L
ρ‖w(0)‖`2 .

(C.41)
Analogously, for n ≥ 1,

en ≤ ‖I −
1
L
Z‖‖w(n) − w(n)

ρ ‖`2 + 1
L
‖WA∗p,qAp,qW

∗ − Z‖‖w(n)‖`2

≤ ‖I − 1
L
Z‖en−1 + 1

L
ρ‖w(n)‖`2 .

(C.42)

Since L ≥ ‖WA∗p,qAp,qW
∗‖, then

‖I − 1
L
Z‖ ≤ ‖I − 1

L
WA∗p,qAp,qW

∗‖+ 1
L
‖WA∗p,qAp,qW

∗ − Z‖ ≤ 1 + 1
L
ρ.

Moreover, since the sequence {w(n)} is convergent, then it is also bounded: let, e.g.,
‖w(n)‖`2 ≤M . As a consequence of (C.41) and (C.42),

eN ≤
N∑
n=0

(
1 + 1

L
ρ
)N−n 1

L
ρ‖w(n)‖`2 ≤M

((
1 + 1

L
ρ
)N+1

− 1
)

Let now N ≥ N0 and ρN ≤ η0: then, with a constant c = c(N0, η0), it holds:

‖w(N)
ρ − w(N)‖`2 = eN ≤M(e 1

L
ρN − 1) ≤ c

M

L
ρN.

Combining this result with (3.9), we can guarantee that

‖w(N)
ρ − wδ,p,q‖`2 ≤ ‖w(N)

ρ − w(N)‖`2 + ‖w(N) − wδ,p,q‖`2 ≤ c3a
N + c̃4ρN,

which proves (3.12). To obtain (3.13), simply substitute N = loga δ and ρ = δ
N

and
consider c4 = c3 + c̃4.
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2017.

[57] H. B. Demuth, M. H. Beale, O. De Jess, and M. T. Hagan. Neural Network
Design, 2nd edition. Martin Hagan, 2014.

[58] B. G. Z. des Plantes. Eine neue methode zur differenzierung in der
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[156] K. Niinimäki, S. Siltanen, and V. Kolehmainen. Bayesian multiresolution method
for local tomography in dental X-ray imaging. Physics in Medicine and Biology,
52(22):6663–6678, oct 2007.

[157] S. Niu, Y. Gao, Z. Bian, J. Huang, W. Chen, G. Yu, Z. Liang, and J. Ma.
Sparse-view X-ray CT reconstruction via total generalized variation regulariza-
tion. Physics in medicine and biology, 59(12):2997—3017, 2014.

[158] P. Ochs, R. Ranftl, T. Brox, and T. Pock. Techniques for gradient based bilevel
optimization with nonsmooth lower level problems. Journal of Mathematical
Imaging and Vision, 56(2):175–194, 2016.

[159] C. Oliver. Synthetic-aperture radar imaging. Journal of Physics D: Applied
Physics, 22(7):871–890, 1989.

[160] J. M. Park, E. A. Franken, M. Garg, L. L. Fajardo, and L. T. Niklason. Breast
tomosynthesis: present considerations and future applications. Radiographics :
a review publication of the Radiological Society of North America, Inc, 27 Suppl
1:S231—S240, 2007.



Bibliography 157

[161] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent
neural networks. In Proceedings of the 30th International Conference on Inter-
national Conference on Machine Learning, volume 28, pages 1310–1318, 2013.

[162] E. L. Piccolomini and F. Zama. Regularization algorithms for image reconstruc-
tion from projections. In Series on Advances for Applied Science, volume 45 of
World Scientific. World Scientific, 1996.

[163] E. L. Piccolomini and F. Zama. The conjugate gradient regularization method
in computed tomography problems. Applied Mathematics and Computation,
102(1):87 – 99, 1999.

[164] N. Pinto, Z. Stone, T. E. Zickler, and D. Cox. Scaling up biologically-inspired
computer vision: A case study in unconstrained face recognition on facebook.
IEEE Computer Vision and Pattern Recognition (CVPR) 2011 workshops, pages
35–42, 2011.

[165] E. Pohl. Method and apparatus for making roentgen projections. EU Patent N◦
332496, 1927.

[166] B. T. Polyak. Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.
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Sitzungsberichten der Würzburger Physikalisch-Medizinische. Gesellschaft, 1895.

[181] M. Salo. Lecture notes on applications of microlocal analysis to inverse problems,
June 2019.

[182] K. Sauer and C. Bouman. A local update strategy for iterative reconstruction
from projections. IEEE Transactions on Signal Processing, 41:534–548, 1993.

[183] A. M. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Ng. On ran-
dom weights and unsupervised feature learning. In International Conference on
Machine Learning (ICML), 2011.

[184] O. Scherzer. Handbook of Mathematical Methods in Imaging. 2nd edition.
Springer New York, 2015.

[185] A. G. Schwing and R. Urtasun. Fully connected deep structured networks. Com-
puting Research Repository (CoRR), abs/1503.02351, 2015.

[186] E. Y. Sidky and X. Pan. Image reconstruction in circular cone-beam computed
tomography by constrained, total-variation minimization. Physics in Medicine
and Biology, 53(17):4777–4807, 2008.

[187] J. Sietsma and R. J. Dow. Creating artificial neural networks that generalize.
Neural Networks, 4(1):67 – 79, 1991.



Bibliography 159

[188] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations,
2015.

[189] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of
machine learning algorithms. In Proceedings of the 25th International Conference
on Neural Information Processing Systems, volume 2, page 2951–2959, 2012.

[190] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(1):1929–1958, 2014.

[191] I. Sutskever, J. Martens, G. Dahl, and G. E. Hinton. On the importance of
initialization and momentum in deep learning. In International Conference on
Machine Learning (ICML), volume 28, page 1139–1147, 2013.

[192] R. S. Sutton. Learning to predict by the methods of temporal differences. Ma-
chine Learning, 3(1):9–44, 1988.

[193] R. S. Sutton and A. G. Barto. Introduction to reinforcement learning, volume 2.
MIT press Cambridge, 1998.

[194] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–9,
2015.

[195] O. Taubmann, M. Unberath, G. Lauritsch, S. Achenbach, and A. Maier. Spatio-
temporally regularized 4-d cardiovascular C-arm CT reconstruction using a prox-
imal algorithm. In 2017 IEEE 14th International Symposium on Biomedical
Imaging (ISBI 2017), pages 52–55, 2017.

[196] J.-B. Thibault, K. Sauer, C. Bouman, and J. Hsieh. Three-dimensional statistical
approach to improved image quality for multislice helical ct. Medical Physics,
34:4526–4544, 2007.

[197] R. V. Tiggelen. In search for the third dimension: from radiostereoscopy to
three-dimensional imaging. Belgian Journal of Radiology, 85(5):266–270, 2002.

[198] A. N. Tikhonov. Solution of incorrectly formulated problems and the regulariza-
tion method. Soviet mathematics - Doklady, 4:1035–1038, 1963.

[199] A. M. Turing. I.— Computing machinery and intelligence. Mind, LIX(236):433–
460, 1950.

[200] G. Uhlmann and A. Vasy. The inverse problem for the local geodesic ray trans-
form. Inventiones mathematicae, 205(1):83–120, 2016.



160 Bibliography
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