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The spectrum of modern molecular high-throughput assaying includes diverse technologies such as
microarray gene expression, miRNA expression, proteomics, DNA methylation, among many others. Now
that these technologies have matured and become increasingly accessible, the next frontier is to collect
‘‘multi-modal’’ data for the same set of subjects and conduct integrative, multi-level analyses. While
multi-modal data does contain distinct biological information that can be useful for answering complex
biology questions, its value for predicting clinical phenotypes and contributions of each type of input remain
unknown. We obtained 47 datasets/predictive tasks that in total span over 9 data modalities and executed
analytic experiments for predicting various clinical phenotypes and outcomes. First, we analyzed each
modality separately using uni-modal approaches based on several state-of-the-art supervised classification
and feature selection methods. Then, we applied integrative multi-modal classification techniques. We have
found that gene expression is the most predictively informative modality. Other modalities such as protein
expression, miRNA expression, and DNA methylation also provide highly predictive results, which are often
statistically comparable but not superior to gene expression data. Integrative multi-modal analyses generally
do not increase predictive signal compared to gene expression data.

D
eveloping robust predictive models from clinico-molecular data for disease risk, diagnosis, recurrence,
survival, and treatment/drug responses are at the core of personalized medicine and next generation
diagnostics. Over the last 10–15 years many high-throughput technologies have been introduced and

adopted to measure gene expression, miRNA expression, protein expression, DNA methylation, single nucleotide
polymorphisms, copy number alterations, somatic mutations, and other molecular features on a genome-scale.
Numerous studies have demonstrated success in using each of these high-throughput technologies to build
patient classifiers for various phenotypes and outcomes1–5. As these technologies mature and become more
accessible to researchers, the next frontier is to collect ‘‘multi-modal’’ data for the same set of subjects and
conduct integrative analyses using multi-level views on the same phenomena. The biomedical research com-
munity is embracing multi-modal data because it contains distinct biological information that can be used to
answer causal and systems biology questions6–8. Furthermore, the great promise of such data for diagnosis,
prognosis, and treatment personalization is to increase the accuracy of such tests beyond the limits of what
was previously feasible with data from a single modality/platform.

At present, the value of multi-modal data for predicting clinical phenotypes and outcomes and, in particular,
the unique and shared contributions of each type of input remain unknown. Consider a common research design
dilemma of having, for example, a cohort of cancer patients with ability to measure tumor gene expression and
GWAS data, and the ultimate goal to predict the recurrence of disease after chemotherapy. It may be the case that
GWAS data does not provide any more predictive information than the information contained in the gene
expression data or vice versa. Alternatively, a combination of variables from both modalities may be needed to
maximize predictive ability.

The best way to use high-throughput multi-modal data for predicting clinical phenotypes and outcomes is a
matter of divergent opinions in the literature. One school of thought suggests that using multi-modal data should
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increase predictivity of patient classifiers9–15. The National Institutes
of Health have established a program PAR-11-203 to support the
development of ‘‘predictive multiscale models for biomedical, bio-
logical, behavioral, environmental and clinical research’’ (http://
grants.nih.gov/grants/guide/pa-files/PAR-11-203.html, accessed on
11/25/2013). Researchers in this group have reported initial prom-
ising results and have proposed new analytic methods for handling
multi-modal data9–12,14. For example, a recent study integrated micro-
array gene expression and copy number data to predict prostate
cancer grade, stage, metastasis, and recurrence9. The researchers
found that the multi-modal approach improves performance com-
pared to the best models derived from individual data modalities
with performance increases ranging from 0.01 to 0.07 AUC. While
the above results are promising, they (i) are often derived from few
modalities (typically 2); (ii) do not consider a wide range of state-of-
the-art predictive analytic approaches, both for uni-modal and
multi-modal data; (iii) base their conclusions on the analysis of very
few datasets (typically 1–3), often with small sample sizes that are
insufficient to determine whether the differences in performance
between single and multiple modalities are statistically significant;
and (iv) may be consequences of the reporting bias, i.e. only datasets/
studies where combination of modalities increases signal are
reported. Because of these shortcomings, both the generalizability
and the practical significance of these findings are limited.

A different school of thought suggests that one should use the most
downstream modality for predicting clinical phenotypes and out-
comes16–18. Even if the original cause of the disease could have hap-
pened in DNA, the information will eventually flow to RNA and
proteins and can be detected there. Of course, there may be excep-
tions to this rule, depending on disease pathogenesis. For example,
when a certain number of genetic mutations have to accumulate
before significant changes in gene expression appear, using gene
expression data may not be useful for early diagnosis and/or risk
assessment of disease19–21. On the other hand, not all DNA damage
leads to disease and thus, everything else being equal, examining
disease at the level of DNA has more noise than at the level of the
transcriptome. It is also worthwhile to mention that using multiple
data modalities leads to a significant increase in the cost of biome-
dical investigations.

To shed light on this issue, we have used high-throughput data to
perform, for the first time, a comprehensive exploration of the
information content in individual and multiple modalities. Our
study is enabled by multi-modal datasets of varying sample sizes
from national and international resources such as The Cancer
Genome Atlas (TCGA) and the Molecular Taxonomy of Breast
Cancer International Consortium8, which have recently been
available.

We used 47 datasets/predictive tasks that in total span over 9 data
modalities, with up to 5 modalities measured in the same dataset. We
focused on predicting various cancer phenotypes and outcomes such
as cancer grade, stage, lymph node involvement, ER status, PR status,
lymphatic invasion, neoplasm histologic grade, relapse, and survival
at different time points. First, we analyzed each modality separately
using uni-modal approaches based on several state-of-the-art super-
vised classification and feature selection methods. Then, we applied
advanced integrative multi-modal classification techniques.

Results
Gene expression microarrays are exhibiting the highest predictive
performance among tested data modalities. In order to determine
the most predictive individual modality, we computed predictive
performance (AUC) for models derived from each modality and
dataset/task (Table 1, detailed results are provided in Supplemen-
tary File 1). Gene expression had highest AUC averaged over all ap-
plicable datasets/tasks compared to other data modalities (Table 2).
Protein expression, DNA methylation, miRNA expression, and

tumor imaging modalities have lower mean AUCs, but the diffe-
rences with gene expression are not statistically significant.

In the following analyses, we decided to use gene expression as a
reference modality and further statistically compare its predictive
performance to the remaining 8 data modalities using two different
comparison approaches (see Methods section for details). In the first
approach, we compared the proportion of datasets where gene
expression was ‘statistically optimal’ with that of another modality.
In the second approach, we compared the proportion of datasets
where gene expression had predictivity at least as good as another
modality with the proportion of datasets where another modality had
predictivity at least as good as gene expression. The detailed results of
comparisons are given in Tables 3 and 4 for the first and second
approaches, respectively. Both approaches reveal that gene express-
ion has significantly better predictivity than clinical, copy number,
and GWAS modalities. Protein expression, somatic mutations, and
DNA methylation modalities are nominally but not statistically sig-
nificantly outperformed by gene expression using either comparison
approach, with the exception of somatic mutations modality that is
significantly outperformed by gene expression using the second
comparison approach. Finally, miRNA expression and tumor
imaging modalities, when compared to gene expression, yield exactly
the same proportions of datasets/tasks with either statistically
optimal results (for the first comparison approach) or one modality
outperforming the other (for the second comparison approach). No
modality outperformed gene expression in terms of the above
proportions.

It follows from data in Tables 1–4 that out of all 151 comparisons
of gene expression with various modalities for various datasets/tasks,
only in 4 (2.6%) comparisons gene expression is statistically signifi-
cantly outperformed by other modalities in terms of AUC, while in
54 (35.8%) comparisons gene expression statistically significantly
outperforms other modalities. In the remaining 61.6% comparisons,
gene expression and other modalities have statistically comparable
performance. Without consideration of statistical significance of dif-
ferences in AUC’s for each dataset/task, gene expression outperforms
other modalities in 115 (76.2%) comparisons, other modalities out-
perform gene expression in 33 (21.9%) comparisons, and the per-
formance is exactly equal in 3 (2.0%) comparisons. The above results
are visualized in Figure 1.

The predictive performance of gene expression microarrays can-
not be improved by integrating data from multiple modalities. We
have established above that gene expression microarrays are exhi-
biting the highest predictive performance among tested data moda-
lities. Next we assessed whether multiple modalities, combined by an
integrative analytics approach, have better predictivity than a single
gene expression modality. Figure 2 compares AUC averaged over all
47 datasets/tasks of uni-modal gene expression-based and multi-
modal analytic approaches. When gene expression data is analyzed
with traditional uni-modal approaches, it leads to AUC 5 0.788.
Multi-modal uniform approaches, applied to data from multiple
modalities, lead to AUC 5 0.779 which is nominally but not
statistically significantly lower than AUC of gene expression data
(p 5 0.1333; see also Figure S1 in Supplementary Information).
Multi-modal ensemble approaches, applied to data from multiple
modalities, lead to AUC 5 0.735, which is significantly lower than
AUC of gene expression data (p , 1025; see also Figure S2 in
Supplementary Information). Similarly, multi-modal specific
approaches, applied to data from multiple modalities, lead to AUC
5 0.719, which is significantly lower than AUC of gene expression
data (p , 1025; see also Figure S3 in Supplementary Information).

Out of all 141 comparisons of uni-modal approach with gene
expression data with 3 multi-modal integrative analytic approaches
for 47 datasets/tasks, only in 4 (2.8%) comparisons uni-modal gene
expression is statistically significantly outperformed by multi-modal
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approaches in terms of AUC, while in 47 (33.3%) comparisons uni-
modal gene expression statistically outperforms multi-modal
approaches. In the remaining 63.8% comparisons, uni-modal gene
expression and multi-modal approaches have statistically compar-
able performance. Without consideration of statistical significance of
differences in AUC’s for each dataset/task, uni-modal approach with
gene expression outperforms multi-modal approaches in 106
(75.2%) comparisons, multi-modal approaches outperform gene
expression in 30 (21.3%) comparisons, and the performance is
exactly equal in 5 (3.5%) comparisons. The above results are visua-
lized in Figure 3.

The results suggest that a model derived solely from microarray
gene expression data is unlikely to be improved by integrating data
from multiple modalities and applying multi-modal predictive ana-
lytics approaches. Furthermore, models derived from only microar-
ray gene expression data in general and on average lead to slightly
better performance than models from multiple data modalities com-
bined. Since gene expression data is also utilized in multi-modal
approaches, the latter observation can be attributed to the ‘‘curse
of dimensionality’’ that is degradation of predictivity due to
increased variable-to-sample size ratio that affects even well regular-
ized classifiers22. Another possible and related reason is that differ-
ences in high-dimensional distributions of data from various
modalities can hinder classifier learning.

Multi-modal uniform approaches are preferred for integrating
data from multiple modalities for predictive modeling. In order
to find the best performing technique for integrating data from
multiple modalities for predictive modeling, we have compared
predictivity among three types of multi-modal approaches: uni-
form, ensemble, and specific (see Methods section for details).

Figure 2 reports mean AUC averaged over all 47 datasets/tasks for
various multi-modal analytic approaches. Multi-modal uniform
approaches achieve AUC 5 0.779 and statistically significantly
outperform multi-modal ensemble (AUC 5 0.735, p 5 0.0008; see
also Figure S4 in Supplementary Information) and multi-modal
specific (AUC 5 0.719, p 5 0.0001; see also Figure S5 in Supple-
mentary Information). The multi-modal ensemble approaches
significantly outperform multi-modal specific approaches (p 5

0.0352; see also Figure S6 in Supplementary Information).

Discussion
Performing a definitive exploration of predictive analytics approa-
ches in multi-modal data is challenging in several ways. The conclu-
sions of this study may need to be revised as more modalities become
available for each dataset or improved assays for existing modalities
become available. For example, while extensive clinical data (patient
demographics, electronic medical record, orders, prior history, etc.)
is available in most medical centers these days, only a limited set of
such variables was accompanying genomic datasets used in this
study. Similarly, protein expression data used in the TCGA_BRCA
datasets involved measurements of only 166 proteins, while recent
proteomics assays can readily capture .10,000 proteins. Also, we
could not utilize all modalities measured in TCGA due to limited
sample size or small overlap of samples measured by multiple mod-
alities as well as restricted availability of several, primarily genetic
modalities. Our dataset inclusion criteria are detailed in the Methods
section.

While we performed integration of all available modalities for each
dataset/task, some researchers may give preference to integrating
selected modalities only, e.g. using only gene expression and protein
expression. Since many multi-modal analytics approaches used in

Table 2 | Comparison of various modalities with gene expression in terms of mean AUC (computed over datasets/tasks where data from
both modalities was available)

Modality
Number of datasets/tasks where

this modality was measured

Mean AUC Comparison of mean AUC differences

this modality
gene expression

modality p-value
p-value adjusted for

multiple comp.

Clinical 47 0.686 ,0.788 ,10-5 ,1025

Protein expression 27 0.725 ,0.742 0.1910 0.2183
Somatic Mutations 16 0.704 ,0.777 0.0023 0.0046
DNA Methylation 27 0.730 ,0.742 0.1290 0.1720
miRNA Expression 14 0.730 ,0.742 0.2585 0.2585
Copy Number 3 0.783 ,0.929 ,1025 ,1025

Tumor Imaging 1 0.947 ,0.979 0.0502* 0.0803
GWAS 16 0.708 ,0.826 ,1025 ,1025

*Since there is only one dataset for tumor imaging, significance in difference between AUC was not assessed by permutation testing, but instead was assessed by the method of Delong43.

Table 3 | Comparison of various modalities with gene expression in terms of proportion of dataset/tasks where two modalities achieve
‘statistically optimal’ AUC

Modality

Number of datasets/tasks Comparison of proportions

where this modality
was measured

where this modality had
‘statistically optimal’

performance

where gene expression had
‘statistically optimal’

performance p-value
p-value adjusted for

multiple comp.

Clinical 47 15 ,43 ,1025 ,1025

Protein expression 27 22 ,25 0.2242 0.3587
Somatic Mutations 16 9 ,14 0.0493 0.0986
DNA Methylation 27 23 ,25 0.3865 0.5153
miRNA Expression 14 14 514 1 1
Copy Number 3 0 ,3 0.0143 0.0381
Tumor Imaging 1 1 51 1 1
GWAS 16 1 ,14 ,1025 1.6483?1025
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this study explicitly performed feature selection, these techniques by
design would be able to find the most predictively relevant features in
all available modalities, and if needed would focus exclusively on
features in a subset of modalities. Therefore, we anticipate that the
performance of multi-modal approaches would not increase by using
fewer modalities. Table S7 in Supplementary Information provides
the results of additional experiments to compare using all 5 modalit-
ies versus only gene expression and protein expression (2 modalities)
in all TCGA datasets. As can be seen, using only gene expression and
protein expression for multi-modal analyses does not improve aver-
age predictive performance compared to uni-modal approaches and
multi-modal based on all 5 data modalities.

Our results imply that for a large set of 47 datasets/tasks used in
this study, on average there is little benefit of integrating multiple
modalities for predictive modeling purposes. However, we do not
preclude the possibility that in some datasets/tasks not represented
by our benchmark collection combining modalities may increase
predictive performance over uni-modal approaches. For example,
in a dataset TCGA_BRCA2.R4, the best uni-modal approach (based
on gene expression data) achieved AUC of 0.860, while the best
multi-modal approach (multi-modal uniform) achieved higher
AUC of 0.914. Overall, in 66% of datasets/tasks the best uni-modal
approach had performance greater or equal than that of the best
multi-modal approach, and in 34% of datasets/tasks the best
multi-modal approach outperformed the best uni-modal approach
(average improvement of AUC was only 0.01). Therefore, we suggest
that multi-modal studies should never omit uni-modal analytic
approaches.

We also note that it may be possible for researchers to come up
with new integrative modeling approaches that would increase per-
formance of existing techniques, and such research would benefit
from the benchmark results achieved in our work. We are not par-
ticularly optimistic about the likelihood of discovering such
approaches however, because both theoretical results and empirical
experience of existing multi-modal data analysis methods in other
fields of study suggest that the existing methods are very powerful
and capable of extracting and combining signals from distinct types
of data15,23–25.

In conclusion, this study conducted the largest exploration to date
of analytics approaches for predicting clinical phenotypes and out-
comes with multi-modal high-throughput biomedical data. Using 47
datasets/tasks that span over 9 data modalities in total (with up to 5
modalities measured in the same dataset) and with numbers of
patients in each dataset ranging from 52 to 1,950, we found that gene
expression is the most predictively informative modality. Other
modalities such as protein expression, miRNA expression, and
DNA methylation also provide highly predictive results, which are
often statistically comparable but not superior to gene expression
data. Tumor imaging has high predictivity that is statistically
comparable to gene expression data. However, since we have only
one dataset/task where both tumor imaging and gene expression
were measured, we cannot generalize this result. We also found that
various integrative multi-modal analytic approaches differ in per-
formance, but in the majority of cases and on average they do not
increase predictive signal compared to uni-modal approach based on
gene expression data. While combining modalities and conducting

Table 4 | Comparison of various modalities with gene expression in terms of proportion of datasets/tasks where one modality performs at
least as good as the other

Modality

Number of datasets/tasks Comparison of proportions

where this modality
was measured

where this modality had
performance $ gene expression

where gene expression had
performance $ this modality p-value

p-value adjusted for
multiple comp.

Clinical 47 21 ,45 ,1025 ,1025

Protein expression 27 24 ,25 0.6387 0.8516
Somatic Mutations 16 11 ,16 0.0149 0.0298
DNA Methylation 27 25 ,27 0.1495 0.2393
miRNA Expression 14 14 514 1 1
Copy Number 3 0 ,3 0.0143 0.0298
Tumor Imaging 1 1 51 1 1
GWAS 16 1 ,16 ,1025 ,1025

Figure 1 | Comparison of predictivity of gene expression microarrays (GE) with other modalities. The results are based on 151 comparisons of gene

expression with various modalities for various datasets/tasks. Predictivity is measured by the area under ROC curve (AUC). The results in (a) are obtained

using statistical comparison of AUC differences in individual datasets/tasks, while the results in (b) are obtained using nominal comparison of AUC

difference in individual datasets/tasks.
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integrative analyses is essential for mechanistic and system biology
studies, our results suggest that performing multi-modal high-
throughput biomedical studies is in most cases unwarranted for
predicting clinical phenotypes and outcomes and special care must
be given to analytic methodology.

Methods
Datasets collection and preparation. We obtained 47 datasets/predictive tasks from
The Cancer Genome Atlas (TCGA), Memorial Sloan-Kettering Cancer Center, the
European NeoMark Project, and the Canada-UK METABRIC Project (see Table 5).
To be eligible for inclusion in our study, a dataset/task was required to: (i) address a
clinically/pathologically relevant prediction task; (ii) involve human patient samples;
(iii) have available data for 3 or more modalities; (iv) have at least 50 samples with
complete coverage of data from all available modalities; (v) have at least one modality
with high-dimensional/genome-wide data. In addition to the above criteria, we gave
preference to datasets with harder predictive tasks (e.g., predicting clinical outcomes
versus diagnosis), so that there is ‘‘room for improvement’’ by multi-modal predictive
modeling approaches.

TCGA_BRCA1 and TCGA_BRCA2 breast cancer datasets originate from The
Cancer Genome Atlas (https://tcga-data.nci.nih.gov/tcga/). The samples in these
datasets correspond to patient breast cancer invasive tumors. We accessed TCGA
website on 9/13/2012 and downloaded clinical and publicly available genomic data
(Level 2) for the following modalities: gene expression, DNA methylation, protein
expression, and somatic mutations (Table S1 in Supplementary Information). There
were 400 patients with all five measured modalities (four genomic modalities and one
clinical). Since DNA methylation data originated from 2 different assaying platforms,
we divided the 400 patient dataset into two smaller datasets: one with DNA methy-
lation assayed by HumanMethylation27 platform (denoted as ‘‘TCGA_BRCA1’’) and
another one by HumanMethylation450 platform (‘‘TCGA_BRCA2’’). The former
dataset contained 240 patients, while the latter 160. We defined 8 phenotypic res-
ponse variables/predictive tasks given in Table 5. In summary, the responses corre-
spond to neoplasm disease stage, lymph node stage, tumor stage, ER receptor status,
PR receptor status, and survival at 2, 3, and 4 years of follow-up. Patients with missing
values in the responses (e.g., due to loss of follow-up for survival tasks) were removed

from the analysis, resulting in 58–240 patients in TCGA_BRCA1 and 52–160 patients
in TCGA_BRCA2 datasets, depending on the response variable/predictive task (see
Table 5). Once the responses were defined, we extracted from the clinical data a set of
24 binary or numerical predictors for predictive modeling of the responses (Table S2
in Supplementary Information). We ensured that these predictors in the clinical data
do not represent ‘proxies’ or components of any response variable and were not
measured after the responses. We have followed this practice for all datasets listed
below. For example, we did not want to use patient survival at 3 years of follow-up to
predict tumor grade at baseline. Likewise, we did not want to use lymph node stage to
predict tumor stage (the former is a component of the definition of the later).

TCGA_OVCA ovarian cancer datasets also originate from TCGA. The samples in
these datasets correspond to patient ovarian serous cystadenocarcinoma tumors. We
accessed TCGA website on 12/16/2012 and downloaded clinical and publicly avail-
able genomic data (Level 2) for the following modalities: gene expression, DNA
methylation, protein expression, and miRNA expression (Table S1, Table S2). We did
not obtain data for other genomic modalities available on TCGA (e.g., somatic
mutations) due to the small number of patients in these data. There were 397 patients
with all five measured modalities (four genomic modalities and one clinical). We
defined 11 phenotypic response variables/predictive tasks given in Table 5. In sum-
mary, the responses correspond to lymphatic invasion, neoplasm histologic grade,
tumor stage, venous invasion, and survival at 1, 2, 3, 4, 5, 6, and 7 years of follow-up.
Patients with missing values in the responses were removed from the analysis,
resulting in datasets with 93–380 patients, depending on the response variable/task
(Table 5).

MSKCC_PRCA prostate cancer datasets originate from a study7 performed at
Memorial Sloan Kettering Cancer Center. The samples in these datasets correspond
to patient prostate cancer tumors. We accessed the MSKCC Cancer Genomics data
portal (http://cbio.mskcc.org/cancergenomics/prostate/data/) on 7/27/2012 and
downloaded clinical and publicly available genomic data for the following modalities:
gene expression, microRNA expression, and copy number (Table S1, Table S2). There
were 92 patients with all four measured modalities (three genomic and one clinical).
We defined 3 phenotypic response variables/predictive tasks given in Table 5. In
summary, the responses correspond to lymph node stage, tumor stage, and primary
vs. metastatic tumor classification. Patients with missing values in the responses were
removed from the analysis, resulting in datasets with 74–92 patients, depending on
the response variable/task (Table 5).

Figure 2 | Comparison of predictivity of various analytic approaches. Predictivity is measured by the area under ROC curve (AUC) and averaged over all

47 datasets/tasks.

Figure 3 | Comparison of predictivity of uni-modal gene expression-based approach (GE) with multi-modal approaches. The results are based

on 141 comparisons of uni-modal gene expression-based approach with 3 multi-modal approaches for 47 datasets/tasks. Predictivity is measured by the

area under ROC curve (AUC). The results in (a) are obtained using statistical comparison of AUC differences in individual datasets/tasks, while the results

in (b) are obtained using nominal comparison of AUC difference in individual datasets/tasks.
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NEOMARK oral squamous cell carcinoma datasets originate from the European
NeoMark project26. The samples in these datasets correspond to patient oral
squamous cell carcinoma tumors. We obtained clinical, tumor imaging, and gene
expression data from the co-authors of this study (M.P. and T.P.) who led the
NeoMark project (Table S1, Table S2). There were 106 patients with all three mea-
sured modalities. We defined a response variable denoting recurrence of oral

squamous cell carcinoma within 12 months after surgery (Table 5). Patients with
missing values in the response (due to loss of follow-up) were removed from the
analysis, resulting in datasets with 77 patients.

METABRIC breast cancer datasets originate from the UK-Canada METABRIC
project8. The samples in these datasets correspond to patient invasive breast cancer
tumors. We have accessed the European Genome-Phenome Archive (https://www.

Table 5 | Characteristics of datasets/tasks used in this study. ‘‘N’’ is number of subjects with complete coverage of data from all available
modalities in a given dataset. ‘‘N(0)’’ and ‘‘N(1)’’ denote number of subjects for classes ‘‘0’’ and ‘‘1’’, respectively. The encoding of classes is
given in the second column
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Breast cancer patient samples from The Cancer Genome Atlas (TCGA), N 5 240
TCGA_BRCA1.R1 Neoplasm disease stages I*, II* (0) vs. III*, IV* (1) 124 111 X X X X X
TCGA_BRCA1.R2 Lymph node stage N0* (0) vs. N1*, N2*, N3* (1) 183 50 X X X X X
TCGA_BRCA1.R3 Tumor stages T1*, T2* (0) vs. T3*, T4* (1) 203 37 X X X X X
TCGA_BRCA1.R4 Estrogen receptor negative (0) vs. positive (1) 57 176 X X X X X
TCGA_BRCA1.R5 Progesterone receptor negative (0) vs. positive (1) 89 144 X X X X X
TCGA_BRCA1.R6 survived 2 years (0) or not (1) 96 7 X X X X X
TCGA_BRCA1.R7 survived 3 years (0) or not (1) 62 13 X X X X X
TCGA_BRCA1.R8 survived 4 years (0) or not (1) 45 13 X X X X X
Breast cancer patient samples from The Cancer Genome Atlas (TCGA), N 5 160
TCGA_BRCA2.R1 Neoplasm disease stages I*, II* (0) vs. III*, IV* (1) 57 101 X X X X X
TCGA_BRCA2.R2 Lymph node stage N0* (0) vs. N1*, N2*, N3* (1) 107 52 X X X X X
TCGA_BRCA2.R3 Tumor stages T1*, T2* (0) vs. T3*, T4* (1) 129 30 X X X X X
TCGA_BRCA2.R4 Estrogen receptor negative (0) vs. positive (1) 39 121 X X X X X
TCGA_BRCA2.R5 Progesterone receptor negative (0) vs. positive (1) 60 100 X X X X X
TCGA_BRCA2.R6 survived 2 years (0) or not (1) 94 6 X X X X X
TCGA_BRCA2.R7 survived 3 years (0) or not (1) 71 9 X X X X X
TCGA_BRCA2.R8 survived 4 years (0) or not (1) 38 14 X X X X X
Ovarian cancer patient samples from The Cancer Genome Atlas (TCGA), N 5 397
TCGA_OVCA.R1 Lymphatic invasion present (1) vs. absent (0) 47 87 X X X X X
TCGA_OVCA.R2 Neoplasm histologic grade G1,G2 (0) vs. G3,G4 (1) 52 325 X X X X X
TCGA_OVCA.R3 Tumor stages T1*, T2* (0) vs. T3*, T4* (1) 30 350 X X X X X
TCGA_OVCA.R4 Venous invasion present (1) vs. absent (0) 40 53 X X X X X
TCGA_OVCA.R5 survived 1 year (1) or not (0) 271 32 X X X X X
TCGA_OVCA.R6 survived 2 years (1) or not (0) 206 68 X X X X X
TCGA_OVCA.R7 survived 3 years (1) or not (0) 153 98 X X X X X
TCGA_OVCA.R8 survived 4 years (1) or not (0) 85 148 X X X X X
TCGA_OVCA.R9 survived 5 years (1) or not (0) 55 168 X X X X X
TCGA_OVCA.R10 survived 6 years (1) or not (0) 30 182 X X X X X
TCGA_OVCA.R11 survived 7 years (1) or not (0) 19 189 X X X X X
Prostate cancer patient samples from Memorial Sloan-Kettering Cancer Center (MSKCC), N 5 92
MSKCC_PRCA.R1 Lymph node stage N0 (0) vs. N1 (1) 62 12 X X X X
MSKCC_PRCA.R2 Primary (0) vs. metastatic (1) 79 13 X X X X
MSKCC_PRCA.R3 Tumor stages T1 (0) vs. T2, T3, T4 (1) 53 35 X X X X
Oral squamous cell carcinoma patient samples from the European project NeoMark, N 5 106
NEOMARK.R1 Recurrence (1) vs. no recurrence (0) of oral squam. cell

cancer
71 6 X X X

Breast cancer patient samples from the UK-Canada project METABRIC, N 5 1950
METABRIC.R1 ER_Expr positive (1) vs. negative (0) 463 1487 X X X
METABRIC.R2 HER2_Expr positive (1) vs. negative (0) 1710 240 X X X
METABRIC.R3 PR_Expr positive (1) vs. negative (0) 920 1030 X X X
METABRIC.R4 Grade 1 (0) vs. 2,3 (1) 167 1783 X X X
METABRIC.R5 Grade 1,2 (0) vs. 3 (1) 1018 932 X X X
METABRIC.R6 Stage 0 (0) vs. Stages 1,2,3,4 (1) 509 1441 X X X
METABRIC.R7 Stages 0,1 (0) vs. Stages 2,3,4 (1) 1005 945 X X X
METABRIC.R8 Stages 0,1,2 (0) vs. Stages 3,4 (1) 1825 125 X X X
METABRIC.R9 Stages 0,1,2,3 (0) vs. Stage 4 (1) 1940 10 X X X
METABRIC.R10 survived 1 year (1) or not (0) 27 1878 X X X
METABRIC.R11 survived 2 years (1) or not (0) 102 1767 X X X
METABRIC.R12 survived 3 years (1) or not (0) 184 1634 X X X
METABRIC.R13 survived 4 years (1) or not (0) 279 1482 X X X
METABRIC.R14 survived 5 years (1) or not (0) 340 1328 X X X
METABRIC.R15 survived 6 years (1) or not (0) 387 1138 X X X
METABRIC.R16 survived 7 years (1) or not (0) 424 1013 X X X
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ebi.ac.uk/ega/datasets) on 4/5/2013 and downloaded GWAS and gene expression
data under the accession numbers EGAD00010000164 and EGAD00010000162,
respectively. Clinical data was obtained from the supplement of8 (Table S1, Table S2).
There were 1,950 patients with all three measured modalities (two genomic and one
clinical). We defined 16 phenotypic response variables/predictive tasks given in
Table 5. In summary, the responses correspond to ER receptor status, PR receptor
status, HER2 receptor status, tumor grade, tumor stage, and survival at 1, 2, 3, 4, 5, 6,
and 7 years of follow-up. Patients with missing values in the responses were removed
from the analysis, resulting in datasets with 1,437–1,950 patients, depending on the
response variable/task (Table 5).

The obtained genomic and imaging datasets have been processed and normalized
by their primary authors. We have only performed rescaling of all data features to [0,
1] range in order to facilitate classifier learning.

For ease of reproducing the results of this study, all datasets (excluding a few ones
with special permission requirements which can be requested by their authors) are
available online in Matlab format from http://www.nyuinformatics.org/downloads/
supplements/MultiModal/.

Predictive analytics approaches. We considered four types of predictive analytics
approaches: traditional and well-established approaches for modeling from a single
modality data and three state-of-the-art types of approaches for modeling from
multiple data modalities. The latter approaches have been used and described in prior
literature on multi-modal predictive analytics9–15,27.

‘‘Uni-modal’’ approaches apply well-established feature selection and supervised
classification (core) methods to a single data modality to obtain a predictive model.
Uni-modal approaches cannot capture/combine information from features in mul-
tiple data modalities (e.g., gene expression and protein expression or miRNA). These
approaches use core methods listed in Table S3 with parameters given in Table S4 in
Supplementary Information.

‘‘Multi-modal uniform’’ (MMU) approaches apply well-established feature selec-
tion and supervised classification (core) methods to multiple data modalities to

obtain a predictive model. These approaches use the same core methods (listed in
Table S3 and with parameters given in Table S4) as in uni-modal approaches, but
apply them to multiple modalities while treating data from multiple modalities uni-
formly. Thus these approaches can capture information from and interactions among
features in multiple data modalities. Figure 4 provides a pictorial description of MMU
approaches.

‘‘Multi-modal ensemble’’ (MME) approaches apply methods to ‘‘ensemble’’ mul-
tiple classification models derived from individual data modalities. The classification
of subjects is then performed by an ensemble classification model, which is defined as
a function of models from individual data modalities. The core MME methods are
listed in Table S3 and their parameters are given in Table S4. Figure 5 provides a
pictorial description of MME approaches.

‘‘Multi-modal specific’’ (MMS) approaches apply methods designed specifically for
deriving a predictive model from multi-modal data. The core MMS methods are listed
in Table S3 and their parameters are given in Table S4.

The choice of conventional supervised classification methods is essential for all
uni-modal, multi-modal uniform and multi-modal ensemble approaches (multi-
modal specific approaches use other specialized methods for classification). As out-
lined in Table S3, we used 5 supervised classification methods in our study: support
vector machines (SVMs) with linear kernel28, SVMs with polynomial kernel28, kernel
ridge regression22,29,30, Bayesian logistic regression31,32, and random forests33. These
methods have been chosen because of their: (i) numerous successful empirical
applications to datasets from the same or similar domains, (ii) robustness to high
variable-to-sample ratio and large number of variables, (iii) ability to efficiently learn
complex classification functions, and (iv) overfitting avoidance strategies by
employing powerful regularization22,28.

Similarly, the choice of a conventional feature selection method is essential for uni-
modal and multi-modal uniform approaches and also plays a role in one tested multi-
modal ensemble method (Table S3). We decided to use SVM-RFE34 because of the
following considerations. First, unlike other feature selection methods, SVM-RFE has
been successfully used in all individual data modalities tested in our study (Table S5 in

Figure 4 | Multi-modal uniform (MMU) predictive analytics approaches. (a) MMU w/o feature selection, (b) MMU with feature selection performed on

all modalities at once, (c) MMU with feature selection performed independently on individual modalities.
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Supplementary Information). Second, in experiments that involved 8 TCGA_BRCA1
datasets/predictive tasks with 5 modalities, SVM-RFE outperformed in terms of
average predictive performance all 16 tested feature selection methods in both uni-
modal and multi-modal applications (Table S6 in Supplementary Information).

In order to derive a single performance estimate for each type of approach, we
optimized predictive performance over all approach variants and core methods.

Estimation of predictive performance. For model/parameter optimization and
estimation of predictive performance, we used a nested repeated 5-fold cross-
validation procedure35–38. The inner loop of cross-validation was used to determine
the best parameters and features of the classifier (i.e., values of parameters yielding the
best predictive performance for the validation dataset). The outer loop of cross-
validation was used for estimating the predictive performance of the model that was
built using the previously found best parameters by testing with an independent set of
samples. To account for variance in performance estimation, we repeated this entire
nested 5-fold cross-validation process for 10 different splits of the data (into 5 cross-
validation testing sets) and averaged the results35.

To measure predictive performance (also referred to as ‘‘predictivity’’), we used the
area under the ROC curve (AUC). The ROC curve is the plot of sensitivity versus 1-
specificity for a range of threshold values on the outputs/predictions of the clas-
sification algorithms39. AUC ranges from 0 to 1, where AUC 5 1 corresponds to a
perfectly correct classification of samples, AUC 5 0.5 corresponds to classification by
chance, and AUC 5 0 corresponds to an inverted perfect classification. We chose
AUC as the predictive performance metric because it is insensitive to unbalanced class
prior probabilities, it is computed over the range of sensitivity-specificity tradeoffs at
various classifier output thresholds, and it is more discriminative than metrics such as
accuracy (proportion of correct classifications), F-measure, precision, and recall40,41.

Statistical comparisons. To test whether the average differences in predictive
performance (e.g., across all 47 datasets/tasks) between the approaches are non-
random, we used a permutation test, adapted from42. For the comparison of two
approaches X and Y, the test involves the following steps: (i) Define the null
hypothesis (H0) to be that the average performance (across all applicable datasets/
tasks) of the approaches X and Y is the same. Compute the absolute value of the
observed average differences between performance of the approaches X and Y (D̂XY ).
(ii) Repeatedly randomly rearrange the performance values of the approaches X and Y
(independently for each dataset/task) and compute the absolute value of the average
differences in performance of the approaches X and Y in permuted data. Repeat the

above for 100,000 permutations to obtain the null distribution ofDXY, the estimator of
the true unknown absolute value of the average differences in performance of the two
approaches. (iii) Compute the cumulative probability (p-value) of DXY being greater
than or equal to the observed difference D̂XY over all permutations. If the resulting p-
value was considered significant (see last paragraph of this subsection), we rejected H0

and concluded that the data supports that the approaches X and Y do not have the
same performance, and this difference is not due to sampling error.

To test whether the differences in predictive performance for a fixed dataset/task
between two modalities are non-random, we used U-statistic theory and Delong’s
test43,44. The nominally best performing modality in each dataset was compared to all
other measured modalities. Modalities where the null hypothesis of similar per-
formance could be rejected were designated as ‘statistically optimal’ performing.

To compare two modalities in terms of proportion of datasets (i) where a modality
yields ‘statistically optimal’ performance or (ii) where one modality performs at least
as good as the other, we used a Chi-squared test with one degree of freedom. The
proportions were computed only for datasets/tasks where data from both modalities
was available.

The adjustment for multiple comparisons in all statistical tests performed in this
work was performed using the methodology of45,46. The statistical significance was
determined at 0.05 level using adjusted p-values.

Computing resources and infrastructure. For this project we used four high-
performance computing (HPC) clusters available to us. These HPC clusters included
the Asclepius and Phoenix clusters of the NYU Langone Medical Center, the Bowery
cluster of the New York University main campus, and the BuTina cluster of the New
York University Abu Dhabi campus in the United Arab Emirates. Asclepius had
,1,000 Intel x86 processing cores and 4 TB of RAM distributed among the cluster’s
compute nodes. Phoenix has ,1,200 latest Intel 386 processing cores and 10 TB of
RAM distributed among the compute nodes. Both Asclepius and Phoenix access
585 TB of central disk storage. The Bowery cluster has ,2,500 cores and 9 TB of
RAM total among all the nodes. The BuTina cluster has ,6,400 latest Intel 386
processing cores with a total of 26 TB of RAM.

To make the computations feasible, we divided the problem into many inde-
pendent jobs, each implemented in Matlab, R, and/or C/C11. The completely
independent nature of the jobs enabled linear speedup. We typically used 100–300
cores of the cluster at a time over a calendar year. We estimate that the final results
reported here required 50 core-years of computation and were obtained in roughly 4
months of elapsed time.

Figure 5 | Multi-modal ensemble (MME) predictive analytics approaches.
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