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Analytical modelling of the shape memory effect in SMA beams 

with rectangular cross section under reversed pure bending 

Enrico Radi

Dipartimento di Scienze e Metodi dell'Ingegneria, Università di Modena e Reggio Emilia, 

Via Amendola 2, I-42122 Reggio Emilia, Italy. Email: enrico.radi@unimore.it

Abstract. An analytical model is developed for a prismatic SMA beam with rectangular cross section 

subjected to alternating bending at temperature below the austenitic transformations. The loading path 

consists in a loading-unloading cycle under bending and then under reversed bending. Two opposite 

martensitic variants take place, whose volume fractions evolve linearly with the axial stress. Different 

Young’s moduli are taken for the austenitic and martensitic phases. As the bending moment is 

increased, the martensitic transformation starts from the top and bottom and then it extends inwards. 

If the maximum applied bending moment is large enough, then the complete Martensitic 

transformation takes place at the upper and lower parts of the cross section. During unloading and the 

following reversed bending, reorientation of the Martensite variant into the opposite one takes place 

starting from the boundary between the fully martensitic region and the intermediate transforming 

region. Special attention is devoted to calculate analytically the axial stress and Martensite variant 

distributions within the cross section at each stage of the process. A closed form moment-curvature 

relation is provided for loading and elastic unloading and in integral form for the rest of the process. 

The approach is then validated by comparison with analytical results available in the literature. 

Keywords: Analytical modeling, Pure bending, Rectangular cross-section, Shape-memory alloy, 

Phase transformation, Martensite reorientation, Cyclic loading.

1. Introduction

Due to their peculiar characteristics, such as the shape memory effect and the superelastic behavior, 

SMA beams, rods and wires are effectively employed in smart sensors and actuators, as well as in 

energy dissipating devices for the control of structural vibrations due to wind or seismic excitations. 

Indeed, a large hysteresis loop similar to that exhibited by ductile metals is observed in a martensitic 

SMA bar cyclically loaded at low temperatures, which is due to the reorientation process between 
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martensitic variants rather than to phase transformation or dislocation glide mechanisms. As a 

consequence, SMAs are able to display a much higher fatigue resistance than plastically deformed 

metals and thus they can efficiently replace elastic-plastic hysteretic devices in passive control and 

seismic retrofit of building and bridges (Dolce et al., 2000; Dolce and Cardone, 2001; DesRoche and 

Smith, 2004; Song et al., 2006; Ozbulut et al., 2011; Fang and Wang, 2020). A practical example of 

application of the SMA energy dissipation properties is given by the innovative yielding dissipater 

device recently proposed by Zibasokhan et al. (2019) for seismic protection of concentrically braced 

structures, which is able to transform the axial force into pure bending in the dissipating plates. The 

device is fabricated by a set of ductile steel plates under pure bending, and it can be efficiently 

improved by exploiting the shape memory effect of SMA. 

Usually, dissipating SMA device are cyclically loaded alternately under tension and compression. 

However, the occurring of buckling in slender SMA bars and wires under compression restricts their 

applications and requires additional devices to prevent it. Therefore, the special properties of SMA 

bars are better exploited under bending rather than under tension and compression. In order to 

overcome the buckling problem, Choi et al. 2009 proposed the use of a superelastic SMA bars in 

bending as seismic dampers and restrainers for bridges and proved their ability in reducing the 

openings at the internal hinges and the pounding force on abutments. Later, Choi et al. (2019) 

investigated the self-centering and damping capacity of SMA bars in bending. They showed that a 

martensitic SMA bar exploiting the shape memory effect displays a higher energy dissipation and 

thus a better seismic efficiency than a superelastic SMA bar, while the latter provides better 

displacement recovery and self-centering capability. Although a residual strain usually remains in a 

martensitic SMA bar after unloading, it can be easily removed upon heating. 

The dissipation capabilities of SMA seismic devices under cyclic loading of alternating sign 

remarkably increase if the shape memory effect is exploited, rather than the superelastic behavior. 

Indeed, a larger amount of energy is dissipated during each cyclic reorientation process between 

positive and negative martensitic variants if no intermediate austenitic transformation is triggered 

(Wilson and Wesolowsky, 2005). In these applications, a clear under-standing of the fatigue behavior 

of SMA is necessary to improve their safety. To this aim an accurate evaluation of the maximum 

stress level under cyclic loading of alternating sign becomes highly important.

The problem of bending of a SMA beam was investigated numerically by many authors by means of 

finite element simulation, e.g. Auricchio and Sacco (1997), Auricchio et al. (2011), and Poorasadion, 

et al. (2015) or by numerical procedures based on the partition of the beam cross-section into a number 

of thin layers (De la Flor et al., 2011). Analytical approaches have been also tempted by some authors, 

but they are limited to a loading-unloading cycle and have not been extend to reversed loading. In 
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particular, Mirzaeifar et al. (2013) provided explicit expressions for the stress and martensitic volume 

fraction distributions both in circular and rectangular cross sections upon a superelastic loading-

unloading cycle and used these expressions for obtaining closed-form relations between bending 

moment and curvature. They also took into account for the tension-compression asymmetry on the 

bending response of SMAs and compared the theoretical predictions with the results of three-point 

bending tests on an SMA beam and finite element investigations. Ostadrahimi et al. (2015) presented 

an analytical solution for pure bending of SMA beams with rectangular cross section as well as 

symmetric behavior in tension and compression at high (pseudo-elasticity) and low (shape memory 

effect) temperatures. They assumed the same Young’s modulus for both phases, thus obtaining 

piecewise linear stress variation within the cross section. Eshghinejad and Elahinia (2015) also 

derived an analytical expression for the bending moment in a superelastic SMA beam loaded at the 

tip and evaluated its deflection by assuming linear stress-strain relations in all regions and using a 

semi-analytical approach. Viet et al. (2018) worked out an analytical solution for the problem of SMA 

cantilever beams subjected to tip load throughout a full loading–unloading cycle. The analysis was 

based on Timoshenko beam theory and was later extended to account for tensile–compressive 

asymmetry in SMA response (Viet et al., 2019).  The asymmetric tension-compression behavior of 

the SMA has been observed and modelled under direct bending by Rejzner et al. (2002), Fahimi et 

al., (2019), and Viet et al. (2019).

Most of these analyses investigate the superelastic behavior of SMA beams in order to exploit the 

self-centering mechanism, and thus they are restricted to temperatures higher than the start 

temperature of the austenitic transformation As. In this case, the reverse austenitic transformation is 

completed before the complete unloading. Therefore, these works do not take into consideration the 

transformation between the two Martensite variants, which may occur during unloading and reversed 

loading at temperature lower than As. The shape memory effect of SMA beams, which is essential for 

application to dampers and dissipating devices, is indeed observed under cyclic loading at 

temperature lower than the start temperature of the austenitic transformation As, e.g. for the NiTinol 

alloy (Ni55Ti) considered by Brinson (1993) this effect occurs at room temperature. In this case, 

during unloading the axial stress changes its sign in some parts of the beam cross section and it may 

trigger the Martensite reorientation process. Such transformation then continues under reversed 

bending. However, no complete and detailed analytical study of a SMA beam under reversed bending 

has been performed up to now. Recently, Radi (2020) performed an analytical investigation of the 

shape memory effect in SMA circular rod under cyclic torsional loading by adopting a 3D SMA 

constitutive model that incorporates two opposite Martensite variants. He also analyzed the 

transformation and reorientation processes into multiple martensitic variants in a previous work on 
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the response of SMA thick-walled cylinders under internal pressure (Radi, 2018). 

The present study extends the previous investigations to pure bending of SMA beams with rectangular 

cross section. In particular, closed-form solutions are obtained here for the axial stress and distribution 

of Martensite volume fractions at each step of a cyclic bending process of alternating sign, performed 

at constant temperature T lower than As. These analytical results are then used for calculating the 

moment-curvature relation for a SMA beam cross section subjected to direct and reversed bending.

This achievement is possible because a simple 1D phenomenological SMA constitutive model is 

adopted here, which assumes a linear evolution law with the axial stress for both Martensite variants. 

The simplifications adopted here preserve the basic features of SMA materials and they are required 

for achieving a closed form solution to the problem of reversed pure bending of SMA beams. 

Obviously, more refined constitutive models have been proposed in the last years. However, they 

necessarily require the adoption of numerical procedures, also for simulating simple mechanical 

problems. The constitutive model developed here originates from those proposed for multi-variants 

Martensite (Brinson, 1993; Brinson and Huang, 1996; Govindjee and Kasper, 1997, 1999; De la Flor 

et al., 2011; Marfia and Rizzoni, 2013; Rizzoni et al., 2013; Rizzoni and Marfia, 2015; Fahimi et al., 

2019) and recently adopted by Radi (2020) for modelling cyclic torsional loading. It is able to 

simulate the Martensite reorientation process occurring when a transition from tensile to compressive 

stress, or vice versa, takes place. Here, the Martensite reorientation process under reverse bending is 

taken into consideration analytically for the first time. 

The constitutive model is the 1D reduction of a 3D model already used in Radi (2018). It is 

sufficiently accurate for the present analysis because the stress field under pure bending is 1D. An 

equivalent reduction is performed also in other investigations of the pseudoelastic effect in SMA 

beam under bending, e.g. in Mirzaeifar et al. (2012), Ostadrahimi et al. (2015), Viet et al. (2018, 

2019).  Obviously, a 3D strain field arises in the beam so that the beam cross section can change his 

shape by expanding in the compressed zone and contracting in the tensile one, due also to the 

martensitic transformation and reorientation. This effect can be explicitly considered in the present 

analysis by specifying the strain components in the plane of the cross section under 1D stress field. 

However, the analysis has been focused here on the derivation of the analytical relation between 

bending moment and curvature during the full cyclic process taking into account for martensitic 

reorientation, rather than focusing on the cross section deformation.

Since no variation of temperature due to the thermal-mechanical coupling of SMA has been 

considered, then the isothermal solutions found here holds for very slow loading-unloading rates only. 

The fully coupled thermal-mechanical behaviors of SMA beams subjected to cyclic loading 

conditions is generally very complicated to be investigated analytically. Due to the complex heat 
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diffusion process it would necessary require the adoption of a purely numerical procedure. 

This paper is organized as follows. The 1D constitutive model for SMA beams under pure bending is 

presented in Section 2. Different elastic Young’s moduli are considered for the two phases and the 

elastic behavior of the SMA is assumed to depend on the volume fraction of Austenite and Martensite 

according to the Reuss scheme for the elastic response of a composite. Moreover, the model can 

simulate the martensitic reorientation process during unloading and reversed bending. Closed form 

solutions for the axial stresses and Martensite fractions within the cross section at each step of the 

first loading-unloading process are presented in Section 3, together with the corresponding relation 

between the applied bending moment and the beam curvature obtained by integrating the contribution 

of the axial stress within the cross-section. Similar closed form solutions are obtained in Section 4 for 

the reversed bending and subsequent elastic unloading. The results are then plotted in Section 5 and 

the effects of the constitutive parameters on the distribution of axial stresses and Martensite volume 

fractions within the cross-section are discussed therein. The analytical results are then validated 

against some analytical results for a loading-unloading cycle provided in the technical literature. 

Unfortunately, neither analytical nor experimental results can be found for the Martensite 

reorientation process under reversed bending loading. Conclusions are then drawn in Section 6. With 

respect to previous similar works, the fully analytical solution presented here significantly extends 

the range of validity to a full cycle of alternating sign of the applied bending moment. The accurate 

knowledge of the full stress field during the complete process is indeed the only way to ensure good 

limitation of the stress level for the safe and accurate design of SMA devices under bending. 

2. 1D constitutive model for a SMA beam under pure bending

Let x and y denote the principal centroidal axes of the rectangular cross section of a prismatic beam 

having width b and height 2a. According to the classical Euler-Bernoulli theory, the axial strain   

under pure bending is proportional to the beam curvature  and is a linear function of the distance y 

from the neutral axis of the cross section, which coincides with the x-axis, namely

 =  y, for a ≤ y ≤ a. (2.1)

By assuming tension-compression symmetry for simplicity, a symmetric distribution of the axial 

stress  along the height is expected, so that the neutral fibre always coincides with the centroidal x-

axis. Therefore, reference is made only to the upper half of the cross section (y ≥ 0) in the following. 

The bending moment Mx applied to the beam cross section can be calculated by taking the moment 

about the neutral axis of the stress distribution along the height, namely
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Mx = . (2.2)
a

dyyb
0

2

According to Govindjee and Kasper (1997, 1999) and Rizzoni and Marfia (2015), let  and  denote 

the volume fractions of Martensite stretched in the positive (tensile) and negative (compressive) 

directions, respectively. Then, the effective volume fraction of Martensite  is defined by the 

difference      and the total volume fraction of Martensite is given by the sum tot    , 

where 1 ≤  ≤ 1 and 0 ≤ tot ≤ 1. Moreover, the 1D rate constitutive relationships between the axial 

stress  the axial strain  in (2.1) and the effective volume fraction of Martensite  are assumed in 

the following linear form

y =  + L ,                                         
)( ottE 










 





otherwise,0

|,|||||for1 0
fs

sf




where L is the maximum transformation strain attained under uniaxial loading when the solid is 

composed of fully oriented Martensite, 0 is the effective volume fraction Martensite at the beginning 

of each transformation, E(tot) is the Young’s modulus of the SMA material, which is assumed to 

depend on the total Martensite volume fraction according to the Reuss scheme for the elastic response 

of a composite, namely

, (2.4)
M

tot

A

tot

tot

1
)(

1
EEE








being EA and EM the Young’s moduli of the two phases. In eqn (2.3)2, s  and f denote the critical 

axial stresses for the start and finish martensitic transformations at temperature T, respectively, and 

they are defined by 

s = + CM (T  Ms), f = + CM (T  Ms),  (2.5)cr
s cr

f

where CM is the slope of the martensitic transformation lines in the uniaxial stress-temperature phase 

diagram sketched in Fig. 1, and  and  are the uniaxial critical stresses for the start and finish cr
s cr

f

of the martensitic transformation at temperature Ms (Brinson and Huang, 1996).

Before loading, the SMA beam is assumed in the austenitic phase, so that  = tot = 0 = 0. As the 

beam is loaded in bending, a single Martensite variant is produced in the upper half of the cross 

section, according to the integrated form of the evolution law (2.3)2 
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    (2.6)





















.for,1

,for,

,for,0

f

fs
sf

s

s

During unloading and reversed bending, the effective and total Martensite volume fractions follows 

from the integration of the linear evolution law (2.3)2 as 

(2.7)























 

,for,1

,for,)1(

,for,

00

0

f

sf
sf

s

s

and

(2.8)























 

f

sf
sf

f

s

for,1

for,)1(1

for,

0

0

tot

respectively, where 0 is the effective volume fraction Martensite at the beginning of each stage. Eqns 

(2.7) and (2.8) agree with the 1D constitutive relations for the multivariant Martensite volume 

fractions considered by Govindjee and Kasper (1997, 1999), De la Flor (2011), Rizzoni et al. (2012) 

and Radi (2020).

3. Loading-unloading cycle under pure bending

In the initial state of Austenite, the beam displays linear elastic behavior and thus the axial stress 

within the cross section is given by the following linear function of the beam curvature 

 =  , for 0 ≤  ≤1, (3.1)
s


a
y

where

 =  a, (3.2)
s

E


A

is the normalized beam curvature. Consequently, the martensitic transformation starts at the top of 

the cross section, namely at y = a, when the axial stress attains the critical stress s therein, namely 
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for Mx = Ms, where

Ms = s. (3.3)2

3
2 ab

Let 

 = = , (3.4)
s

x

M
M

 
a

s

dyy
a 0

2

3

denotes the normalized bending moment applied to the cross section, then the following normalized 

linear relation holds between bending moment and beam curvature under pure elastic loading

 = , for 0 ≤   ≤ 1. (3.5)

If the bending moment is increased, then the martensitic transformation takes place at the upper part 

of the cross section, namely at ys ≤ y ≤ a, where 

ys = , (3.6)

a

and it propagates inward. According to eqns (2.3) and (2.4), the stress and beam curvature in the 

transforming region are related by the linear rate relation

=  , for ys ≤ y ≤ ys, (3.7)
AE
s

a
y

 

















 

sf

L

EE MA

1

which can be integrated starting from the occurring of the martensitic transformation at height y, by 

using eqn (2.6), namely

    = , for ys ≤ y ≤ a, (3.8)
a
y



























s

d
ss

11

where the following non-dimensional parameters have been introduced

 = ,  = ,  = . (3.9)
s

sf




sf

L E


 A

M

MA

E
EE 

The integration of eqn (3.8) then provides a quadratic equation for the axial stress 

 +  =    1, for ys ≤ y ≤ a, (3.10)










1 










 1

s 

2 











 12

2

s a
y

which admits the following solution for the axial stress within the cross section 

 (4.10)






























 







,for,11211

,0for,

1

ayy
a
y

B
B

yy
a
y

s

s

s

where
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B = (1 + ) B1 = (1 + )2 (3.11)






According to eqns (2.6) and (4.10), the distribution of the Martensite volume fraction within the cross 

section is given by

(3.12) 



























 






.for,1121

,0for,0

1

ayy
a
y

B
B

yy

s

s

Both the axial stress and the volume fraction of Martensite display a nonlinear variation with the y 

coordinate in the transforming region for ys ≤ y ≤ a, which becomes linear for  = 0, namely for equal 

Young’s moduli of the two phases.

A further increment of the bending moment applied to the cross section then causes the occurring of 

the complete martensitic transformation at y = a, where  = 1. Correspondingly, the normalized beam 

curvature and the height of start martensitic transformation are given by 

1 = , , (3.13)





 


 1

2
1

1
1 


ay

as they follow from eqns (3.12) and (3.6), respectively. The introduction of the axial stress (4.10) in 

the balance condition (3.4)1 then yields the normalized moment-curvature relation, which holds 

during this stage of loading

() = [5 + B B1 B1  5)  (B  1) (2  1)  B1  2  3)B1  2  2)3/2],(3.14)25
1
 2

15

1B
B

namely for 1 ≤  ≤ 1.

The axial stress at y = a attains the critical value f under the normalized bending moment  = (1). 

If the bending moment is increased, then the fully transformed region propagates inwards. Within 

this region, the rate eqn (3.7) can be integrated starting from the occurring of the complete martensitic 

transformation at height y, by using the conditions  = 1, thus obtaining

 =  , for yf ≤ y ≤ a, (3.15) 
s

f




1
1







  1a

y

where the height

yf  =  a (3.16)

1

denotes the front of finish martensitic transformation, where   f. 

During the last stage of the loading process, the cross section is partitioned into an inner purely 

austenitic inner region for |y| ≤ ys, an intermediate transforming region for ys ≤ |y| ≤ yf, and an outer 
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purely martensitic region for yf ≤ |y| ≤ a. From eqn (4.10), (3.12), and (3.15), the corresponding 

distributions of the axial stress and Martensite volume fraction within the upper half of the cross 

section are given by

   (3.17)









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and

(3.18)







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


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










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

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

,for1
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ayy
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a
y

B
B
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f

fs

s

respectively. Therefore, during the loading process both the axial stress and the Martensite volume 

fraction vary linearly with y across the inner austenitic and the outer martensitic regions, and display 

a weak nonlinear variation within the intermediate transforming region.

During the last stage of the loading process, the normalized bending moment  then follows from 

(3.4)1 and (3.17) as a nonlinear function of the normalized beam curvature  

() = + + , for 1 ≤  ≤ max, (3.19)2
C




1












1

1
2
3 1

where

C =  [1B   (B+) 1
2]  (B1  3k1  2)(B1  2k1  2) 

)1(2

3
1




2
1

)1(21
5 1

1


B

B

+ B1 (B1 – 5), (3.20)
5
B

Note that for equal Young’s moduli, namely for  = 0, the distributions of axial stress (3.17) and 

effective Martensite volume fraction (3.18) within each region of the upper half of the cross section 

become linear in y, in agreement with the findings of Ostadrahimi et al. (2015), namely
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   (3.21)
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and

(3.22)
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where ys and yf are given by (3.6) and (3.16) calculated for  = 0.

Let max = a/ys and max = (max) denote the normalized beam curvature at the end of the loading 

process and the corresponding normalized bending moment, respectively. Moreover, let max and max 

denote the distributions along the height of the beam cross section of axial stress and volume fraction 

of Martensite at the same stage, which follow from (3.17) and (3.18) for  = max, respectively.

3.1 Unloading

The Martensite distribution does not vary during elastic unloading as well as the heights ys and yf, 

which are given by (3.6) and (3.16) for  = max. The integration of the rate constitutive equation (2.3) 

for  = max(y), and thus , by using the Reuss scheme (2.4), then yields the axial stress during 0

elastic unloading as a function of the normalized curvature

 =   , for  ≤ y ≤ a. (3.23)
s



s
max

max

max

1 


a
y

The corresponding moment-curvature relation follows from the introduction of the stress field (3.23) 

in the balance condition (3.4)1

 = max
  (max  ) . (3.24) 

a

dyy
a 0 max

2

3 1
3

The change of variable t = 1 +  max(y) in the integral in eqn (3.24), by using (3.18) for max(y), then 

gives

 = max
  (max  ) m, (3.25)

where
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m = , (3.26)

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1
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22
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33
1

3
max

3
max

12)1()(
4
3

1
11 dt

t
t

and the integral in (3.26) is calculated analytically in Appendix A. Note that m  1 as  0.

The elastic incremental behavior of the bar ends when the axial stress (3.23) reaches the negative 

critical stress –s at y = yf, where max = 1 and max = f, namely for  = 2 and  = 2, where

2 = 
 ,  2 = 

 max  (1 + ) m (3.27)
1

max
max )2)(1(





1

max)2(





Indeed, Martensite reorientation takes place before the complete unloading of the cross section if 2 > 

0, namely if the maximum beam curvature max is larger than a limit value lim given by the largest 

positive real root of the following cubic equation obtained from the introduction of eqns (3.19) and 

(3.26) in (3.27)2:

+    C, (3.28)



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

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2
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1 3
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 2

13

3

1 4
311)2( I

where the constant C is defined in (3.20) and I denotes the integral calculated in Appendix A. 

If max  lim then the unloading process is entirely elastic and when the bending moment is 

completely released the residual beam curvature is  

res = max max
 /m. (3.29)

Conversely, if max  lim then Martensite reorientation takes place before complete unloading 

according to eqn (2.7) for 0 = max. In this case, two new regions where Martensite reorientation 

occurs spread out from the boundary between the intermediate transforming regions and the fully 

martensitic outer regions at y = yf. Let us denote with y and y the lower and upper heights delimiting 

these new regions, with y ≤ yf ≤ y, which are defined by the condition that the axial stress at y = y 

and y = y must coincide with the negative critical stress s. Therefore, the following two relations 

between , y and y follow from eqn (3.23)

max(y)  s = s,  max(y)  s = s. (3.30)
)(1 max

max

y


a
y




1
max

a
y 

The introduction of eqn (3.21) for max(y) with  = max in eqn (3.30)1 then yields the normalized 

beam curvature  as a function of the height y:

 = max  [2 +  max(y)][1 +  max(y)]  for  y ≤ y ≤ yf. (3.31)
'y

R

By using eqn (3.22) for max(y) with  = max, eqn (3.31) can be explicitly solved for y as a function 

of the normalized beam curvature  
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 = , (3.32)
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 2
max

2
max

])1()2[(
)(211

where ys ≤ y ≤ yf. In the same way, the introduction in eqn (3.30)2 of the stress field max(y) obtained 

from (3.17) for  = max then yields the height y as a function of 

 = [1 – (1 + )( + 2)], (3.33)
a
y 


1

where yf  ≤ y ≤ a. Let us consider a material point at height y laying between y and yf . According to 

eqn (3.31), the reorientation of the primary Martensite variant into the opposite one starts there when 

 = y, where 

 y = max  [2 +  max(y)][1 +  max(y)]  for  y ≤ y ≤ yf. (3.34)
y
a

Therefore, by subtracting eqn (3.34) from eqn (3.31) one has

y   = [2 +  max(y)][1 +  max(y)]  [2 +  max(y)][1 +  max(y)]   for  y ≤ y ≤ yf. (3.35)
'y

a
y
a

At the same time, for  = y, Martensite reorientation also starts at another material point at height y 

ranging between yf and y, and thus y must satisfy the following condition also

y = [1 – (1 + )( + 2)] , for  yf  ≤ y ≤ y, (3.36)
y
a

according to (3.33). Then, eqns (3.33) and (3.36) yield

y   = [1 – (1 + )( + 2)] , for  yf  ≤ y ≤ y. (3.37)










y
a

y
a

The introduction of relations (2.4) and (3.9) in the rate constitutive eqns (2.3) then yields the following 

rate equation, 

EA y  = , for y ≤ y ≤ y, (3.38)  )1(1 maxtot  

which holds for a material point at coordinate y experiencing the reorientation of the Martensite 

variant. Integration of the rate constitutive equation (3.38) from the start of the martensitic 

reorientation at height y, by using relations (2.8) for tot with 0 = max, then gives

(  y) = d,     for y ≤ y ≤ y, (3.39)
a
y 



 

















s sf

f

s

)1()1(11
maxmax

being s, y and max the axial stress, the normalized beam curvature and the total volume fraction 

of Martensite at the beginning of the reorientation process, respectively. The calculation of the 

definite integral in (3.39) then yields the following quadratic equation for the axial stress  during the 

Martensite reorientation process
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    1  = 0, for y ≤ y ≤ yf, (3.40)2

2
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

max1
2

Therefore, the admissible solution of eqn (3.40) for 0 < max < 1 is

= 1   , for y ≤ y ≤ yf. (3.41)
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1 2
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yy

The terms y   and y follow from eqns (3.35) and (3.32), respectively, in terms of the beam 

curvature .  

For max = 1, eqn (3.39) provides the following result for the axial stress

=  1  , for yf  ≤ y ≤ y, (3.42)
s






21
y

a
y

where the quantities y   and y are given in eqns (3.37) and (3.33) in terms of . 

During this stage, the rest of the cross section displays only elastic behavior. Therein, the axial stress 

is thus given by

=   , for 0 ≤ y ≤ y  and  y ≤ y ≤ a. (3.43)
s



s
max

max

max

1 


a
y

The distribution of effective Martensite in the regions where the reorientation of the Martensite 

variant occurs then follows from eqn (2.7) for 0 = max as

 = , for  y ≤ y ≤ y. (3.44)















 11 max
max

s

where the ratio /s follows from eqn (3.41) for y ≤ y ≤ yf  or eqn (3.42) for yf  ≤ y ≤ y. In the rest 

of the cross section, the volume fraction of Martensite is still equal to max.

Therefore, the axial stress and Martensite volume fraction display linear distribution along the height 

of the cross section in the inner austenitic region at y ≤ ys only, according to eqns (3.43) and (3.44) 

for max = 0, whereas their distributions in the rest of the cross section are clearly not linear.

As the bending moment is decreased or applied with the opposite sign, the boundaries y and y  

moves inward and outward, respectively, and thus the boundary y may reach the outer surface when 

y = a, namely for (a) =  s. According to eqn (3.33), this condition occurs for  = 3, where

3 = 1 – (1 + )( + 2), for yf  ≤ y ≤ a. (3.45)

During this stage, the axial stress and Martensite distributions are still provided by eqns (3.41)-(3.44).

The introduction of the axial stress (3.41)-(3.43) in the balance condition (3.4)1 then provides the 

normalized moment-curvature relation within the range 3 ≤  ≤ 2. In this case, the residual beam 

curvature when the bending moment is completely released is given by the solution of the 
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transcendent equation (res) = . 

In the special case of equal Young’s moduli of the two phases, namely for   0, the axial stress in  

(3.41) assumes the simple expression 

= 1  , for y ≤ y ≤ yf, (3.46)
s


a
yy

max1 



where max is given by (3.22) for  = max.

4. Reversed bending 

If an opposite bending moment is applied to the cross section after complete unloading and its 

magnitude is gradually increased, then the axial stress and Martensite distributions during this stage 

are still given by eqn (3.23) for 2 ≤  ≤ res and by eqns (3.41)-(3.44) for 3 ≤  < 2. Indeed, eqns 

(3.41)-(3.44) hold true till the outer region fully made of the first variant Martensite disappears when 

y = a namely for  = 3. Actually, these equations provide the axial stress and Martensite 

distributions also for  < 3. In this case, however, eqn (3.33) yields y > a. The introduction of the 

stress fields (3.41)-(3.43) in the balance condition (3.4)1 then provides the moment-curvature relation 

for this stage of reversed bending, which continues till one of the following two conditions is met. 

Namely, either the axial stress reaches the critical stress –s for the start of the Martensite 

reorientation at height y, i.e. for y = ys, or the axial stress reaches the critical stress –f for the finish 

of the Martensite reorientation at the top of the cross section, i.e. for yf = a. According to (3.31), the 

former condition occurs for  = max, being max(ys) = 0 and max = a/ys. According to (3.42) and 

using relations (3.33), (3.37), and (3.13), the latter condition, namely (a) = –f, occurs for  = 4, 

where

4 = 1  ( + 2). (4.1)

If the magnitude of the negative bending moment is further increased, then a region fully made of the 

negative Martensite variant originates at the top of the cross section and propagates inwards with 

height yf  defined by the condition (yf) = – f, namely

, for  < 4, (4.2)



 )2(1

a
y f

according to (3.36) and (3.42). In this case, the distributions of the axial stress and the effective 

Martensite volume fraction are given by eqns (3.43) and (3.18) for 0 ≤ y ≤ y, by (3.41) and (3.44) for 

y ≤ y ≤ yf, and by (3.42) and (3.44) for yf  ≤ y ≤ yf, respectively, where the heights yand y are 

defined in (3.33) as functions of . Integration of eqn (2.3) in the outer fully martensitic region where 

 = 1, starting from the finish of martensitic transformation at height y, by using (4.1) and (4.2), then 
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gives

 =   1    , for yf
  ≤ y ≤ a. (4.3) 

s


1
1





 

a
y)2(1

In both cases, the introduction of the axial stress fields in (3.4)1 then yields the corresponding bending 

moment-curvature relation.

Note from eqn (4.2) that for different Young’s moduli, namely for  > 0, then for  = max one has 

y = a 1/max = yf  < yf  Therefore, the axial stress and Martensite distributions across the beam cross 

section for  = max are not exactly opposite to those obtained from (3.21) and (3.22) for  = max. 

On the contrary, for equal Young’s moduli of the two phases, namely for  = 0, then for  = max 

one has y = yf and yf = yf , namely the axial stress and Martensite distributions are exactly opposite 

to those obtained for  = max.

The introduction of the axial stress fields (4-38), (3.42), and (3.43) or (4.3) in the balance condition 

(3.4)1 then yields the bending moment-curvature relation for the last stage of the reversed bending 

process.

Let min and min denote the distributions of axial stress and effective volume fraction of Martensite 

along the height of the beam cross section at the end of reversed bending for min =  max. They 

follow from (3.41)-(3.44) and (4.3), by using (3.13), (3.34), and (3.36), as


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. (4.6)ay f
max

1
min,

)2(





4.1 Elastic unloading after reversed bending

The integration of the rate constitutive equation (2.3) for , being  = min, by using (2.4) for tot  = 0

max, then yields the axial stress during the subsequent elastic unloading process

 =   , for 0 ≤ y ≤ a. (4.7)
s



s
min

)(1 max

max

y


a
y

The corresponding applied bending moment is 

 = min
  (max  ) m, (4.8)

according to (3.4)1 and (4.7). The elastic unloading of the beam ends when  = 0, for   res where

res = max min
 /m.

The elastic behavior of the beam ends when the axial stress reaches the positive critical stress s at y 

= min{yf, min, a}, namely for  = 5 where

5 =  (4.9)


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1

1

f
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ya

ay

A further increase in the applied bending moment will trigger Martensite reorientation into the 

positive variant at height y = min{yf, min, a}. 

5. Results

The results presented in the following make reference to the NiTinol constitutive parameters at room 

temperature T = 298°K considered by Brinson (1993), which are reported in Table 1. The 

corresponding parameters defined in Sections 3 and 4 are  = 0.4575,  = 64.1286 and  = 1.5475.

The distribution of the austenitic and martensitic phases varying the applied bending moment during 

loading are plotted in Fig. 2 together with the variations of the fronts of start and finish martensitic 

transformation, ys and yf. This figure also provides the distribution of the two phases along a SMA 

cantilever beam loaded by a unit transversal force applied at the tip, where the bending moment 

increases linearly from the loaded tip to the built-in end.

The distributions of the axial stress and effective volume fraction of Martensite along the height of 

the upper-half cross section at each step of loading and reversed loading are plotted in Fig. 3 and 4, 
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respectively, for max = 2, 3, and 4. These curves correspond to the end of the loading process for  

= max, the end of elastic unloading for  = 2, the complete unloading for  = res, the reversed 

bending for  equal to 3, 0, 4, and max, and the subsequent complete unloading for  = res. 

The variation of the axial stress and Martensite volumetric fraction along the height of the cross 

section during first loading are piecewise linear in the inner fully austenitic region and in the outer 

fully martensitic region, whereas they are weakly non-linear in the intermediate transforming regions, 

since different Young’s moduli are considered for the two phases. Note that in the last stage of loading 

(solid black lines), the axial stress significantly increases in the upper fully martensitic region, where 

the yield stress of the SMA material could be rapidly accomplished at the top surface, in agreement 

with the findings of Eshghinejad and Elahinia (2015). 

During the subsequent elastic unloading, the axial stress decreases linearly with the height y and no 

phase transformation or Martensite reorientation occur, till the negative critical stress f is attained 

at yf. This condition is accomplished for  = 2 and  = 2 defined in (3.27). Therefore, for  < 2 the 

reorientation of the Martensite variant is triggered, starting from the region at height yf. This process 

occurs during unloading only if the maximum bending moment applied to the cross section is larger 

than a limit value. For the Brinson SMA material at the considered room temperature, the 

(normalized) limit bending moment is lim = 3.617, this value is obtained by introducing the solution 

lim = 42.22 of eqn (3.28) in eqn (3.19). The results plotted in Figs. 3a and 3b for max = 2 and 3, 

respectively, show indeed that the unloading process is entirely elastic and after complete unloading, 

namely for  = res (dashed red lines), a wide region is subject to residual negative axial stress, whose 

magnitude however is not large enough for triggering Martensite reorientation. Conversely, the 

results obtained in Fig. 3c for max = 4 > lim show that Martensite reorientation takes place at height 

yf during unloading and spreads inwards and outwards as the applied bending moment is further 

decreased. In this region, the axial stress  at the end of unloading displays a weak and limited 

nonlinear variation with the coordinate y, according to (3.41), being actually almost constant and a 

bit more negative than –s (red dashed line in Fig. 3c for  = res). It may be also observed that at the 

end of unloading after first loading, the axial stress vanishes at five points within the cross section. 

The maximum residual axial stress is attained at the top surface and it increases remarkably with max. 

For max < lim Martensite reorientation takes place during reversed bending, always starting from 

height yf. 

Under reversed bending, the axial stress tends to be negative and almost uniform in the upper half of 

the cross section till the negative critical stress f is attained at the top for  = 4 (see the lines for  

equal to 3, 0, 4 in Fig. 3). However, if the magnitude of the applied negative bending is further 
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increased, then the magnitude of the negative axial stress rapidly increases at the top of the cross 

section (see the dash-dotted blue lines for  = max in Fig. 3). For different Young’s moduli of the 

two phases, the distributions of the axial stress at the end of the reversed bending for  =  max (dash-

dotted blue lines) are not exactly opposite to those obtained for  = max (solid black lines). The axial 

stress is indeed opposite, but its magnitude is smaller than that observed at the end of direct loading.

The distributions of residual axial stress at complete unloading subsequent to reversed bending, 

namely for  = res, are plotted in Fig. 3 as dotted black lines.  Again, the axial stress vanishes at five 

points within the cross section, the maximum magnitude of the residual axial stress is attained at the 

top surface and it increases remarkably with max. Note that for the values of max considered in these 

figures the complete unloading of the cross section after reversed bending occurs under rate elastic 

behavior, since the maximum residual axial stress is lower than the critical stress s everywhere.

The distributions of the effective Martensite volume fraction  = +   along the height plotted in 

Fig. 4 turn out to be slightly nonlinear within the transforming region, during the first loading process 

also, although it is very close to a linear trend. Clearly, the total amount of Martensite transformed 

within the cross section increases with the maximum bending moment max applied at the end of 

loading. As the bending moment is completely removed, namely for  = res, if  < lim then the 

Martensite distribution does not change (see Figs. 4a and 4b), being the unloading process entirely 

elastic, whereas if  > lim then the production of a limited amount of the secondary Martensite variant 

can be observed (dashed red line in Fig. 4c).

As the bending moment is decreased and then applied with the reversed sign, the size of the region 

where Martensite reorientation takes place, namely where  < s, increases. At first it reaches the 

top surface of the cross section for  = 3 and then it tends to recover the entire region where the 

martensitic transformation occurred under direct bending, namely the upper region over the height ys. 

Note that when the beam curvature is completely removed, namely for  = 0 (dashed green lines in 

Fig. 4), the effective Martensite volume fraction is still positive within the cross section. No backward 

Austenitic transformation is activated under reversed bending, being T < As. However, a significant 

amount of the primary (positive) Martensite variant undergoes the reorientation process into the 

secondary (negative) Martensite variant and thus the effective volume fraction of Martensite  

decreases. Obviously, a similar but opposite Martensite reorientation occurs in the lower half of the 

cross section. Also the distributions of the effective Martensite volume fraction  at the end of 

reversed bending for  =  max (dash-dotted blue lines) are opposite, but smaller than those observed 

at the end of direct bending for  = max (solid black lines), thus denoting that the initial Martensite 

variant is still present within the cross section at the end of reversed bending.
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The partition of the cross section at the end of first unloading, namely for  = res, varying the 

maximum applied bending moment max is plotted in Fig. 5.  In this plot, the region below the curve 

ys (solid black line) is in a purely austenitic state; the transformation region between the curves ys, yf 

(solid blue line), y, and y (dashed and das-dotted red lines) is made of a mixture of  austenite and 

single variant Martensite; finally, in the region between the curves y and y the reorientation of the 

Martensite variant occurred during unloading.

The partition of the cross section at the end of reversed bending, namely for  = max, varying the 

maximum applied bending moment max is also reported the same plot. In this case, y = ys and yf < 

yf,min < a < y. Therefore, the region below the curve ys still is in a purely austenitic state; the region 

between the curves ys and yf,min (dashed green line), is made of a mixture of austenite and both 

Martensite variants; finally, the region over the curve yf,min is entirely made of the secondary 

Martensite variant. The latter distribution does not change during the subsequent elastic unloading.

The closed form relations between the normalized applied bending moment  and beam curvature  

under the direct and reversed bending cyclic process are plotted in Fig. 6 for max = 2, 3, and 4. 

Due to the lower Young’s modulus of Martensite with respect to that of Austenite, the slope of the 

last part of the loading process as well as that of the elastic unloading process is clearly smaller than 

the slope of the initial austenitic loading process. This occurrence makes the residual beam curvature 

after complete unloading as well as the area enclosed by each cycle a little bit smaller than those 

obtained under the simplifying assumption of equal Young’s moduli of the two phases (Ostadrahimi 

et al., 2015). Therefore, such a simplifying assumption overestimates the shape memory effect and 

the energy dissipation capabilities of SMA, as already observed under torsional loading (Radi, 2020).

5.1 Validation by comparison with available results

In order to validate the present analysis, a comparison with some analytical results available in the 

technical literature is provided in Fig. 7. To this aim, the axial stress distributions in a rectangular 

cross section of heigth 2a = 2 mm and width b = 2 mm subject to an increasing bending moment at 

constant temperature T = 30 °C given in Fig. 12a of Eshghinejad and Elahinia (2015) (blue lines) are 

compared with those obtained in the present work (red lines). The constitutive parameters considered 

by Eshghinejad and Elahinia (2015) at temperature T = 30 °C > Af are given in Tab. 2. The curves are 

very close, although a slight discrepancy can be noticed for the higher levels of loading due to the 

difference between the adopted SMA constitutive models. Eshghinejad and Elahinia (2015) assumed 

indeed linear stress distributions in all regions, whereas slightly nonlinear stress distributions are 
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found in the present analysis, as due to the different Young’s moduli of the two phases. 

In addition, the tip displacement of a SMA cantilever beam caused by a tip force F in a loading-

unloding cycle from 0 to 10 N obtained from the present formulation is compared in Fig. 8 with that 

provided by Eshghinejad and Elahinia (2015) in their Fig. 8c. The constitutive parameters at 

temperature T = 5°C < As considered therein are reported in Tab. 2 (note that the value assumed for 

L can not be found in their paper and it has been supplied by the authors by private communication). 

The tip displacement calculated numerically by double integrating the differential equation for a 

cantilever Euler-Bernoulli beam, built-in at the end at x = L = 30 mm, namely 

, (5.1)










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2
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FLd
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sA

s

where  = () denotes the inverse relation between normalized bending moment and curvature 

defined in Section 3 for first loading and elastic unloading. In this case also, the results are reasonably 

close and a discrepancy can be noticed for the higher levels of loading due to the differences between 

the two SMA constitutive models. In particular, during the martensitic transformation the present 

model turns out to be a bit stiffer than that developed by Eshghinejad and Elahinia (2015).

A further comparison is made in Fig. 9 with the analytical and FEM results provided by Ostradrahimi 

et al. (2015) for the bending moment-curvature relation of a rectangular cross section with a = 0.5 

mm and b = 1 mm. These results are obtained under direct loading and elastic unloading at 

temperature T = 40°C lower than Ms = 34°C and thus also lower than As. The corresponding 

material parameters are reported in Tab. 3. The analytical model developed by these authors assumes 

the same Young’s moduli for both phases, namely  = 0. In this case the stress-strain relations become 

linear also in the transformation region. The analytical results obtained from the present approach for 

the particular case of  = 0 are practically coincident with those obtained by Ostradrahimi et al. (2015) 

and very close to the FEM predictions. A slight difference can be observed at the end of elastic 

unloading because the model considered in Ostradrahimi et al. (2015) allows for reverse austenitic 

transformation before complete unloading, whereas for the present model the reverse phase 

transformation can not take place at temperature lower than As.

Unfortunately, no analytical or numerical investigations are available in the technical literature for 

validating the present model under the reverse bending process, in particular for the temperature range 

originating the shape memory effect considered here.

6. Conclusions

A simple 1D constitutive model is adopted for modelling the isothermal response of a SMA beam 
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with rectangular cross section under direct and reversed pure bending. The model takes into account 

for different Young’s moduli of the two phases by adopting the Reuss scheme of composite materials 

for the description of the SMA elastic behavior. Two opposite Martensite variants can take place 

according to the sign of the axial stress. Their volumetric fractions are assumed to evolve linearly 

with the axial stress, so that the linear rate constitutive equations for SMA can be easily integrated in 

closed form within each step. Moreover, the axial stress and the Martensite distribution across the 

beam cross section can be calculated analytically at each step of the cyclic process. In particular, the 

distributions of axial stress and effective Martensite volume fraction in the transformed regions of the 

cross section are slightly nonlinear as due to the different Young’s moduli of the two phases. The 

analytical or numerical integration of the contribution of the axial stress within the cross section then 

yields the bending moment applied to the cross section as a function of the beam curvature both under 

bending and reversed bending.

We found here that the response of the cross section under reversed bending is not symmetrical with 

respect to the first bending loading, namely the stress field and the Martensite distribution at the end 

of negative reloading is not exactly opposite to those observed at the end of loading, although a 

symmetric tension-compression constitutive behavior has been assumed. The difference is due to the 

different Young’s moduli of the two phases. Indeed, the response becomes perfectly symmetric for  

= 0, namely for EA = EM. In this case indeed the distributions of stress and Martensite variants at the 

end of the loading process and at the end of the negative loading process are equal but opposite in 

sign. With some additional analytical complications, the model can be extended to account also for 

asymmetric tension-compression behavior of the SMA by assuming different magnitudes of the 

positive and negative critical stresses.

Here, the analysis has been developed only for the first cycle of direct and reverse loading. In 

principle, it can be extended to subsequent cycles, of course with increasing difficulties. Future 

investigations may be extended to multiple loading cycles, general bending, and different temperature 

ranges. Note that the response during repeated loading cycles of the same amplitude does not change 

if the elastic modulus of the SMA material is assumed constant, namely for  = 0. In this case, indeed, 

the response observed in the first cycle is exactly reiterated in subsequent cycles of the same 

amplitude. The present results are also sufficiently accurate under general bending if the shear stress 

is much smaller than the axial stress, as it generally occurs for slender beam with compact cross 

section. In this case indeed the shear stress attains the largest values in proximity of the cross section 

centroid, where no transformation is triggered, and thus a weak effect on the phase transformation 

condition is expected from the contribution of the shear stress. Finally, the framework used here for 

modelling Martensite reorientation can be adopted also for modelling the reverse austenitic 
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transformation which may occur during unloading at temperatures higher than As. 

The exact closed form solution provided here is particularly valuable for analyzing and understanding 

the role played by the constitutive parameters in the shape memory effect of SMA beams during a 

bending cycle of reversed sign. Each step of the derivation of the analytical solution is clearly 

described in the paper and can be easily checked. Besides providing a reliable evaluation of the actual 

and residual stresses and strains in SMA beam under direct and reverse bending, the analytical results 

here obtained have a number of additional advantages. Indeed, they can be exploited for the accurate 

design of innovative seismic dissipating devices and actuators realized by SMA beams loaded in 

bending and subjected to alternating loading. They can support designers in the calibration process 

of numerical models able to describe SMA macroscopic effects. They are also useful for validating 

the accuracy of numerical procedures based on more refined constitutive models employed in the 

modeling of SMA beams under complex cyclic loading. 
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Appendix A

The integral in the definition of m in eqn (3.26) can be calculated as

= [(1+)5 1] +  [(1+)4 1]  [(1+)3 1] (p  52) 








 


1

1

22 1])[( dt
t

pt
5
1

4
5

3
2

 [(1+)2 1]  (52  3p)  (5  p) (2  p)   (p  2)2 ln(1+),

where

p = 



 2)1( 2
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TABLES

T 

[°C]

EA 

[GPa]

EM 

[GPa]

s 

[MPa]

f 

[MPa]

L  

25 67 26.3 153 223 0.067

Table 1.  Young’s moduli of the two phases, Poisson coefficient, critical stresses and maximum 

residual transformation strain for Brinson SMA materials at room temperature.

T 

[°C]

EA 

[GPa]

EM 

[GPa]

s 

[MPa]

f 

[MPa]

L  

5 73.2 30 25 125 0.0166

30 73.2 30 200 300 0.0166

Table 2.  SMA constitutive parameters at temperatures T = 5 °C  and T = 30 °C, 

from Eshghinejad and Elahinia (2015).

T 

[°C]

EA 

[GPa]

EM 

[GPa]

s 

[MPa]

f 

[MPa]

L  

40 53 53 122.5 197.5 0.05

Table 3.  SMA constitutive parameters at temperatures T = 40 °C from Ostradrahimi et al. (2015).
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Fig 1. Threshold stresses for martensitic and austenitic transformations (blue lines) and

isothermal loading-unloading process (red lines) at temperature T between Ms and As.
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Fig. 2. Distribution of Austenite and Martensite and variations of the fronts of finish and start 

martensitic transformation with the applied bending moment under loading, for Brinson SMA 

material.
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Fig. 3. Distributions of the axial stress  along the height of the cross section, for various values of 
the beam curvature  and for 

max 
= 3, 4, and 5, for Brinson SMA material.
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Fig. 4. Distributions of the effective Martensite volume fraction  along the height of the cross 

section, for various values of the beam curvature  and for 
max 

= 3, 4, and 5, for Brinson SMA
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Fig. 5. Normalized variations with the maximum bending moment applied to the cross section of the 

fronts of finish and start martensitic transformation and of the upper and lower fronts of the region 

undergoing transformation between Martensite variants at first complete unloading and at the end of 

reversed bending, for Brinson SMA material.
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Fig. 6. Normalized cyclic variations of the applied bending moment with the beam curvature, under 

alternative loadings for max = 2, 3, and 4, for Brinson SMA material.
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Fig. 7. Comparison between the axial stress distributions along the height of the beam provided by 

the present analysis (red lines) and those provided in Fig. 12a of Eshghinejad and Elahinia (2015) 

(blue lines) for Material I, for the loading process at temperature T = 30°C.
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Fig. 8. Comparison between the force vs tip displacement relation of a SMA cantilever beam at T = 

5°C provided by the present analysis (dashed red line) and those provided in Fig. 8c of Eshghinejad 

and Elahinia (2015) (solid blue line).
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Ostradahimi et al. (2015)

3D SMA Continuum Element

Present study 
 

Fig. 9. Comparison between the moment-curvature relation of a SMA rectangular cross section with 

a = 0.5 mm and b = 1 mm provided by the present analysis (dashed red line) and those provided in 

Fig. 12 of Ostradrahimi et al. (2015), obtained by their analytic model (solid blue line) and by FEM 

analysis (dashed green line).

Page 36 of 36

http://mc.manuscriptcentral.com/jimss

Journal of Intelligent Material Systems and Structures

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


