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Abstract—Contours extraction, also known as chain-code ex-
traction, is one of the most common algorithms of binary
image processing. Despite being the raster way the most cache
friendly and, consequently, fast way to scan an image, most
commonly used chain-code algorithms perform contours tracing,
and therefore tend to be fairly inefficient. In this paper, we took
a rarely used algorithm that extracts contours in raster scan, and
optimized its execution time through template functions, look-up
tables and decision trees, in order to reduce code branches and
the average number of load/store operations required. The result
is a very fast solution that outspeeds the state-of-the-art contours
extraction algorithm implemented in OpenCV, on a collection of
real case datasets.

Contribution—This paper significantly improves the perfor-
mance of existing chain-code algorithms, by smartly introducing
decision trees to reduce code branches and the average number
of load/store operations required.

Index Terms—Chain-Code, Contours Extraction, Decision
Trees, Algorithms Optimization

I. INTRODUCTION

Contours extraction is a common algorithm in binary image
processing, usually exploited to represent objects shapes. It
has a key role in image storage and transmission, but it is
also important for what concerns shape recognition and shape
analysis in pattern recognition [1], [2], [3]. In a binary image,
a contour is a sequence of foreground pixels that separates
an object (connected component) from the background. The
output of a contour extraction algorithms is a set of contours,
that can be represented in several ways. The simplest is a list
of coordinates, but more compact representations also exist: as
an example, in Freeman chain-code [4] —the first approach for
representing digital curves presented in literature— only one
coordinate is stored for a contour, and then all other pixels are
identified by a number (from 0 to 7) that encodes its relative
position w.r.t. the previous one.

In particular, the chain-code scheme defines eight codes in
the directions shown in Fig. 1b. In this case, movements from
the center of one pixel to the center of an adjacent one are
described. Chain-codes having even value have unit length
while those having odd value have length

√
2.

Alternative representation of object outlines have been used
in the literature, namely crack-codes and midcrack-codes. The
crack code scheme defines four codes in the directions shown
in Fig. 1a, where each line has length one pixel. The contour
is formed by moving on the outer edge of every pixel of the
object contour, which means moving along the cracks between
adjacent pixels having complementary values. Usually it is
assumed that the direction of travel is such that the object
pixels are on the right-hand side of the crack. The midcrack-
code [5], instead, defines the eight codes shown in Fig. 1c. This
encoding scheme defines movement from the midpoint of one
crack to the midpoint of an adjacent one. Even valued codes
have unit length while odd-valued codes have length 1/

√
2.

In [6] it is shown that both crack and midcrack coded strings
may be obtained from the chain-code string of the contour,
and the other way around. For this reason and because of its
popularity, in the following we will focus on chain-code only.

Since chain-code techniques allows to preserve information
while providing a considerable data reduction, many pattern
recognition and topology algorithms based on this representa-
tion have been proposed in the last decades.

In [1] the author proposes a new algorithm to describe and
generate spirals —a recurring pattern in nature (fingerprints,
teeth, galaxies and so on) and thus an important topic for com-
puter vision and pattern recognition— by means of the slope
chain-code, a variation of the Freeman chain-code originally
presented in [7]. In [8] a face identification methodology based
on chain-codes encoded face contours is presented, allowing
higher efficiency with respect to normal template matching
algorithms for face detection.
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(c) midcrack-code

Fig. 1. Different contour coding schemes: (a) crack-code, (b) chain-code,
and (c) midcrack-code.
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Chain-code has also been used for many object recognition
tasks [9]: various shape features extraction, contour smoothing
and correlation for shape comparison may be obtained directly
from this representation [10]. In [11], a feature extraction
method using the chain-code representation of fingerprint
ridge contours is presented. The representation allows efficient
image quality enhancement and detection of fine minutiae
feature points. The authors estimate the direction field from a
set of selected chain-codes. Thus, being able to enhance the
original fingerprint image using a dynamic filtering scheme
that takes advantage of the estimated direction flow of the
contours.

In general, contours extraction is applied as one of the first
steps of an image processing pipeline, therefore, it should be
as fast as possible. Most contours extraction algorithms follow
a boundary tracing approach, that hinders the performance
causing several cache misses. Anyway, some works for raster
scan chain-code extraction algorithms have been proposed in
literature [12], [13], [14].

With this paper, we introduce different optimizations of the
algorithm proposed by Cederberg [13]. The use of decision
trees, already proven to be a winning strategy for improving
the performance of image processing algorithms [15], [16],
[17], [18], [19], [20], has shown the best performance on
this task: our proposals are able to significantly outperform
current software implementations of chain-code algorithms. In
Section IV, a thorough evaluation of different variations of
our algorithm (presented in Section III) is performed also in
comparison with state-of-the-art implementations. The source-
code of the proposed algorithm as well as the benchmarking
code used to measure performance is publicly available in [21].

II. CONTOURS EXTRACTION

The chain-code variation proposed by Freeman [4], which
is the most popular, encodes the coordinates of one pixel
belonging to the contour, and then follows the boundary,
encoding the direction in which the next pixel shall be found.
Since each pixel has only eight neighbors, it is sufficient
to use a number from 0 to 7 to identify the next contour
point (Fig. 2a). Cederberg [13] proposed another variation,
called Raster-scan Chain-code (RC-code), that could ease the
retrieval when examining the image in a raster scan fashion. In
the RC-code, several coordinates are listed for each contour:

3 2 1

4 0

5 6 7

(a) Freeman chain-code

0

3 2 1

(b) RC-code

Fig. 2. (a) in Freeman chain-code, each contour pixel is coded with a number
for 0 to 7, representing its relative position to the previous one. (b) in RC-
code, that is built with a raster scan of the image, only four directions are
possible from a link to the next one.

they represent the first pixels that are hit in some border
during the raster scan process. Each of these pixels is called
MaxPoint, and is linked to two chains (R-chains), a left and
a right one. Every contour pixel met during the scan can
either be a MaxPoint (if it is not connected to any already
known R-chain) or the next link of some existing R-chain. A
MaxPoint can either be an outer one, when it is a transition
from background to object, or an inner one, when at object-
background transition. An important difference between outer
and inner MaxPoints is that, for inner MaxPoints, the R-chains
are swapped, so that the right R-chain actually appears to the
left, and viceversa. MaxPoints can be identified by templates in
Fig. 3. When proceeding in raster scan, only four directions
are possible, so a link is represented by a number from 0
to 3 (Fig. 2b). Templates corresponding to chain links are
depicted in Fig. 4. The same pixel can be a link for multiple
R-chains. Specifically, a border point that is a link for both
a left and a right R-chain is called MinPoint. MinPoints have
the same templates of MaxPoints, but rotated by 180 degrees.
A MinPoint determines the end of two R-chains, which can
be merged together. The merging of two R-chains consists in
recognizing that the left R-chain continues the same contour
traced by the right one, and therefore an ordering between
MaxPoints of the same contour can be established.

An example of scan is depicted in Fig. 5. It considers the
C++ implementation of the MaxPoint structure described in
Listing 1. Members row and col are the MaxPoint coordinates,
left and right are the chains and next is the array index of the
following MaxPoint. In Fig. 5a, a contour pixel is met for
the first time, and it is recognized as a MaxPoint (M0). The
first foreground pixel of the next row (Fig. 5b) is part of the
same contour, but when it is met during the raster scan it
does not appear linked to any previously known chain, and it
is therefore labeled as MaxPoint (M1). Then, in Fig. 5c, the
scan reaches a MinPoint that links together M0 left chain and
M1 right chain. After that, the scan can proceed until M2 is
met (Fig. 5d). It configures as an inner MaxPoint, so its R-
chains appear swapped. The left R-chain will eventually meet
M0 right one, and the right R-chain will meet M1 left one.
After the end of the scan, all contours are coded in the list of
MaxPoint structures, which is the final representation of the
RC-code.

M

(a)

M

(b)

M

(c)

Fig. 3. MaxPoint templates. Dark squares are background, white squares are
foreground and gray squares represent the concept of indifference. All outer
MaxPoints correspond to template (a), while inner MaxPoints can either match
(b) or (c).
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Fig. 4. Chain link templates. Dark squares are background, white squares
are foreground and gray squares represent the concept of indifference.

1struct MaxPoint {
2unsigned row, col;
3Chain left, right;
4unsigned next;
5}

Listing 1. Definition of the MaxPoint data structure in C++.

The reconstruction of a contour starts from a MaxPoint
and follows its right R-chain until the end; then it follows,
in reverse order, the connected left R-chain, and the process
goes on until the starting MaxPoint is met again. The RC-code
can be converted to Freeman chain-code following the same
procedure.

When computing the RC-code, is it sufficient to look at the
3 × 3 neighborhood of a pixel to recognize its nature, i.e.,
whether it is a MaxPoint, a MinPoint or a chain link.

Multiple possibilities are viable for the implementation of
the Chain class, the simplest of which is just the vector
from the standard library. Anyway, since only 4 kinds of link
exist, our Chain class has a more efficient implementation that
represents a link with only 2 bits.

M0

M0 (1,6):
   next: -
   left: -
   right: -

(a)

M0

M1

M0 (1,6):
   next: -
   left: -
   right: -
M1 (2,3):
   next: -
   left: -
   right: -

(b)

M0

M1 x m

M0 (1,6):
   next: -
   left: 3
   right: -
M1 (2,3): 
   next: M0

   left: -
   right: 0, 0

(c)

M0

M1 x m x

x x

x M2 x

x x x x
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m

M0 (1,6): 
   next: M2

   left: 3
   right: 2, 2, 2, 1, 2, 2
M1 (2,3):
   next: M0

   left: 3, 3, 2, 1
   right: 0, 0
M2 (4,4):
   next: M1

   left: 1, 1, 1
   right: 3, 3

(d)

Fig. 5. Example of RC-code extraction. The algorithm proceeds in raster
scan, and in (a), (b) and (c) the arrow points to the pixel currently analyzed.
Symbols M, m and x respectively represent MaxPoints, MinPoints and chain
links. To the right, MaxPoints are listed, along with their description.

The RC-code retrieval algorithm uses two data structures: a
vector of MaxPoint structures Mv, and a vector of active R-
chains Cv, sorted in the order that the raster scan is supposed
to meet them along the row. In Cv, each R-chain is simply
represented by the index of its MaxPoint in Mv. This implies
that both left and right R-chains of a MaxPoint share the same
value in Cv, but there is no risk of confusion because right
and left chains always alternate in an image row, starting with
a left one. During a row scan, pos holds the position in Cv
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Fig. 6. (a) is the neighborhood mask, containing pixels whose value affects
the status of x. (b) illustrates the concept of pixel prediction: 6 pixels of the
mask are still inside the mask after the horizontal shift, though with different
names.

of the next R-chain that is expected to be met, and to which
the next link will be attached.

To sum up, a pixel can be none, one or more of the fol-
lowing: outer/inner MaxPoint, outer/inner MinPoint, left/right
link of type 0, 1, 2 or 3.

Thus, from the RC-code point of view, 12 boolean predi-
cates (2 MaxPoints, 2 MinPoints, 8 Links) totally describe a
pixel. We say that they constitute the pixel status. For each
pixel, the procedure is:

• Retrieve the pixel status from its neighborhood.
• Perform an action depending on the status.

The action to be performed on the current pixel can be
schematized in the following sequence of steps:

• Move pos backward for every link of type 0. Those are
horizontal links, and must be attached to the previously
met chain on the same row.

• Iterate through links, from 0 to 3, left before right. For
each one, attach it to the chain at position pos, and
increment pos.

• If inner MinPoint, merge the last left R-chain met and
the chain preceding it, then remove both from Cv.

• If outer MinPoint, merge the last right R-chain met and
the chain preceding it, then remove both from Cv.

• If outer MaxPoint, add a new element to Mv, and add
its R-chains to Cv before pos. Note that adding the two
R-chains to Cv means adding twice the last index of Mv.

• If inner MaxPoint, add a new element to Mv, and add its
R-chains to Cv. Same as the previous case, this translates
to adding the last index of Mv twice. The two R-chains
must be inserted before pos, or before pos− 1 if the last
R-chain met is a right one.

In our implementation, the action is executed by a C++ func-
tion composed of a sequence of if statements. This function
requires the pixel status as a parameter and its pseudocode is
reported in Algorithm 1.

III. OPTIMIZATION

Our execution time optimization of the RC-code retrieval
algorithm concerns both the status retrieval and the action
execution.

As regards the former, first of all we computed the status
corresponding to every possible 3 × 3 neighborhood, and we

Algorithm 1: This algorithm provides the Cederberg
RC-code action implementation, i.e. the instructions
required to perform an action on the current pixel,
knowing its status.

Input: Mv, Cv, pos, r, c, status
1Procedure PerformAction():

2last found right←− false
3pos←− pos− CountHorizLinks(status)

4for type = 0 to 3 do
5if IsLeftLinkType(status, type) then
6Mv[Cv[pos]].left.push back(link)
7pos←− pos+ 1
8last found right←− false
9if IsRightLinkType(status, type) then

10Mv[Cv[pos]].right.push back(link)
11pos←− pos+ 1
12last found right←− true
13if IsInnerMinPoint(status) then
14Mv[Cv[pos− 2]].next ←− Cv[pos− 1]
15Cv.erase(from=pos− 2, to=pos)

16if IsOuterMinPoint(status) then
17Mv[Cv[pos− 1]].next ←− Cv[pos− 2]
18Cv.erase(from=pos− 2, to=pos)

19if IsOuterMaxPoint(status) then
20Mv.emplace back(r, c)
21Cv.insert(at=pos, cnt=2, val=Mv.size)
22last found right←− true
23if IsInnerMaxPoint(status) then
24Mv.emplace back(r, c)
25if last found right then
26Cv.insert(at=pos− 1, cnt=2, val=Mv.size)
27else
28Cv.insert(at=pos, cnt=2, val=Mv.size)

recorded it in a decision table, to be used as a Look-Up Table
(LUT) at runtime, in order to avoid the expensive template
matching operation. A reduced version of the LUT is depicted
in Fig. 8. When using the LUT to identify a pixel status, 9
pixels must be tested (Fig.6a). Anyway, except for borders,
6 out of those 9 pixels were already tested in the previous
scan step, and therefore there is no need to check them again
(Fig.6b). This approach is known as pixel prediction [22], and
we adopted it to speed up the LUT variation of the RC-code
extraction algorithm (LUT PRED). Then, we observed that,
in a number of cases, not all neighbor pixels need to be tested
in order to perform the corresponding action. For example,
if the central pixel is background, then the status is already
established: the pixel is neither a MaxPoint nor a MinPoint
nor a link of any kind. This simple observation suggests that
the order with which the conditions are verified impacts on the
number of load/store operations required. A specific ordering
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Fig. 7. Binary decision tree which provides the chain-code pixel status with minimal load/store operations. Ellipsis represent conditions to check and leaves
represent the status. A status correspond to the group of actions to be performed for the current pixel. Best viewed online. An enlarged detail of the root
rightmost branch is reported in Fig. 9.

of condition tests can be represented by a decision tree. A
decision tree is a full binary tree, meaning that every non leaf
node has exactly two children. Every non leaf node n has a
condition, C(n), corresponding to a neighbor pixel that must
be checked when the execution flow reaches that node. Its left
and right children l and r contain the pixel to be read if the
value of C(n) is 0 or 1, respectively. Finally, each leaf contains
a status.

What we are now looking for is an optimal decision tree,
i.e., a tree that allows to minimize the average amount of
condition tests needed to reach a leaf. The transformation of
a decision table into an optimal decision tree has been deeply
studied in the past and we use the dynamic programming
technique proposed by Schumacher [23], which guarantees to
obtain an optimal solution. One of the basic concepts involved
in the creation of a simplified tree from a decision table is that,
if two branches lead to the same status, the condition from
which they originate may be removed. With a binary notation,
if both the condition outcomes 10110 and 11110 lead to status
s, we can write that 1-110 leads to status s, thus removing
the need of testing condition 2. The dash implies that both
0 or 1 may be substituted in that condition, and represents
the concept of indifference. The saving given by the removal
of a test condition is called gain in the algorithm, and we
conventionally set it to 1.

The conversion of a decision table (with n conditions) to
a decision tree can be interpreted as the partitioning of an n-
dimensional hypercube (n-cube in short) where the vertexes
correspond to the 2n possible rules. Including the concept of
indifference, a t-cube corresponds to a set of rules and can
be specified as an n-vector of t dashes and n − t 0’s and
1’s. For example, 01-0- is the 2-cube consisting of the four
rules {01000,01001,01100,01101}. In summary, Schumacher
algorithm proceeds in steps as follows:

• Step 0: all 0-cubes, that is all rules, are associated to a
single corresponding status and a starting gain of 0; this
means that if we need to evaluate the complete set of
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260 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0
261 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 4 0
262 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0
263 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 3 0
264 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0
265 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 3 0
266 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0
267 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 3 0
268 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 4 0
269 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 4 0
270 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0
271 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 3 0
272 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 62 2
273 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 61 2
312 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 63 3
313 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 63 3
314 1 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 47 2
315 1 0 0 1 1 1 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 47 2
316 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 48 2
317 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1 48 2
318 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 47 2
319 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 47 2
504 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 51 1
505 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 51 1
506 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
507 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
508 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0
509 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 2 0
510 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
511 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Fig. 8. Reduced version of the table representing the correspondence between
pixel neighborhood and status. The left side contains every possible value of
the 9 pixel neighbors, whose names are those of Fig. 6. The complete table
has, therefore, 29 = 512 rows. The right side contains the status, expressed
with 12 boolean predicates, one for each possible feature of a pixel. Finally,
the rightmost column contains the status expressed in a more compact way, as
a number from 1 to 65. In fact, only 65 different status are actually possible.
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Fig. 9. Detail of the decision tree used to extract the chain-code status
of pixel x by the proposed algorithm. Status are expressed in the compact
representation of the rightmost column of the table in Fig. 8. If x is
background (0) the corresponding status is 1, meaning that no operation is
required. A similar situation occurs when x and all the surrounding pixels
in the cardinal directions are foreground (rightmost leaf). On the other hand
when x, b, c, d, and f are foreground and g is background the decision tree
leads to status 2, which means that the current pixel x is a inner MaxPoint:
an important thing to be noticed is that in this case the status of x is detected
without the need to check pixels a, e and h

conditions, we do not get any computational saving.
• Step t: all t-cubes are enumerated. Every t-cube may

be produced by the merge of two (t − 1)-cubes in t
different ways (for example 01-0- may be produced by
the merge of {01-00,01-01} or of {0100-,0110-}). For
each of these ways of producing the t-cube (denoted as r
in the following formulas) we compute the corresponding
gain Gr as

Gr = G0
r +G1

r + δ[S0
r − S1

r ]

where G0
r and G1

r are the gains of the two (t − 1)-
cubes, and S0

r and S1
r are the corresponding status. δ

is the Kronecker function that provides a unitary gain
if the two status are the same or no gain otherwise,
modeling the fact that if the status are the same we “gain”
the opportunity to save a test. The gain assigned to the
t-cubes is the maximum of all Gr, which means that

Algorithm 2: Decision tree implementation. Border
pixels check are omitted for readability purposes.

Input: I binary image; r, c row and column indexes.
Output: status of pixel I[r, c].

1Function DecisionTree():

2if I[r, c] then // x

3if I[r − 1, c] then // b

4if I[r, c− 1] then // d

5if I[r, c+ 1] then // e

6if I[r + 1, c] then // g

7return 1
8else
9if I[r + 1, c− 1] then // f

10return 2
11else
12return 51
13else
14// ... the rest of the tree

Algorithm 3: The complete Cederberg RC-code ex-
traction algorithm.

Input: I binary image.
Output: Mv vector of MaxPoints.

1Function ExtractChainCode():

2Mv ←− vector < MaxPoint >
3Cv ←− vector < int >
4// Cv contains, for each chain, the index

of its MaxPoint in Mv

5for r = 0 to I .rows - 1 do
6pos←− 0
7for c = 0 to I .cols - 1 do
8status←− DecisionTree(I, r, c)
9PerformAction(Mv,Cv, pos, status, r, c)

10return Mv

we choose to test the condition allowing the maximum
saving. Analogously we have to assign a status to the
t-cube. This may be a real status if all rules of the t-
cube are associated to the same status, or 0 otherwise: a
conventional way of expressing the fact that we need to
branch to choose which action to perform. In formulas:

S = S0
r · δ[S0

r − S1
r ]

where r may be chosen arbitrarily, since the result is
always the same.

The algorithm continues to execute Step t until t = n, which
effectively produces a single vector of dashes. The tree may be
constructed by recursively tracing back through the merges at
each t-cube. A leaf is reached if a t-cube has a status S 6= 0.
The result is represented in Fig. 7, and an enlarged detail of
the rightmost branch is reported in Fig. 9. An excerpt of the



TABLE I
AVERAGE RUN-TIME EXPERIMENTAL RESULTS ON CHAIN-CODE ALGORITHMS IN MILLISECONDS. ASU IS THE AVERAGE SPEED-UP OVER OPENCV. THE

STAR IDENTIFIES NOVEL VARIATIONS ON PREVIOUS ALGORITHMS. LOWER IS BETTER.

3DPeS Fingerprints Hamlet Medical MIRflickr Tobacco800 XDOCS ASU

Suzuki85 (OpenCV) 0.814 1.332 9.252 3.436 1.291 10.089 50.578 1.000
Cederberg LUT* 2.392 1.733 18.378 7.980 1.960 27.262 118.311 0.499
Cederberg LUT PRED* 1.524 1.376 12.652 5.371 1.458 17.682 82.825 0.705
Cederberg Tree* 0.613 1.092 6.749 2.950 1.136 7.534 47.545 1.231

code implementing the tree is reported in Algorithm 2.
We also managed to save some computational time by

making the action execution function template on the status,
instead of passing the status as a parameter. We noticed that
only 65 different status can actually occur for a pixel. The
general action is composed of a sequence of if statements:
using C++ templates, 65 different functions are compiled, each
only containing the part of the code that must be executed for
that status. This allows to avoid a large number of checks and
jumps at runtime. Most of those functions result in very small
pieces of machine code, and we experimentally verified that no
performance issues related to code size have been introduced.
Finally, the complete Cederberg RC-code extraction algorithm
is reported in Algorithm 3.

IV. EXPERIMENTAL RESULT

In this section, the quality of the optimization introduced is
evaluated, and the resulting algorithm is compared to a state-
of-the-art alternative. The results discussed in the following
have been obtained on a desktop computer running Windows
10 Pro (x64, build 10.0.18362) with an Intel(R) Core(TM)
i7-4790 CPU @ 3.60GHz, using MSVC 19.15.26730 with
optimizations enabled. All discussed algorithms have been
proved to be correct, i.e., the output result is exactly the
one required by the chain-code extraction task. The exper-
iments are performed on the publicly available YACCLAB
dataset [24], [25], which covers most of the applications for
binary image processing. The dataset contains six real-world
2D datasets: 3DPeS is a surveillance dataset for which basic
motion segmentation was used to generate the foreground
masks [26]. Fingerprints is a dataset containing artifical
and real-world captured fingerprints, binarized with adaptive
thresholding [27]. Medical is a dataset containing 343 histo-
logical images [28]. MIRflickr is an Otsu-binarized version of
the MIRflickr dataset [29]. Tobacco800 is a dataset containing
typewritten documents, digitalized using different techniques,
therefore resulting in very diverse images [30]. XDOCS is
a dataset containing high-resolution, handwritten historical
documents from the Italian civil registries [31], [32], [33].
The datasets have a highly variable resolution, density, amount
of components and originate from highly different sources,
captured through various means (scans, photos, microscopy).
Full description in [34].

In order to easily compare multiple algorithms, we mod-
ified an open source benchmarking framework for thinning
algorithms, THeBE [35], and we adapted it to chain-code
algorithms. The reference algorithm is the contours extraction

algorithm implemented in OpenCV 3.4.7 (Suzuki85) [36],
which uses an extremely optimized contour following ap-
proach, while the algorithm proposed by Cederberg [13]
has been implemented in multiple variants, with increasing
optimization of the status retrieval:

• Cederberg LUT - This variation of the algorithm employs
a Look-Up Table that links every neighborhood configu-
ration to a certain status.

• Cederberg LUT PRED - This optimization of Ceder-
berg LUT employs prediction to only check new pixels
at every step.

• Cederberg Tree - Is the optimization based on the optimal
binary decision tree.

The Average Speed Up (ASU) is used as measure of the
improvement w.r.t. the reference algorithm, Suzuki85.

As it can be observed by comparing LUT and LUT PRED
implementations (Table I), the use of prediction significantly
improve performance, simply reducing the number of load
operations required at each step of the process. As explained
in Section III, six pixels remain inside the mask after its
horizontal movement and the PRED optimization removes the
need to read them again from the input image. The sped up
of LUT PRED w.r.t LUT implementation ranges from ×1.26
to ×1.57. Anyway, both of the optimizations fails to compete
with the carefully designed algorithm in OpenCV (ASU < 1).

Even though the OpenCV contour following approach ac-
cess the input image in a non cache friendly manner, it
requires to update less data structures and thus provides better
performances. If we consider experimental results on the
Fingerprints dataset, we can see that the total execution time
of OpenCV and LUT PRED algorithms is almost the same:
Fingerprints dataset contains many long vertical connected
components, leading to multiple cache misses when using
Suzuki85 algorithm. In this specific scenario, the additional
data structures required by LUT PRED compensate for cache
misses.

Finally, the algorithm based on the optimal decision tree
reduces even more the number of load/store operations, while
preserving cache friendly accesses to the input image. This
algorithmic solution significantly improves state-of-the-art per-
formance (ASU=1.23).

V. CONCLUSION

We considerably improved the time performance of a raster
scan contours extraction algorithm, introducing several opti-
mization such as template functions, look-up tables and, most
of all, optimal decision trees.



The result is a very fast algorithm that outspeeds the
state-of-the-art solution implemented in the most widespread
computer vision library —OpenCV—, over a collection of
real datasets representing common use cases for contours
extraction.
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