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Abstract: We consider the design of a disagreement correction protocol in multi-vehicle systems.
Vehicles broadcast in real-time vital information such as position, direction, speed, acceleration,
intention, etc. This information is then used to identify the risks and adapt their trajectory to maintain
the highest performance without compromising the safety. To minimize the risk due to the use of
inconsistent information, all cooperating vehicles must agree whether to use the exchanged information
to operate in a cooperative mode or use the only local information to operate in an autonomous mode.
However, since wireless communications are prone to failures, it is impossible to deterministically
reach an agreement. Therefore, any protocol will exhibit necessary disagreement periods. In this paper,
we investigate whether vehicles can still cooperate despite communication failures even in the scenario
where communication is suddenly not available. We present a deterministic protocol that allows all
participants to either operate a cooperative mode when vehicles can exchange all the information in a
timely manner or operate in autonomous mode when messages are lost. We show formally that the
disagreement time is bounded by the time that the communication channel requires to deliver messages
and validate our protocol using NS-3 simulations. We explain how the proposed solution can be used
in vehicular platooning to attain high performance and still guarantee high safety standards despite
communication failures.

Keywords: dependable communication protocols; cooperative systems; information quality in
intelligent transportation systems

1. Introduction

Vehicular ad hoc networks (VANETs), just like any other wireless mobile network, are prone to
packet loss in ways that are hard to predict due to the unregulated motion of the transmitting nodes
and other objects in their environment as well as the complex patterns of radio way propagation.
There is a need to ensure that the collected sensor data have enough quality for the intended purposes
and that the vehicular system can monitor its input so that the system control can be made predictable.
We propose a dependable communication protocol that improves the use of data according to their
quality in manners that meet the performance needs, deployment scale, mobility, and criticality of
the applications.

Recently, the US Department of Transportation (US DoT) has announced that all new vehicles
will be equipped with vehicle-to-vehicle (V2V) communication and be able to talk with each other [1].
Connected vehicles open a great variety of applications that will improve the mobility on the
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roads, reduce the greenhouse gas emissions and maintain high safety standards on the roads.
Vehicles broadcast their own sensory information such as localization, direction, speed, acceleration,
intention, etc., and receive this information from nearby vehicles. Currently, dedicated short range
communication (DSRC) devices allow broadcasting up to 10 times per second. This information is used
to identify the risk in real-time and adapt the trajectory accordingly. However, unilaterally changing
the trajectory can propagate the risk to nearby vehicles, creating a cascade effect. To minimize this
phenomenon, all nearby vehicles must be aware of the intention of each other nearby vehicle. In other
words, all nearby vehicles must agree on their trajectory to be used.

Let us consider two trajectory modes: (1) Cooperative mode where the trajectory attains high
performance by considering all the sensory information of every nearby vehicle, i.e., all nearby vehicles
have common knowledge. Therefore, the cascade effects will depend mainly on the time that the
information is disseminated. The cooperative mode is suitable for time-critical applications that attain
optimal performance, such as platooning, unmanaged intersection crossing with minimum waiting time,
etc. Common knowledge requires that every vehicle knows that each other cooperating vehicle knows
the intention of the others. In other words, all vehicles must agree on the trajectory mode to be used.
(2) The autonomous mode where each vehicle computes its trajectory based only on its on-board sensors.
Therefore, the autonomous mode is suitable when vehicles cannot correctly communicate. Although
autonomous trajectories have lower performance than the cooperative trajectories, they are safe even if
no communication is available.

To operate in cooperative mode, all nearby vehicles must be aware that everyone else is in
cooperative mode, i.e., they must have reached an agreement. In a normal operation all the vehicles
receive the message in a timely manner and, consequently, they are able to reach an agreement.
However, wireless communications are prone to failure due to physical phenomenons such as
interference, scattering, multipath fading, etc. Hence, it is impossible to deterministically reach
an agreement [2] (Theorem 5.1). Therefore, any protocol will necessarily exhibit disagreement periods.
We observe that vehicles can still safely cooperate to attain the highest performance even when they
experience communication failures provided that these occur for sufficiently short periods. However,
when vehicles experience long periods of communication failures, the inaccuracy of the information
such as position, speed, intention, etc. increases. Therefore, the safety hazard also increases. Then,
the natural question is whether there exists a protocol that guarantees that the disagreement period is
bounded by a constant time regardless of the period of communication failures.

In this paper, we address the following research question: How can cooperative systems be used
to attain the highest performance without compromising the safety in the presence of communication
failures? In our approach, vehicles operate in cooperative mode with the highest level of performance
when they are able to agree on the last used trajectory. Otherwise, vehicles switch to the autonomous
mode. We present a communication protocol that guarantees that the disagreement periods occur
only for one communication round in the presence of communication failures, which is the minimum
possible since any protocol exhibits disagreement periods.

1.1. Related Work

In the context of distributed algorithms, the term consensus appears in the literature when
referring to different problem definitions. Distributed uniform consensus considers the selection of
exactly one value from a set of values proposed by members of, say, a vehicular system. A common
definition for the exact (uniform) consensus problem requires satisfying the following three properties.

• Agreement: the members always agree on the selected value.
• Validity: the selected value was indeed proposed by a member.
• Liveness: eventually all non-failing members decide on a single value.

We note that this is not the only kind of uniform consensus that appears in the literature [2–4].
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The term approximate consensus [5] refers to a collection of approaches for calculating a function
in a distributed and approximated manner. For example, in the average consensus problem [6],
every member proposes a number and the members need to calculate the average value of these
proposals. The problem motivation also assumes that no member should collect these values and
calculate the average directly, i.e., in a centralized manner. Instead, pair-wise interactions let the
members calculate a number that is not too far from the average. In each interaction, a pair of
nodes adjusts their proposals. For example, the proposal that is higher (among the two that interact)
is reduced by ε and the lower one is raised by ε, where ε is some small predefined constant. This process
continues until the difference between the proposals becomes smaller than the approximation threshold
and the members can decide.

1.1.1. Exact (Uniform) Consensus

The solution of uniform consensus is required to terminate within a bounded time. Termination is
achieved once all members have decided on a common value. This exact version of consensus has
a clear advantage over approximate consensus approaches [5] due to the simplicity of the system
design from the application programmer perspective. The exact consensus approach, in contrast to
the approximate one, rests on a foundation of clearly defined requirements and is amenable to formal
methods and analytical validation.

A number of impossibility results consider distributed consensus in general (see [7–9]). In [2],
the author shows that the presence of communication failures makes it impossible to deterministically
reach uniform consensus (Theorem 5.1) and any r-round algorithm has a probability of disagreement
of at least 1

r+1 (Theorem 5.5). This implies that there are no (deterministic) guarantees that vehicles
can reach consensus within a bounded time in the presence of communications failures. Moreover,
when the communication failures are too frequent and severe, the members might fail to reach
consensus for an unbounded number of consecutive times. We therefore relax the agreement
requirement since we prefer to focus on solutions that offer early fallback strategies against the
risk of having disagreements for more than a constant number of rounds.

The existing literature on uniform consensus algorithms with real-time requirements often does
consider failing members. However, it often assumes the availability of timed and reliable communication
channels. For example, [10] proposes an algorithm that reaches agreement within a period that is sublinear
in the number of members and maximum message delay. In [11], the authors provide a time-optimal
consensus algorithm that reaches consensus in time O(D( f +1)) in the worst case where D is the maximum
message delay and f the maximum number of members that stop (fail) to compute. RTCAST [12] is
a real-time group communication protocol that assumes that availability of a network with a topology of
a ring, such that any two neighbors on the ring communicate via a real-time communication service that
provides QoS guarantees, maintains a connection, overload protection, and fairness. We consider plain
ad-hoc communications in single hop networks that have no QoS guarantees. The real-time local area
network (RTLAN) architecture [13] permits applications to dynamically specify their communication timing
requirements and provides mechanisms to guarantee these requirements. The authors consider several
approaches, such as priority assignment, real-time virtual circuit, and reservation. This work considers
simple ad-hoc communications (in a peer to peer mode) that do not provide the above opportunities.

1.1.2. Approximated Consensus

Approximated consensus estimates the value of a specified function that its input is given in
a distributed manner; each member provides a values proposal. For example, the problem of average
consensus requires members to reach an approximated agreement to the average of their initial values
within a bounded number of communication rounds. Dominguez-Garcia and Hadjicostis consider
an application for average consensus in the area of energy control of resources. The applications of
average consensus also include vehicular systems with recent examples in vehicular coordination,
target tracking in wireless networks and interconnected traffic lights controller.
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The mobile nodes in VANETs can move rapidly. Packet loss can occur due to signal interference
and rapid mobility. Kempe, Dobra, and Gehrke study the connection between distributed gossip
and average consensus. They show how to use uniform gossip for computing sums, averages,
random samples, quantiles to name a few functions. For their settings (that consider synchrony and no
mobility), they show convergence within exponential time. Bènèzit et al. consider weighted-gossip for
dealing with directed networks (that are strongly connected). The literature on weighted consensus
also includes recent studies on optimal weighting matrix for general network topologies as well
as closed-form expressions for the convergence time of algorithms on cycles, paths and grids.
Weighted consensus has a number of important applications, for example, as a basis for object tracking.

Fagnani and Zampieri studied average consensus with a fault model that included link failures.
Kar and Moura studied the same problem and similar model in the area of wireless sensor networks
(WSNs). More recently, Su and Vaidya considered Byzantine behavior under the assumption that
the communication graph does not change. The literature about average consensus also includes
system settings that model mobility via topology changes and communication delays (as long as the
communication delays are bounded by a constant and the network is strongly connected in some
sense, i.e., no permanent joins and leaves). For example, Hadjicostis and Charalambous show that
their version of average consensus converges in the presence of dynamic topology as long as the
communication delays are bounded. Moreover, when the communication delays are minimal, i.e.,
all packets arrive within a single communication round, convergence occurs with 5 to 10 rounds
for the case of fully connected graphs (and the number of rounds increases as the delays become
longer). When there are no communication delays, our algorithm reaches agreement within one or two
communication rounds (for the case of fully connected graphs and within the order of the diameter of
the communication graph for the general case). Moreover, our algorithm recovers within a minimal
number of communication rounds after any finite period of faulty communication.

1.1.3. Membership Services

Group communication systems [14] treat a group of participants as a single communication
endpoint. The group membership service [15–17] monitors the set of recently live and connected
participating system components whereas the multicast service delivers messages to that group under
some delivery guarantees, such as delivery acknowledgment. In this paper, we assume the availability
of a membership service and a best-effort (single round solution) dissemination (multicast) protocol
that has no delivery acknowledgment (but might offer probabilistic guarantees). This combination
of services allows the system to ban failing node using the membership service, and to overcome
transient packet losses using the gossip guarantees.

We clarify that, broadly speaking, membership services sometimes require reaching a uniform
agreement via the execution of a uniform consensus protocol. For example, virtual synchrony does not
require the execution of uniform consensus for delivering multicast messages in total order when there
are no membership changes. In addition, the membership service does not require reaching uniform
consensus in the presence of membership changes as long as the group leader stays up and connected.
However, when the group leader fails, the membership service uses a procedure for achieving uniform
consensus. See for details.

1.1.4. Applications to the Proposed Protocol

The application set of the proposed protocol includes distributed tasks that require: (i) repeated
executions of uniform consensus and (ii) convergence within one communication round, but can
(iii) tolerate disagreement (due to communication failures) for a minimal period. For example,
we consider applications in which the individual vehicles estimate their ability to cooperate according
to the sensory information quality and communicate their maximum supported cooperative operation
mode according to [18,19]. The architectural component presented in [18,19] is called a safety kernel
and it allows the vehicular system to use its sensory data to decide on its current level of service.
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The algorithm presented here is the one that allowed the safety kernel of [18,19] to consider
the data quality of all vehicles when taking this decision. In an earlier version of this work [20],
we proposed the studied solution along with experiments for validating it. Note that this paper adds
the formal correctness proof of that solution, which does not appear in [20].

1.2. Our Contribution

We study an elegant solution for cooperative vehicular systems that have to deal with
communication uncertainties. We base the solution on a communication protocol that, we believe,
can be well understood by designers of safety-critical, automated and cyber-physical systems.
We explain how the designers of fault-tolerant cooperative applications can use this solution to
deal with communication failures when uniformly deciding on the use mode (in the presence of
receiving-side packet loss, i.e., asymmetric packet loss).

We consider cooperative applications that must periodically decide on the operation mode.
Since the consensus problem cannot be deterministically solved in the presence of communication
failures, the system is doomed to disagree on the operation mode (in the presence of communication
failures that are frequent and severe). We bound the period in which the vehicles can be unaware of
such disagreements with respect to the operation mode. We prove that this bound is no more than one
communication round (in a vehicular system that deploys a single-hop network of wireless ad hoc
communication). We also validate the proposed protocol through NS-3 simulations.

We exemplify how the proposed solution helps to guarantee safety while attaining high
performance when vehicles can communicate. We explain how the proposed solution can be used
on vehicular platooning to attain high performance and still guarantee high safety standards despite
communication failures, such as receiving-side packet loss.

1.3. Document Structure

We list our assumptions and define the two problem statements (Section 2, Section 3) before
providing the timed protocol for cooperation with disagreement correction (Section 4) and its
correctness proof (Section 4). As protocol evaluation study, we exemplify its use in the cooperative
vehicular application platooning and validate using computer simulation (Section 5) before the
conclusions (Section 6).

2. System Settings

A vehicular system that uses a vehicle-to-everything network can be seen as a message passing
system that includes a set of n participating members that exchange messages with each other.
We assume that each vehicle pi has access to the a unique network identifier, i. We consider a fully
connected network where each vehicle can communicate with all nearby vehicles. We assume the
access to a group membership service [15–17] that monitors the set of recently live and connected
participants as well as the existence of a best-effort (single round) dissemination (gossip) protocol.
Moreover, every system component has access to a common global clock by calling the function clock()
(such sub-microsecond offsets are widely available and could be implemented, say, using global
positioning systems, GPS). We denote by Sbound the maximum time difference between the clocks
that these vehicles have. For the sake of presentation simplicity, we also assume access to a time
yet unreliable dissemination protocol, such as [21–25]. Namely, the algorithm code of vehicle pi in
members uses gossipSendi(m) to broadcast message m to all vehicles in the set of members within
a known end-to-end delay, D (that can be omitted from the network in an arbitrary manner). In other
words, the network either delivers messages within D from their sending time or omits them in
an adversarial manner. We note that different vehicle-to-everything communication systems support
bounded D values. For example, dedicated short-range communications (DSRC) considers 100 ms
scale values. Recent advances in Device-to-Device (D2D) Communication consider 10 ms scale values,
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where adversarial packet loss can model message delivery delays that exceed these values, say,
upon the handover occurrence and during not-in-coverage periods.

We assume that the communication channels and processors are correct. In other words, there are
no arbitrary failures neither in the processes nor the communication channel. Therefore, all the received
messages are sent by members of the system and arrived without modifications. Further, processors
do not alter the memory arbitrarily.

The algorithm code of vehicle pi uses the event gossipReceivei(j, m) for receiving message m from
pj, see Algorithm 1. We consider synchronous communication rounds of Rlength > D + 2Sbound.

Every vehicle pi executes a program that is a sequence of (atomic) steps. An input event can be
either the receipt of a message or a periodic timer going off triggering pi to start a new iteration of the
do forever loop.

3. The Task

In this section, we present the requirements that the system must satisfy. We start by categorizing
the communication periods according to whether vehicles receive all the messages. Next, we present
the task requirements.

We define the uncertainty period as the period that vehicles might disagree. We say that there was
a communication failure at round r if there exists a vehicle that has not received at least one message
from any other vehicles during round r.

Definition 1 (Stable Communication Period). A stable communication period X[r1, r2] is the period of
r2 − r1 rounds in which the vehicles do not experience communication failures, i.e., all vehicles receive all
messages during these periods. Otherwise, it is called an unstable communication period, denoted by Y[r′1, r′2].

We say that a stable communication period X[r1, r2] is maximal if rounds r1 − 1 and r2 + 1 are in
unstable communication rounds. Analogously, we define a maximal unstable communication period
Y[r′1, r′2]; see Figure 1. Thus, in any run, the communication may go infinitely often through a maximal
stable period to a maximal unstable period and back to another maximal stable period. The system
task is to satisfy requirements 1 to 3.

Definition 2 (Requirements).

1. Certainty Period. Within a bounded prefix of every maximal stable period, there is a suffix which all
vehicles operate in cooperative mode.

2. Bounded Uncertainty Period. During a maximal unstable period, there may be unstable bounded periods
where vehicles operate in different modes.

3. Bounded Disagreement Correction. Within a bounded suffix of every maximal stable period, every
vehicle operates in autonomous mode.

Y [r′1, r
′
2]

r′1 r′2 r2

X[r1, r2]

r1

Figure 1. Maximal unstable communication period Y[r′1, r′2] followed by a maximal stable communication
period X[r1, r2]. where r1 = r′2 + 1

Requirement 1 deals with the best cases scenario, i.e., when messages are delivered in a timely
manner, all vehicles will perform in cooperative mode. Requirement 2 deals with the worst case
scenario, i.e., any period in which vehicles disagree due to failures in the communication is bounded.
While requirement 3 deals with the transition from the best case scenario to the worst case scenario.
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We show that the execution of Algorithm 1 fulfills requirements 1 to 3. Specifically, by the end of
this paper, we demonstrate Theorem 1.

Theorem 1. Algorithm 1 fulfills requirements 1, 2 and 3, where the uncertainty period is bounded by one round.
Moreover, if vehicles do experience communication failures, the disagreement correction holds for at most one round.

4. Timed Protocol for Cooperation with Disagreement Correction

We present the communication protocol that fulfills the requirements. In the protocol, participants
exchange messages until a deadline. These messages can include information, for example, about nearby
vehicles as well as the confidences that each vehicle has about its information. Once everybody receives
the needed information from each other, the participants can locally and deterministically decide on their
actions. In the case of a communication failure, each participant that experiences a failure imposes the
autonomous operation mode for at least one round.

Each vehicle pi ∈ members executes the protocol presented in Algorithm 1. The algorithm
implements a round base solution. It accesses the global clock and checks whether it is time for the
vehicle to send information about the current round (Algorithm 1 , line 15). A vehicle starts sending
messages at a Sbound time from the beginning of each round and Sbound + D before the end of each
round using the gossipSend() interface (line 16). Recall that Sbound is the maximum time difference over
the vehicles and D is the longest time that a message can live in the network. Next, it tests whether
the current round number r points to the current round in time (line 18). A new round starts when
clock()÷ D is greater than r.

At the beginning of every round, the protocol first keeps a copy of the collected data from and the
received information in the set data, and updates the round counter, it then nullifies data and sets the
operation mode to autonomous (lines 19–21). Then, it tests whether everybody has the same operation
mode (line 22). Suppose that there is no communication failure in the previous round and there is not
a disagreement. The protocol sets the operation mode to be sent to the cooperative (line 23). It also
writes to the pathPlanning() interface the received information as well as the operation mode (line 26).

The proposed protocol interfaces with the gossip (dissemination) protocol by sending messages
(gossipSend()) and receiving them (gossipReceive()) periodically. The protocol locally stores the
arriving information from pj ∈ members on each round in data[j] and waits for the round to end before
it finishes accumulating all arriving information. More specifically, for each message that is reported
with the same round, the protocol stores the data from pk, if the message comes directly from pj, (k = j),
or transitively from pj where (k 6= i).

The correctness proof shows that, in the presence of a single communication failure, there could
be at most one disagree round in which vehicles operate in different modes. Moreover, the influence of
that single failure will last for at most two rounds, which is the shortest period possible. Note that
Algorithm 1 handles well any sequence of communication failures.

Algorithm 1 Timed Protocol for Cooperation with Disagreement Correction (code for pi)
1: Constants:
2: members = {p1, p2, ..., pn}: the system vehicles.
3: ⊥: the unavailability symbol denotes a void entry, and the default return value.
4: Sbound: the maximum offset among vehicles.
5: D: the maximum time that a message time can live in the network.
6: Rlength > 2Sbound + D: round size
7: Variables:
8: r ← 0: Current communication round.
9: data[n] = {. . .}: Application data where data[k] is a set that consists of the current operative mode

and the state of vehicle k at round r from member pk.
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Algorithm 1 Cont.

1: Interface
2: gossipSend(): Disseminate information to the members.
3: gossipReceive(): Dispatch arriving messages.
4: readState(): Return the state of the vehicle.
5: pathPlanning(): Computes the path according to the operational mode and the state of the system.
6: Upon gossipReceive(j,< rj, dataj >)
7: if (r = rj) then

8: for all pk ∈ members do

9: if (dataj[k] 6= ⊥ and i 6= k) or (k = j) then

10: data[k]← dataj[k]
11: end if
12: end for
13: end if
14: loop

15: if clock() ∈ (Rlength · r + Sbound, Rlength · (r + 1)− (Sbound + D)) then

16: gossipSend(i,< r, data >)
17: end if
18: if r < clock()÷ Rlength then

19: (s, r)← (data, clock()÷ Rlength)
20: data← {⊥, . . .}
21: mode← autonomous
22: if s[i].mode = s[j].mode∀pj ∈ members then

23: mode← cooperative
24: end if
25: data[i]← {mode, readState()}
26: pathPlanning(s, mode)
27: end if
28: end loop

4.1. Correctness

In this section, we show that Theorem 1 is correct. First, we introduce a variant of the consensus
problem, called (k, f )-stream consensus, that is suitable for a system that requires to reach consensus
infinitely often in a stream of proposed values where the communication channel is unreliable.
(k, f )-stream consensus is a synchronous system of n ≥ 2 vehicles where they have to reach at
least k− f consensus in k consecutive rounds. Intuitively, (k, f )-stream consensus allows having a
disagreement in up to f rounds among k consecutive rounds. Next, we use (k, f )-stream consensus to
show the correctness of Theorem 1.

Problem 1 ((k, f )-stream consensus). It is a synchronous system of n ≥ 2 vehicles with the following properties:

• Agreement. During a period of k rounds, all vehicles must agree on the operation mode for at least k− f
consecutive rounds where f < k.

• Validity. If everyone proposes the cooperative mode during any stable communication round, then the
agreed upon value is the cooperative mode.

• Termination. At the end of each round, every vehicle must decide on the operation mode.

Observe that (1, 0)-stream consensus is equivalent to the classic consensus problem in synchronous
systems. Therefore, (1, 0)-stream consensus cannot be deterministically solved if the communication
channel is unreliable. However, we will show that (2, 1)-stream consensus can be deterministically
solved. In other words, we show that in any two consecutive rounds, vehicles always reach a consensus
in at least one round. Specifically, we show Theorem 2.
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4.2. Theorem 2 and Its Correctness

Theorem 2. Algorithm 1 deterministically solves (2, 1)-stream consensus.

Before providing the proof of Theorem 2, we introduce some lemmas. Let si,j(r) be the messages
that vehicle pi receives from pj at round r. Let si,j(r).mode be the operation mode of j during round
r. First, we will show that at any round r, vehicles only receive messages of the same round from
other vehicles.

Lemma 1. During round r, vehicles do not receive messages from a different round than r.

Proof. Observe that lines 19–26 are executed when r < clock()÷ Rlength. However, since r is set to
clock()÷ Rlength in line 19, they are executed only once at the beginning of each round. When a vehicle
starts a new round, all the messages received in the previous round are stored in the temporal variable
s in line 18 before nullfying the set data in line 20. Therefore, the path planning is obtained from the
messages received during round r− 1.

It remains to show that vehicles at round r do not receive messages from a different round. For the
sake of contradiction, assume that vehicle pi is at round r but it receives a message sent by pj at
a different round. Let us first consider the case where pi receives a message that pj sent at round
r− 1. From the assumptions, |clocki()− clock j()| ≤ Sbound and a message takes at most D time to be
delivered (if it is delivered). Hence, the message must have been sent by pj at time

clock j() ≥ clocki()− Sbound − D
≥ Rlength · r− (Sbound + D).

(1)

From line 15, pj sends a message of round r− 1 if

clock j() < Rlength · (r− 1)− (Sbound + D). (2)

By substituting (2) in (1) and factorizing we have a contradiction since r− 1 6≥ r. Now assume that
pi receives a message that pj sends at round r + 1. Therefore, the message must be sent by pj at time

clock j() ≤ clocki() + Sbound
≤ Rlength · r + Sbound.

(3)

From line 15, pj sends a message of round r + 1 if

clock j() > Rlength · (r + 1) + Sbound. (4)

By substituting (4) to (3) and factorizing we have a contradiction since r + 1 6≤ r.

From the previous lemma, all the messages that pi receives during round r are sent during
round r. We show in the following lemma that Algorithm 1 attains common knowledge during a stable
communication period.

Lemma 2 (Common knowledge in stable communication period). Let X[x1, x2] be a maximal stable
communication period. Then, si,j(r) = sk,j(r) for all pi, pj, pk ∈ members, where r ∈ [x1, x2].

Proof. First, we show that data[i] in Algorithm 1 remains consistent on pi during round r. Assume for
the sake of contradiction that vehicle pi changes its data[i] when receiving a message from vehicle pj.
It must be that k = i since it loads data[k]. However, since the condition ensures that it loads data[k]
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only if either i 6= k or k = j, it must be that k = j. This is a contradiction since i = j = k and messages
are not modified. Therefore, data[i] remains consistent on pi during round r.

We say that a message si,k(r) is sent transitively if pi receives si,k(r) from pj where j 6= k. We show
that the message transitivity maintains the consistency of the messages during a stable communication
period. We argue by contradiction. Assume that pi receives two messages, si,k(r) and s′i,k(r) such that
si,k(r) is sent by pk, s′i,k(r) is sent by pj and si,k(r) 6= s′i,k(r). Consider the first time that si,k(r) and s′i,k(r)
were sent. Observe that pk sent the two messages. This is a contradiction since pk maintains consistent
its own information over each round and the messages are not modified.

From Lemma 1, at the end of the round r the value of data are identical in each vehicle and stored
in s. Therefore, it holds that si,j(r) = sk,j(r) for all pi, pj, pk ∈ members.

Lemma 3. Assume that at a round r due to message lost there are two sets of vehicles where one set is in the
autonomous operation mode and the other set is in cooperative operation mode. Then at round r + 1, every vehicle
agrees on the autonomous operation mode.

Proof. Let A be the subset of vehicles that are in the autonomous operation mode in round r and let
C be the subset of vehicles that are in the cooperative operation mode in round r. Observe that each
vehicle pi ∈ A sends the autonomous operation mode and each vehicle pj ∈ C sends the cooperative
operation mode in round r. At the beginning of round r + 1, each vehicle pi sets the operation mode
according to the following rule:

modei(r + 1) =


cooperative if si,i(r).mode = si,j(r).mode

∀j ∈ members

autonomous otherwise

Consider pi ∈ A. pi either receives the cooperative mode from pj ∈ C or it does not receive it.
In both cases, pi decides autonomous mode since si,i(r).mode 6= si,j(r).mode. Now consider pj ∈ C.
pj either receives autonomous from pi or it does not receive the message. In both cases pi decides
autonomous mode since sj,j(r).mode 6= sj,i(r).mode.

We are ready to prove Theorem 2.

Proof. (Theorem 2)

1. Agreement. We have to prove that in any two consecutive rounds r, r + 1, vehicles can disagree
on the operation mode in at most one communication round. Observe that if they agree on the
operation mode in round r, then the property holds. Assume then that vehicles disagree on the
operation mode in round r. However, from Lemma 3, vehicles agree on the operation mode in
round r + 1.

2. Validity. It follows directly from Lemma 2.
3. Termination. It easily holds since at the beginning of each round, all vehicles decide the operation

mode (lines 18–26).

4.3. Correctness of Theorem 1

We show in Theorem 2 that in every two consecutive rounds, the active vehicles deterministically
agree on the operation mode of at least one round in every two consecutive rounds even if they cannot
communicate. We now use Theorem 2 to prove the main result of the paper.
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Proof. (Theorem 1)

First we show that Algorithm 1 fulfills Requirement 1 of Definition 2 (Certainty Period). Consider
every maximal stable communication period [r1, r2]. From Lemma 2, vehicles have common knowledge,
i.e., si,j(r) = sk,j(r) for all pi, pj, pk ∈ members where r ∈ [r1, r2]. Therefore, during [r1 + 1, r2 + 1] all
vehicles decide to operate in cooperative mode.

Observe that the disagreement correction holds for the first round in the maximal stable communication
period, i.e., r1. Therefore, Algorithm 1 fulfills property 3 (Bounded Disagreement Correction).

To show that Algorithm 1 fulfills property 2 (Bounded uncertainty round) consider a maximal
unstable period Y[r2 + 1, r3]. From Theorem 2 Algorithm 1 deterministically solves (2, 1)-stream
consensus in the period Y[r2 + 1, r3]. Therefore, vehicles may operate in different modes for at most
one consecutive round. The theorem follows.

5. Evaluation

We exemplify the use of Algorithm 1 in the vehicular application platooning also known as
cooperative advance cruise control. In platooning, vehicles keep short headways (the distance
between two cars expressed as time) to reduce the air resistance. Since the gas consumption is
directly proportional to the air resistance, it is desirable to minimize the headways. However, keeping
short headways can be risky if vehicles behave totally autonomously. For example, rear-end crash
events as well as near-crash events usually involve an action of the lead vehicle [26]. Vehicles can
reduce the headway without risk by sharing their vital information such as acceleration. To see this,
assume a vehicular system with n vehicles where each vehicle has a reaction time of at least T units of
time. Consider the case where vehicles are autonomous. During an emergency brake of the leader, the
last vehicle requires a headway of at least Ω((n− 1)T). To see this, observe that the second vehicle
reacts after Ω(T) time, the third vehicle reacts after Ω(T) time of the second vehicle, i.e., Ω(2T).
Generalizing, the vehicle i reacts after time Ω((i− 1)T). Consider now the case of cooperative vehicles.
Observe that the reaction time is the time that all nearby vehicles require to agree, say T′. Therefore,
the last vehicle requires a headway of at least Ω(T′). Observe that the cooperative system is scalable
while the autonomous system is not. However, due to communication failures, vehicles may have
inconsistent information.

We exemplify how Algorithm 1 can be used to implement a cooperative vehicles application that
can deal with communication failures. Our design demonstrates that, even though the presence of
communication failures can lead to disagreement about what mode vehicles should operate in for
a particular communication round, this can only happen for a period of at most one round, and thus is
tolerated by the vehicular control algorithm.

We do not aim at designing new vehicular systems, but rather to exemplify how the proposed
solution helps to guarantee the safety in existing cooperative vehicular applications, which operate
in environments that include communication uncertainties. In our approach, while the vehicles are
aware that nearby vehicles have a high level of certainty, they perform a fully cooperative operational
mode to improve their performance. However, when this cannot be determined beyond any doubt,
they switch to the autonomous operational mode to maintain high safety levels.

In platooning, the vehicles exchange their vital information which contains the vehicles’ velocity
vector, sensor errors as well as operational parameters. The errors are used to determine the headway
that vehicles should keep.

Note that even though our example considers a cooperative operation mode with two distinct
headways,the extension to a scheme with more distinct headways is straightforward.

Algorithm 2 implements the interface functions readState and pathPlanning of Algorithm 1.
The function readState returns the pi’s local state meanwhile the main functionality is implemented in
the pathPlanning function. At the beginning of each round, Algorithm 1 calls readState in Algorithm 2
to obtain the information that the cooperative vehicle platooning requires to operate. At the end of
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the round, Algorithm 1 reaches a decision of the operation mode to operate in the following round
independently of the errors and calls pathPlanning of Algorithm 1 which acts accordingly.

We assume the existence of safe algorithms for each operation mode provided that the information
meets the requirements, i.e., the errors are within the bounds that are given in Table 1.

Table 1. L, S and H(·) are constant values known by all participants such that H1 < H2 < H3.

Headway Localization Error (Posε) Speed Error (Speedε)

H1 Posε ≤ L Speedε ≤ S
H2 Unbounded Posε Unbounded Speedε

H3 Unbounded Posε Unbounded Speedε

Algorithm 2 Cooperative vehicle platooning with ACC as a base-line application (code for vehicle
pi ∈ members).

1: Executes the protocol that Algorithm 1 presents.
2: function readState()
3: Let S = {pos, speed, poserror, speederror} be the position, speed, position error and speed error.
4: return S

5: function pathPlanning(data, mode)
6: if pi is the platoon leader then

7: follow the original path
8: else

9: Let posMaxerror = max∀pj(data[j].poserror)
10: Let speedMaxerror = max∀pj(data[j].speederror)
11: if mode = COOPERATIVE and posMaxerror ≤ L and speedMaxerror ≤ S then

12: Switch to the cooperative mode and use speed and position to keep headway H1
13: else if mode = COOPERATIVE and posMaxerror ≤ L and speedMaxerror ≥ S then

14: Switch to the cooperative mode and use speed and position to keep headway H2
15: else

16: Switch to the autonomous mode and keep headway H3
17: end if
18: end if

The safety provision in Algorithm 2 depends directly on the mechanical constraints and the
parameters’ election. Observe that during the cooperative operation mode, every vehicle keeps the
same headway since they have common knowledge.

From the previous section, it is reasonable to consider rounds of length at least 260 ms . Thus,
the headway can be determined from the round length and the error bounds on the information.

Simulation

In this subsection, we simulate the protocol in NS-3 (http://www.nsnam.org/) to verify
Algorithm 1. First, we simulate under frequent communication failures to verify that the vehicles
disagree for no more than one consecutive round. Next, we simulate for three different round lengths
and various vehicles to obtain the round length that allows the vehicles to operate in cooperative mode
the majority of the time.

We consider a vehicular system where vehicles can operate in either cooperate or autonomous
mode. The autonomous operation mode is the default mode to which the system falls-back to in the
presence of communication failures. We implement the algorithm to validate the protocol as well as its
efficiency. For the efficiency, we consider the reliability measure, which we define as the percentage
of communication rounds during which the protocol allows the system to operate in the cooperative

http://www.nsnam.org/
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mode. First, we validate that the disagreement period consists of at most one round and we move next
to the reliability of the protocol.

Observe that when the round length is long enough to exchange several messages, it is more probable
that the system operates in cooperative mode. Meanwhile, when the round length is short, it is less
probable. However, longer round length implies longer disagreement period. Thus, there is a trade-off
between the disagreement period and the round length. Therefore, a natural question is to determine a
round length that provides a good trade-off. To measure the efficiency, we consider the reliability which
we define as the percentage of communication rounds during which the protocol allows the system to
operate in the cooperative mode given a round length. To determine the round length, we implement
Algorithm 1 where vehicles can operate in either cooperative or autonomous mode.

We simulate Algorithm 1 using NS-3 (http://www.nsnam.org/). We choose IEEE 802.11p as the
communication channel with a log-distance path loss model and Nakagami fading channel model.
Since DSRC technologies support end-to-end message delay of less than 100 ms [27], we fix the message
delay to 100 ms. We consider a synchrony bound of 5 ms, say, using GPS [28] or a distributed
clock-synchronization protocol. We implement a straightforward gossip protocol in which every node
retransmits the message every 50 ms.

First we validate that the disagreement period is of at most one round with 4 vehicles. We set the
round length to 160 ms so that messages can be transmitted twice in each round. Recall that the round
length is at least the message delay (100 ms) plus twice the synchrony bound (5 ms). Since the round
length allows only one retransmission, the system experiences frequent communication failures.

We plot in Figure 2 the decision that the 4 vehicles took independently during 25 rounds using the
protocol under frequent communication failures. Observe that at round 21 vehicles 1 and 2 change to
autonomous operation mode due to a communication failure, but vehicles 3 and 4 still continue in the
cooperative operation mode. However, at round 22, they change to the autonomous operation mode.
Although vehicles do not operate on distinct modes for more than one round, the operation mode of
some vehicles may be oscillating. We can reduce this effect by increasing the round length. However,
the uncertainty period also increases.
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Figure 2. Vehicle behavior under frequent communication failures. The plot shows the decision that four
vehicles took among two operation modes during 25 rounds using Algorithm 1.

Note the trade-off between the upper bound on the disagreement period, which is one communication
round, and the success rate of the gossip protocol, which decreases as the round length becomes shorter.
The type of gossip protocol as well as the number of system components also influences this success rate.
We use computer simulation to study how these trade-offs work together and present the reliability.

http://www.nsnam.org/
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To determine a round length, we execute the simulation with rounds of length 160, 260 and 360 so
that the involved vehicles can transmit 2, 4 and 6 messages in each round, respectively. Further, we variate
the number of vehicles between two and eight to verify the effects on the proposed protocol. We run each
experiment for 360 simulation seconds.

During the simulations, we observe an average packet drop of 0.1436347. The reliability is plotted
in Figure 3 where the x axis represents the number of vehicles, the y axes represents the round length
and the contour lines represent the reliability. We can observe from the plotting that for round length
of 260 ms, the vehicles operate in cooperative mode for 98% of the time when more that 3 vehicles are
involved. However, it is reduced to 94% and 82% with three and two vehicles, respectively. Observe
that the reliability increases with more vehicles. For instance, with 4 vehicles, Algorithm 1 maintains
the cooperative operation mode 98% of the time. Meanwhile with 2 vehicles, the cooperative operation
mode is reduced to 82%. This is because of the transitivity property of the gossip protocol. Nevertheless,
during the percentage of time that Algorithm 1 cannot maintain the cooperative operation, the safety of
the system is kept by guaranteeing that the vehicles do not disagree for more than one consecutive round.

For the platooning vehicular application previously presented, it is reasonable to have rounds of
length at least 260 ms with headway of at least 520 ms.
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Figure 3. The percentage of time that all vehicles agree on the cooperative operation mode (number of
vehicles vs. the round length in milliseconds).

6. Conclusions

We have proposed an efficient protocol that can be used in safety-critical cooperative vehicular
applications that have to deal with communication uncertainties. The protocol guarantees that all vehicles
will not be exposed, for more than a constant time, to risks that are due to communication failures.
We demonstrate correctness, evaluate performance and validate our results via NS-3 simulations.

The proposed solution can be applied to implementing cooperative vehicular applications, such as
intersection crossing, coordinated lane change, platooning, as we demonstrated using the Gulliver
test-bed [29] during the KARYON project [30]. (Demonstration videos are available via http://www.
chalmers.se/hosted/gulliver-en/documents.) Moreover, we have considered the simplest multi-hop
communication primitive, i.e., gossip with constant retransmissions. However, that communication
primitive can be substituted with a gossip protocol that facilitates a greater degree of fault-tolerance

http://www.chalmers.se/hosted/gulliver-en/documents
http://www.chalmers.se/hosted/gulliver-en/documents
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and better performance. This work opens the door for the algorithmic design and safety analysis of
many cooperative applications that use different high-level communication primitives.
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