
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

  www.elsevier.com/locate/procedia 

2212-8271 © 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of 
existing products for an assembly oriented product family identification 

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat 
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France 

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

This paper proposes an adaptive human-machine collaboration paradigm based on machine learning. Human-machine 
collaboration requires more than letting humans and machines interact according to fixed rules. A decision-maker is needed to 
assess production status and to activate adaptations that improve productivity and workers’ well-being. 
The proposed solution has been tested in an injection moulding manufacturing line. By introducing a physiological monitoring 
system and a smart decision-maker, relief from fatigue and mental stress is pursued by adjusting the level of support offered through 
a cobot. Results reported a reduction of operators’ physical and mental workload as well as productivity increase. 
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1. Introduction 

The introduction of collaborative robots, also called cobots, 
in the shop floor is a challenge that more and more industries 
have been taking up in recent years [1]. Under this approach, 
human operators are supported by an intelligent agent, the 
cobot, that shares spaces and tasks with the operators while 
complementing their capabilities and adapting to their current 
conditions. The main reason behind this choice lies in the 
synergic effect of cobot’s precision and repeatability combined 
with operator’s flexibility and ability to manage unpredictable 
situations [2]. In such a way, human abilities are enhanced and 
complemented by those of the robot, and vice versa [3]. 
However, in many industrial settings, the use of cobots is 
relegated to specific repetitive tasks, instead of dealing with 
more challenging human-machine collaboration (HMC) 
scenarios, mainly due to the difficulties in modelling, 

interconnecting and managing the cooperation between humans 
and cobots active on same workstations [4]. As a result, in 
actual approaches, the cobot is not endowed with a flexible 
behaviour and thus the worker is forced to adapt to the 
introduction of the cobot and cope with its pace. Although the 
cobot is able to recognize where the operator is working and 
modify its trajectory accordingly, it is left to the human to 
ultimately manage the process and adapt her/his job to the tasks 
the cobot, according to the area that the cobot is occupying and 
the pace it is dictating in performing the task. 

In order to overcome these limitations, in this paper a 
conceptual framework and implementation to enhance HMC in 
industrial environments through a cobot-enabled smart 
workstation is proposed. This is achieved by introducing a 
smart decision-maker, that is fed with information about 
worker’s physical and mental workload and about process 
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1. Introduction 

The introduction of collaborative robots, also called cobots, 
in the shop floor is a challenge that more and more industries 
have been taking up in recent years [1]. Under this approach, 
human operators are supported by an intelligent agent, the 
cobot, that shares spaces and tasks with the operators while 
complementing their capabilities and adapting to their current 
conditions. The main reason behind this choice lies in the 
synergic effect of cobot’s precision and repeatability combined 
with operator’s flexibility and ability to manage unpredictable 
situations [2]. In such a way, human abilities are enhanced and 
complemented by those of the robot, and vice versa [3]. 
However, in many industrial settings, the use of cobots is 
relegated to specific repetitive tasks, instead of dealing with 
more challenging human-machine collaboration (HMC) 
scenarios, mainly due to the difficulties in modelling, 

interconnecting and managing the cooperation between humans 
and cobots active on same workstations [4]. As a result, in 
actual approaches, the cobot is not endowed with a flexible 
behaviour and thus the worker is forced to adapt to the 
introduction of the cobot and cope with its pace. Although the 
cobot is able to recognize where the operator is working and 
modify its trajectory accordingly, it is left to the human to 
ultimately manage the process and adapt her/his job to the tasks 
the cobot, according to the area that the cobot is occupying and 
the pace it is dictating in performing the task. 

In order to overcome these limitations, in this paper a 
conceptual framework and implementation to enhance HMC in 
industrial environments through a cobot-enabled smart 
workstation is proposed. This is achieved by introducing a 
smart decision-maker, that is fed with information about 
worker’s physical and mental workload and about process 
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• Assess periodically the effectiveness of the adopted 
solutions to identify and solve any misalignment or 
side effect towards incremental improvement of the 
mutualistic approach. 

Fig. 1 introduces the architectural model that realizes 
Mutualistic and Adaptive HMC in a production system. 
Coupled with the process represented in Fig. 2, designed in 
BPMN, this embodies the conceptual framework proposed in 
this research. that realizes Mutualistic and Adaptive HMC in a 
production system. This relies on flexible workstations whose 
behaviour adapts in a mutualistic way to cope with workers’ 
physical and mental conditions while aiming at optimal 
performance. Moreover, information about the system is 
collected and conveyed to the decision-making system to allow 
effective orchestration of the workstation in alignment with the 
defined objectives. On the one hand, static data from Factory 
IT systems, such as the operators’ profiles (focusing on 
experience, knowledge, training, health status, competence and 
education) are gathered and periodically reassessed to form a 
knowledge base allowing personalised interventions. On the 
other hand, thanks to the presence of sensors, wearable devices 
and vision systems, dynamic data can be also retrieved and 
brokered in real time. First come human data, including 
operator’s physical and mental workload, which strongly 
depends on assigned tasks and situational constraints (such as 
psychological pressure and presence of external pace 
determinants), creating a “worker digital shadow”. If these data 
are coupled and harmonized with process data (e.g. buffer 
levels, machines productivity, etc.) and context data (e.g. 
ambient temperature, production planning data, etc.), a 
complete and human-aware digital representation of the 
production system is achieved. 

Short term reconfigurations at the level of the single 
workstation, and to the production system at large, have to be 
orchestrated so as to exploit the flexibility of the 
reconfigurable workstations to support operators whenever 
their well-being and resulting behaviour deviates from optimal 
and safe ones. This is supported by a smart human-aware 

decision maker that detects system features and status from 
the production system digital representation and reacts in 
order to optimize business and process performances along 
with workers’ well-being. Short-term reconfigurations can be 
launched at different levels (single component, single 
workstation, whole production system). The operator is 
involved in the decision-making process, having the possibility 
to ask for reconfigurations, or to veto a decision thus avoiding 
out-of-the-loop situations. Such a solution changes in real time 
the behaviour of the human-machine couple based on 
evaluations by the smart decision maker.  

In this way, automation system’s capabilities become an 
extension of those held by the worker and are modulated in 
order to cope with the worker’s specific characteristics, such as 
skills, physical and intellectual capacities, and with the 
conditions that she/he is currently experiencing including 
mental stress, loss of attention and fatigue. 

If short-term reconfigurations are not enough to achieve 
desired performance levels, long-term reconfigurations have 
to be identified and planned to promote convergence of 
workstation design and related demand with workforce 
peculiar characteristics, processes requirements and business 
needs. Long-term reconfigurations focus on solving problems 
that, due to their systemic nature (i.e. they are intrinsic to the 
design of the job carried out at the workstation), are not 
associated to an immediate solution, but need instead further 
analyses, normally performed by an external “expert”. 

Fig. 2 BPMN process to realize a Human-aware flexible and reconfigurable production system. 

Fig. 1 Architectural model 
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status, and that is capable to orchestrate the production line 
pursuing productivity and well-being targets at the same time. 

In the designed framework this human-aware orchestration 
concretises into reconfigurations of the production line, either 
by acting on single parameters of the process control, or by 
dynamically reallocating tasks to the cobot or to the human. In 
such a way, cobot’s flexibility is leveraged to fit the varying 
conditions of its human counterpart, making the two actors – 
human and cobot - work together fruitfully and supporting each 
other to a maximum level of performance and comfort. 

In literature, several frameworks and models for Human-
aware HMC have been proposed [5] [6] [7] [8] [9]. The works 
in [5] [6] consider assembly applications and propose dynamic 
task allocation between the robot and the human worker based 
on information coming from cameras and other similar devices. 
In [7] and [8], two different automation frameworks to improve 
workers’ well-being have been introduced by exploring 
adaptive control systems that integrate human activities and 
machines operations in real time control loops. Finally, the 
research carried out in [9] presents a model to realize 
cooperative systems between humans and Artificial Self-
Organizing agents. However, none of these researches lead to 
systems that are fully compliant with the criteria to realize 
human-centred automation solutions as suggested by Sheridan 
and Parasuraman [10], according to the points mapped in the 
list below:  

• Assign to the human tasks best suited to the human, 
and to the automation tasks best suited to it. 

• Maintain the human operator in the decision-and-
control loop. 

• Maintain the human operator as the final authority 
over the automation (missing in [5] [7] [8]). 

• Make the human operator’s job easier, more 
enjoyable, or more satisfying through friendly 
automation (missing in [9]).  

• Empower or enhance the human operator through 
automation (missing in [9]). 

• Support trust by the human.  
• Make automation intelligible by operators providing 

advice and insights about its behaviour and about 
everything they should want to know.  

• Automation has to reduce human error and minimize 
response variability. 

• Make the operator a supervisor of subordinate 
automatic control systems (missing in [5] [7] [8]). 

• Achieve the best combination of human and automatic 
control. 

The envisioned human-aware approach to HMC presented 
in this paper exploits information about current worker’s 
workload detected via machine learning applications out of data 
coming from commercial non-invasive wearable devices. Such 
devices allow to monitor different physiological parameters, 
such as heart rate (HR), electrodermal activity (EDA) and skin 
temperature (ST). The outcome of this monitoring and 
detection process is provided to a smart supervisory system 
with information about the process, such as production 
schedule, machine parameters and queues, that is in charge of 
reconfiguring the controlled workstation. 

In order to validate the proposed framework, on-field tests 
were carried out within the production environment of a 

company manufacturing plastic products with different kinds of 
processes, such as injection moulding, bi-material moulding, 
etc. Moreover, a set of key performance indicators (KPIs) is 
proposed with the aim to evaluate the significance and impact 
in industrial applications and the effectiveness of the envisioned 
adaptive HMC approach. 

The paper is organized as follows. In Sec. 2 the adopted 
framework and its core concepts are presented. Then, in Sec. 3 
a focus is made on the developed hardware and software 
infrastructure and on how the physiological parameters can be 
gathered and elaborated to provide a flexible HMC 
environment. The system architecture and use case is presented 
in Sec. 4, while Sec. 5 discusses the achieved results. Finally, 
what has been achieved is briefly summarised in Sec. 6, 
together with an analysis of the future steps. 

2. The proposed Mutualistic and Adaptive Human-
Machine Collaboration  

Traditional decision-making systems, such as those 
supporting labour scheduling and production planning, are not 
enough to support companies in the creation of the best 
conditions for the worker, to maximise performance, exploiting 
his/her full potential and guaranteeing workers well-being. 
This can happen only by assigning the right person in the right 
place, in the right moment, and creating the right workplace 
(environment and job) [11]. Moreover, it is necessary to 
integrate this approach in complex system. 

Moreover, new technologies, such as wearable devices, 
cyber-physical systems, virtual and augmented reality and 
digitalization can support the achievement of this goal, 
significantly increasing the benefits for both organizations and 
workers. The integration of these technologies need to tackle 
and be fused with the automation and control elements that 
nowadays characterise any complex production system [12]. 

 A disruption is needed that promotes worker-centric HMC 
by reversing the way design of complex production systems is 
carried out. The adoption of responsible approaches based on 
anthropocentric design methodologies [13] that reintroduce the 
users in the decision and feedback loops needs to achieve the 
goals mentioned by Sheridan and Parasuraman in today’s data-
driven industrial environments. To this end, new criteria have 
to be added to enforce Mutualistic and Adaptive HMC: 

• Rely on flexible and reconfigurable production 
systems that allow to modulate the interaction 
between human and machines; 

• Monitor the status of the human-machine system by 
continuously collecting human, context and process 
data; 

• Fuse seamlessly human decisions with those taken by 
the smart decision-makers which adapt in a 
mutualistic way to the varying endogenous and 
exogenous factors; 

• Make decisional processes and the underlying 
technologies explainable to humans;  

• Set goals aiming at improved worker’s well-being and 
process performance and share them between humans 
and all the agents operating in smart production 
systems; 
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• Assess periodically the effectiveness of the adopted 
solutions to identify and solve any misalignment or 
side effect towards incremental improvement of the 
mutualistic approach. 

Fig. 1 introduces the architectural model that realizes 
Mutualistic and Adaptive HMC in a production system. 
Coupled with the process represented in Fig. 2, designed in 
BPMN, this embodies the conceptual framework proposed in 
this research. that realizes Mutualistic and Adaptive HMC in a 
production system. This relies on flexible workstations whose 
behaviour adapts in a mutualistic way to cope with workers’ 
physical and mental conditions while aiming at optimal 
performance. Moreover, information about the system is 
collected and conveyed to the decision-making system to allow 
effective orchestration of the workstation in alignment with the 
defined objectives. On the one hand, static data from Factory 
IT systems, such as the operators’ profiles (focusing on 
experience, knowledge, training, health status, competence and 
education) are gathered and periodically reassessed to form a 
knowledge base allowing personalised interventions. On the 
other hand, thanks to the presence of sensors, wearable devices 
and vision systems, dynamic data can be also retrieved and 
brokered in real time. First come human data, including 
operator’s physical and mental workload, which strongly 
depends on assigned tasks and situational constraints (such as 
psychological pressure and presence of external pace 
determinants), creating a “worker digital shadow”. If these data 
are coupled and harmonized with process data (e.g. buffer 
levels, machines productivity, etc.) and context data (e.g. 
ambient temperature, production planning data, etc.), a 
complete and human-aware digital representation of the 
production system is achieved. 

Short term reconfigurations at the level of the single 
workstation, and to the production system at large, have to be 
orchestrated so as to exploit the flexibility of the 
reconfigurable workstations to support operators whenever 
their well-being and resulting behaviour deviates from optimal 
and safe ones. This is supported by a smart human-aware 

decision maker that detects system features and status from 
the production system digital representation and reacts in 
order to optimize business and process performances along 
with workers’ well-being. Short-term reconfigurations can be 
launched at different levels (single component, single 
workstation, whole production system). The operator is 
involved in the decision-making process, having the possibility 
to ask for reconfigurations, or to veto a decision thus avoiding 
out-of-the-loop situations. Such a solution changes in real time 
the behaviour of the human-machine couple based on 
evaluations by the smart decision maker.  

In this way, automation system’s capabilities become an 
extension of those held by the worker and are modulated in 
order to cope with the worker’s specific characteristics, such as 
skills, physical and intellectual capacities, and with the 
conditions that she/he is currently experiencing including 
mental stress, loss of attention and fatigue. 

If short-term reconfigurations are not enough to achieve 
desired performance levels, long-term reconfigurations have 
to be identified and planned to promote convergence of 
workstation design and related demand with workforce 
peculiar characteristics, processes requirements and business 
needs. Long-term reconfigurations focus on solving problems 
that, due to their systemic nature (i.e. they are intrinsic to the 
design of the job carried out at the workstation), are not 
associated to an immediate solution, but need instead further 
analyses, normally performed by an external “expert”. 

Fig. 2 BPMN process to realize a Human-aware flexible and reconfigurable production system. 

Fig. 1 Architectural model 
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status, and that is capable to orchestrate the production line 
pursuing productivity and well-being targets at the same time. 

In the designed framework this human-aware orchestration 
concretises into reconfigurations of the production line, either 
by acting on single parameters of the process control, or by 
dynamically reallocating tasks to the cobot or to the human. In 
such a way, cobot’s flexibility is leveraged to fit the varying 
conditions of its human counterpart, making the two actors – 
human and cobot - work together fruitfully and supporting each 
other to a maximum level of performance and comfort. 

In literature, several frameworks and models for Human-
aware HMC have been proposed [5] [6] [7] [8] [9]. The works 
in [5] [6] consider assembly applications and propose dynamic 
task allocation between the robot and the human worker based 
on information coming from cameras and other similar devices. 
In [7] and [8], two different automation frameworks to improve 
workers’ well-being have been introduced by exploring 
adaptive control systems that integrate human activities and 
machines operations in real time control loops. Finally, the 
research carried out in [9] presents a model to realize 
cooperative systems between humans and Artificial Self-
Organizing agents. However, none of these researches lead to 
systems that are fully compliant with the criteria to realize 
human-centred automation solutions as suggested by Sheridan 
and Parasuraman [10], according to the points mapped in the 
list below:  

• Assign to the human tasks best suited to the human, 
and to the automation tasks best suited to it. 

• Maintain the human operator in the decision-and-
control loop. 

• Maintain the human operator as the final authority 
over the automation (missing in [5] [7] [8]). 

• Make the human operator’s job easier, more 
enjoyable, or more satisfying through friendly 
automation (missing in [9]).  

• Empower or enhance the human operator through 
automation (missing in [9]). 

• Support trust by the human.  
• Make automation intelligible by operators providing 

advice and insights about its behaviour and about 
everything they should want to know.  

• Automation has to reduce human error and minimize 
response variability. 

• Make the operator a supervisor of subordinate 
automatic control systems (missing in [5] [7] [8]). 

• Achieve the best combination of human and automatic 
control. 

The envisioned human-aware approach to HMC presented 
in this paper exploits information about current worker’s 
workload detected via machine learning applications out of data 
coming from commercial non-invasive wearable devices. Such 
devices allow to monitor different physiological parameters, 
such as heart rate (HR), electrodermal activity (EDA) and skin 
temperature (ST). The outcome of this monitoring and 
detection process is provided to a smart supervisory system 
with information about the process, such as production 
schedule, machine parameters and queues, that is in charge of 
reconfiguring the controlled workstation. 

In order to validate the proposed framework, on-field tests 
were carried out within the production environment of a 

company manufacturing plastic products with different kinds of 
processes, such as injection moulding, bi-material moulding, 
etc. Moreover, a set of key performance indicators (KPIs) is 
proposed with the aim to evaluate the significance and impact 
in industrial applications and the effectiveness of the envisioned 
adaptive HMC approach. 

The paper is organized as follows. In Sec. 2 the adopted 
framework and its core concepts are presented. Then, in Sec. 3 
a focus is made on the developed hardware and software 
infrastructure and on how the physiological parameters can be 
gathered and elaborated to provide a flexible HMC 
environment. The system architecture and use case is presented 
in Sec. 4, while Sec. 5 discusses the achieved results. Finally, 
what has been achieved is briefly summarised in Sec. 6, 
together with an analysis of the future steps. 

2. The proposed Mutualistic and Adaptive Human-
Machine Collaboration  

Traditional decision-making systems, such as those 
supporting labour scheduling and production planning, are not 
enough to support companies in the creation of the best 
conditions for the worker, to maximise performance, exploiting 
his/her full potential and guaranteeing workers well-being. 
This can happen only by assigning the right person in the right 
place, in the right moment, and creating the right workplace 
(environment and job) [11]. Moreover, it is necessary to 
integrate this approach in complex system. 

Moreover, new technologies, such as wearable devices, 
cyber-physical systems, virtual and augmented reality and 
digitalization can support the achievement of this goal, 
significantly increasing the benefits for both organizations and 
workers. The integration of these technologies need to tackle 
and be fused with the automation and control elements that 
nowadays characterise any complex production system [12]. 

 A disruption is needed that promotes worker-centric HMC 
by reversing the way design of complex production systems is 
carried out. The adoption of responsible approaches based on 
anthropocentric design methodologies [13] that reintroduce the 
users in the decision and feedback loops needs to achieve the 
goals mentioned by Sheridan and Parasuraman in today’s data-
driven industrial environments. To this end, new criteria have 
to be added to enforce Mutualistic and Adaptive HMC: 

• Rely on flexible and reconfigurable production 
systems that allow to modulate the interaction 
between human and machines; 

• Monitor the status of the human-machine system by 
continuously collecting human, context and process 
data; 

• Fuse seamlessly human decisions with those taken by 
the smart decision-makers which adapt in a 
mutualistic way to the varying endogenous and 
exogenous factors; 

• Make decisional processes and the underlying 
technologies explainable to humans;  

• Set goals aiming at improved worker’s well-being and 
process performance and share them between humans 
and all the agents operating in smart production 
systems; 
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address this problem, workers are instructed to follow a FIFO 
approach so to operate on a fixed delay from the moulding time 
and thus interact with each component at the correct 
temperature. However, being a repetitive task, workers often 
suffer from lack of attention and do not respect the correct 
FIFO order, leading to low quality levels. Therefore, with the 
aim of improving worker’s job satisfaction and production 
quality, the assembly line has been revamped introducing the 
presented cobot-enabled system in the workstation that 
collaborates in a mutualistic way with the worker along the 
entire process.  

The overall assembly process is divided in 13 tasks and 4 
buffers and has been modelled using Business Process Model 
and Notation (BPMN). Tasks have been labelled as either 
commutable or non- commutable. A commutable task can be 
carried out by both human and robot while a non- commutable 
one belongs only to one of the two. Thanks to the possibility to 
dynamically allocate some tasks to both human and cobot, 10 
system configurations have been designed. A configuration is 
defined as the sequence of tasks together with the agent (cobot 
or human) they are assigned to. The set of all the configurations 
represents all the possible combinations of task allocations 
between the human operator and the cobot. Each configuration 
has a specific purpose. Some configurations are dedicated to 
ramp-up the workstation, others are intended to be used at 
operating speed and others for specific purposes such as 
worker’s pauses, and workstation shutdown. 

The workstation configuration is dynamically changed 
through a policy based on information about the status of the 
human, the cobot and the process. While the workstation is 
operating, the most appropriate configuration is periodically 
selected by the IM that analyses the data coming from the 
workstation, namely measurements of worker’s parameters, 
activity and status of the cobot and process workflow. The IM 
relies on the digital shadow of the worker and of the 
workstation and defines the behaviour of the cobot and of the 
other complementing elements of the automation (e.g. 
hydraulic actuators, communication lights, etc.). The IM is set 
up so as to suggest a new configuration not less frequently than 
each 5 minutes. 

The operator is then notified when a new configuration is 
selected and is requested to approve (or reject) the change. To 
this end, it is important to communicate new configurations to 
the worker in an easy and effective way to avoid discomfort 
and job interruptions. In the presented demonstrator, the use of 
a smartwatch with haptic feedback, provided by means of 
vibration and visual notification, has been tested. The user can 
approve or reject the proposed change of configuration through 
the touch screen of the smartwatch. Moreover, light interfaces 
attached to the end effector of the cobot are used to reinforce 
notification of changes in the behaviour of the cobot. Other 
solutions such as the use of tablets or monitors has been 
considered but discarded as they would require the operator to 
interrupt her/his task every time a notification is received. 

Worker’s fatigue is monitored by 3 different wearable 
devices: the chest strap Polar H10 to measure HR, the 
wristband Empatica E4, which records HR, EDA, skin 
temperature and wrist acceleration, and the Huawei Watch 2 
with the primary function of gateway to collect data via 

Bluetooth from Empatica E4 and Polar H10, forwarding them 
to the digital shadow. Huawei Watch 2 was also used to interact 
with the operator through a push-notification system activating 
haptic feedback and visual notifications. To enrich the worker 
digital shadow, two models, the HRV-model and the FMS, 
have been used to detect and measure physical and mental 
stress from physiological data. Finally, in order to contextualise 
the acquired human data, the process is monitored by using a 
vision system, mainly used to track buffer status, and 
sensorized tools, such as the quality check device and the bore 
drill, which are directly connected to the IM. 

The proposed system has been validated in 2 sessions 
involving 4 workers (1 female, 3 males). In the first session, 
workers operated without the cobot and the IM. In the second 
session, the same workers, after being instructed, worked in 
collaboration with the cobot, under the IM’s orchestration, 
realizing the Mutualistic and Adaptive HMC. In both sessions, 
workers wore wearable devices recording physiological data, 
allowing to compare mental and physical stress levels detected 
in the two different setups. Moreover, at the end of each 
session, a questionnaire, adapted from NASA Task Load Index 
[27] has been used to investigate on subject’s perception of 
mental effort and physical effort related to the job and the 
workstation.  

5. Results and discussion 

The overall results showed a general reduction of the mental 
and physical workload in both subjective and objective 
indicators. The mutualistic and adaptive system overcomes the 
main issues that afflicted the workstation: need to rush to 
coordinate FIFO sequences and cooling of pieces; boredom and 
exhaustion due to repetitive and monotonous tasks.  

Table 1 summarizes the achieved outcomes. In particular, 
the introduction of the cobot was seen as an improvement by 
the company, thanks to the increased safety and better 
management of the process, resulting also in an overall increase 
of the job engagement. Intrinsic job variability is achieved 
through the ten different configurations. Positive feedback was 
collected from the workers as well, who reported a decrease in 
the monotony of the job itself. Regarding the risk of accidents, 
a possible reduction has to be assessed on the long-term period. 
However, the adopted solution helps reducing near-miss and 
injuries since it achieves a reduction in mental and physical 
demand. The goals in terms of process productivity, measured 
in terms of number of assembled pieces in each shift (+16%), 
operating costs (-11.6%), quality checks (100%) and quality 
issues (-95%), have been fully satisfied. 

Table 1 Validation results 

KPI Values 
Risk of accidents No near-miss, neither accident registered during 

experiments (to be further evaluated in the long-term) 
Job engagement Increased, evaluated by workers as 5 on a 6/grade scale 
Physical stress Subjective = -12%; Quantitative = -1.45% 
Variability of job Configuration shift on average every 5.45 minutes 
Mental stress Subjective = -16.7%; Quantitative = -6.9% 
Quality checks 100% of pieces checked by design 
Quality issues -95% (From 4.1% to 0.2%) 
Productivity +16% 
Operating costs -11.6% 
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3. A hardware-software solution to realize a Mutualistic 
and Adaptive Human-Machine Collaboration  

In order to achieve the described human-aware flexible and 
reconfigurable production system, the modular architecture, 
represented in Fig. 2, has been developed and applied in an 
industrial application through a complete hardware-software 
solution composed by the following components divided in 
conceptual layers: 

• Automation layer: a system composed by a cobot 
(UR5) equipped with a programmable LED ring and 
visual information device, an automatic tool for 
quality control and a semi-automatic tool for 
performing complex assembly operations. 

• Capture layer: a wearable sensory apparatus 
composed of a set of wearable devices which collects 
worker physiological parameters and a vision system 
which monitors buffer levels and production priorities 
to implement a First-In, First-Out (FIFO) policy; 

• Sensing layer: which gathers, pre-processes, stores 
and aggregates data extracted from the wearable 
devices and the environment, making them available 
to the monitoring and decision-making components; 

• Communication layer: a middleware based on an 
event broker which offers interoperability and 
implements a mechanism of asynchronous 
communication among all software components;  

• Persistency layer: a data persistency module which 
formalizes, stores and exposes, through APIs, the 
persistent information of the application domain and 
manages authentication; 

• Detection layer: a worker monitoring system which 
detects in quasi real time any deviation of worker 
psychophysiological stress level from safe patterns 
relying on machine learning algorithms;  

• Decision-making layer: an Intervention Manager 
(IM) capable to assess the stress conditions of the 
worker and suggest best system configurations by 
evaluating: (i) currently active worker in the 
workstation and his/her related data; (ii) previously 
activated system configurations and currently on 
going one; (iii) worker’s physical stress level (FMS 
output) and mental stress (HRV-model output); (iv) 
status of the process and cobot operative status; (v) all 
the possible configurations of the system and their 
triggering conditions. 

3.1. Worker Monitoring through Machine Learning 

Monitoring of worker’s condition is a key element in the 
proposed system and is achieved by merging worker’s 
physiological parameters with static information (such as age, 
weight, etc.) by applying machine learning techniques to 
elaborate in real time his/her mental and physical condition. In 
particular, the adopted system relies on those parameters that 
can be measured with commercial unobtrusive wearable 
devices suitable to be used in an industrial environment, such 
as armbands, chest straps and smartwatches, since they do not 

limit the freedom of motion of the worker and their validity has 
been widely studied in literature [14] [15] [16].  

To calculate worker mental and physical conditions, two 
models have been developed: the HRV-model for the detection 
of mental workload and, the Fatigue Monitoring System 
(FMS), which adopts Machine Learning for the detection of 
fatigue level. 

HRV estimates worker’s mental fatigue as a function of 
cardiac activity. It relies on the analysis of HR, measuring heart 
beats per minute (bpm), and RR series, calculating time 
intervals between consecutive heart beats. HRV-model 
computes HR and RR every 5 minutes and compares the most 
recent values with those measured in the previous time 
windows. The model was preliminarily validated in [17]. From 
this comparison, it defines if the worker is stressed (mental 
stress level=1) or not (mental stress level=0). 

FMS detects physical (e.g. tiredness) discomfort or harmful 
situations for a worker. Different researches deal with cognitive 
load and mental stress of human during a specific activity [18] 
[19] [20]. However, very few treat exertion, fatigue or physical 
workload, mainly investigating human workload adaptation in 
rehabilitation robotics [21] [22].  

In the adopted solution, a modified version of the Borg RPE 
scale [23], the Borg CR-10 Scale has been used to assess and 
predict workers’ fatigue level. The AI algorithm chosen to 
classify the fatigue level of the workers is a Random Forest 
Classifier. FMS’s AI-model has been trained elaborating data 
collected for 8 hours from 4 workers and tested using different 
feature sets, different scales of output classes and computation 
windows. The adopted feature sets, with reference to the 
proposed conceptual framework, include dynamic data, such as 
HR, HRV, GSR, etc., and static data, defined between the most 
relevant parameters included in the OREBRO musculoskeletal 
pain questionnaire [24]. The best performances were obtained 
with the combination of 75 trees and 29 features, obtaining a 
Mean Absolute Error (MAE) of 0.70 (on a 0-10 scale) and an 
accuracy of 68%. A benchmark comes from [25] in which a 
system to estimate physical and mental effort in HMC reaches 
a MAE of 12.7 (but on a 0-100 scale). 

4. Validation use case 

The proposed framework was tested at a manufacturing 
company on a workstation that is part of a plastic-injection 
assembly line. A video of the validation use case is available at 
[26]. 

The workstation is located in proximity of a moulding press, 
which produces the raw piece to be worked by the human. Once 
a moulded piece is ejected by the moulding press, manual tasks 
need to be carried out to obtain the finished piece. The entire 
process is dictated by the cycle time of the moulding press 
(approximately 55 seconds). As a result, workers are forced to 
operate under an external, and very fast, pace determinant with 
consequent effects on the cognitive workload and on the quality 
of the output. Another aspect that increases the complexity of 
the assembly line is that different operations on moulded 
components need to be carried out within specific time 
windows following the ejection times from the press, otherwise 
the piece could break due to hardening of cooling plastic. To 
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address this problem, workers are instructed to follow a FIFO 
approach so to operate on a fixed delay from the moulding time 
and thus interact with each component at the correct 
temperature. However, being a repetitive task, workers often 
suffer from lack of attention and do not respect the correct 
FIFO order, leading to low quality levels. Therefore, with the 
aim of improving worker’s job satisfaction and production 
quality, the assembly line has been revamped introducing the 
presented cobot-enabled system in the workstation that 
collaborates in a mutualistic way with the worker along the 
entire process.  

The overall assembly process is divided in 13 tasks and 4 
buffers and has been modelled using Business Process Model 
and Notation (BPMN). Tasks have been labelled as either 
commutable or non- commutable. A commutable task can be 
carried out by both human and robot while a non- commutable 
one belongs only to one of the two. Thanks to the possibility to 
dynamically allocate some tasks to both human and cobot, 10 
system configurations have been designed. A configuration is 
defined as the sequence of tasks together with the agent (cobot 
or human) they are assigned to. The set of all the configurations 
represents all the possible combinations of task allocations 
between the human operator and the cobot. Each configuration 
has a specific purpose. Some configurations are dedicated to 
ramp-up the workstation, others are intended to be used at 
operating speed and others for specific purposes such as 
worker’s pauses, and workstation shutdown. 

The workstation configuration is dynamically changed 
through a policy based on information about the status of the 
human, the cobot and the process. While the workstation is 
operating, the most appropriate configuration is periodically 
selected by the IM that analyses the data coming from the 
workstation, namely measurements of worker’s parameters, 
activity and status of the cobot and process workflow. The IM 
relies on the digital shadow of the worker and of the 
workstation and defines the behaviour of the cobot and of the 
other complementing elements of the automation (e.g. 
hydraulic actuators, communication lights, etc.). The IM is set 
up so as to suggest a new configuration not less frequently than 
each 5 minutes. 

The operator is then notified when a new configuration is 
selected and is requested to approve (or reject) the change. To 
this end, it is important to communicate new configurations to 
the worker in an easy and effective way to avoid discomfort 
and job interruptions. In the presented demonstrator, the use of 
a smartwatch with haptic feedback, provided by means of 
vibration and visual notification, has been tested. The user can 
approve or reject the proposed change of configuration through 
the touch screen of the smartwatch. Moreover, light interfaces 
attached to the end effector of the cobot are used to reinforce 
notification of changes in the behaviour of the cobot. Other 
solutions such as the use of tablets or monitors has been 
considered but discarded as they would require the operator to 
interrupt her/his task every time a notification is received. 

Worker’s fatigue is monitored by 3 different wearable 
devices: the chest strap Polar H10 to measure HR, the 
wristband Empatica E4, which records HR, EDA, skin 
temperature and wrist acceleration, and the Huawei Watch 2 
with the primary function of gateway to collect data via 

Bluetooth from Empatica E4 and Polar H10, forwarding them 
to the digital shadow. Huawei Watch 2 was also used to interact 
with the operator through a push-notification system activating 
haptic feedback and visual notifications. To enrich the worker 
digital shadow, two models, the HRV-model and the FMS, 
have been used to detect and measure physical and mental 
stress from physiological data. Finally, in order to contextualise 
the acquired human data, the process is monitored by using a 
vision system, mainly used to track buffer status, and 
sensorized tools, such as the quality check device and the bore 
drill, which are directly connected to the IM. 

The proposed system has been validated in 2 sessions 
involving 4 workers (1 female, 3 males). In the first session, 
workers operated without the cobot and the IM. In the second 
session, the same workers, after being instructed, worked in 
collaboration with the cobot, under the IM’s orchestration, 
realizing the Mutualistic and Adaptive HMC. In both sessions, 
workers wore wearable devices recording physiological data, 
allowing to compare mental and physical stress levels detected 
in the two different setups. Moreover, at the end of each 
session, a questionnaire, adapted from NASA Task Load Index 
[27] has been used to investigate on subject’s perception of 
mental effort and physical effort related to the job and the 
workstation.  

5. Results and discussion 

The overall results showed a general reduction of the mental 
and physical workload in both subjective and objective 
indicators. The mutualistic and adaptive system overcomes the 
main issues that afflicted the workstation: need to rush to 
coordinate FIFO sequences and cooling of pieces; boredom and 
exhaustion due to repetitive and monotonous tasks.  

Table 1 summarizes the achieved outcomes. In particular, 
the introduction of the cobot was seen as an improvement by 
the company, thanks to the increased safety and better 
management of the process, resulting also in an overall increase 
of the job engagement. Intrinsic job variability is achieved 
through the ten different configurations. Positive feedback was 
collected from the workers as well, who reported a decrease in 
the monotony of the job itself. Regarding the risk of accidents, 
a possible reduction has to be assessed on the long-term period. 
However, the adopted solution helps reducing near-miss and 
injuries since it achieves a reduction in mental and physical 
demand. The goals in terms of process productivity, measured 
in terms of number of assembled pieces in each shift (+16%), 
operating costs (-11.6%), quality checks (100%) and quality 
issues (-95%), have been fully satisfied. 

Table 1 Validation results 

KPI Values 
Risk of accidents No near-miss, neither accident registered during 

experiments (to be further evaluated in the long-term) 
Job engagement Increased, evaluated by workers as 5 on a 6/grade scale 
Physical stress Subjective = -12%; Quantitative = -1.45% 
Variability of job Configuration shift on average every 5.45 minutes 
Mental stress Subjective = -16.7%; Quantitative = -6.9% 
Quality checks 100% of pieces checked by design 
Quality issues -95% (From 4.1% to 0.2%) 
Productivity +16% 
Operating costs -11.6% 
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3. A hardware-software solution to realize a Mutualistic 
and Adaptive Human-Machine Collaboration  

In order to achieve the described human-aware flexible and 
reconfigurable production system, the modular architecture, 
represented in Fig. 2, has been developed and applied in an 
industrial application through a complete hardware-software 
solution composed by the following components divided in 
conceptual layers: 

• Automation layer: a system composed by a cobot 
(UR5) equipped with a programmable LED ring and 
visual information device, an automatic tool for 
quality control and a semi-automatic tool for 
performing complex assembly operations. 

• Capture layer: a wearable sensory apparatus 
composed of a set of wearable devices which collects 
worker physiological parameters and a vision system 
which monitors buffer levels and production priorities 
to implement a First-In, First-Out (FIFO) policy; 

• Sensing layer: which gathers, pre-processes, stores 
and aggregates data extracted from the wearable 
devices and the environment, making them available 
to the monitoring and decision-making components; 

• Communication layer: a middleware based on an 
event broker which offers interoperability and 
implements a mechanism of asynchronous 
communication among all software components;  

• Persistency layer: a data persistency module which 
formalizes, stores and exposes, through APIs, the 
persistent information of the application domain and 
manages authentication; 

• Detection layer: a worker monitoring system which 
detects in quasi real time any deviation of worker 
psychophysiological stress level from safe patterns 
relying on machine learning algorithms;  

• Decision-making layer: an Intervention Manager 
(IM) capable to assess the stress conditions of the 
worker and suggest best system configurations by 
evaluating: (i) currently active worker in the 
workstation and his/her related data; (ii) previously 
activated system configurations and currently on 
going one; (iii) worker’s physical stress level (FMS 
output) and mental stress (HRV-model output); (iv) 
status of the process and cobot operative status; (v) all 
the possible configurations of the system and their 
triggering conditions. 

3.1. Worker Monitoring through Machine Learning 

Monitoring of worker’s condition is a key element in the 
proposed system and is achieved by merging worker’s 
physiological parameters with static information (such as age, 
weight, etc.) by applying machine learning techniques to 
elaborate in real time his/her mental and physical condition. In 
particular, the adopted system relies on those parameters that 
can be measured with commercial unobtrusive wearable 
devices suitable to be used in an industrial environment, such 
as armbands, chest straps and smartwatches, since they do not 

limit the freedom of motion of the worker and their validity has 
been widely studied in literature [14] [15] [16].  

To calculate worker mental and physical conditions, two 
models have been developed: the HRV-model for the detection 
of mental workload and, the Fatigue Monitoring System 
(FMS), which adopts Machine Learning for the detection of 
fatigue level. 

HRV estimates worker’s mental fatigue as a function of 
cardiac activity. It relies on the analysis of HR, measuring heart 
beats per minute (bpm), and RR series, calculating time 
intervals between consecutive heart beats. HRV-model 
computes HR and RR every 5 minutes and compares the most 
recent values with those measured in the previous time 
windows. The model was preliminarily validated in [17]. From 
this comparison, it defines if the worker is stressed (mental 
stress level=1) or not (mental stress level=0). 

FMS detects physical (e.g. tiredness) discomfort or harmful 
situations for a worker. Different researches deal with cognitive 
load and mental stress of human during a specific activity [18] 
[19] [20]. However, very few treat exertion, fatigue or physical 
workload, mainly investigating human workload adaptation in 
rehabilitation robotics [21] [22].  

In the adopted solution, a modified version of the Borg RPE 
scale [23], the Borg CR-10 Scale has been used to assess and 
predict workers’ fatigue level. The AI algorithm chosen to 
classify the fatigue level of the workers is a Random Forest 
Classifier. FMS’s AI-model has been trained elaborating data 
collected for 8 hours from 4 workers and tested using different 
feature sets, different scales of output classes and computation 
windows. The adopted feature sets, with reference to the 
proposed conceptual framework, include dynamic data, such as 
HR, HRV, GSR, etc., and static data, defined between the most 
relevant parameters included in the OREBRO musculoskeletal 
pain questionnaire [24]. The best performances were obtained 
with the combination of 75 trees and 29 features, obtaining a 
Mean Absolute Error (MAE) of 0.70 (on a 0-10 scale) and an 
accuracy of 68%. A benchmark comes from [25] in which a 
system to estimate physical and mental effort in HMC reaches 
a MAE of 12.7 (but on a 0-100 scale). 

4. Validation use case 

The proposed framework was tested at a manufacturing 
company on a workstation that is part of a plastic-injection 
assembly line. A video of the validation use case is available at 
[26]. 

The workstation is located in proximity of a moulding press, 
which produces the raw piece to be worked by the human. Once 
a moulded piece is ejected by the moulding press, manual tasks 
need to be carried out to obtain the finished piece. The entire 
process is dictated by the cycle time of the moulding press 
(approximately 55 seconds). As a result, workers are forced to 
operate under an external, and very fast, pace determinant with 
consequent effects on the cognitive workload and on the quality 
of the output. Another aspect that increases the complexity of 
the assembly line is that different operations on moulded 
components need to be carried out within specific time 
windows following the ejection times from the press, otherwise 
the piece could break due to hardening of cooling plastic. To 
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6. Concluding remarks 

In this paper we proposed a novel framework for human-
aware flexible and reconfigurable production systems. The 
proposed approach continuously monitors worker’s 
physiological parameters, measured by wearable devices, and 
couples them with context information about the process, to 
dynamically assign tasks to either humans or cobots. The goal 
is to support the operator in case of high cognitive or physical 
demands, hence increasing well-being and safety within 
collaborative human-robot scenarios. Real time interventions 
are provided in terms of process reconfiguration based on 
worker’s mental and physical fatigue and on the process status. 
Ultimately, the cobot is intended as a flexible agent that 
supports operators particularly when their behaviour deviates 
from an optimal and safe performance. The system was tested 
in a real size industrial plastic injection assembly line. 
Effectiveness was measured in terms of objective and 
subjective assessment of workers’ satisfaction and of KPIs 
related to the company productivity. A reduction in the mental 
and physical workload was measured comparing the proposed 
collaborative approach to the manual workstation currently in 
use in the company. Additionally, KPIs indicated significant 
improvements in terms of productivity, operating costs and 
production scraps encouraging the adoption of this framework 
in the company. Given the flexibility and scalability of the 
proposed architecture, future research will consist in a more 
robust validation considering additional use cases. Moreover, 
it will be challenging to extend the framework in a multi-cobot 
multi-operator manufacturing process in order to have cobots 
that can serve more than one work cell and to extend the 
collaboration and the intrinsic job rotation between operators 
of an entire production line. Further effort in the research needs 
to be aimed at modularising the sensing, detection and decision 
tools so that ready-to-use packages can be put together for 
SMEs, the companies most needing, yet less exposed to this 
kind of innovative solutions.  
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