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as seen with other cancers. It is clear that melanoma pa-
thology involves many gene pathways, and trying to iden-
tify driver mutations is not an easy task.

  Susceptibility Genes 

 High-Risk Genes 
 Melanoma high-risk genes are defined as genes that 

when mutated in an individual confer a high risk of de-
veloping melanoma and are usually associated with mul-
tiple melanoma cases within the family. Cyclin-depen-
dent kinase inhibitor 2A  (CDKN2A)  was the first gene 
associated with melanoma susceptibility.

  CDKN2A (p16) has been found to be relevant for 
around 25% of melanoma families but the prevalence of 
these mutations in the sporadic melanoma is very low so 
genetic testing is reserved for families at high risk  [1] . Spe-
cific inclusion criteria for genetic testing for p16 or  CDK4  
(another gene linked to p16) is the presence of multiple 
melanomas within a family, presence of pancreatic cancer 
in a melanoma family or presence of multiple primary 
melanomas even affecting one individual only. Other 
family cancer syndromes may be found in the context of 
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 Abstract 

 New therapies for advanced melanoma have led to major 
advances, which, for the first time, showed improved sur-
vival for patients with this very challenging neoplasm. These 
new treatments are based on gene-targeted therapies or 
stimulation of immune responses. However, these treat-
ments are not without challenges in terms of resistance and 
toxicity. Physicians should be aware of these side effects as 
prompt treatment may save lives. Melanoma genetics is al-
so unravelling new genetic risk factors involving telomere 
genes as well as new gene pathways at the somatic level 
which may soon become therapeutic targets. It is also shed-
ding new light onto the pathology of this tumour with links 
to neural diseases and longevity.  © 2016 S. Karger AG, Basel 

 What Is New in the Genetics of Cutaneous 

Melanoma? 

 Whole-genome sequencing of tumour DNA, expres-
sion arrays and whole-genome methylation have been 
bringing up a large amount of data over the last few years 
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melanoma susceptibility, and these families may need 
screening for breast, ovary or colon cancer as appropriate.

  More recently, less common germline mutations in 
genes such as  MITF, BAP1  and p14  ARF  have been linked 
to melanoma and have explained the clustering of kidney, 
breast and brain tumours within some melanoma fami-
lies  [2] .  BAP1  is located in the chromosomal region 3p21 
and encodes a protein that acts as a tumour suppressor 
through transcription regulation via chromatin remodel-
ling and the ubiquitin-proteasome system. The frequency 
of  CDKN2A  wild-type melanoma-prone families with 
mutations in  BAP1  is not well established, but beyond 
cutaneous melanoma, families bearing  BAP1  mutations 
seem to suffer also more frequently from other cancers 
such as uveal melanoma, mesothelioma, kidney, other cu-
taneous tumours and other cancers  [3] . It is therefore im-
portant to document a family history of all cancers and 
not just skin cancer when screening patients at high risk 
of melanoma.

  Genome-wide analyses using a case-control design 
have reported many more common low-penetrance sin-
gle-nucleotide polymorphisms associated with increased 
melanoma risk  [4] . Many of these genes can be grouped 
into pigmentation or naevus genes but many others are 
not really linked to specific skin phenotypes. Some of 
these genes are involved in telomere biology and neural 
diseases for example. Although pigmentation may affect 
the ability to tan, there are other factors associated with 
fair skin that may also affect melanoma risk such as body 
weight and immune responses via neuro-endocrine fac-
tors through the very complex melanocortin pathways
 [5, 6] .

  A high number of naevi, the strongest phenotypic risk 
factor for melanoma, has been found to be associated 
with longer telomeres in circulating white cells  [7] .

  Telomeres consist of tandem nucleotide repeats 
(TTAGGG) and are located at the ends of chromosomes, 
which guard against loss of genetic material during cel-
lular replication. Due to an inherent end replication prob-
lem, chromosomes are exposed to a potential loss of ge-
netic material, with telomeres acting as a buffer against 
loss of chromatin. Repeated cell cycles eventually lead to 
a critically shortened telomere length, which signals cel-
lular senescence and triggers apoptosis. This arrest in 
proliferation is thought to protect against malignant 
transformation, and a failure to do so results in cata-
strophic genomic instability and carcinogenesis  [8] .

  Telomere length in white cells is predictive of biologi-
cal ageing and is seen as ‘biological age clock’. Telomeres 
shorten both with age and following environmental ex-

posures associated with cancer risk, such as increased cal-
orie intake, smoking, low bone mineral density and ultra-
violet irradiation  [9–11] .

  Several publications have now replicated the associa-
tion with longer telomeres in melanoma cohorts: both 
telomere length and single-nucleotide polymorphisms 
predicting telomere length are important for predicting 
naevus number and melanoma risk. Horn et al.  [12] 
identified a germline mutation in the promoter of the 
telomerase reverse transcriptase  (TERT)  gene in a mela-
noma-prone family with many melanoma cases using 
multipoint linkage analyses and target-enriched high-
throughput sequencing.  TERT  is located in 5p15 and en-
codes the catalytic subunit of the telomerase, which is
the ribonucleoprotein complex that maintains telomere 
length. However, other genes also maintain telomere 
length  [13] . Another gene which controls telomerase is 
 POT1,  which plays an important role in telomere main-
tenance by preventing the inappropriate processing of the 
exposed chromosome ends  [14] .  POT1  is located within 
the 7q31 chromosomal region and encodes a protein of 
the telomeric shelterin complex. Two other telomere 
genes have been described in melanoma-prone families 
involved in the shelterin complex,  ACD  and  TERF2IP 
  [15] . Overall, germline mutations in genes involved in
telomere maintenance  (TERT, POT1 ,  ACD  and  TERF2IP)  
may explain around 1% of familial melanoma cases, 
showing the relevance of telomere maintenance in mela-
noma susceptibility  [16] . However, methylation of telo-
mere genes and other mechanisms affecting telomere 
maintenance other than mutations need to be inves-
tigated.

  This suggests that individuals at risk of melanoma with 
a large number of naevi may have reduced senescence and 
potentially increased longevity of melanocytes. So in clin-
ical practice, this may translate as having a large number 
of naevi in patients aged over 50 years, and this should be 
regarded as a significant risk factor for melanoma.

  Low- to Moderate-Risk Genes 
 Melanocortin 1 receptor  (MC1R)  is considered a mod-

erate-risk gene, and its role in melanoma susceptibility 
has been widely studied  [17] .  MC1R , located on 16q24, is 
one of the master regulator genes of human pigmentation 
and encodes the α-melanocyte-stimulating hormone re-
ceptor 1. Variants in  MC1R  have different functional ef-
fects, either at the level of α-melanocyte-stimulating hor-
mone binding or cAMP signalling, resulting in changes 
in the ratio between eumelanin (brown pigment) and 
pheomelanin (red-yellow pigment, potentially mutagen-
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ic).  MC1R  variants are associated with skin and hair pig-
mentation and, independently of their phenotypic effect, 
 MC1R  variants are associated with an increased risk of 
developing melanoma  [18] .

  Somatic Melanoma Genetics 
 At the somatic level in the tumour, the mitogen-acti-

vated protein kinase (MAPK) pathway is highly relevant 
in melanoma. Approximately 50% of melanoma tumours 
have activating mutations in the  BRAF  gene  [19] .  RAS  
mutations are also informative and prevalent in 20% of 
melanomas which are more likely to be fast-growing and 
nodular types of melanomas  [20 ,  21] .

  Mutations of  c-KIT  are preferentially observed in acral 
lentiginous melanoma and mucosal tumours  [22] . Over-
all, 10–22% of patients with mucosal melanomas have tu-
mours containing  KIT  mutations or amplifications  [23] . 
Thus, sensitivity to KIT inhibition exists in a subset of 
melanoma tumours but these are not common  [24] .

  In the clinical setting,  BRAF  mutations are routinely 
screened in melanoma tumours in stage III and above but 
when  BRAF  mutations are not detected, the tumour may 
need to be screened for  NRAS, KIT  and  GNAQ  mutations 
if appropriate  [25] .

  Strategies to target melanomas that are  BRAF/NRAS/
KIT  wild type (triple wild type) have proven even more 
elusive. Mutations in the  PTEN  gene have been detected 
in a variety of human cancers including breast, thyroid, 
glioblastomas, endometrial, prostate and melanoma  [26] . 
Initial studies demonstrated a mutation rate in  PTEN  of 
30–40% in melanoma cell lines and 10% in primary mel-
anomas  [27] .  PTEN  is also involved in mediating growth 
arrest and other cellular functions of the MAPK pathway 
 [28] . Germline mutations in this gene also predispose car-
riers to develop Cowden’s disease, a heritable cancer risk 
syndrome which is extremely rare  [29] .

  The identification of PI3K/AKT signalling as a core 
pathway for melanoma development and therapeutic es-
cape suggested the possibility of cotargeting MAPK and 
PI3K/AKT signalling in  BRAF -mutant melanoma. Many 
melanoma mutations are in fact potentially actionable 
with drug targets, and drug development in these gene 
pathways is moving fast  [30] .

  Genome-wide sequencing of melanoma tumours is 
generating interesting data. Melanoma is one of the most 
mutated cancers in terms of somatic changes as well as 
lung and bowel cancer, and the presence of many somat-
ic changes in these tumours may be because of the in-
creased interactions with the environment in the respec-
tive organs  [18] .

  What Is New in the Treatment of Cutaneous 

Melanoma? 

 Sentinel Node Biopsies and Lymphadenectomies 
 Melanoma patients with intermediate and thick tu-

mours are offered a sentinel node biopsy to identify lymph 
node spread as this procedure has prognostic value strati-
fying patients in different risk categories  [31–33] . Other 
parameters such as mitoses and ulceration are also helpful 
in thinner melanomas  [34] . After a positive sentinel lymph 
node has been detected, the current guidelines recom-
mend a complete lymph node dissection of all involved 
metastatic basins but in cases with very small deposits in 
the lymph node, the patient may be given the choice of 
avoiding a lymphadenectomy  [35] . The number of posi-
tive lymph nodes and its ratio represent the two most im-
portant prognostic factors in stage III melanoma patients 
 [36, 37] . We are still awaiting the results of the Multicenter 
Selective Lymphadenectomy Trial II (MSLT-II) in which 
patients with a positive sentinel node are randomized to 
completion lymphadenectomy or observation with ultra-
sound. Despite the risk of a false-negative sentinel lymph 
node  [38] , its role in predicting survival is still high enough 
to justify the procedure. Patients need to be well informed 
about the prognostic value of this procedure but access to 
adjuvant treatment for stage III melanoma may also jus-
tify the use of this procedure in the future.

  Metastatic Melanoma 
 Advances in the understanding of signalling pathways, 

melanoma oncogenes and immune system regulation 
have recently resulted in a new generation of therapeutics 
that have significantly improved response rates and sur-
vival.

  Signalling Pathway-Directed Therapies 
 Approximately 50% of melanoma tumours have an ac-

tivating mutation in the  BRAF  oncogene, which results in 
the constitutive activation of the MAPK signalling path-
way  [39] . Potent selective antagonists of mutant  BRAF  
(vemurafenib and dabrafenib) are regarded as standard 
of care for metastatic  BRAF- mutant melanoma  [40, 41] . 
Of at least as much clinical importance, however, is the 
fact that approximately 90% of patients whose cancers 
carry the  BRAF  mutation have some tumour shrinkage 
with targeted inhibitors and that these responses occur 
very rapidly. This rapid response rate can provide pallia-
tive relief for patients with significant tumour-related 
symptoms but usually last 6–9 months when other thera-
pies may need to be considered  [42–46] .
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  Activated BRAF phosphorylates MEK, the next down-
stream target in the MAPK pathway. Although  MEK  is 
rarely mutated in untreated melanoma, it is a conduit for 
signalling, and inhibition of this target results in signifi-
cant benefit in comparison to chemotherapy. Trametinib 
and cobimetinib are selective MEK inhibitors, and both 
have been shown to improve median progression-free 
and overall survival in comparison to chemotherapy in 
BRAF-mutant melanoma  [46–48] . Dual inhibition of 
both BRAF and MEK pathways in  BRAF- mutant disease 
is now proven to be significantly more potent than single-
agent inhibition.

  The side effects of these gene-targeted therapies with 
BRAF inhibitors (vemurafenib) include a variety of dif-
ferent effects with the majority occurring on the skin  [49, 
50] . The most common adverse events recorded in the 
BRIM-3 registration trial included arthralgia, fatigue, 
nausea, rashes, photosensitivity and cutaneous squamous 
cell carcinoma or kerato-acanthoma  [51] . The dose was 
modified or interrupted due to adverse events in 38% of 
patients treated with vemurafenib and permanently dis-
continued in only 7% of the patients treated.

  Clinical trials of dabrafenib, another BRAF inhibitor, 
began in 2009 with final results published in 2012. The 
most common adverse effects included cutaneous squa-
mous cell carcinoma (11%), fatigue (8%) and pyrexia 
(6%). Thirteen (7%) patients required a reduction in the 
dose. Squamous cell carcinomas and kerato-acanthoma 
appeared less frequently than in patients treated with 
dabrafenib than with vemurafenib, although a direct 
comparison has never been investigated  [41, 52, 53] .

  To reduce these cutaneous side effects, it is recom-
mended to use soap substitutes, emollients, keratolytics 
containing salicylic acid or urea, topical or oral antibiotics 
(in case of acne type eruptions on the face/trunk) and 
sunscreens applied every day even on non-sunny days as 
photosensitivity can be severe especially for vemurafenib.

  The issue with RAF kinase inhibitors is acquired resis-
tance caused by reactivation of the MAPK pathway. This 
results in a median progression-free survival of 6–8 
months. BRAF inhibitors may also lead to new melanoma 
primary development induced by a paradoxical activa-
tion of the MAPK pathway in cells without  BRAF  muta-
tions. This led to the introduction of a MEK inhibitor, 
trametinib, combined with a BRAF inhibitor, dabrafenib, 
for combination therapy. A significant improvement in 
the response rate (76 vs. 54%, p = 0.03) and progression-
free survival was observed in the combination arm, com-
pared to dabrafenib monotherapy  [54]  with fewer adverse 
events for squamous cell carcinoma (7 vs. 19%, respec-

tively), although the incidence of pyrexia (71 vs. 26%) was 
increased by the introduction of a MEK inhibitor.

  These patients under targeted gene therapies are also 
more likely to develop multiple keratotic lesions that may 
progress to kerato-acanthomas and squamous cell carci-
nomas, and may need a referral to the local dermatologist 
via the 2-week wait if the lesions are growing quickly. 
During treatment, patients can notice changes in size, 
shape and colour of naevi, and as new primary melanoma 
can occur, it is important to have dermatological input in 
oncology clinics treating melanoma  [55] . This also high-
lights the need of a dermoscopy and digital monitoring to 
assess changing naevi in these patients and the early diag-
nosis of BRAF-inhibitor-related skin cancer (i.e. squa-
mous cell carcinoma, etc.).

  Immunotherapy  
 Melanoma is considered one of the most immunogen-

ic tumours, and the role of the immune system in driving 
prognosis is well known even in localized tumours  [56–
58] .

  Improved understanding of the control mechanisms 
regulating T-cell activation has led to a new generation of 
immunotherapies for many cancers and especially mela-
noma. The first checkpoint inhibitor in routine clinical 
use is ipilimumab, a humanized monoclonal antibody 
against the CTLA-4 protein, which stimulates immune 
responses against the tumour  [59, 60] . Ipilimumab ben-
efits only approximately 15% of patients, and unfortu-
nately there is currently no available biomarker that iden-
tifies which patients will derive benefit. Although it does 
improve median overall survival, the real attraction of the 
agent is the possibility of a long-term durable remission 
up to 5 years.

  Recent attention has focused on an alternative check-
point, PD-1, and its ligand PDL-1  [61] . The blockade of 
the PD-1/PDL-1 interaction is able to overcome immune 
resistance  [62–64] : nivolumab and pembrolizumab have 
now been shown to be superior to chemotherapy and to 
ipilimumab alone in patients with advanced melanoma. 
They are licensed for use in the USA, and, at the time of 
writing, European licenses were obtained for pembroluz-
imab  [65–67] . Thirty to forty percent of patients experi-
ence significant shrinkage of their tumours with these 
new agents, which is significantly higher than for ipilim-
umab.

  The side effect profile of these drugs is severer than 
that of BRAF and MEK inhibitors with toxicity to the 
bowel, lung and liver with potential severe life-threaten-
ing colitis, pneumonitis and hepatitis. Although patients 
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are instructed to contact their oncology team urgently in 
case of lung or gastrointestinal symptoms under immune 
therapies, general practitioner and emergency physicians 
may be faced with these emergencies, and swift actions 
contacting the oncology team with rapid use of high-dose 
steroids can be live saving. Pituitary failure is also a severe 
side effect of immunotherapy and needs to be recognized 
early. Other side effects that are less threatening are: fa-
tigue, skin rashes (except extensive vasculitic rash which 
may signal a severe auto-immune reaction), vitiligo and 
neuropathy.

  Conclusions 

 In primary care, it is important to identify patients 
most at risk of melanoma with a full skin examination 
looking for suspicious naevi as well as documenting 
whether the patient has a high number of naevi  [68] . Doc-
umenting the family history of all types of cancers is also 
very important as melanoma can be found in cancer-
prone families, and cancer screening may be recom-
mended. Documenting past sun exposure is unfortunate-

ly not identifying patients most at risk of melanoma. It is 
likely that in the next 5 years, panels of melanoma suscep-
tibility genes will be tested in high-risk patients to help 
devise follow-up strategies for dermatologists but also to 
give advice about other cancer screening, such as for bow-
el, breast or kidney cancer, which may be more prevalent 
in high-risk families. Melanoma treatment is changing at 
great pace with improved survival that had not been seen 
previously for this very challenging tumour. Many clini-
cians and cancer nurses may be faced with drug toxicity 
with these new drugs and need to be aware of the side ef-
fects for prompt treatment and/or referral. Although on-
cology units prescribing these drugs will have all the pro-
cedures in place to support melanoma patients, general 
practitioners and emergency physicians need to be vigi-
lant for early signs of toxicity especially for the lung and 
gut as the prognosis is much improved if identified early 
and treated promptly.
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