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Abstract

Using a technique which is inspired by topology, we construct original
examples of 3- and 4-edge critical graphs. The 3-critical graphs cover
all even orders starting from 26; the 4-critical graphs cover all even
orders starting from 20 and all the odd orders. In particular, the 3-
critical graphs are not isomorphic to the graphs provided by Goldberg
for disproving the Critical Graph Conjecture. Using the same approach
we also revisit the construction of some fundamental critical graphs,
such as Goldberg’s infinite family of 3-critical graphs, Chetwynd’s 4-
critical graph of order 16 and Fiol’s 4-critical graph of order 18.
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1 Introduction

In the present paper, we deal with graphs that are not necessarily simple, so
multiple (or parallel) edges are allowed but loops are excluded. We denote
by χ′(G) the chromatic index of a graph G, namely, the minimum number
of colours that are needed for an edge-colouring of G. Vizing, in [12], proved
that ∆(G) ≤ χ′(G) ≤ ∆(G)+µ(G), where ∆(G) and µ(G) are the maximum
degree and the maximum multiplicity (the number of parallel edges for two
fixed vertices) respectively. A simple graph G is said to be class 1 or 2
according to whether χ′(G) is ∆(G) or ∆(G) + 1, respectively. We will
restrict our attention to graphs whose chromatic index is at most ∆ + 1.
Edge-critical graphs will be our main object of study:
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Figure 1: Two remarkable 4-critical graphs.

Definition 1.1. For a given graph G, let G−e denote the graph obtained by
removing an edge e; G is ∆-(edge)-critical if χ′(G) = ∆+1 and χ′(G−e) = ∆
for any edge e.

In the literature, three small critical graphs of considerable importance
appeared respectively in [9], [7] and [6]. The first graph (see the left side of
Figure 10) was constructed by Goldberg as the first counterexample related
to the “Critical Graph Conjecture” according to which all critical graphs
should have an odd number of vertices (see [6]); such a graph had the small-
est number of vertices (22) in an infinite family of graphs of even order
constructed by Goldberg. The second graph – see the left side of Figure
1 – was found by Fiol as an example of critical, simple graph of smaller
order, namely 18; the last graph – see the right side of the figure – is due to
Chetwynd; it has order 16 but it is not simple because of one multiple edge.

It is still unknown whether a simple, critical graph of order 16 exists. As
to smaller orders, such a question was settled by a number of contributions
over the years. In details, Jacobsen’s work (see [10]) ruled out all graphs
with 4, 6, 8, and 10 vertices; Fiorini and Wilson (see [8]) added the case 12 to
the above list of non-admissible values; Bokal, Brinkmann, and Grünewald
(see [2]) proved that also 14 is non-admissible.

In this paper, we push forward the analogy between non-orientable man-
ifolds and class 2 graphs which was introduced in [11] and describe a new
method for constructing critical graphs. We show the effectiveness of this
method by constructing infinite families of critical simple graphs. The con-
structions cover all odd and even orders for 4-critical graphs, the odd order
starting from 5, the even orders starting from 20, as well as all even or-
ders for 3-critical graphs, including the orders of Goldberg’s infinite family
starting from 28 (the orders of Goldberg’s graphs are all those numbers con-
gruent to 8 (mod 16), and the further value 22). The 3-critical graphs of
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even order that we construct are not isomorphic to the graphs of Goldberg’s
infinite family; the graphs are simple, except the 4-critical graph of order
16. According to the literature, our constructions provide in particular the
first example of an infinite family of ∆-critical graphs for degree 4. The
present approach is expected to yield infinite families also for larger degrees,
in the next future, because the key definitions can be easily exported to the
general case.

Our method allows to build up critical graphs starting from class 1 graphs
with an elementary and “nice” shape (see for instance Figure 2). This
is innovative with respect to well-know methods that construct ∆-critical
graphs starting from critical graphs with maximum degree not exceeding ∆
– see Theorem 4.6 and 4.9 in [14].

Following the mentioned approach in [11], we also show that the infinite
family of Goldberg’s graphs disproving the “Critical Graph Conjecture” and
the other two counterxamples constructed by Fiol and Chetwynd can be
obtained by a suitable identification of vertices which is pretty analogous to
the topological identification yielding the Möbius strip from a rectangular
strip. Details about the change of language – from topology to graph theory
– can be found in [11].

Some additional terminology is required; in particular, certain distin-
guished vertices that play a basic role in the constructions shall be em-
phasised by suitable adjectives. Leaving details to the next sections, we
anticipate that all the constructions will rely on particular pairs of vertices
which are analogous to the extremes of a rectangular strip before the iden-
tification that leads to a Möbius strip. In our setting, any such pair will
undergo a transformation which is similar to the topological identification
of the extremes of the rectangular strip. The change from orientability to
non-orientability, caused by the identification, is rephrased as the change
from class 1 to class 2 as a consequence of the prescribed transformation.

Many standard definitions in this paper are in accordance with the text-
book [3] by Bondy and Murty. As a further source, we mention the textbook
[5] by Bryant. Edges like {u, v} are simply denoted by uv. We use the term
t-colouring if the colour set has size t. Given a vertex v of a graph G, the
palette of v, in symbols Pγ(v) or simply P (v), is the set of colours that a
colouring γ of G assigns to the edges containing v. In some cases, we will
need to write γG so as to specify the graph we are colouring. The comple-
mentary set Pγ(v) or P (v) is the complementary palette of v with respect to
the colour set of γ. If a colour is missing at a vertex v, we say that v lacks
that colour. Finally, a vertex of degree h is an h-vertex.

For our purposes we also recall Vizing’s Adjacency Lemma, concerning
the structure of critical (simple) graphs, and the quite elementary, still very
useful, Parity Lemma:

Theorem 1.2 (VAL [13]). If uv is an edge of a ∆-critical graph, then u is
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adjacent to at least ∆− deg(v) + 1 ∆-vertices (different from v).

Property 1.3 (PL [1]). For any colouring of a graph G, the number of
vertices that lack a given colour has the same parity as |V (G)|.

Although there exist several generalisations of VAL to multigraphs, for
our purposes it suffices to consider the simple graph version (see the lines
just above Remark 2.8).

2 Fertile pairs of vertices

As hinted in the Introduction, the constructions of critical graphs that fol-
low can be thought of as identifications of special pairs of vertices which
change the colouring class from 1 to 2. Accordingly, the first step in each
construction is the choice of a suitable pair of vertices which we are going to
define as fertile pair. There are three kinds of fertile pairs, but after a little
thought all of them can be related to the same kind – as we will soon ex-
plain. Conversely, given a critical graph, we will show that it is obtained as
a suitable identification of a fertile pair which collapses to a unique vertex.
In this reconstruction process, it is important to note that the identification
could be arbitrarily performed on every vertex, but the choice of a particular
vertex is essential both for proving criticality in a comfortable way, and for
generating new critical graphs using a pattern which is readily suggested by
the fertile pair.

Definition 2.1. Let u, v be vertices of a graphG. Assume that the following
conditions hold:

(∗) u is not adjacent to v, deg(u) + deg(v) ≤ ∆ and, for every ∆-
colouring, P (u) ∩ P (v) 6= ∅.

(∗∗) For any edge e, G−e admits a ∆-colouring such that P (u)∩P (v) =
∅.

Then, u and v are said to be conflicting. Assume, instead, the following:

(∗) deg(u) = deg(v) = ∆− 1 and, for every ∆-colouring, P (u) = P (v).
(∗∗) For any edge e which does not contain u nor v, G − e admits a

∆-colouring such that P (u) 6= P (v).
In this case, u and v are same-lacking. Finally, assume the following:

(∗) deg(u), deg(v) are smaller than ∆ and, for every ∆-colouring, |P (u)∪
P (v)| = ∆.

(∗∗) For any edge e, G−e admits a ∆-colouring such that |P (u)∪P (v)| <
∆.

In this last case, u and v are said to be saturating.

In all of the three cases, we say that (u, v) is a fertile pair of vertices.
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Remark 2.2. After the removal of e in the same-lacking case, we equiva-
lently require that |P (u)∪P (v)| ≥ 2; this is trivial if e contains one or both
vertices u, v. Furthermore, notice that in the saturating case condition
|P (u) ∪ P (v)| = ∆ is equivalent to P (u) ∩ P (v) = ∅.

The following lemma is the basic link between topology and graph theory
in the present context, and should be considered the starting point for all
the next constructions.

Lemma 2.3. Let (u, v) be a fertile pair of a graph G having χ′(G) = ∆ ≥ 2.
For each of the following cases, the corresponding operation yields a ∆-
critical graph.
� If u and v are non-adjacent and conflicting, identify u and v.
� If u and v are same-lacking, add a new vertex w and edges uw, vw.
� If u and v are saturating, add the edge uv.

Proof. If we identify a pair of conflicting vertices, we obtain a graph G′

having maximum degree ∆ and no proper ∆-coloring, since the palettes
of two conflicting vertices share at least one color; hence G′ is class 2. By
definition 2.1, if we remove any edge e from G′, we find at lest one ∆-coloring
of G′ − e such that the two conflicting vertices have disjoint palettes with
respect to it; therefore, G′ is ∆-critical. The same-lacking and saturating
cases can be managed analogously.

Notice that adding two pendant edges uw, vw′ when u and v are same-
lacking yields conflicting 1-vertices w, w′. Similarly, adding one pendant
edge uw when u and v are saturating yields conflicting vertices w, v. There-
fore, the above operations can be regarded as identifications of conflicting
vertices in all cases. These procedures could be rephrased in terms of at-
lases and orientability, as explained in [11]; the prototype of this analogy is
given by the odd cycle C2n+1 of any fixed length. Such a graph is the result
of the identification of two conflicting vertices, namely, the extremes of the
path P2n+2 having the same number of edges. The path is “orientable” (i.e.
2-colourable) but the identification of conflicting vertices increases the chro-
matic index and compromises orientability. More precisely, the orientation
of P2n+2 starts from a “local chart” (a colouring of the 2-star containing a
non-extremal vertex v), and the local chart is subsequently extended so as to
cover as many edges as possible. In the case of the path, we succeed in cov-
ering all the graph (so we have a “global atlas”, that is, a global 2-colouring)
whereas the cycle does not allow for a global 2-colouring because one edge
must be excluded (the atlas cannot be extended to the whole graph). Notice
that the hypothesis (∗∗) for conflicting vertices is crucial to prove criticality.

Remark 2.4. The 4-critical graphs in Figure 1 can be obtained in the
way described in Lemma 2.3, by considering the graphs G17, G19 in Figure
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Figure 2: Fertile pairs of vertices: u1 and u2 are saturating, v1 and v2 are
same-lacking.

8(b), 9(a), respectively, and identifying the vertices v, v′. Such vertices are
conflicting, as we will show in Section 3.

Here follow some examples as a first step towards the main theorems.

Example 2.5. Let us show that the graph G5 in Figure 2(a) has saturating
vertices ui, uj , with 1 ≤ i < j ≤ 4. For every 4-colouring the number of
vertices that lack a fixed colour is odd, according to PL, whence every 3-
vertex lacks a different colour; on the other hand, one can easily verify that
the removal of any edge allows for a 4-colouring such that |P (ui)∪P (uj)| = 3
for any pair of 3-vertices.

Example 2.6. The graphs G7 and G9 in Figure 2(c)-(d) have saturating
vertices u1, u2, because PL implies that these vertices have disjoint palettes
for any 4-colouring, and it remains to make routine checks after the removal
of any arbitrary edge.

Example 2.7. The graph G6 in Figure 2(b) has same-lacking vertices v1,
v2, because PL forces the palettes to be equal and this is no longer true if
we remove any edge not containing one or both vertices v1, v2.

Notice that graphs with same-lacking vertices can be replicated so as to
form a chain along which a color is “transmitted”. Such a transmission of
colour is a fundamental concept in this paper and will be described more
thoroughly in the next section.

In the following remark, we consider critical graphs having at least three
vertices of maximum degree. VAL implies that this property holds for every
simple graph, but in the presence of multiple edges the number of vertices of
maximum degree might be smaller than 3. For instance, the complete graph
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K3 with ∆− 1 parallel edges connecting two fixed vertices is ∆-critical and
has only two vertices of maximum degree.

Remark 2.8. Let G be a ∆-critical graph having at least three vertices
of maximum degree. Let u, v be adjacent vertices that are connected by h
parallel edges (possibly h = 1). After deleting one of the parallel edges, u
and v become saturating and the degree remains equal to ∆.

According to the above remark, Chetwynd’s 4-critical graph can also be
obtained by inserting an additional edge between the saturating vertices u1,
u2.

3 Construction of graphs with fertile pairs

Graphs with fertile pairs of vertices can be obtained in several ways from
smaller graphs with the same property. The methods we present here will
be applied to prove the main theorems.

Lemma 3.1. Let H1 and H2 be vertex-disjoint graphs of degree ∆ ≥ 2 and
such that χ′(H1) = χ′(H2) = ∆. Assume that v1, v2 are same-lacking in H1

and u1, u2 are same-lacking (resp. saturating) in H2. The graph H obtained
from H1 and H2 by adding the edge u2v2 has again maximum degree ∆,
chromatic index ∆, and has same-lacking (resp. saturating) vertices u1, v1.

Proof. Let us analyse the same-lacking case. A colouring of H can be ob-
tained by assuming that u2 and v2 lack the same colour in two given ∆-
colourings of H1 and H2; by the hypothesis, u1 and v1 lack that colour. If
we now remove any edge, say in H1, u2v2 can be coloured with a colour
which is present at u1. Such a colour is instead missing at v1. A similar
argument applies to the saturating case.

Example 3.2. We consider two copies of G6 – see Figure 2(b) – as the
graphs H1 and H2. We can actually iterate the gluing process m times,
m ≥ 1, so as to obtain a graph of order 6m, of maximum degree 4, whose
3-vertices are still fertile (same-lacking). Let us denote this graph by Gm6 –
see Figure 3. This graph will play a basic role in the proofs of Theorem 5.1
and 5.2.

The purpose of the next couple of definitions is twofold. On one hand,
they allow to recover Chetwynd and Fiol’s counterexamples in the light of
our approach via transmission of colours along the edges of a graph. On
the other hand, they play an important role in the construction of critical
graphs of even order that will follow in the next pages. These definitions
involve graphs with maximum degree 4, although they can be extended to
graphs with ∆ > 4.

7



v1 v2

G
m
6

Figure 3: The graph Gm6 in Example 3.2 is a concatenation of graphs with
same-lacking pairs.

Before providing the definitions, some further observations are in order.
What we refer to as transmitting vertices should be regarded as terminal
nodes which lend themselves to being connected to other graphs so as to yield
a global graph with conflicting vertices and, eventually, a critical graph. The
fundamental property of 2- or 3-colour transmitting vertices concerns the
complementary palettes, that is, the colours actually missing at each vertex.
For, the missing colours can be seen as the admissible colours of any edge
which is added to the graph and contains that vertex. In the two definitions,
it is the interplay between the colours missing at each distinguished vertex to
ensure that the connecting edges, when added, will transmit some prescribed
colour across the whole graph, and will eventually increase the chromatic
index. Indeed, the vertices we are going to introduce are the first step
towards the construction of graphs with conflicting vertices (see Propositions
3.8 and 3.12).

Let S 	 T denote the symmetric difference between the sets S and T .

Definition 3.3. Let G be a graph having χ′(G) = ∆ = 4, and u, v, u1, u2
be distinct vertices of G, where deg(u) = deg(v) = 2, deg(u1) = deg(u2) = 3.
We say that G is 3-colour transmitting with respect to u, v, u1, u2 if the
following conditions hold:

(1) there exists a 4-colouring such that u1 and u2 lack distinct colours A
and B, exactly one colour is missing simultaneously in u, v and this
colour is either A or B;

(2) for every 4-colouring such that u1 and u2 lack distinct colours A and
B, |{A,B} ∪ (P (u)	 P (v))| 6= 3 (in particular, in the colouring in (1)
the two other colours missing at u and v are different from A and B);

(3) for every edge e there exists a 4-colouring of G − e with colours A, B,
C, D satisfying A ∈ P (u1), B ∈ P (u2), C ∈ P (u) ∩ P (v) and the set
{A,D} or {B,D} is contained in P (u)	 P (v).

If we slightly alter the above definition by setting u1 = u2 and deg(u1) =
2, the resulting graph is said 3-colour transmitting with respect to u, v, u1.
In this case, the first requirement in (1) and (2) clearly becomes “u1 lacks
colours A and B”, in symbols A,B ∈ P (u1).
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Definition 3.4. Let G be a graph of maximum degree ∆ = 4 and χ′(G) =
4. Let w,w1, w2 be distinct vertices of G, where deg(w) = 2, deg(w1) =
deg(w2) = 3. We say that G is 2-colour transmitting with respect to w, w1,
w2, if the following conditions hold:

(1) for every 4-colouring of G the set |P (w1)∪P (w2)| contains exactly two
colours and coincides with P (w);

(2) for every edge e there exists a 4-colouring of G − e with colours A, B,
C such that A ∈ P (w1), B ∈ P (w2) and P (w) contains {A,C} or
{B,C}.

Similarly as above, if the vertices w1, w2 coincide and deg(w1) = 2,
we say that the graph is 2-colour transmitting with respect to w, w1; the
requirement in condition (2) becomes “w1 lacks colours A and B”.

Example 3.5. The graph G12 in Figure 4(a) is 3-colour transmitting with
respect to u, v, u1, u2, as we are going to explain by testing the conditions
of Definition 3.3. Condition (1) holds as shown in Figure 4(a). Condition
(3) can be checked by setting: P (u) ⊆ {2, 3}, P (v) ⊆ {2, 4}, and P (z1) ⊆
{1, 4}. In the graph G12 − e, the palettes of the vertices u1, u2 take the
following values: P (u1) ⊆ {1, 2, 3} and P (u2) ⊆ {1, 3, 4}; P (u1) ⊆ {2, 3, 4}
and P (u2) ⊆ {1, 2, 3}; P (u1) ⊆ {2, 3, 4} and P (u2) ⊆ {1, 2, 4}. Notice that
P (u) ⊆ {2, 3}, P (v) ⊆ {2, 4} mean that 1 ∈ P (u) ∩ P (v) and {3, 4} ⊆
P (u)	P (v), that is, colour 1 corresponds to colour C in Condition (3) and
{3, 4} corresponds to one of the sets {A,D} or {B,D}, where A ∈ P (u1),
B ∈ P (u2). Thus, for instance, if P (u1) ⊆ {1, 2, 3} and P (u2) ⊆ {1, 3, 4},
then A = 4, B = 2 and D = 3.

It remains to prove Condition (2). By PL, the number of vertices that
lack a given colour is even, and there are 6 vertices of degree smaller than 4.
However, a color missing in all these vertices would make the two palettes
of degree 3 equal, which is not allowed by assumption. Now let us partition
the 2 · 3 + 4 · 2 colours on the above 6 vertices either as 2 + 2 + 4 + 6 or as
2 + 4 + 4 + 4, where each part counts the occurrences of a fixed colour (0 is
missing, by the above discussion). Up to permutations of colours there are
two colourings of the first type and three of the second type (in the table,
palettes of size 4 are not present and we assume that palettes of size 3 are
the same in all cases):

{1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3}
{1, 2, 4} {1, 2, 4} {1, 2, 4} {1, 2, 4} {1, 2, 4}
{1, 2} {1, 3} {1, 2} {1, 4} {1, 3}
{1, 2} {1, 3} {1, 4} {1, 4} {1, 4}
{1, 3} {1, 3} {2, 4} {2, 3} {3, 4}
{1, 4} {1, 4} {3, 4} {2, 4} {3, 4}
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Figure 4: (a) A 4-colouring of the graph G12 in Example 3.5 that satisfies
conditions (1) and (2) of Definition 3.3. (b) A 4-colouring of the graph H6

in Example 3.7.

Whatever the assignments of palettes to the 2-vertices, column 2 and col-
umn 4 satisfy (2). For the colouring γ1 in the 1st column, condition |P (u1)∪
P (u2) ∪ (P (u) 	 P (v))| 6= 3 is not satisfied if we choose {P (u), P (v)} =
{{1, 2}, {1, 3}} or {P (u), P (v)} = {{1, 2}, {1, 4}}. The permutation of
colours 3 and 4 leaves γ1 invariant and switches the sets {{1, 2}, {1, 3}},
{{1, 2}, {1, 4}}. Therefore, in order to show that Condition (2) is satis-
fied for the colouring γ1, it suffices to show that the graph G12 cannot be
coloured according to γ1 by setting {P (u), P (v)} = {{1, 2}, {1, 3}}.

Suppose, on the contrary, that G12 can be coloured according to γ1 by
setting {P (u), P (v)} = {{1, 2}, {1, 3}}. The set of palettes of γ1 shows
that colour 1 induces a perfect matching of the graph G12. As shown in
Figure 5, there are exactly four perfect matchings of G12. By the symmetry
of the graph and by the fact that the sets {{1, 2}, {1, 3}}, {{1, 2}, {1, 4}}
can be obtained one from the other by a permutation of colours 3 and 4,
we can consider the first two perfect matchings of Figure 5. The set of
palettes of γ1 also shows that colour 2 induces a matching of cardinality
5, where exactly one of the vertices u, v (respectively, z1, z2) is unmatched
since we are supposing {P (u), P (v)} = {{1, 2}, {1, 3}} and {P (z1), P (z2)} =
{{1, 2}, {1, 4}}. Figure 6 shows how to colour the edges of G12 with 1 and
2. In each of the four cases represented in Figure 6, one can see that is not
possible to colour to edges of G12 according to the colouring γ1 by setting
{P (u), P (v)} = {{1, 2}, {1, 3}}. Therefore, if G12 can be coloured by γ1,
then γ1 satisfies Condition (2). The same can be repeated for the remaining
colourings in the 3rd and 5th column. It is thus proved that every 4-colouring
of G12 with |P (u1)	 P (u2)| = 2 satisfies Condition (2).
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Figure 5: Perfect matchings of the graph G12 that are considered in Example
3.5.
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Figure 6: The edges of the graph G12 are coloured according to the
palettes {1, 2, 3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 2}, {1, 2}, {1, 3}, {1, 4} by set-
ting {P (u), P (v)} = {{1, 2}, {1, 3}} and {P (z1), P (z2)} = {{1, 2}, {1, 4}};
colour 1 induces a perfect matching, colour 2 induces a matching of car-
dinality 5, where exactly one of the vertices u, v (respectively, z1, z2) is
unmatched (see Example 3.5).
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There are several methods for obtaining a 3-colour transmitting graph
starting from a smaller one. For instance, in the graph G12 of Figure 4(a),
we can delete the edge u1u2 and connect the remaining graph to the graph
Gm6 in Figure 3 by adding the edges u1v1, u2v2. The resulting graph is 3-
colour transmitting with respect to u, v, u1, u2. In the next example, we
show a more elaborate method for obtaining a 3-colour transmitting graph
starting from a smaller one. This method allows to find a graph that will
be used to construct Fiol’s 4-critical graph of order 18.

Example 3.6. Consider the graph N in Figure 7(a). Notice that P (w) =
P (w1) 	 P (w2) for every 4-colouring of the graph N , as a straightforward
consequence of PL. We denote by L the graph obtained from G12 in Figure
4 by deleting the edge u1u2. Let G16 be the graph resulting from the iden-
tification of the vertices w1 ∈ V (N) with u1 ∈ V (L) and of w2 ∈ V (N) with
u2 ∈ V (L). We have that χ′(L) = ∆ = 4 (see the colouring in Figure 7(b)).

Let us show that G16 is 3-colour transmitting with respect to u, v, w by
testing Definition 3.3 with u1 = u2. Condition (1) follows from the colouring
in Figure 7(b).

Condition (2) is satisfied if every 4-coloring of G16 satisfies the relation
|P (w) ∪ (P (u) 	 P (v))| 6= 3. Suppose that there exists a 4-colouring γ of
G16 such that |Pγ(w) ∪ (Pγ(u) 	 Pγ(v))| = 3, that is, Pγ(w) = {A,B},
Pγ(u)	 Pγ(v) = {A,C} or {B,C}. The colouring γ induces a colouring γ′

of G12 such that Pγ′(u1) 	 Pγ′(u2) = {A,B} and Pγ′(u) 	 Pγ′(v) = {A,C}
or {B,C}, that is, γ′ does not satisfies Condition (2) of Definition 3.3. That
yields a contradiction, since G12 is 3-colour transmitting with respect to u,
v, u1, u2.

Condition (3) holds if for every edge e ∈ E(G16) there exists a 4-colouring
of G16 − e such that {A,B} ⊆ P (w), C ∈ P (u) ∩ P (v) and {A,D} ⊆
P (u) 	 P (v) where A, B, D are distinct. Assume e ∈ E(G12). Since G12

is 3-colour transmitting with respect to u, v, u1, u2, there exists a suitable
colouring which can be easily extended to the whole graph G16.

If e ∈ E(N), we colour the edges of G16 belonging to G12 by the 4-
colouring in Figure 4(a), so that P (u) = {2, 3} and P (v) = {2, 4}. One can
verify that the edges of N − e can be coloured in such a way that P (w) ⊆
{2, 4}. Therefore, {1, 3} ⊆ P (w), 1 ∈ P (u)∩P (v) and {3, 4} ⊆ P (u)	P (v),
that is, Condition (3) is satisfied if e ∈ E(N).

Example 3.7. The graph H6 in Figure 4(b) is 2-colour transmitting with re-
spect to w, w1, w2. The conditions of Definition 3.4 are satisfied: Condition
(1) follows from Parity Lemma; Condition (2) can be verified by coluring the
edges with A, B, C, D and setting P (w1) ⊆ {B,C,D}, P (w2) ⊆ {A,C,D},
P (w) ⊆ {A,D}.

Definitions 3.3 and 3.4 are used to construct graphs having fertile ver-
tices. The next result is a construction of graphs having fertile vertices and
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Figure 7: (a) The graph N . (b) A 4-colouring of the graph G16 that satisfies
conditions (1) and (2) of Definition 3.3; as proved in Example 3.6, the graph
G16 is 3-colour transmitting with respect to u, v, w.

whose maximum degree ∆ is 4. The construction can be extended to graphs
whose maximum degree is larger than 4 and having multiple edges. In this
context, we limit ourselves to consider ∆ = 4.

We recall that a bowtie is the graph obtained by identifying two vertices
belonging to two distinct 3-cycles, thus obtaining a centre of degree 4 and
four 2-vertices. If the 3-cycle are (x, y1, y2) and (x′, y′1, y

′
2), then we denote by

B(x, y1, y2, y
′
1, y
′
2) the bowtie resulting from the identification of the vertices

x and x′.

Proposition 3.8. Let B = B(x, u′, v′, w, y) be a bowtie with centre x and
2-vertices u′, v′, w, y. Let K and M be graphs of maximum degree 4 and
χ′(K) = χ′(M) = 4, with the following features. The graph K is 3-colour
transmitting with respect to u, v, u1, u2, where degK(u) = degK(v) = 2,
degK(u1) = degK(u2) = 3; either M is 2-colour transmitting with respect to
w,w1, w2, where degM (w) = 2, degM (w1) = degM (w2) = 3, or M is 2-colour
transmitting with respect to w, w1, where degM (w) = degM (w1) = 2.

Let H be the graph obtained from B, K and M by identifying the vertices
u′ with u, w′ with w and by adding the edges u1w1, u2w2 or u1w1, u2w1

according to whether M is 2-colour transmitting with respect to w, w1, w2

or with respect to w, w1, respectively. The graph H has maximum degree
4, χ′(H) = 4 and the vertices v, v′ are conflicting.

Proof. We identify the edge u2w2 with the edge u2w1 if w1 = w2, that is, if
M is 2-colour transmitting with respect to w, w1. Since the identification
of the vertices u, u′ and w, w′ does not increase the maximum degree of K,
M and of the bowtie, the maximum degree of H is still 4. We show that
χ′(H) = 4. By Condition (1) of Definition 3.4, there exists a 4-colouring γ∗M
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such that w1, w2 lack distinct colours A, B and these colours are missing
in w (if w1 = w2, then w1 lacks both colours A, B). By Condition (1) and
(2) of Definition 3.3, there exists a 4-colouring γ∗K such that u1, u2 lack
distinct colours A, B and exactly one of these two colours, say A, is missing
simultaneously in u and v; the other two missing colours are different from
B, that is, Pγ∗K (u) = {A,C} Pγ∗K (v) = {A,D}. We define a 4-colouring γ∗

of H such that the restriction of γ∗ to the edges of M (respectively, of K)
coincides with γ∗M (respectively, with γ∗K); the edges of the bowtie and u1w1,
u2w2 are coloured as follows: {γ∗(u1w1), γ

∗(u2w2)} = {A,B}; γ∗(wx) = A;
γ∗(wy) = B; γ∗(ux) = C; γ∗(uv′) = A; γ(v′x) = B; and γ∗(xy) = D. In
conclusion χ′(H) = 4.

We prove that the vertices v, v′ ∈ V (H) are conflicting. Firstly, we show
that for every 4-colouring of H, the palettes of v and v′ share at least one
colour. Suppose, on the contrary, that there exists a 4-colouring γ1 of H
such that v and v′ have disjoint palettes. The restriction of γ1 to the edges of
K (respectively, of M) is a 4-colouring γK (respectively, γM ). The following
relations hold: PγK (u1) = PγM (w1) = γ1(u1w1) = A; PγK (u2) = PγM (w2) =

γ1(u2w2) = B (if w1 = w2 then A 6= B and PγM (w1) = {A,B}). Moreover,

PγK (v) = Pγ1(v) = Pγ1(v′) = {γ1(uv′), γ1(v′x)} since we are supposing that

v and v′ have disjoint palettes with respect to γ1. Therefore PγK (u) 	
PγK (v) = {γ1(uv′), γ1(ux)} 	 {γ1(uv′), γ1(v′x)} = {γ1(ux), γ1(v

′x)}. By

Condition (1) of Definition 3.4, the colours A, B are distinct and PγM (w) =
{A,B}. It follows that {γ1(wx), γ1(wy)} = {A,B} and γ1(xy) 6= A,B,
γ1(ux), γ1(v

′x). Therefore, exactly one of the colours γ1(ux), γ1(v
′x) is in

{A,B}. Consequently, the set PγK (u)	PγK (v) = {γ1(ux), γ1(v
′x)} contains

exactly one of the coloursA, B. It follows that |PγK (u1)∪PγK (u2)∪(PγK (u)	
PγK (v))| = 3, a contradiction since K is 3-colour transmitting with respect
to u, v, u1, v1. Hence, for every 4-colouring of H the palettes of the vertices
v, v′ share at least one colour.

We show that for every edge e ∈ E(H) there exists a 4-colouring γ′ of
H − e such that v and v′ have disjoint palettes. We distinguish the cases:
e ∈ E(K); e ∈ E(M); e ∈ E(B); and e ∈ {u1w1, u2w2}.

Case e ∈ E(K).
By Condition (3) of Definition 3.3, there exists a 4-colouring γ̃ of K − e

such that A ∈ Pγ̃(u1), B ∈ Pγ̃(u2), C ∈ Pγ̃(u)∩Pγ̃(v), and the set {A,D} or

{B,D} is contained in Pγ̃(u)	Pγ̃(v), where A, B, D are distinct. Without

loss of generality, we can assume {A,D} ⊆ Pγ̃(u)	 Pγ̃(v). Now {A,D} can

be contained in exactly one of the complementary palettes Pγ̃(u), Pγ̃(v) or
in neither of them. The first case occurs only if e contains exactly one of
the vertices u, v, and in this case {Pγ̃(u), Pγ̃(v)} = {{A,D,C}, {B,C}}. If,

instead, e does not contain u, v, then {Pγ̃(u), Pγ̃(v)} = {{A,C}, {D,C}}.
We colour the edges of M according to an arbitrary 4-colouring γM of the

graph M . By a permutation of the colours and by Condition (1) of Definition
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3.4, we can assume that the colours A, B are missing in w and w1, w2 lack A,
B, respectively (if w1 = w2, then w1 lacks both colours A, B). We define a
4-colouring γ′ of H − e such that the restriction of γ′ to K− e (respectively,
to M) corresponds to the colouring γ̃ (respectively, γM ) and γ′(u1w1) =
A; γ′(u2w2) = B; γ′(uv′) = C; γ′(xy) = C. The colouring of the edges
ux, v′x, wx, wy depends on the set {Pγ′(u), Pγ′(v)}. If {Pγ′(u), Pγ′(v)} =
{{A,C}, {D,C}}, then we set γ′(wx) = B, γ′(wy) = A and the edges
ux, v′x are coloured by A, D or D, A, respectively, according to whether
Pγ′(u) = {A,C} or Pγ′(u) = {D,C}, respectively. If {Pγ′(u), Pγ′(v)} =
{{A,D,C}, {B,C}}, then we set γ′(wx) = A, γ′(wy) = B and the edges
ux, v′x are coloured by D, B or B, D, respectively, according to whether
Pγ′(u) = {A,D,C} or Pγ′(u) = {B,C}, respectively. Notice that Pγ′(v

′) ⊆
Pγ′(v), hence v, v′ have disjoint palettes with respect to γ′.

Case e ∈ E(M).
We define a 4-colouring γ′ of H−e such that the edges of K are coloured

according to the 4-colouring γ∗K of K defined at the beginning of the proof.

We have that Pγ′(u) = Pγ∗K (u) = {A,C}, Pγ′(v) = Pγ∗K (v) = {A,D}. Since
u1, u2 lack distinct colours A, B with respect to γ∗K , we can assume that u1
lacks A and u2 lacks B.

By Condition (2) of Definition 3.4, we can colour the edges of M − e
according to the 4-colouring γ′M of M such that the vertices w1, w2 lack
distinct colours, say A, B, and the colours A, C are missing in w, where A, B,
C are distinct (if w1 = w2, then w1 lacks both colours A, B). The remaining
edges of H − e are coloured as follows: γ′(u1w1) = A; γ′(u2w2) = B;
γ′(uv′) = A; γ′(ux) = C; γ′(v′x) = D; γ′(wx) = A; γ′(wy) = C; and
γ′(xy) = B. The vertices v, v′ have disjoint palettes with respect to γ′,
since Pγ′(v

′) = Pγ′(v) = {A,D}.
Case e ∈ E(B).
We define a 4-colouring γ′ of H−e that corresponds to the 4-colouring γ∗

of H defined at the beginning of the proof, except on the remaining edges of
B− e. The edges of B− e are coloured in such a way that Pγ′(v

′) ⊆ {A,D},
Pγ′(u) ⊆ {A,C} and {γ′(wx), γ′(wy)} ⊆ {A,B}. The vertices v, v′ have

disjoint palettes with respect to γ′, since Pγ′(v
′) ⊆ Pγ′(v) = {A,D}.

Case e ∈ {u1w1, u2w2}.
We define a 4-colouring γ′ of H − e which coincides with γ∗K on the

subgraph K. So we have that Pγ′(u) = Pγ∗K (u) = {A,C}, Pγ′(v) = Pγ∗K (v) =
{A,D} and {γ∗K(u1w1), γ

∗
K(u2w2)} = {A,B}. Without loss of generality, we

can assume that the edge e that has been removed is coloured with A. By
Condition (1) of Definition 3.4, we can colour the edges of M in such a
way that w1, w2 lack two distinct colurs, say B, C, and these two colours
are missing in w. The edges of B are coloured as follows: γ′(uv′) = A;
γ′(ux) = C; γ′(v′x) = D; γ′(wx) = B; γ′(wy) = C; and γ′(xy) = A.
The vertices v, v′ have disjoint palettes with respect to γ′, since Pγ′(v

′) =
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Pγ′(v) = {A,D}.

Remark 3.9. The argument of the above proof is still valid if we assume
that K is 3-colour transmitting with respect to u, v, u1, where u, v, u1 have
degree 2 in K.

Example 3.10. We apply Proposition 3.8 to the graphs K = G12 and
M = H6 in Figure 4. As remarked in Example 3.5, the graph G12 is 3-
colour transmitting with respect to u, v, u1, u2. Similarly, in Example 3.7
we have seen that H6 is 2-colour transmitting with respect to w, w1, w2. By
Proposition 3.8, we obtain the graph G21 in Figure 8(a). The graph G21 has
order 21, maximum degree 4, and χ′(G21) = 4. The vertices v, v′ ∈ V (G21)
are conflicting. Following the proof of Proposition 3.8 we can colour the
edges of G21 according to the 4-colourings γ∗K and γ∗M in Figure 4 by setting
a = 1, b = 2, c = 3 and d = 4 (or c = 4 and d = 3). This graph will be used
in the proof of Theorem 5.2.

Example 3.11 (Chetwynd’s counterexample). We can apply Proposi-
tion 3.8 to the graph K = G12 in Figure 4(a) and to the dipole M = D2 with
two parallel edges even thought the dipole D2 is not 2-colour transmitting
with respect to its vertices. More precisely, as remarked in Example 3.5,
the graph G12 is 3-colour transmitting with respect to u, v, u1, u2. It is
easy to see that every 4-colouring of the graph D2 satisfies conditions (1)
and (2) of Definition 3.4 with w1 = w2. Therefore, we can repeat the proof
of Proposition 3.8 and obtain the graph G17 in Figure 8(b) having order
17, maximum degree 4 and χ′(G17) = 4. The vertices v, v′ ∈ V (G17) are
conflicting. By Lemma 2.3, the identification of the vertices v, v′ yields a
4-critical graph, namely, Chetwynd’s 4-critical graph in Figure 1(b).

Proposition 3.12. Let B = B(x, u′, v′, w, y) be a bowtie with centre x
and 2-vertices u′, v′, w, y. Let K and M be graphs of maximum degree
4 and χ′(K) = χ′(M) = 4 with the following features. The graph K is
3-colour transmitting with respect to u, v, u1 where degK(u) = degK(v) =
degK(u1) = 2. The 2-vertices w,w1 ∈ V (M) are saturating and for every
e ∈ E(M) not containing w nor w1 there exists a 4-colouring of M − e such
that w, w1 lack exactly one colour simultaneously.

Let H be the graph obtained from B, K and M by identifying the vertices
u′ with u; w′ with w; and u1 with w1. The graph H has maximum degree
4, χ′(H) = 4 and the vertices v, v′ are conflicting.

Proof. The argument is the same as in the proof of Proposition 3.8. It
is different in the case e ∈ E(M). We show that if we remove an edge
e ∈ E(M), then there exists a 4-colouring γ′ of H − e such that v, v′ have
disjoint palettes with respect to it. As in the proof of Proposition 3.8, the
restriction of γ′ to the edges of K corresponds to a 4-colouring γ∗K of K
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Figure 8: (a) The graph G21 constructed in Example 3.10. (b) The graph
G17 constructed in Example 3.11.

such that Pγ∗K (u1) = {A,B}, Pγ∗K (u) = {A,C}, Pγ∗K (v) = {A,D}. We set
γ′(uv′) = A, γ′(ux) = C, γ′(v′x) = D. The restriction of γ′ to the edges
of M − e corresponds to a 4-colouring γ′M of M − e. Since u1 and w1 are
identified, the palette of w1 with respect to γ′M is contained in {A,B}. We
define γ′M on the other edges of M − e as follows.

If e ∈ E(M) does not contain w nor w1, then Pγ′M (w1) = {A,B}. By
the assumptions, there exists a 4-colouring of M − e such that w, w1 lack
exactly one colour simultaneously. By a permutation of the colours, we
can set Pγ′M (w) = {A,C}. We can colour the remaining edges of H − e
as follow: γ′(wx) = B, γ′(wy) = D, γ′(xy) = A. The colouring γ′ of
H−e is thus defined and v, v′ have disjoint palettes with respect to it, since
Pγ′(v

′) = Pγ′(v) = {A,D}. We can repeat similar arguments if the edge
e ∈ E(M) contains w but not w1.

If e ∈ E(M) contains w1, then we can assume that Pγ′M (w1) = {A}. We
can permute the colours in M − e so that Pγ′M (w) ⊆ {B,C} or Pγ′M (w) ⊆
{B,D}. The remaining edges of H − e are coloured as follows: γ′(wx) = A,
γ′(xy) = B and γ′(wy) = D or C according to whether Pγ′M (w) ⊆ {B,C}
or Pγ′M (w) ⊆ {B,D}, respectively. The colouring γ′ of H − e is thus defined

and v, v′ have disjoint palettes with respect to it, since Pγ′(v
′) = Pγ′(v) =

{A,D}.

Example 3.13. The graph G25 in Figure 9(b) has order 25, maximum
degree 4 and χ′(G25) = 4. The vertices v, v′ are conflicting. It is obtained
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Figure 9: u1 and w1 should be identified in both graphs. (a) The graph G19

has order 19, maximum degree 4 and χ′(G19) = 4. (b) The graph G25 has
order 25, maximum degree 4 and χ′(G25) = 4. As shown in Example 3.14,
the vertices v, v′ are conflicting.

by applying Proposition 3.12 to the graphs K = G16 in Figure 7(b) and
M = G7 in Figure 2(c). The vertices u1, w1 are identified. As remarked
in Example 3.6, the graph G16 is 3-colour transmitting with respect to u,
v, u1. As remarked in Example 2.6, the 2-vertices w, w1 ∈ V (G16) are
saturating. Moreover, for every e ∈ G7 not containing w nor w1 there
exists a colouring of G7 − e such that P (w1) ⊆ {A,B} and P (w) ⊆ {A,C},
that is, the assumption in Proposition 3.12 is satisfied. By Lemma 2.3, the
identification of the conflicting vertices v, v′ yields a 4-critical graph of order
24.

Example 3.14 (Fiol’s counterexample). Proposition 3.12 is still true if
we assume that M consists of exactly one vertex. For instance, consider the
graph G19 in Figure 9(a) obtained from the graph G16 in Figure 7(b) and
M consisting of exactly one vertex. The vertices u1 and w1 are identified.
The vertices v, v′ ∈ V (G19) are conflicting (we can repeat the proof of
Proposition 3.8 without considering the case e ∈ E(M)). By Lemma 2.3,
the identification of the vertices v, v′ yields a 4-critical graph, namely, Fiol’s
4-critical graph in Figure 1(a).
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Figure 10: (a) The 3-critical graph of order 22 constructed by Goldberg. (b)
The graph H7 which is used to construct 3-critical graphs of order n ≡ 8
(mod 16), n ≥ 24.

4 Counterexamples to the Critical Graph Conjec-
ture

In 1971, Jacobsen showed that there are no 3-critical graphs of order ≤ 10
and no 3-critical multigraphs of order ≤ 8. This led him to formulate the
Critical Graph Conjecture. As we already mentioned, the first counterex-
amples to the conjecture were constructed by Goldberg [9], and afterwards
by Chetwynd [6] and Fiol [7]. In this section we show that also Goldberg’s
counterexample can be obtained by a Möbius-type technique. Furthermore,
combining our technique with Goldberg’s construction we show that for ev-
ery even value value of n, n ≥ 22, there exists a 3-critical graph of order
n.

Goldberg was the first to disprove the Critical Graph Conjecture by
constructing an infinite family of 3-critical graphs of even order, the smallest
of which has order 22 [9]. The graph of order 22 is represented in Figure
10(a). A 3-critical graph of the infinite family can be obtained from the
3-critical graph of order 22 in Figure 10(a) by adding in pairs the graph
H7 of order 7 in Figure 10(b). The result is the graph in Figure 11(a). A
3-critical graph of the infinite family has order n ≡ 8 (mod 16), n ≥ 24.

In what follows, we show that the 3-critical graphs constructed by Gold-
berg can be obtained by a Möbius type technique, namely, by identifying a
pair of conflicting vertices in the case of the graph in Figure 10(a), or by
connecting a pair of saturating vertices in the case of the graph in Figure
11(a). In Lemma 4.2, we will show that the vertices u, v of the graph H23

in Figure 11(b) are conflicting. We give a proof of the fact that u, v are
conflicting showing that the structure of the graph H7 forces to colour the
edges of the graph in Figure 10(a) in a prescribed way, thus determining
which vertex has to be split into two conflicting vertices. Analogously, for
the proof of Lemma 4.3. The proofs of Lemmas 4.2 and 4.3 are based on
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Figure 11: (a) The infinite family of 3-critical graphs of order 8m, m ≥ 3, m
odd, constructed by Goldberg. (b) The graph H23 that yields the 3-critical
graph of order 22 constructed by Goldberg by identifying the conflicting
vertices u, v.

the following result.

Lemma 4.1. Every 3-colouring of the graph H7 in Figure 10(b) satisfies the
following condition:

|P (x0) ∪ P (xi) ∪ P (xi+2)| = 3 and P (xi+1) = P (xi+3) = P (xr)

where i = 1 or i = 2, r ∈ {0, i, i+ 2} and the subscripts are (mod 4).

Proof. Since the colour set has cardinality 3 and PL holds, exactly three
vertices of H7 lack the same colour A and the remaining 2-vertices of H7

lack distinct colours B, C, both different from A. A direct inspection on the
graph shows that the vertices lacking the same colours are xi+1, xi+3 and
xr, where i = 1 or i = 2 and r ∈ {0, i, i+ 2}.

Lemma 4.2. The graph H23 in Figure 11 (b) is class 1 and the vertices
u, v ∈ V (H23) are conflicting.

The 3-critical graph of order 22 in Figure 10 (a) constructed by Goldberg
can be obtained from the graph H23 by identifying the conflicting vertices
u, v ∈ V (H23).

Proof. It is easy to see that H23 is class 1. We show that the vertices
u, v ∈ V (H23) are conflicting. Firstly, we prove that P (u) ∩ P (v) 6= ∅ for
every 3-colouring of the the graph H23.
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Let γ be a 3-colouring of H23. Since γ induces a 3-colouring of the
subgraphs of H23 that are isomorphic to H7 and Lemma 4.1 holds, it is
either |{γ(x1y2), γ(x3y4), γ(x0v)}| = 3 or |{γ(x2z1), γ(x4z3), γ(x0v)}| = 3. If
|{γ(x1y2), γ(x3y4), γ(x0v)}| = 3, then γ(x0v) = γ(y0v), since Lemma 4.1 on
the subgraph of H23 which is isomorphic to H7 and contains the vertices yi,
0 ≤ i ≤ 4. That yields a contradiction, hence |{γ(x2z1), γ(x4z3), γ(x0v)}| =
3. Since Lemma 4.1 holds on the subgraph of H23 which is isomorphic to
H7 and contains the vertices zi, 0 ≤ i ≤ 4, we have γ(x0v) = γ(z0u). It is
thus proved that P (u) ∩ P (v) 6= ∅ for every 3-colouring of H23.

It remains to prove that for every edge e ∈ E(H23) there exists a 3-
colouring γ′ of H23−e such that the vertices u, v have disjoint palettes with
respect to it. The existence is straightforward if e is incident to u, since u has
degree 1. Let {1, 2, 3} be the colour set of γ′. To define γ′, it suffices to define
γ′ on the edges in {x0v, y0v, z0u, xiyi+1, xi+1zi : i = 1, 3} and colour the
remaining edges according to Lemma 4.1. For instance, if e is incident to the
vertices in {xi, yi : 0 ≤ i ≤ 4}, e 6∈ {x0v, y0v, z0u, xiyi+1, xi+1zi : i = 1, 3},
then we set γ′(x1y2) = γ′(z0u) = 1; γ′(x3y4) = γ′(x0v) = 2; γ′(y0v) = 3;
γ′(x2z1) = γ′(x4z3) = a ∈ {1, 2}. The remaining cases can be managed in
a similar way. It is thus proved that u, v are conflicting. Now the assertion
follows from Lemma 2.3 by identifying the vertices u, v.

Lemma 4.3. Let H8m, m ≥ 3, m odd, be the graph obtained from the
graph in Figure 11(a) by deleting the edge u1um. The graph is class 1 and
the vertices u1, um are saturating. The 3-critical graphs of the infinite family
constructed by Goldberg can be obtained by connecting a pair of saturating
vertices.

Proof. One can easily verify that the graph H8m is class 1. We prove that
u1, um are saturating. Firstly, we show that |P (u1) ∪ P (um)| = 3 for every
3-colouring of the graph H8m. For 1 ≤ j ≤ m, let Hj be the subgraph of
H8m which is isomorphic to the graph H7 in Figure 10 (b) and contains the
vertices xji , 0 ≤ i ≤ 4. Every 3-colouring γ of H8m induces a 3-colouring γ′

of the graph H7, that is, Lemma 4.1 holds. By the symmetry of the graph,
we can assume that |Pγ′(x10)∪Pγ′(x12)∪Pγ′(x14)| = 3 and Pγ′(x

1
1) = Pγ′(x

1
3).

Consequently, Pγ′(x
2
2) = Pγ′(x

2
4) and |Pγ′(x20)∪Pγ′(x21)∪Pγ′(x23)| = 3. From

this we deduce that |Pγ′(xj0) ∪ Pγ′(x
j
2) ∪ Pγ′(x

j
4)| = 3 and Pγ′(x

j
1) = Pγ′(x

j
3)

if j is odd, 1 ≤ j ≤ m; |Pγ′(xj0) ∪ Pγ′(x
j
1) ∪ Pγ′(x

j
3)| = 3 and Pγ′(x

j
2) =

Pγ′(x
j
4) if j is even, 1 ≤ j ≤ m. It follows that γ(xj0uj) = γ(xj+1

0 uj+1)
for every 2 ≤ j ≤ m − 1, j even. We colour the edges of H8m by {1, 2, 3}
and set γ(x20u2) = γ(x30u3) = 3. Without loss of generality we can set
γ(u2u3) = 1, whence γ(u1u2) = 2. One can see that {γ(xj0uj), γ(ujuj+1)} =

{γ(xj0uj+1), γ(ujuj+1)} = {1, 3} for every 2 ≤ j ≤ m − 1, j even. As a
consequence, P (um) = {1, 3}. It is thus proved that |P (u1) ∪ P (um)| = 3
for every 3-colouring of H8m, since 2 ∈ P (u1).
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We omit the routine proof that for every e ∈ E(H8m) there exists a
colouring of H8m such that |P (u1) ∪ P (um)| < 3. It is thus proved that u1,
um are saturating and the assertion follows from Lemma 2.3.

It is known that the 3-critical graph of order 22 constructed by Goldberg
is the smallest 3-critical graph [4]. Combining our construction with that
one of Goldberg, we can prove the following result.

Theorem 4.4. For every even value of n, n ≥ 22, there exists a 3-critical
graph of order n.

Proof. A critical graph of the infinite family constructed by Goldberg has
order n ≡ 8 (mod 16), n ≥ 24. We construct a 3-critical graph of order
n ≡ 2 (mod 4), n ≥ 26; and n ≡ 0 (mod 4), n ≥ 28. We define the
auxiliary graphs H ′, K ′ and H ′′ that will be used in the construction. The
graph H ′ is defined as follows. Consider m ≥ 1 copies of the complete graph
K4 − e; the 2-vertices of K4 − e are same-lacking. For 1 ≤ i ≤ m − 1,
connect the ith copy of K4 − e to the (i+ 1)th by adding exactly one edge
joining a 2-vertex in the ith copy to a 2-vertex in the (i + 1)th copy. The
resulting graph H ′ has exactly two 2-vertices, say v1, v2. By Lemma 3.1,
the graph H ′ has maximum degree 3, χ′(H ′) = 3 and the vertices v1, v2 are
same-lacking. Let K ′ be the graph of order 6 that can be obtained from
the graph G6 in Figure 2(b) by deleting the edges v1v2, v3v5, v4v6. The
graph K ′ has maximum degree 3, χ′(K ′) = 3 and the vertices v1, v2 are
same-lacking. The graph H ′′ is obtained from the graphs H ′ and K ′ by
connecting the vertex v2 ∈ V (K ′) to the vertex v1 ∈ V (H ′). By Lemma
3.1, the graph H ′′ has maximum degree 3, χ′(H ′′) = 3 and the vertices
v1, v2 are same-lacking. Let H be the graph obtained from the graph H23 in
Figure 11(b) and the graph Γ, where Γ ∈ {H ′,K ′, H ′′}, by deleting the edge
z0u ∈ E(H23) and adding the edges z0v1, uv2. As remarked in Example 2.7,
a graph with same-lacking vertices is able to transmit a color, therefore the
graph H has maximum degree 3, χ′(H) = 3 and the vertices u, v ∈ V (H)
are conflicting. Notice the following: |V (H)| = 23 + 4m ≥ 27 if Γ = H ′;
|V (H)| = 29 if Γ = K ′; |V (H)| = 29 + 4m ≥ 33 if Γ = H ′′. By Lemma 2.3,
the identification of the conflicting vertices u, v ∈ V (H) yields a 3-critical
graph of order |V (H)| − 1. Hence, the assertion follows.

The 3-critical graphs of order n ≡ 0 (mod 4), n ≥ 28, that are con-
structed in the proof of Theorem 4.4, include the orders of Goldberg’s in-
finte family but are not isomorphic to them. In fact, Goldberg’s graphs have
girth larger than 3; the 3-critical graphs in the proof of Theorem 4.4 have
girth 3 as K ′ contains a 3-cycle.
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5 From graphs with fertile vertices to 4-critical
graphs.

We show that it is possible to obtain 4-critical graphs of order n, for every
n ≥ 5, starting from the four graphs in Figure 2, the two graphs in Figure 1
and the graph G21 in Figure 8(a); these graphs have a pair of fertile vertices.

Theorem 5.1. For every odd integer n ≥ 5 there exists a 4-critical simple
graph of order n.

Proof. For every odd integer n ≥ 5, we exhibit a graph H of maximum
degree 4, χ′(H) = 4 and order n having a pair of saturating vertices u1, v1.
The assertion follows from Lemma 2.3 by adding the edge u1v1.

The graph H is obtained from Lemma 3.1 as follows. We take the graph
Gm6 in Figure 3 as the graph H1 in Lemma 3.1, where m ≥ 1. As remarked
in Example 3.2, it has order 6m ≥ 6, maximum degree 4 and the vertices
v1, v2 ∈ V (Gm6 ) are same-lacking. We define the graph H2 in Lemma 3.1 as
follows: if n ≡ 1 (mod 6), then H2 is the graph G7 in Figure 2(c); if n ≡ 3
(mod 6), then H2 is the graph G9 in Figure 2(d); if n ≡ 5 (mod 6), then
H2 is the graph G5 in Figure 2(a). By the remarks in Examples 2.5 and
2.6, the vertices u1, u2 ∈ V (H2) are saturating. By Lemma 3.1, the graph
H obtained from H1 = Gm6 and H2 by adding the edge u2v2 has maximum
degree 4, χ′(H) = 4 and the vertices u1, v1 ∈ V (H) are saturating. Notice
that |V (H)| = 6m + |V (H2)| ≥ 11, where m ≥ 1 and |V (H2)| ∈ {5, 7, 9}.
The graph G obtained from H by adding the edge u1v1 is 4-critical, since
Lemma 2.3 holds. By construction, the graph G is simple. Since |V (G)| =
|V (H)|, for every odd integer n ≥ 11 there exists a 4-critical simple graph
of order n. For n = 5, 7, 9, the assertion follows from Lemma 2.3 by setting
H = G5, G7, G9, respectively, and by adding the edge u1u2.

Theorem 5.2. For every even integer n ≥ 16 there exists a 4-critical graph
of order n. The graph is simple unless n is equal to 16.

Proof. For n = 16, 18, we resort to the well known graphs in Figure 1. For
n = 20 we consider the graph G21 in Figure 8(a). As remarked in Example
3.10, the vertices v, v′ ∈ G21 are conflicting. The existence of a 4-critical
graph of order 20 follows from Lemma 2.3 by identifying the vertices v and
v′. Notice that the graph is simple.

For every even integer n ≥ 22, we exhibit a graph H of maximum degree
4, χ′(H) = 4 and order n having a pair of saturating vertices u1, v1. The
assertion follows from Lemma 2.3 by adding the edge u1v1. The graph H is
obtained from Lemma 3.1 as follows. We take Gm6 in Figure 3 as the graph
H1 in Lemma 3.1, where m ≥ 1. The graph H2 in Lemma 3.1 has even
order and its definition depends on the congruence class of n modulo 6.

Case n ≡ 0 (mod 6), n > 18:
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the graph H2 is obtained from the 4-critical graph of order 18 in Figure
1(a) by the deletion of the edge u1u2. Alternatively, we can consider the
4-critical graph arising from the graph G25 in Figure 9(b) by identifying the
vertices v, v′ (see Example 3.13); H2 can be obtained by deleting one of the
two edges containing u1.

Case n ≡ 2 (mod 6), n > 20:
consider the 4-critical graph G20 of order 20 obtained from the graph

G21 in Figure 8(a) by identifying the vertices v, v′. Let H2 be the graph
obtained from G20 by deleting the edge u1u2.

Case n ≡ 4 (mod 6), n > 16:
the graph H2 is obtained from the 4-critical graph of order 16 in Figure

1(b) by the deletion of one parallel edge connecting the vertices u1, u2. For
each congruence class of n, the vertices u1, u2 ∈ V (H2) are saturating, since
Remark 2.8 holds. Moreover, H2 is a simple graph of maximum degree
4, χ′(H2) = 4 and |V (H2)| = 18, 20, 16 according to whether n ≡ 0, 2, 4
(mod 6), respectively. By Lemma 3.1, the graph H obtained from H1 = Gm6
and H2 by adding the edge u2v2 has maximum degree 4, χ′(H) = 4 and
the vertices u1, v1 ∈ V (H) are saturating. Notice that |V (H)| = 6m +
|V (H2)| ≥ 22, where m ≥ 1 and |V (H2)| ∈ {16, 18, 20}. By Lemma 2.3,
the graph G obtained from H by adding the edge u1v1 is 4-critical. Since
|V (G)| = |V (H)|, for every even integer n ≥ 22 there exists a 4-critical graph
of order n. Notice that these graphs are simple. Combining this result with
the remarks on the existence of 4-critical graphs of order 16, 18 and 20, the
assertion follows.

There are alternative methods for constructing 4-critical graphs. For
instance, consider the 4-critical graph G of order 20 obtained from the graph
G21 in Figure 8(a) by identifying the vertices v, v′. Delete the edge u1u2 ∈
E(G) and connect the remaining graph to the graph Gm6 in Figure 3. For
every m ≥ 1 we obtain a 4-critical graph of order 6m+ 20.

A concluding remark.

We are confident that the present work will provide suggestions and tools
for constructing infinite families of critical graphs even beyond degree 4.
The next step should be inevitably the degree 5. The key definitions are
compatible with the general case, and we believe that the method is versatile
enough. With some effort and further investigation, new infinite families are
expected to be found in the near future.
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