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Abstract—The large spread of online shopping has led com-
puter vision researchers to develop different solutions for the
fashion domain to potentially increase the online user experience
and improve the efficiency of preparing fashion catalogs. Among
them, image-based virtual try-on has recently attracted a lot of
attention resulting in several architectures that can generate a
new image of a person wearing an input try-on garment in a
plausible and realistic way. In this paper, we present VITON-
GT, a new model for virtual try-on that generates high-quality
and photo-realistic images thanks to multiple geometric trans-
formations. In particular, our model is composed of a two-stage
geometric transformation module that performs two different
projections on the input garment, and a transformation-guided
try-on module that synthesizes the new image. We experimentally
validate the proposed solution on the most common dataset
for this task, containing mainly t-shirts, and we demonstrate
its effectiveness compared to different baselines and previous
methods. Additionally, we assess the generalization capabilities of
our model on a new set of fashion items composed of upper-body
clothes from different categories. To the best of our knowledge, we
are the first to test virtual try-on architectures in this challenging
experimental setting.

I. INTRODUCTION

Online fashion shopping has seen a significant increase
in recent years, ranking first for development and growth
compared to any other e-commerce sector. Today, all brands
present their catalog on the web using either their own online
shop, third-party online sales, or both. Computer vision and
pattern recognition communities have devoted large research
efforts to make e-commerce customer experience more effi-
cient and enjoyable, resulting in different solutions for the
fashion domain that range from clothing retrieval [1], [2]
and segmentation [3] to compatibility prediction [4], [5], [6]
and virtual try-on [7], [8], [9]. While the retrieval of similar
garments and the compatibility prediction of different clothing
items can improve the visual search of online products, virtual
try-on architectures can offer the opportunity to try on clothes
in a virtual way. Although in some specific cases it can be
considered as a rather mature technique (e.g. the virtual try-
on of eyeglasses on a customer face), the virtual try-on of a
generic garment is still an open problem.

In spite of its intrinsic complexity, virtual try-on is an
important challenge and a priority for e-commerce companies.
Indeed, it could help the users decision on what to buy and
potentially reduce the returns of clothes already purchased.
It could also make the supply chain more efficient and less
expensive, limiting the number of fashion models required
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Fig. 1: Given an in-shop garment and a front-view target
model, virtual try-on architectures generate a new image where
the input garment is virtually worn while preserving the
body pose and identity of the target model. The proposed
architecture, VITON-GT, can generate high-quality images
thanks to multiple geometric transformations.

to wear a specific garment and reducing the time of manual
photo-composition. Both points, and especially the second,
become an issue in time of pandemic lock-down, when it is
imperative to maximize the distance among workers. Using
virtual try-on solutions, fashion companies would require only
a few shots of a particular fashion model to present many
different clothes in their catalogs.

The virtual try-on task can be approached both in 2D and 3D
space. In 3D space, the approach asks for advanced computer
graphic techniques to build human 3D models and render the
try-on results [10], [11]. These methods can achieve high
quality details and can maintain the physical properties of
the clothes, but their large-scale deployment is limited by
the excessive manual labor and expensive devices to collect
necessary 3D data. Conversely, a fully 2D pipeline on simple
RGB data is inexpensive for data preparation and potentially
automatic. With this premise, recent work has proposed to
reformulate virtual try-on as a conditional image generation
problem, thus not requiring 3D information [7], [8]. Given a
try-on garment and a target person, a virtual try-on architecture
can generate a new image of the target person wearing the
input piece of clothing while maintaining the original body
pose and identity of the wearer (Fig. 1).

In this paper, we propose a novel solution for virtual try-on
and we introduce a new image-based architecture. To preserve
the original characteristics of the input clothes (e.g. colors,



textures, and logos), we devise a multi-stage geometric trans-
formation technique that can reduce distortions and artifacts in
the generated images. We call this new architecture VITON-
GT, which stands for VIrtual Try-ON with Geometric Trans-
formations. Specifically, the proposed model includes two
different components: a two-stage geometric transformation
module and a transformation-guided try-on module. In the
first module, our model learns an affine transformation to
move the input in-shop clothes closer to the target body pose,
and a warping transformation to generate a warped version
of the input garment by taking advantage from the previous
transformation result. Then, the second component exploits the
previously learned geometric transformations and generates
the try-on result. To increase the realism of generated images,
we integrate adversarial training in the second stage of our
architecture and we devise a finetuning strategy that further
improves the visual quality of output images. We validate our
solution on the standard dataset for image-based virtual try-
on [7] in comparison to different baselines and previously pro-
posed methods. Additionally, we assess the ability of VITON-
GT to generalize to different try-on clothing categories. To that
end, we collect a proprietary set of upper-body clothes from
YOOX, an online fashion retailer, that we use as additional
analysis of our model performance.

To summarize, our main contributions are as follows:
• We propose a new image-based virtual try-on model that

can generate high-quality images thanks to a two-stage
geometric transformation of the input garment and a
generative network that effectively exploits the learned
geometric transformations.

• We demonstrate the effectiveness of the proposed solu-
tion both in terms of visual similarity with ground-truth
images and realism of the generated try-on results.

• We show the ability of our model to generalize to a
collected set of upper-body clothes, consisting of 5, 000
images of five different clothing categories. To the best
of our knowledge, we are the first to propose this chal-
lenging experimental setting for virtual try-on.

II. RELATED WORK

In this section, we provide an overview of the most im-
portant image-based virtual try-on architectures focusing on
single- and multi-pose guided models.

Image-based Virtual Try-On. Han et al. [7] were the first to
present a virtual try-on network relying only on 2D informa-
tion to transfer the clothes to the corresponding region of the
target person. They proposed an encoder-decoder architecture
to synthesize a coarse clothed person wearing the target
clothing item, and a refinement network to composite the
warped garment with the previous coarse result and generate
the final output. After this work, many different image-based
virtual try-on networks have been introduced [8], [12], [13],
[14], [15]. Among them, Wang et al. [8] proposed a learnable
transformation module to align in-shop clothes to the target
person thus improving the generation of virtual try-on images.

On a similar line, Jandial et al. [16] presented a two-stage
training pipeline consisting of a coarse-to-fine warping net-
work and a texture transfer network conditioned on a learned
segmentation mask and trained with a triplet loss strategy to
further improve the quality of try-on results. More recently,
Yang et al. [17] proposed to generate the semantic layout of
the target person and predict whether the corresponding image
content needs to be generated or preserved, thus leading to
more photo-realistic try-on results.

Although all these solutions have focused on the try-on of a
specific garment category (i.e. typically t-shirts), a few models
have tried to generate an image of a model wearing a complete
outfit of different try-on clothes [18], [9]. Specifically, in [18]
the problem is addressed in a paired setting with the gener-
ation of high-resolution images. On the contrary, the model
presented in [9] does not exploit any paired training data and
transfers clothing items selected from various reference images
to a target model.
Multi-Pose Guided Virtual Try-On. While all previous meth-
ods can generate try-on images with the same pose of the input
model, other approaches can deal with multiple poses to guide
the generation [19], [20], [21], [22]. One of the first solutions
in this direction has been presented in [19]. In particular, the
proposed architecture is composed of a human parsing network
to estimate a plausible human parsing with the target clothes
and pose, and a warping network followed by a refinement
stage to generate the final result. Similarly, Hsieh et al. [21]
introduced a new model for this task consisting of three stages:
pose-guided parsing translation, segmentation region coloring,
and salient region refinement. Han et al. [22] presented instead
a model for pose-guided image generation and virtual try-on
that estimates a dense flow between source and target clothing
region. Differently, Dong et al. [23] went beyond image-based
virtual try-on and proposed a video-based solution that learns
to synthesize a video of try-on results based on a person image,
a try-on garment, and a series of target body poses.

III. PROPOSED METHOD

We tackle the problem of 2D single-pose virtual try-on:
given a target image I of a clothed person in a given pose
and a try-on garment c, our goal is to generate a new image Ĩ
in which the same person is wearing the item c maintaining the
original body pose. We propose a new architecture consisting
of two main components: a two-stage geometric transforma-
tion module and a transformation-guided try-on module. Our
method is depicted in Figure 2 and detailed below.

A. Two-Stage Geometric Transformation Module

In this module, we employ two different geometric trans-
formations, namely affine and thin-plate spline, to warp the
in-shop image c of a particular garment.
Affine Transformation. We start from an image I repre-
senting a clothed person, and from the image c of the same
garment taken from the catalog. From I , we extract the 18
keypoints describing the person pose using a state-of-the-art
pose-estimator [24], thus obtaining pk. In this step, information
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Fig. 2: Overview of the proposed architecture. VITON-GT is composed of a two-stage geometric-transformation module that
learns two different geometric transformations, and a transformation-guided try-on module that synthesizes the try-on image
exploiting the previously learned transformations.

about the pose is crucial to align the in-shop piece of clothing
c with the person displayed in I . As a first step, we encode
c and pk using two convolutional networks: Fc,χc and Fp,χp ,
with parameters χc and χp respectively. According to [25],
we perform `2-normalization on the vectors and compute a
correlation map C as follows:

Cijz = Fci,j (c, χc) · Fpm,n
(pk, χp) (1)

where z is the index for the position (m,n). Finally, we
employ a 5-layer neural network to compute the parameters
θ1 for the affine transformation T1.

We recall that an affine transformation is an automorphism
of an affine space. It is a composition of two functions: a
translation and a linear mapping. Using an augmented vector,
it is possible to represent both of them using a single matrix:[

y
1

]
=

[
A b
0 1

]
=

a11 a12 b1
a21 a22 b2
0 0 1

 (2)

We decide to adopt an affine transformation and not a
complete perspective homography because, in virtual try-on,
the deformation in the third dimension is negligible w.r.t. the
normal distance between the camera and the target. In such a
case, affine transformation is very suitable. Additionally, since
affine transformation preserves lines and parallelism, we find
it very effective to maintain perceptual details such as parallel
strips in clothes or logos.

In our architecture, θ1 = {A, b}. Hence, we predict 6
elements in total. After we obtain θ1, we apply the affinity T1
to the in-shop garment c, thus getting c̃1. We aim at bringing
the in-shop clothes as close as possible to the position of
the clothes worn by the target person. For this reason, we
compare c̃1 with ĉ1, computed by applying the ground-truth
homography matrix to the in-shop garment c, using a L1 loss:

LT1 = ‖c̃1 − ĉ1‖1 = ‖T1(c, θ1)− ĉ1‖1 . (3)

This loss acts as a preliminary supervision for our affinity
module. During training, additional signal is given by the
objective function outlined in the following paragraph.

Thin-Plate Spline Transformation. The thin-plate spline
(TPS) is a commonly used basis function to represent coordi-
nate mappings from R2 to R2. The idea of using the TPS to
warp the in-shop clothes for virtual try-on was first presented
in [8]. Since it can easily modify the aspect of a garment to
make it fit a human body in terms of shape and convexity while
operating on a 2D image, it is the standard the facto in this
task. However, our finding is that the results from our previous
module can greatly ease the warping task. For this reason, the
main input for this block is the transformed garment c̃1 from
the affine transformation module. We also employ a person
representation P , which is a 22-channel structure composed
of an 18-channel feature map of human keypoints, an RGB
agnostic representation of the target person, and a binary mask



of the body shape. The three networks and the correlation
function used in this building block are analogous to the
ones used for the affine transformation. Here, we perform
regression to predict the spatial transformation parameters θ2.
These parameters are used, along with the transformed clothes
c̃1, in the TPS transformation module to generate the final
output c̃2 = T2(c̃1, θ2). The loss function used in this step is
a L1 distance between the obtained warped result c̃2 and the
cropped version of the garment ĉ2 obtained from the ground-
truth image:

LT2
= ‖c̃2 − ĉ2‖1 = ‖T2(c̃1, θ2)− ĉ2‖1 . (4)

B. Transformation-Guided Try-On Module

The goal of the previous module is to warp the in-shop
clothing item c according to the pose of the reference person
depicted in I . In this stage, we want to generate an output
image Ĩ representing the reference person wearing c. To that
end, we employ a U-Net architecture [26] consisting in two
main components: a transformation-guided encoder composed
of two different branches (one for try-on clothes and one to
encode person representations), and a try-on decoder.

Transformation-Guided Encoder. In this block we aim at
creating two different representations, one for try-on clothes
c and one for person representations, that our decoder will
then use to synthesize a proper try-on image. To achieve
this goal, we divide our U-Net encoder in two branches with
different learnable parameters. When connecting the clothes
branch to the decoder, we apply the previously learned spatial
transformations. Formally, the skip connections typical of the
U-Net architecture no longer perform an identity mapping, but
compute instead:

T (Ei(c), θ1, θ2) = T2(T1(E
i(c), θ1), θ2), (5)

where Ei(c) indicates the encoded features for the garment c
extracted from the i-th layer of the U-Net encoder.

As input for the person representation branch, we employ
a masked image of the target person pm. To obtain pm, we
remove the information regarding the clothes and the upper
part of the body from I . In this way, the U-Net generator can
only have access to the face, the hair and the lower part of the
body of the target person. Finally, we align and concatenate
the feature maps coming from the two branches.

Try-On Decoder. The goal of our decoder is to generate
the final image of the person wearing the in-shop item of
clothing. To guide the generation of the final image Ĩ , we use
three different losses. The first loss is a pixel-level L1 loss
measuring the distance of the generated and the ground-truth
images:

Lton =
∥∥∥Ĩ − I∥∥∥ . (6)

The second objective is the perceptual loss, also known as
VGG loss [27]. The perceptual loss computes the distance of

the two images (generated and ground-truth) using the features
extracted with a VGG-19 [28] pretrained on ImageNet [29]:

Lvgg =
5∑
i=1

∥∥∥φi(Ĩ)− φi(I))∥∥∥ (7)

where φi(I) are the feature maps of an image I extracted
at the i-th layer of the VGG-19 network. Finally, the try-on
decoder is trained adversarially. We use a conditional GAN
approach similar to the one presented by Wang et al. [30]
for image-to-image translation. In this context, the generator
G and the discriminator D are competing in a process that
aims to optimize a min-max loss Ladv [31]. The generator
gets better and better at synthesizing fake images and the
discriminator at distinguishing real images to fake ones. In
this case, the discriminator is conditioned by both the agnostic
person representation and the in-shop clothes.

C. Training

To train VITON-GT, we adopt a two-stage strategy. First,
we train our geometric transformation module to produce ad-
equate warping results. This stage acts as a sort of pretraining
and helps avoiding unstable training dynamics when learning
the two geometric transformations from scratch. Then, we use
the learned projections to train our try-on module from scratch.
In this phase, it is possible to finetune the parameters of the
previous block to further improve the efficacy of the geometric
transformations.

Two-Stage Geometric Transformation. The final loss used
to train this module is a weighted sum of Eq. 3 and Eq. 4:

LGT = λ1LT1
+ λ2LT2

, (8)

where λ1 and λ2 act as weighting coefficients balancing the
contribution of the two losses to the final training signal.

It is worth noting that in this training step, the affine module
is encouraged to perform not only the oracle projection
(the one aligning the clothes with the targets), but also the
projection that helps the most during the generation of the final
warped result. In this scenario, the error signal coming from
LT2

is free to influence the parameters of the affine module.

Transformation-Guided Try-On. In this second training step,
we aim to learn the optimal parameters to employ in our U-
Net architecture for image synthesis. The objective function
employed in this step is given by a weighted combination of
Eq. 6, Eq. 7, and the adversarial loss:

LTON = ρ1Lton + ρ2Lvgg + ρ3Ladv, (9)

where ρ1, ρ2, and ρ3 are the weighting coefficients for the
three losses. Additionally, since the try-on module is driven by
the set of parameters θ1 and θ2 predicted in the previous block,
we are able to back-propagate the error signal in the geometric
transformation module to further improve the overall quality
of the generated images.



IV. EXPERIMENTAL EVALUATION

In this section, we first present the datasets and evaluation
metrics used in our experiments. Then, we describe all im-
plementation and training details, and evaluate our solution in
comparison with different baselines and previous methods.

A. Datasets
To train and test our model, we first employ the most widely

used dataset for virtual try-on proposed in [7]. Then, we test
the generalization capabilities of our solution on a subset of
upper-body clothes of different categories extracted from the
YOOX fashion catalog1.
VITON Dataset [7]. This dataset contains 16, 253 image
pairs composed of an upper-body garment (i.e. typically a t-
shirt) and a front-view woman model wearing it, both with
a resolution of 256 × 192. Images are divided into training
and test set with 14, 221 and 2, 032 image pairs, respectively.
During evaluation, the image pairs of the test set are rearranged
to form unpaired pairs of clothes and front-view models.
Out-of-Domain Upper-Body Clothes. We collect a pro-
prietary set of upper-body clothes divided in five different
categories: short-sleeve t-shirts, long-sleeve t-shirts, sleeveless
t-shirts, shirts, and sweatshirts. Overall, we collect 5, 000 im-
ages, 1, 000 for each category. To create unpaired image pairs
composed of an upper-body garment and a front-view model,
we randomly select 1, 000 front-view model images from the
VITON dataset that we use to condition our architecture. Also
in this case, all images have a size of 256× 192.

B. Evaluation Metrics
We quantitative evaluate our model by using different eval-

uation metrics that either compare the generated images with
the corresponding ground-truths (i.e. Structural Similarity) or
measure the realism and the visual quality of the generation
(i.e. Frechét Inception Distance, Kernel Inception Distance,
and Inception Score).
Structural Similarity (SSIM, MS-SSIM) estimates the sim-
ilarity between two images. In addition to the standard struc-
tural similarity score (SSIM), we also compute its multi-scale
version (MS-SSIM). In both cases, we compute the SSIM
scores on the VITON paired test set.
Frechét Inception Distance (FID) measures the difference of
two Gaussian distributions [32]. In our experiments, the two
distributions are fitted on Inception-v3 [33] activations of real
and generated images, respectively.
Kernel Inception Distance (KID) measures the squared max-
imum mean discrepancy between Inception-v3 representations
of real and generated images. Following [34], the final KID
values are averaged over 100 different splits of size 100,
randomly sampled from each image set. For ease of the
reader, averaged KID scores and their standard deviations are
multiplied by a factor of 100.
Inception Score (IS) estimates the output statistics of
Inception-v3, pre-trained on real images and applied to gener-
ated ones [35]. Although it has demonstrated to be less reliable

1https://www.yoox.com

TABLE I: Warping quantitative results on VITON test set [7].
We compare our model with CP-VTON that exploits only the
TPS transformation to generate the warped clothes.

Model FID KID IS

CP-VTON [8] (TPS only) 101.12 6.80±0.67 3.31±0.35
VITON-GT (Affine + TPS) 59.53 3.27±0.48 3.40±0.22

Try-on Garment Target Model CP-VTON VITON-GT
(TPS only) (Affine + TPS)

Fig. 3: Warping qualitative results on VITON test set [7].

than FID and KID metrics [36], it is widely used to evaluate
the image quality of virtual try-on architectures [16], [9].

C. Implementation Details

Two-stage Geometric Transformation Module. Both affine
and TPS components include two feature extraction networks,
containing four 2-strided down-sampling convolutional layers
with a kernel size of 4 followed by two 1-strided ones with a
kernel size of 3. Then, a correlation map is computed and
fed to a convolutional network composed of two 2-strided
convolutional layers with a kernel size of 4 followed by
two 1-strided ones with a kernel size of 3. The output is
then passed through a fully connected layer that predicts the
parameters of the two geometric transformations. In the case
of the affine transformation, the fully connected layer predicts
the 6 parameters of the homography matrix defined in Eq. 2
and its weights are initialized to obtain an identity mapping at
the beginning of the training. For the TPS, the fully connected
layer predicts the coordinate offsets of the TPS anchor points
and has an output size of 2 × 5 × 5 = 50. All convolutional
layers are followed by batch normalization.
Transformation-Guided Try-On Module. The two encoders
contain four U-Net blocks, each composed of two convolu-
tional layers with a kernel size of 3 and a 2-strided max
pooling layer with a kernel size equal to 2. The decoder has a
symmetric structure where each max pooling is replaced with
a 2-strided transposed convolutional layer with a kernel size of
2 that upsamples the feature maps. After each up-sampling, the
feature maps are concatenated with the feature maps passed
through skip connections. Each convolutional layer is followed
by instance normalization.
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Fig. 4: Qualitative results on VITON test set [7]. We report the results generated by our complete model, our model without
adversarial training, our model without finetuning and adversarial training, and CP-VTON [8].

TABLE II: Quantitative results on VITON test set [7]. Differ-
ently from the other evaluation metrics, SSIM and MS-SSIM
scores are reported on the paired test set of the dataset.

Model SSIM MS-SSIM FID KID IS

CP-VTON [8] 0.789 0.838 19.04 0.93±0.18 2.61±0.14

VITON-GT (no FT, no Adv. Loss) 0.879 0.919 15.32 0.58±0.19 2.72±0.14
VITON-GT (no Adv. Loss) 0.879 0.921 13.01 0.36±0.12 2.73±0.09
VITON-GT 0.886 0.925 12.45 0.32±0.12 2.76±0.11

The discriminator is composed of three 2-strided and two 1-
strided down-sampling convolutional layers, all with a kernel
size of 4. After each layer, we use instance normalization and
apply Leaky ReLU activation.
Training. To compute the ground-truth predictions ĉ1 for the
affine transformation module, we first extract four vertices
from the garment c, thus approximating a parallelogram. Then,
we take the four keypoints of the body pose corresponding
to the shoulders and the hips, and compute the reference
homography matrix. We first pre-train the two-stage geometric
transformation module for 300k iterations. Then, we train the
transformation-guided try-on module and finetune the rest for
other 300k iterations. For all experiments, we use a batch
size of 8 and Adam optimizer [37] with a learning rate of
0.0001. We set λ1, λ2, ρ1, and ρ2 equal to 1, while we set
the the weight of the adversarial loss ρ3 to 0.125. We run
all experiments on an NVIDIA 2080 Ti GPU taking one day
to train the two-stage geometric transformation module and
around two days to finetune the entire model.

D. Experiments on VITON Dataset

Warping results. To validate the effectiveness of our two-
stage geometric transformation module, we evaluate the visual
quality of the generated warped clothes. Table I reports the

Try-on Garment Target Model VITON-GT Try-on Garment Target Model VITON-GT

Fig. 5: Failure cases on VITON test set.

quantitative results in terms of FID, KID and Inception Score
on VITON test set. For FID and KID metrics, we extract
the Inception-v3 representations of the generated clothes and
those of the target clothes cropped from real images. For this
experiment, we compare our solution with CP-VTON [8] that
only uses TPS transformation to generate the warped clothes.
This comparison can be regarded as an ablation study in which
we remove the affine module from our architecture. As it
can be seen, our model outperforms CP-VTON by a large
margin on all the evaluation metrics, thus demonstrating the
advantages of including the affine geometric transformation.

Fig. 3 shows some qualitative results for this experiment.
Again, we compare the warped clothes generated by our model
with those generated by CP-VTON. The results confirm the
effectiveness of our solution also from a qualitative point
of view. The affine transformation module helps the TPS
generating better warped clothes that are closer to the target
body pose while reducing artifacts and distortions.
Try-on results. In Table II, we report the quantitative results



TABLE III: Quantitative results on different categories of out-of-domain upper-body clothes. Results are reported in terms of
Frechét Inception Distance, Kernel Inception Distance, and Inception Score for each category of the dataset.

Short-Sleeve T-Shirts Long-Sleeve T-Shirts Sleeveless T-Shirts Shirts Sweatshirts

Model FID KID IS FID KID IS FID KID IS FID KID IS FID KID IS

CP-VTON [8] 23.81 0.86±0.16 2.41±0.21 31.92 1.85±0.33 2.66±0.18 31.50 1.98±0.34 2.36±0.20 35.38 2.33±0.38 2.43±0.14 31.89 1.57±0.28 2.63±0.15

VITON-GT (no FT, no Adv. Loss) 22.11 0.76±0.16 2.54±0.12 23.74 0.89±0.22 2.69±0.09 27.52 1.42±0.24 2.47±0.18 28.85 1.49±0.27 2.65±0.18 27.00 1.11±0.21 2.63±0.11
VITON-GT (no Adv. Loss) 20.95 0.61±0.16 2.63±0.17 20.02 0.62±0.16 2.79±0.16 24.30 1.16±0.30 2.47±0.10 25.67 1.18±0.27 2.60±0.17 24.30 0.90±0.17 2.70±0.14
VITON-GT 20.73 0.57±0.15 2.65±0.14 20.83 0.64±0.17 2.81±0.18 22.88 1.01±0.24 2.56±0.16 25.22 1.17±0.27 2.62±0.10 25.59 1.04±0.19 2.76±0.10

Try-on Garment Target Model CP-VTON VITON-GT Try-on Garment Target Model CP-VTON VITON-GT Try-on Garment Target Model CP-VTON VITON-GT

Fig. 6: Qualitative results on different categories of out-of-domain upper-body clothes. For each category, we report three
sample try-on images generated by our model in comparison with those generated by CP-VTON [8].

for the try-on generation task. We compare our complete
model with CP-VTON. As an ablative analysis, we progres-
sively remove the finetuning of the geometric transformation
module, and the contribution given by adversarial training. In
particular, we show the results by training the two modules
of our model separately and by removing the adversarial
loss (i.e. VITON-GT (no FT, no Adv. Loss)) and without
adversarial loss only (i.e. VITON-GT (no Adv. Loss)). While
SSIM and MS-SSIM scores are computed on the paired test
set, all other metrics are evaluated on the unpaired setting.
As it can be seen, all versions of our model achieve better
results than CP-VTON according to all evaluation metrics. In
particular, the superior performance of VITON-GT (no FT,
no Adv. Loss) compared to CP-VTON further demonstrates
the effectiveness of our two-stage geometric transformation
module that can help to improve the results of the entire
pipeline. Moreover, both finetuning and adversarial training
give a significant contribution to the final results.

Fig. 4 shows some qualitative results sampled from VITON
test set. By comparing the images generated by VITON-GT
with those obtained with CP-VTON, we can notice that the

proposed solution can reduce distortions while maintaining
textures and details of the original clothes, thus increasing
the realism of the generation. Additionally, adversarial training
helps to produce lighter and less blurred images (e.g. first row-
left image, third row-left image, and fourth row-right image)
and to avoid loosing important elements of the try-on clothes
(e.g. the left sleeve in the first row-right image).
Failure cases. For a fully insightful analysis, we report some
failure cases in Fig. 5. In these examples, VITON-GT partially
fails to generate correct try-on images. In particular, errors can
be due to different sleeve lengths between try-on and target
model clothes (i.e. first row), to challenging details or shapes
in the original try-on clothes (i.e. second row), or to body
poses that partially overlap with the worn clothes (i.e. third
row).

E. Experiments on Out-of-Domain Upper-Body Clothes

To assess whether our model can generalize to different
piece of clothing from the one contained in the VITON dataset,
we collect a dataset with diverse items and test VITON-GT on
this set of out-of-domain upper-body clothes. In particular, we
experiment with five different categories: short-sleeve t-shirts,



long-sleeve t-shirts, sleeveless t-shirts, shirts, and sweatshirts.
Table III shows the quantitative results on the five considered
categories. Since in this setting there are no image pairs with
try-on garment and corresponding target model, we only report
the results in terms of FID, KID, and Inception Score. We
compare our model with CP-VTON and the two versions of
our model without finetuning and adversarial loss. Overall,
our model obtains the best results according to all evaluation
metrics, surpassing the CP-VTON method on all categories.
When comparing the different versions of our model, it can
be seen that the adversarial training slightly degrades the
performance on long-sleeve t-shirts and sweatshirts while
improving the final results on all other categories. This can
be partially due to the diversity of try-on clothes in these two
categories, which contain almost only long-sleeved clothes and
differ from image pairs used to train the networks.

Finally, Fig. 6 shows some qualitative results on different
categories of out-of-domain upper-body clothes. Each row of
the figure reports three sample results using try-on clothes of
a category of the dataset. As it can be seen, our model is
able to better preserve the original content of try-on clothes
and reduce the distortions caused by a wrong geometric trans-
formation. Additionally, our generated images are in general
more realistic and maintain both the sleeve length of the input
garment and the body pose of the target model.

V. CONCLUSION

We have presented VITON-GT, a new image-based virtual
try-on model that integrates multiple geometric transforma-
tions of the input clothes during the generation of the try-on
result. Specifically, our model includes a two-stage transfor-
mation of the input that can reduce any distortions caused
by a wrong warping operation, and a generative network that
exploits the previously learned transformations to generate
high-quality and more realistic images. Through extensive
experiments on two different datasets, we have demonstrated
the effectiveness of our solution w.r.t. previously proposed
methods. Additionally, we have proposed a novel challenging
setup with out-of-domain items, in which the proposed model
is shown to outperform other models and baselines.
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