
26/04/2024 11:03

Improving the Performance of Thinning Algorithms with Directed Rooted Acyclic Graphs / Bolelli, Federico;
Grana, Costantino. - 11752:(2019), pp. 148-158. (Intervento presentato al convegno 20th International
Conference on Image Analysis and Processing, ICIAP 2019 tenutosi a Trento, Italy nel Sep 9-13)
[10.1007/978-3-030-30645-8_14].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

Springer Verlag

This is the peer reviewd version of the followng article:

Improving the Performance of Thinning
Algorithms with Directed Rooted Acyclic Graphs

Federico Bolelli and Costantino Grana

Dipartimento di Ingegneria “Enzo Ferrari”
Università degli Studi di Modena e Reggio Emilia

Via Vivarelli 10, Modena MO 41125, Italy
{name.surname}@unimore.it

Abstract. In this paper we propose a strategy to optimize the per-
formance of thinning algorithms. This solution is obtained by combin-
ing three proven strategies for binary images neighborhood exploration,
namely modeling the problem with an optimal decision tree, reusing
pixels from the previous step of the algorithm, and reducing the code
footprint by means of Directed Rooted Acyclic Graphs. A complete and
open-source benchmarking suite is also provided. Experimental results
confirm that the proposed algorithms clearly outperform classical imple-
mentations.

Keywords: Thinning · Skeletonization · Optimization · Decision Trees
· Binary Image Processing.

1 Introduction

Thinning is a fundamental algorithm used in many computer vision and image
processing tasks, which aims at providing an approximate and compact represen-
tation of the elements (objects) inside images. It can be defined as the successive
removal of outermost layers of an object until only a skeleton of unit width re-
mains [10]. Firstly introduced in the 1950 as a data compression strategy [11], the
thinning procedure is nowadays used as a pre- or post-processing step in many
different applications, ranging from medical imaging [33,34] to handwritten text
recognition [7,19] and fingerprint analysis [22]. Therefore, having an efficient and
effective algorithm is extremely important.

In the literature, a lot of approaches to solve the problem have been detailed.
The algorithm proposed by Zhang and Suen (ZS) in [35] is one of the most
famous and used, given its efficiency and simplicity. This algorithm is based on
the 8-neighbor connectivity and exploits two sub-iterations that are iteratively
performed to remove pixels and obtain the final result. In [8], Chen and Hsu
(CH) improved the output visual appearance of the Zhang-Suen approach, by
fixing some corner cases, and proposed a lookup table (LUT) solution to speed
up the process.

Holt et al. [20] tackled the problem by a different perspective and proposed
an improvement on the Zangh-Suen technique which requires less iterations, at

II Federico Bolelli and Costantino Grana

P9 P2 P3

P8 P1 P4

P7 P6 P5

(a)

P2𝑌𝑌P9𝑌𝑌

P1𝑌𝑌P8𝑌𝑌

P7𝑌𝑌 P6𝑌𝑌

P2𝑋𝑋 P3𝑋𝑋

P6𝑋𝑋

P1𝑋𝑋

P5𝑋𝑋

P4𝑋𝑋
P3𝑌𝑌

P9𝑋𝑋

P4𝑌𝑌

P5𝑌𝑌

P8𝑋𝑋

P7𝑋𝑋

(b)

Fig. 1. Naming convention for the pixel in the neighborhood of P1 (a) and their overlap
when the mask is shifted for processing the next pixel (b).

the expense of examining a larger neighborhood (from 3 × 3 to 4 × 4). Even
though the algorithm solves some of the ZS drawbacks, the need to access more
pixels makes it slower, especially when implemented on sequential machines [16].

The algorithm by Guo and Hall [15] allows to better cope with 2× 2 squares
and diagonal lines inside images using a set of rules that is very similar to the
one proposed by Lü and Wang [25].

These solutions have been proposed some decades ago, but are still com-
monly used [22,33,34] and included in many image processing libraries, such as
OpenCV [27].

Given its intrinsically iterative nature the thinning procedure is expensive
and usually very slow, especially when applied on high resolution images. Any-
way, a lot of approaches have been proposed to improve performances without
affecting the output result. Besides the already mentioned LUT technique, an
efficient neighborhood exploration technique based on decision trees has been
applied on the ZS algorithm [13]. The authors experimentally proved that the
use of an optimal Decision Tree (DTree) allows to dramatically reduce the num-
ber of memory accesses to be performed in order to explore the neighborhood,
thus improving the overall performance of the algorithm, even when compared
to implementations based on lookup table.

Both of these approaches miss a classical optimization strategy used when
working with local neighborhoods: when the scanning mask moves horizontally
most of the pixels have already been read in the previous step (Fig. 1), so only
the rightmost column needs to be read, and the others can be obtained by
just shifting the positions of the previously inspected ones. This optimization
approach is typically used with average/box filtering, running median [21], and
Connected Components Labeling [18]. A solution for combining this prediction
with DTrees was introduced in [12].

Moreover, in [3,6], a novel approach to model decision problems as Directed
Rooted Acyclic Graphs (DRAGs) was introduced. Differently from DTrees, in
which the same set of conditions required to reach the corresponding leaf may
be checked in multiple subtrees, in a DRAG, being it a graph, these could be
merged together. Even though this approach does not save any condition check
with respect to the use of a DTree, it allows to sensibly reduce the number of

Improving Thinning Algorithms with Directed Rooted Acyclic Graphs III

Algorithm 1 Two subiteration thinning algorithm
1: function Iteration(I, O, k)
2: O ← I
3: changed← false
4: for all p ∈ L(I) do
5: if I(p) = 1 then
6: if should_remove(I, p, k) then
7: O(p)← 0
8: changed← true
9: return changed

10: procedure Thinning(I, O)
11: repeat
12: changed0 ← Iteration(I,O, 0)
13: changed1 ← Iteration(O, I, 1)
14: until ¬changed0 ∧ ¬changed1

machine instructions, and thus the impact on instruction cache. Indeed, the code
generated from a DRAG will include the same checks only once.

With this paper we extend the DRAG model in order to apply it on state-
of-the-art thinning algorithms and improve their performance. Moreover, we
apply a solution to include a prediction strategy with DRAGs. To evaluate the
effectiveness of our proposals and compare them with existing implementations,
an open-source C++ benchmarking system has also been developed. The source
code of the benchmark, as well as the proposed algorithms, is available in [31].

2 Thinning Algorithms

Many thinning algorithms belong to the class of parallel thinning algorithms [23]:
every pixel is analyzed considering its neighborhood values in the current image,
but the result is written into a different output mask, so that the procedure can
be easily implemented on massively parallel architectures.

We consider three classical algorithms, which work with biased subiterations:
at each iteration both subiterations must be performed and if neither of them
modifies the image, the algorithm finishes. At each subiteration, the image is
scanned and for each foreground pixel we check if the pixel should be removed
(Algorithm 1).

The notation used in the algorithms is summarized here. Given I, an image
defined over a two dimensional rectangular lattice L, and I(p) the value of pixel
p ∈ L, with p = (px, py), we define the neighborhood of a pixel as follows:

N (p) = {q ∈ L | max(|px − qx|, |py − qy|) ≤ 1} (1)

Two pixels, p and q, are said to be neighbors if q ∈ N (p), that implies p ∈
N (q). From a visual perspective, p and q are neighbors if they share an edge

IV Federico Bolelli and Costantino Grana

Algorithm 2 Removal logic functions for ZhangSuen and ChenHsu algorithms
1: function A(P)
2: return (¬P2 ∧ P3) + (¬P3 ∧ P4) + (¬P4 ∧ P5) + (¬P5 ∧ P6)+
3: (¬P6 ∧ P7) + (¬P7 ∧ P8) + (¬P8 ∧ P9) + (¬P9 ∧ P2)

4: function B(P)
5: return P2 + P3 + P4 + P5 + P6 + P7 + P8 + P9

6: function ZS_should_remove(I, p, k)
7: P ← I(N (p))
8: if k = 0 then
9: c← P2 ∧ P4 ∧ P6;
10: d← P4 ∧ P6 ∧ P8;
11: else
12: c← P2 ∧ P4 ∧ P8;
13: d← P2 ∧ P6 ∧ P8;
14: return (A(P) = 1) ∧ (2 ≤ B(P) ≤ 6) ∧ ¬c ∧ ¬d

15: function CH_should_remove(I, p, k)
16: P ← I(N (p))
17: if k = 0 then
18: c← P2 ∧ P4 ∧ P6;
19: d← P4 ∧ P6 ∧ P8;
20: f ← P2 ∧ P4 ∧ ¬P6¬P7¬P8

21: g ← P4 ∧ P6 ∧ ¬P2¬P8¬P9

22: else
23: c← P2 ∧ P4 ∧ P8;
24: d← P2 ∧ P6 ∧ P8;
25: f ← P2 ∧ P8 ∧ ¬P4¬P5¬P6

26: g ← P6 ∧ P8 ∧ ¬P2¬P3¬P4

27: return (2 ≤ B(P) ≤ 7) ∧ ((A(P) = 1) ∧ ¬c ∧ ¬d)∨
28: (A(P) = 2) ∧ (f ∨ g))

or a vertex. The set defined in Eq. 1 is called 8-neighborhood of p. In a binary
image, meaningful regions are called foreground (F), and the rest of the image
is the background (B). Following a common convention, we will assign value 1
to foreground pixels, and value 0 to background. The conditions for foreground
pixel removal depend on the neighborhood and the algorithm flavor. Following
the original notation of Zhang and Suen, pixels are enumerated in clockwise
order, with the current pixel being P1.

Algorithm 2 and Algorithm 3 provide a detailed summary of the algorithms
proposed by Zhang and Suen, Chen and Hsu and Guo and Hall. In all of them, k
represents the subiteration index: k = 0 during the first subiteration and k = 1
during the second one. Support logic functions are used such as A(P), which is
the number of 01 patterns in clockwise order, and B(P), which is the number
of non zero neighbors of P1. The basic idea is to remove pixels at foreground

Improving Thinning Algorithms with Directed Rooted Acyclic Graphs V

Algorithm 3 Removal logic function for GuoHall algorithm
1: function GH_should_remove(I, p, k)
2: P ← I(N (p))
3: C ← ((¬P2) ∧ (P3 ∨ P4)) + ((¬P4) ∧ (P5 ∨ P6))+
4: ((¬P6) ∧ (P7 ∨ P8)) + ((¬P8) ∧ (P9 ∨ P2))
5: N1← (P9 ∨ P2) + (P3 ∨ P4) + (P5 ∨ P6) + (P7 ∨ P8)
6: N2← (P2 ∨ P3) + (P4 ∨ P5) + (P6 ∨ P7) + (P8 ∨ P9)
7: N ← min(N1, N2)
8: if k = 0 then
9: m← (P6 ∨ P7 ∨ ¬P9) ∧ P8

10: else
11: m← (P2 ∨ P3 ∨ ¬P5) ∧ P4

12: return (C = 1) ∧ (2 ≤ N ≤ 3) ∧ ¬m

connected components edges (i.e., the block should not be totally foreground),
without splitting that component.

Chen and Hsu [9] observed that given the eight neighbors of P1 the outcome
of the conditions is known, thus they built two lookup tables (LUT) for the
two subiterations and used the pixel values as bits for the index of the LUT.
This allows to save all the operations required to compute A(P), B(P) and the
other two conditions, adding only one memory access. The same approach can
obviously be applied to the GuoHall rules.

3 Techniques for Performance Optimization

The LUT approach suggests that thinning techniques can be modeled as decision
tables [29]. A decision table is a tabular form that presents a set of conditions
and their corresponding actions. A statement section reports a set of conditions
which must be tested and a list of actions to perform. Each combination of
condition entries (condition outcomes) is paired to an action entry. In the action
entries, a column is marked to specify whether the corresponding action is to be
performed or not. The aforementioned thinning algorithms can thus be modeled
as a decision table in which the conditions are given by the current pixel and its
neighborhood, and the only two possible actions are removing the current pixel
or not. By plugging the subiteration index k as another condition, this results
in a 10 conditions decision table (1024 rules).

The definition of decision tables requires all conditions to be tested in order to
select the corresponding actions to be executed. Testing the conditions requires
to access the corresponding pixel in the image, so solutions to avoid checking
conditions allow to improve the algorithm computational requirements.

With a dynamic programming technique, Grana et al. [14] showed how to
build an optimal decision tree that, by saving many memory accesses, resulted
in a considerable improvement in execution times.

Following [12], we observe that it is possible to include prediction in the
DTree, by keeping track of the examined pixels on the path to reach a leaf, and

VI Federico Bolelli and Costantino Grana

P1

1 - 1

0

P6

1

P4

0

P4

1

P5

0

P3

1

P2

0

2 - 2

1

0 P3

1

0

3 - 2

1

P5

0

3 - 5

1

2 - 3

0

P2

1

3 - 4

0

2 - 4

1

P3

0

P5

1

1

P2

0

1 P5

0

0 1

2 - 11

0

P2

1

3 - 12

0 iter

1

2 - 13

0

P3

1

2 - 14

0

3 - 15

1

1 - P1

0

P6

1

P4

0

P4

1

P5

0

P9

1

1

P7

0

1

P2

0

0

P3

1

1P9

0

0 1

P7

0

P3

1

0

2 - 6

1

2 - 7

0

P2

1

2 - 8

0

P7

1

3 - 9

0

2 - 9

1

P9

0

P5

1

1

P3

0

1

P2

0

1

P7

0

1

0 0

P2

1

P9

0

iter

1

0

2 - 12

1 0

P3

1

0

P7

1

0 P9

1

0

2 - 15

1

2 - 1 - 1

3 - P4

P5

0

P9

1

1

P3

0

1

0

0

P3

1

0

1

4 - P4

0

P5

1

0

2 - 16

1

5 - P6

P4

0

P4

1

P5

0P9

1

1

0

0

P3

1

0

iter

1

1

P5

0

1

3 - 10

0

0

1

6 - P6

1

P4

0

P5

0

P9

1

1

P2

0

1

00

P3

1

0

P2

1

0 1

7 - P6

1P4

0

01

8 - P6

1

P4

0

0

1

9 - P6

1

P4

0

1

P5

0

1 0

10 - P4

1 0

11 - P4

P5

0

P9

1

1

P2

0

1

P3

0

1 0

0

P3

1

0

P2

1

0

iter

1

1

P5

0

1 0

12 - P4

P3

0

P5

1

1 P2

0

1 0

0

iter

1

0

P2

1

1

P3

0

3 - 17

0

3 - 18

1

13 - P4

P2

0

P5

1

0

iter

1

1

P5

0

0

1 0

iter

1

0

P2

1

1

P3

0

0

2 - 18

1

14 - P4

0 P5

1

0

iter

1

0

1

15 - P4

0

P5

1

0

iter

1

1

0

16 - P4

P9

0

P5

1

0

1

0

iter

1

0

P2

1

1

P3

0

0

P9

1

0 1

17 - P4

0 P5

1

0

iter

1

0

1

18 - P4

0

1

Fig. 2. Final DRAG for Zhang and Suen thinning algorithm. The octagonal shaped
root is the starting node for the first pixel in a line, double circles are roots from which
the algorithm will restart after reaching a leaf (the first number is their id), ellipses
are decisions and rectangles are leaves. The first number in leaves is the action to be
performed (1=do nothing, 2=don’t remove, 3=remove), while the second number is
the next tree to be used. The special case (root 2) is marked as a double rectangle to
stress that this root is also a leaf. Best viewed on the online version.

there selecting a different tree which employs only the unknown pixels. While
this requires a pretty tedious work, the number of possible combinations is quite
limited and it is doable. For instance, for the ZS algorithm, we obtain 18 different
reduced trees. Its possible to note that P8 disappears from all trees, because it
is always known from the previous step (it was P1). Moreover a degenerate case
happens, because if P4 was a background pixel, the next trees will have a root
which directly contains the action “do nothing”.

Additionally, as introduced in [3], a transformation from a DTree to a DRAG
can be performed by substituting all equal subtrees with a single instance by
making every parent node point to that unique exemplar. We can traverse the
tree and, for every subtree, search an equal one and immediately perform the
substitution. This transformation does not depend on the order in which the
original tree is traversed. As already said, getting to a leaf still requires all the
original checks, so the benefit of implementing decisions with DRAGs is that of

Improving Thinning Algorithms with Directed Rooted Acyclic Graphs VII

reducing the code footprint. A visualization of the resulting graph for the Zhang
and Suen algorithm is shown in Fig. 2.

4 Comparative Evaluation

The proposed algorithms are evaluated by comparing their performance with
state-of-the-art implementations. There are many variables that could influence
the performance of an algorithm in terms of execution time: the machine ar-
chitecture and the operating system on which tests are performed, the adopted
compiler and its optimization settings, code implementation and last but not
least the data on which algorithms are tested. In order to ensure experiment re-
producibility and allow researchers to test and compare the algorithms on their
own settings, an open-source benchmarking system called THeBE (the THin-
ning evaluation BEnchmark) has been designed and released. The source code
of THeBE and the algorithms implementations are available in [31].

Experimental results reported and discussed in this Section are obtained
running THeBE on an Intel Core i7-4790K CPU (with 4×32 KB L1 cache,
4×256 KB L2 cache, and 8 MB of L3 cache), under Windows (64 bit) OS and
using the MSVC 19.16.27030.1 compiler with all optimizations enabled.

Tests have been performed on four different datasets that cover most of the
scenarios in which the thinning operation is usually applied:

– Hamlet is a set of 104 images, scanned from a version of the Hamlet found on
the Gutenberg Project [17]. Images have an average amount of 2.71 million
of pixels to analyze. This set of images has been already used in a previously
published paper to measure the performance of thinning algorithms [14].

– Tobacco800 is composed of 1290 document images and it is a realistic collec-
tion for document image analysis research. These documents were collected
and scanned using a wide variety of equipment over time. Images size ranges
from 1200× 1600 to 2500× 3200 pixels [1,24,30].

– XDOCS is a collection of high resolution historical document images taken
from the large number of civil registries available since the constitution of
the Italian state [2,4,5]. XDOCS is composed of 1677 images with an average
size of 4853×3387.

– Fingerprints counts 960 fingerprint images taken from three fingerprint veri-
fication competitions (FCV2000, FCV2002 and FCV2004) [26]. Images were
collected by using low-cost optical sensors or synthetically generated. In or-
der to fit them for a thinning application, fingerprints have been binarized
using an adaptive threshold [28] and then negated. Resulting images have a
size varying from 240× 320 up to 640× 480 pixels.

All images are provided in 1 bit per pixel PNG format, with 0 being back-
ground and 1 being foreground. The aforementioned datasets can be automati-
cally downloaded during the installation of THeBE or they can be found in [32].

The results of the comparison are reported in Fig. 3. For convenience, all the
acronyms used in this section are summarized in the following. ZS identifies the

VIII Federico Bolelli and Costantino Grana

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

ZS ZS_LUT

ZS_TREE

ZS_DRAG *

GH GH_LUT

GH_TREE *

GH_DRAG *

CH CH_LUT

CH_TREE *

CH_DRAG *

Ex
ec

ut
io

n
Ti

m
e

[m
s]

15.09

10.40

6.49

4.63

17.26

9.93

5.70
4.51

11.31

7.57

4.98
3.49

(a) Fingerprints

 0

 20

 40

 60

 80

 100

 120

ZS ZS_LUT

ZS_TREE

ZS_DRAG *

GH GH_LUT

GH_TREE *

GH_DRAG *

CH CH_LUT

CH_TREE *

CH_DRAG *

Ex
ec

ut
io

n
Ti

m
e

[m
s]

110.32

90.47

60.89
53.33

125.88

101.24

66.37
58.09

108.16

88.72

60.59
51.24

(b) Hamlet

 0

 0.1

 0.2

 0.3

 0.4

 0.5

ZS ZS_LUT

ZS_TREE

ZS_DRAG *

GH GH_LUT

GH_TREE *

GH_DRAG *

CH CH_LUT

CH_TREE *

CH_DRAG *

Ex
ec

ut
io

n
Ti

m
e

[s
]

0.42

0.32

0.22
0.18

0.50

0.39

0.25
0.22

0.40

0.31

0.21
0.17

(c) Tobacco800

 0

 0.5

 1

 1.5

 2

 2.5

 3

ZS ZS_LUT

ZS_TREE

ZS_DRAG *

GH GH_LUT

GH_TREE *

GH_DRAG *

CH CH_LUT

CH_TREE *

CH_DRAG *

Ex
ec

ut
io

n
Ti

m
e

[s
]

2.47

1.94

1.44

1.15

3.05

2.34

1.62
1.38

2.41

1.92

1.37
1.14

(d) XDOCS

Fig. 3. Average run-time test on different datasets. Results are obtained under Win-
dows (64 bit) OS with MSVC 19.16.27030.1 using an Intel Core i7-4790K CPU. For
the sake of readability numbers are given in ms in (a) and (b), while they are give in
s in (c) and (d). Our proposals are identified with ∗. Lower is better.

Zang and Suen algorithm originally presented in [35], GS is the algorithm by
Guo and Hall [15], and CH is the algorithm proposed by Chen and Hsu in [8].
Moreover, the acronym LUT identifies the lookup table implementation of a
given algorithm, TREE represents the version of the algorithm based on optimal
decision trees (thus without prediction), and DRAG identifies the application of
the complete pipeline proposed. It is important to note that both the “standard”
and LUT versions of the algorithms also use prediction, avoiding to read pixels
that have already been read in the previous step.

All the variations of a given algorithm (standard, LUT, TREE, and DRAG)
differ only in execution time, and always produce the same output on the same
input image. This is directly verified by THeBE.

Keeping in mind that the three thinning algorithms (ZS, GH, and CH) pro-
duce different results, and should be selected based on the task needs, we can
observe that CH always shows the best performance. As reported in literature,
the use of LUT always improves performance of about 25% with respect to the
standard.

Even thought the LUT version of the algorithms employs prediction, the
implementation based on optimal decision trees, which does not, performs better
(about 50% wrt the standard). This can be explained considering how the LUT

Improving Thinning Algorithms with Directed Rooted Acyclic Graphs IX

and the TREE version of the algorithms work. The prediction applied on the
LUT table is able to avoid the condition check of six pixels at each step of the
scanning phase. On the other hand, the TREE version requires to check up to 9
pixels in the worst case but just one pixel in the best one. On average, it is able
to avoid the read of more than six pixels at each step of the scanning phase.

The DRAG version of the algorithms, combining the benefit of both predic-
tion and decision trees, always improves for an average total speed-up of about
60% compared to the the standard. The speed-up of DRAG with respect to
TREE is 20% for ZS and CH and 15% for GH on average.

5 Conclusion

In this paper, a systematic approach to minimize the number of memory accesses
during neighborhood exploration has been applied to three widely employed
iterative parallel thinning algorithms. The reported results clearly demonstrate
that a significant improvement can be obtained on the state-of-the-art.

The availability of a public and open-source system (THeBE) allows re-
searchers and practitioners to really test the best solutions on their specific
environment, and to possibly further improve them in the future.

References

1. Agam, G., Argamon, S., Frieder, O., Grossman, D., Lewis, D.: The Complex Doc-
ument Image Processing (CDIP) Test Collection Project. Illinois Institute of Tech-
nology (2006)

2. Bolelli, F.: Indexing of Historical Document Images: Ad Hoc Dewarping Technique
for Handwritten Text. In: Italian Research Conference on Digital Libraries (IR-
CDL). pp. 45–55. Springer (2017)

3. Bolelli, F., Baraldi, L., Cancilla, M., Grana, C.: Connected Components Labeling
on DRAGs. In: International Conference on Pattern Recognition (ICPR). pp. 121–
126. IEEE (2018)

4. Bolelli, F., Borghi, G., Grana, C.: Historical Handwritten Text Images Word Spot-
ting Through Sliding Window Hog Features. In: 19th International Conference on
Image Analysis and Processing (ICIAP). pp. 729–738. Springer (2017)

5. Bolelli, F., Borghi, G., Grana, C.: XDOCS: An Application to Index Historical
Documents. In: Italian Research Conference on Digital Libraries (IRCDL). pp.
151–162. Springer (2018)

6. Bolelli, F., Cancilla, M., Baraldi, L., Grana, C.: Connected Components Labeling
on DRAGs: Implementation and Reproducibility Notes. In: Reproducible Research
in Pattern Recognition (RRPR). pp. 89–93. Springer (2018)

7. Chaudhuri, B.B., Adak, C.: An approach for detecting and cleaning of struck-out
handwritten text. Pattern Recognition 61, 282–294 (2017)

8. Chen, Y.S., Hsu, W.H.: A modified fast parallel algorithm for thinning digital
patterns. Pattern Recognition Letters 7(2), 99–106 (1988)

9. Chen, Y.S., Hsu, W.H.: A modified fast parallel algorithm for thinning dig-
ital patterns. Pattern Recogn Lett 7(2), 99–106 (1988). https://doi.org/DOI:
10.1016/0167-8655(88)90124-9

https://doi.org/DOI: 10.1016/0167-8655(88)90124-9
https://doi.org/DOI: 10.1016/0167-8655(88)90124-9

X Federico Bolelli and Costantino Grana

10. Deutsch, E.S.: Thinning Algorithms on Rectangular, Hexagonal, and Triangular
Arrays. Communications of the ACM 15(9), 827–837 (1972)

11. Dinneen, G.: Programming pattern recognition. In: Proceedings of the Western
Joint Computer Conference. pp. 94–100. ACM (1955)

12. Grana, C., Baraldi, L., Bolelli, F.: Optimized Connected Components Label-
ing with Pixel Prediction. In: Advanced Concepts for Intelligent Vision Systems
(ACIVS). pp. 431–440. Springer (2016)

13. Grana, C., Borghesani, D.: Optimal decision tree synthesis for efficient neighbor-
hood computation. In: Proceedings of the XI Conference of the Italian Association
for Artificial Intelligence (AIXIA). pp. 92–101. Reggio Emilia, Italy (2009)

14. Grana, C., Borghesani, D., Cucchiara, R.: Decision Trees for Fast Thinning Al-
gorithms. In: 20th International Conference on Pattern Recognition (ICPR). pp.
2836–2839 (2010)

15. Guo, Z., Hall, R.W.: Parallel Thinning with Two-Subiteration Algorithms. Com-
munications of the ACM 32(3), 359–373 (1989)

16. Hall, R.W.: Fast Parallel Thinning Algorithms: Parallel Speed and Connectivity
Preservation. Communications of the ACM 32(1), 124–131 (1989)

17. The Hamlet Dataset, http://www.gutenberg.org, accessed on 2019-05-02
18. He, L., Zhao, X., Chao, Y., Suzuki, K.: Configuration-Transition-Based Connected-

Component Labeling. IEEE Transactions on Image Processing" 23(2), 943–951
(2014)

19. He, S., Schomaker, L.: DeepOtsu: Document enhancement and binarization using
iterative deep learning. Pattern Recognition 91, 379–390 (2019)

20. Holt, C.M., Stewart, A., Clint, M., Perrott, R.H.: An Improved Parallel Thinning
Algorithm. Communications of the ACM 30(2), 156–160 (1987)

21. Huang, T., Yang, G., Tang, G.: A fast two-dimensional median filtering algo-
rithm. IEEE Transactions on Acoustics, Speech, and Signal Processing 27(1), 13–
18 (1979)

22. Khodadoust, J., Khodadoust, A.M.: Fingerprint indexing based on minutiae pairs
and convex core point. Pattern Recognition 67, 110–126 (2017)

23. Lam, L., Lee, S.W., Suen, C.Y.: Thinning Methodologies—A Com-
prehensive Survey. IEEE T Pattern Anal 14(9), 869–885 (1992).
https://doi.org/http://dx.doi.org/10.1109/34.161346

24. Lewis, D., Agam, G., Argamon, S., Frieder, O., Grossman, D., Heard, J.: Building a
test collection for complex document information processing. In: Proceedings of the
29th annual international ACM SIGIR conference on Research and development
in information retrieval. pp. 665–666. ACM (2006)

25. Lü, H., Wang, P.S.P.: A Comment on “A Fast Parallel Algorithm for Thinning
Digital Patterns”. Communications of the ACM 29(3), 239–242 (1986)

26. Maltoni, D., Maio, D., Jain, A., Prabhakar, S.: Handbook of Fingerprint Recogni-
tion. Springer Science & Business Media (2009)

27. Documentation of the thinning function in OpenCV, https://docs.opencv.org/
4.0.0/df/d2d/group__ximgproc.html#ga37002c6ca80c978edb6ead5d6b39740c,
accessed on 2019-05-02

28. Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern recog-
nition 33(2), 225–236 (2000)

29. Schutte, L.J.: Survey of decision tables as a problem statement technique. CSD-
TR 80, Computer Science Department, Purdue University (1973)

30. The Legacy Tobacco Document Library (LTDL). University of California, San
Francisco (2007)

http://www.gutenberg.org
https://doi.org/http://dx.doi.org/10.1109/34.161346
https://docs.opencv.org/4.0.0/df/d2d/group__ximgproc.html#ga37002c6ca80c978edb6ead5d6b39740c
https://docs.opencv.org/4.0.0/df/d2d/group__ximgproc.html#ga37002c6ca80c978edb6ead5d6b39740c

Improving Thinning Algorithms with Directed Rooted Acyclic Graphs XI

31. Source code of the THeBE benchmarking system, https://github.com/prittt/
THeBE, accessed on 2019-05-02

32. The THeBE dataset, http://aimagelab.ing.unimore.it/files/THeBE_dataset.
zip, accessed on 2019-05-02

33. Uslu, F., Bharath, A.A.: A recursive Bayesian approach to describe retinal vascu-
lature geometry. Pattern Recognition 87, 157–169 (2019)

34. Wang, X., Jiang, X., Ren, J.: Blood vessel segmentation from fundus image by a
cascade classification framework. Pattern Recognition 88, 331–341 (2019)

35. Zhang, T., Suen, C.Y.: A Fast Parallel Algorithm for Thinning Digital Patterns.
Communications of the ACM 27(3), 236–239 (1984)

https://github.com/prittt/THeBE
https://github.com/prittt/THeBE
http://aimagelab.ing.unimore.it/files/THeBE_dataset.zip
http://aimagelab.ing.unimore.it/files/THeBE_dataset.zip

	Improving the Performance of Thinning Algorithms with Directed Rooted Acyclic Graphs

