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Analytical modeling of the shape
memory effect in SMA beams with
rectangular cross section under
reversed pure bending

Enrico Radi

Abstract
An analytical model is developed for a prismatic SMA beam with rectangular cross section subjected to alternating bend-
ing at temperature below the austenitic transformations. The loading path consists in a loading-unloading cycle under
bending and then under reversed bending. Two opposite martensitic variants take place, whose volume fractions evolve
linearly with the axial stress. Different Young’s moduli are taken for the austenitic and martensitic phases. As the bending
moment is increased, the martensitic transformation starts from the top and bottom and then it extends inwards. If the
maximum applied bending moment is large enough, then the complete Martensitic transformation takes place at the
upper and lower parts of the cross section. During unloading and the following reversed bending, reorientation of the
Martensite variant into the opposite one takes place starting from the boundary between the fully martensitic region
and the intermediate transforming region. Special attention is devoted to calculate analytically the axial stress and
Martensite variant distributions within the cross section at each stage of the process. A closed form moment-curvature
relation is provided for loading and elastic unloading and in integral form for the rest of the process. The approach is
then validated by comparison with analytical results available in the literature.

Keywords
Analytical modeling, pure bending, rectangular cross-section, shape-memory alloy, phase transformation, Martensite
reorientation, cyclic loading

1. Introduction

Due to their peculiar characteristics, such as the shape
memory effect and the superelastic behavior, SMA
beams, rods and wires are effectively employed in smart
sensors and actuators, as well as in energy dissipating
devices for the control of structural vibrations due to
wind or seismic excitations. Indeed, a large hysteresis
loop similar to that exhibited by ductile metals is
observed in a martensitic SMA bar cyclically loaded at
low temperatures, which is due to the reorientation pro-
cess between martensitic variants rather than to phase
transformation or dislocation glide mechanisms. As a
consequence, SMAs are able to display a much higher
fatigue resistance than plastically deformed metals and
thus they can efficiently replace elastic-plastic hysteretic
devices in passive control and seismic retrofit of build-
ing and bridges (DesRoche and Smith, 2004; Dolce and
Cardone, 2001; Dolce et al., 2000; Fang and Wang,
2020; Ozbulut et al., 2011; Song et al., 2006). A practi-
cal example of application of the SMA energy

dissipation properties is given by the innovative yield-
ing dissipater device recently proposed by Zibasokhan
et al. (2019) for seismic protection of concentrically
braced structures, which is able to transform the axial
force into pure bending in the dissipating plates. The
device is fabricated by a set of ductile steel plates under
pure bending, and it can be efficiently improved by
exploiting the shape memory effect of SMA.

Usually, dissipating SMA device are cyclically
loaded alternately under tension and compression.
However, the occurring of buckling in slender SMA
bars and wires under compression restricts their
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Reggio Emilia, Reggio Emilia, Emilia Romagna, Italy

Corresponding author:

Enrico Radi, Dipartimento di Scienze e Metodi dell’Ingegneria, Università
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applications and requires additional devices to prevent
it. Therefore, the special properties of SMA bars are
better exploited under bending rather than under ten-
sion and compression. In order to overcome the buck-
ling problem, Choi et al. (2009) proposed the use of a
superelastic SMA bars in bending as seismic dampers
and restrainers for bridges and proved their ability in
reducing the openings at the internal hinges and the
pounding force on abutments. Later, Choi et al. (2019)
investigated the self-centering and damping capacity of
SMA bars in bending. They showed that a martensitic
SMA bar exploiting the shape memory effect displays a
higher energy dissipation and thus a better seismic effi-
ciency than a superelastic SMA bar, while the latter
provides better displacement recovery and self-
centering capability. Although a residual strain usually
remains in a martensitic SMA bar after unloading, it
can be easily removed upon heating.

The dissipation capabilities of SMA seismic devices
under cyclic loading of alternating sign remarkably
increase if the shape memory effect is exploited, rather
than the superelastic behavior. Indeed, a larger amount
of energy is dissipated during each cyclic reorientation
process between positive and negative martensitic var-
iants if no intermediate austenitic transformation is
triggered (Wilson and Wesolowsky, 2005). In these
applications, a clear under-standing of the fatigue beha-
vior of SMA is necessary to improve their safety. To
this aim an accurate evaluation of the maximum stress
level under cyclic loading of alternating sign becomes
highly important.

The problem of bending of a SMA beam was investi-
gated numerically by many authors by means of finite
element simulation, for example, Auricchio and Sacco
(1997), Auricchio et al. (2011), and Poorasadion et al.
(2015) or by numerical procedures based on the parti-
tion of the beam cross-section into a number of thin
layers (De la Flor et al., 2011). Analytical approaches
have been also tempted by some authors, but they are
limited to a loading-unloading cycle and have not been
extend to reversed loading. In particular, Mirzaeifar
et al. (2013) provided explicit expressions for the stress
and martensitic volume fraction distributions both in
circular and rectangular cross sections upon a supere-
lastic loading-unloading cycle and used these expres-
sions for obtaining closed-form relations between
bending moment and curvature. They also took into
account for the tension-compression asymmetry on the
bending response of SMAs and compared the theoreti-
cal predictions with the results of three-point bending
tests on an SMA beam and finite element investiga-
tions. Ostadrahimi et al. (2015) presented an analytical
solution for pure bending of SMA beams with rectan-
gular cross section as well as symmetric behavior in ten-
sion and compression at high (pseudo-elasticity) and
low (shape memory effect) temperatures. They assumed
the same Young’s modulus for both phases, thus

obtaining piecewise linear stress variation within the
cross section. Eshghinejad and Elahinia (2015) also
derived an analytical expression for the bending
moment in a superelastic SMA beam loaded at the tip
and evaluated its deflection by assuming linear stress-
strain relations in all regions and using a semi-analytical
approach. Viet et al. (2018) worked out an analytical
solution for the problem of SMA cantilever beams sub-
jected to tip load throughout a full loading–unloading
cycle. The analysis was based on Timoshenko beam
theory and was later extended to account for tensile–
compressive asymmetry in SMA response (Viet et al.,
2019). The asymmetric tension-compression behavior
of the SMA has been observed and modeled under
direct bending by Rejzner et al. (2002), Fahimi et al.
(2019), and Viet et al. (2019).

Most of these analyses investigate the superelastic
behavior of SMA beams in order to exploit the self-

centering mechanism, and thus they are restricted to

temperatures higher than the start temperature of the

austenitic transformation As. In this case, the reverse

austenitic transformation is completed before the com-

plete unloading. Therefore, these works do not take

into consideration the transformation between the two

Martensite variants, which may occur during unloading

and reversed loading at temperature lower than As. The

shape memory effect of SMA beams, which is essential

for application to dampers and dissipating devices, is

indeed observed under cyclic loading at temperature

lower than the start temperature of the austenitic trans-

formation As, for example, for the NiTinol alloy

(Ni55Ti) considered by Brinson (1993) this effect occurs

at room temperature. In this case, during unloading the

axial stress changes its sign in some parts of the beam

cross section and it may trigger the Martensite reorien-

tation process. Such transformation then continues

under reversed bending. However, no complete and

detailed analytical study of a SMA beam under

reversed bending has been performed up to now.

Recently, Radi (2020) performed an analytical investi-

gation of the shape memory effect in SMA circular rod

under cyclic torsional loading by adopting a 3D SMA

constitutive model that incorporates two opposite

Martensite variants. He also analyzed the transforma-

tion and reorientation processes into multiple martensi-

tic variants in a previous work on the response of SMA

thick-walled cylinders under internal pressure (Radi,

2018).
The present study extends the previous investiga-

tions to pure bending of SMA beams with rectangular
cross section. In particular, closed-form solutions
are obtained here for the axial stress and distribution
of Martensite volume fractions at each step of a
cyclic bending process of alternating sign, performed
at constant temperature T lower than As. These
analytical results are then used for calculating the
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moment-curvature relation for a SMA beam cross sec-
tion subjected to direct and reversed bending.

This achievement is possible because a simple 1D
phenomenological SMA constitutive model is adopted
here, which assumes a linear evolution law with the
axial stress for both Martensite variants.

The simplifications adopted here preserve the basic
features of SMA materials and they are required for
achieving a closed form solution to the problem of
reversed pure bending of SMA beams. Obviously, more
refined constitutive models have been proposed in the
last years. However, they necessarily require the adop-
tion of numerical procedures, also for simulating sim-
ple mechanical problems. The constitutive model
developed here originates from those proposed for
multi-variants Martensite (Brinson, 1993; Brinson and
Huang, 1996; De la Flor et al., 2011; Fahimi et al.,
2019; Govindjee and Kasper, 1997, 1999; Marfia and
Rizzoni, 2013; Rizzoni and Marfia, 2015; Rizzoni
et al., 2013) and recently adopted by Radi (2020) for
modeling cyclic torsional loading. It is able to simulate
the Martensite reorientation process occurring when a
transition from tensile to compressive stress, or vice
versa, takes place. Here, the Martensite reorientation
process under reverse bending is taken into consider-
ation analytically for the first time.

The constitutive model is the 1D reduction of a 3D
model already used in Radi (2018). It is sufficiently
accurate for the present analysis because the stress field
under pure bending is 1D. An equivalent reduction is
performed also in other investigations of the pseudoe-
lastic effect in SMA beam under bending, for example,
in Mirzaeifar et al. (2013)[AQ: 1], Ostadrahimi et al.
(2015), Viet et al. (2018, 2019). Obviously, a 3D strain
field arises in the beam so that the beam cross section
can change his shape by expanding in the compressed
zone and contracting in the tensile one, due also to the
martensitic transformation and reorientation. This
effect can be explicitly considered in the present analy-
sis by specifying the strain components in the plane of
the cross section under 1D stress field. However, the
analysis has been focused here on the derivation of the
analytical relation between bending moment and curva-
ture during the full cyclic process taking into account
for martensitic reorientation, rather than focusing on
the cross section deformation.

Since no variation of temperature due to the
thermal-mechanical coupling of SMA has been consid-
ered, then the isothermal solutions found here holds
for very slow loading-unloading rates only.

The fully coupled thermal-mechanical behaviors of
SMA beams subjected to cyclic loading conditions is
generally very complicated to be investigated analyti-
cally. Due to the complex heat diffusion process it
would necessary require the adoption of a purely
numerical procedure.

This paper is organized as follows. The 1D constitu-
tive model for SMA beams under pure bending is pre-
sented in Section 2. Different elastic Young’s moduli
are considered for the two phases and the elastic beha-
vior of the SMA is assumed to depend on the volume
fraction of Austenite and Martensite according to the
Reuss scheme for the elastic response of a composite.
Moreover, the model can simulate the martensitic reor-
ientation process during unloading and reversed bend-
ing. Closed form solutions for the axial stresses and
Martensite fractions within the cross section at each
step of the first loading-unloading process are presented
in Section 3, together with the corresponding relation
between the applied bending moment and the beam
curvature obtained by integrating the contribution of
the axial stress within the cross-section. Similar closed
form solutions are obtained in Section 4 for the
reversed bending and subsequent elastic unloading. The
results are then plotted in Section 5 and the effects of
the constitutive parameters on the distribution of axial
stresses and Martensite volume fractions within the
cross-section are discussed therein. The analytical results
are then validated against some analytical results for a
loading-unloading cycle provided in the technical litera-
ture. Unfortunately, neither analytical nor experimental
results can be found for the Martensite reorientation
process under reversed bending loading. Conclusions
are then drawn in Section 6. With respect to previous
similar works, the fully analytical solution presented
here significantly extends the range of validity to a full
cycle of alternating sign of the applied bending moment.
The accurate knowledge of the full stress field during
the complete process is indeed the only way to ensure
good limitation of the stress level for the safe and accu-
rate design of SMA devices under bending.

2. 1D constitutive model for a SMA beam
under pure bending

Let x and y denote the principal centroidal axes of the
rectangular cross section of a prismatic beam having
width b and height 2a. According to the classical Euler-
Bernoulli theory, the axial strain e under pure bending
is proportional to the beam curvature x and is a linear
function of the distance y from the neutral axis of the
cross section, which coincides with the x-axis, namely

e= xy, for� a ł y ł a: ð2:1Þ

By assuming tension-compression symmetry for simpli-
city, a symmetric distribution of the axial stress s along
the height is expected, so that the neutral fiber always
coincides with the centroidal x-axis. Therefore, refer-
ence is made only to the upper half of the cross section
(yø 0) in the following. The bending moment Mx

applied to the beam cross section can be calculated by

Radi 3



taking the moment about the neutral axis of the stress
distribution along the height, namely

Mx = 2b

ða
0

s y dy: ð2:2Þ

According to Govindjee and Kasper (1997, 1999)
and Rizzoni and Marfia (2015), let j+ and j– denote
the volume fractions of Martensite stretched in the pos-
itive (tensile) and negative (compressive) directions,
respectively. Then, the effective volume fraction of
Martensite j is defined by the difference j = j+ 2 j–

and the total volume fraction of Martensite is given by
the sum jtot= j++ j–, where 21 ł j ł 1 and 0
ł jtot ł 1. Moreover, the 1D rate constitutive relation-
ships between the axial stress s&0x44; the axial strain e
in (2.1) and the effective volume fraction of Martensite
j are assumed in the following linear form

_xy=
_s

E(jtot)
+ eL

_j,

_j=
1+ j0

sf�ss
_s for jssj ł jsj ł jsf j,

0 otherwise,

(
ð2:3Þ

where eL is the maximum transformation strain
attained under uniaxial loading when the solid is com-
posed of fully oriented Martensite, j0 is the effective
volume fraction Martensite at the beginning of each
transformation, E(jtot) is the Young’s modulus of the
SMA material, which is assumed to depend on the total
Martensite volume fraction according to the Reuss
scheme for the elastic response of a composite, namely

1

E(jtot)
=

1� jtot

EA
+

jtot

EM
, ð2:4Þ

being EA and EM the Young’s moduli of the two
phases. In equation (2.3)2, ss and sf denote the criti-
cal axial stresses for the start and finish martensitic
transformations at temperature T, respectively, and
they are defined by

ss =scr
s +CM(T �Ms), sf =scr

f +CM(T �Ms),

ð2:5Þ

where CM is the slope of the martensitic transformation
lines in the uniaxial stress-temperature phase diagram
sketched in Figure 1, and scr

s and scr
f are the uniaxial

critical stresses for the start and finish of the martensi-
tic transformation at temperature Ms (Brinson and
Huang, 1996).

Before loading, the SMA beam is assumed in the
austenitic phase, so that j = jtot = j0 = 0. As the
beam is loaded in bending, a single Martensite variant
is produced in the upper half of the cross section,

according to the integrated form of the evolution law
(2.3)2

j= j+ =

0, for s ł ss,
s�ss

sf�ss
, for ss ł s ł sf ,

1, for s ø sf :

8><
>: ð2:6Þ

During unloading and reversed bending, the effective
and total Martensite volume fractions follows from the
integration of the linear evolution law (2.3)2 as

j= j+ � j�=

j0, for s ø � ss,

j0 +(1+ j0)
s+ss

sf�ss
, for � sf ł s ł � ss,

�1, for s ł � sf ,

8><
>:

ð2:7Þ

and

jtot = j+ + j�=

j0, for s ø � ss

1� (1� j0)
s +sf

sf�ss
, for � sf ł s ł � ss

1, for s ł � sf

8<
:

ð2:8Þ

respectively, where j0 is the effective volume fraction
Martensite at the beginning of each stage. equations
(2.7) and (2.8) agree with the 1D constitutive relations
for the multivariant Martensite volume fractions con-
sidered by Govindjee and Kasper (1997, 1999), De la
Flor et al. (2011)[AQ: 2], Rizzoni et al. (2013)[AQ: 3]
and Radi (2020).

3. Loading-unloading cycle under pure
bending

In the initial state of Austenite, the beam displays linear
elastic behavior and thus the axial stress within the
cross section is given by the following linear function of
the beam curvature

s

ss

= k
y

a
, for 0 ł k ł 1, ð3:1Þ

where

k=
EA

ss

xa, ð3:2Þ

is the normalized beam curvature. Consequently, the
martensitic transformation starts at the top of the cross
section, namely at y = a, when the axial stress attains
the critical stress ss therein, namely for Mx = Ms,
where

Ms =
2

3
b a2ss: ð3:3Þ
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Let

m=
Mx

Ms

=
3

a2

ða
0

s

ss

y dy, ð3:4Þ

denotes the normalized bending moment applied to the
cross section, then the following normalized linear rela-
tion holds between bending moment and beam curva-
ture under pure elastic loading

m= k, for 0 ł k ł 1: ð3:5Þ

If the bending moment is increased, then the martensi-
tic transformation takes place at the upper part of the
cross section, namely at ys ł ył a, where

ys =
a

k
, ð3:6Þ

and it propagates inward. According to equations (2.3)
and (2.4), the stress and beam curvature in the trans-
forming region are related by the linear rate relation

ss

EA

y

a
_k=

1� j

EA
+

j

EM
+

eL

sf � ss

� �
_s,

for� ys ł y ł ys, ð3:7Þ

which can be integrated starting from the occurring of
the martensitic transformation at height y, by using
equation (2.6), namely

k
y

a
� 1=

1

ss

ðs
ss

1+ d� G

b
+

G

b

s

ss

� �
ds, for ys ł y ł a,

ð3:8Þ

where the following non-dimensional parameters have
been introduced

b=
sf � ss

ss

, d=
eL EA

sf � ss

,G=
EA � EM

EM
: ð3:9Þ

The integration of equation (3.8) then provides a quad-
ratic equation for the axial stress s

1+ d� G

b

� �
s

ss

� 1

� �
+

G

2b

s2

s2
s

� 1

� �
= k

y

a
� 1,

for ys ł y ł a, ð3:10Þ

which admits the following solution for the axial stress
within the cross section[AQ: 4]

s

ss

=

k
y

a
, for 0 ł y ł ys,

1+B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 2

B1
k

y

a
� 1

� �q
� 1

h i
, for ys ł y ł a,

(

ð4:10Þ

where

B=
b

G
(1+ d), B1 =

b

G
(1+ d)2: ð3:11Þ

According to equations (2.6) and (4.10), the distribution
of the Martensite volume fraction within the cross sec-
tion is given by

j=
0, for 0 ł y ł ys,
B
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 2

B1
k

y

a
� 1

� �q
� 1

h i
, for ys ł y ł a:

(

ð3:12Þ

Both the axial stress and the volume fraction of
Martensite display a nonlinear variation with the y
coordinate in the transforming region for ys ł ył a,
which becomes linear for G = 0, namely for equal
Young’s moduli of the two phases.

A further increment of the bending moment applied
to the cross section then causes the occurring of the
complete martensitic transformation at y = a, where j

= 1. Correspondingly, the normalized beam curvature
and the height of start martensitic transformation are
given by

k1 = 1+
G

2
+ 1+ d

� �
b, y1 =

a

k1

, ð3:13Þ

as they follow from equations (3.12) and (3.6), respec-
tively. The introduction of the axial stress (4.10) in the
balance condition (3.4)1 then yields the normalized
moment-curvature relation, which holds during this
stage of loading

m(k)=
1

5 k2
½5+BB1(B1 � 5)� 15

2
(B� 1)(k2 � 1)

� Bffiffiffiffiffi
B1

p (B1 � 2� 3k)(B1 � 2+ 2k)3=2�, : ð3:14Þ

Figure 1. Threshold stresses for martensitic and austenitic
transformations (blue lines) and isothermal loading-unloading
process (red lines) at temperature T between Ms and As.
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namely for 1 ł k ł k1.
The axial stress at y = a attains the critical value sf

under the normalized bending moment m = m(k1). If
the bending moment is increased, then the fully trans-
formed region propagates inwards. Within this region,
the rate equation (3.7) can be integrated starting from
the occurring of the complete martensitic transforma-
tion at height y, by using the conditions j = 1, thus
obtaining

s � sf

ss

=
1

1+G
k

y

a
� k1

� �
, for yf ł y ł a, ð3:15Þ

where the height

yf =
k1

k
a, ð3:16Þ

denotes the front of finish martensitic transformation,
where s = sf.

During the last stage of the loading process, the cross
section is partitioned into an inner purely austenitic
inner region for |y| ł ys, an intermediate transforming
region for ys ł |y| ł yf, and an outer purely martensitic
region for yf ł |y| ł a. From equations (4.10), (3.12),
and (3.15), the corresponding distributions of the axial
stress and Martensite volume fraction within the upper
half of the cross section are given by

s

ss

=

k
y

a
for 0 ł y ł ys,

1+B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 2

B1
k

y

a
� 1

� �q
� 1

h i
for ys ł y ł yf ,

1+b+ 1
1+G

k
y

a
� k1

� �
for yf ł y ł a,

8><
>:

ð3:17Þ

and

j=

0 for 0 ł y ł ys,

B
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 2

B1
k

y

a
� 1

� �q
� 1

h i
for ys ł y ł yf ,

1 for yf ł y ł a,

8>><
>>:

ð3:18Þ

respectively. Therefore, during the loading process both
the axial stress and the Martensite volume fraction vary
linearly with y across the inner austenitic and the outer
martensitic regions, and display a weak nonlinear varia-
tion within the intermediate transforming region.

During the last stage of the loading process, the nor-
malized bending moment m then follows from (3.4)1
and (3.17) as a nonlinear function of the normalized
beam curvature k

m(k)=
C

k2
+

k

1+G
+

3

2
1+b� k1

1+G

� �
,

for k1 ł k ł kmax, ð3:19Þ

where

C =
k3

1

2 (1+G)
� 1

2
½1� 3B+ 3(B+b)k1

2�

�B

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

2

B1

(k1 � 1)

r
(B1 � 3k1 � 2)(B1 + 2k1 � 2)

+B1

B

5
B1 � 5ð Þ, ð3:20Þ

Note that for equal Young’s moduli, namely for G =
0, the distributions of axial stress (3.17) and effective
Martensite volume fraction (3.18) within each region of
the upper half of the cross section become linear in y,
in agreement with the findings of Ostadrahimi et al.
(2015), namely

s

ss

=

y

a
k, for 0 ł y ł ys,

1+ 1
1+ d

y

a
k� 1

� �
, for ys ł y ł yf ,

1+b+ y

a
k� k1

� �
, for yf ł y ł a,

8><
>:

ð3:21Þ

and

j=

0, for 0 ł y ł ys,

1
b (1+ d)

y

a
k� 1

� �
, for ys ł y ł yf ,

1, for yf ł y ł a,

8><
>:

ð3:22Þ

where ys and yf are given by (3.6) and (3.16) calculated
for G = 0.

Let kmax = a/ys and mmax = m(kmax) denote the nor-
malized beam curvature at the end of the loading pro-
cess and the corresponding normalized bending
moment, respectively. Moreover, let smax and jmax

denote the distributions along the height of the beam
cross section of axial stress and volume fraction of
Martensite at the same stage, which follow from (3.17)
and (3.18) for k = kmax, respectively.

3.1. Unloading

The Martensite distribution does not vary during elastic
unloading as well as the heights ys and yf, which are
given by (3.6) and (3.16) for k = kmax. The integration
of the rate constitutive equation (2.3) for j = jmax(y),
and thus _j= 0, by using the Reuss scheme (2.4), then
yields the axial stress during elastic unloading as a func-
tion of the normalized curvature

s

ss

=
smax

ss

� kmax � k

1+G jmax

y

a
for 0 ł y ł a: ð3:23Þ

The corresponding moment-curvature relation follows
from the introduction of the stress field (3.23) in the
balance condition (3.4)1
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m=mmax � (kmax � k)
3

a3

ða
0

y2

1+G jmax

dy ð3:24Þ

The change of variable t = 1 +Gjmax(y) in the integral
in equation (3.24), by using (3.18) for jmax(y), then
gives

m=mmax � (kmax � k)m, ð3:25Þ

where

m=
1

k3
max

1+
k3
max � k3

1

1+G
+

3 b3

4 G3

ð1+G

1

8<
:

(t + d)2 � (1+ d)2 + 2
G

b

	 
2

1+
d

t

� �
dt

)
, ð3:26Þ

and the integral in (3.26) is calculated analytically in
Appendix A. Note that m! 1 as G! 0.

The elastic incremental behavior of the bar ends
when the axial stress (3.23) reaches the negative critical
stress –ss at y = yf, where jmax = 1 and smax = sf,
namely for k = k2 and m = m2, where

k2 = kmax � (1+G)(2+b)
kmax

k1

,m2 = mmax � (1+G)

(2+b)
kmax

k1

m: ð3:27Þ

Indeed, Martensite reorientation takes place before the
complete unloading of the cross section if m2 . 0,
namely if the maximum beam curvature kmax is larger
than a limit value klim given by the largest positive real
root of the following cubic equation obtained from the
introduction of equations (3.19) and (3.26) in (3.27)2:

1

1+G
� 2+b

k1

� �
k3
lim +

3

2
1+b� k1

1+G

� �
k2
lim =

(2+b)
1+G

k1

1+
3 b3

4 G3
I

� �
� k2

1

	 

� C, ð3:28Þ

where the constant C is defined in (3.20) and I denotes
the integral calculated in Appendix A.

If kmax \ klim then the unloading process is entirely
elastic and when the bending moment is completely
released the residual beam curvature is

kres = kmax � mmax=m: ð3:29Þ

Conversely, if kmax . klim then Martensite reorienta-
tion takes place before complete unloading according
to equation (2.7) for j0 = jmax. In this case, two new
regions where Martensite reorientation occurs spread
out from the boundary between the intermediate trans-
forming regions and the fully martensitic outer regions
at y = yf. Let us denote with y# and y$ the lower and
upper heights delimiting these new regions, with
y# ł yf ł y$, which are defined by the condition that

the axial stress at y = y# and y = y$ must coincide
with the negative critical stress 2ss. Therefore, the fol-
lowing two relations between k, y#, and y$ follow from
equation (3.23)

smax(y
0)� ss

kmax � k

1+G jmax(y
0)

y0

a
= � ss,

�smax(y
00)� ss

kmax � k

1+G

y00

a
= � ss: ð3:30Þ

The introduction of equation (3.21) for smax(y#) with
k = kmax in equation (3.30)1 then yields the normalized
beam curvature k as a function of the height y#:

k= kmax � ½2+bjmax(y
0)�½1+Gjmax(y

0)�, R

y0

for y0ł y ł yf : ð3:31Þ

By using equation (3.22) for jmax(y#) with k = kmax,
equation (3.31) can be explicitly solved for y# as a func-
tion of the normalized beam curvature k

y0

a
=

1+ 2d

G
� 2

b

� �
(d b� 2G) kmax � (1+ d) kb

(kmax+ k)2

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2bG (kmax+ k)2

½(db� 2G) kmax � (1+ d)bk�2

s( )
, ð3:32Þ

where ys ł y# ł yf. In the same way, the introduction in
equation (3.30)2 of the stress field smax(y$) obtained
from (3.17) for k = kmax then yields the height y$ as a
function of k

y00

a
=

1

k
½k1 � (1+G)(b+ 2)�, ð3:33Þ

where yf ł y$ ł a. Let us consider a material point at
height y laying between y# and yf . According to equa-
tion (3.31), the reorientation of the primary Martensite
variant into the opposite one starts there when k = ky,
where

ky = kmax � ½2+bjmax yð Þ�½1+Gjmax yð Þ� a
y

for y0ł y ł yf : ð3:34Þ

Therefore, by subtracting equation (3.34) from equa-
tion (3.31) one has

ky � k= ½2+bjmax(y
0)�½1+Gjmax(y

0)� a
y0
�

½2+bjmax yð Þ�½1+Gjmax yð Þ�, a

y
for y0ł y ł yf :

ð3:35Þ

At the same time, for k = ky, Martensite reorientation
also starts at another material point at height y ranging
between yf and y$, and thus ky must satisfy the follow-
ing condition also
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ky = ½k1 � (1+G)(b+ 2)� a
y
, for yf ł y ł y00, ð3:36Þ

according to (3.33). Then, equations (3.33) and (3.36)
yield

ky � k=

½k1 � (1+G)(b+ 2)� a

y
� a

y00

� �
, for yf ł y ł y00:

ð3:37Þ

The introduction of relations (2.4) and (3.9) in the rate
constitutive equations (2.3) then yields the following
rate equation,

EAy _k= 1+ jtot G+ d (1+ jmax)½ � _s, for y0ł y ł y00,

ð3:38Þ

which holds for a material point at coordinate y experi-
encing the reorientation of the Martensite variant.
Integration of the rate constitutive equation (3.38) from
the start of the martensitic reorientation at height y, by
using relations (2.8) for jtot with j0 = jmax, then gives

y

a
(k� ky)=

1

ss

ðt
�ts

1+G+ d (1+ jmax)� G (1� jmax)
s +sf

sf � ss

	 

ds,

for y0ł y ł y0
0
, ð3:39Þ

being 2ss, ky and jmax the axial stress, the normalized
beam curvature and the total volume fraction of
Martensite at the beginning of the reorientation pro-
cess, respectively. The calculation of the definite inte-
gral in (3.39) then yields the following quadratic
equation for the axial stress s during the Martensite
reorientation process

s2

s2
s

+ 2 1� b
1+ d+(d� G) jmax

G (1� jmax)

	 

s

ss

+ 1

� �
� 1

� 2b

G

ky � k

1� jmax

� �
y

a
= 0, for y0ł y ł yf , ð3:40Þ

Therefore, the admissible solution of equation (3.40)
for 0 \ jmax \ 1 is

s

ss

=

�1� b
1+ d+(d+G) jmax

G (1� jmax)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

2G (1� jmax)(ky � k)

b ½1+ d+(d+G) jmax�2
y

a

s
� 1

( )
,

for y0ł y ł yf : ð3:41Þ

The terms ky–k and y# follow from equations
(3.35) and (3.32), respectively, in terms of the beam cur-
vature k.

For jmax = 1, equation (3.39) provides the following
result for the axial stress

s

ss

= � 1� ky � k

1+G+ 2d

y

a
, for yf ł y ł y00, ð3:42Þ

where the quantities ky 2 k and y$ are given in
equations (3.37) and (3.33) in terms of k.

During this stage, the rest of the cross section dis-
plays only elastic behavior. Therein, the axial stress is
thus given by

s

ss

=
smax

ss

� kmax � k

1+G jmax

y

a
,

for 0 ł y ł y0 and y00ł y ł a: ð3:43Þ

The distribution of effective Martensite in the regions
where the reorientation of the Martensite variant occurs
then follows from equation (2.7) for j0 = jmax as

j= jmax+
1+ jmax

b

s

ss

+ 1

� �
, for y0ł y ł y00: ð3:44Þ

where the ratio s/ss follows from equation (3.41) for
y# ł ył yf or equation (3.42) for yf ł ył y$. In the rest
of the cross section, the volume fraction of Martensite
is still equal to jmax.

Therefore, the axial stress and Martensite volume
fraction display linear distribution along the height of
the cross section in the inner austenitic region at ył ys
only, according to equations (3.43) and (3.44) for jmax

= 0, whereas their distributions in the rest of the cross
section are clearly not linear.

As the bending moment is decreased or applied with
the opposite sign, the boundaries y# and y$ moves
inward and outward, respectively, and thus the bound-
ary y$ may reach the outer surface when y$ = a,
namely for s(a) = 2ss. According to equation (3.33),
this condition occurs for k = k3, where

k3 = k1 � (1+G)(b+ 2), for yf ł y0
0
ł a: ð3:45Þ

During this stage, the axial stress and Martensite distri-
butions are still provided by equations (3.41)–(3.44).

The introduction of the axial stress (3.41)–(3.43) in
the balance condition (3.4)1 then provides the normal-
ized moment-curvature relation within the range
k3 ł k ł k2. In this case, the residual beam curvature
when the bending moment is completely released is
given by the solution of the transcendent equation
m(kres) = 0.

In the special case of equal Young’s moduli of the
two phases, namely for G ! 0, the axial stress in (3.41)
assumes the simple expression

s

ss

= � 1� ky � k

1+ d+ d jmax

y

a
, for y0ł y ł yf , ð3:46Þ

where jmax is given by (3.22) for k = kmax.
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4. Reversed bending

If an opposite bending moment is applied to the cross
section after complete unloading and its magnitude is
gradually increased, then the axial stress and
Martensite distributions during this stage are still given
by equation (3.23) for k2 ł k ł kres and by equations
(3.41)–(3.44) for k3 ł k \ k2. Indeed, equations (3.41)–
(3.44) hold true till the outer region fully made of the
first variant Martensite disappears when y$ = a
namely for k = k3. Actually, these equations provide
the axial stress and Martensite distributions also for
k \ k3. In this case, however, equation (3.33) yields
y$ . a. The introduction of the stress fields (3.41)–
(3.43) in the balance condition (3.4)1 then provides the
moment-curvature relation for this stage of reversed
bending, which continues till one of the following two
conditions is met. Namely, either the axial stress
reaches the critical stress –ss for the start of the
Martensite reorientation at height y#, that is, for y# =
ys, or the axial stress reaches the critical stress –sf for
the finish of the Martensite reorientation at the top of
the cross section, that is, for y2f = a. According to
(3.31), the former condition occurs for k = 2kmax,
being jmax(ys) = 0 and kmax = a/ys. According to
(3.42) and using relations (3.33), (3.37), and (3.13), the
latter condition, namely s(a) = –sf, occurs for k = k4,
where

k4 = � k1 � G(b+ 2): ð4:1Þ

If the magnitude of the negative bending moment is fur-
ther increased, then a region fully made of the negative
Martensite variant originates at the top of the cross sec-
tion and propagates inwards with height y2f defined by
the condition s(y2f) = –sf, namely

y�f

a
= � k1 +(b+ 2)G

k
, for k\k4, ð4:2Þ

according to (3.36) and (3.42). In this case, the distribu-
tions of the axial stress and the effective Martensite vol-
ume fraction are given by equations (3.43) and (3.18)
for 0 ł ył y#, by (3.41) and (3.44) for y# ł ył yf, and
by (3.42) and (3.44) for yf ł ył y2f, respectively, where
the heights y#and y$ are defined in (3.33) as functions
of k. Integration of equation (2.3) in the outer fully
martensitic region where j = 21, starting from the fin-
ish of martensitic transformation at height y, by using
(4.1) and (4.2), then gives

s

ss

= � 1� b+
1

1+G
k1 +(b+ 2)G+ k

y

a

h i
,

for y�f ł y ł a: ð4:3Þ

In both cases, the introduction of the axial stress fields
in (3.4)1 then yields the corresponding bending
moment-curvature relation.

Note from equation (4.2) that for different Young’s
moduli, namely for G . 0, then for k = 2kmax one has
y# = ak1/kmax = yf \ y2f . Therefore, the axial stress
and Martensite distributions across the beam cross sec-
tion for k = 2kmax are not exactly opposite to those
obtained from (3.21) and (3.22) for k = kmax. On the
contrary, for equal Young’s moduli of the two phases,
namely for G = 0, then for k = 2kmax one has y# = yf
and y2f = yf, namely the axial stress and Martensite
distributions are exactly opposite to those obtained for
k = kmax.

The introduction of the axial stress fields (4–38),
(3.42), and (3.43) or (4.3) in the balance condition (3.4)1
then yields the bending moment-curvature relation for
the last stage of the reversed bending process.

Let smin and jmin denote the distributions of axial
stress and effective volume fraction of Martensite along
the height of the beam cross section at the end of
reversed bending for kmin = 2kmax. They follow from
(3.41) to (3.44) and (4.3), by using (3.13), (3.34), and
(3.36), as

smin

ss

=

� y

a
kmax, for 0 ł y ł ys,

�1� b
1+ d+(d+G) jmax

G (1�jmax)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2G(1� jmax)

2kmaxy=a�(2+b jmax)(1+Gjmax)

b ½1+ d+(d+G) jmax�2
q

� 1
n o

,

for ys ł y ł yf ,

� 1
1+G+ 2d

(d� G
2
)(b+ 2)+ kmax

y

a

� �
, for yf ł y ł minfy�f , min, ag,

�1� b� y�y�f , min

(1+G)a kmax, for minfy�f , min, agł y ł a,

8>>>>>>>><
>>>>>>>>:

ð4:4Þ

and

jmin =

0, for 0 ł y ł ys,

jmax+
1+ jmax

b
smin

ss
+ 1

� �
, for ys ł y ł minfy�f , min, ag,

�1, formaxfy�f , min, agł y ł a,

8>><
>>: ð4:5Þ

where

Radi 9



y�f , min =
k1 +(b+ 2)G

kmax
a: ð4:6Þ

4.1. Elastic unloading after reversed bending

The integration of the rate constitutive equation (2.3)
for _j= 0, being j = jmin, by using (2.4) for jtot = jmax,
then yields the axial stress during the subsequent elastic
unloading process

s

ss

=
smin

ss

+
kmax+ k

1+G jmax(y)

y

a
, for0 ł y ł a: ð4:7Þ

The corresponding applied bending moment is

m=mmin + (kmax+ k)m, ð4:8Þ

according to (3.4)1 and (4.7). The elastic unloading of
the beam ends when m = 0, for k = k#res where

k0res = � kmax � mmin=m:

The elastic behavior of the beam ends when the axial
stress reaches the positive critical stress ss at y = min{-
y2f, min, a}, namely for k = k5 where

k5 =
� k1�b�2

k1 +(b+ 2)G
kmax, if y�f , min\a,

� (1+G) (bG�2�8d�2bd)+ 4dkmax

2 (1+G+ 2d) , if a ł y�f , min:

8<
:

ð4:9Þ

A further increase in the applied bending moment will
trigger Martensite reorientation into the positive var-
iant at height y = min{y2f, min, a}.

5. Results

The results presented in the following make reference
to the NiTinol constitutive parameters at room tem-
perature T = 298�K considered by Brinson (1993),
which are reported in Table 1. The corresponding para-
meters defined in Sections 3 and 4 are b = 0.4575, d =
64.1286 and G = 1.5475.

The distribution of the austenitic and martensitic
phases varying the applied bending moment during
loading are plotted in Figure 2 together with the varia-
tions of the fronts of start and finish martensitic trans-
formation, ys and yf. This figure also provides the
distribution of the two phases along a SMA cantilever
beam loaded by a unit transversal force applied at the

tip, where the bending moment increases linearly from
the loaded tip to the built-in end.

The distributions of the axial stress and effective vol-
ume fraction of Martensite along the height of the
upper-half cross section at each step of loading and
reversed loading are plotted in Figures 3 and 4, respec-
tively, for mmax = 2, 3, and 4. These curves correspond
to the end of the loading process for k = kmax, the end
of elastic unloading for k = k2, the complete unloading
for k = kres, the reversed bending for k equal to k3, 0,
k4, and 2kmax, and the subsequent complete unloading
for k = k#res.

The variation of the axial stress and Martensite
volumetric fraction along the height of the cross section
during first loading are piecewise linear in the inner
fully austenitic region and in the outer fully martensitic
region, whereas they are weakly non-linear in the inter-
mediate transforming regions, since different Young’s
moduli are considered for the two phases. Note that in
the last stage of loading (solid black lines), the axial
stress significantly increases in the upper fully martensi-
tic region, where the yield stress of the SMA material
could be rapidly accomplished at the top surface, in
agreement with the findings of Eshghinejad and
Elahinia (2015).

Table 1. Young’s moduli of the two phases, Poisson coefficient, critical stresses and maximum residual transformation strain for
Brinson SMA materials at room temperature.

T (�C) EA (GPa) EM (GPa) ss (MPa) sf (MPa) eL

25 67 26.3 153 223 0.067

Figure 2. Distribution of Austenite and Martensite and
variations of the fronts of finish and start martensitic
transformation with the applied bending moment under loading,
for Brinson SMA material.
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During the subsequent elastic unloading, the axial
stress decreases linearly with the height y and no phase
transformation or Martensite reorientation occur, till
the negative critical stress 2sf is attained at yf. This
condition is accomplished for k = k2 and m = m2

defined in (3.27). Therefore, for k \ k2 the reorienta-
tion of the Martensite variant is triggered, starting from
the region at height yf. This process occurs during
unloading only if the maximum bending moment
applied to the cross section is larger than a limit value.
For the Brinson SMA material at the considered room
temperature, the (normalized) limit bending moment is
mlim = 3.617, this value is obtained by introducing the
solution klim = 42.22 of equation (3.28) in equation
(3.19). The results plotted in Figure 3(a) and (b) for
mmax = 2 and 3, respectively, show indeed that the
unloading process is entirely elastic and after complete
unloading, namely for k = kres (dashed red lines), a
wide region is subject to residual negative axial stress,
whose magnitude however is not large enough for trig-
gering Martensite reorientation. Conversely, the results
obtained in Figure 3(c) for mmax = 4 . mlim show that
Martensite reorientation takes place at height yf during
unloading and spreads inwards and outwards as the
applied bending moment is further decreased. In this
region, the axial stress s at the end of unloading dis-
plays a weak and limited nonlinear variation with the
coordinate y, according to (3.41), being actually almost
constant and a bit more negative than –ss (red dashed
line in Figure 3(c) for k = kres). It may be also observed
that at the end of unloading after first loading, the axial
stress vanishes at five points within the cross section.
The maximum residual axial stress is attained at the top
surface and it increases remarkably with mmax. For
mmax \ mlim Martensite reorientation takes place dur-
ing reversed bending, always starting from height yf.

Under reversed bending, the axial stress tends to be
negative and almost uniform in the upper half of the
cross section till the negative critical stress 2sf is

attained at the top for k = k4 (see the lines for k equal
to k3, 0, k4 in Figure 3). However, if the magnitude of
the applied negative bending is further increased, then
the magnitude of the negative axial stress rapidly
increases at the top of the cross section (see the dash-
dotted blue lines for k = 2kmax in Figure 3). For dif-
ferent Young’s moduli of the two phases, the distribu-
tions of the axial stress at the end of the reversed
bending for k = 2 kmax (dash-dotted blue lines) are
not exactly opposite to those obtained for k = kmax

(solid black lines). The axial stress is indeed opposite,
but its magnitude is smaller than that observed at the
end of direct loading.

The distributions of residual axial stress at complete
unloading subsequent to reversed bending, namely for
k = k#res, are plotted in Figure 3 as dotted black lines.
Again, the axial stress vanishes at five points within the
cross section, the maximum magnitude of the residual
axial stress is attained at the top surface and it increases
remarkably with mmax. Note that for the values of mmax

considered in these figures the complete unloading of
the cross section after reversed bending occurs under
rate elastic behavior, since the maximum residual axial
stress is lower than the critical stress ss everywhere.

The distributions of the effective Martensite volume
fraction j = j+2 j– along the height plotted in Figure
4 turn out to be slightly nonlinear within the transform-
ing region, during the first loading process also,
although it is very close to a linear trend. Clearly, the
total amount of Martensite transformed within the
cross section increases with the maximum bending
moment mmax applied at the end of loading. As the
bending moment is completely removed, namely for k

= kres, if m \ mlim then the Martensite distribution
does not change (see Figure 4(a) and (b)), being the
unloading process entirely elastic, whereas if m . mlim

then the production of a limited amount of the second-
ary Martensite variant can be observed (dashed red line
in Figure 4(c)).

(c)(a) (b)

Figure 3. Distributions of the axial stress s along the height of the cross section, for various values of the beam curvature k and
for mmax = 3, 4, and 5, for Brinson SMA material. [AQ: 5]
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As the bending moment is decreased and then
applied with the reversed sign, the size of the region
where Martensite reorientation takes place, namely
where s \ 2ss, increases. At first it reaches the top
surface of the cross section for k = k3 and then it tends
to recover the entire region where the martensitic trans-
formation occurred under direct bending, namely the
upper region over the height ys. Note that when the
beam curvature is completely removed, namely for k =
0 (dashed green lines in Figure 4), the effective
Martensite volume fraction is still positive within the
cross section. No backward Austenitic transformation
is activated under reversed bending, being T \ As.
However, a significant amount of the primary (positive)
Martensite variant undergoes the reorientation process
into the secondary (negative) Martensite variant and
thus the effective volume fraction of Martensite j

decreases. Obviously, a similar but opposite Martensite
reorientation occurs in the lower half of the cross sec-
tion. Also the distributions of the effective Martensite
volume fraction j at the end of reversed bending for k

= 2 kmax (dash-dotted blue lines) are opposite, but
smaller than those observed at the end of direct bending
for k = kmax (solid black lines), thus denoting that the
initial Martensite variant is still present within the cross
section at the end of reversed bending.

The partition of the cross section at the end of first
unloading, namely for k = kres, varying the maximum
applied bending moment mmax is plotted in Figure 5. In
this plot, the region below the curve ys (solid black line)
is in a purely austenitic state; the transformation region
between the curves ys, yf (solid blue line), y#, and y$
(dashed and das-dotted red lines) is made of a mixture
of austenite and single variant Martensite; finally, in the
region between the curves y# and y$ the reorientation
of the Martensite variant occurred during unloading.

The partition of the cross section at the end of
reversed bending, namely for k = 2kmax, varying the
maximum applied bending moment mmax is also

reported the same plot. In this case, y# = ys and yf \
y2f,min \ a \ y$. Therefore, the region below the
curve ys still is in a purely austenitic state; the region
between the curves ys and y2f,min (dashed green line), is
made of a mixture of austenite and both Martensite
variants; finally, the region over the curve y2f,min is
entirely made of the secondary Martensite variant. The
latter distribution does not change during the subse-
quent elastic unloading.

The closed form relations between the normalized
applied bending moment m and beam curvature k

under the direct and reversed bending cyclic process are
plotted in Figure 6 for mmax = 2, 3, and 4.

Due to the lower Young’s modulus of Martensite
with respect to that of Austenite, the slope of the last
part of the loading process as well as that of the elastic
unloading process is clearly smaller than the slope of
the initial austenitic loading process. This occurrence
makes the residual beam curvature after complete
unloading as well as the area enclosed by each cycle a
little bit smaller than those obtained under the simplify-
ing assumption of equal Young’s moduli of the two
phases (Ostadrahimi et al., 2015). Therefore, such a
simplifying assumption overestimates the shape mem-
ory effect and the energy dissipation capabilities of
SMA, as already observed under torsional loading
(Radi, 2020).

5.1. Validation by comparison with available results

In order to validate the present analysis, a comparison
with some analytical results available in the technical
literature is provided in Figure 7. To this aim, the axial
stress distributions in a rectangular cross section of
heigth 2a = 2 mm and width b = 2 mm subject to an
increasing bending moment at constant temperature
T = 30�C given in Figure 12(a) of Eshghinejad
and Elahinia (2015) (blue lines) are compared with
those obtained in the present work (red lines). The

(c)(a) (b)

Figure 4. Distributions of the effective Martensite volume fraction j along the height of the cross section, for various values of the
beam curvature k and for mmax = 3, 4, and 5, for Brinson SMA. [AQ: 6]

12 Journal of Intelligent Material Systems and Structures 00(0)



constitutive parameters considered by Eshghinejad and
Elahinia (2015) at temperature T = 30�C . Af are
given in Table 2. The curves are very close, although a
slight discrepancy can be noticed for the higher levels
of loading due to the difference between the adopted
SMA constitutive models. Eshghinejad and Elahinia
(2015) assumed indeed linear stress distributions in all
regions, whereas slightly nonlinear stress distributions
are found in the present analysis, as due to the different
Young’s moduli of the two phases.

In addition, the tip displacement of a SMA cantile-
ver beam caused by a tip force F in a loading-unloding
cycle from 0 to 10 N obtained from the present formu-
lation is compared in Figure 8 with that provided by
Eshghinejad and Elahinia (2015) in their Figure 8(c).
The constitutive parameters at temperature T = 25�C
\ As considered therein are reported in Table 2 (note
that the value assumed for eL can not be found in their
paper and it has been supplied by the authors by pri-
vate communication). The tip displacement calculated
numerically by double integrating the differential equa-
tion for a cantilever Euler-Bernoulli beam, built-in at
the end at x = L = 30 mm, namely

w=
L2 ss

a EA

ð1
0

dj

ð1
j

k(
3FLh

2 ba2ss

) dh, ð5:1Þ

where k = k(m) denotes the inverse relation between
normalized bending moment and curvature defined in
Section 3 for first loading and elastic unloading. In this
case also, the results are reasonably close and a discre-
pancy can be noticed for the higher levels of loading
due to the differences between the two SMA constitu-
tive models. In particular, during the martensitic trans-
formation the present model turns out to be a bit stiffer
than that developed by Eshghinejad and Elahinia
(2015).

A further comparison is made in Figure 9 with the
analytical and FEM results provided by Ostadrahimi
et al. (2015) for the bending moment-curvature relation
of a rectangular cross section with a = 0.5 mm and b
= 1 mm. These results are obtained under direct load-
ing and elastic unloading at temperature T = 240�C
lower than Ms = 234�C and thus also lower than As.
The corresponding material parameters are reported in
Table 3. The analytical model developed by these

Figure 5. Normalized variations with the maximum bending
moment applied to the cross section of the fronts of finish and
start martensitic transformation and of the upper and lower
fronts of the region undergoing transformation between
Martensite variants at first complete unloading and at the end of
reversed bending, for Brinson SMA material.

Figure 6. Normalized cyclic variations of the applied bending
moment with the beam curvature, under alternative loadings for
mmax = 2, 3, and 4, for Brinson SMA material.

Table 2. SMA constitutive parameters at temperatures T = 25�C and T = 30�C, from Eshghinejad and Elahinia (2015).

T (�C) EA (GPa) EM (GPa) ss (MPa) sf (MPa) eL

–5 73.2 30 25 125 0.0166
30 73.2 30 200 300 0.0166
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authors assumes the same Young’s moduli for both
phases, namely G = 0. In this case the stress-strain rela-
tions become linear also in the transformation region.
The analytical results obtained from the present
approach for the particular case of G = 0 are practi-
cally coincident with those obtained by Ostadrahimi
et al. (2015) and very close to the FEM predictions. A
slight difference can be observed at the end of elastic
unloading because the model considered in
Ostadrahimi et al. (2015) allows for reverse austenitic
transformation before complete unloading, whereas for
the present model the reverse phase transformation
cannot take place at temperature lower than As.

Unfortunately, no analytical or numerical investiga-
tions are available in the technical literature for validat-
ing the present model under the reverse bending
process, in particular for the temperature range origi-
nating the shape memory effect considered here.

6. Conclusion

A simple 1D constitutive model is adopted for modeling
the isothermal response of a SMA beam with rectangu-
lar cross section under direct and reversed pure bend-
ing. The model takes into account for different Young’s
moduli of the two phases by adopting the Reuss scheme
of composite materials for the description of the SMA

Figure 7. Comparison between the axial stress distributions
along the height of the beam provided by the present analysis
(red lines) and those provided in Figure 12(a) of Eshghinejad and
Elahinia (2015) (blue lines) for Material I, for the loading process
at temperature T = 30�C.

Figure 8. Comparison between the force versus tip
displacement relation of a SMA cantilever beam at T = 25�C
provided by the present analysis (dashed red line) and those
provided in Figure 8(c) of Eshghinejad and Elahinia (2015) (solid
blue line).

Table 3. SMA constitutive parameters at temperatures T = 240�C from Ostadrahimi et al. (2015).

T (�C) EA (GPa) EM (GPa) ss (MPa) sf (MPa) eL

240 53 53 122.5 197.5 0.05

Figure 9. Comparison between the moment-curvature
relation of a SMA rectangular cross section with a = 0.5 mm
and b = 1 mm provided by the present analysis (dashed red line)
and those provided in Figure 12 of Ostaradrahimi et al. (2015),
obtained by their analytic model (solid blue line) and by FEM
analysis (dashed green line).
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elastic behavior. Two opposite Martensite variants can
take place according to the sign of the axial stress.
Their volumetric fractions are assumed to evolve line-
arly with the axial stress, so that the linear rate constitu-
tive equations for SMA can be easily integrated in
closed form within each step. Moreover, the axial stress
and the Martensite distribution across the beam cross
section can be calculated analytically at each step of the
cyclic process. In particular, the distributions of axial
stress and effective Martensite volume fraction in the
transformed regions of the cross section are slightly
nonlinear as due to the different Young’s moduli of the
two phases. The analytical or numerical integration of
the contribution of the axial stress within the cross sec-
tion then yields the bending moment applied to the
cross section as a function of the beam curvature both
under bending and reversed bending.

We found here that the response of the cross section
under reversed bending is not symmetrical with respect
to the first bending loading, namely the stress field and
the Martensite distribution at the end of negative
reloading is not exactly opposite to those observed at
the end of loading, although a symmetric tension-
compression constitutive behavior has been assumed.
The difference is due to the different Young’s moduli of
the two phases. Indeed, the response becomes perfectly
symmetric for G = 0, namely for EA = EM. In this case
indeed the distributions of stress and Martensite var-
iants at the end of the loading process and at the end of
the negative loading process are equal but opposite in
sign. With some additional analytical complications,
the model can be extended to account also for asym-
metric tension-compression behavior of the SMA by
assuming different magnitudes of the positive and nega-
tive critical stresses.

Here, the analysis has been developed only for the
first cycle of direct and reverse loading. In principle, it
can be extended to subsequent cycles, of course with
increasing difficulties. Future investigations may be
extended to multiple loading cycles, general bending,
and different temperature ranges. Note that the
response during repeated loading cycles of the same
amplitude does not change if the elastic modulus of the
SMA material is assumed constant, namely for G = 0.
In this case, indeed, the response observed in the first
cycle is exactly reiterated in subsequent cycles of the
same amplitude. The present results are also sufficiently
accurate under general bending if the shear stress is
much smaller than the axial stress, as it generally
occurs for slender beam with compact cross section. In
this case indeed the shear stress attains the largest val-
ues in proximity of the cross section centroid, where no
transformation is triggered, and thus a weak effect on
the phase transformation condition is expected from
the contribution of the shear stress. Finally, the frame-
work used here for modeling Martensite reorientation
can be adopted also for modeling the reverse austenitic

transformation which may occur during unloading at
temperatures higher than As.

The exact closed form solution provided here is par-
ticularly valuable for analyzing and understanding the
role played by the constitutive parameters in the shape
memory effect of SMA beams during a bending cycle
of reversed sign. Each step of the derivation of the ana-
lytical solution is clearly described in the paper and can
be easily checked. Besides providing a reliable evalua-
tion of the actual and residual stresses and strains in
SMA beam under direct and reverse bending, the ana-
lytical results here obtained have a number of addi-
tional advantages. Indeed, they can be exploited for the
accurate design of innovative seismic dissipating devices
and actuators realized by SMA beams loaded in bend-
ing and subjected to alternating loading. They can sup-
port designers in the calibration process of numerical
models able to describe SMA macroscopic effects. They
are also useful for validating the accuracy of numerical
procedures based on more refined constitutive models
employed in the modeling of SMA beams under com-
plex cyclic loading.
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Appendix A

The integral in the definition of m in equation (3.26) can be calculated as

ð1+G

1

½(t + d)2 � p�2 1+
d

t

� �
dt=

1

5
½(1+G)5 � 1�+ 5

4
d½(1+G)4 � 1� � 2

3
½(1+G)3 � 1�(p� 5d2)

+ ½(1+G)2 � 1�d(5d2 � 3p)+G(5d� p)(d2 � p)+ d(p� d2)2ln(1+G),
where

p=(1+ d)2 � 2
G

b
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