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Abstract 

Suppliers and inbound quality inspectors training are common development strategy to 

increase the supply chain quality performance, under budget constraints these actors 

compete for a limited amount of training hours. In the proposed model a decision maker 

allocates these hours minimizing a total quality cost function composed of prevention, 

appraisal, and failure costs, and sets the inspection rates defining the inspection policies. 

The relationship between decision variables and costs is expressed through organisational 

and individual learning-forgetting curves, for suppliers and quality inspectors respectively, 

and the effect of the training hours on quality improvement is measured in terms of failure 

rates. To the best of our knowledge, a total quality cost model with such decision variables 

is new in the literature, as it is a model including both organisational and individual 

learning-forgetting phenomena. 

A nonlinear optimisation approach was adopted to solve such a complex problem. The 

experimental section includes both a decision trees analysis of simplified scenarios, to 

interpret the model functioning, and a complex numerical example to extrapolate 

managerial insights. 

Keywords: Supplier development; Training; Quality inspection; Learning-forgetting; 

Nonlinear optimisation   

1. Introduction 

The most recently released ISO 9001:2015 enforced the section dedicated to the control of 

externally provided processes, products and services (clause 8.4), with more rigorous 

requirements for managing suppliers than in the previous ISO 9001:2008. A step-by-step 

supplier management approach comprises supplier development in order to improve 

continuously its capability and performance (Wagner, 2006; Wagner, 2010), which relies 

on a multitude of manageable activities (Bai & Sarkis, 2011) including training. For a 

review on supplier development, see Glock, Grosse, & Ries (2017). Quality improvement 

in products and processes, adaptation to quality standards or reengineering of new 

components are common examples of goals requiring training activities for suppliers, with 

the active involvement of the buyer’s management. There are multi-echelon supply chains 



with suppliers all over the world, often operating under different quality standards and thus 

requiring periodic monitoring and training. Many firms plan training activities for suppliers 

as a strategy to improve the suppliers' performance, to such an extent that several 

consulting companies provide training on behalf of third parties.  

This type of supplier development is direct, whereas in indirect approaches the 

management plans actions that influence the environment in which the suppliers operate 

in order to create an incentive for them to improve their performance by themselves 

(Wagner, 2010).  

In accordance with the systematic approach to human resources contained within ISO 

9001:2015 (e.g. clauses 4.1.2 and 7.1.2), training activities should also be planned for 

internal employees, with a focus on the quality inspectors operating within inbound 

inspection sites. After receipt of the items, quality inspectors visually inspect and/or 

operate different types of equipment, e.g. coordinate-measuring machines, voltmeters, 

hardness testing tools and so on. These inspection processes require specific skills which 

inspectors also acquire by training.  

 However, training suppliers and quality inspectors is costly because it involves trainers, 

especially when long business trips are needed to reach the suppliers. Moreover, trainers 

are specialized consultants who charge high prices.  

This proposal presented in this paper focuses on how many training hours should be 

allocated and to whom on a single-period basis. Indeed, very few decision support models 

have been proposed in the literature to support resources allocation to development 

programs (Glock, 2016), despite the aforementioned importance of this topic in real 

settings. To the best of our knowledge, no studies also include the possibility of choosing 

between different stakeholders, i.e. suppliers and quality inspectors, to be involved in the 

development programs.  

The reasoning for the choice of suppliers and quality inspectors as potential stakeholders 

of training is strictly quality cost-based. In fact, in accordance with the well-known 

Prevention, Appraisal, and Failure (PAF) taxonomy of quality costs (Feigenbaum, 1956), 

the supplier training might be focused, among other supplier attributes, on the 

replenishment quality, where the development measure used here to monitor quality 

improvement is the failure rate, which directly affects the failure costs (F). Conversely, the 

training of inspectors decreases inspection times and thus the appraisal costs (A). At the 

same time, training suppliers and inspectors increases the prevention costs (P). The 

allocation of training hours to suppliers and quality inspectors is thus a non-trivial problem 



from a continuous improvement viewpoint, and this is the primary goal of our proposal.  

To enrich our analytical setting further, the additional decision variables included in the 

model are the inspection rates to assign to the replenished items on a period by period 

basis. These variables determine the inspection policies to apply to suppliers and affect 

both failure and appraisal costs. The effect of the inspection rates on the quality cost 

function can be revealed by considering that failure costs are higher in downstream than in 

upstream stages. For instance, an inspection policy with a unitary inspection rate 

maximises appraisal costs and minimizes failure costs. 

The relationship of the training hours as development resources with the quality costs is 

highlighted by learning-forgetting curves that capture the effects of training on failure and 

appraisal costs over time. In other words, suppliers and inspectors are subject to 

organisational and individual learning mechanisms, respectively, which depend on training 

activities (i.e. induced learning) and repetitions (i.e. autonomous learning) and constitute 

the foundation of the optimal allocation of the training hours. The need to interconnect 

continuous improvement with learning curves has been investigated by (Zangwill & Kantor, 

1998), and more recently by other authors (e.g. Wang, Plante, & Tang, 2013; Lolli et al., 

2016). 

Our contribution is two-fold: i) to solve the problem of allocating training hours both to 

suppliers and to quality inspectors by a single-period decision support system based on 

learning-forgetting curves, organizational and individual, respectively; ii) to show the 

relationship that inspection policies have with the optimal allocation solution. Neither 

issues have been addressed jointly in the related literature by means of mathematical 

programming approaches. In addition, to the best of our knowledge, the coexistence of 

organisational and individual learning-forgetting effects in a quality cost-based trade-off 

problem, i.e. the allocation of training hours, is new in the literature related to learning 

theory.  

The paper is organised as follows. Section 2 provides a review of the literature on supplier 

development and human learning. Section 3 details the operative environment for which 

our decision support system has been designed, along with the notation adopted 

throughout the manuscript. Section 4 focuses on the learning processes underlying the 

model described in Section 5. Sections 6 and 7 detail the design of the experiment and the 

results achieved, respectively, while Section 8 provides conclusions and ideas for further 

research.  



2. Literature review 

Supplier development is a broad topic in industrial engineering, where three stages can be 

identified (Glock et al., 2017):   

i) Preparation of supplier development. This stage identifies the suppliers that the 

buyer intends to develop.  

ii) Supplier development in the strictest sense, which is aimed at defining the 

development initiatives that constitute either the direct or the indirect 

development program.  

iii) Monitoring and evaluation of supplier development. 

The resource allocation to development programmes represents a step in stage ii), and is 

also the core of our proposal.  Wagner (2011), Glock et al. (2017) and Meisel & Glock 

(2018) have already underlined that the majority of previous contributions have dealt with 

supplier development either theoretically or empirically. Regarding stage ii), there are still 

only a few mathematical models available, especially those dealing with the allocation of 

resources to development programs; some of them are overviewed in the following.  

Kim (2000) investigated a single-buyer single-supplier supply chain where the buyer must 

evaluate the need for a subsidy to lower the production costs at the supplier via a learning 

curve modelling. The development attribute under control is thus the production cost at the 

supplier, and the development program is direct due to the active involvement of the 

buyer. A lower production cost at the supplier leads in turn to lowering the selling price on 

the market. In the case of a price-sensitive demand, supplier development shows the 

greatest benefits. A similar setting was analysed by Proch, Worthmann, & Schlüchtermann 

(2017), who formulated a continuous time optimal control model for the capital investments 

in supplier development. They considered both direct and indirect development initiatives 

through win-to-win perspective, where the buyer can intensify the supplier’s participation 

by subsidizing a share of the investment costs. The efficient level of subsidy over time is 

therefore the variable to optimise in order to make development profitable. Zhu, Zhang, & 

Tsung (2007) specifically focused on quality-based development programmes for suppliers 

undertaken by the buyer in order to reduce the expected number of non-conforming units, 

whose related failure costs fall both on the buyer and on the suppliers. They analytically 

derived the optimal order (buyer) and production (supplier) quantities in accordance with 

the quality-based development actions undertaken.  

A quality-based development of suppliers was explored by Lolli et al. (2016) with the rate 

of non-conforming units as the development attribute to reduce over time periods. They 



introduced a single-period constrained nonlinear optimization approach for allocating 

training hours to suppliers. In order to assess the relationship between the improvement in 

the rate of non-conforming units (dependent variable) and training hours (i.e. induced 

learning source) and cumulative production volume (i.e. autonomous learning source), a 

linear learning curve with time-varying learning rates was modelled. Bhattacharyya & 

Guiffrida (2015) adopted untimely deliveries by suppliers as the development attribute, and 

introduced an optimization approach, constrained by an upper bound of the available 

budget, to find the optimal investment to spend in such a development program. 

Undertaking a development program with suppliers was also investigated by Marchi, Ries, 

Zanoni, & Glock (2016), where the buyer exploits a lower interest rate than its supplier. 

This condition enables the buyer to invest in increasing the supplier’s productivity with a 

certain amount of risk. Cui, Deng, Liu, Zhang, & Xu (2017) dealt with the exactness of the 

suppliers’ inventory status, since inventory inaccuracies have severe consequences on the 

effectiveness of the supply chain. The development program in their work is specifically 

focused on investments in RFID technology. Capital allocation to suppliers for 

development programmes has also been studied by Mizgier, Pasia, & Talluri (2017), 

where a buyer has to select the suppliers to develop while considering the investment 

risks. The authors proposed a multi-objective optimization approach for such a selection 

problem. Bai & Sarkis (2016) adopted various game theoretical models to evaluate 

different development investment strategies, e.g. tangible actions such as capital 

resources and sharing costs of capital resources as well as intangible actions such as 

knowledge investments. Different types of supplier development (i.e. learning capabilities, 

knowledge transfer, and external acquisition of knowledge) have also been taken into 

account by Glock (2016) and Glock, Jaber, & Guiffrida (2011), focused in particular on 

delegating workers as a source of supplier training, and proposed a profit-based model to 

achieve their optimal number, as well as the timing and duration of supplier training. They 

adopted a Cobb-Douglas type learning curve, based on Wright’s pioneering power curve 

(Wright, 1936), for modelling unitary production costs, and obtained the group learning 

rates directly by multiplying the individual learning rates for the number of workers 

employed in the production process (Glock & Jaber, 2014). Meisel & Glock (2018) 

proposed a profit-based optimisation approach to support the buyer in selecting suppliers 

to develop and choose the type of development to undertake. The authors referred to self-

induced performance improvement as the autonomous learning mechanism arising by 

allocating additional production quantities to suppliers, as opposed to direct project-based 



development programmes. A learning curve similar to the Stanford-B model (Carlson, 

1987) was adopted in their work.      

As shown above, several papers used learning curves to model the relationship between 

the development attribute (e.g. cost, quality, capacity, service level and so on) and the 

control variable (e.g. capital investment, workers, training hours and so on). This is not 

surprising. Learning curves – individual, group, and organizational – provide progress 

functions with certain independent variables, including the cumulative production volume 

which is the standard one in univariate models, affecting the dependent variable, which is 

typically the unitary production time subjected to experience. Consequently, human 

learning modelling has several applications for supplier development.  

From the early definition of the well-known power curve (Wright, 1936), where the unitary 

production time decreases due to the increasing cumulative number of produced items 

(i.e. autonomous learning), several papers have focused on specialising and diversifying 

learning curves (e.g. Jaber & Guiffrida, 2004; Jaber & Guiffrida, 2008; Jaber, Goyal, & 

Imran, 2008; Jaber & Glock, 2013). The reverse of learning is forgetting, leading to poorer 

performance. Empirical findings (e.g. Globerson, Levin, & Shtub, 1989) indicate that 

forgetting depends both on the length of interruption and on the cumulative experience 

gained prior to the interruption: see Sikström (2002) and Sikström & Jaber (2002, 2012). 

Jaber & Bonney (1996) composed learning and forgetting into a single power law curve for 

the first time. Jaber, Kher, & Davis (2003) investigated the effect of cross training and 

deployment in order to reduce the effects of forgetting. Jaber, Givi, & Neumann (2013) 

also incorporated fatigue and recovery into the model, and Givi, Jaber, & Neumann (2015) 

used a learning-forgetting model to estimate the human-related error rate. 

It is worth highlighting how numerous contributions have focused both on supplier 

development and on the definition and application of learning curves. Nevertheless, there 

is currently no total quality cost-oriented model with learning-forgetting effects that also 

evaluates the quality inspectors as potential stakeholders of the training programmes. It 

follows that organizational and individual learning-forgetting curves, for suppliers and 

quality inspectors respectively, interact for the optimal allocation of resources for training 

programmes; which has never been addressed in previous works. To highlight the novelty 

of this proposal further, inspection rates have been considered as additional variables to 

optimise. In fact, inspection rates have already been dealt with in different optimisation 

approaches, for instance by game models (e.g. Hsieh & Liu, 2010; Aust, Bräuer, & 



Buscher, 2014), however never within an optimisation approach based on learning-

forgetting effects for the allocation of development resources.    

3. The operative environment 

In our method, a single-buyer multi-supplier supply chain is considered (Figure 1). Time is 

discretized in learning cycles in line with the continuous improvement concept proposed in 

Zangwill & Kantor (1998). In each cycle, the suppliers replenish the buyer with 

deterministic quantities of items with a certain rate of non-conforming units, and each 

supplier is associated with a single item. The multi-item material flow from suppliers 

passes through the inbound inspection site where quality inspectors operate with an error-

free inspection process, i.e. without type-I and type-II errors, on the basis of different 

inspection rates among suppliers, and each inspector is associated with a single item. 

Suppliers, items and inspectors are thus in a one-to-one relationship, but this does not limit 

the applicability of our proposal for allocating training hours to suppliers and inspectors. In 

fact, it is reasonable to refer to single items both for replenishment and for inspection 

requiring specific knowledge and equipment. Conforming units after the inspection, along 

with the units that have not been inspected, pass to the downstream production/assembly 

stages. A non-conforming unit inspected within the inbound inspection site generates a 

lower failure cost (rework or scrap) than the cost related to defects in uninspected units 

that are revealed in subsequent production/assembly stages. Therefore, two levels of 

failure costs are considered.  

The optimisation model for the allocation to training hours is single-period, which means 

that at the beginning of a cycle, the buyer has to allocate training hours for the incoming 

cycle both to suppliers and to inspectors, as well as to establish the optimal inspection rate 

to be adopted for each supplier. The learning processes governing the temporal evolution 

of the suppliers’ and inspectors’ performance are described in Section 4. The notation in 

Table 1 is adopted throughout the manuscript. Although the proposed model is single-

period, the subscript 𝑡 is kept for several costs, total costs and parameters reported in 

Table 1 in order to model their dynamics due to learning-forgetting effects. In experiment 2 

(see Section 6), the model is also launched over consecutive cycles. 

 



 

Figure 1. Single-buyer multi-supplier supply chain. 
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Indexes and number of inputs 

  Number of suppliers (i.e. types of items) involved in the training program. 

  Supplier, with     …   . 

𝑡 Consecutive learning cycles. 

𝑚 Consecutive forgetting cycles. 

Constraints 

𝑚𝑎𝑥𝑄  𝑏 
Maximum number of items inspected. 

𝐻 𝑢𝑝 Maximum number of training hours assignable to the suppliers. 

𝑚𝑎𝑥ℎ 
 𝑢𝑝 Maximum number of training hours assignable to supplier  . 

𝐻    
Maximum number of training hours assignable to the inspectors. 

𝑚𝑎𝑥ℎ 
    Maximum number of training hours assignable to inspector  . 



𝑇𝑚𝑎𝑥
    

Maximum inspection time. 

Decision variables 

ℎ   
 𝑢𝑝 Number of training hours assigned to supplier   in learning cycle 𝑡. 

ℎ   
    Number of training hours assigned to inspector   in learning cycle 𝑡. 

     
Inspection sample rate for supplier   in learning cycle 𝑡. 

Costs 

𝑐   
𝑎𝑝𝑝 Unitary appraisal cost for inspector   at the end of learning cycle 𝑡. 

𝑐  𝑚  
𝑎𝑝𝑝  Minimum unitary appraisal cost for inspector  . 

�̃�  0
𝑎𝑝𝑝 Unitary appraisal cost for inspector   at the beginning of forgetting cycle 1. 

𝑐 ̅  
𝑎𝑝𝑝 Mean unitary appraisal cost for inspector   at the end of learning cycle 𝑡. 

𝑐 
 𝑢𝑝 Unitary training cost for supplier  . 

𝑐 
    Unitary training cost for inspector  . 

𝑐 
  𝑏 

Unitary failure cost for supplier   when a non-conforming unit is detected within 

the inbound inspection site. 

𝑐 
   

Unitary failure cost for supplier   when a non-conforming unit is detected in the 

production/assembly stages. 

𝑐ℎ Hourly cost of an inspector. 

Total costs 

𝐸𝑃     
Prevention cost for supplier   in learning cycle 𝑡. 

𝐸𝐴     
Appraisal cost for supplier   in learning cycle 𝑡. 

𝐸𝐹     
Failure cost for supplier   in learning cycle 𝑡. 



Learning rates 

𝑎  
Autonomous learning rate of supplier  . 

𝑏  
Induced learning rate of supplier  . 

𝑙 
    Autonomous learning rate of inspector  . 

𝛼  
Induced learning rate of inspector  . 

  
    Autonomous forgetting rate of inspector  . 

  
 𝑢𝑝 Autonomous forgetting rate for supplier   . 

𝑙𝑒    
    Equivalent learning rate of inspector   at the end of learning cycle 𝑡. 

Parameters 

      
Rate of non-conforming units of supplier   at the end of learning cycle 𝑡. 

  ̃  0 Unitary appraisal cost for supplier    at the beginning of forgetting cycle 1. 

     
Number of items replenished by supplier   in learning cycle 𝑡. 

𝑄    
Cumulated number of items replenished by supplier   in learning cycle 𝑡. 

    
    

Number of items replenished by supplier   and inspected in learning cycle 𝑡. 

𝑄   
    

Cumulated number of items replenished by supplier   and inspected items at 

learning cycle 𝑡. 

 ̃  𝑚 

Number of items that would have been replenished by supplier   in forgetting 

cycle 𝑚, had the interruption not occurred. 

 ̃  𝑚
    

Number of items that would have been replenished by supplier   and inspected 

in forgetting cycle 𝑚, had the interruption not occurred. 

�̃�  𝑚 

Cumulated number of items that would have been replenished by supplier   in 

forgetting cycle 𝑚, had the interruption not occurred. 

�̃�  𝑚
    

Cumulated number of items that would have been replenished by supplier   and 

inspected in forgetting cycle 𝑚, had the interruption not occurred. 



Table 1. Notation. 

4. The underlying learning-forgetting processes 

Autonomous and induced learning-forgetting phenomena affect two dependent variables 

throughout the cycles, and when the autonomous learning is not operating a forgetting 

process takes place decreasing the overall efficiency of the system. 

The first dependent variable is the failure rate (Section 4.1); suppliers autonomously learn 

by supplying as well as by receiving training hours (induced learning) and forget while not 

supplying. The number of supplied items cannot be adjusted, while the training hours for 

each supplier are controlled by management and act as independent variables. 

The second dependent variable is the appraisal cost, which is linearly related to the unitary 

inspection time of the quality inspectors. The unitary inspection time decreases both 

autonomously and by means of the training hours allocated to the inspectors (induced 

learning), while not inspecting leads to forgetting that subsequently increases the appraisal 

cost. 

To sum up, four processes have been identified:  

i) External autonomous learning-forgetting, involving suppliers due to repetitions-

disruption. 

ii) External induced learning-forgetting, involving suppliers due to training-not training. 

iii) Internal autonomous learning-forgetting, involving quality inspectors due to 

repetitions-disruption. 

iv) Internal induced learning-forgetting, involving quality inspectors due to training-not 

training. 

4.1 The suppliers’ learning-forgetting 

In this paper, the rate of non-conforming units       of supplier   at the end of learning 

cycle 𝑡 is adopted as the quality metric to control rather than the more traditional process 

variance, while the supplied quantity 𝑄    and the number of external training hours ℎ   
 𝑢𝑝

 

are adopted as independent variables of autonomous and induced learning, respectively. 

The choice of the rate of non-conforming units as the quality metric is justified in real 

settings, where the quality inspections operate as stop-and-go filters. 

𝑛𝑐    
Number of non-conforming units from supplier   in learning cycle 𝑡. 



A cycle is considered here either as a learning 𝑡 or as a forgetting 𝑚 cycle. After a set of 

consecutive learning cycles, the first forgetting cycle starts with 𝑚    while, after a set of 

consecutive forgetting cycles, the first learning cycle starts with 𝑡   . 

Non-linear models with fixed learning rates have been traditionally used for individual 

learning from the pioneering contribution of Wright (1936) and validated in several 

laboratory settings (e.g. Bailey, 1989). We adopt the standard power form with different 

dependent (i.e.      ) and independent (i.e. 𝑄    and ℎ   
 𝑢𝑝

) variables as follows:   

          0(𝑄   )
−𝑎𝑗−𝑏𝑗ℎ𝑗 𝑡

𝑠𝑢𝑝

                                                                                                (1) 

with 0 < 𝑎 + 𝑏 ℎ   
 𝑢𝑝 <  , 𝑎  and 𝑏  being the autonomous and induced learning rates of 

supplier  .     0 is the initial rate of non-conforming units, obtained after a single quantity of 

product is supplied (𝑄  0   ), and 𝑄    𝑄   − +      is the cumulated supplied quantity at 

the end of learning cycle 𝑡. 

If     0 is unknown, its value can be recovered from Equation 1 as: 

    0       (𝑄   )
𝑎𝑗+𝑏𝑗ℎ𝑗 𝑡

𝑠𝑢𝑝

                                                                                                  (2) 

Equation 1 can be rewritten in a one-period-ahead formulation as: 

           − (
𝑄𝑗 𝑡−1

𝑄𝑗 𝑡
)
𝑎𝑗+𝑏𝑗ℎ𝑗 𝑡

𝑠𝑢𝑝

                                                                                            (3) 

Under the assumption that ℎ   
 𝑢𝑝

 is concentrated at the beginning of the learning cycle, the 

number of non-conforming units from supplier   during cycle 𝑡 is given by: 

𝑛𝑐    
𝑁𝐶𝑗 𝑡−1

 −𝑎𝑗−𝑏𝑗ℎ𝑗 𝑡
𝑠𝑢𝑝 ((𝑄   )

 −𝑎𝑗−𝑏𝑗ℎ𝑗 𝑡
𝑠𝑢𝑝

(𝑄   − )
𝑎𝑗+𝑏𝑗ℎ𝑗 𝑡

𝑠𝑢𝑝

 𝑄   − )                                             (4) 

Proofs for Equations 3 and 4 are provided in Appendix 1. 

The forgetting phenomenon arises as a mirror process of autonomous learning and takes 

place when the supply of item   is interrupted (   𝑚  0 ∀𝑚). The forgetting curve adopted 

here follows a power form (Carlson & Rowe, 1976): 

    𝑚    ̃  0(�̃�  𝑚 +  )
𝑓𝑗
𝑠𝑢𝑝

                                                                                                (5) 

where   
 𝑢𝑝 > 0 is the autonomous forgetting rate,   ̃  0 is the initial rate of non-conforming 

units (�̃�  0  0), and �̃�  𝑚  �̃�  𝑚− +  ̃  𝑚 is the amount of items   that would have been 

inspected during 𝑚 forgetting cycles, had the interruption not occurred. �̃�  𝑚 is generally 

unknown but can be hypothesized, especially in cases of supplied quantities stationary in 

mean. 



Equation 5 can be rewritten in a one-period-ahead formulation as: 

    𝑚    ̃  𝑚− (
�̃�𝑗 𝑚−1+ 

�̃�𝑗 𝑚+ 
)
−𝑓𝑗

𝑠𝑢𝑝

                                                                                           (6) 

The concept of total forgetting described in Jaber & Bonney (1996) enables us to 

determine the forgetting rate   
 𝑢𝑝

 without any other assumption.     𝑚 is assumed to 

increase to     0 after a certain �̃�  𝑚, which is the number of ‘uninspected’ items annulling 

the effects of the last learning cycles. 

At the end of each learning cycle 𝑡, an equivalent learning rate 𝑙𝑒     is computed as: 

𝑙𝑒      
𝑙 (

𝑁𝐶𝑗 𝑡

𝑁𝐶𝑗 0
)

𝑙 (𝑄𝑗 𝑡)
                                                                                                                (7) 

This is the fixed learning rate required to reach       from     0 after 𝑄    inspected items. 

After each forgetting cycle, the number of inspected items 𝑄    is recomputed as: 

𝑄    (
𝑁𝐶𝑗 0

𝑁𝐶𝑗 𝑡
)

1

𝑙𝑒𝑞𝑗 𝑡
                                                                                                                  (8) 

The forgetting cycle virtually reduces the number of inspected items, and in the extreme 

case of total forgetting (    𝑚      0) the learning restarts from scratch with only one unit 

inspected. 

4.2 The inspectors’ learning-forgetting 

The unitary inspection time for supplier   during learning cycle 𝑡 is subject to learning, the 

appraisal costs due to the inbound quality inspections 𝑐   
𝑎𝑝𝑝

 are linearly related to it 

therefore such costs are treated as the dependent variables of the internal learning-

forgetting phenomenon. 

As for the suppliers’ learning a power form is adopted for the appraisal costs, with 

inspected quantity     
    and the number of external training hours ℎ   

   . Such a power form 

is corrected by introducing the plateau 𝑐  𝑚  
𝑎𝑝𝑝

, the lower bound of 𝑐   
𝑎𝑝𝑝 below which there is 

no further improvement: 

𝑐   
𝑎𝑝𝑝  𝑐  0

𝑎𝑝𝑝(𝑄   
   )

−𝑙𝑗
𝑖𝑛𝑠−𝛼𝑗ℎ𝑗 𝑡

𝑖𝑛𝑠

+ 𝑐  𝑚  
𝑎𝑝𝑝

                                                                                   (9) 

with 0 < 𝑙 
   + 𝛼 ℎ   

   <  , 𝑙 
    and 𝛼  being the autonomous and induced learning rates of 

supplier  . 𝑐  0
𝑎𝑝𝑝

 is the appraisal cost achieved after inspecting one item (𝑄  0
     ) and 

𝑄   
    𝑄   − 

   +     
    is the cumulated number of inspected items at the end of cycle 𝑡. 𝑐  𝑚  

𝑎𝑝𝑝
 

is fixed at the theoretical unitary cost due to the lowest unitary appraisal time, which is the 



time spent by the maximally expert inspector for inspecting one item  . 

If 𝑐  0
𝑎𝑝𝑝

 is unknown its value can be recovered from Equation 9 as: 

𝑐  0
𝑎𝑝𝑝  (𝑐   

𝑎𝑝𝑝  𝑐  𝑚  
𝑎𝑝𝑝 )(𝑄   

   )
𝑙𝑗
𝑖𝑛𝑠+𝛼𝑗ℎ𝑗 𝑡

𝑖𝑛𝑠

                                                                                (10) 

Equation 9 can be rewritten in a one-period-ahead formulation as: 

𝑐   
𝑎𝑝𝑝  (𝑐   − 

𝑎𝑝𝑝  𝑐  𝑚  
𝑎𝑝𝑝 ) (

𝑄𝑗 𝑡−1
𝑖𝑛𝑠

𝑄𝑗 𝑡
𝑖𝑛𝑠 )

𝑙𝑗
𝑖𝑛𝑠+𝛼𝑗ℎ𝑗 𝑡

𝑖𝑛𝑠

+ 𝑐  𝑚  
𝑎𝑝𝑝

                                                                 (11) 

The forgetting phenomenon takes place when the supply of item   is interrupted (   𝑚  

0 ∀𝑚): 

c  𝑚
𝑎𝑝𝑝  �̃�  0

𝑎𝑝𝑝(�̃�  𝑚
   +  )

𝑓𝑗
𝑖𝑛𝑠

                                                                                                  (12) 

where   
   > 0 is the autonomous forgetting rate, �̃�  0

𝑎𝑝𝑝
 is the initial appraisal cost (�̃�  0

    

0), and �̃�  𝑚
    �̃�  𝑚− 

   +  ̃  𝑚
    is the amount of items   that would have been inspected 

during 𝑚 forgetting cycles, had the interruption not occurred. 

Equation 12 can be rewritten in a one-period-ahead formulation as: 

c  𝑚
𝑎𝑝𝑝

 𝑐  𝑚− 
𝑎𝑝𝑝 (

�̃�𝑗 𝑚−1
𝑖𝑛𝑠 + 

�̃�𝑗 𝑚
𝑖𝑛𝑠+ 

)
−𝑓𝑗

𝑖𝑛𝑠

                                                                                               (13) 

At the end of each learning cycle 𝑡, an equivalent learning rate 𝑙𝑒    
    is computed as: 

𝑙𝑒    
     

𝑙 (
𝑐
𝑗 𝑡
𝑎𝑝𝑝

−𝑐
𝑗 𝑚𝑖𝑛
𝑎𝑝𝑝

𝑐
𝑗 0
𝑎𝑝𝑝 )

𝑙 (𝑄𝑗 𝑡
𝑖𝑛𝑠)

                                                                                                     (14) 

This is the fixed learning rate required to reach 𝑐   
𝑎𝑝𝑝

 from 𝑐  0
𝑎𝑝𝑝

 after 𝑄   
    inspected items. 

After each forgetting cycle, the number of inspected items 𝑄   
    is recomputed as: 

𝑄   
    (

𝑐𝑗 0
𝑎𝑝𝑝

𝑐
𝑗 𝑡
𝑎𝑝𝑝

−𝑐
𝑗 𝑚𝑖𝑛
𝑎𝑝𝑝 )

1

𝑙𝑒𝑞𝑗 𝑡
𝑖𝑛𝑠

                                                                                                     (15) 

The forgetting cycle virtually reduces the number of inspected items, and in the extreme 

case of total forgetting c  𝑚
𝑎𝑝𝑝  𝑐  0

𝑎𝑝𝑝 + 𝑐  𝑚  
𝑎𝑝𝑝

 the learning restarts from scratch with only one 

unit inspected. 

Given the single-cycle formulation of total costs, 𝑐 ̅  
𝑎𝑝𝑝

 is the mean value of the unitary 

appraisal cost within cycle 𝑡, i.e. between 𝑄   − 
    and 𝑄   

    inspected items. Equation 11 is 

integrated and divided by 𝑄   
    𝑄   − 

    leading to: 

𝑐 ̅  
𝑎𝑝𝑝  

𝑐𝑗 𝑡−1
𝑎𝑝𝑝

−𝑐𝑗 𝑚𝑖𝑛
𝑎𝑝𝑝

 −𝑙𝑗
𝑖𝑛𝑠−𝛼𝑗ℎ𝑗 𝑡

𝑖𝑛𝑠  
𝑄𝑗 𝑡
𝑖𝑛𝑠1−𝑙𝑗

𝑖𝑛𝑠−𝛼𝑗ℎ𝑗 𝑡
𝑖𝑛𝑠

𝑄𝑗 𝑡−1
𝑖𝑛𝑠 𝑙𝑗

𝑖𝑛𝑠+𝛼𝑗ℎ𝑗 𝑡
𝑖𝑛𝑠

−𝑄𝑗 𝑡−1
𝑖𝑛𝑠

𝑄𝑗 𝑡
𝑖𝑛𝑠−𝑄𝑗 𝑡−1

𝑖𝑛𝑠 + 𝑐  𝑚  
𝑎𝑝𝑝

                                           (16) 



𝑄   
    depends on the inspection policy applied to supplier   in learning cycle 𝑡, 𝑄   

    

𝑄   − 
   +         , the inspection ratio      being a decision variable in the model: 

𝑐 ̅  
𝑎𝑝𝑝  

𝑐𝑗 𝑡−1
𝑎𝑝𝑝

−𝑐𝑗 𝑚𝑖𝑛
𝑎𝑝𝑝

 −𝑙𝑗
𝑖𝑛𝑠−𝛼𝑗ℎ𝑗 𝑡

𝑖𝑛𝑠  
(𝑄𝑗 𝑡−1

𝑖𝑛𝑠 +𝑞𝑗 𝑡𝑓𝑗 𝑡)
1−𝑙𝑗

𝑖𝑛𝑠−ℎ𝑗 𝑡
𝑖𝑛𝑠

𝑄𝑗 𝑡−1
𝑖𝑛𝑠 𝑙𝑗

𝑖𝑛𝑠+𝛼𝑗ℎ𝑗 𝑡
𝑖𝑛𝑠

−𝑄𝑗 𝑡−1
𝑖𝑛𝑠

𝑞𝑗 𝑡𝑓𝑗 𝑡
+ 𝑐  𝑚  

𝑎𝑝𝑝
                               (17) 

5. The minimization cost model 

Prevention, appraisal and failure costs are combined into a total cost function to minimise 

in each learning cycle. 

5.1 Prevention cost 

To reduce the appraisal and failure costs, instead of generic induced learning variables as 

in Wang, Plante, & Tang (2013), the training hours are made explicit as the induced 

learning source, which does not limit the applicability of our proposal to other induced 

learning sources. The external and internal training activities generate in learning cycle 𝑡 

the expected prevention cost 𝐸𝑃     due to item  : 

𝐸𝑃     𝑐 
 𝑢𝑝ℎ   

 𝑢𝑝 + 𝑐 
   ℎ   

                                                                                                 (18) 

The first and the second terms refer to the external and internal training costs, 

respectively. 

5.2 Appraisal cost 

The cost incurred in cycle 𝑡 due to the inspection of item   depends on the number of 

inspected items          and therefore on the inspection policy adopted. From Equation 16, 

the expected appraisal cost for item   in cycle 𝑡 is as follows: 

𝐸𝐴      𝑐 ̅  
𝑎𝑝𝑝                                                                                                                   (19) 

5.3 Failure cost 

The expected failure cost depends on when the failure is detected leading to different 

unitary failure costs for the inbound inspection site and the subsequent 

assembly/production stage: 

𝐸𝐹     (𝑐 
  𝑏    + 𝑐 

  (      )) 𝑛𝑐                                                                                   (20) 



5.4 Total cost 

Combining Equations 18, 19, and 20 for all the items, the total cost function to minimize is: 

𝑚𝑖𝑛∑ (𝐸𝑃    + 𝐸𝐴    + 𝐸𝐹    )
 
 =                                                                                     (21) 

s. t. 

ℎ   
 𝑢𝑝 ≤ 𝑚𝑎𝑥ℎ 

 𝑢𝑝     ∀    …                                                                                              (22) 

∑ ℎ   
 𝑢𝑝 ≤ 𝐻 𝑢𝑝 

 =                                                                                                                (23) 

ℎ   
   ≤ 𝑚𝑎𝑥ℎ 

        ∀    …                                                                                               (24) 

∑ ℎ   
   ≤ 𝐻    

 =                                                                                                                 (25) 

∑     
 
 =     ≤ 𝑚𝑎𝑥𝑄

  𝑏                                                                                                     (26) 

∑
𝐸𝐴𝐶𝑗 𝑡 

𝑐ℎ

 
 = ≤ 𝑇𝑚𝑎𝑥

                                                                                                                 (27) 

𝑎 + 𝑏 ℎ   
 𝑢𝑝 <       ∀    …                                                                                               (28) 

𝑙 
   + 𝛼 ℎ   

   <       ∀    …                                                                                             (29) 

0 ≤     ≤       ∀    …                                                                                                     (30) 

ℎ   
 𝑢𝑝  ∈ ℝ     ∀    …                                                                                                        (31) 

ℎ   
    ∈ ℝ     ∀    …                                                                                                         (32) 

    ∈ ℝ     ∀    …                                                                                                            (33) 

The continuous non-linear problem above contains 3  decision variables. Equations 22 

and 23 constrain the number of training hours allocated to the suppliers to not exceed their 

upper bounds, both on the individual suppliers (𝑚𝑎𝑥ℎ 
 𝑢𝑝) and overall (𝐻 𝑢𝑝). Similar 

constraints are imposed in Equations 24 and 25 for the training hours allocated to the 

quality inspectors. Equations 26 and 27 constrain the capacity of the inbound inspection 

site during a learning cycle. Equation 26 imposes an upper bound of the total number of 

inspected items 𝑚𝑎𝑥𝑄  𝑏, a space capacity constraint of the inbound inspection site, and 

the Equation 27  guarantees that the total inspection time does not exceed an upper 

bound 𝑇𝑚𝑎𝑥
   , with 𝑐ℎ equal to the hourly cost of an inspector. The unitary inspection time of 

item   in period 𝑡 is a hidden variable dependent on the learning process modelled in 

Section 4.2 in terms of appraisal costs; which can be obtained as 𝑐 ̅  
𝑎𝑝𝑝 𝑐ℎ⁄ . Equations 28 

and 29 ensure that the learning rates are always less than 1, even when training hours are 

allocated. 



6. Design of experiment 

6.1 Data setup 

The validation of the model was carried out in two experiments: 

i) A test of total cost minimization in a single learning cycle given different inputs. 

ii) A test of the model during consecutive cycles to show the learning-forgetting 

dynamics. 

The first experiment captures the optimizer behaviour in different circumstances by 

validating the single cycle coherence of the model, while the second one captures the 

multi-cycle behaviour of the model by validating its coherence and ability to describe real 

life scenarios. Note that the model is again single-period in the second experiment and is 

simply launched over consecutive cycles.  

In the first experiment, 512 scenarios arise from all the combinations of the variables’ 

values reported in Table 2. These fixed variables are designed to loosen the constraints in 

Equations 22, 23, 24, 25, 26 and 27 and let the optimizer train the supplier and inspector 

up to their maximum cost effectiveness, outlining in each scenario the trade-off 

between     , ℎ   
 𝑢𝑝

 and ℎ   
   . The design choice of implementing a single supplier and a 

single inspector (   ) arises from the need for clarity, while one-dimensional inputs and 

outputs make the optimizer logic simpler and thus the results easier to analyse. 

In the second experiment, 100 consecutive cycles are generated. Each cycle has either a 

replenishment of 500 items (     500) or no replenishment (   𝑚  0), and a cycle with 

replenishment is equivalent in the forgetting process to 250 items not inspected ( ̃  𝑚
    

250). The probability of generating a replenishment cycle is 0.9 and the cycle takes place 

simultaneously for all three suppliers (  3). The values of the variables are outlined in 

Table 3. If there is a replenishment, the decision variables    , ℎ   
 𝑢𝑝

 and ℎ   
    are optimized 

by minimizing the total cost of the model in Equations 21 to 33. If there is no 

replenishment, forgetting takes place as in Equations 13, 14 and 15. 

In Tables 2 and 3, 𝑡0 refers to the last period before the simulation takes place; it differs 

from zero since the cumulated number of items replenished and inspected at the 

beginning of the first period, 𝑄   0 and 𝑄   0
    respectively, does not necessarily equal 1. 

Equations 2 and 10 are used, with ℎ   0
 𝑢𝑝  0 and ℎ   0

    0, to evaluate     0 and 𝑐  0
𝑎𝑝𝑝

. Note 

that the ranges of the autonomous learning rates adopted in both experiments conform, up 

to a scale parameter, to those reported in the literature from many industries (e.g. Dar-EI, 



2000). The induced learning, in absence of reference values, represent the fraction of 

learning hours impacting the learning process. These values are applied in Equations 7, 8, 

14 and 15 to find the equivalent learning rates and adjust the amount of supplied and 

inspected items. 

Equations 28 and 29 are implemented in both experiments as non-strict inequalities: 

𝑎 + 𝑏 ℎ   
 𝑢𝑝 ≤ 0.95     ∀    …                                                                                          (34) 

𝑙 
   + 𝛼 ℎ   

   ≤ 0.95     ∀    …                                                                                         (35) 

This implementation is required to solve the problem using a sequential quadratic 

programming algorithm. 

 

Parameter Min value Max value 

  1 

     0 0.1 0.9 

     100 

𝑄   0 100 

𝑄   0
    100 

𝑚𝑎𝑥𝑄  𝑏 120 

𝐻 𝑢𝑝 16 

𝑚𝑎𝑥ℎ 
 𝑢𝑝

 16 

𝐻    16 

𝑚𝑎𝑥ℎ 
    16 

𝑇𝑚𝑎𝑥
    1000 

𝑎  0.1 0.9 

𝑏  0.1 0.9 

𝑐   0
𝑎𝑝𝑝

 1 10 

𝑐  𝑚  
𝑎𝑝𝑝

 0 



𝑙 
    0.1 0.9 

𝛼  0.1 0.9 

𝑐 
 𝑢𝑝

 1 20 

𝑐 
    1 20 

𝑐 
  𝑏 0 

𝑐 
   1 20 

𝑐ℎ 10 

Table 2. First experiment data. 

 

Parameter Value 

  3 

     0 0.9 

𝑄   0 1 

𝑄   0
    1 

𝑚𝑎𝑥𝑄  𝑏 750 

𝐻 𝑢𝑝 16 

𝑚𝑎𝑥ℎ 
 𝑢𝑝

 8 

𝐻    1.6 

𝑚𝑎𝑥ℎ 
    0.8 

𝑇𝑚𝑎𝑥
    40 

𝑎  0.00862 0.00468 0.00074 

𝑏  0.01 0.01 0.01 

𝑐   0
𝑎𝑝𝑝

 16 

𝑐  𝑚  
𝑎𝑝𝑝

 2 



𝑙 
    0.862 0.468 0.074 

𝛼  0.1 0.1 0.1 

  
 𝑢𝑝

 0.0468 0.0468 0.0468 

  
    0.468 0.468 0.468 

𝑐 
 𝑢𝑝

 50 

𝑐 
    50 

𝑐 
  𝑏 10 

𝑐 
   100 

𝑐ℎ 50 

Table 3. Second experiment data. 

6.2 Data analysis 

In the first experiment, nine variables (     0, 𝑎 , 𝑏 , 𝑐   0
𝑎𝑝𝑝

, 𝑙 
   , 𝛼 , 𝑐 

 𝑢𝑝
, 𝑐 

   , 𝑐 
  ) are 

modified obtaining three results (    ,      , 𝑐   
𝑎𝑝𝑝

). The system described in Equations 21 to 

33 is highly non-linear, thus a linear regression analysis is unlikely to identify meaningful 

relations between inputs and outputs. The aim of the constraint relaxation, embedded in 

the first experiment, is to obtain results that are easier to analyse: the optimizer is 

expected to concentrate either on the supplier,      0, or on the inspector,       , 

training only the most profitable stakeholder and uncovering the implicit trade-offs in the 

system.  

If the results present binary values for     , a decision tree (Appendix 2) is implemented to 

identify under which conditions the optimizer focuses on suppliers or on inspectors, the 

input variables are predictors for the classification problem, and      0 and        are 

two classes. If a linear regression analysis is performed after the classification step, each 

leaf of the tree can be analysed independently. This is thus a different scenario, and the 

variables used to split before such leaf can be discarded. The obtained linear regressions 

are expected to be simpler than the one performed using all the data and more meaningful 

since they focus on specific scenarios. 



7. Results and discussion 

The inspection rate      obtained in first experiment is either 0 or 1. In fact the optimizer, 

which is free of constraints, either inspects all the replenished items or none of them 

depending on the scenario variables. Figure 2 depicts the decision tree obtained using the 

impurity gain as the split criterion and not restricting the tree depth, the resulting leaves are 

pure. 

 

 

Figure 2. Decision tree classifying the inspection rate in the first experiment. 

 

The optimizer first discriminates between 𝑐 
     and 𝑐 

   20; in the first case the unitary 

outbound failure cost is low, thus inspections are not needed (     0), while in the 

second case inspections might be necessary. If 𝑐 
   20, the optimizer discriminates 

between 𝑐   0
𝑎𝑝𝑝    and 𝑐   0

𝑎𝑝𝑝   0; in the first case the unitary appraisal cost is low, thus the 

optimizer leverages it by inspecting all the replenished items (      ). If 𝑐   0
𝑎𝑝𝑝   0 the 

optimizer discriminates between      0  0.  and      0  0.9; in the first case the initial 

rate of non-conforming units is low, thus the optimizer does not schedule any inspection 

(     0), while in the second case a significant number of non-conforming units leads to 

the optimizer inspecting everything (      ). 

Table 4 outlines the fixed relations between     , ℎ   
 𝑢𝑝

 and ℎ   
   . If no replenished item is 

inspected (     0), the inspectors are not trained, in fact training the inspectors would 

𝑐 
  <  0.5 𝑐 

    0.5

𝑐   0
𝑎𝑝𝑝

< 5.5 𝑐   0
𝑎𝑝𝑝

 5.5

     0 < 0.5      0  0.5

     0

     0

      

      



only lead to costs with no added benefits. If all the replenishment items are inspected 

(      ), the suppliers are not trained, inspections are carried out in any case and the 

unitary failure cost for units detected inbound 𝑐 
  𝑏 is zero, thus there is no need to train the 

suppliers and decrease the rate of non-conforming units      . It should be noted that the 

converse of these cases is not necessarily true, no replenished items inspected (     0) 

does not necessarily lead to supplier’s training and full replenished item inspection 

(      ) does not necessarily lead to inspector’s training. For instance, a case with a high 

unitary outbound failure cost 𝑐 
   and low initial unitary appraisal cost 𝑐   0

𝑎𝑝𝑝
 could lead to full 

inspection (      ) without any need for any further improvement in the inspector, as 𝑐   0
𝑎𝑝𝑝

 

is already low. 

 

     0 ℎ   
    0 

       
ℎ   
 𝑢𝑝  0 

Table 4. Fixed relations between output variables. 

 

Each leaf in Figure 2 can be individually analysed with a linear regression, whose objective 

is to obtain either the values of ℎ   
    or ℎ   

 𝑢𝑝
 using the variables as features. If a subset of 

variables can accurately predict ℎ   
    or ℎ   

 𝑢𝑝
, then those are the variables evaluated by the 

optimizer in that scenario. Conversely, the subset of variables that are non-significant for 

the prediction are disregarded by the optimizer’s logic. 

The analysis is carried out for each leaf as follows: 

1. Only the cases categorized in the leaf at hand are used for linear regression. 

2. An initial linear regression without interactions is carried out using all the variables 

with more than one value as features. If there is no inspection (     0) then ℎ   
 𝑢𝑝

 is 

predicted, while if there is an inspection (      ), the regression predicts ℎ   
   . 

3. A t-test is carried out for each variable to assess its significance, with p-values 

higher than 0.05 leading to discarding. 

4. A new regression is carried out with the remaining variables, including the 

interactions among variables as features. The new regression is preferred if an F-

test between the two results in a p-value lower than 0.05. 

5. A new regression is carried out including more complex interactions and executing 



an F-test at each stage. The analysis stops if no more interactions can be included 

or the F-test reveals no significance; this last case leads to the last significant 

model. 

Table 5 contains the significant variables for each leaf, the predicted variable, the mean 

squared error obtained, and the R-squared statistics. In all cases the most significant 

model is always the one with all the possible interactions included. 

 

 

Fixed variables 

values 

Significant 

variables 

Predicted 

variable 
MSE R 

𝑐 
     

𝑎  

𝑏  

𝑐 
 𝑢𝑝

 

     0 

ℎ   
 𝑢𝑝

 6.67   0−7   

𝑐 
   20 

𝑐   0
𝑎𝑝𝑝    

𝑙 
    

𝛼  

𝑐 
    

ℎ   
     .38   0−7   

𝑐 
   20 

𝑐   0
𝑎𝑝𝑝   0 

     0  0.  

𝑎  

𝑏  

𝑐 
 𝑢𝑝

 

ℎ   
 𝑢𝑝

 6.38   0−8   

𝑐 
   20 

𝑐   0
𝑎𝑝𝑝   0 

     0  0.9 

𝑙 
    

𝛼  
ℎ   
    8.7   0−8   

Table 5. Results of the regression at each leaf. 

 

Table 5 shows the coherence in the optimizer’s decisions. In the leaves with no inspection 

(     0), the number of training hours for the supplier ℎ   
 𝑢𝑝

 is determined by accounting 

for the autonomous 𝑎  and induced 𝑏  learning rate of the supplier as well as the unitary 

training cost 𝑐 
 𝑢𝑝

 and the initial rate of nonconforming units      0. In the leaves with full 

inspection (      ), the number of training hours for the inspectors ℎ   
    is determined by 



accounting for the autonomous 𝑙 
    and the induced 𝛼  learning rate of the inspector as 

well as the unitary training cost 𝑐 
   . It should also be noted that the variables used in the 

nodes are evaluated in the node itself and thus do not appear in the decision process used 

in the subsequent leaves. 

The only regression that can be tri-dimensionally plotted in Figure 3 is in the last row of 

Table 5, corresponding to the last leaf of the tree in Figure 2. In this case the number of 

training hours increases in a non-linear fashion as the autonomous 𝑙 
    and the induced 𝛼  

rate of the inspector decreases. The optimizer allocates the maximum number of training 

hours while satisfying Equation 35. 

 

 

Figure 3. Linear regression predicting ℎ   
    as a function of 𝑙 

    and 𝛼 . 

 

The results of the second experiment are shown in Figures 3, 4, 5, where a dotted line 

represents the supplier or inspector 1, a dashed line represents the supplier or inspector 2, 

and a solid line, the supplier or inspector 3. Figure 4 presents 𝑐   
𝑎𝑝𝑝

 and shows that 

inspectors 1 and 2 are trained reaching very low 𝑐   
𝑎𝑝𝑝

 and 𝑐2  
𝑎𝑝𝑝

 while inspector 3 is never 

trained and, as a result, no unit from supplier 3 is ever inspected ( 3   0 ∀𝑡). Figure 5 

depicts      , and indicates that most of the training is allocated to suppliers 2 and 3, thus 

supplier 1 presents a much higher       overall. Figure 6 depicts the total cost for each: 

Given a set of consecutive learning cycles, the total cost decreases rapidly reaching a 

plateau and, if a forgetting cycle takes place, it increases sharply undoing most of the past 

learning. There is no steady-state as learning and forgetting push in turn the total cost in 

different directions.  

From an optimization standpoint, Figures 3, 4 and 5 reveal an overall preference for 



suppliers and inspectors 1 and 2 over supplier and inspector 3. In fact, the presence of 

multiple stakeholders generates trade-off scenarios where choices are made not only 

between       and 𝑐   
𝑎𝑝𝑝

 within the same supplier/inspector couple, but also between 

different stakeholders competing for a limited amount of resources (e.g. ℎ   
 𝑢𝑝

and ℎ   
   ).  

Figures 6 to 10 show these trade-offs by analysing how each decision variable (e.g. ℎ   
 𝑢𝑝

) 

in a period 𝑡 is affected by both the previous state of the system (𝑐   − 
𝑎𝑝𝑝  ∀ ,       −  ∀ , 

    −  ∀ ,     − 
    ∀ ) and the other decision variables (e.g. ℎ2  

 𝑢𝑝
, ℎ3  

 𝑢𝑝
, ℎ   

   , ℎ2  
    and ℎ3  

   ). In 

Figure 7, ℎ   
 𝑢𝑝

 does not depend on other suppliers or inspectors, and a low      coupled 

with a high rate of      −  is what triggers the training. In Figure 8, ℎ2  
 𝑢𝑝

 depends not only 

on supplier and inspector 2 but also on supplier and inspector 1. For instance, from the 

second branch of the decision tree, if      is low then the training hours are assigned to 

supplier 1 instead. To simplify the classification, the single case with ℎ2  
 𝑢𝑝  3.92 is not fed 

to the decision tree. Overall ℎ2  
 𝑢𝑝

 follows a more complex logic than ℎ   
 𝑢𝑝

, factoring in not 

only  2   and   2  −  but also 𝑐2  − 
𝑎𝑝𝑝

: a low 𝑐2  − 
𝑎𝑝𝑝

 results in ℎ2  
 𝑢𝑝  0 as inspector 2 takes 

care of the non-conforming units.  

In Figure 9, ℎ3  
 𝑢𝑝

 depends only on inspector 1 through 𝑐   − 
𝑎𝑝𝑝

. If 𝑐   − 
𝑎𝑝𝑝

 is low, supplier 3 is 

not trained. There is no relation between ℎ3  
 𝑢𝑝

 and the other features of inspector or 

supplier 3. In Figure 10, ℎ   
    depends only both on supplier and inspector 1, similarly to 

ℎ   
 𝑢𝑝

: training takes place in cases of high      −  and ℎ   
 𝑢𝑝

, when it is the most impactful. 

In Figure 11, ℎ2  
    behaves similarly to ℎ3  

 𝑢𝑝
 given that ℎ2  

    does not depend on inspector or 

supplier 2 features but only on   3  − .  

 



 

Figure 4. Unitary appraisal cost for each learning cycle. 

 

 

Figure 5. Rate of non-conforming units for each learning cycle. 

 



 

Figure 6. Total cost for each learning cycle. 

 

 

Figure 7. Number of training hours assigned to supplier 1 for each learning cycle. 
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Figure 8. Number of training hours assigned to supplier 2 for each learning cycle. 

 

 

Figure 9. Number of training hours assigned to supplier 3 for each learning cycle. 
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Figure 10. Number of training hours assigned to inspector 1 for each learning cycle. 

 

 

Figure 11. Number of training hours assigned to inspector 2 for each learning cycle. 

8. Conclusions and further research agenda 

Supplier training is receiving increasing attention as a part of a broad supplier 

development strategy. However, there are still few mathematical models and decision 

support systems designed to allocate budget-constrained resources to training activities. In 

this paper have addressed this allocation problem. Starting with a total quality cost function 

composed of prevention, appraisal, and failure costs, a further training stakeholder was 

identified, that is the quality inspectors operating within the inbound inspection site. Finally, 

the inspection rates applied to suppliers were considered as the third type of decision 

variables.  

The analytical interaction between suppliers, quality inspectors, and inspection policies 

has never been tackled before but, in our work, it was made possible by a total quality 

function. In fact, every development activity, such as training, is strictly related to learning-

forgetting curves, where the improvement achieved (the decrease in failure rate, in our 

ℎ   
    0.8ℎ   

    0

     −  < 0.88      −   0.88

ℎ   
    0

ℎ   
 𝑢𝑝

<  ℎ   
 𝑢𝑝

  

ℎ2  
    0.8ℎ2  

    0

  3  −  < 0.62   3  −   0.62



case) is the effect of manageable control variables. Training hours are control variables 

leading to induced learning-forgetting, along with the production/inspection volume as 

autonomous learning-forgetting sources. Suppliers and quality inspectors are subjected to 

organisational and individual learning-forgetting mechanisms, respectively, which have 

never been undertaken jointly in a total cost function. In our opinion, this is a further 

contribution of our proposal. 

A single-period non-linear optimisation model is proposed and validated by two 

experiments: the first considers 512 different single-period mono-supplier scenarios and 

gauges the optimizer logic; the second computes a multi-period multi-supplier case in 

order to assess the system capability of managing longer time frames and trade-offs 

between the control variables.  

From a methodological viewpoint with regards to the results analysis, an approach based 

on decision trees was applied in order to improve the interpretability of the achieved 

results. This is a new idea with future potential when too many decision variables prevent 

standard statistics from being applied. In fact, the results obtained are case-sensitive, but 

the decision trees showed that the presence of multiple stakeholders generates trade-off 

scenarios where choices are made not only within the same supplier/inspector couple but 

also between different stakeholders competing for a limited amount of resources.    

Our proposal has some limitations however, which we plan to address in future research. 

First, the failure costs due to non-conforming units increase from the inbound inspection 

site to the downstream stages, but they are not affected by experience. Hence, learning-

forgetting effects in the reworking could be added to the model. Moreover, the inspection 

process was considered as error-free, thus type-I and type-II errors could be added to the 

model. Finally, the learning-forgetting process induced by the training was modelled by 

means of the standard power law curve. A cognitive model of memory decay could thus be 

adopted and might help solve the problem of allocating massed vs spaced training hours. 

Appendix 1 

At the end of cycle 𝑡    the parameters      −  and 𝑄   −  are available while, using a 

one-period-ahead formulation,     0 is unknown. A value for     0 can be obtained from 

Equation 1 assuming      −  and 𝑄   −  are generated using the same learning rate as 

     : 

    0       − (𝑄   − )
𝑎𝑗+𝑏𝑗ℎ𝑗 𝑡

𝑠𝑢𝑝

                                                                                         (36) 



Equation 1 and 36 lead to: 

           − (𝑄   − )
𝑎𝑗+𝑏𝑗ℎ𝑗 𝑡

𝑠𝑢𝑝

(𝑄   )
−𝑎𝑗−𝑏𝑗ℎ𝑗 𝑡

𝑠𝑢𝑝

                                                                  (37) 

This simplifies into Equation 3. 

The integral of Equation 3 is the number of non-conforming units from supplier   during 

cycle 𝑡: 

𝑛𝑐    ∫      − (
𝑄𝑗 𝑡−1

𝑄
)
𝑎𝑗+𝑏𝑗ℎ𝑗 𝑡

𝑠𝑢𝑝

𝑑𝑄
𝑄𝑗 𝑡
𝑄𝑗 𝑡−1

                                                                             (38) 

which can be simplified to: 

𝑛𝑐         − (𝑄   − )
𝑎𝑗+𝑏𝑗ℎ𝑗 𝑡

𝑠𝑢𝑝

∫ (𝑄)
−𝑎𝑗−𝑏𝑗ℎ𝑗 𝑡

𝑠𝑢𝑝

𝑑𝑄
𝑄𝑗 𝑡
𝑄𝑗 𝑡−1

                                                        (39) 

And is solved as: 

𝑛𝑐         − (𝑄   − )
𝑎𝑗+𝑏𝑗ℎ𝑗 𝑡

𝑠𝑢𝑝

[
(𝑄)

1−𝑎𝑗−𝑏𝑗ℎ𝑗 𝑡
𝑠𝑢𝑝

 −𝑎𝑗−𝑏𝑗ℎ𝑗 𝑡
𝑠𝑢𝑝 ]

𝑄𝑗 𝑡−1

𝑄𝑗 𝑡

                                                             (40) 

𝑛𝑐    
𝑁𝐶𝑗 𝑡−1

 −𝑎𝑗−𝑏𝑗ℎ𝑗 𝑡
𝑠𝑢𝑝 (𝑄   − )

𝑎𝑗+𝑏𝑗ℎ𝑗 𝑡
𝑠𝑢𝑝

((𝑄   )
 −𝑎𝑗−𝑏𝑗ℎ𝑗 𝑡

𝑠𝑢𝑝

 (𝑄   − )
 −𝑎𝑗−𝑏𝑗ℎ𝑗 𝑡

𝑠𝑢𝑝

)                       (41) 

That simplifies in Equation 4. 

Appendix 2 

Given a dataset with 𝑚 datapoints, {�⃗�  𝑦 } 𝑖    . .  𝑚, each input vector being n-

dimensional, �⃗� ∈ 𝑅
  ∀𝑖, and each output being binary, 𝑦 ∈ {0  } ∀𝑖, the aim of a decision 

tree is to predict 𝑦  given �⃗� . 

A decision tree (e.g. Figure 9) is composed of splits, branches and leaves. Each split 𝑠𝑘 

sends an input vector �⃗�  requiring prediction through one of two branches, 𝑏𝑘   and 𝑏𝑘 2, 

based on its value along one input variable  . If 𝑥   < 𝑐𝑘 �⃗�  is sent to branch 𝑏𝑘  otherwise 

it is sent to 𝑏𝑘 2 where 𝑐𝑘 is a cut point associated with the split 𝑠𝑘. A branch can lead to a 

split, where �⃗�  is sorted again, or to a leaf 𝑙ℎ where a prediction over 𝑦  is made and the 

process stops. 



 

Figure 9. Example of decision tree. 

A decision tree is constructed (trained) using a dataset and starting from the first branch, if 

all the outputs are equal, the branch becomes a leaf predicting such output regardless of 

the input, otherwise a cut point is created. Following the cut point logic, the dataset is 

divided into two branches leading to other splits. At this stage each branch contains a 

subset of the original dataset, if the outputs of a subset are all equal the branch becomes a 

leaf node predicting such an output, otherwise a cut point is created, and the training 

continues. Each cut point is generated by selecting the variable and the value maximizing 

the impurity gain: 

∆𝐼  𝑛𝐼 + 𝑛 𝐼  𝑛2𝐼2                                                                                                        (42) 

where 𝐼 is the Gini impurity in the cut point, 𝐼  is the Gini impurity in the first branch, and 𝐼2 

is the Gini impurity in the second branch. 𝑛 is the number of datapoints in the cut point, 𝑛  

is the number of datapoints that will end in the first branch, and 𝑛2 is the number of 

datapoints that will end in the second branch. 

The Gini impurity in a cut point or in a branch is: 

𝐼  𝑝0(  𝑝0) + 𝑝 (  𝑝 )                                                                                               (43) 

where 𝑝0 is the probability that a datapoint in the cut point or branch has 𝑦  0, and 𝑝  is 

the probability a data point in the cut point or branch has 𝑦   . This probability is 

computed as: 

𝑝0  
 

|𝑦𝑖=0|
                                                                                                                          (44) 

𝑝  
 

|𝑦𝑖= |
                                                                                                                          (45) 

where |𝑦  0| is the number of data points, in the cut point or branch with 𝑦  0, and 

𝑥   < 𝑐 

𝑙 

𝑙2

𝑠 

𝑥    𝑐 

𝑠2

𝑏   𝑏  2

𝑙3

𝑥   < 𝑐2

𝑏2  𝑏2 2

𝑥    𝑐2



|𝑦   | is the number of data points in the cut point or branch with 𝑦   . 
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