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Prefazione

La storia della filosofia e della scienza è una storia di previsioni ed errori. Il
fare previsioni si fonda sulla comprensione degli schemi del nostro ambiente,
ed è fondamentale per comportamenti intelligenti come i processi decision-
ali e la pianificazione. Possiamo conoscere l’ambiente solamente attraverso
strumenti di misura, siano essi sensi naturali o sensori artificiali, che ci for-
niscono dati. È proprio in questi dati che speriamo di trovare schemi. Non
c’è modo di sapere se disponiamo di dati sufficienti per scoprire gli schemi
che vorremmo conoscere. A volte non abbiamo dati sufficienti. A volte,
inconsciamente, scartiamo dati utili. Altre volte, più maliziosamente, ignori-
amo consapevolmente quelle misurazioni che potrebbero entrare in conflitto
con gli schemi che vogliamo vedere nei dati. Altre volte ci concentriamo su
schemi irrilevanti, destinati a fallire nel momento in cui raccoglieremo più
dati. Il determinismo è stata la tendenza a preferire schemi descritti da re-
lazioni funzionali chiamate modelli deterministici. All’inizio del secolo scorso,
la statistica è emersa come il campo scientifico incaricato di formalizzare e
organizzare le tecniche utilizzate da fisici, chimici, biologi e altri scienziati
per scoprire gli schemi nei loro dati. Molti insiemi di misurazioni non sono
compatibili con l’ipotesi deterministica. Pertanto, gli statistici hanno ac-
cettato l’esistenza di schemi probabilistici e hanno sviluppato strumenti più
raffinati per quantificare l’incertezza intrinseca alle previsioni degli scienziati,
i modelli stocastici.

L’introduzione delle macchine calcolatrici ha modificato profondamente la
nostra interazione con i dati. Innanzitutto, i processori hanno automatizzato
e accelerato i calcoli matematici. In secondo luogo, lo sviluppo della tecnolo-
gia delle memorie ha permesso di registrare quantità sempre maggiori di dati,
superando di gran lunga quella degli archivi di periodi storici precedenti. La
combinazione di questi fattori ha reso le domande “È possibile automatiz-
zare l’estrazione di schemi dai dati?” ed “È possibile replicare comportamenti
intelligenti?” sia significative che accessibili. Queste domande sono le basi
dell’apprendimento automatico e dell’intelligenza artificiale e, come vedremo,
sono intimamente correlate.
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Il grado di miniaturizzazione dei moderni dispositivi elettronici consente
di posizionarli in diversi ambienti. L’utilizzo degli schemi di questi ambienti è
fondamentale per applicazioni economiche e sociali. Ad esempio, il monitor-
aggio in tempo reale dei macchinari industriali ne consente una manutenzione
più efficace, riducendo i costi operativi. Un altro esempio è quello dei sensori
biomedicali intelligenti in grado di monitorare pazienti con patologie car-
diache: prevedere gli attacchi di cuore in tempo potrebbe salvar loro la vita.
L’apprendimento automatico studia modelli e algoritmi in grado di trovare
schemi in questi fenomeni. Durante l’ultimo decennio del secolo scorso, sono
emerse tre tendenze tecnologiche. Innanzitutto, l’evoluzione della tecnologia
Internet ha permesso di supportare ratei e volumi di scambio di dati sempre
maggiori. In secondo luogo, la miniaturizzazione dei transistor ha perme-
sso di integrare computer in piccoli sistemi a prezzi convenienti, collegando
questi sistemi a Internet (Internet of things, IoT). Infine, la progettazione
delle architetture dei calcolatori ha visto un cambio di paradigma verso sis-
temi paralleli, che ottengono capacità di processamento utilizzando multipli
core più lenti anziché un’unica unità di elaborazione veloce.

Il tipico prodedimento per applicare algoritmi statistici ai dati raccolti
da computer edge (ovvero computer con risorse di calcolo limitate che sono
posizionati direttamente nell’ambiente) si basa su una connessione Internet:
il computer con risorse limitate (il client) acquisisce dati e li trasmette a
un computer o ad un insieme di computer (il server) in grado di elabo-
rarli; dopodiché, l’output dell’algoritmo statistico viene ritrasmesso al client,
che implementa la funzionalità desiderata usando questo risultato. Questa
dipendenza da una connessione Internet ha potenziali ripercussioni sulle
prestazioni del sistema. Ad esempio, la connessione potrebbe essere inaffid-
abile (i.e., i pacchetti di informazioni potrebbero andare persi attraverso la
rete), necessitando la ritrasmissione e degradando la latenza della risposta.
Altre volte la connessione potrebbe avere una larghezza di banda limitata
(i.e., potrebbe essere inviata solo una determinata quantità di informazioni
alla volta), necessitando la serializzazione della comunicazione e degradando
nuovamente la latenza della risposta. In alcuni scenari, una connessione In-
ternet potrebbe non essere disponibile. Inoltre, i computer edge vengono
generalmente collocati su sistemi alimentati da batterie. L’energia di queste
batterie può essere rapidamente scaricata da programmi caratterizzati da un
elevato carico computazionale, dall’uso inefficiente delle gerarchie di memo-
ria dei computer e dalle antenne utilizzate per le comunicazioni. I vincoli di
latenza per le applicazioni e i vincoli energetici per i dispositivi rappresentano
una limitazione significativa al dispiegamento di sistemi di apprendimento
automatico su computer edge.

Quali caratteristiche rendono un determinato sistema di apprendimento
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automatico preferibile ad altri? Quali sono le proprietà che un tale sistema
dovrebbe soddisfare per essere dispiegato su un computer edge? Come cam-
bia questa idoneità quando cambiano i vincoli? Stando alle nostre conoscenze,
queste domande non sono mai state esplorate simultaneamente. Sosteniamo
che fare scelte solide e progettare efficacemente sistemi di apprendimento
automatico richiedano l’integrazione di concetti da diverse discipline. In par-
ticolare, dovremmo considerare tre aspetti:

(i) proprietà modellistiche: le entità e le relazioni che il sistema può
approssimare e la qualità di queste approssimazioni espressa in termini
della struttura del sistema stesso;

(ii) proprietà algoritmiche: i costi computazionali seriale/parallelo (com-
plessità di lavoro / complessità di passo) e il costo di memoria (comp-
lessità spaziale) degli algoritmi utilizzati dal sistema;

(iii) proprietà architetturali: le caratteristiche che un computer deve o
dovrebbe soddisfare per eseguire i programmi del sistema.

Nel Capitolo 1, definiamo i concetti di insieme di misurazioni, intelligenza
artificiale e sistema di apprendimento automatico. Riassumiamo anche alcuni
concetti rilevanti della teoria degli algoritmi e delle architetture dei calcola-
tori su cui baseremo la nostra analisi. Nel Capitolo 2, definiamo il problema
dell’apprendimento sulle bag, che può essere ricondotto a un normale prob-
lema di apprendimento in cui lo spazio di input è uno spazio di distribuzioni di
probabilità. Durante il primo anno del corso di dottorato, abbiamo formaliz-
zato e analizzato nel dettaglio un nuovo metodo per classificare bag di vettori,
il metodo fingerprint, sviluppato durante una collaborazione con Tetra Pak.
Questo sistema è stato progettato per risolvere un problema di strategia com-
merciale, in cui l’obiettivo era l’accuratezza statistica piuttosto che l’efficienza
computazionale ed esemplifica bene i costi inerenti ad algoritmi statistici com-
plessi. Nel Capitolo 3, introduciamo le reti neurali artificiali e discutiamo le
loro proprietà computazionali. Questi sistemi hanno strutture modulari che
supportano un efficiente algoritmo di apprendimento basato sul gradiente e
le loro primitive computazionali si adattano meglio alle architetture single
instruction, multiple data (istruzione singola, dati multipli) meglio di altri
sistemi. Nel Capitolo 4, descriviamo le applicazioni avanzate delle reti neu-
rali artificiali per illustrare le loro proprietà di modellazione. Introduciamo
alcuni problemi di visione artificiale e le reti neurali convoluzionali, che sono
benchmark popolari per gli algoritmi di apprendimento sviluppati per le reti
neurali artificiali. Rispetto ad altri sistemi di apprendimento automatico, le
strutture modulari delle reti neurali artificiali consentono di riutilizzare parte
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di un programma pre-addestrato su un compito diverso, riducendo dunque i
tempi di modellazione. Durante il secondo anno del corso di dottorato, ab-
biamo collaborato con Maserati per sviluppare un modello di analisi dati in
grado di identificare le ragioni oggettive alla base delle valutazioni soggettive
delle automobili; il modello che abbiamo ideato sfrutta esattamente questa
proprietà di modularità. Nel Capitolo 5, descriviamo le reti neurali quantiz-
zate, reti neurali artificiali che possono essere eseguite in modo estremamente
efficiente su acceleratori hardware dedicati ma che pongono anche problemi
matematici molto impegnativi. In particolare, eliminano l’ipotesi di differen-
ziabilità delle reti neurali artificiali classiche, ostacolando l’applicazione di
algoritmi di apprendimento basati sul gradiente. Analizziamo poi le pro-
prietà di approssimazione di questi sistemi di apprendimento automatico, di-
mostrando che sono in teoria potenti come le reti neurali artificiali classiche.
Usando tecniche di analisi funzionale, mostriamo che aggiungere rumore agli
argomenti di funzioni non differenziabili recupera (almeno parzialmente) la
differenziabilità. Descriviamo infine l’algoritmo di apprendimento denomi-
nato additive noise annealing (annichilimento del rumore additivo) che ab-
biamo sviluppato sulla base di questa analisi, riportando risultati allo stato
dell’arte su benchmark di classificazione d’immagini.
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Non è necessario leggere i capitoli nell’ordine in cui appaiono. Il Capi-
tolo 1 è un prerequisito sia per il Capitolo 2 che per il Capitolo 3, che pos-
sono essere letti indipendentemente; il Capitolo 3 è un prerequisito sia per il
Capitolo 4 che per il Capitolo 5, che possono anch’essi essere letti indipen-
dentemente.



Preface

The history of philosophy and science is a story of predictions and mistakes.
Making predictions is about getting insights into the patterns of our envi-
ronment, and it is fundamental to intelligent behaviours like decision-making
and planning. We can access the environment only via media, be it natural
senses or artificial sensors, that provide us with data. It is indeed in this data
that we hope to find patterns. There is no way to know whether we have
sufficient data to derive the knowledge we would like to have. Sometimes we
do not have sufficient data. Sometimes we unconsciously discard useful data.
Other times, more maliciously, we consciously ignore those measurements
that could conflict with the pattern we want to see in the data. Other times
we focus on irrelevant patterns, doomed to fail as long as we will collect
more data. Determinism has been a tendency towards preferring patterns
described by functional relationships called deterministic models. At the be-
ginning of the past century, statistics emerged as the scientific field in charge
of formalising and organising the techniques used by physicists, chemists,
biologists and other scientists to derive patterns from their data. Many data
sets are not compatible with the deterministic hypothesis. Therefore, statis-
ticians have accepted the existence of probabilistic patterns and developed
more refined tools to quantify the uncertainty inherent to scientists’ predic-
tions, stochastic models.

The introduction of computing machines has altered our interaction with
data to a great extent. First, processing units have automated and acceler-
ated mathematical computations. Second, the development of storage tech-
nologies has allowed recording ever-increasing quantities of data, far exceed-
ing that of the archives from previous historical periods. The combination
of these factors has made the questions “Is it possible to automate the ex-
traction of patterns from data?” and “Is it possible to replicate intelligent
behaviours?” both relevant and accessible. These questions are the founda-
tions of machine learning and artificial intelligence and, as we will see, they
are intimately related.

The degree of miniaturisation of modern electronic devices allows deploy-
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ing them in diverse environments. Exploiting the patterns of these environ-
ments is critical for economic and social applications. For example, real-
time monitoring of industrial machinery allows more effective maintenance,
ultimately reducing operating costs. Another example is that of smart bio-
medical sensors that can monitor patients with heart conditions: predicting
heart attacks on time could save their lives. Machine learning studies models
and algorithms that are able to capture the patterns in these phenomena.
During the last decade of the past century, three technological trends have
emerged. First, the evolution of Internet technology has allowed supporting
ever-increasing rates and volumes of data exchange on computer networks.
Second, the miniaturisation of transistors has allowed integrating comput-
ers into small systems at affordable prices, connecting these systems to the
Internet (Internet of things, IoT). Third, computer architectures design has
undergone a paradigm shift towards parallel systems, which achieve through-
put by using multiple slower cores instead of a single fast processing unit.

The typical pipeline that applies statistical algorithms to data collected
by edge computers (i.e., resource-constrained computers which are deployed
directly into the environment) relies on an Internet connection: the resource-
constrained computer (the client) acquires data and transmits it to a com-
puter or a computer cluster (the server) which is capable of processing it;
then, the output of the statistical algorithm is transmitted back to the client,
which implements the desired functionality on this result. This dependency
on an Internet connection has potential drawbacks on the performances of
the system. For example, the connection might be unreliable (i.e., packages
of information might get lost through the network), requiring retransmis-
sion and degrading latency performances. Other times the connection might
have limited bandwidth (i.e., only a certain amount of information might
be sent at a time), requiring serialization of communication and again de-
grading latency performances. In certain scenarios, an Internet connection
might simply not be available. Moreover, edge computers are usually de-
ployed on battery-powered systems. The energy of these batteries can be
quickly drained by computationally intensive programs, by the inefficient
use of the computers’ memory hierarchies and by the antennas used for com-
munications. The latency constraints for the applications and the energy
constraints for the devices pose a significant limitation to the deployment of
machine learning systems on edge computers.

What makes a given machine learning system more attractive than com-
petitors? Which are the properties that such a system should satisfy to be
deployed on an edge computer? How does this suitability change when con-
straints change? To our knowledge, these questions have never been explored
jointly. We argue that solid choices and effective design of machine learning
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systems require integrating concepts from diverse disciplines. In particular,
we should consider three aspects:

(i) modelling properties: the entities and relationships that the system
can approximate, and the quality of these approximations in terms of
the structure of the system;

(ii) algorithmic properties: the serial/parallel computational costs (work
complexity / step complexity) and the memory cost (space complexity)
of the algorithms used by the system;

(iii) architectural properties: the characteristics that a computer must
or should satisfy to run the system’s programs.

In Chapter 1, we define the concepts of data set, artificial intelligence and
machine learning system. We also summarise the some relevant concepts of
algorithms theory and computer architectures on which we will ground our
analysis. In Chapter 2, we define the problem of learning on bags, which can
be brought back to an ordinary learning problem where the input space is a
space of probability distributions. During the first year of the PhD course, we
better formalised and analysed a new method to classify bags of vectors, the
fingerprint method, which was developed during a collaboration with Tetra
Pak. This system was designed to solve a business intelligence problem,
where the goal was statistical accuracy more than computational efficiency,
and it well exemplifies the costs inherent to complex statistical algorithms.
In Chapter 3, we introduce artificial neural networks and discuss their com-
putational properties. They have modular structures which support efficient
gradient-based learning algorithm, and their computational primitives fit ef-
ficient single instruction, multiple data computer architectures better than
other systems. In Chapter 4, we describe advanced applications of artifi-
cial neural networks to illustrate their modelling properties. We introduce
computer vision tasks and convolutional neural networks, which are popu-
lar benchmarks for learning algorithms targetting artificial neural networks.
With respect to other machine learning systems, the modular structures of
artificial neural networks allow reusing part of a pre-trained program on a dif-
ferent task, therefore reducing modelling time. During the second year of the
PhD course, we collaborated with Maserati to develop a data analysis model
that could find the objective reasons behind subjective evaluations of auto-
mobiles; the model we devised leverages exactly this modularity property. In
Chapter 5, we describe quantized neural networks, artificial neural networks
that can be run extremely efficiently on dedicated hardware accelerators but
which also pose very challenging mathematical problems. In particular, they
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drop the differentiability requirement of classical artificial neural networks,
hampering the application of gradient-based learning algorithms. We anal-
yse the approximation properties of these machine learning systems, proving
that they are in principle as powerful as classical artificial neural networks.
Using tools from functional analysis, we show that adding noise to the argu-
ments of non-differentiable functions partially recovers differentiability. We
describe the additive noise annealing learning algorithm that we developed
on top of this analysis, reporting state-of-the-art benchmark results on image
classification tasks.
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It is not necessary to read the chapters in the order they appear. Chap-
ter 1 is a prerequisite for both Chapter 2 and Chapter 3, which can be read
independently; Chapter 3 is a prerequisite for both Chapter 4 and Chapter 5,
which can also be read independently.
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Chapter 1

Introduction

Knowledge is achieved through data and the processes used to manipulate
this data. Data sets are collections of observations gathered using measure-
ment instruments: essentially, they are numbers providing a simplified and
objective description of certain physical phenomena. It is hoped that the pat-
terns contained in these data sets can provide a sufficiently detailed picture
of the functional relationships or the probability distributions governing the
phenomena. This knowledge can then be used for scientific or economic pur-
poses. From a scientific perspective, it is interesting to get insights into the
processes used to extract information from data. From an economic perspec-
tive, the sheer amount of available data makes it desirable to detect patterns
automatically. This desire for understanding and automating the extraction
of statistical patterns is the motivation behind artificial intelligence and ma-
chine learning. Learning algorithms are computational models of the abstract
entities and processes used in models of learning systems. Any implementa-
tion of an algorithm in a given formal language is a program. Programs are
the only descriptions that can be translated into machine code and executed
on digital computers.

In this chapter, we will summarise the fundamental concepts of measure
theory and probability theory needed to introduce the concept of data set.
We will then introduce the concepts of artificial intelligence and machine
learning system. Finally, we will recall concepts from algorithms theory and
computer architectures that we will use in our analysis.

1.1 Mathematical background

In the following, we will consider as axioms the definitions of set and subset.
Mathematics is a language to study sets and operations defined on these sets.

1
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In classical set theory [1], a function between two sets A,B is defined as a
relationship

G ⊂ A×B (1.1)

that satisfies the non-ambiguity property

∀ (a1, b1), (a2, b2) ∈ G , b1 6= b2 =⇒ a1 6= a2 . (1.2)

Due to this property, one can define a non-ambiguous rule

f : A→ B

a 7→ f(a) := b | (a, b) ∈ G .

In such cases the relationship (1.1) is also called the graph of f , and is
denoted by G(f). To distinguish the two definitions of function, we will refer
to the former by relationship-form function (or graph) and to the latter by
rule-form function (or, simply, function). Let now f1, f2 : A → B be two
functions. When there exists a ∈ A such that f1(a) 6= f2(a), we say that
f1 and f2 are different, and we write f1 6= f2. Let now B = {0, 1} be a
binary set. Note that the choice of the values 0 and 1 is arbitrary; the only
requirement is for B to contain two clearly distinguished elements. Let

E ⊆ A (1.3)

be a given subset of A. The function

χE : A→ B

a 7→ χE(a) :=

{
0 , if a /∈ E
1 , if a ∈ E .

is called the characteristic function of E. We say that an element a ∈ A
satisfies property χE whenever χE(a) = 1. For every subset E there exists a
unique characteristic function χE associated with it. Conversely, we observe
that for each function χE : A→ B there exists a unique subset E ⊆ A such
that χE is its associated characteristic function. In fact, given a characteristic
function χE, there exists a unique subset

E := {a ∈ A |χE(a) = 1} . (1.4)

The collection of all possible subsets of A is called the power set of A, and
is denoted by P(A). The collection of all possible characteristic functions on
A is also called the power set of A, but is denoted by 2A.



1.1. MATHEMATICAL BACKGROUND 3

Let A be a set of non-logical objects [2]. We denote by the symbol A a
carrier set which can be either A or some set of logical objects built upon
it, such as 2A. Let n ≥ 1 be a positive integer. An n-ary operation on A
is a function

? : (A)n → A (1.5)

(a1, a2, . . . , an) 7→ ?((a1, a2, . . . , an)) .

For simplicity, the notation ?((a1, a2, . . . , an)) is usually shortened to ?(a1, a2, . . . , an).
Let

?1, ?2, . . . , ?K

denote operations on A. The tuple

TA := (A, ?1, ?2, . . . , ?K) (1.6)

is called an algebraic structure on A [3]. Consider a characteristic function
χE ∈ 2A; the unary operation

: 2A → 2A

χE 7→ χE ,
(1.7)

where

χE(a) :=

{
0, if χE(a) = 1

1, if χE(a) = 0 ,
∀a ∈ A ,

is called the negation. Consider characteristic functions χE1 , χE2 ∈ 2A; the
binary operations

∗ : 2A × 2A → 2A (1.8)

(χE1 , χE2) 7→ χE1 ∗ χE2 ,

? : 2A × 2A → 2A (1.9)

(χE1 , χE2) 7→ χE1 ? χE2 ,

where

(χE1 ∗ χE2)(a) := χE1(a) ∗ χE2(a)

(χE1 ? χE2)(a) := χE1 ∗ χE2

are called the meet and join respectively. These operations can be mapped
to the classical counterparts of set theory, complement (c), intersection
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(∩) and union (∪). By defining these two sets of operations, we have also
defined two structures,

T2A := ( 2A, , ∗, ?) , (1.10)

TP(A) := (P(A), c,∩,∪) , (1.11)

called the power set algebras over A. The advantage of (1.10) is that
it makes the link with the physical implementation more apparent (e.g., by
thinking to two-states relays). When the goal is building machines that can
automatically elaborate data and improve their decisions, computability is
a fundamental requirement. With this preliminary discussion, we wanted to
highlight the fact that two mathematical structures can be equivalent for
modelling purposes but not for computability purposes, one of them being
nearer to physical reality that the other. The process of mathematical mod-
elling consists of a sequence of transformations from more realistic models to
more abstract ones: at each step of this sequence, some details of the richer
model are dropped, and a simpler structure replaces the previous one. The
reason for the success of a model lies in the irrelevance of the details that
have been dropped during the modelling process; equivalently, the reason
for the failure of a model lies in the importance of these details. We should
always be explicit about our design choices to better understand why our
models fail.

Let Σ ⊆ P(A) be a given collection of subsets of A. Let us define on Σ
the unary complement operation c and the ∞-ary operation

∪∞n=1 : (P(A))∞ → P(A) (1.12)

{En}n∈N 7→ ∪∞n=1En := {a ∈ A | ∃ ñ , a ∈ Eñ} ,

called countable union. The tuple

TΣ := (Σ,c ,∪∞n=1) (1.13)

is a structure called a σ-algebra when the following properties are satisfied:

(i) A ∈ Σ;

(ii) E ∈ Σ =⇒ Ec ∈ Σ;

(iii) ∀ {En}n∈N |En ∈ Σ ,∀n ∈ N =⇒ ∪∞n=1En ∈ Σ.

When any of these properties is not satisfied by Σ, one can replace Σ in
(1.13) with the σ-algebra generated by Σ, A = σ(Σ) [4]. The pair

(A, TA) (1.14)
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is called a measurable space. Let TB = (B,c ,∪∞n=1) denote a second σ-
algebra and (B, TB) the corresponding measurable space. A function f :
A→ B satisfying the measurability property

∀B ∈ B , f−1(B) ∈ A (1.15)

is called a measurable function. Let {En}n∈N be an infinite collection of
elements in A. {En}n∈N is said to be mutually disjoint if En1 ∩ En2 =
∅ ,∀n1 6= n2. A function

µA : A → [0,+∞]

E 7→ µA(E)
(1.16)

that satisfies the properties

(i) ∃E ∈ A |µA(E) < +∞;

(ii) µA(∪∞n=1En) =
∑∞

n=1 µA(En) for every collection {En}n∈N of mutually
disjoint sets;

is called a measure over A. The graph

G(µA) := {(E, µA(E)) |E ∈ A} (1.17)

is called the measure distribution over A. The tuple

(A, TA, µA) (1.18)

is called a measure space. Let (A, TA, µA), (B, TB) and f : A → B be a
given measure space, a measurable space and a measurable function, respec-
tively. The pushforward of µA through f is the measure

f∗µA : B → [0,∞]

B 7→ µA(f−1(B)) .
(1.19)

Measure theory is a fundamental tool of modern probability theory [5]. If
property (i) is replaced by the stronger normalisation property

(i) µA(A) = 1,

the function (1.16) is called a probability measure, whereas its graph
(1.17) is called a probability distribution. The measure space (1.18) is
called a probability space, and measurable functions are called random
variables (RV).
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Let B = {b1, b2, . . . , bn, . . . } denote a discrete set (i.e., finite or countable).
Let B = σ({{b} | b ∈ B}) denote the carrier set of the σ-algebra generated
by the singletons. It follows that B = P(B). Let

λ : B → [0,+∞]

E 7→ #(E)
(1.20)

denote the (σ-finite) measure called the counting measure. Any function

p : B → [0, 1]

b 7→ p(b)
(1.21)

that satisfies the normalisation property

∞∑
n=1

p(bn) = 1

is called a probability mass function (PMF) over B. Using the integral
operation defined with respect to the counting measure (1.20), a PMF induces
a probability measure

µB : B → [0, 1]

E 7→
∫
E

p(b)λ(db) =
∑
b∈E

p(b) .
(1.22)

Let C = Rn for some n ∈ N; therefore, C has the cardinality of the contin-
uum. Let TC be the Borel σ-algebra over C (i.e., the σ-algebra generated by
the set of open subsets of R) and let λ denote the usual Lebesgue measure over
C. The Radon-Nykodym theorem implies that every measure µC over C which
is absolutely continuous with respect to λ (i.e., λ(E) = 0 =⇒ µC(E) = 0)
can be represented in integral form:

µC(E) =

∫
E

p(c)λ(dc) , ∀E ∈ C . (1.23)

The function p : C → R+
0 is called the probability density function

(PDF) of the measure µC with respect to λ; it is a special case of the Radon-
Nykodym derivative, and as such is also denoted by the symbol dµC/dλ.

Machine learning models are often designed (and analysed) as functions

Φ : X → Y

between continuous sets X, Y but, as we will see in Section 1.2, data sets are
constrained to take values in finite subsets of these sets. To make the link
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between discrete and continuous probability spaces more explicit, we need to
introduce the concept of generalised probability density function. Let (B, TB)
and (C, TC) be measurable spaces, where C = Rn is a continuous set, and
B ⊂ C is a discrete subset. Let µB denote the probability measure over
B associated with a probability mass function (1.21), and let λ denote the
Lebesgue measure over C. Let

I : B → C

b→ b
(1.24)

denote the immersion of B into C. The pushforward measure µC := I∗µB
is not absolutely continuous with respect to λ; therefore, a PDF as the one
defined in (1.23) does not exist. Let b̃ ∈ B denote a given point. Suppose
µB has associated PMF of the form

p(b) =

{
0, if b 6= b̃

1, if b = b̃ ;

i.e., it is concentrated on the point b̃ ∈ B. The pushforward measure µC can
be defined as follows:

δb̃ : C → [0,+∞]

E 7→

{
0, if b̃ /∈ E
1, if b̃ ∈ E .

(1.25)

This measure is called the simple Dirac’s measure on C associated with
b̃ ∈ C. Borrowing the formalism from Dirac himself [6], we can define this
measure using integral formalism:

µC(E) =

∫
E

δb̃(c)λ(dc)

=

∫
δb̃(c)χE(c)λ(dc)

= χE(b̃) .

(1.26)

From a formal perspective, the notation δb̃(c) is meaningless since δb̃ is not
a function; but the formal analogies with the integral expressions (1.22) and
(1.23) make its meaning clear. The representation of µC given by (1.26)
has the advantage of generalising the concept of PDF also to pushforward
measures µC = I∗µB. Given a PMF (1.21) defined on B and the immersion
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(1.24), one can define the associated Dirac measure on C∑
b∈B

p(b)δb : C → [0, 1]

E 7→
∑
b∈B

p(b)δb(E) ,
(1.27)

where the δb are simple Dirac’s measures (1.25). A specific but relevant
example of Dirac’s measures are empirical measures. Let N ∈ N denote
a positive integer. When a probability mass function (1.21) satisfies the
property

∀ b ∈ B , ∃ i ∈ {0, 1, . . . , N} | p(b) = i/N , (1.28)

the corresponding Dirac’s measure (1.27) is called an empirical measure.
When joint information is available about two sets X and Y , a common

necessity is to know how the information about Y changes depending on
the available information about X. This is the conditioning problem. Let
(Ω, TO, µO) denote a probability space. Let (X,TX ) and (Y, TY) denote mea-
surable spaces, where X ,Y are the carrier sets of the respective σ-algebras.
Let (X × Y, TXY) denote their product space; here, XY := σ(X × Y). Let
f : Ω→ X × Y denote a measurable function. The pushforward µ := f∗µO
is called the joint probability measure over X × Y . Let

πX : X × Y → X

(x, y) 7→ x
(1.29)

denote the projection of X × Y over X. This projection is a measurable
function since π−1

X (EX) = EX × Y ∈ XY for all EX ∈ X . Therefore, we
can define the pushforward µX := πX∗µ, called the marginal probability
measure of µ over X . Given x ∈ X, we define

π−1
X (x) := {x} × Y (1.30)

as the fibre of X × Y associated with x. We define

{x} × Y := {{x} × EY |EY ∈ Y} (1.31)

to be the fibre σ-algebra associated with x; this is a sub-σ-algebra of XY .
We observe that (1.31) is isomorphic to TY for each x ∈ X. For any x ∈ X,
a probability measure

µx : {x} × Y → [0, 1] (1.32)

{x} × EY 7→ µx({x} × EY ) ,
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on the fibre σ-algebra is called a fibre probability measure. Due to x
being fixed, it is more common to interpret fibre probability measures as
simple probability measures on Y :

µx : Y → [0, 1] (1.33)

EY 7→ µx(EY ) (1.34)

is called the conditional probability measure on Y given x. Let

µY |X : X × Y → [0, 1] (1.35)

(x,EY ) 7→ µx(EY )

denote a function such that, for any fixed EY ∈ Y , it is measurable with
respect to X . When µ admits a representation in terms of (1.35),

µ : XY → [0, 1] (1.36)

EX × EY 7→
∫
EX

µY |X(x,EY )µX (dx) ,

we say that µ satisfies the disintegration property. We call

(µX , {µx}x∈X) (1.37)

the disintegration of µ. This is guaranteed whenever µ satisfies the hy-
pothesis of the disintegration theorem [7]. In ML research, this is very often
an implicit assumption. Another common (and implicit) assumption is that
conditional measures (1.33) also have either an associated PMF (when Y is
discrete) or a PDF, either classical or generalised (when Y is continuous).
These objects are called conditional probability mass functions (condi-
tional PMF) or conditional probability density functions (conditional
PDF) respectively and are denoted by either the symbol p(y|x) or by the
symbol px(y).

1.2 Patterns live in data sets

The physical world is described by some unknowable states set Ω. Measuring
instruments are media that provide a simplified and objective description of
the physical world [8]. A measuring instrument is characterised by some
conventional (finite) set of symbols

X = {x1, x2, . . . , xS} (1.38)
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called the measuring scale of the instrument. Whenever a measuring in-
strument interacts with the physical world’s state ω ∈ Ω a symbol x ∈ X
from the scale is returned. This process can be modelled defining a RV

x : Ω→ X

ω → x(ω) ,
(1.39)

called the measuring function associated with the instrument having scale
X. The output of any evaluation x(ω) is called a measurement or sam-
ple. For example, a ruler is a straight stick on which S equally spaced
signs marked by symbols in X = {x1, x2, . . . , xS} are placed, left to right.
When another straight object is placed onto a ruler so that its leftmost ex-
treme coincides with the leftmost sign on the ruler, some of the signs on the
underlying ruler are covered and cannot be seen anymore. The rightmost
covered sign is marked by some symbol x(ω) ∈ X, which is the measurement
of the object. Another example of measuring instruments are analog-to-
digital converters (ADCs). An ADC is composed by a probe immersed in
the physical environment (whose properties include an electromagnetic field),
a capacitor connected to the probe via a switched conductor wire, reference
voltages v+, v−, an integrator circuit and a clock; the ADC also includes a
scale X = {x1, x2, . . . , x2B}, encoded in a table using entries represented by
B bits each. Suppose that the capacitor has zero charge in it and that the
switch on the conductor wire is open. At a given instant, the switch is closed:
the electric current induced on the wire by the external electromagnetic field
accumulates charge in the capacitor as long as the switch is closed. After a
fixed number 2B of clock oscillations, the switch on the wire is opened to pre-
vent the current from continuing charging up the capacitor, and the reference
voltage of inverse polarity acts removing charge from it. The switch is left
open until all the charge has been removed from the capacitor. This equal-
isation process requires a number s ∈ {0, 1, . . . , 2B} of clock oscillations to
complete, and the ADC returns the corresponding measurement x(ω) ∈ X.

Humans can be thought of as measuring instruments as well. A se-
mantic is defined by a vocabulary of concepts represented by the symbols
X = {x1, x2, . . . , xS}, which is in turn defined by some linguistic convention
amongst humans. Suppose that a person is given a photograph and a marker
pen, and is then asked to write on the back of the photograph the symbol
xs ∈ X corresponding to the concept that she thinks best describes the
content of the photograph. She looks at the photograph and, based on her
past experiences and current information, takes her decision. This process
is equivalent to applying a measuring instrument to collect a measurement
x(ω) ∈ X.
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Suppose to have a measuring instrument with measuring scale (1.38) and
measuring function (1.39). Let N ≥ 1 be a positive integer. Suppose to
take N measurements of the physical world using the given instrument; this
process is called a measuring process or sampling process of length N .
The output of this process is a finite sequence

D = {x(ω(1)), x(ω(2)), . . . , x(ω(N))} (1.40)

called a data set. D is a particular kind of set called a multi-set [9]:
different measurements x(ω(i1)), x(ω(i2)) ∈ D, i1 6= i2 could be instances of
the same symbol x ∈ X. With abuse of notation we will write

D = {x(1), x(2), . . . , x(N)} (1.41)

to denote (1.40). Since measuring scales (1.38) are finite sets, it is natural
to associate with a data set (1.41) the PMF

p : X → [0, 1]

x→ #{x(ω) ∈ D |x(ω) = x}
N

;
(1.42)

here, # is the cardinality function. As we discussed earlier in this section, it
is possible to interpret X as a subset of some continuous set X̄, and define a
Dirac’s measure (1.27) associated with D:

µX̄ : X̄ → [0, 1]

E 7→
∑
x∈X

p(x)δx(E) . (1.43)

Observe that the PMF (1.42) is such that µX̄ is an empirical measure.
Labelled data sets are particular instances of data sets whose points are

pairs of measurements. Let X = {x1, x2, . . . , xSX} and Y = {y1, y2, . . . , ySY }
denote the measuring scales (1.38) of two different measuring instruments.
Let x and y denote the associated measuring functions (1.39). The labelled
data set resulting from a sampling process of length N is the sequence of
joint measurements

D = {(x(ω(1)), y(ω(1))), (x(ω(2)), y(ω(2))), . . . , (x(ω(N)), y(ω(N)))}
= {(x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N))} .

(1.44)

The first components x(i) of the measurements are called the inputs (or, in
statistical terminology, the explanatory variables), whereas yi is called the
label (or, in statistical terminology, the response variables). In artificial
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intelligence applications, the samples from labelled data sets are interpreted
as descriptions of actions y(i) taken in response to states x(i). Therefore, the
concept of conditional distribution is important in these applications. To
this end, the empirical measure associated with the labelled data set (1.44)
can be disintegrated as follows:

µX =
1

N

N∑
i=1

δx(i) , (1.45)

µx =

{
1

K(x)

∑N
i=1 δ

x
x(i)
δy(i) , if K(x) ≥ 1

?, if K(x) = 0 ,
(1.46)

where

δx(i) : X → [0, 1]

δy(i) : Y → [0, 1]

are simple Dirac’s measures (1.25), K(x) =
∑N

i=1 δ
x
x(i)

and

δxx(i) =

{
0, if x(i) 6= x

1, if x(i) = x ,

denotes Kronecker’s delta. The fact that µx remains undefined whenever
K(x) = 0 is a consequence of the fact that it is defined µX -almost everywhere.
A labelled data set (1.44) is said to be a function-form data set if it satisfies
the non-ambiguity property

∀ (x(i1), y(i1)), (x(i2), y(i2)) ∈ D , y(i1) 6= y(i2) =⇒ x(i1) 6= x(i2) ;

for example, this is the case of data sets whose pairs have inputs x(i) which
are all different from one another. In such cases, the fiber measures µx take
the form

µx = δf(x) , (1.47)

where f(x) ∈ Y is the unique element such that (x, f(x)) ∈ D. This model
takes its name from the fact that it is compatible with the (usually implicit)
assumption that there exists an underlying functional relationship f : X →
Y in the data.

As a final note about data sets, we briefly discuss the problem of multiple
labellers. To improve performance of ML systems it is important to collect
as much data as possible. The labels y(i) are usually assigned to inputs x(i)

by human experts. This process is expensive and time-consuming, and is
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Figure 1.1: An example probability measure over the space [−1, 1] × R (a)
which admits disintegration

p(x) =
1

2
,

px(y) =
1√

2πσ2
e−

(y−x3)2

2σ2 .

Measuring instruments with scales X = Y =
{−1.000,−0.975, ..., 0.975, 1.000} are used to collect samples from this
process: N = 20 (b), N = 2000 (c) and N = 200000 (d). When just a few
measurements are taken, it is likely to have a function-form data set.
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performed by specialised data annotation companies. An interesting solution
is asking non-experts to assign labels. The drawback of this solution is usually
the poorer quality of the statistics on certain parts of the domain X×Y . For
example, suppose we want to classify plants species Y from photographs X.
A person might be an expert in tropical plants, whereas a second one might
be an expert in distinguishing evergreen plants. The first annotator is likely
to generate reliable labels for pictures X(1) ⊂ X depicting tropical plants and
poor labels for pictures X(2) ⊂ X of evergreen plants. The situation is likely
to be reversed for the second annotator. To model this, suppose we have
u ∈ {1, 2, . . . , U} annotators. Each one is presented with a subset X(u) ⊂ X
of pictures. Each of them will generate a data set

D(u) = {(x(u,1), y(u,1)), (x(u,2), y(u,2)), . . . , (x(u,Nu), y(u,Nu))} ,

with associated measure of the form (1.43). It might happen that aggregating
this information in the data set

D =
U⋃
u=1

D(u)

= {(x(1,1), y(1,1)), . . . , (x(U,NU )), y(U,NU ))} ,

and removing information about the labeller u ∈ {1, 2, . . . , U} deteriorates
the quality of the statistics on regions X∗ ⊂ X about which none of the
annotators has sufficient expertise. Nevertheless, the statistical information
about X ×Y is expected to increase with the number U of annotators, since
the biases of one annotator can be balanced by the expertise of others.

1.3 Artificial intelligence and machine learn-

ing

Alan Turing provided a quantitative definition of intelligence [10], replacing
the question “Can machines think?” (involving the subjective definition of
thought) with the less ambiguous “Can a machine fool a human into thinking
it is another human when performing a given task?”. This last question is
called the Turing test. Informally speaking, Turing defined a system to be
intelligent if a human examiner, interpreted as a measurement instrument
to test whether the system’s decision-making is human-like, cannot distin-
guish between the decision-making process performed by the system and the
decision-making performed by a human.

Despite the rich philosophical debate around artificial intelligence [11], we
were not able to find a formal definition. Hereafter we propose a formulation
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Figure 1.2: Example of data sets collected applying different measuring in-
struments to the process of Figure 1.2a: (a) a tool returning random mea-
surements when the variable x is outside a specific range, (b) a tool returning
random measurements when the variable x is higher than a specific thresh-
old, (c) a tool returning random measurements when the variable x is lower
that a specific threshold. Aggregating all the measurements into a unique
data set (d) gives a clearer picture of the underlying phenomenon.

in terms of probability measures which we think will clarify its connection
to machine learning. Suppose that both the system and the human take
inputs from a set X and must choose an action from another set Y . Let
(X × Y, TXY , µ) be a product probability space associated with the system,
where µ admits a disintegration (µX , {µx}x∈X). The marginal probability
measure µX depends only on the environment: the system has no control
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over it. Therefore, the system is characterised by the class of conditional
probability measures

{µx}x∈X , (1.48)

which is called the policy of the system. Let us denote by MY the family of
all probability measures over Y , and define a divergence on this space [12]:

d :MY ×MY → [0,+∞]

(µ
(1)
Y , µ

(2)
Y ) 7→ d(µ

(1)
Y , µ

(2)
Y ) ;

a divergence is a function satisfying the following properties:

(i) d(µ
(1)
Y , µ

(2)
Y ) ≥ 0 , ∀µ(1)

Y , µ
(2)
Y ∈MY ;

(ii) d(µ
(1)
Y , µ

(2)
Y ) = 0 if and only if µ

(1)
Y = µ

(2)
Y .

Note that every metric is a divergence. Let u ∈ {1, 2, . . . , U} index the set
of human examiners. Let MY (u, x) ⊆MY denote the set of probability mea-
sures over Y conditioned on x that are evaluated as human-like by examiner
u. The examiner’s role is to evaluate the quantity

d(µx,MY (u, x)) := inf
µY∈MY (u,x)

d(µx, µY) .

The system is said to pass the Turing test for examiner u on input x if

d(µx,MY (u, x)) = 0 .

The system is said to pass the Turing test for examiner u whenever

d(µx,MY (u, x)) = 0

almost everywhere with respect to µX . In such cases, the system is an arti-
ficial intelligence (AI).

AI systems can automate tasks that typically require human intervention,
ranging from language translation to vehicle driving. Their impact on the
economy and society can hardly be underestimated. The Turing test does
not provide any prescription about the implementation of the system with
policy (1.48), apart from it being a digital computer. For example, it does
not require that the policy evolves in time. The chess program and computer
Deep Blue were designed to implement a static policy based on a tree-search
algorithm [13, 14]. Updating the policy required redesigning the software,
or even the hardware. Such kind of products requires expensive and time-
consuming development cycles.
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Machine learning (ML) is the branch of AI concerned with computer
systems that can update their policy in time using their past experience
alone, without external intervention. The definition of a learning-capable
system is operational [15]. Let τ denote a given task, that the system can
solve by observing states in some set X and choosing actions from some set
Y . Denote by

MY |X := {{µx}x∈X}
⊆ (MY )X

(1.49)

the space of all possible policies called the policy space over Y . We sup-
pose that the performance of the system can be assessed evaluating its pol-
icy using some operator P . A requirement on P is that it defines a partial
order ≤ on the policy space. This property allows comparing different poli-
cies {µ(t1)

x }x∈X , {µ(t2)
x }x∈X ∈ MY |X . The system can update its policy from

{µ(T )
x }x∈X to {µ(T+1)

x }x∈X using past experience. When the modification of

the policy is such that {ν(T+1)
x }x∈X ≥ {ν(t)

x }x∈X , ∀t ≤ T , we say that the sys-
tem has learnt from its experience. For example, if the task is playing chess,
the set X represents the set of possible configurations of the chessboard, the
set Y represents the possible moves, and the operator P computes the Elo
rating [16] of the system. A chess-playing system that can modify its pol-
icy using the data points acquired during its games and whose Elo rating
improves after the updates is learning to play chess.

A machine learning system must have three components:

(i) an experience D,

(ii) a program space M ⊆MY |X ,

(iii) a learning algorithm α.

The experience is given as a data set (1.41) or a labelled data set (1.44). In
its simplest form, the program space is a parametric family

M :=
{
{µx = δΦ(θ,x)}x∈X

}
θ∈Θ

.

Note that there is a one-to-one correspondence between these program spaces
and the families

M := {Φ(θ, ·) : X → Y }θ∈Θ (1.50)

of parametric functions. For this reason, we call this kind of program spaces
function-form program spaces. Ensemble systems have richer program
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spaces,

M :=

{
{µx =

1

H

H∑
h=1

δΦ(h)(θ(h),x)}x∈X

}
θ=(θ(1),θ(2),...,θ(H))∈Θ

,

which have a one-to-one correspondence with collections

M := {{Φ(h)(θ(h), ·) : X → Y }h=1,2,...,H}θ=(θ(1),θ(2),...,θ(H))∈Θ (1.51)

of H programs that might differ for the parameter θ(h) or even for the func-
tions Φ(h). We call this kind of program spaces ensemble-form program
spaces. The learning algorithm α is used to select the program from M . In
the case of function-form program spaces, the learning algorithms are ini-
tialised selecting an initial program Φ(0)(θ(0), ·) ∈ M . Then, the learning
algorithm uses the experience D (or a subset of its) to update the program
to Φ(t)(θ(t), ·). There are two possibilities to update the program:

(i) static code, where Φ(t) ≡ Φ(0): the program is updated changing only
the parameters θ(t);

(ii) dynamic code, where also the function Φ(t) can change over time.

In its simplest form, the learning problem is formulated as supervised
learning. We suppose that the data set D satisfies the function-form prop-
erty (1.47). The goal of supervised learning is to minimise the divergence

d(δΦ(θ,x), δf(x)) (1.52)

between the data set fibre measure and the system conditional policy for as
many points x ∈ X as possible. In some applications, like those of computer
vision (which we will describe in Chapter 4), the data set measure is credited
as human-like since the data points are obtained by asking humans to attach
semantic labels to the inputs. Therefore, from the perspective of artificial
intelligence, a machine learning system which learns such a data set measure
could actually be considered an AI.

1.4 Computational aspects of learning sys-

tems

Abstract models of learning systems provide insights into the entities they can
approximate and the quality of these approximations. Nevertheless, physical
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computers have limited memory, limited number representation capabilities
(e.g., 32-bits integers, 32-bits floating-point numbers) and limited compute
throughput. These aspects are fundamental for practical applications. The
goal of this section is to outline the steps of the analysis that should be
performed when deciding to solve a given task using a machine learning
system.

Let
f : X → Y , (1.53)

be some abstract function. The transition from the abstract function to an
algorithmic model requires two steps: defining data structures for X and Y ,
and defining the algorithm that implements the desired function f [17, 18].
A data structure is a tuple

(X, S, O = (o1, o2, . . . , oNO
), T) . (1.54)

X is the set of instances, and

S : X→ N

is the function assigning an integer space cost to each instance, modelling the
memory space occupied by the instance in terms of abstract units of memory;
in particular, we partition instances in elementary instances

X1 := {x ∈ X | S(x) = 1} ,

and derived instances x ∈ X \ X1. O is the set of operations

oi : (X1)ni → Ci

defined on elementary instances; ni is the arity of the i-th operation and Ci
its codomain, which can be both X (the operation is then said to be internal)
or another set. The function

T : O→ N

assigns an integer time cost to each operation, modelling the execution time
of the operation in term of abstract units of time.

Let X and Y be the instance sets of the data structures associated with
the domain and the codomain of the abstract function (1.53). An algorithm
f is a finite sequence of unambiguous operations that must be performed to
transform instances x ∈ X into an instance y ∈ Y. In particular, for any given
instance x ∈ X there is an instance-specific version of the algorithm

f(x) := {o(1), o(2), . . . , o(Nf(x))} , (1.55)
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where the operations o(i) operate on appropriate data structures. When the
sequence of operations is independent of the instance

f(x) ≡ f , ∀ x ∈ X , (1.56)

we say that the algorithm is a data-independent algorithm. This hap-
pens when there are no data-dependent branching points in the algorithm.
Algorithms can be analysed according to two criteria: space cost and time
cost. Let N denote a positive integer and define

X(N) := {x ∈ X | S(x) = N} (1.57)

to be the space of all the instances with space cost N . We denote by
S(f(x), o(t)) the total space cost of the instances of the data structures used
by the instance-specific algorithm f(x) at instruction o(t). The space cost
of the algorithm is defined as the function

S(N) := sup
x∈X(N)

{
max

t=1,2,...,Nf(x)

{S(f(x), o(t))}
}
. (1.58)

The time cost of the algorithm is defined as the function

T (N) := sup
x∈X(N)


Nf(x)∑
t=1

T(o(t))

 . (1.59)

Note that both the space cost and the time cost measure the costs of the
algorithm in the worst-case scenarios. Let g(N) be some non-negative func-
tion of N , and let f(N) denote either the space cost or the time cost of the
algorithm f. The algorithm is said to be a O(g(N)) whenever

∃C > 0, N̄ ∈ N | f(N) ≤ Cg(N) ,∀N ≥ N̄ . (1.60)

The algorithm is said to be a Ω(g(N)) whenever

∃ c > 0, N̄ ∈ N | cg(N) ≤ f(N) ,∀N ≥ N̄ . (1.61)

The algorithm is said to be a Θ(g(N)) whenever

∃ c, C > 0, N̄ ∈ N | cg(N) ≤ f(N) ≤ Cg(N) ,∀N ≥ N̄ . (1.62)

These definitions correspond to asymptotic upper bounds, lower bounds and
tight bounds respectively. When S(N) = Θ(g(N)), the function g(N) is said
to be the space complexity of the algorithm. When T (N) = Θ(g(N)), the
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function g(N) is said to be the time complexity of the algorithm. There
can be multiple algorithms f that implement a given function (1.53). The
difference between these algorithms lies in their space costs and/or in their
time costs. For example, the time complexity of the insertion sort algorithm
is O(N2), whereas that of the merge sort algorithm is O(N log(N)): the
algorithms are functionally equivalent but merge sort has a better time
cost. From the perspective of machine learning systems, two models which
have equivalent modelling properties could greatly differ for the complexities
of their learning and inference algorithms. In modern data analysis scenarios,
data sets often contain millions or billions of measurements: the difference
between an O(N2) algorithm and an O(N) algorithm (where N is the data
set size) can determine the difference between an impossible problem and a
feasible solution.

The space cost and time cost functions are arbitrary and can be redefined
depending on the level of analysis required. The only technical requirement
we enforce is that they must define a reasonable model of computation [19].
For example, consider the problem of performing arithmetic operations on
integers represented in the binary base. We consider 1-bit integers as the
elementary instances and N -bits integers as derived instances. If we assign a
unitary space cost to individual bits, N -bits numbers have space cost N . If
we assign a unitary time cost to the (binary) operation of addition involving
two bits, the addition between two N -bits integers can be realised by an
algorithm which time cost is proportional to N . Consider now the problem
of sorting sequences of integers. The concept of sorting requires the idea of
an order relationship on the set of integers: therefore, the data structure used
to represent integers must include a (binary) comparison operation, usually
realised as the sequence of subtraction and a comparison with zero. Then, at
the sequence level, we must model the operation of exchanging the positions
of two components. To analyse the problem of sorting without the details
associated with the representations of integers, we can consider integers as
elementary instances (i.e., sequences of length one) and sequences of length
greater than one as derived instances. We assign to each element of the
sequence a unitary space cost; consequently, the space cost of sequences of
length N is N . We assign unitary time cost to the operations of comparing
two integers (this operation is defined on the data structure of integers)
and unitary time cost to the operation of exchanging two components of
the sequence (this operation is defined on the data structure of sequences
of integers). If for some reason we need to model explicitly the fact that
integers have a binary representation, it is sufficient to assign higher space
cost to elementary sequence instances and higher time cost to the comparison
operation between their elements.
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We have seen that algorithms theory provides better quantitative tools
to assess the practicality of machine learning systems. Still, the space cost
of instances and the time cost of elementary operations are abstractions that
pose no limitation to the number of computations that can be carried out or
to the memory space that can be occupied. These hypotheses are still too
unrealistic when evaluating the deployment of machine learning programs on
real-world computers. Therefore, to clarify our analysis, we need to introduce
some concepts from computer architectures [20]. Before an algorithm can
be executed on an electronic computer, two steps are required. First, the
algorithm must be described using a specific formal language (for example,
the C programming language [21]) in what is called a program. Second, this
program must be translated into a valid executable for the target hardware,
which includes both operands and machine code instructions. Each computer
architecture is characterised by a specific set of instructions that can be
executed, called the instruction set architecture (ISA). The translation
from a program in a low-level programming language to an executable is
performed by a toolchain of programs:

• a compiler transforms the program into assembly code;

• an assembler translates assembly code into machine code;

• a linker inserts into this machine code the pointers to the other pieces of
machine code which is necessary for execution (e.g., library functions).

We will not delve into the details of formal languages, compilers and linkers
into this thesis since they are out of the scope of our discussion. Computers
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Figure 1.3: A von Neumann computer architecture: the main memory is
connected to the processing unit via a bus. The processing unit is divided in
register file (R), control unit (CU) and datapath (D).

are usually built according to the von Neumann architecture, consisting of
the main memory and the processing unit, connected via a bus, as in
Figure 1.3. The main memory holds both the operands and the instruc-
tions of a program. Computations can only happen in the processing unit,
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and the required operands must be moved to/from a local memory in the
processing unit (the register file) from/to the main memory using specific
instructions. Data can be written to the main memory (for example, the
characters digited on a keyboard) or read from the main memory (for ex-
ample, the characters printed on a sheet of paper by a printer) also using
input/output (I/O) peripherals. We remark that storage devices like hard
disk drives (HDDs) or solid-state drives (SSDs), commonly referred to as
memory in everyday terminology, are not considered memory from a com-
puter architectures point of view, but are an I/O peripheral built specifically
to store large amounts of data. A computer is governed by an operational
frequency, commonly referred to as the clock frequency of the system; a
single oscillation of the clock is called a clock cycle. A processing unit is
usually divided in

• the already mentioned register file, a small local memory where operands
are moved from/to the main memory,

• the control unit, circuitry dedicated to fetching instructions from
memory and decoding them, and

• the datapath, circuitry dedicated to executing instructions on operands
which are stored in the register file.

. In a never-ending cycle, the processing unit fetches (i.e., moves) an instruc-
tion from the main memory to the control unit, the control unit decodes
the instruction (i.e., it configures the datapath to perform the instruction)
and the datapath executes the configured instruction on the appropriate
operands of the register file. Examples of the circuitry of the datapath are
arithmetic logic units (ALUs) and floating-point units (FPUs) supporting
integer and floating-point arithmetic respectively: this circuitry implements
arithmetic algorithms on data structures which are sequences of (usually)
32 or 64 bits, which are physically implemented as registers. The required
number of clock cycles to execute a given instruction is called the latency
of the instruction. Remember that the ISA must include specific instruc-
tions to move data from/to the main memory to/from the register file in the
processing unit. Since the processing unit and the memory are physically
separate components, these memory operations have (relatively) high la-
tencies which are usually not taken into account by abstract computational
models. Moreover, these operations also have (relatively) high energy cost.
A typical solution to reduce the latencies and energy costs of memory op-
erations is creating memory hierarchies. Memory hierarchies are sets of
memories connected by dedicated and specialised buses, arranged in a pyra-
midal fashion from the main memory to the processing unit, as in Figure 1.4.
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MAIN MEMORY

PROCESSING UNIT

CACHE (L1)

CACHE (L2)

Figure 1.4: A simple memory hierarchy consisting of two intermediate mem-
ories. Each memory in the hierarchy is a copy of neighbouring memory
locations of the memory underneath it.

Every memory communicates only with the one immediately below and im-
mediately above it. Moving towards the processing unit, each component of
the hierarchy has less capacity but also less latency. The levels of the hierar-
chy between the main memory and the processing unit are implemented as
caches. When the processing unit reads data (operands and/or instructions)
from memory, every cache creates a copy of a portion of neighbouring cells
of the memory level below it, until the processing unit can read the data
from the nearest cache. If the processing unit needs to read a second piece
of data from a memory location which is near to the previous one (spatial or
temporal locality of the operands), it is likely that this second piece of data
will already be in the cache, reducing the latency of the read. When the pro-
cessing unit needs to write the result of an operation back to memory, the
process is applied in reverse order. To minimise the number and size of these
memory transactions, it is desirable that operands and instructions are lo-
cated in neighbouring regions on the physical memory. Therefore, programs
with data-dependent branching instructions are likely to generate memory
transactions patterns which are inefficient from the hardware perspective.
The number of instructions executed per unit of time by a processing unit is
called the throughput. In the second half of the past century, the through-
put was increased by increasing the clock frequency of the computer: given a
fixed ISA, more clock cycles per second translates into more instructions per
second. However, increasing the frequency also increased the heat generated
by the computer chips beyond the limit of the available cooling systems, and
led to prohibitive energy consumptions. This phenomenon has been called
the power wall and has motivated a paradigm shift in computer architectures
design during the last two decades: parallelisation. According to Flynn’s
taxonomy, traditional von Neumann architectures are single instruction,
single data (SISD) architectures: instructions must be executed sequen-
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tially, and just on one or two operands at a time, depending on the arity of
the instruction. Parallel computers extend the von Neumann architecture to
include multiple control units and datapaths. Attaching multiple datapaths
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Figure 1.5: A SIMD computer architecture. Observe the multiple datapaths
inside the processing unit.

to the same control unit as in Figure 1.5 allows executing the same instruc-
tion on multiple data; in Flynn’s taxonomy, these architectures are called
single instruction, multiple data (SIMD). The problem with SIMD ar-
chitectures is that exactly the same instruction must be executed on all the
different operands: this does not allow executing simultaneously multiple
threads that have different code (divergent threads). Therefore, algorithms
with data-dependent branching instructions are not optimal for these archi-
tectures. When also the control units are replicated, we have the so-called
multiple instructions, multiple data (MIMD) architectures, capable of
executing parallel programs with divergent threads; see Figure 1.8.

Energy-efficient computer architectures are computer architectures
that consume less energy with respect to a set of given benchmark architec-
tures. For example, datapaths implementing floating-point instructions re-
quire more energy than datapaths implementing only integer and fixed-point
instructions. Therefore, it is desirable to avoid using complex fixed-point in-
structions when energy is a constraint of the application. As another exam-
ple, memory operations that traverse the full memory hierarchy have higher
latencies and higher energy costs than accessing data in caches. Therefore,
reducing the number of accesses to the main memory is another desirable
property. Given a cache memory of fixed size, programs whose operands
can be represented using less than 32 or 64 bits could store more operands
than classical programs into it. However, in this case, we need to design
specialised instruction to operate with smaller operands, making the control
units of the processing units more complex. Every piece of software (i.e.,
every program) can be implemented in hardware. At this point, we need
to consider that, like every industrial manufacturing process, the production
of dedicated hardware is expensive and requires amortising its cost on high
production volumes. Therefore, before designing a computer architecture,
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Figure 1.6: Example of a Hadamard (i.e., element-wise) operation. It takes
two vectors, s and b, and computes

σ(si + bi) , i = 1, 2, 3, 4 .

Each datapath (identified by a coloured arrow) executes the same sequence
of instructions (thread, represented by a sequence of coloured circles). The
operations do not depend on the input instances, and every datapath per-
forms the same computation as the others. These operations are optimal for
SIMD architectures since they can be performed on multiple operands at the
same time.

it is more convenient to identify computational primitives, operations
that are used by algorithms of widespread adoption. These computational
primitives can then be implemented as dedicated instructions. Integrating
these instructions directly into the ISA of a general-purpose processing unit
would add unnecessary complex circuitry to its datapath since only a limited
number of programs would use the instructions and energy would get wasted
during normal execution regimes: it is more efficient to build a dedicated
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Figure 1.7: Example of a reduce operation. Reduce operations are extremely
common in practice since they underlie tensor contraction operations. In this
case, the operation performed is the dot product between two vectors:

x ·w =
4∑
i=1

xiwi .

Each datapath (identified by a coloured arrow) executes the same sequence of
instructions (thread, represented by a sequence of coloured circles). The na-
ture of the sum operation is such that it must be serialised and requires some
datapaths to remain idling (i.e., these datapaths will not process operands
during the operations represented by the grey circles) while some of them
continue processing (coloured circles). Although this does not fully leverage
the computational capabilities of SIMD processors, the instructions executed
by each datapath do not depend on data; this independence of the opera-
tions from the data allows designing efficient access patterns to memory
hierarchies.

piece of hardware that acts as a co-processor. The computers designed to
implement specific computational primitives are called application-specific
integrated circuits (ASICs). For example, digital signal processors (DSPs)
are used to filter the inputs to many real-world signal processing systems.
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Figure 1.8: A MIMD architecture featuring multiple cores with the same
architecture. In this example, each core has a SIMD architecture; therefore, it
is advisable to schedule only sets of non-divergent threads on each processing
unit. As an example, general-purpose graphics processing units (GPGPUs)
fall into this category.

Hardware accelerators are ASICs that can complement the functionality
of a computer’s processing unit by performing a limited set of instructions
very efficiently.

In this chapter, we have argued that measurements provide a quantitative
representation of the physical world and that measuring instruments influ-
ence the mathematical structures that we use to design our models. Data
analysts use this information to design models that can explain (or at least
exploit) the statistics of the data set. Some parametric models can be auto-
matically tuned: every machine learning system defines a space of inference
algorithms (the programs) and a learning algorithm to select the best pro-
gram out of this space. Depending on the size of the available data set and
on the space cost of the elementary instance (e.g., a vector or an image),
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these algorithms can be analysed to determine whether the learning system
is a viable solution for the problem under analysis. For example, given a
data set of size N , learning algorithms with linear time complexity O(N)
are more suitable than learning algorithms with quadratic time complexity
O(N2). Certain applications have additional constraints to be satisfied. For
example, the detection of pedestrians and cyclists to avoid road accidents
must be performed quickly and predictably (latency constraint); if this de-
tection has to be performed on a battery-powered device, we should be able
to execute the program on specialised efficient computers (energy constraint).
These constraints tend to favour homogeneous (or at least predictable) com-
putational patterns, avoiding programs which use data-dependent branching
instructions.

The metrics to be considered must be selected on a case-by-case base,
depending on the point of the spectrum on which the analyst works. Busi-
ness analytics applications should focus more on modelling and algorithmic
properties. We will give examples of such models in Chapter 2 and Chap-
ter 4. Hardware metrics become more important when deploying learning
systems on edge computers which are embedded into the environment, and
which can, therefore, rely on fewer resources than servers or workstations.
We will analyse this problem more in detail in Chapter 5.
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(c)

(a)

(b)

Figure 1.9: An example program that has data-dependent branching instruc-
tions. (a) The program computing the function

f : R3 → {y1, y2}

x 7→

{
y1 , if (x1 > θ1 ∧ x2 > θ2) ∨ (x1 ≤ θ1 ∧ x3 > θ3)

y2 , if (x1 > θ1 ∧ x2 ≤ θ2) ∨ (x1 ≤ θ1 ∧ x3 ≤ θ3) .

(b) An example thread taking the second branch and (c) another example
thread taking the first branch. On a SIMD architecture, the two instances
cannot be executed efficiently on two different datapaths, since while one
datapath is idling the other is executing and viceversa. When the branching
structure grows, it becomes also more unlikely that all the instructions can be
cached simultaneously: this is harmful since it increases the average number
of memory transactions involving lower levels of memory hierarchies, which
are more expendive than memory transactions with local cache memories.



Chapter 2

Learning on bags

Real-world entities are more complex than simple functional relationships.
For example, molecules often have multiple configurations called isomers. A
molecule usually vibrates amongst its isomers in a probabilistic way, which
is influenced by factors such as the temperature or the internal energy of
the isomer. Another example is that of industrial plants which run several
production lines. The performance of a single plant can change depending
on personnel skill, maintenance policies, energy supply and other factors.

In this chapter we will propose a formalisation of learning on bags, a
machine learning paradigm where the data representing real-world entities is
more complex than a simple numerical vector space. We will also present the
fingerprint method, a classification algorithm specifically designed to learn
on bags, and analyse its algorithmic costs.

2.1 Multi-sets, bags and sequences

Let Z denote some root set. For instance, z ∈ Z can represent a vector
of measurements describing the configuration of a molecule, or it can repre-
sent a vector of measurements collected by a suite of sensors installed on an
industrial machine. A multi-set [9] is a collection

B = {z(1), z(2), . . . , z(N)} (2.1)

where elements z(i) 6= z(j) can be instances of the same element z ∈ Z.
When the order of the measurements is not important, the multi-set is called
a bag. This distinguishes bags from sequences, where the order of the
measurements is important. Therefore, a bag B is completely characterised

31
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by its cardinality function

νB : Z → N0

z→ #{z(i) ∈ B | z(i) = z} ,
(2.2)

which counts the repetitions of each element z ∈ Z into the bag. Conse-
quently, we can define the equivalence relationship on the set of multi-sets
(2.1) of size N :

B(1) ∼ B(2) ⇐⇒ νB(1) = νB(2) . (2.3)

We can perform operations with bags. Let B(1),B(2) denote two given bags.
The union of B(1) and B(2) is any bag B such that

νB = max{νB(1) , νB(2)} .

The sum of B(1) and B(2) is any bag B with cardinality function

νB = νB(1) + νB(2) .

The intersection of B(1) and B(2) is any bag B such that

νB = min{νB(1) , νB(2)} ;

two bags are said to be disjoint if their intersection satisfies

νB ≡ 0 . (2.4)

When learning on bags, it is common that different entities are repre-
sented by bags of different size N : for example, different molecules can have
a different number of isomers, and different industrial plants can run a dif-
ferent number of production lines. The definition of machine learning system
we gave in Chapter 1 used an input set X containing homogeneous instances.
How is it possible to homogenise the interpretation of bags having different
cardinalities? Let t denote an abstract null element, and extend the root
set Z to include it. We can extend every bag (2.1) to an infinite sequence

B = {z(1), z(2), . . . , z(N),t,t, . . . } . (2.5)

With this representation, each bag (2.5) is a point in the space

Z∗ := (Z ∪ {t})∗

of infinite sequences of elements taken from Z ∪ {t}. Therefore, a machine
learning system operating on bags can be modelled as a learning system op-
erating on infinite sequences. The concept of infinite holds just for modelling
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purposes, and is unacceptable from both an algorithmic and a computer ar-
chitectures perspective. Therefore, the usual solution is to associate to each
bag B a probability distribution µZ(B): the learning problem is then in-
stantiated between the space X = MZ of probability distributions over Z
and a given output space Y . We think to an entity x ∈ X as some prob-
ability distribution x = µZ instead that as a simple point or vector. The
measurements contained in the bag that represents the entity are interpreted
as samples from this distribution.

ML systems designed to solve learning on bags are of two kinds:

• measurement-level systems;

• entity-level systems.

Let
D = {(B(1), y(1)), (B(2), y(2)), . . . , (B(K), y(K))} (2.6)

denote the labelled data set for a supervised learning problem on bags.
Measurement-level systems work as follows. First, the labelled bags data
set (2.6) is turned into an ordinary labelled data set (1.44):

D = {(z(1,1), y(1,1)), . . . , (z(K,NK), y(K,NK))} , (2.7)

where z(k,ik) ∈ B(k) and y(k,ik) = y(k), ik = 1, 2, . . . , Nk; i.e., the label of
the k-th bag is attached to each of its points. Second, an machine learning
system designed to work on vectors is trained using this data set. Third, at
inference time each measurement z(i) in a given bag B of size N is analysed
independently by the system’s program, which returns a response y(i) =
f(z(i)) for each measurement:

{y(1), y(2), . . . , y(N)} .

The final response ỹ = f(B) is determined by some operation on this bag
of responses. For example, consider a classification problem, where Y is a
finite set. The usual procedure is using the mode:

f(B) = arg max
ỹ∈Y

#{y(i) | y(i) = ỹ} . (2.8)

Measurement-level systems work on the implicit assumption that entities
B must have corresponding distributions µZ(B) which are (almost) exact
replicas of some prototypical distributions µZ(y), y ∈ Y . If the assumption
is valid, individual measurements z ∈ B will be distributed according to the
prototypical distribution µZ(ỹ) (here, ỹ is the class to which the entity B
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belongs). Entity-level systems try instead to discover the relationships
between the distributions associated with the bags B(k) in the data set and
the response variable y(k). At inference time, the distribution µZ(B) asso-
ciated with the given test bag B is analysed to infer the response f(B).
With respect to measurement-level systems, entity-level systems have pros
and cons. On the positive side, entity-level systems are more flexible models,
since the distributions µZ(B) are not assumed to be replicas of prototypical
distributions; on the negative side, these systems require more modelling time
to characterise the space of distributions. For example, multiple instance
learning (MIL) [22, 23] classifies a bag B depending on whether or not the
support of its corresponding distribution µZ(B) has non-empty intersection
with a key subset Ẑ ⊂ Z; this is accomplished by checking whether a key
instance ẑ ∈ B exists such that ẑ ∈ Ẑ. Often, in real-world scenarios, the
measurements in the bags can be interpreted as samples from the Euclidean
space Z = Rn, n being some positive integer. In this cases, the bags (2.1)
are also called point clouds, since they can be visualised as a set of points
sprayed in Rn. This assumption lies at the core of many classical techniques
of multivariate statistics [24]: discriminant analysis (both LDA and QDA)
[25] and principal component analysis (PCA) [26] are just some examples.

2.2 A heterogeneous data set

Tetra Pak is the world leader manufacturer of food processing and packag-
ing equipment. Tetra Pak is a business-to-business (B2B) company, which
means it provides equipment and services to other companies: Tetra Pak’s
customers are food packaging plants which try to satisfy the always-changing
demands of consumers. This makes Tetra Pak’s customers a moving target,
and it is particularly important for Tetra Pak to anticipate their needs in or-
der to hold its leadership as an equipment provider. Food packaging plants
install production lines composed of multiple pieces of equipment. On each
piece of Tetra Pak equipment it is installed a system of sensors belonging
to the so-called packaging line monitoring system (PLMS): a suite of sen-
sors measuring heat, pressures, shafts speeds, machine stops indicators and
other information. The problem with food packaging plants is that they
greatly vary in size (plants can run from a few lines to dozens of them) and
in composition (Tetra Pak is not the only equipment supplier, though it is
the largest). In addition, each line can pack food using a different pack-
aging format, described by package volume, package shape and packaging
material type. Moreover, geographical information influences the seasonal-
ity of the packed products but also, for example, the energy supplies and
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the maintenance costs of the plants. This additional information describes
a heterogeneous population of industrial plants. For strategic reasons, every
year Tetra Pak uses packaging material sales data to classify its customers
in commercial segments. These commercial segments are designed model the
business targets of Tetra Pak’s customers, but the packaging material sales
data is often not sufficient to provide an accurate description of the customers
(for example, when they are buying packaging material also from different
suppliers). Would it have been possible to understand the business targets of
Tetra Pak’s customers by monitoring only the PLMS measurements marked
with additional categorical information?

Recent years have seen an increasing interest in analysing data sampled
from multi-modal domains. By multi-modal, we mean that the data points
z are sampled from the cartesian product Q × X of a categorical space Q
and a numerical space X. Categorical spaces are discrete spaces for which
there is no natural embedding in a numerical set. For example, consider food
packages. Packages are usually produced using a finite number of formats,
characterised by volumes, shapes and packaging material. The set of volumes
of the different formats are numbers which can be naturally mapped to a
numerical set. Instead, the set of available shapes and that of available
packaging material types have no natural ordering relationships that allow
mapping them to numerical sets. The elements q ∈ Q of a categorical space
are called its levels. We will suppose that the numerical space X is the
Euclidean space Rn.

Consider a set of entities about which we can measure tuples

z := (q,x) , (2.9)

where q is the categorical part of the measurement and x is its numerical
part. We will refer to the components of z using the dotted notation z.q and
z.x. The set of measurements collected about an entity is a bag

B(k) = {z(k,1), z(k,2), . . . , z(k,Nk)} ,

which is called the entity bag. We define the point-cloud projection of
a given bag B to be the point cloud

P := {z.x | z ∈ B} .

Our goal is to assign each entity to one out of a finite number of classes

Y = {y1, y2, . . . , yNY } ; (2.10)

i.e., we want to solve a classification task on bags. An important note: the
figures in this chapter have been generated ad-hoc to illustrate the main ideas
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Figure 2.1: A visualisation of the learning problem on bags: (a) the data
point cloud in X = R2 depicting the numerical measurements contained in
the available labelled bags, (b) an example entity bag (red point cloud) and
(c) another example entity bag (orange point cloud).

since we do not have the permission to report the results on the original data.

Let (2.6) be the available data set of labelled bags, and (2.7) the cor-
responding labelled measurements data set. For each class yj ∈ Y , we can
create the corresponding unlabelled class bag

B(j) = {z(k,ik) | y(k,ik) = yj} , (2.11)

and project it to the class point cloud

P(j) = {z.x | z ∈ B(j)} . (2.12)

To this point cloud we can associate a distribution

µX (P(j)) , (2.13)

which is an n-variate distribution since X = Rn. We isolated four such point
clouds from the data set we analysed for Tetra Pak. Applying linear discrim-
inant analysis (LDA) to them revealed us that they had a specific structure:
the levels q ∈ Q of the categorical variable defined clearly distinguishable
sub-populations

B(j,q̃) = {z ∈ B(j) | z.q = q̃} ,

in the sense that the corresponding point clouds

P(j,q̃) (2.14)
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defined distributions µX (P(j,q̃)) which were n-variate normal distributions
with different means and covariance matrices. We called the point clouds
(2.14) homogeneous groups. The family of point clouds

F (j) = {P(j,q)}q∈Q (2.15)

is called the fingerprint of the class yj. Denoting by p(x|j) and by p(x|j,q)
the densities of the measures µX (P(j)) and µX (P(j,q)) respectively, this de-
composition process is analogous to interpreting (2.13) as a mixture distri-
bution. In fact, the density of a mixture distribution can be expressed as

p(x|j) =
∑
q∈Q

p(x|j,q)p(q) ,

where the categorical variable q indexes different components of the mixture;
p(q) is a PMF (1.21) on the categorical space Q.
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Figure 2.2: The problem of overlapping distributions: (a) the same global
point cloud as that in Figure 2.1a is a sample from (b) a collection of NY = 4
probability distributions whose supports are highly overlapped.

Consider a test entity described by a bag B(k̃). To this bag we can attach
a probability distribution µX (P(k̃)) derived from its point cloud P(k̃). We can
apply to the bag the same decomposition we applied to the class bags (2.11),
obtaining the fingerprint of the entity:

F (k̃) = {P(k̃,q)}q∈Q . (2.16)

Algorithm 1 shows how to compute the fingerprint of a given bag. The
fingerprint method rephrases the problem of classifying the bag B(k̃) as a
comparison between the family of distributions

{µX (P(k̃,q))}q∈Q , (2.17)



38 CHAPTER 2. LEARNING ON BAGS

associated with the fingerprint of the entity F (k̃), and the NY families of
distributions

{µX (P(j,q))}q∈Q , j = 1, 2, . . . , NY , (2.18)

associated with the fingerprints F (j) of the classes. This comparison is per-
formed on each matching pair of distributions. We say that an entity dis-
tribution µX (P(k̃,q(k̃))) and a class distribution µX (P(j,q(j))) are matching if
they correspond to the same homogeneous group q(k̃) = q(j). The instance

bag B(k̃) is assigned to the class ỹ for which (2.17) and (2.18) result most
similar under the specified comparison operation. In the next section, we
will describe a specific choice to compare these families of distributions.

Algorithm 1 Split a bag B of tuples (list of structures) into its fingerprint
F (dictionary of lists).

Function: compute fingerprint

Input: B
Output: F

1: F ← dict()
2: for z ∈ B do
3: q← z.q
4: if q /∈ F .keys() then
5: F [q]← list()
6: end if
7: F [q].append(z.x)
8: end for
9: return F

2.3 The fingerprint algorithm

Our analysis of the point clouds in the specific Tetra Pak data set revealed
them to be approximately normally distributed. Therefore, it was sufficient
to define a program space capable of characterising the first and second
momenta of these distributions. We opted for extracting the mean (Al-
gorithm 2, line 5) and the covariance matrix (Algorithm 2, line 6) of each
class point cloud P(j,q) together with some additional statistics: the average
Mahalanobis distance [27] of the points in the point cloud from the mean
(Algorithm 2, line 7), the standard deviation of this quantity (Algorithm 2,
line 8) and the first nPCA principal components (Algorithm 2, line 9).
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Algorithm 2 Given the bag B(j) (list of structures) representing a class
yj ∈ Y (enumerated), compute the statistics T [j] (dictionary of structures)
of its fingerprint.

Input: B(j), nPCA
Output: T [j]

1: F ← compute fingerprint(B(j))
2: T [j]← dict()
3: for q ∈ F .keys() do
4: P ← F [q]
5: T [j][q].m← mean(P)
6: T [j][q].S← cov(P)
7: T [j][q].m← mean({

√
(x−m)S−1(x−m) |x ∈ P})

8: T [j][q].s← stdv({
√

(x−m)S−1(x−m) |x ∈ P})
9: T [j][q].N ← PCA(S, nPCA)
10: end for
11: return T [j]

To classify a test entity bag B(k̃), the fingerprint method compares match-
ing point clouds P(k̃,q) ∈ F (k̃) and P(j,q) ∈ F (j) to compute two quantities
(Algorithm 3, lines 3-21):

(i) the average Mahalanobis distance between the points of the entity point
cloud and the mean of the class point cloud, computed using the sample
covariance matrix associated with the class point cloud as the metric
matrix;

(ii) the average of the alignments (i.e., absolute cosines) of the angles be-
tween the first nPCA principal components of the two point clouds.

The entity bag B(k̃) is then assigned to the class ỹ for which the distances
between the centers of the homogeneous groups are minimised and for which
the alignments of the principal components of the homogeneous groups are
maximised (Algorithm 3, lines 22-33).

Let #Q denote the number of levels of the categorical variable, which is of
course the number of possible homogeneous groups composing every finger-
print. The time cost of the learning Algorithm 2 is O(nN2) + O(n3), where
N is the size of the data set and n the dimension of the Euclidean space X;
the cubic term in n originates in the extraction of the principal components,
which requires matrix inversion. Interestingly, we observe that the compu-
tations of the statistics associated with the homogeneous groups can be run



40 CHAPTER 2. LEARNING ON BAGS

in parallel, amortising the term O(nN2) to an average of O(nN2/#Q) (sup-
posing each homogeneous group contains approximately the same number of
points). The space cost of the learning algorithm is O(#Qn2), since for every
homogeneous group it must store the respective covariance matrix.

Learning on bags is a great example of the complexities inherent to real-
world data analysis problems. The design is often time-consuming since it
requires comprehensive analysis of the data. Moreover, a number of proper-
ties of the data set filter into the model in the form of assumptions (in our
case, the availability of categorical information and the approximate normal-
ity of the corresponding point clouds). With respect to more general purpose
machine learning systems, this characteristic limits the number of scenarios
to which these models can be applied: if these assumptions are violated, the
performance of the system will usually degrade.

From an algorithmic perspective, these systems often have quadratic com-
plexities since they extract global properties of the data (they compute quan-
tities over all the pairs of points in the experience data set). This character-
istic makes them in general more accurate, but their programs are also more
cumbersome to train and store.
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Figure 2.3: The NY = 4 figures in column (a) separately depict the point
clouds P(j) which appeared mixed in Figure 2.2b: we observe that normal
sub-populations emerge. It is therefore easier to compare the entity point
cloud of Figure 2.1b and assign it to the class y2, as shown by the figures
in column (b). Figures in column (c) show that the entity point cloud of
Figure 2.1c likely belongs to the class y1.
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Algorithm 3 Given the trained statistics T (dictionary of dictionary of
structures) for all the classes y ∈ Y (enumerated), assign an instance bag

B(k̃) to a class.

Input: T , nPCA, θ,B(k̃)

Output: ỹ

1: F̃ ← compute fingerprint(B(k̃))

2: momenta← dict()
3: for yj ∈ Y do . compare matching groups
4: first← list()
5: second← list()
6: for q ∈ F̃ .keys() do
7: P̃ ← F̃ [q]
8: m← T [j][q].m
9: S← T [j][q].S
10: m← T [j][q].m
11: s← T [j][q].s
12: N ← T [j][q].N
13: m̃← mean({

√
(x−m)S−1(x−m) |x ∈ P̃})

14: first.append((m̃−m)/s)
15: S̃← cov(P̃)
16: Ñ ← PCA(S̃, nPCA)
17: second.append(mean({|〈ñi,ni〉| | i = 1, 2, . . . , nPCA}))
18: end for
19: momenta[j].f irst← mean(first)
20: momenta[j].second← mean(second)
21: end for
22: yj1 ← arg min

yj∈Y
{momenta[j].f irst} . classification

23: yj2 ← arg min
yj∈Y \{yj1}

{momenta[j].f irst}

24: if momenta[j2].f irst ≥ (1− θ)momenta[j1].f irst then
25: if momenta[yj1 ].second ≥ momenta[yj1 ].second then
26: ỹ ← yj2
27: else
28: ỹ ← yj1
29: end if
30: else
31: ỹ ← yj1
32: end if
33: return ỹ



Chapter 3

Network-based learning

Humans are fascinated by their own ability to extract meaning from the
surrounding world. Due to its role as the organ responsible of this intriguing
capability, the brain is a source of inspiration for many machine learning
systems. Amongst these systems, artificial neural networks are appealing for
many reasons. First, they are powerful, non-linear function approximators.
Second, their computational structure is parallelisable and data-independent,
properties which make their programs hardware-friendly.

In this chapter we will review the history of artificial neural networks,
from linear threshold units to the introduction of the backpropagation al-
gorithm. We will recall important theoretical results about artificial neural
networks, analyse the backpropagation algorithm in detail and describe tech-
niques developed to improve the quality of the learnt programs.

3.1 A specific program space

Let L ≥ 2 be an integer. For each ` ∈ {0, 1, 2, . . . , L} we define a positive

integer n` ∈ N. Let n̂`′ :=
∑`′

`=1 n` and n̂ = n̂L. Consider a set of units

N := {Ni = 1, 2, . . . , n̂} . (3.1)

Each unit Ni is called a neuron and we associate to it a state space Xi; we
make a qualitative distinction between the elements x ∈ Xi in active states
and inactive states. We partition (3.1) into L+ 1 subsets

N ` := {N `
i`
, i` = 1, 2, . . . , n`} (3.2)

that we call layers. We define this partition in a conventional way, so that
mapping a unit Ni ∈ N to the unit N `

i`
∈ N ` can be done using the following

43
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equations:

`(i) = arg max
`∈{1,2,...,L}

{n̂` | i > n̂`} ,

i` = i− `(i) ;

conversely, we can map a unit N `
i`
∈ N ` to Ni ∈ N using the equation

i = n̂`−1 + i` .

We say that layer N `2 follows layer N `1 if `2 > `1. We say that layers
N `1 ,N `2 are adjacent if |`2 − `1| = 1. To the layers (3.2) we can naturally
associate the product state spaces

X` := X`
1 ×X`

2 × · · · ×X`
n`
, ` = 0, 1, . . . , L , (3.3)

which we call representations spaces; points x` ∈ X` are called represen-
tations. Artificial Neural Networks (ANNs) give (3.1) the interpretation
of vertices of a directed graph

(N , E) , (3.4)

where E can be described using a connectivity matrix

A = (aij)i,j=1,2,...,n̂

=

{
0, if (i, j) /∈ E
1, if (i, j) ∈ E .

(3.5)

Given two layers N `1 ,N `2 , we denote by A(`1,`2) the block of A describing
the connections from units N `1

i`1
∈ N `1 to units N `2

i`2
∈ N `2 . We say that

a network (3.4) is a feedforward neural network if its adjacency matrix
satisfies the following property:

A`1,`2 = 0 ,∀`1 ≥ `2 .

In the following we will discuss only feedforward neural networks. The units
are abstractions for the somas and axons of biological neurons. The links are
abstractions for their synapsis and dendrites. Given an edge (i, j) ∈ E , the
unit Ni ∈ N is called the pre-synaptic neuron, whereas Nj ∈ N is called the
post-synaptic neuron. To model biological neurons, links can be excitatory if
activity in the pre-synaptic neuron is likely to generate activity in the post-
synaptic neuron; inhibitory if activity in the pre-synaptic neuron is likely to
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suppress activity in the post-synaptic neuron; absent if activity in the pre-
synaptic neuron has no effect on the activity of the post-synaptic neuron.
The rules that govern the interaction of the neurons are known as laws of
nervous excitation [28].

To use networks as programs, we must attach to the units in (3.1) some
computational rules; i.e., some operations that implement a specific model
of nervous excitation. To this end, we consider the specific case where
X`
i`
⊆ R, and consequently X` ⊆ Rn` for every ` ∈ {0, 1, . . . , L}. Fix

`′ ∈ {0, 1, . . . , L}. We denote by

x̂`
′
= (x0,x1, . . . ,x`

′
)

the joint representations of the first `′ layers, and by

X̂`′ := X0 ×X1 × · · · ×X`′

the corresponding joint representations space. First, we attach to each edge
(i, j) ∈ E a weight wij ∈ R; we collect these weights into the matrix W ∈
W ⊆Mn̂×n̂(R), that must satisfy

aij = 0 =⇒ wij = 0 ;

for each pair of layers N `1 ,N `2 , we define their connection matrix to be
matrix

W`1,`2 := (wij)i=n̂`1−1+1,...,n̂`1
j=n̂`2+1,...,n̂`2

, (3.6)

taken from the space W `1,`2 ⊆ Mn`1×n`2 (R). Again, fix `′ ∈ {0, 1, . . . , L}.
We define the weight matrix of layer N `′ as the concatenation

Ŵ`′ :=


W0,`′

W1,`′

. . .
W`′−1,`′

 , (3.7)

which lives in the space Ŵ `′ ⊆Mn̂`′−1×n`′ (R). The column ŵ`′
i`′

is called the

filter of the neuron N `′
i`′
∈ N `′ . We then attach to each neuron N `

i`
∈ N ` a

bias b`i` ∈ B
`
i`
⊆ R; for each layer N `, we group the biases of its neurons in

the vector
b` (3.8)

taken from a space B` ⊆ Rn` . Finally, to each neuron N `
i`
∈ N ` we attach a

function
σ`i` : R→ R (3.9)



46 CHAPTER 3. NETWORK-BASED LEARNING

called the activation function or transfer function. The computational
rule attached to neuron N `′

i`′
is the following:

x`
′

i`′
= σ`

′

i`′

(
x̂`
′−1ŵ`′

i`′
+ b`

′

i`′

)
, (3.10)

where

s`
′

il̃
:= x̂`

′−1ŵ`′

il̃

=

n̂`′−1∑
i=1

x̂`
′−1
i ŵ`

′

ii`′

is called the score of the neuron and

s̃`
′

il̃
= s`

′

il̃
+ b`

′

il̃

is its adjusted score. To express the computation of a layer in a more
compact form, we will write

x`
′
= σ`

′
(
x̂`
′−1Ŵ`′ + b`

′
)

= σ`
′

(
`′−1∑
`=0

x`W`,`′ + b`
′

)
,

(3.11)

where we use the vector notation

σ
(
s`
′
+ b`

′
)

=
(
σ`
′

1 (s`
′

1 + b`
′

1 ), . . . , σ`
′

n`′
(s`
′

n`′
+ b`

′

n`′
)
)
.

We observe that (3.11) is a map

ϕ`
′

: M `′ × X̂`′−1 → X`′

(m`′ , x̂`
′−1) 7→ x`

′
,

(3.12)

called the layer map of layerN `′ , where m`′ = (Ŵ`′ ,b`
′
) is the parameters

tuple associated with the `′-th layer and M `′ := Ŵ `′×B`′ is its parameters
space. The collection of layer maps

Φ := {ϕ` , ` = 1, 2, . . . , L} (3.13)

is called the program space of the ANN. When we say that a network
(3.13) is a L-layers ANN we are counting the number of layer maps (3.12)
and not the number of layers (3.2). The set N 0 is called the input layer, N L



3.2. FROM LTUS TO ANNS 47

is called the output layer and N `, ` ∈ {1, 2, . . . , L − 1} are called hidden
layers. The representations spaces X0, XL and X`, ` ∈ {1, 2, . . . , L− 1} are
called the input space, output space and hidden spaces respectively.

An important subclass of ANNs is that where connections between non-
adjacent layers (called skip-connections) are not allowed. ANNs that sat-
isfy this property are called simple feedforward neural networks. In sim-
ple feedforward neural networks, the matrices (3.7) are composed of blocks
satisfying

W`,`′ = 0 ,∀` < `′ − 1 .

We can simplify (3.11) by substituting Ŵ`′ = W`,`′ , obtaining layer functions

x`
′
= σ`

′
(
x`
′−1W`,`′ + b`

′
)
.

In such cases, we can rewrite the layer maps (3.12) as parametric families of
functions

{ϕ`m` : X`−1 → X`}m`∈M` , l = 1, 2, . . . , L ,

whose elements can be directly composed:

Φ := ϕLmL ◦ · · · ◦ ϕ1
m1 . (3.14)

These composable structures make simple feedforward neural networks eas-
ier to analyse than general ANNs: theoretical results on ANNs are usually
derived on the restriction to this sub-class of models.

3.2 From LTUs to ANNs

In 1943, Warren McCulloch and Walter Pitts analysed ANNs (3.13) with
Boolean representations spaces

X` = {0, 1}n` .

They used the Heaviside function

H(x) =

{
0, if x < 0

1, if x ≥ 0
(3.15)

as the activation function σ`i` for each neuron N `
i`

. Note that the codomain
of the Heaviside function consists of the numerical representations 0/1 (in-
active/active) for the false/true Boolean values. The weights wij could take
values in the set

{−∞} ∪ {n ∈ Z |n ≤ 1} .
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Figure 3.1: Examples of feedforward neural networks: (a) a 4-layers simple
feedforward neural network and (b) the same network, where connections
between neurons of N 2 and N 4 have been added.

Excitatory connections were modelled by wij = 1, absent connections by
wij = 0 and inhibitory connections by either wij = n < 0 (relative inhibitory
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connections) or wij = −∞ (absolute inhibitory connections). The compu-

tational rules used to compute x̂`
′−1Ŵ`′ were taken from the usual integer

arithmetic extended to include the following rules:

0 · (−∞) = 0 ,

1 · (−∞) = −∞ ,

n+ (−∞) = −∞ , ∀n ∈ Z .

These rules were intended to model a particular property of biological net-
works, where certain pairs (Ni, Nj) of neurons are such that the activity of
the pre-synaptic neuron Ni is able to completely suppress the activity of the
post-synaptic neuron Nj. They combined these rules to model networks of
so-called Linear Threshold Units (LTUs), which computed

x`i`(t+ 1) = H(x̂`−1(t)ŵ`
i`

+ b`i`)

=

{
0, if x̂`−1(t)ŵ`

i`
< −b`i`

1, if x̂`−1(t)ŵ`
i`
≥ −b`i` ,

(3.16)

where the biases b`i` played the role of thresholds. We observe that the model
(3.16) included a time dimension, implying that neurons N `

i`
updated their

state x`i`(t) in a synchronous manner governed by some system clock. This dy-
namics was introduced to model a physical system subject to communication
and computation delays. McCulloch and Pitts showed that networks of com-
ponents (3.16) could be assembled to represent arbitrary logical predicates in
the Boolean vector variable x0. The main limitation of the McCulloch-Pitts
model was the lack of the notion of learnable parameters. Their analysis
was theoretical, and they proposed no practical algorithms to find a network
implementing a target predicate.

In 1957, Frank Rosenblatt described a system whose elementary compo-
nents were capable of modifying their state to improve responses to presented
stimuli [29, 30]. This system, named perceptron, was a simple 2-layers feed-
forward network:

• N 0: sensory units or S-units ;

• N 1: association units or A-units ;

• N 2: response units or R-units.

In its simplest form, the R-layer consisted of only two units. All the A-units
and R-units were LTUs (3.16) implementing the following computations:

x1 = H(x0W1 + b1) ,

x2 = H(x1W2 + b2) .
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Here, W1 ∈ Mn0×n1({−1, 0, 1}) was a matrix with ternary components
modelling inhibitory, absent and excitatory connections. The matrix was
obtained as

W2 =
(
w2,w2

)
�A1,2 ;

this specific form was due to the fact that the values in w2 where not specific
to the links between A-units and R-units, but they were implemented as
electric charges accumulated on the capacitors of integrator circuits attached
to the A-units; therefore, the value associated with the A-unit N1

i1
was a

shared weight amongst all the physical links outgoing from it. The vector
w2 represented parameters that could change according to a reinforcement
mechanism; i.e., a set of rules to modify the system parameters. Let x0 ∈ X0

be a pattern that can be represented by the S-units in N 0 (in the original
perceptron, these units were implemented as photocells of a raster screen
which could take on binary values). Let [t0, t2) denote a given time interval
of length ∆t = t2 − t0, and let t1 ∈ (t0, t2) so that η = t2 − t1 > 0. Each
pattern x0 was presented to the perceptron for a total time ∆t. During
the first part of the interval, [t0, t1), the perceptron determined the index
i2 ∈ {1, 2} of the R-unit with greatest score

s2
i2

= x1(w2 � a1,2
i2

) + b2
i2

;

during the second part of the interval, [t1, t2), the perceptron forced the
state of the loser unit to zero (even if its score surpassed the threshold), and
updated the values of the A-units linked to the winner unit according to the
following set of rules:

∆w2 =

∫ t2

t1

x1 � A2
i2
dt (3.17)

= ηx1 � a1,2
i2
, (3.18)

w2(t+ ∆t) = w2(t) + ∆w2 .

Since η := t2 − t1 was kept fixed for each pattern, the updates (3.17) were
discrete: as W1, also W2 took values in some discrete set. The initialisation
strategy for the ternary matrix W1 had been carefully designed, but its
components were kept fixed over the course of the learning process. Similarly,
the biases b1,b2 of the perceptron were not learnable parameters. Note that
the learning process was such to amplify a binary discrimination inherent to
the system. In fact, due to the random nature of the connections encoded by
W1 and A1,2, the response units tended to respond differently to different
representations x1 from the very beginning. Moreover, the reinforcement
(3.20) required no actions from an external teacher, making the perceptron
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an example of unsupervised learning or self-organisation. In particular, this
learning rule is an example of Hebbian learning :

’When an axon of cell A is near enough to excite cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased.’ [31]

In the early 60’s, Rosenblatt had developed a more mature theory of
perceptrons, and he described a version of the system capable of supervised
learning [32, 33]. He used the term perceptron to refer to a vast class of
lerning systems, including amongst others the unsupervised learning system
presented above and what is currently known as perceptron, which he called
simple perceptron or error-corrected α-perceptron. This specific per-
ceptron was designed to solve binary classification, and consisted of a single
R-unit connected to all the A-units. This unit was a LTU computing

x2 = H
{−1,+1}
0 (x1w2 + b2)

= H
{−1,+1}
−b2 (x1w2) ,

where

H
{q0,q1}
θ (x) =

{
q0, if x < θ

q1, if x ≥ θ
(3.19)

denotes the generalised Heaviside function. This activation function
was chosen to return responses in the binary set Y = {−1,+1}. The system
required a human operator (or an equivalent teacher) to compare the output
x2 of the R-unit with a desired response y ∈ {−1,+1}. The update was then
computed according to the following rule:

∆w2 =


0, if x2y ≥ 1

ηx1, if x2y < 1 and y = 1

−ηx1, if x2y < 1 and y = −1

= −ηx1(x2 − y) .

(3.20)

The number η > 0 was chosen at design time, and determined the size of
the update (i.e., what we could now call a learning rate). Note that the
update to the values w2 of the A-units happened only if the response of
the R-unit was incorrect, and no correction was applied in case of a correct
response; hence the name error-correcting reinforcement. Note also that the
updates, and therefore the components of w2, could take on negative values.
We remark that Rosenblatt considered what we now call a perceptron just a
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very particular case of his more comprehensive theory. Convergence proofs
concerning this perceptron algorithm in the case of linearly separable sets
were immediately developed [34].

In 1960, almost contemporarily to the introduction of the simple percep-
tron, Bernard Widrow and Ted Hoff developed a system called ADAptive
LInear NEuron (ADALINE) [35]. The goal of this system was to discover
functional relationships between spaces

X0 = {−1,+1}n0 ,

X1 = {−1,+1} ,

interpreting the learning problem as the search for a switching circuit with n0

binary inputs and a single binary output. The idea was using the statistics
contained in available input/output pairs (a labelled data set (1.44)) to derive
the truth table of a circuit which could not be analytically designed. Their
network included an input layer N 0 and an output layer N 1 consisting of a
single unit (the ADALINE neuron) computing

x1 = H
{−1,+1}
0 (x0w1 + b1) . (3.21)

Similar to the supervised perceptron, the goal of ADALINE’s learning algo-
rithm was to perform binary classification in the set Y = {−1,+1}. Given
the electrical engineering context, the output was to be determined by a
thresholding operation over an electric potential: this operation was called
quantization, and the generalised Heaviside was referred to as the quantizer.
The main difference with respect to the perceptron was that the Heaviside
activation function was not implemented as a physical device during the
learning phase. Instead, it was computed by a human operator who checked
the output of a voltmeter. The learning rule of ADALINE was developed as
follows. Given an input pattern x0, the adjusted score

s̃1 = x0w1 + b1

physically corresponded to a voltage, yielding an output H
{−1,+1}
0 (s̃1). A

human operator (the boss, i.e., the teacher) would have known that set-
ting s̃1 close to a desired voltage y could yield the correct system output
H
{−1,+1}
0 (y). The problem was therefore transformed into a regression of the

correct electric potential value. This problem could be solved modifying both
the weights w1 and the bias b1 to minimise the distance |s̃1−y|, where y ∈ R
was the reference voltage that the input x0 should have generated. Widrow
and Hoff proposed to minimise this distance by using gradient descent over
the function

d(s̃1, y) :=
1

2
(s̃1 − y)2 . (3.22)
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The updates were computed as

∆w1 = −η∇w1d(s̃1, y) ,

∆b1 = −η ∂

∂b1
d(s̃1, y) ,

The number η > 0 was chosen so to obtain d(s̃1, y) = 0 after the update:
since the parameters were physically implemented as potentiometers, this
implied that they could take on values along a continuous spectrum. Note
that in ADALINE also the bias b1 was a learnable parameter. Widrow and
Hoff motivated the replacement of a binary classification problem with a
regression problem on the basis of the fact that solving the regression problem
induces convergence also for the classification problem [36].

From a modelling perspective, both the perceptron and ADALINE were
limited to learn only linearly separable bisections of the input space X0 (a
bisection is a partition of X0 in two disjoint sets). The distinction between
the two methods lies in that Rosenblatt’s perceptron performed classification
upon representations x1 of the inputs x0 instead of performing it on the raw
inputs themselves. Both the R-units and the A-units shared a LTU struc-
ture (3.16), with the difference that the parameters W1 of the links between
S-units and A-units could not be learnt. The A-units played the role of what
we would now call feature extractors ; i.e., functions capable of creating ab-
stract representations of their inputs. In the early 60’s, Augusto Gamba and
his collaborators published a series of papers describing a system similar to
the perceptron which they named Programmatore/Analizzatore Prob-
abilistico Automatico (PAPA, Automatic Programmer/Probabilistic An-
alyzer) [37, 38]. They explicitly proposed to stack multiple layers of LTUs,

x1 = H(x0W1 + b1) ,

x2 = H(x1W2 + b2) ,

. . .

xL = H(xL−1WL − bL) ,

(3.23)

to allow the system to determine relevant features autonomously:

’In self-learning one leaves PAPA to find an error-free classifi-
cation, that corresponds obviously to a higher intelligence term.
The drawback is that the classification that is eventually reached
is generally an irrelevant one from the point of view of a human
observer.’ [39]

These multi-layer perceptrons were soon recognised to have a richer program
space than that of standard perceptrons (for instance, they can learn the
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non-linearly separable XNOR logic function), but it was also recognised that
they would have behaved like black-boxes ; moreover, no learning algorithm
was proposed to train such learning systems.

The choice of Heaviside functions (3.15) and (3.19) as activation func-
tions created a natural link between network-based learning and Boolean
logic, allowing an interpretation of ANNs in terms of mathematical logic.
Remarkably, we note that the parameters used by these first ANNs models
often took values in discrete spaces. We could say that these models were
quantized neural networks. In 1969, Marvin Minsky and Seymour Papert
published a controversial book on perceptrons [40], which investigated Rosen-
blatt’s simple perceptrons more thoroughly. They also analysed multi-layer
perceptrons as the Gamba machines (3.23), recognising that such systems
could compute complex predicates, but they observed that some concepts
(such as the connectedness of a plain figure) could not be computed just
by stacking layers of LTUs. This critique has been often misunderstood as
the impossibility, for multi-layer perceptrons, to learn complex functions,
but it is likely that the real concern of Minsky and Papert was the more
practical limitation implied by the exponential explosion in the number of
units required to learn specific concepts. The lack of practical algorithms to
train multi-layer perceptrons and the realisation that systems parametrised
by a very high number of parameters were likely to have multiple local min-
ima (hampering the possibility to reach the global minimum) [41] reflected a
growing awareness of the scientific community about the complexities of the
learning problem associated with ANNs.

This crysis induced a shift in the applications of ANNs from symbolic
logic to non-linear regression. In 1974, Paul Werbos replaced quantized func-
tions (3.15) and (3.19) with differentiable activation functions [42]. Impor-
tant examples of differentiable activation functions are the sigmoid

sigmoid : R→ (0, 1)

x 7→ ex

ex + 1
,

(3.24)

and the hyperbolic tangent

tanh : R→ (−1, 1)

x 7→ ex − 1

ex + 1
.

(3.25)

This replacement allowed deriving gradient-based learning rules (like ADA-
LINE’s delta rule (3.23)) even for multi-layer ANNs. ANNs were since in-
terpreted as parametric differentiable approximators of non-linear functions.



3.3. PROPERTIES OF ANNS 55

The idea of quantized activations disappeared from mainstream research, re-
placed by that of differentiable activation functions. In 1986, David Rumel-
hart, Geoffrey Hinton and Ronald Williams popularised backpropagation by
showing that ANNs trained using this algorithm encoded useful representa-
tions of their inputs [43]. Backpropagation has since become the workhorse
of ANNs research.

3.3 Properties of ANNs

Automating a given task T is a difficult problem. The divide et impera
(divide and conquer) principle suggests to decompose it into a set of simpler
sub-tasks T = {τ (1), τ (2), . . . , τ (N)}. Then we must model proper input and
output domains X, Y for each task τ ∈ T and define a function

g : X → Y

x 7→ g(x) .
(3.26)

If the available knowledge about g is sufficient, it is possible to derive an
algorithm αg which implements g. In this case, we will say that an explicit
algorithm is available for g. For example, if X denotes the space of all finite
sequences of integers and Y denotes the space of all finite ordered sequences
of integers, the function g that maps every sequence x ∈ X into its sorted
version g(x) ∈ Y is called the sorting function. Many algorithms αg are
available that implement such a function [17].

Other times, the knowledge of g is insufficient to derive an explicit algo-
rithm αg. If samples of its input/output pairs are available (for example, in
the form of a labelled data set (1.44)), it is reasonable to use a machine learn-
ing system whose program space contains an approximation of g. If we have
some information about the properties that g should satisfy, then it is im-
portant to know which are the limitations of this program space. Scientific
experience suggests that many real-world phenomena can be described by
functions that satisfy certain regularity conditions. For example, g ∈ C0(X)
(i.e., g is continuous over its domain). Other applications might enforce dif-
ferentiability requirements like g ∈ C1(X) or g ∈ C2(X) (e.g., when g models
the movements of a robot). From a modelling perspective, ANNs are appeal-
ing since they can approximate large function spaces. To give a more precise
explanation, we need an additional definition. Let X0 ⊂ Rn0 and X2 = R.
Let n1 ∈ N be a positive integer and define an simple feedforward neural
network that computes the following functoin:

Φ(n1, m̂,x0) = w2σ(x0W1 + b1) , (3.27)
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where W1 ∈ Mn0×n1(R),b1 ∈ M1×n1(R),w2 =Mn1×1(R), b2 = 0 and m̂ =
(m1,m2) = ((W1,b1), (w2, 0)) is the parameters tuple. These networks
have an input layer N 0 with n0 units, a hidden layer N 1 with n1 units whose
activation function is σ, and an output layer N 2 consisting of a single unit
whose activation function is the identity function

id : R→ R
x 7→ x ,

(3.28)

also called the linear activation function. The restrictions of (3.4) to pairs
of adjacent layers form complete bipartite graphs; we say that the layers of
these pairs are fully-connected. The program space of this ANN is

M(n1) := {Φ(m̂, ·) : X0 → R} .

We define
M :=

⋃
n1∈N

M(n1) (3.29)

to be the global program space of all 2-layers simple feedforward neural
networks with fully-connected layers. In 1989, George Cybenko derived an
important approximation result about this global program space, when it
uses the sigmoid (3.24) (or an equivalent sigmoidal activation function for
the neurons of the hidden layer [44].

Theorem 1 (Universal Approximation Theorem (UAT)). Let X0 =
[0, 1]n0 ⊂ Rn0 be the n0-dimensional hypercube in Rn0 and denote by G =
C0(X0) the space of real-valued continuous functions over X0. Let σ : R→
R be a continuous function satisfying

σ(x)→

{
0, as x→ −∞
1, as x→ +∞ ,

(3.30)

called a sigmoidal function. For any given g ∈ G and any given ε > 0, there
exists an integer n1 ∈ N and a network (3.27) such that ‖g−Φ(n1, m̂, )‖∞ <
ε, where ‖g‖∞ := supx0∈X0{g(x0)}.

More general results were derived by Kurt Hornik in 1991 [45].

Theorem 2. Let X0 ⊂ Rn0 be a compact subset of Rn0 and denote by G =
C0(X0) the space of real-valued continuous functions over X0. Let σ : R→
R be a continuous, bounded and non-constant function. For any given g ∈ G
and any given ε > 0, there exists an integer n1 ∈ N and a network (3.27)
such that ‖g − Φ(n1, m̂)‖∞ < ε, where ‖g‖∞ := supx0∈X0{g(x0)}.
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Cybenko had required the activation functions to satisfy the sigmoidal
property (3.30), whereas Hornik showed that this constraint was not neces-
sary to approximate continuous functions.

Theorem 3. Let X0 ⊂ Rn0 be a compact subset of Rn0. Let µ be a finite
measure over Rn0 (e.g., a probability measure). Denote by G = Lp(µ) the
space of real-valued measurable functions over X0 for which

‖g‖p :=

[∫
Rn0
|g(x0)|pµ(dx0)

] 1
p

(3.31)

is finite. Let σ : R → R be a bounded and non-constant function. For any
given g ∈ G and any given ε > 0, there exists an integer n1 ∈ N and a
network (3.27) such that ‖g − Φ(n1, m̂)‖p < ε.

In particular, the closeness between a target measurable function and a
simple fully-connected ANN is guaranteed in measure, even when the ac-
tivation function is discontinuous (and therefore not differentiable). As a
corollary, this result holds in the case where σ is the Heaviside (3.15) or
the generalised Heaviside (3.19). Nevertheless, the parameters m̂ are still
required to take on continuous values. Note that these theorems hold for a
very simple subset of the space of all possible ANNs, which is therefore at
least as rich. Let M denote the program space of a given machine learnign
system. Let G denote the functions space in which the target map (3.26)
is supposed to live. Approximation theorems are results about the density
of Π in G, with respect to some given metric on G. From an application
perspective, the limitation of this results is that the classes M are usually
arbitrarily large, since no constraint is enforced on the size program space.
This is an unrealistic assumptions for real-world systems, since physical com-
puters have limited memory. For this reason, a small subset M ′ ⊂M of the
global program space is usually defined. The problem of selecting a good
M ′ is known as topology selection. In Section 4.2 we will briefly sum-
marise how topology selection has evolved for the sub-class of ANNs knowns
as convolutional neural networks.

Suppose the program space (3.13) of an ANN has been chosen, and denote
it by M . According to the definition of machine learning system we gave
in Section 1.3, we need to define a learning algorithm α to select the best
program out of M . Let D be a given labelled data set (1.44). To simplify
the discussion we make the following assumptions:

(i) the ANN is a simple feedforward neural network;

(ii) the activation functions σ`i` are all equal except fot those of the last
layer (σLiL), which are allowed to be the identity function (3.28);
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(iii) the first representations space of the networks, X0, and the data set
input space X coincide;

(iv) the last representations space of the network, XL, and the data set
labels space Y coincide.

The parameters space W ` × B` associated with the `-th layer is therefore
R(n`−1+1)×n` ; consequently, the overall parameters space is R

∑L
`=1((n`−1+1)×n`).

Denote by µ the probability measure according to which D has been sampled.
A natural way to evaluate the quality of the programs of an ANN is to
compute the loss functional [46]:

L(Φ(m̂)) :=

∫∫
X×Y

d(Φ(m̂,x),y)µ(dx, dy) . (3.32)

Observe that, when the topology of Φ is fixed, the loss functional is actually
a function of the parameters m̂. Here,

d :XL × Y 7→ [0,+∞) (3.33)

(xL,y)→ d(xL,y)

is a loss function which is non-negative, satisfies the no-error, zero-loss
property

xL = y =⇒ d(xL,y) = 0 , (3.34)

and is usually differentiable and convex [47]. When µ admits a disintegration
of function form {µX , {δg(x)}x∈X}, the loss functional takes the simpler form

L(Φ(m̂)) :=

∫
X

d(Φ(m̂,x), g(x))µX (dx) . (3.35)

The ideal solution would occur when Φ(m̂,x) = g(x), ∀x ∈ X. This is
equivalent to requiring that g belongs to the program space M . Since we
usually do not know the space G in which g lives, there is no way to know
whether this is a reasonable expectation. Therefore, the guiding principle for
a supervised learning algorithm is to find either a global or a local minimum
of (3.32). More in general, there is no way to know µ; as we explained is
Section 1.2, the only access we have to µ is through data sets (1.41) and
(1.44) and their associated empirical measures (1.43). When we plug the
empirical measure in (3.32) in place of the real measure µ, the loss functional
is turned into a finite sum

L(Φ(m̂)) =
1

N

N∑
i=1

d(Φ(m̂,x(i)),y(i)) , (3.36)
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called the empirical loss. Consider an ANN (3.14) composed of layer maps
(3.12) whose activation functions σ are differentiable (e.g., (3.24), (3.25) or
(3.28)). Since each layer is differentiable, Φ(m̂, ·) is differentiable with respect
to its parameters m̂. Together with the differentiability of the loss function
(3.33), this implies that the empirical loss is a differentiable function of m̂.
It is possible to compute a gradient-based error signal

εm̂ := ∇m̂L(Φ(m̂)) (3.37)

directed towards the ANN’s parameter. This error signal can then be taken in
input by some gradient descent (GD) algorithm [48] designed to minimise
(3.36) as a function of m̂. The learning problem is therefore interpreted as a
numerical optimisation problem.

The computation of the error signal (3.37) is not a trivial task. The typical
approaches to compute the gradient of (i.e., to differentiate) a function Φ are:

(i) numerical differentiation: it is built on top of the definition of di-
rectional derivative,

d

du
Φ(m̂) := lim

h→0

Φ(m̂ + hu)− Φ(m̂)

h
,

and should be used when no analytic expression for the derivative is
available; since exhaustive search over all the possible values of u and
h is unfeasible, we must sample arbitrary directions u and arbitrary
arc lengths h to obtain an estimate of the real gradient; it is likely to
be imprecise when the argument m̂ lives in a high-dimensional space;

(ii) symbolic differentiation: the input function Φ(m̂) is described as
a sequence of operations on simpler functions (e.g., sums, products,
compositions), and this expression is analysed to derive a program that
implements the analytic gradient of Φ(m̂); this resulting program must
then be evaluated;

(iii) automatic differentiation: the input function Φ(m̂) is described as
a graph of function blocks, and the derivative is computed applying
the chain rule only; each function block must be programmed to com-
pute its own Jacobians, one for each of its inputs, so that computing
the derivative amounts to a composition of Jacobians; with respect to
symbolic differentiation, this approach has the advantage of being lo-
cal: the blocks can be executed without waiting that a global formula
for the gradient is available.
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We will now analyse automatic differentiation more in-depth. The forward
operation of each layer is a composition of a linear map

s` = x`−1W` , (3.38)

a translation
s̃` = s` + b` (3.39)

and an element-wise non-linear distortion

x` = σ(s̃`) . (3.40)

The first function has two inputs (x`−1 and W`) and the following Jacobians

Jx`−1(s`) =

(
∂s`k
∂x`−1

i

)
(3.41)

=
(
w`ki
)

= W`T

JW`(s`) =

(
∂s`k
∂w`ij

)
= (τkij)

=
(
δjkxi

)
;

the second function has two inputs (s` and b`) and the following Jacobians

Js`(s̃
`) =

(
∂s̃`k
s`i

)
=
(
δik
)

= In`

Jb`(s̃
`) =

(
∂s̃`k
b`i

)
(3.42)

=
(
δik
)

= In` ;

the third function has one input (s̃`) and the following Jacobian

Js̃`(x
`) =

(
∂x`k
∂s̃`i

)
(3.43)

=
(
δikσ

′(s̃`i)
)
. (3.44)
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Let d denote a loss function, and denote by

JxL(d) := ∇xL(d)

=
(

∂d
∂xL1

, ∂d
∂xL2

, . . . , ∂d
∂xLnL

)
its one-dimensional Jacobian (i.e., its gradient). Suppose we want to com-
pute the error signals directed towards the weights W1. This can be done
performing tensor contraction operations between successive Jacobians:

JW1(s̃1) = Js1(s̃
1)JW1(s1)

JW1(x1) = Js̃1(x
1)JW1(s̃1)

JW1(s2) = Jx1(s2)JW1(x1)

JW1(s̃2) = Js2(s̃
2)JW1(s2)

JW1(x2) = Js̃2(x
2)JW1(s̃2)

JW1(d) = Jx2(d)JW1(x2) . (3.45)

Suppose now we want to compute the error signals directed towards the bias
vector b1. Again, this can be done performing tensor contraction operations
between successive Jacobians:

Jb1(x1) = Js̃1(x
1)Jb1(s̃1)

Jb1(s2) = Jx1(s2)Jb1(x1)

Jb1(s̃2) = Js2(s̃
2)Jb1(s2)

Jb1(x2) = Js̃2(x
2)Jb1(s̃2)

Jb1(d) = Jx2(d)Jb1(x2) . (3.46)

If we now expand (3.45) and (3.46),

JW1(d) = Jx2(d)Js̃2(x
2)Js2(s̃

2)Jx1(s2)Js̃1(x
1)Js1(s̃

1)JW1(s1) ,

Jb1(d) = Jx2(d)Js̃2(x
2)Js2(s̃

2)Jx1(s2)Js̃1(x
1)Jb1(s̃1) ,

we observe that much of the computation is shared amongst the two eval-
uations. Since the tensor contraction operation is both left-associative and
right-associative, the output of the right-to-left operations chain is the same
as the output of the left-to-right operations chain. By computing JW1(d)
and Jb1(d) from right-to-left, in what is known as forward-mode auto-
matic differentiation, we need to compute the intermediate results mul-
tiple times, due to the difference between the radices JW1(s̃1) and Jb1(s̃1).
We can perform a more efficient evaluation of derivatives by computing ten-
sor contractions left-to-right to reuse intermediate results, in what is known
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as reverse-mode automatic differentiation. In the above example, this
would result in the following sequence of shared computations:

Js̃2(d) = Jx2(d)Js̃2(x
2)

Js2(d) = Js̃2(d)Js2(s̃
2)

Jx1(d) = Js2(d)Jx1(s2)

Js̃1(d) = Jx1(d)Js̃1(x
1) . (3.47)

This algorithm for computing gradients is also called backpropagation [43,
49]. For additional details about the implementation of backpropagation see,
for example, [50]. Once we have computed the gradient (3.37), a learning rule
must be defined. Typical learning rules are variant of the steepest gradient
descent algorithm that try avoid getting trapped in the many local minima
that characterize an ANN’s parameters space [51]. The most popular learning
rules are GD with momentum [52], Root Mean Square propagation
(RMSprop) [53] and ADAptive Moment estimation (ADAM) [54].
These algorithms modify the gradient computed using the backpropagation
algorithm to incorporate information about previous iterations, returning an
update direction

u = γ(εm̂) . (3.48)

We derive a learning rule introducing a positive step-length parameter

η > 0 , (3.49)

which is known in machine learning literature as the learning rate. The
update to the parameters is computed as

∆m̂ = −ηu . (3.50)

From a computational perspective, the operations performed by the neu-
rons of an ANN are extremely parallelisable and data-independent:

(i) the score computation s`i` =
∑n`−1

i`−1=1 r
`
i`−1i`

, where r`i`−1i`
= x`−1

i`−1
w`i`−1i`

,

is the composition of a map pattern operation (as the one depicted
in Figure 1.6) and a reduce pattern operation (as the one depicted in
Figure 1.7); in particular, the time cost of this operation can be reduced
from 2n`−1 − 1 to 1 + dlog2(n`−1)e, where d·e is the integer rounding
up operation and the base of the logarithm is the arity of the addition
operation;

(ii) the adjusted score and non-linear distortion operation are sequential,
as depicted by a single thread in Figure 1.6;
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(iii) theoretically, every neuron N `
i`
∈ N ` could perform these operations in

parallel, reducing the time complexity of computing a layer map from
n`(2n`−1+1) to 1+dlog2(n`−1)e+2, which is independent of the number
n` of units in the layer.

A second level of algorithmic parallelisation can be exposed if we consider
computational graphs. At the time of writing, the most popular software
frameworks to train and study ANNs are TensorFlow [55] and PyTorch [56].
Both frameworks Python [57] front-ends and C/C++ [21] back-ends designed
according to the dataflow programming model [58, 59]. The dataflow pro-
gramming model interprets programs as directed computational graphs

(V,E) , (3.51)

where the vertices v ∈ V represent operations and edges (i, j) ∈ E represent
operands communications (i.e., dependencies amongst operations). We re-
mark that the computational graph (3.51) is conceptually different from the
network graph (3.4); this distinction is important, since the related ambigu-
ity is a cause of common mistakes. A computational graph (3.51) is called
a differentiable graph if all the operations v ∈ V are differentiable with
respect to their operands. For a given differentiable graph (3.51), we can
define a second computational graph

(V̇ , Ė := {(j, i) | (i, j) ∈ E}) , (3.52)

where the dependencies between operations are reversed. In this case, we will
refer to (3.51) as the forward computational graph and to (3.52) as the
backward computational graph. Examples of differentiable operations
are tensor contractions (3.38), tensor sums (3.39) and differentiable activation
functions (3.40). The forward and backward computational graphs associated
with the networks of Figure 3.1 are depicted in Figure 3.2, whereas details
are shown in Figure 3.3 and Figure 3.4.

3.4 Regularisation algorithms

At the time of writing, it has been accepted that finding the global optimum
of the empirical loss (3.36) is both impractical and possibly not optimum
with respect to the real measure µ according to which the data is distributed.
Therefore, learning algorithms should find good local minima. A conventional
measure of the quality of a local minimum is its generalisation capability.
By this term, we mean the quality of its performance on out-of-sample
points

x ∈ X |@(x(i),y(i)) ∈ D ,x = x(i) .
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A good solution Φ(m̂∗) is not necessarily one that minimises the loss func-
tional

L(Φ(m̂∗)) :=

∫∫
X×Y \{(x(i),y(i))∈D)}

d(Φ(m̂∗,x),y)µ(dx, dy)

outside of the data set. The ultimate performance metric depends on the
application, and usually it can not be measured using a loss function. Never-
theless, the choice of the loss function influences the shape of the optimisation
landscape [47]. It is a common practice to express (3.33) as the sum of dif-
ferent penalty terms

d = d1 + d2 + · · ·+ dND

intended to communicate to the ANN the different constraints of the problem
that it has been designed to solve. The problem of choosing a suitable loss
function is therefore as important as the problem of choosing the correct
topology. In Section 4.3 we will describe an example reasoning behind these
choices. But these problems are determined on a case-by-case manner, since
they depend on the specific problem and data set under investigation. We
are therefore interested in definitions of good minima that involve only the
concept of loss function.

The minimisation of the empirical loss (3.36) is a complex problem. To
better understand why, we need to look more carefully at the loss functional
(3.32). Suppose that the measures µ over XY is a simple Dirac’s delta
concentrated at the point (x,y). We define the loss surface associated with
the network Φ(m̂) and with point (x,y) as the graph of the function

LΦ,(x,y)(m̂) : M̂ → [0,+∞)

m̂ 7→ d(Φ(m̂,x),y) ,

and we denote it by the symbol L(x,y). The loss function d is usually convex
with respect to its arguments, but the topology of the network Φ makes the
loss surface non-convex with respect to m̂, yielding multiple local minima.
Therefore, a gradient descent algorithm applied to m̂ would converge towards
the nearest local minimum. The loss functional (3.32) can be seen as the
average over the ensemble (

{L(x,y)}(x,y)∈X×Y , µ
)

; (3.53)

we call this ensemble the optimisation landscape. The empirical loss
(3.36) is the value taken by this surface at the point m̂, when µ is the
empirical measure associated with the data set D. This ensemble average
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is itself a loss surface. Computing the gradient (3.37) of the empirical loss
amounts to averaging the gradients over all the functions LΦ,(x,y), (x,y) ∈ D:

∇m̂L(Φ(m̂)) =
1

N

N∑
i=1

∇m̂d(Φ(m̂,x(i)),y(i)) . (3.54)

As for the single-point loss surface L(x,y), a gradient descent algorithm would
converge towards the closest local minimum; therefore, the quality of the end-
point depends on the initialisation. The scope of research in gradient descent
algorithms for training ANNs [52, 53, 54] is trying to reduce the impact of
the initialisation introducing momentum terms, whose goal is keeping track
of the principal modes of the loss surface to escape the attractors associated
with bad initial conditions. Recent research [60] has observed that flat and
sharp minima of the loss surface are correlated with good and poor generali-
sation capabilities of ANNs, respectively. By flat and sharp, we mean points
m̂ ∈ M̂ which have neighbouroods on which the value of the loss surface is
respectively slowly or rapidly changing.

A first strategy to improve generalisation is mini-batch training. Let
D be a given data set (1.44). On-line learning assumes that samples become
available one at a time [61]. This suggest to replace the average gradient
(3.37) with an approximation

∇m̂L(Φ(m̂)) ≈ ∇m̂d(Φ(m̂,x(i)),y(i)) , (3.55)

which is of course stochastic since it depends on the sample (x(i),y(i)) drawn
from the data set D. This variant of the GD algorithm is therefore called
Stochastic Gradient Descent (SGD). It can be interpreted as picking just
one loss surface from the ensemble (3.53) and performing gradient descent
with respect to it. A trade-off between normal GD (3.37) and SGD (3.55)
is the so-called mini-batch SGD. Denote by N the data set size and let K
be a positive integer such that N = KB. Denote by{

D(1),D(2), . . . ,D(K)
}

(3.56)

an exhaustive partition of D in mini-batches D(k), k = 1, 2, . . . , K, each of
which contains Nk = B data points. To each mini-batch, we can associate
an approximated gradient

∇m̂L(Φ) ≈ 1

B

B∑
i=1

∇m̂d(Φ(m̂,x(k,i)),y(k,i)) , (3.57)

called the mini-batch gradient. This is a compromise between normal GD
and SGD, realised to avoid being trapped in the attractor associated with
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the initial condition but also to be computationally efficient. In fact, the
gradients ∇m̂d(Φ(m̂,x(k,i)),y(k,i)) associated with each sample can be com-
puted in parallel on specialised hardware [62]. In ANNs literature, the term
SGD is often used to refer to mini-batch SGD. Training ANNs using gradient
descent has been interpreted as a dynamical system where the equations of
motions are generated by the gradient operator [63, 64]. Making this dynam-
ics stochastic (for example, using SGD or mini-batch SGD) would increase
the probability of reaching flat minima of the loss surface. The theory of
stochastic differential equations has also been applied trying to improve the
convergence of mini-batch SGD [65].

We have observed above that the structure of Φ breaks the convexity of
the loss functional with respect to m̂. Normalisation techniques have the ef-
fect of smoothing the non-convex loss functional by decreasing the Lipschitz
constant associated with Φ(m̂). In 2010, Xavier Glorot and Yoshua Bengio
investigated initialisation strategies, and discovered that starting from points
m̂(0) around which Φ is sufficiently Lipschitz increases the probability of
convergence towards a good local minimum [66]. More recently, a renormal-
isation algorithm called equi-normalisation has been proposed to preserve
this Lipschitnzess property at every iteration, not only at initialisation time
[67]. A popular technique, proposed in 2015 by Sergey Ioffe and Christian
Szegedy, is batch normalisation (BN, also known as batch-norm) [68]. BN
has been proposed to counter the covariate shift effect [69]. Consider a net-
work (3.13) and a layer (3.12). Let W`(t) and b`(t) denote the value of the
parameters after the t-it iteration of the gradient descent learning algorithm.
For the first layer, the probability distribution according to which

x1 = σ(x0W`(t) + b`(t))

is distributed are likely different from the one according to which

x1 = σ(x0W`(t+ 1) + b`(t+ 1))

is distributed. The difference between these two distributions is called co-
variate shift. To reduce this effect, batch normalisation proposes to apply
a mini-batch-dependent affine transformation of the mini-batches of scores
s`, ` = 1, 2, . . . , L:

s̃` = (s` − µ)Σ−1Γ + β` (3.58)

= s`(Σ−1Γ`) + (−µΣ−1Γ` + β`) , (3.59)

where µ is the mean of the score vectors in the k-th batch {s`,(k,i)}i=1,2,...,B, Σ
is the diagonal matrix of the variances of their components, Γ` is a diagonal
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scaling matrix with learnable coefficients and β` is a learnable translation
vector. The intended purpose of the normalisation operation using µ and Σ
was homogenising the statistics of every batch, consequently stabilising the
learning of the parameters Γ` and β`. Recent research [70] has experimentally
verified that this effect is marginal at the very best, but it has also proved that
BN reduces the Lipschitz constant associated with the network Φ, therefore
smoothing the optimisation landscape with respect to the parameters m̂.

The regularisation effect of parameters noise has also been investigated.
At every iteration of the learning algorithm, dropout [71] removes a random
subset of units from the network graph (3.4). This amounts to set to zero all
the weights of links (i, j) ∈ E where i is one of the silenced units. When noise
ν is added to the parameters m̂, the effect is that of applying a convolution
operation over the optimisation landscape:

L̄(Φ(m̂)) :=

∫
N

∫∫
X×Y

d(Φ(m̂ + ν,x),y)µ(dxdy)µ(dν) .

It is easier to see the smoothing effect if we consider just a single loss surface:

L̄Φ,(x,y)(m̂) :=

∫
N

d(Φ(m + ν,x),y)µ(dν) .

The loss surface d(Φ(m̂,x),y) is replaced by an average of its translations
weighted by the probabilities of the translations. This average has been
proven to be more Lipschitz than the original loss surface for the case where
Φ is a single layer map [72].

So far, artificial neural networks have accompanied all the history of artifi-
cial intelligence and machine learning. Original ANNs used non-differentiable
activation functions and parameters taken from discrete, or even finite sets,
constrained inherited by the physical systems on which they were imple-
mented. Finding suitable learning algorithms for these machine learning
systems proved to be a difficult task. The introduction of differentiable acti-
vation functions has opened the way to gradient-based learning algorithms,
which have allowed training effective systems. From a theoretical perspec-
tive, ANNs are general function approximators, as exemplified by Theorem 1.
But real-world applications have physical constraints which make selecting a
suitable network topology a crucial but complex task. The choice of a good
loss function is also a crucial task. In Chapter 4 we will present two scenarios
to exemplify these choices.
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The real motivation behind the renewed interest in ANNs of the last
decade has been the introduction of highly parallel hardware like GPGPUs.
We have analysed two levels at which ANNs are parallelisable. The neuron
level, characterised by data-independent operations, makes ANNs an ideal fit
for SIMD hardware. The computational graph level, which exposes the paral-
lelism of different operations (as depicted in Figure 3.2b1, and Figure 3.2b2),
allows executing these blocks concurrently even on different computers at the
same time (distributed computing).

Current economical trends are demanding to process information directly
into the environment where it is extracted. These edge computers have more
limited processing and memory characteristics with respect to servers and
workstations. These constraints have motivated a return to the origins of
ANNs, investigating the possibility of training models with quantized weights
and quantized activation functions. We will investigate this problem in depth
in Chapter 5.
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Figure 3.2: Forward (a1) and backward (a2) computational graphs associated
with the network of Figure 3.1a; forward (b1) and backward (b2) computa-
tional graphs associated with the network of Figure 3.1b. In each graph,
nodes represent weights matrices (3.7) (dark blue), bias vectors (3.8) (dark
red), linear maps (3.38) (light blue), translations (3.38) (orange nodes), ac-
tivation functions (3.40) (green nodes) and the loss function (3.33) (black
node); of course, the data (x,y) ∈ D (white nodes) can not be updated, and
the error signals directed towards them are discarded. When the networks
are deployed to perform inference, the loss function node and the label node
are not needed, and are therefore discarded.
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Figure 3.3: Details of (a1) Figure 3.2a1 and (a2) Figure 3.2a2.
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Figure 3.4: Details of (b1) Figure 3.2b1 and (b2) Figure 3.2b2.



Chapter 4

Advanced topics in ANNs

Artificial neural networks are powerful non-linear function approximators.
Computer vision is the scientific discipline that studies how to process visual
information using computers. Computer vision is amongst those disciplines
which have received the most benefit from applying artificial neural networks,
motivating the research in a whole sub-class of systems known as convolu-
tional neural networks. One of the most useful aspects of artificial neural
networks is their composability structure: powerful programs can be learnt
both end-to-end or by stacking different sub-programs that have been trained
independently to detect specific features in the available data.

In this chapter we will describe popular computer vision tasks and con-
volutional neural networks. We will also present a model we developed to
analyse time-series using feedforward neural networks, where we extensively
leveraged the composability of artificial neural networks.

4.1 Computer vision applications

Computer vision applications extract some abstract information y from a
given digital source x of visual information. For example, attaching a se-
mantic concept (described by a word in natural language) to a given image.
If we denote by X the set of images and by Y the set of labels, a computer
vision algorithm should realise a map

g : X → Y . (4.1)

We will now introduce the common terminology used in computer vision.
Let H and W denote positive integers, which we call the height and width
respectively. To encode an image in digital format, one can imagine to lay a
plain grid composed of H-by-W squares of unit side on top of a continuous

71
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electromagnetic field. Each square in the grid, identified by a pair of coordi-
nates (i, j), i ∈ {0, 1, . . . , H−1}, j ∈ {0, 1, . . . ,W −1}, is called a pixel. The
radiant flux flowing perpendicularly to the rectangle [0,W ]× [0, H] can be
described by a time-dependent function

f : R× [0,W ]× [0, H]→ R
(t, x, y) 7→ f(t, x, y) .

(4.2)

The radiant flux through each pixel’s surface is processed by a photodetector,
a sensor that converts it into a digital representation. This digital represen-
tation is characterised by a given colour model [73]. Loosely speaking, a
colour model with channels k ∈ {1, 2, . . . , C} can be described by a collec-
tion of integral functionals of the radiant flux

p(k, i, j) :=
1

tend − tstart

∫ tend

tstart

∫∫
Wi×Hj

f(x, y, t)dxdydt , k = 1, 2, . . . , C ,

(4.3)
where Wi = [i, i + 1] and Hj = [j, j + 1]. The most typical colour model of
the vision data sets used in machine learning is the RGB model: it consists
of C = 3 channels that can take on 28 = 256 possible values (thus requiring
one byte each to be stored). Using the RGB model, each image x ∈ X is
encoded as an array of structures (AoS) where each of the H×W structures
consists of C = 3 bytes. The images in data sets acquired using the RGB
colour model are therefore points in the space

X = {0, 1, . . . , 255}C×H×W . (4.4)

Let

V = {v1, v2, . . . , vNV } (4.5)

denote a finite vocabulary of abstract semantic concepts, such as person, tree
or sky. When Y = V in (4.1), the vision task is a classification at image-level,
also called image classification. When Y = NH×W , (4.1) should attach
semantic content to each pixel, and the task is a classification at pixel-level,
also called image segmentation.

Another typical vision task is object localisation. Localisation requires
to predict bounding boxes, rectangular containers that can be drawn on the
image to enclose areas where objects appear. Bounding boxes are completely
determined by pairs of points, the lower left corner and the upper right corner
of the rectangle. Let

B := {b = {(x1, y1), (x2, y2)} |x1 < x2 ∈ [0,W ], y1 < y2 ∈ [0, H]} (4.6)
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denote the space of all possible bounding boxes that can be drawn on an
image of sizes H,W . Note that a bounding box b ∈ B requires a more fine
grained labelling than a semantic class v ∈ V , since its components take
values in continuous sets. Object localisation is in fact a regression task.
Since multiple objects can appear concurrently in a single image, we can
attach to the image multiple bounding boxes. Therefore, a suitable output
space for the localisation task is the space Y = B∗ of all possible (finite or
infinite) sequences of boxes b ∈ B. Due to the non-uniform length of the
sequences in Y , the outputs of localisation algorithms are usually instances
of some list data structure. Object detection combines classification and
localisation into a single task. Given a set of bounding boxes (4.6) and a set
of classes (4.5), an annotation for the object detection task is a pair

(b, v) ∈ B × V . (4.7)

Therefore, the output space for an object detection task is the space Y =
(B × V )∗ of all possible (finite or infinite) sequences of annotations (4.7).

The most popular data sets in image classification are the ten-classes
modified National Institute of Standards and Technology (MNIST)
database [49], the ten-classes Canadian Institute for Advanced Re-
search (CIFAR-10) data set [74] and the subset of the ImageNet database
[75] used in the image classification track of the ImageNet large scale vi-
sual recognition challenge (ILSVRC) [76]. The most popular data set for
object detection is Microsoft’s common objects in context (COCO) [77].
Due to the difficulty of deriving explicit algorithms αg for tasks (4.1), com-
puter vision has become a typical benchmark for artificial neural networks.

4.2 Convolutional neural networks

Let us add some terminology to that defined in Section 3.1. Consider a
feedforward network (3.1) with layers N 0,N 1, . . . ,N L. Let C`, H`,W` be
positive integers such that the number of units in the `-th layer can be
expressed as n` = C`H`W`. We organise the units in the layer in a three-
dimensional array structure whose units are indexed by the triple

(k`, i`, j`) , k` ∈ {0, 1, . . . , C`−1}, i` ∈ {0, 1, . . . , H`−1}, j` ∈ {0, 1, . . . ,W`−1} .
(4.8)

We call C`, H` andW` the depth, height and width of the layer respectively.
In analogy with the mathematical object, we call these structured layers
tensors. See Figure 4.1a for an example. The triples (4.8) can be mapped
to unique indices in N ` by the simple equation

u` = k`H`W` + i`W` + j` + 1 , (4.9)



74 CHAPTER 4. ADVANCED TOPICS IN ANNS

where the index u` takes value in the range {1, 2, . . . n`}. To convert the
neuron linear index u` into neuron tensor coordinates (k`, i`, j`) we use the
equations

k(u`) = (u` − 1)/(H`W`) ,

i(u`) = ((u` − 1) mod H`W`)/W` ,

j(u`) = (u` − 1) mod W` ,

(4.10)

where / denotes integer division and mod denotes the remainder of integer
division. We will therefore refer to a unit with both the notations N `

u`
and

N `
(k,i,j). We partition N ` in C` planes

P`k` := {N `
u`
| k(u`) = k`} , k` = 0, 1, . . . , C` − 1 , (4.11)

each of which contains exactly H`W` units. In Chapter 3 we considered fully-
connected networks, where each unit in N ` is connected to every unit in
N `+1. Mathematically speaking, these are networks (3.4) where restricting
N to pairs of adjacent layers N `,N `+1 yields a complete bipartite graph.
Consequently, the adjacency matrices A`,`+1 of these sub-graphs are dense.
In the following we will discuss a strategy to make this connectivity sparse.

Let FH
` , F

W
` be positive integers such that FH

` is relatively small with
respect to H` and FW

` is relatively small with respect to W`. The set

C`(0,0) := {N `
(k,i,j) ∈ N ` | i ∈ {0, 1, . . . , FH

` −1}, j ∈ {0, 1, . . . , FW
` −1}} (4.12)

is called a column of neurons. Note that neurons have neighbouring spatial
coordinates (i.e., a column has local spatial support). Let now SH` , S

W
` and

H`+1,W`+1 be positive integers satisfying

H` = FH
` + SH` (H` + 1) ,

W` = FW
` + SW` (W` + 1) .

(4.13)

We can identify other columns

C`(i`+1,j`+1) := {N `
(k,i,j) ∈ N ` |

i ∈ {SH` i`+1, . . . , S
H
` i`+1 + FH

` − 1},
j ∈ {SW` j`+1, . . . , S

W
` j`+1 + FW

` − 1}} ,
(4.14)

where i`+1 ∈ {0, 1, . . . , H`+1−1} and j`+1 ∈ {0, 1, . . . ,W`+1−1}. They can be
visualised by shifting an imaginary box enclosing (4.12) by steps of length SH`
and SW` respectively. The pair (SH` , S

W
` ) is called the striding of the support
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and its components are called strides. See Figure 4.1b and Figure 4.1c for
examples of columns. Now, consider a tensor N `+1 consisting of a single
plane N `+1

0 with H`+1W`+1 units. Each unit N `+1
(0,i`+1,j`+1) is connected to all

the neurons in a column (4.14), but to none of the neurons of N ` which are
not in the column. We can of course stack multiple planes N `+1

k`+1
of neurons

in the (` + 1)-th layer, where neurons N `+1
(k1,i,j)

, N `+1
(k2,i,j)

from different planes

but with the same spatial coordinates share the same support (4.14). This
structure reduces the connectivity from

n`+1n` = C`+1H`+1W`+1C`H`W` (4.15)

connections to

C`+1H`+1W`+1C`H`W`
FH
` F

W
`

H`W`

= C`+1H`+1W`+1C`F
H
` F

W
` . (4.16)

We now want to define an additional constraint: parameters sharing.
Let N `+1

(k`+1,i1,j1) and N `+1
(k`+1,i2,j2) be units belonging to the k`+1-th plane of layer

N `+1, and let C`(i1,j1) and C`(i2,j2) be their respective supports. We say that
units

N `
u1
∈ C`(i1,j1) ,

N `
u2
∈ C`(i2,j2) ,

occupy the same relative positions in the supports ofN `+1
(k`+1,i1,j1) andN `+1

(k`+1,i2,j2)

if the following properties are satisfied:

k(u2) = k(u1) ,

i(u2)− i(u1) = SH` (i2 − i1) ,

j(u2)− j(u1) = SW` (j2 − j1) ;

(4.17)

in this case we will write

N `
u1
∼ N `

u2
. (4.18)

We say that the k-th plane of the layer N `+1 satisfies the weights-sharing
property if

∀N `+1
(k`+1,i1,j1), N

`+1
(k`+1,i2,j2) ∈ N

`+1
k`+1

,

w(N `
u1
, N `+1

(k`+1),i1,j1)) = w(N `
u2
, N `+1

(k`+1),i2,j2)) ,

∀N `
u1
∼ N `

u2
.

(4.19)
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When the weights-sharing property is satisfied, the number of connections is
still (4.16), but the number of parameters is reduced:

C`+1H`+1W`+1C`F
H
` F

W
`

1

H`+1W`+1

= C`+1C`F
H
` F

W
` . (4.20)

Remember that each unit N `+1
(k,i,j) also has its own bias parameter b`+1

(k,i,j). We

say that the k-th plane of layer N `+1 satisfies the bias-sharing property
if

∀N `+1
(k`+1,i1,j1), N

`+1
(k`+1,i2,j2) ∈ N

`+1
k`+1

,

b(N `+1
(k,i1,j1)) = b(N `+1

(k,i2,j2))

∀i1, i2 ∈ {0, 1, . . . , H`+1 − 1},
j1, j2 ∈ {0, 1, . . . ,W`+1 − 1} .

(4.21)

We say that the k-th plane of layer N `+1 satisfies the parameters-sharing
property when both the weights-sharing (4.19) and bias-sharing (4.21) prop-
erties are satisfied.

To get a better understanding of the operation performed by the layer
maps (3.12) implemented by these locally connected networks, consider ad-
jacent tensors N `,N `+1 such that C` = C`+1 = 1 (i.e., they consist of just
one plane each). In this case, the plane can be considered a discretisation
of a two-dimensional domain K ⊂ R2, and a representations x` is a sample
from a function defined on K. Columns (4.14) are reduced to sub-planes.
When the weights-sharing property is satisfied, the linear part of the layer
map performs the following operation:∑

N`
u∈C`(i,j)

x`uw(N `
u, N

`+1
(0,i,j)) . (4.22)

This is the discrete counterpart of the continuous-valued integral

s`(y) =

∫
K

x`(x)w`(y − x)dx , (4.23)

which is a convolution of the map x` with a kernel w of compact support.
The locality of the connections of N `+1

v with neurons of the tensor N ` im-
plies that the weights of the links with neurons which are outside of the
column enclosing the support of the kernel are set to zero. This analogy
with the convolution operation is the reason why neural networks satisfy-
ing the feedforward property, the locality property and the weights-sharing
property are called convolutional neural networks (CNNs). The neuron
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map ϕ`+1
k`+1

computed by each neuron of the k`+1-th plane of tensor N `+1 is

called a feature map. The filter w`+1
k`+1

associated with the feature map is

called the kernel of the feature map. The representations x`+1
k`+1

living in the
codomain of the k`+1-th feature map are called features, and they quantify
the presence/absence of a specific feature in the different columns (4.14).

Different planes N `+1
k`+1

of a tensor should encode different features. To

enforce this diversification, it is possible to constrain the supports (4.14)
even more. For example, when the height and width of the columns are con-
strained to FH

` = FW
` = 1, the respective feature map is called a pointwise

convolution. Another common practice is associating to each plane N `+1
k`+1

a group of planes belonging to the previous layer,

G`
k`+1
⊆ {0, 1, . . . , C` − 1} , (4.24)

so that the support of neuron N `+1
(k`+1,i,j)

is reduced from C`+1
(i,j) to

C`+1
(i,j)

⋂ ⋃
k∈G`k`+1

N `
k

 . (4.25)

When C`+1 = C` = C and G`
k = {k}, k = 0, 1, . . . , C − 1, each feature map

is a spatial convolution (i.e., it does not mix the information contained in
different planes of N `).

A last notion we must mention is padding. When either FH
` or FW

` are
greater than one, it is not possible to place columns (4.14) in a number of
positions H`+1W`+1 = H`W`. This therefore reduces the spatial dimensions
of following tensors. To prevent the collapse of the spatial dimensions of
these tensors, it is desirable to preserve the sizes H`+1 = H` and W`+1 = W`.
To this end, it is usual to pad the input tensor N ` with an apron of units,
so that the spatial sizes of the extended tensor are

H ′` = PH
` +H` + PH

` ,

W ′
` = PW

` +W` + PW
` ,

(4.26)

where PH
` , P

W
` are positive integers. The tuple (PH

` , P
W
` ) is called padding.

The units in the apron are just virtual: they are never implemented, since
they are supposed to have no connections with units from previous layers
and their states are always zero.

The visual cortex is the part of the human brain that processes visual in-
formation. Visual information is acquired by specialised cells of the eye which
are sensitive to the radiations belonging to the part of the electromagnetic
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spectrum which we call visible light. The radiant flux (4.2) exhibits spatial
correlation [78]. Between the 60’s and the 70’s, David Hubel and Torsten
Wiesel conducted a series of studies in the neurophysiology of mammals’
visual cortex, discovering that their brains extract visual information in a
hierarchical fashion to exploit this spatial correlation [79, 80, 81, 82]. They
suggested that the neurons of the visual cortex are organised into multiple
layers, where each neuron is connected only to a small (local) subset of neigh-
bouring cells belonging to the previous layer. This model brought along the
concepts of locality and hierarchy of information processing: global infor-
mation could be extracted by stacking components with local connectivity.
The concept of local connectivity (i.e., a few lines afferent to a single com-
putational unit) was already used by Rosenblatt in his original perceptron
model [29, 30]. Nevertheless, learning visual patterns remained a hard task
when these patterns where translated or rotated in the receptive field of the
learning system: perceptrons where not able to recognize isometries. This
was the so-called problem of position invariance of the stimuli. In 1980, Ku-
nihiko Fukushima made an important step towards solving it by designing
an ANN called the neocognitron [83, 84]. The neocognitron included a
hierarchy of layers whose neurons were connected to columns (4.14) of neu-
rons of the previous layer. Moreover, neurons were arranged in planes and
forced to satisfy the weights-sharing property (4.19). In 1989, Yann LeCun
and his collaborators pioneered the application of the backpropagation algo-
rithm to train ANNs for visual information processing, marking the birth of
CNNs [85]. Their model, named LeNet, satisfied the local connectivity and
weights-sharing properties (but not the bias-sharing property). Following
their introduction, CNNs have been applied to vision tasks associated with
document recognition [86]. Remarkably, the values of the weights learnt by a
CNNs trained with the backpropagation algorithm remind of the excitatory
and inhibitory patterns of the synapsis between the neurons in the visual
cortex identified by Hubel and Wiesel [87]. In recent years, CNNs have been
the focus of a vast amount of research. Why did this happen? As we saw
in Section 1.4, the physical limitation called the power wall has motivated
a transition from single-core computer architectures to parallel multi- and
many-core architectures. In particular, vendors of graphics processing units
(GPUs) have spent considerable resources in expanding their instruction set
architectures (ISAs) to make them general purpose programmable devices
(GPGPUs) that can run also programs not specific to computer graphics.
We pointed out in Section 3.3 that the computational properties of ANNs
make their programs suitable for GPGPUs. GPGPUs were one of the rea-
sons behind the success of AlexNet, a CNN topology designed to solve the
image classification task on the ILSVRC2012 data set [88]. Also, AlexNet
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replace classical activation functions (3.24) and (3.25) with the rectified
linear unit (ReLU) function

ReLU : R→ [0,+∞)

x→

{
0, if x < 0

x, if x ≥ 0 ,

(4.27)

which is still (almost everywhere) differentiable but can be computed more
efficiently on digital computers. To reduce the number of model parameters,
Oxford’s visual geometry group developed the VGG network family [89].
The innovation of VGG was replacing convolutional layers using supports
with spatial dimensions FH

` , F
W
` > 3 with stacks of convolutional layers us-

ing only supports with spatial dimensions FH
` = FW

` = 3; the receptive field
of the hierarchy was made larger by adding layers (i.e., by going deeper) in-
stead of using larger supports. To improve the quality of the learnt features,
the GoogLeNet network family used inception modules. An inception
module is a convolutional layer structured into multiple branches constrained
to model feature maps of different nature; these smaller sub-networks could
still be executed in parallel [90, 91]. The idea behind inception modules
was extended in two ways. First, residual networks (ResNets) reduced
the number of branches to two: an identity (or linear) branch, and an ad-
ditive residual that should model variations over this baseline [92]. ResNets
were the first CNNs explicitly modelled to learn high-level representations
combining different low-level representations of the same input. Second, ex-
treme inception (Xception) [93] introduced the idea of modelling residual
branches using stacks of spatial convolutions and pointwise convolutions.
These advancements have produced CNNs which are more compact in terms
of the number of parameters. These models, such as the MobileNet network
families [94, 95], can consequently be deployed also on resource-constrained
devices.

4.3 A model of subjective driving perceptions

Maserati is a world excellence in the automotive sector. As a business-to-
consumer (B2C) company, its product development processes are strongly
oriented to improving the user experience. The problem with user experi-
ence is that it is often a subjective perception. Automobiles handling per-
formances are an example. In human-vehicle systems, the human driver
represents a very complex control in a feedback-loop. During the interaction
between the vehicle and the external environment, the mechanical charac-
teristics of the vehicle concur to determine the forces that act on it and its
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occupants. The driver, perceiving these forces and integrating them with sen-
sory information about the environment (visual, auditory), performs actions
on the steering wheel, the brake or the throttle pedals, and the gear lever to
control the vehicle. This control causes the vehicle to change its state and
its interaction with the environment, starting the loop over. Quantifying the
perceived quality of an automobile’s handling properties is a difficult task.
Therefore, automotive companies like Maserati hire professional automotive
test drivers to evaluate these performances, in a design-test-analysis cycle
that works as follows. Before the first iteration of this cycle, the engineers
and the drivers agree on a set of properties (e.g., understeering, oversteering,
stability during overtakings) that should be assessed, and define a set of ma-
neuvers (e.g., tight curves at high speed, overtakings) that the drivers can
use to evaluate the properties. Then the cycle begins. At design time, the
engineers define some synthesis parameters which describe a prototype auto-
mobile; from them, a physical prototype can be dimensioned and built, or a
virtual model can be computed and loaded onto a driving simulator. Then,
the drivers perform driving experiences on a test circuit (physical or simu-
lated) where they can execute the agreed maneuvers using the prototype;
during this test phase, data is collected from a suite of sensors installed on
the automobile. Finally, the drivers evaluate the handling properties accord-
ing to their driving experiences; the engineers analyse these results together
with the objective data collected during the experience and try to understand
the reasons behind the drivers’ evaluations. When the analysis is completed,
the engineers can define a new set of synthesis parameters and start a new
iteration of the experiment. The design-test-analysis cycle continues until
satisfying performances are attained. This product development process is
expensive and time consuming. Is it possible to predict the evaluations of the
drivers just by looking at the objective data collected during their driving
experiences? Is it possible to create a model that explains the reasons be-
hind these predictions? More generally, can we reuse such a model to assess
also performances other than handling? A positive answer to these ques-
tions would make the analysis phase more accurate, reducing the number of
iterations of the experiment and, in the end, saving both money and time.

Our data set consisted of labelled sequences

D = {(Z(1),y(1)), (Z(2),y(2)), . . . , (Z(N),y(N))} (4.28)

called records. Each record

Z(n) = {z(n,1), z(n,2), . . . , z(n,Tn)} , n = 1, 2, . . . N , (4.29)

contains the measurements collected during a driving experience. Each vec-
tor z consists of nZ components called channels, which correspond to ac-
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celerometers, dynamometers, speedometers and actuators installed on the
automobile. Each sequence (4.29) represents the history of the physical state
of an automobile and its driver’s actions, recorded during a lap performed
on a given test circuit. Since the test circuit had fixed length, but the speed
at which it was run across could vary, the records had different sizes. For a
reason that we will clarify later, we split each vector

z(n,t) = (x(n,t), c(n,t))

to separate sensors data (the state) from actuators data (the control), ob-
taining two sequences

X(n) = {x(n,1),x(n,2), . . . ,x(n,Tn)} , (4.30)

C(t) = {c(n,1), c(n,1), . . . , c(n,Tn)} . (4.31)

The labels y(n), called scores, measured the properties on which engineers
and drivers had agreed at the beginning of the design-test-analysis cycle.
Each component y

(n)
i takes values in the finite set

Y = {1.0, 1.5, . . . , 9.5, 10.0} , (4.32)

which is called the scores set. To simplify our discussion, we will consider
labels y(n) with just one component and therefore replace this symbol with
y(n).

In this context, modelling the human driver amounts to building a ma-
chine learning system capable of classifying sequences (4.29) and which is
able to identify which parts of the sequence are important for its classifica-
tion. Since multi-dimensional time series (4.30) are implemented using array
data structures

x = x[t, i] , t = 1, 2, . . . , Tn, i = 1, 2, . . . , nX ,

we modelled this second task as the search for probability mass function
(1.21) over the space

{1, 2, . . . , Tn} × {1, 2, . . . , nX} . (4.33)

To simplify the design of the system, we took advantage of the fact that
the test circuit had fixed length parametrised by a curvilinear abscissa. We
use the curvilinear abscissa to determine L equally spaced waypoints on the
circuit, and transform sequences (4.29) into sequences

Z(n) = {z(n,1), z(n,2), . . . , z(n,L)} , (4.34)



82 CHAPTER 4. ADVANCED TOPICS IN ANNS

where z(n,l) is obtained by linear interpolation between the vectors z(n,t(l)) and
z(n,t(l)+1) (t(l) indexes the latest vector of the original sequence whose curvi-
linear abscissa does not exceed that of the l-th waypoint). We homogenised
(4.31) and (4.30) analogously. Consequently, instead of outputting a PMF
over (4.33), our system is designed to output a PMF over the space

{1, 2, . . . , L} × {1, 2, . . . , nX} . (4.35)

As we pointed out in Section 3.4, the design of successful machine learning
systems takes considerable modelling effort to incorporate domain knowledge
into them. To exemplify this process, we will therefore explain the rationale
behind all our assumptions.

Maserati’s engineers pointed out that the channels contain redundant
information. The physical nature of accelerations and forces induced us to
interpret the records (4.30) as trajectories living on a manifold embedded
in some high-dimensional space RnX . We chose to use a manifold learning
technique to eliminate redundancies by reducing the dimensionality of these
trajectories. Autoencoders [96] are feedforward networks designed to project
points from a high-dimensional Euclidean space RnX onto a low-dimensional
space RnE . Autoencoders achieve this goal by using two networks

ϕ(e) : RnX → RnE ,

ϕ(d) : RnE → RnX ,

called the encoder and decoder, that are stacked to perform compression
and decompression of input vectors. The autoencoder is trained by minimis-
ing the loss function called mean square error (MSE) loss:

d(ϕ(d)(ϕ(e)(x0)),x0) := ‖ϕ(d)(ϕ(e)(x0))− x0‖2 .

The effect of the backpropagation algorithm is therefore to make ϕ(d) ◦ ϕ(e)

as similar to the identity function as possible. Since the dimensions satisfy
nE � nX , it is impossible for the encoder to learn the identity map. Denois-
ing autoencoders [97] are an improvement over classical autoencoders. At
training time, the encoder of a denoising autoencoder is fed a noisy version
of the input point and the loss is therefore

d(ϕ(d)(ϕ(e)(x0 + ν)),x0) := ‖ϕ(d)(ϕ(e)(x0 + ν))− x0‖2 . (4.36)

The regularisation effect of this probabilistic alteration is similar to that of
parameters additive noise described in Section 3.4. For our model we trained
a 4-layers denoising autoencoder

ϕ4
1 ◦ ϕ3

1 ◦ ϕ2
1 ◦ ϕ1

1 : RnX → RnX
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where the first and third layers contain ten units each; to set the dimension
nE of the space of encoded features (i.e., the number of units in the second
layer), we applied another technique from the field of manifold learning [98]
that provided us an estimate of nE = 4. All the layers except the last one
are activated by the hyperbolic tangent function (3.25). We used the sum
of all the multi-sets (4.31) as a data set to train the denoising autoencoder;
we applied the Adam optimisation algorithm [54] with a learning rate of
0.001 and a batch size of 25 for 500 epochs. During training, we applied
a zero-mean Gaussian noise ν with a standard deviation of 0.01 to all the
components of the input vectors. The encoder

ϕ1 = ϕ2
1 ◦ ϕ1

1 : RnX → RnE

can be applied pointwise to a trajectory (4.30). This pointwise transforma-
tion of the trajectory is called the trajectory condenser:

Φ1 : X0 7→ X1

{x0,(l)}`=1,2,...,L 7→ {x1,(l)} = {ϕ1(x0(1)), ϕ1(x0(2)), . . . , ϕ1(x0(L))} ,
(4.37)

where X0 ⊂ (RnX )L and X1 ⊂ (RnE)L. The sequence

{x1(l)}l=1,2,...,L (4.38)

is called the condensed trajectory.
Discussions with the drivers suggested that their final evaluation sum-

marises a sequence of perceptions collected during the tests, plus some global
contextual information (e.g., the time required to complete a lap on the test
circuit). We thus modelled the evaluation task (i.e., the assignment of a
score to a vehicle) as a supertask accomplished using information collected
while performing simpler subtasks, hierarchically. The natural subtasks we
selected are the controls (4.31) actuated by the driver on the vehicle: we
hypothesised that the information used by the driver to control the vehicle
also informs his final evaluation. This hierarchical composition of informa-
tion, from subtasks to supertasks, has already been applied successfully to
document classification using hierarchical attention mechanisms [99]. At-
tention mechanisms were developed to analyse natural language data [100].
Let {x(1),x(2), . . . ,x(L)} denote a sequence. The extraction of a single vec-
tor from the sequence is known as a query in databases terminology. If the
elements of the sequence belong to a space where scalar multiplication and
addition are defined (i.e., to a vector space), then querying the element xl̃

can be interpreted as computing the sum

L∑
l=1

δ l̃lx
(l) ,
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where δ l̃l denotes Kronecker’s delta. The idea of attention mechanisms is to
perform a soft query by using a probabilistic average

L∑
l=1

θ(l)x(l) ,
L∑
l=1

θ(l) = 1 . (4.39)

Suppose that in the space from which the sequence has been sampled it is
defined an inner product. A query vector w can then be used in conjunction
with a softmax function

softmax : RL → {x ∈ RL, |
L∑
l=1

xl = 1}

x 7→

(
ex1∑L
l=1 e

xl
,

ex2∑L
l=1 e

xl
, . . . ,

exL∑L
l=1 e

xl

)
,

(4.40)

to define the coefficients:

θ(l̃)
w =

e〈x
(l̃),w〉∑L

l=1 e
〈x(l),w〉

. (4.41)

Due to the differentiable structure of both (4.40) and (4.41), the query vector
can be learnt using the backpropagation algorithm. The advantage of atten-
tion mechanisms is that they natively compute a probability mass function
over the input sequence, which will be helpful towards the goals of our model.
The operations performed by attention mechanisms are hard to contextualise
in the framework described in Section 3.1: the analogy with biological neu-
ral networks is lost. Nevertheless, these operations still satisfy the desirable
computational properties described in Section 3.3, and attention mechanisms
are recognised as a valid ANN operation.

To decompose our problem, we first defined two positive integers L1, L2

such that L = L1L2. We call L1 the window size, and we call a window
each sequence

W(l) := {x1,(l+1),x1,(l+2), . . . ,x1,(l+L1)} (4.42)

consisting of L1 consecutive points taken from any condensed trajectory.
To each window, we can associate the controls c(l+L1+1) ∈ C actuated by the
driver at the immediately successive waypoint. The data points (W, c(l+L1+1))
built up a labelled data set that we used to train a 2-layer feedforward neural
network

ϕ2
2 ◦ ϕ1

2 : (RnE)L1 → [−1,+1]2, (4.43)
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to mimic the decision process the drivers apply to decide the controls (throt-
tle/brake pedals, steering wheel left/right). This controls predictor net-
work is composed of an attention mechanism

ϕ1
2 : (RnE)L1 → Rne

W(l̃) 7→ x2,(l̃) =

l̃+L1∑
l=l̃+1

θ
(l)

w1
2
x1,(l)

(4.44)

parametrised by w1
2 ∈ RnE and by a layer map

ϕ2
2 : RnE → [−1,+1]2

x2,(l̃) 7→ tanh(x2,(l̃)W2
2 + b2

2)

activated by a hyperbolic tangent function trained to predict the control
c(l+L1+1) actuated by the driver. We minimised the MSE loss applying the
Adam optimisation algorithm [54] with a learning rate of 0.001 and a batch
size of 10 for 20 epochs. We empirically found an optimal window size of
L1 = 10. Remember that we chose L1, L2 so that L = L1L2. This choice was
made to partition the condensed trajectory (4.38) with L2 non-overlapping
windows of size L1 each. The trajectory analyser is realised applying the
first layer of the controls predictor (4.44) to every window that partitions the
compressed trajectory:

Φ2 : X1 7→ X2

{x1,(l)}l=1,2,...L 7→ {ϕ1
2(W(1)), ϕ1

2(W(L1+1)), . . . , ϕ1
2(W((L2−1)L1+1))}.

(4.45)
The sequence

{x2,(m)}m=1,2,...,L2 (4.46)

is called the compressed trajectory. Observe that the application of ϕ1
2

to the windows (4.42) returns L2 probability distributions, one over each
window:

{pmϕ1
2
(l) , l = L1(m− 1) + 1, . . . , L1(m− 1) + L1} ,m = 1, 2, . . . , L2 . (4.47)

Since we are interested in the features on which the controls decisions are
taken, not in the controls themselves, we discard the regression layer ϕ2

2 after
training.

Finally, we defined the trajectory classifier

ϕ3 : (RnE)L2 → RnY

{x2,(m)}m=1,2,...,L2 7→ x3 .
(4.48)
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Similarly to (4.43), we implemented it using a 2-layer feedforward neural
network:

ϕ2
3 ◦ ϕ1

3 : (RnE)L → RnY .

The map

ϕ1
3 : (RnE)L2 → RnE

{x2,(m)}m=1,2,...,L2 7→ x3 =

L2∑
m=1

θ
(m)

w1
3

x2,(m)
(4.49)

is an attention mechanism parametrised by w1
3. The second map is instead

a layer map using the linear activation function (3.28):

ϕ2
3 : RnE → RnY

x3 7→ x̃ = w2
3x

3 + b2
3 ;

To transform x̃ in a probability distribution over Y , we applied the softmax
function (4.40) so that the classification problem is turned into a regression
over the nY -dimensional simplex (this is a common practice when solving
classification problems using ANNs). We trained the trajectory classifier
(4.48) using the cross entropy (CE) loss upon the softmax function and
applying the Adam optimisation algorithm with a learning rate of 0.001 and
a batch size of 1 for 350 epochs. Observe that the application of ϕ1

3 returns
a probability distribution over the compressed trajectory:

pφ13(m), m = 1, 2, . . . , L2. (4.50)

We can define a PMF over the product space (4.33) as the product

p(l, i) = pL(l) ∗ pl(i) , l = 1, 2, . . . , L , i = 1, 2, . . . , nX ,

where
pL : {1, 2, . . . , L} → [0, 1]

is a fixed trajectory PMF and pl belongs to the collection of channels
PMFs

{pl : {1, 2, . . . , nX} → [0, 1]}l=1,2,...,L .

The trajectory PMF can be obtained combining the PMFs (4.47) and (4.50)
associated with the attention mechanisms. To derive a channels PMF pl
for each waypoint, we used the concept of saliency maps [101]. Saliency
maps were developed to better understand the workings of convolutional
neural networks by visualising the importance (i.e., the saliency) of their
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hidden representations with respect to some saliency target d. The technique
amounts to computing the gradient of a specified loss function with respect
to the representations of interest x`,

g = ∇x`d ,

and turn this gradient into a histogram using its L1-norm:

p(̃i) =
|gĩ|∑n`
i=1 |gi)|

, ĩ = 1, 2, . . . , n` .

In our scenario, we considered the encoder of the trajectory condenser (4.37)
as the target network and defined the saliency target

d(x̂1, ϕ1(x0)) := ‖x̂1 − ϕ1(x0)‖2 . (4.51)

For each input x0,(l) we defined x̂1 = x1,(l+1) as its target vector so that the
computed saliency gradient is

g(l) = ∇x0d(x1,(l+1),x1,(l) = ϕ1(x0,(l))) .

We selected this expression since it indicates the channels whose changes
are the most important during the movement of the automobile from the
l-th waypoint to the l + 1-th waypoint. An example heatmap is depicted in
Figure 4.2.

To validate the system and check whether it was actually detecting useful
features, we proceeded as follows. First, for each score type (i.e., for each
property assessed by the drivers) we trained a different trajectory classifier
(4.48) using a 10-fold cross validation [102]. Let us denote by Nk ≡ S
the size of each fold and by {X(k,1),X(k,2), . . . ,X(k,S)} the set of records in
the validation set of the k-th fold. For each record in this set, denote by
p(k,ik)(l, i) the corresponding PMF computed by the model. We define the
channels saliency to be the PMF

p : {1, 2, . . . , nX} → [0, 1]

i 7→ 1

K

K∑
k=1

1

S

S∑
ik=1

L∑
l=1

π(k,ik)(l, i) .
(4.52)

The system assigned importance to different channels in a similar way as pro-
fessional test drivers do, providing evidence that it is not only able to predict
the evaluation of an automobile, but can focus the attention of engineers on
the relevant properties of the problem. The results of this experiment are
reported in Figure 4.3.
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Artificial neural networks are not a magic bullet : they require careful
design and much experimentation in order to be effective at the target task.
The choice of an appropriate loss functions allows extracting features which,
by leveraging the modular structure of an ANN, can be transferred to dif-
ferent tasks. Therefore, neural networks are ideal to build modular machine
learning systems, which can save practitioners valuable modelling and train-
ing time.

Convolutional neural networks, a broad sub-class of artificial neural net-
works designed to mimic the functioning of mammals’ visual cortex, are
succesful examples of hierarchical (hence, modular) learning systems. For
example, consider a convolutional neural network trained on an image classi-
fication task. Suppose we now want to solve an object detection task: we can
detach the last layers of the network we have trained, transfer the remaining
layers to the new object detection system, add a stack of new layers designed
to solve the object detection task and define a new loss function to com-
municate to our system the new learning target. This adjustment process
is known as transfer learning, and the application of a learning algorithm
(e.g., backpropagation with gradient descent) to the new system is known as
a fine-tuning of the older system on the new task.

In Section 4.3 we described a model designed to find the objective reasons
behind subjective evaluations of automobiles. An autoencoder is explicitly
designed to be the composition of two parts (the encoder and the decoder)
which can be used independently: once such an ANN has been trained,
the two functions can be decoupled. The trajectory analyser of the system
was trained to predict the driver’s responses, but we designed it so that we
could reuse only the features extracted by the attention mechanism. The
hierarchical structure we enforced on the system allowed transferring the
extracted features to different product development processes.
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(a)

(b)

(c)

Figure 4.1: An example layer of a convolutional neural network with depth
C = 8, height H = 5 and width W = 5: (a) planes of neurons are marked
by different shades, (b) an example column with spatial dimensions FH =
FW = 3 and (c) another column, obtained by shifting the previous one by
one step along the width dimension. Note that the two columns contain
common neurons.
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Figure 4.2: An example of the action of our model. (a) The original data is
composed by measurements from 12 different channels sampled on 400 way-
points (different colour levels represent different values of the measurements);
(b) the probability distribution assigned by the attention mechanisms to the
analysed trajectory (whiter values represent higher probabilities) and (c) the
probabilities assigned by the saliency maps to the measurement vectors at
each waypoint are combined to generate (d) a heatmap which allows identify-
ing the portions of the trajectory which influenced the system’s predictions.
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Figure 4.3: Channels importance for different score types. The model assigns
more probability mass to channels related to longitudal acceleration (X1 and
X12) when evaluating properties concerning the steering wheel (for example,
score class Y21); it assigns instead more probability mass to channels related
to vehicle alignment (X5 and X9) when evaluating the performances on turns
(for example, score class Y12).
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Chapter 5

Quantized neural networks

At the time of writing, electronic devices have reached characteristics of
miniaturisation and production cost-efficiency that allow incorporating them
into mobile phones, household appliances and industrial machinery, adding
functionalities with respect to older systems. The amount of available data
makes it possible to improve these functionalities even further by exploiting
the statistical patterns inherent to the environments where the systems are
deployed. For example, mobile phones incorporate automatic speech recog-
nition software that allows users to issue vocal commands without using the
keyboard/screen interface; light sensors capable of automatically detecting
the presence of people in a room allow switching lamps on and off more
efficiently; sensors installed on industrial machinery allow monitoring its effi-
ciency and programming its maintenance more effectively. Machine learning
systems are becoming critical components to solve these statistical tasks. The
design of the computers embedded in these specific systems usually trades
processing speed, physical memory, general purpose programmability and
energy budget against cost-effectiveness and the advantage of being physi-
cally closer to the data sources (edge computing). These small computers are
therefore resource-constrained with respect to computer clusters and desk-
top computers. The use of machine learning systems on resource-constrained
computers is a challenging taks.

In this chapter we will introduce quantized neural networks, artificial neu-
ral networks whose weights and representations are constrained to take val-
ues in finite spaces. After reviewing the related literature, we will analyze
their approximation properties. Since the transition from continuous to finite
spaces wipes away the differentiability property on which the backpropaga-
tion algorithm is based, we will use some probabilistic arguments to show
how approximate differentiability can be retrieved. We will then describe the
additive noise annealing algorithm that we developed on top of this idea. Fi-
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nally, we will present the QuantLab framework we programmed to benchmark
the algorithm on image classification tasks and report our results.

5.1 Related research

In Section 3.3 we showed that ANNs are general function approximators and
that they have remarkable computational properties. These characteristics
have made deep learning (DL) [103, 104, 105] the backbone of present-
day artificial intelligence. For example, specific ANN topologies have been
developed to perform object detection [106, 107], autonomous navigation
[108, 109] or decision making in both complete and incomplete information
games [110, 111]. Designed to optimise statistical fit metrics, these models
often require billions of parameters and multiply-accumulate (MAC) opera-
tions to perform inference on a single data point. These properties translate
into prohibitive latency and energy requirements for resource-constrained
computers. Real-time applications must satisfy specific latency constraints
[112]. Energy-aware applications must satisfy limited peak-power constraints
or average energy consumption constraints [113]. Some applications are both
latency-constrained and energy-constrained [114]. Therefore, research on
constrained machine learning systems has become a very active field.

In particular, constrained deep learning is concerned with the develop-
ment of systems whose programs do not exceed given latency constraints and
which have a limited memory footprint, a property that depends on both the
number of operands and the precision of their hardware representations. In
Section 4.2 we briefly discussed some of the techniques introduced by the
research on convolutional neural network topologies: these techniques have
allowed designing models with less parameters and operations. Hardware-
related optimisations have recently attracted much interest [115, 116, 117],
evolving into the field of quantized neural networks (QNNs). QNNs use
low-bitwidth operands and corresponding hardware instructions to reduce
the models’ memory footprints, their execution latency and their energy con-
sumption.

The numerical variables that represent the operands of an ANN can be
partitioned in parameters and representations. Parameters are further par-
titioned in weights and biases. We observed in Section 3.2 that the weights
of ANNs have taken on values in continuous spaces since the introduction
of the delta rule [35]. The transition from quantized activation functions to
differentiable activation functions happend later [42], and opened the way to
the backpropagation algorithm [43]. The commonly used activation functions
sigmoid (3.24), hyperbolic tangent (3.25) and ReLU (4.27) have continuous
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real-valued codomains, which by definition yield continuous representations.
We call quantization set or codebook any finite non-empty set Q of real
numbers called quantization levels. A weights-Q-quantized ANN is an
ANN whose weights take values in Q. An activations-Q-quantized ANN
is an ANN whose activation functions have Q as their codomain. With
these simple definitions, the problem of ANNs quantization can be defined
as the investigation of neural networks models that are weights-Q-quantized,
activations-Q-quantized, or both.

(a)

(b)

Figure 5.1: Consider the compuational graphs of Figure 3.2a1 and Fig-
ure 3.2a2, and their details in Figure 3.3. Training the corresponding
neural network using the binary connect algorithm requires adding non-
differentiable functions in (a) the forward graph (red node) between each
weights matrix (blue node) and the corresponding linear map (light blue
node). This yields (b) a backward graph which has undefined operations.
Still, since the weights are leaves of the graph of Figure 3.2a2, the gradients
can still be exactly computed for all the layers and the biases.

Examples of gradient-based learning algorithms for weights-Q-quantized
ANNs are binary connect (BC) [118], incremental network quantiza-



96 CHAPTER 5. QUANTIZED NEURAL NETWORKS

tion (INQ) [119] and the alternating direction method of multipliers
for neural networks (ADMM-NN) [120]. BC is given a network topology
initialised with continuous shadow weights. Before inference is performed,
the sign function

ζ : R→ {−1,+1}
w 7→ H

{−1,+1}
0 (w) ,

(5.1)

(which can be thought of as a specific case of the generalised Heaviside (3.19))
is applied to these shadow weights and returns binary values. This amounts
to inserting a node between each weight tensor and the corresponding linear
map in the computational graph associated with the network, as in Fig-
ure 5.1. Note that such a node is not differentiable. Data is then propagated
forward using the outputs of these quantization operations as weights, the
loss is evaluated, and error signals are computed using the backpropagation
algorithm. Since the quantization operations are not differentiable, it is in
principle impossible to define the gradient of the loss functional with respect
to the shadow weights. To circumvent this issue, the error signals directed
to the quantization operations are copied and applied to the shadow weights
directly, passing through the sign functions unaltered. This rule is called the
straight-through estimator (STE), since the error signals which are ob-
tained by passing directly through the quantization operations are intended
to be estimates (in the statistical sense) of the correct error signals. Let

htanh : R→ [−1, 1]

x 7→


−1, if x ∈ (−∞,−1]

0, if x ∈ (−1, 1]

1, if x ∈ (1,+∞)

(5.2)

denote the piece-wise linear function called hard hyperbolic tangent. STE
replaces the exact distributional derivative Dζ = 2δ0 of the sign function with
the derivative of the hard hyperbolic tangent:

Dζ(x) ≈ d

dx
htanh(x)

{
0, if x /∈ [−1, 1]

1, if x ∈ (−1, 1) .
(5.3)

INQ is given a network topology initialised with full-precision weights. The
algorithm defines a quantization set Q, a set {1, 2, . . . , T} of quantization

time steps and partitions the weights set Ŵ into a corresponding number
of subsets W(1),W(2), . . . ,W(T ). INQ then starts training the full-precision
model. When a quantization time step t ∈ {1, 2, . . . , T} is reached, the



5.1. RELATED RESEARCH 97

corresponding weights subset W(t) is frozen (i.e., its elements are projected
onto the nearest quantization levels in Q and never updated again). When
the last quantization time step t = T is reached, all the weights of the net-
work take values in Q and the resulting program is thus weight-Q-quantized.
ADMM-NN splits the learning algorithm in two stages. We call the net-
work to be quantized the target network. The target network is initialised
with quantized weights from the quantization set Q. Then, the first stage of
ADMM-NN performs ordinary gradient descent but including an elastic con-
straint that tries to keep the continuous-valued solution close to the starting
(quantized) values. Then, the second stage projects the solution found onto
the quantization set.

(a)

(b)

Figure 5.2: Detail of the computational graphs of a QNN which is both
weight-Q-quantized and activation-Q-quantized. With respect to the graphs
in Figure 5.1, the problem of non-differentiability is worsened when also (a)
the activation functions (red node) are not differentiable, since (b) these
nodes are dependencies for all the operations of preceeding layers.

As an extension of BC, gradient-based training of activations-Q-quantized
DNNs was first investigated by Hubara et al. [121, 122]. They used the sign
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function also as the activation function in all the models they tested, making
the respective computational graphs non-differentiable even in the activation
function operations. Example computational graphs of such networks are
depicted in Figure 5.2. Nevertheless, STE provided sufficiently good error
signals to achieve effective results. Building on STE, many algorithms have
been developed. XNOR-Networks [123] tried to preserve inner products
between full-precision weights and representations by replacing both with
optimal binary counterparts. More formally, consider a representations vec-
tor x`−1 and a weight column vector w`

i`
taken from the weight matrix W`.

XNOR-Networks look for parameters cx`−1 , cw`
i`

such that the approximation

x`−1w`
i`
≈ cx`−1ζ(x`−1)cw`

i`

ζ(w`
i`

) , (5.4)

where ζ is the sign function (5.1) applied component-wise to the vectors, is
optimal. The optimality is intended in the L2-norm sense:

min
c
x`−1 ,cw`

i`

‖x`−1w`
i`
− cx`−1ζ(x`−1)cw`

i`

ζ(w`
i`

)‖2 . (5.5)

The minimiser is given by

cx`−1 = ‖x`−1‖1 ,

cw`
i`

= ‖w`
i`
‖1 ,

where ‖ · ‖1 denotes the usual L1 norm on Rn`−1 . Using the bi-linearity of
the dot product we can rewrite the second term in (5.4) as

cx`−1ζ(x`−1)cw`
i`

ζ(w`
i`

) = cx`−1cw`
i`

ζ(x`−1)ζ(w`
i`

) . (5.6)

This is a trivial property from a modelling perspective, but its impact on the
hardware efficiency is noticeable. In fact, a dot product between two floating
point vectors with n`−1 components requires n`−1 floating point multiplica-
tions and n`−1−1 floating point additions. Instead, (5.6) requires 2(n`−1−1)
floating point additions to compute the coefficient cx`−1 , cw`

i`

and two floating

point multiplications, executing a dot product between binary vectors using
the efficient xnor and popcount hardware operations. Therefore, networks
trained with the XNOR-Networks algorithm do not use quantized operands
(since neither cx`−1ζ(x`−1) nor cw`

i`

ζ(w`
i`

) are), but constrain them to assume

a specific form so that the resulting hardware operations are efficient. Error
signals are backpropagated through the sign functions ζ using the STE. Ac-
curate Binary Convolutional Networks (ABC-Networks) [124] tried to
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decompose filters and representations onto basis of binary vectors:

x̃`−1 ≈
J∑
j=1

cj
x`−1H

{−1,+1}
θj
x`−1

(x`−1) , (5.7)

W̃` ≈
K∑
k=1

ckW`H
{−1,+1}
θk
W`

(W`) . (5.8)

The thresholds θj
x`−1 , θ

k
W` and the parameters cj

x`−1 are learnt using back-
propagation and STE. The parameters ck

W` are optimised by solving

min
ck
W`

‖W` −
K∑
k=1

ckW `H
{−1,+1}
θk
W`

(W`)‖2 (5.9)

every time that the functions H
{−1,+1}
θk
W`

are updated. Without loss of gener-

ality, we can suppose that the thresholds θj
x`−1 (equivalently, θk

W`) are sorted
in increasing order. Therefore, the effect of the approximations (5.7) and
(5.8) is to pass each element in the tensors x`−1 and W` through multi-step
functions

ζ(x) = −
J∑
j=1

cj
x`−1 +

∑
j |x≥θj

x`−1

2cj
x`−1 ,

ζ(w) = −
K∑
k=1

ckW` +
∑

k |x≥θk
W`

2ckW` ,

respectively. Analogously to XNOR-Networks, ABC-Networks use the bi-
linearity of the dot product to replace full-precision dot products with sums
of JK binary dot products:

x`−1w`
i`

=

(
J∑
j=1

cj
x`−1H

{−1,+1}
θj
x`−1

(x`−1)

)(
K∑
k=1

ckW`H
{−1,+1}
θk
W`

(w`
i`

)

)

=
J∑
j=1

K∑
k=1

cj
x`−1c

k
W`

(
H
{−1,+1}
θj
x`−1

(x`−1)H
{−1,+1}
θk
W`

(w`
i`

)

)
.

We observe here that the error signal is passed through the functionsH
{−1,+1}
θj
x`−1

(x`−1)
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using the derivative of the piece-wise linear function

fθj
x`−1

: R→ [−1, 1]

x 7→


−1, if x ∈ (−∞, θj

x`−1 − 0.5)

2(x− θj
x`−1), if x ∈ [θj

x`−1 − 0.5, θj
x`−1 + 0.5)

1, if x ∈ [θj
x`−1 + 0.5,+∞) ,

which is different from the hard hyperbolic tangent (5.2). Since ABC-Networks
achieves good results even using a different estimator than the STE, this sug-
gests that the specific form (5.3) is not essential to the success of the algo-
rithm. Binary-real networks (Bi-real networks) [125] proposed to preserve
information by computing

x` = ζ(x`−2W`−1 + x`−1W`)

at every layer instead of x` = ζ(x`−1W`). Moreover, similarly to ABC-
Networks they proposed to use a different estimator for the gradients of non
differentiable functions, further validating the hypothesis that the specific
form of the STE is not essential. Taking the concept of XNOR-Networks
and ABC-Networks even further, group-Networks [126, 127] partitioned a
network (3.13) into groups of consecutive layers, and modelled each group us-
ing binary weights and binary activation functions. Differently from XNOR-
Networks and ABC-Networks, Group-Networks expand each group of layers
into an ensemble of sub-networks whose operations are actually binary, with
no continuous parameters involved except for biases. Parametrised clip-
ping activation/statistics-aware weight binning (PACT/SAWB) [128]
uses different quantization strategies for weights and activations. During the
learning algorithm, before evaluating the forward computational graph, the
statistics of the shadow weights are used to compute the quantization levels
(i.e., the bins) dynamically; after the evaluation of the backward computa-
tional graph, the error signal is used to update the shadow weights directly.
The activation functions are instead parametric and learnt for each layer.
They take the form

ζ`(x) =


0, if x ∈ (−∞, 0−∆b(a

`)/2]⌊
x

∆b(a`)

⌉
∆b(a

`), if x ∈ (0−∆b(a
`)/2, a` + ∆b(a

`)/2]

a`, if x ∈ [a` + ∆b(a
`)/2,+∞) ,

(5.10)

where b·e is the rounding operation, b is the fixed number of bits used to
encode the number of quantization levels (which are therefore 2b), a` is the
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learnable parameter and

∆b(a
`) := α`/(2b − 1)

is the size of each quantization interval of the function’s domain. The ad-
vantage of using equally spaced quantization levels is that the corresponding
dot products can be implemented using fixed-point arithmetic as opposed to
floating-point arithmetic [129]. Fixed-point instructions are essentially inte-
ger instructions, and can be implemented more efficiently than floating-point
instructions on specialised hardware accelerators.

Recently, partially gradient-free learning algorithms for QNNs have ques-
tioned the necessity for continuous shadow weights. The method of suc-
cessive approximations (MSA) [130] trained weights-Q-quantized DNNs
leveraging Pontryagin’s maximum principle [131]. The gated XNOR net-
works (GXNOR-Nets) algorithm [132] was developed to train systems which
were both weights-Q-quantized and activations-Q-quantized. It computes
gradients through ternary activation functions applying yet another variant
of STE, but uses this information to implement weights updates as proba-
bilistic state transitions in a discrete weights space. The main obstacle to
the adoption of gradient-free learning algorithms for QNNs is that these are
usually not efficiently implementable in the most popular ANNs frameworks
such as TensorFlow and PyTorch. For this reason, we want to develop a full
gradient-based learning algorithm to train QNNs; therefore, we will not delve
further into the details of MSA and GXNOR-Nets.

The transition from continuous to finite spaces wipes out the differen-
tiability property on which backpropagation is based. In this context, the
learning problem is converted from a numerical optimisation problem into
a discrete optimisation one, where the state space is finite but very large.
Gradient-free optimisation algorithms such as integer programming or Monte
Carlo methods are usually unfeasible due to the combinational number of
configurations. Gradient-based optimisation has been brought back into the
picture by the STE and its variants. Nonetheless, since it is formally in-
correct to compute gradients of discontinuous (and thus non-differentiable)
functions, the reason for this success is still unclear. In Section 5.3 we pro-
pose a probabilistic model based on two arguments. First, the stochastic
nature of the quantization process [118, 121, 122]. Second, the possibility
of retrieving quantized functions as the limit of some annealing processes
on classes of differentiable, parametric functions [133]. We observe that, at
the same time as we developed this idea, similar concepts have appeared in
the literature. Some of them use only the annealing argument [134, 135].
A second approach noted that additive noise on the parameters makes the
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cumulative distribution function (CDF) differentiable, and uses backpropa-
gation to update the probability mass of the quantiles corresponding to the
quantization values [136].

5.2 Approximation properties of QNNs

Let K denote a positive integer and

Q = {q0 < q1 < · · · < qK} ⊂ R (5.11)

denote a finite set of real numbers called the quantization set. We call the
elements qk ∈ Q quantization values. We say that a matrix w ∈ Rm×n

is Q-quantized if wij ∈ Q for all i, j. Similarly, we say that a function
σ : R→ R is Q-quantized if its codomain σ(R) is Q. We will more generally
call quantization function any function that is Q-quantized for some Q.
We say that a layer (3.12) is weight-Q-quantized if W ` is Q-quantized. We
say that the layer is activation-Q-quantized if σ` is Q-quantized. Then,
the layer is said Q-quantized if W ` and σ` are Q-quantized. Note that
b` is not required to be Q-quantized. We say that a network (3.13) is a
quantized neural network if L ≥ 2 and its layers ϕ` are Q-quantized for
every ` = 1, . . . , L − 1. Note that the last layer ϕL is not required to be
Q-quantized. In particular, when Q = {−1,+1} we say that Φ is a binary
neural network (BNN). Similarly when Q = {−1, 0,+1} we say that Φ is
a ternary neural network (TNN).

Existing experimental research on QNNs has consistently shown accuracy
gaps with respect to full-precision networks. We remarked in Section 3.3 that
the classical approximation results for ANNs [44, 45] assume continuous-
valued parameters. A natural doubt arises about whether QNNs can ap-
proximate the same function classes as more flexible DNNs.

Lemma 1. Let n0 > 0 be a given integer and let I1, I2, . . . , In0 be bounded
intervals in R. Let P = I1 × I2 × · · · × In0 ⊂ Rn0 be the hyperparallelepiped
obtained as the cartesian product of these intervals. There exists a ternary
FNN that represents the characteristic function χP (x0).

Proof. P can be interpreted as the intersection of n0-dimensional hyper-
stripes :

P = ∩n0
i=1{x0 | πi(x0) = x0

i ∈ Ii} ,

where πi : Rn0 → R is the projection associated with the i-th component.
In turn, these hyperstripes can be represented as intersections of half-spaces.
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Depending on whether the extremes do or do not belong to the intervals,
there are four possible cases:

{x0 |x0
i ∈ Ii} =


{x0 |x0

i ≥ pi} ∩ {x0 |x0
i ≤ qi}, if Ii = [pi, qi]

{x0 |x0
i ≥ pi} ∩ {x0 |x0

i < qi}, if Ii = [pi, qi)

{x0 |x0
i > pi} ∩ {x0 |x0

i ≤ qi}, if Ii = (pi, qi]

{x0 |x0
i > pi} ∩ {x0 |x0

i < qi}, if Ii = (pi, qi)

i = 1, 2, . . . , n0 .

(5.12)
Each of the forms (5.12) can be rewritten in term of two equations:

{x0 |x0
i ∈ Ii} =



{
x0

∣∣∣∣∣
{
σ+(1 · x0

i + (−pi)) = 1

σ+(−1 · x0
i + qi) = 1

}
if Ii = [pi, qi]{

x0

∣∣∣∣∣
{
σ+(1 · x0

i + (−pi)) = 1

σ−(−1 · x0
i + qi) = 1

}
if Ii = [pi, qi){

x0

∣∣∣∣∣
{
σ−(1 · x0

i + (−pi)) = 1

σ+(−1 · x0
i + qi) = 1

}
if Ii = (pi, qi]{

x0

∣∣∣∣∣
{
σ−(1 · x0

i + (−pi)) = 1

σ−(−1 · x0
i + qi) = 1

}
if Ii = (pi, qi)

i = 1, 2, . . . , n0,

(5.13)
where

σ+(x) =

{
0, if x < 0

1, if x ≥ 0
and σ−(x) =

{
0, if x ≤ 0

1, if x > 0 .

These functions are quantization functions. Let us define the network

χw,b(x0) := σ(2)
(
σ(1)(w1 · x0 + b1) ·w2 + b2

)
,

where w1 ∈ {−1, 0, 1}2n0×n0 ,b1 ∈ R2n0 ,w2 = 12n0 , b
2 = −2n0, σ

(2) = σ+ and

σ(1)(w1 · x0 + b1) =


σ

(1)
1

(∑n0

j=1w
1
1jx

0
j + b1

1

)
σ

(1)
2

(∑n0

j=1w
1
2jx

0
j + b1

2

)
. . .

σ
(1)
2n0

(∑n0

j=1 w
1
2n0j

x0
j + b1

2n0

)


T

,

where

σ
(1)
i =

{
σ+, if pi ∈ Ii
σ−, if pi /∈ Ii

and σ
(1)
i+n0

=

{
σ+, if qi ∈ Ii
σ−, if qi /∈ Ii ,
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for i = 1, . . . , n0. In particular, w1,b1 are defined by

w1
ij =

{
δij, if 1 ≤ i ≤ n0

−δ(i−n0)j, if n0 + 1 ≤ i ≤ 2n0

and b1
i =

{
pi, if 1 ≤ i ≤ n0

qi−n0 , if n0 + 1 ≤ i ≤ 2n0 ,

for i = 1, . . . , 2n0 and j = 1, . . . , n0, where δij denotes the Kronecker delta.
Let us observe that χw,b(x0) = 1 if and only if the argument of the outer
activation σ(2) is non-negative, that is,

σ(1)(w1 · x0 + b1) ·w2 ≥ −b2 ,

which is satisfied if and only if one has equality in the inequality above, which
means

σ(1)(w1 · x0 + b1) = w2 .

The latter vectorial equation corresponds to satisfying all the systemsσ
(1)
i

(∑n0

j=1w
1
ijx

0
j + b1

i

)
= 1

σ
(1)
i+n0

(∑n0

j=1 w
1
(i+n0)jx

0
j + b1

i+n0

)
= 1 ,

∀ i = 1, . . . , n0 ,

which are equivalent, by the definitions of w1
ij, b

1
i and σ

(1)
i , to the corre-

sponding systems introduced in (5.13). This amounts to requiring that
x0 ∈ {x0 |x0

i ∈ Ii}, ∀ i = 1, . . . , n0, and thus that x0 ∈ P . The idea is to
use the neurons in the first layer, with parameters (w1

i , b
1
i ), to test whether

x0 belongs to the corresponding half-space. The single neuron in the sec-
ond layer computes the intersection between all the half-spaces enclosing P .
Hence χw,b(x0) = χP (x0).

Theorem 4 (Uniform approximation by QNNs). Let X0 = [0, S]n0 ⊂ Rn0

and denote by Lipλ(X
0) the class of bounded functions f : X0 → R with

Lipschitz constant ≤ λ. For every ε > 0 and f ∈ Lipλ(X
0), there exists a

network

Φm̂ = ϕm3 ◦ ϕm2 ◦ ϕm1 : X0 → R ,

such that supx∈X0 |Φm̂(x)−f(x)| ≤ ε. The layer maps ϕm1 and ϕm2 take the
form (3.12), with quantized weights w1 ∈ {−1, 0,+1}2n0×n0 ,w2 ∈ {0, 1}N×n0

(where N = N(ε)) and {0, 1}-quantized activation functions. The layer ϕm3

is an affine map parametrised by continuous-valued parameters. The number
of neurons required by Φm̂ to reach the given degree of approximation ε is
limited by (2n0 + 2)d2λ

√
n0S

ε
en0.
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Proof. First, we explicitly construct a ternary FNN that can represent a
function f which is constant on hyper-parallelepipeds. Let N be a positive
integer. Let {P1, . . . , PN} be a family of closed hyper-parallelepipeds such
that X0 =

⋃N
s=1 Ps and Ps1 ∩ Ps2 = ∅ (i.e., {Ps}s=1,...N is a partition of X0).

Set now n1 = 2n0N and define w1 = (w1
1, . . . ,w

1
N),b = (b1

1, . . . ,b
1
N), where

w1
s ∈ {−1, 0, 1}2n0×n0 and b1

s ∈ R2n0 for s = 1, . . . , N . Define

ϕm1 : Rn0 → {0, 1}n1

x0 7→
(
χw1

1,b
1
1
(x0), . . . , χw1

N ,b
1
N

(x0)
)
,

where χw1
s ,b

1
s

is the ternary network representation of the half-spaces enclos-
ing χPs (i.e., the first layer described in Lemma 1 but applied to every Ps in
parallel). Now define

ϕm2 : {0, 1}n1 → {0, 1}N

x1 7→ σ(x1 ·w2 + b2) ,

where w2 ∈ {0, 1}N×n1 and b2 ∈ RN are such that

w2
sj =

{
1, if 2n0(s− 1) + 1 ≤ j ≤ 2n0s

0, otherwise

and
b2
s = −2n0

for all s = 1, . . . N . The map ϕm2 ◦ ϕm1 thus measures the membership of
a point x0 to all the hyper-parallelepipeds Ps. Since {Ps}s=1,...N partitions
X0, just one neuron of the second layer can be active at a time. Finally, for
a given w3 ∈ RN we define the affine map

ϕm3 : {0, 1}N → R
x2 7→ x2 ·w3 .

Finally, we set
Φm̂ = ϕm3 ◦ ϕm2 ◦ ϕm1 . (5.14)

We will now prove the uniform approximation properties of these ternary
FNNs. Let f be an arbitrary, fixed function in Lipλ(X

0). Let n be an integer
that satisfies

n ≥
2λ
√
n0S

ε
,

then choose N = nn0 . Consider the family of hypercubes Ps with side length
δ = S/n, forming a partition {Ps}s=1,...,N of X0. For every s = 1, . . . , N we
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can identify the hypercube Ps by the index tuple (is0 , . . . , isn0−1) whose n0

components are the unique integers isk ∈ {0, . . . , n0 − 1} such that

s− 1 = is0 + is1n+ is2n2 + · · ·+ isn0−1nn0−1 .

Then the hypercube Ps is given by

Ps = Is0 × · · · × Isn0−1

where

Isk =

{
[iskδ, (isk + 1)δ), if 0 ≤ sk < n0 − 1

[iskδ, (isk + 1)δ], if sk = n0 − 1 .

Define w3
s as the integral average of f on Ps for each s = 1, . . . , N , so that

w3 = (w3
1, . . . , w

3
N). Define Φm̂ as above, but applying Lemma 1 with P = Ps

for s = 1, . . . , N . We are now left with showing that

|Φm̂(x0)− f(x0)| ≤ ε ∀x0 ∈ X0 . (5.15)

Let x0 ∈ X0 and s ∈ {1, . . . , N} be such that x0 ∈ Ps. Then Φm̂(x0) =
ϕm3(ϕm̂2(x0)) = w3

s = f(x0
s) for some x0

s ∈ Ps, hence by the Lipschitz
property of f we obtain

|Φm̂(x0)−f(x0)| = |f(x0
s)−f(x0)| ≤ λ|x0

s−x0| ≤ L diam(Ps) = λ
√
n0S/n ≤ ε/2 < ε .

(5.16)
Since (5.16) holds for every x0 ∈ X0, we obtain (5.15), as wanted.

Remarkably, since ∪λ Lipλ(X
0) is dense in C0(X0), QNNs show approx-

imation capabilities equivalent to those of continuous-valued networks. The
theorem implies that the accuracy gaps observed experimentally between QNNs
and continuous-values DNNs are not intrinsic to quantized networks. Notice
that the last layer must be an affine map parametrised by continuous vari-
ables. This might seem as an odd constraint for a QNN (after all, we would
prefer fully quantized models), but it is consistent with the models described
in the related literature. For example, the last layers of the models described
in [122] are compositions of batch normalisation transformations (3.58) with
linear maps parametrised by quantized weights; since a batch normalisation
corresponds to the composition of a translation with an axis-parallel scaling,
the resulting composed maps are actually affine.
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5.3 Regularising quantization functions

We now introduce a useful class of quantization functions. A generalised
Heaviside function is the map:

H
{q0,q1}
θ (x) =

{
q0, if x < θ

q1, if x ≥ θ .

The standard Heaviside function is recovered when q0 = 0, q1 = 1 and θ = 0;
for simplicity, we will refer to it with the symbol H(x). We observe that a
generalised Heaviside can be expressed in terms of the canonical Heaviside
by H

{q0,q1}
θ (x) = q0 + ∆q1H(x− θ), where ∆q1 = q1− q0. Let Θ = {θ1 < θ2 <

· · · < θK} ⊂ R be a finite ordered set of real thresholds. Let Q = {q0 < q1 <
· · · < qK} ⊂ R be a quantization set. The K-step function with thresholds
Θ and quantization set Q is the non-decreasing map σ : R→ Q defined as

σ(x) = q0 +
K∑
k=1

∆qkH(x− θk) , (5.17)

where ∆qk = qk−qk−1 are the jumps between consecutive quantization levels.
The generic term multi-step function will denote a function of the form
(5.17). We can use multi-step functions to describe QNNs. Suppose w` ∈
Rn`×n`−1 is a real-valued matrix. We notice that (3.12) can be equivalently
rewritten by introducing the evaluation of the identity function on top of the
weights space:

ϕm`(x`−1) = σ`
(
id(w`) · x`−1 + b`

)
.

If we now replace id with a weight quantization function ζ` of the form (5.17),
and consider an activation function σ` also of the same form, the map

ϕm`(x`−1) = σ`
(
ζ`(w`) · x`−1 + b`

)
(5.18)

is clearly Q-quantized since both ζ`(w`) and σ` are Q-quantized. Although
the idea of a weight quantization function seems unusual when considering
the common definition of parameters in neural networks, yet this model is
consistent with many of the QNNs training algorithms based on STE [122,
123, 124, 126]. Replacing layer maps of the form (3.12) with layers of the
form (5.18) in the map (3.14) yields a QNN.

The supervised learning problem [46] to be solved is the minimisation
of the loss functional

Lg,γ(Φm̂) =

∫
X0×XL

d(Φm̂(x0), g(x0)) dγ(x0) , (5.19)
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where (x0,y = g(x0)) is a sampled observation that associates an input in-
stance x0 with its label y (obtained through an unknown oracle function
g : X0 → XL), d is a differentiable non-negative function called the loss
function, and γ is an unknown probability measure on X0. In practical ap-
plications, g is known only on a finite data set {x0

t}t=1,...,T , and the measure γ

is approximated by the empirical measure γ̃(x) =
∑T

t=1 δx0
t
(x)/T . By train-

ing of a FNN we mean any algorithm that aims at minimising Lg,γ(Φm̂) as a

function of m̂ ∈ M̂ . For example, when Φm̂ is differentiable with respect to
its parameters m̂, the gradient ∇m̂Lg,γ(Φm̂) can be computed applying the
chain rule (due to the compositional structure of Φm̂) as in the backpropa-
gation algorithm [43], and m̂ can be updated via gradient descent optimi-
sation. However, if we plug an ANN (3.14) composed of non-differentiable
building blocks (5.18) into (5.19), the chain rule can no longer be applied.
A multi-step function (5.17) is not differentiable at the thresholds, since its
(distributional) derivative is a weighted sum of Dirac’s deltas centered at the
thresholds. Interestingly, when noise satisfying mild regularity properties is
added to their argument and the expectation operator is applied, the result-
ing function turns out to be Lipschitz or even differentiable in classical sense.
Let us introduce the essential definitions and notation needed to understand
the statement of Theorem 5 and its proof. For further details, see for in-
stance [137]. Given a function f : R→ R, which is measurable with respect
to the Borel σ-algebra, we say that f ∈ Lp(R) for 1 ≤ p < ∞ if its p-norm

‖f‖p :=
(∫

R |f(x)|pdx
)1/p

is finite. We say that f ∈ L∞(R) if its ∞-norm

‖f‖∞ := inf
{
t ≥ 0

∣∣∣ ∫{x | |f(x)|>t} dx = 0
}

is finite. Given f, g ∈ L1(R), we call

the function

f ∗ g : R→ R

x 7→ (f ∗ g)(x) :=

∫
R
f(y)g(x− y)dy

the convolution between f and g. Given f ∈ L1(R), we call distributional
derivative of f the (linear, continuous) functional Df defined by

Df(φ) := −
∫
R
f(x)

dφ

dx
(x)dx

on any C∞-smooth test function φ that vanishes outside some compact in-
terval of R. When Df can be represented by a function, that is, there exists
g ∈ L1(R) such that we have the integration by parts formula

Df(φ) =

∫
R
g(x)φ(x)dx ,
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we say that f belongs to the Sobolev space W 1,1(R), and that Df = g is the
weak derivative of f . Similarly, but more generally, when Df is represented
via integration by parts by a signed Borel-regular measure Df on R, whose
total variation |Df |(R) (roughly speaking, a generalisation of the L1-norm
of the derivative of f) is finite, then we say that f is a function of bounded
variation, i.e., that it belongs to the space BV (R). For instance, the char-
acteristic function χ[a,b] of a bounded interval [a, b] ⊂ R is a BV function,
and its distributional derivative Dχ[a,b] is given by the signed measure δa−δb,
where δx denotes the Dirac’s delta measure centered at x. In order to provide
an interpretation of STE, and in accordance with the choices of the noise in
our experiments, we assume that the probability measure µ that describes
the noise distribution has a PDF which is either a Sobolev or, more generally,
a BV function on R. Hence, the generalised derivative Dµ will be either an
L1 function or a signed measure with finite total variation. With a slight
abuse of notation, we will use the symbol µ to identify both the probability
measure and its density. Given a random variable f , its expectation with
respect to the probability measure µ is the integral

Eµ[f ] :=

∫
R
f(x)µ(x)dx .

Lemma 2. Let σ : R→ R and µ : R→ R be given functions. The following
facts hold:

(i) if σ ∈ L∞(R) and µ ∈ BV (R) then σ ∗ µ ∈ W 1,∞(R);

(ii) if σ ∈ L∞(R) and µ ∈ W 1,1(R) then the weak derivative of σ∗µ satisfies

D(σ ∗ µ)(x) = σ ∗Dµ(x)

for almost all x ∈ R;

(iii) if σ ∈ BV (R) and µ ∈ W 1,1(R) then σ ∗ µ ∈ C1(R), its derivative is
uniformly continuous and one has

d(σ ∗ µ)

dx
(x) = σ ∗Dµ(x)

for all x ∈ R.

Proof. We first show (i). It is immediate to check that

‖σ ∗ µ‖∞ ≤ ‖σ‖∞ ‖µ‖1 < +∞ . (5.20)
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We choose x1 < x2 ∈ R and, thanks to Fubini’s theorem and change of
variable, we obtain the following estimate:

|σ ∗ µ(x1)− σ ∗ µ(x2)| =
∣∣∣∣∫
y∈R

(
µ(x1 − y)− µ(x2 − y)

)
σ(y)dy

∣∣∣∣
≤
∫
y∈R
|Dµ|

(
[x1 − y, x2 − y]

)
|σ(y)| dy

≤ ‖σ‖∞
∫
y∈R

∫
z∈R

χ[x1,x2](z + y)d|Dµ|(z)dy

= ‖σ‖∞
∫
z∈R

∫
y∈R

χ[x1,x2](z + y)dyd|Dµ|(z)

≤ ‖σ‖∞|Dµ|(R) |x1 − x2| .

This shows that σ∗µ is a Lipschitz function (with Lipschitz constant bounded
above by ‖σ‖∞|Dµ|(R)). Therefore the proof of (i) follows from the Sobolev
characterisation of Lipschitz functions combined with (5.20). Let us prove
(ii) by showing that σ∗µ is weakly differentiable, thus providing a point-wise
almost everywhere representation of its weak derivative. Let φ ∈ C∞c (R) be
a given test function. By using Fubini’s Theorem, the definition of weak
derivative, and the change of variable in the integration, we obtain

∫
R
σ ∗ µ(x)

dφ

dx
(x)dx =

∫
x∈R

∫
y∈R

σ(y)µ(x− y)dy
dφ

dx
(x)dx

=

∫
y∈R

∫
x∈R

µ(x− y)
dφ

dx
(x)dxσ(y)dy

= −
∫
x∈R

∫
y∈R

σ(y)Dµ(x− y)dyφ(x)dx

= −
∫
x∈R

σ ∗Dµ(x)φ(x)dx .

This shows (ii). We finally prove (iii). By (i) and (ii) we already know that
σ ∗ µ ∈ W 1,∞(R) and its weak derivative satisfies D(σ ∗ µ)(x) = σ ∗Dµ(x)
for almost all x ∈ R. The conclusion is achieved as soon as we show that
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σ ∗Dµ(x) is a continuous function. We have for x1 < x2 ∈ R

|σ ∗Dµ(x1)− σ ∗Dµ(x2)| =
∣∣∣∣∫
y∈R

Dµ(x1 − y)σ(y)dy −
∫
y∈R

Dµ(x2 − y)σ(y)dy

∣∣∣∣
=

∣∣∣∣∫
z∈R

Dµ(z)
(
σ(x1 − z)− σ(x2 − z)

)
dz

∣∣∣∣
≤
∫
z∈R

∫
t∈R

χ[x1,x2](t+ z)d|Dσ|(t)|Dµ(z)|dz

=

∫
t∈R

∫
z∈R

χ[x1,x2](t+ z)|Dµ(z)|dzd|Dσ|(t)

=

∫
t∈R

∫
z∈R

χ[x1,x2](t+ z)|Dµ(z)|dzd|Dσ|(t) .

Denote by ν the non-negative, finite Borel measure defined by dν = |Dµ(z)|dz.
Since ν is absolutely continuous with respect to the Lebesgue measure, for
all ε > 0 there exists δ > 0 such that, if |x1 − x2| < δ then ν([x1, x2]) < ε.
Therefore we get

|σ ∗Dµ(x1)− σ ∗Dµ(x2)| ≤
∫
t∈R

ν([x1 − t, x2 − t])d|Dσ|(t) ≤ ε|Dσ|(R)

as soon as |x1 − x2| ≤ δ, which proves the uniform continuity of σ ∗Dµ and
concludes the proof.

Theorem 5 (Noise regularisation effect on multi-step functions). Let σ :
R→ Q be a multi-step function. Let ν be a zero-mean random variable whose
distribution has density µ(−ν). Define the random function σν(x) := σ(x+ν)
for x ∈ R. Then:

(i) Eµ[σν ] = σ ∗ µ;

(ii) µ ∈ W 1,1(R) implies that Eµ[σν ] is differentiable, its derivative is bounded,
continuous, and satisfies d

dx
Eµ[σν ] = σ ∗Dµ;

(iii) µ ∈ BV (R) implies that DEµ[σν ] = σ ∗ Dµ almost everywhere and it
is bounded by λ = ‖σ‖∞ |Dµ|(R).

Proof. The first claim (i) simply follows from the change of variables z =
x+ ν:

Eµ[σν ](x) =

∫
R
σ(x+ ν)µ(−ν)dν =

∫
R
σ(z)µ(x− z)dz = (σ ∗µ)(x), ∀x ∈ R .

The proofs of (ii) and (iii) follow from the application of Lemma 2 noticing
that, by definition of multi-step function, σ ∈ L∞(R) (in particular, ‖σ‖∞ =
maxq∈Q{|q|}).
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In other words, the expectation acts as a convolution on the non-differentiable
function σ (with the noise playing the role of the kernel), and the regularity
of µ is transferred to Eµ[σν ]. To simplify technical computations, we used
µ(−ν) instead of µ(ν), but we notice that for symmetric distributions (such
as the uniform or the Gaussian) µ(−ν) = µ(ν).

5.4 The additive noise annealing algorithm

Modern deep learning frameworks such as TensorFlow [55] or PyTorch [56]
have been designed to optimised the execution of gradient-based learning
algorithms. This optimisation and the vast community support make it un-
appealing for users to transition towards gradient-free learning algorithms.
The computational graph associated with a QNN is not differentiable, and
therefore it does not support gradient computation. In the following we will
show how to use the results of the previous Section 5.3 to turn the functions
that compose a QNN into differentiable computational nodes.

Let ϕm` be a quantized layer (5.18) with parameters w` and b`. Let nw`

and nb` be random variables distributed according to zero-mean measures
which have probability densities µw` and µb` . The random variables ω` :=
w` + nw` ,β` := b` + nb` are distributed according to the measures with
densities µω`(ω) = µw`(ω −w`) and µβ`(β) = µb`(β − b`), and have means
w` and b`. If we define ξ` := (ω`,β`), the quantized layers (5.18) become
random functions:

ϕξ`(x
`−1) := σ`

(
ζ`(ω`) · x`−1 + β`

)
. (5.21)

The L-layer network

Φξ̂ = ϕξL ◦ ϕξL−1 ◦ · · · ◦ ϕξ1

is a random function that we call a stochastic configuration of a QNN.
We define the random variable ξ̂ := (ξ1, . . . , ξL) ∈ M̂ , distributed according
to the product measure with density µ̂ = µ1 × · · · × µL. The set {Φξ̂}ξ̂∈M̂ of
all possible stochastic configurations of the network and the measure µ̂ over
M̂ define the ensemble

({Φξ̂}ξ̂∈M̂ , µ̂) . (5.22)

Rewriting (5.21) as

σ`
(
ζ`(ω`) · x`−1 + β`

)
= σ`n

b`

(
ζ`n

w`
(w`) · x`−1 + b`

)
.

and applying Theorem 5 we get the differentiable function

ϕ̃m`(x`−1) := σ̃`
(
ζ̃`(w`) · x`−1 + b`

)
, (5.23)
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where σ̃` = Eµ
b`

[σ`n
b`

] and ζ̃` = Eµ
w`

[ζ`n
w`

]. We call (5.23) the mean field

layer associated with layer (5.18) and noise densities µw` , µb` . Note that the
mean field layer can be thought of as an approximation of the expectation

ϕ̃m`(x`−1) ≈ Eµ` [ϕξ` ](x`−1) ,

where µ` := µw`×µb` denotes the density associated with the natural product
measure on M `.

Assuming that each layer map ϕξ` : X`−1 → X` is uniformly continuous
with respect to its parameters ξ`, the next theorem states that the compo-
sition of expectations EµL [ϕξL ] ◦ · · · ◦ Eµ1 [ϕξ1 ] point-wise converges to the
(deterministic) feedforward neural network Φm̂ as soon as µ̂ = µ1 × · · · × µL
converges to δm̂ = δm1 × · · · × δmL (i.e., to the product of Dirac’s deltas
concentrated at the parameters means). It is worth recalling the notion of
weak-∗ convergence for a (probability) measure: we say that a sequence µt of
Borel measures restricted to a compact subset M ⊂ Rn converges weakly-∗
to a Borel measure µ on M if, for every continuous function φ : M → R,
one has Eµt [φ]→ Eµ[φ] as t→∞.

Theorem 6 (Continuity of composed expectations). Let M ` and X`−1 be
compact subsets of some Euclidean spaces. Assume that, for all ` = 1, . . . , L,
the map ϕξ`(x

`−1) = ϕ`(ξ`,x`−1) is continuous in both variables ξ` and x`−1.
Let {µ`t}t∈N be a sequence of probability measures on M ` converging to the
Dirac’s delta δm` for suitable m` ∈ M ` and for all ` = 1, . . . , L. Then
limt→∞ EµLt [ϕξL ] ◦ · · · ◦ Eµ1t [ϕξ1 ](x) = Φm̂(x), ∀x ∈ X0.

We recall the notation (3.14) for a parametric composition of maps, as
Theorem 6 applies to this situation as well. We recall in particular the map
Ψm̂` : X0 → X` defined as Ψm̂` = ψm` ◦ · · · ◦ ψm1 , as it will play a role in
the induction argument below.

Proof. First of all we observe that the continuity assumption on ψ` implies
the existence of a modulus of continuity η (i.e., η : [0,+∞) → [0,+∞) is
continuous, strictly increasing, and satisfies η(0) = 0) such that

sup
ξ`∈M`

|ψξ`(x)− ψξ`(y)| ≤ η(|x− y|), ∀x,y ∈ X`−1, ∀ ` = 1, . . . , L . (5.24)

Denote by E`,t the expectation operator associated with the measure µ`t. We
proceed by induction on ` = 1, . . . , L. The basis of the induction consists in
showing that

lim
t→∞

E1,t[ψξ1 ](x) = ψm1(x), ∀x ∈ X0 . (5.25)
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We observe that

J1,t(x) := E1,t[ψξ1 ](x) =

∫
M1

ψ(ξ1,x)dµ1
t (ξ

1) ,

hence (5.25) directly follows from the definition of convergence of µ1
t to δm1 .

In the next, inductive step we shall apply the uniform continuity assumption
(5.24) in an essential way. Let us set

J`,t(x) := E`,t[ψξ` ] ◦ · · · ◦ E1,t[ψξ1 ](x)

and assume by induction that

lim
t→∞

J`,t(x) = Ψm̂`(x), ∀x ∈ X0 . (5.26)

We then have to prove that, for some 1 ≤ ` < L and for all x ∈ X0,

lim
t→∞

E`+1,t[ψξ`+1 ] ◦ J`,t(x) = ψm`+1 ◦Ψm̂`(x) = Ψm̂`+1(x) . (5.27)

First, we rewrite

E`+1,t[ψξ`+1 ] ◦ J`,t(x)− ψm`+1 ◦Ψm̂`(x) =

=

∫
M`+1

(
ψξ`+1(J`,t(x))− ψm`+1(Ψm̂`(x))

)
dµ`+1

t (ξ`+1)

=

∫
M`+1

(
ψξ`+1(J`,t(x))− ψξ`+1(Ψm̂`(x))

)
dµ`+1

t (ξ`+1)

+

∫
M`+1

(
ψξ`+1(Ψm̂`(x))− ψm`+1(Ψm̂`(x))

)
dµ`+1

t (ξ`+1)

= A+B ,

(5.28)

where the first equality follows from µ`+1
t being a probability measure. The

first addend in equation (5.28) satisfies

|A| ≤ η(|J`,t(x)−Ψm̂`(x)|) ,

since µ`+1
t . By the inductive hypothesis (5.26), this term goes to zero when

t → ∞. The term B in equation (5.28) goes to zero thanks to the weak-∗
convergence hypothesis on µ`+1

t . This proves (5.27) and completes the proof
of the theorem.

Even though the σ` and ζ` used in Section 5.2 to model QNNs are not
continuous, Theorem 6 motivates ANA. None of the networks corresponding
to the individual configurations in (5.22) is differentiable, but each of them is
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quantized. The approximate ensemble average (the mean field network) built
using blocks (5.23) is instead differentiable as long as the conditions provided
by Theorem 5 are satisfied, but it is usually not quantized. Therefore, in order
to retrieve a QNN, the probability measure of the ensemble must collapse
onto a single element of the configuration space. At every training iteration
(Algorithm 4, lines 1-20), ANA sets probability measures µω` , µβ` for each
parameter ω` and β` (lines 2-5). ANA then replaces the non-differentiable
functions with regularised counterparts (lines 6-9), so that gradients can be
computed (lines 10-17). We remark that the measures µω` , µβ` depend on
time, and should be annealed to Dirac’s deltas as t → T . We discuss the
implemented annealing strategies in Section 5.5.

Algorithm 4 Synchronous additive noise annealing

Input: Φm̂0 , λ0, T, {(x0
t ,yt)}t=1,...,T

Output: Φm̂T

1: for t← 1, T do
2: for `← 1, L do . additive noise
3: µω` ← set noise(t,w`)
4: µβ` ← set noise(t,b`)
5: end for
6: for `← 1, L do . inference
7: w̃` ← Eµ

ω`
[ζ`(ω`)]

8: x`t ← Eµ
β`

[σ`(w̃` · x`−1
t + β`)]

9: end for
10: gxL ← ∇xLdL(xLt ,yt) . backpropagation
11: for `← L, 1 do
12: gs` ← gx` · ∇s`Eµβ` [σ

`(s` + β`)]
13: gb` ← gs`
14: gw̃` ← gs` · x`−1

t

15: gw` ← gw̃` · ∇w`Eµ
ω`

[ζ`(ω`)]

16: gx`−1 ← gs` · w̃`

17: end for
18: m̂t ← optim(λt−1, m̂t−1, gm̂) . gradient descent
19: λt ← lr sched(t, λt−1, m̂t)
20: end for
21: return Φm̂T

Using Theorem 5, we can interpret STE [138] as a particular instance that
applies noise to the argument of the sign function according to two different
densities µf , µb during the forward and backward passes.
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Corollary 1. Let σ(x) = H
{−1,+1}
0 (x) denote the univariate sign function.

Define forward and backward probability measures with generalised densities
µf = δ0 and µb = U [−1,+1], and denote with νf , νb the random variables
distributed accordingly. By Theorem 5 we have

Eµf [σ(x+ νf )] = σ(x) and
d

dx
Eµb [σ(x+ νb)] =

{
0, if x /∈ [−1, 1]

1, if x ∈ [−1, 1] .

This observation led us to devise a generalised version of Algorithm 4
that allows defining different measures µf

ω`
6= µb

ω`
and µf

β`
6= µb

β`
in lines 2-5.

This idea amounts to replacing the non-differentiable nodes in the compu-
tational graph with differentiable approximations that can change between
the inference and training passes. Notice that, to get a QNN at inference
time, it is sufficient that only one measure (the one used during the forward
pass) converges to a Dirac’s delta. Using differentiable functions during the
backward pass allows the gradients to flow (and for training to continue) in
the lower layers also when t → T . To distinguish this variant of ANA from
the previous one, we will refer to the former with the term synchronous
ANA.

5.5 QuantLab

The activity of collecting measurements about a physical phenomenon where
certain variables (called explanatory variables) can be controlled is called
experimentation. The activity of collecting performance measurements
about an engineered artifact where certain parameters of the artifact can
be arbitrarily set is called benchmarking. Benchmarking is often confused
with experimentation. Both the activities are empirical in nature: scientists
and engineers collect measurements to quantify desired relationships. Exper-
imentation studies the relationships between the explanatory variables and
the response variables of some physical phenomenon to provide insights into
its physics. Benchmarking studies the relationships between the parame-
ters of a given artifact and some performance metrics to provide operational
guidelines to future users of the artifact. Usually, benchmarking involves a
series of tasks (and associated metrics) to evaluate the performance of the
artifact; each task is called a benchmark. In the machine learning liter-
ature, and specifically in deep learning literature, the term experiments or
experimental results are improperly used to refer to benchmarking.

QuantLab is an add-on for PyTorch [56], designed to enable the bench-
marking of the additive noise annealing algorithm over multiple ANN topolo-
gies and multiple data sets. It is a Python package containing configuration
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Algorithm 5 Additive noise annealing

Input: Φm̂0 , λ0, T, {(x0
t ,yt)}t=1,...,T

Output: Φm̂T

1: for t← 1, T do
2: for `← 1, L do . additive noise
3: µf

ω`
, µb
ω`
← set noise(t,w`)

4: µf
β`
, µb
β`
← set noise(t,b`)

5: end for
6: for `← 1, L do . inference
7: w̃` ← Eµf

ω`
[ζ`(ω`)]

8: x`t ← Eµf
β`

[σ`(w̃` · x`−1
t + β`)]

9: end for
10: gxL ← ∇xLdL(xLt ,yt) . backpropagation
11: for `← L, 1 do
12: gs` ← gx` · ∇s`Eµb

β`
[σ`(s` + β`)]

13: gb` ← gs`
14: gw̃` ← gs` · x`−1

t

15: gw` ← gw̃` · ∇w`Eµb
ω`

[ζ`(ω`)]

16: gx`−1 ← gs` · w̃`

17: end for
18: m̂t ← optim(λt−1, m̂t−1, gm̂) . gradient descent
19: λt ← lr sched(t, λt−1, m̂t)
20: end for
21: return Φm̂T

files to optimise its performances on the underlying computing infrastructure.
According to the definition of machine learning system given in Section 1.3,
we designed QuantLab to include

• a sub-package indiv that implements a library of quantized layer maps
which can be used to build different program spaces;

• a sub-package treat that implements the operations of ANA, our learn-
ing algorithm for QNNs;

• multiple problem sub-packages implementing different machine learn-
ing systems on different data sets; we implemented packages MNIST,
CIFAR-10 and ImageNet for the corresponding image classification tasks.

Theorem 4 requires that weights take values in a superset of {−1, 0,+1}
and that representations take values in a superset of {0, 1}. BNNs do not
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satisfy these conditions. The only research work satisfying the conditions
prescribed by the theorem while using low-bitwdith operands is GXNOR-
Nets [132]. As we observed in Section 5.1, GXNOR-Nets uses a gradient-free
update rule for the weights, whereas ANA is a fully gradient-based training
algorithm. For these two reasons, we decided to experiment with TNNs
instead of BNNs, but also compared with BNNs trained using gradient-based
algorithms. We set all the weights quantization functions and the activation
functions of our systems to be the multi-step function

ς(x) =


−1, if x ∈ (−∞,−0.5)

0, if x ∈ [−0.5, 0.5)

1, if x ∈ [0.5,+∞) .

The shadow weights were initialised uniformly around the thresholds. In
Section 5.4, we remarked that the measures µf

ω`
and µf

β`
need to converge

(in the weak-∗ sense) to Dirac’s deltas in order to yield a QNN at inference
time. Note that a uniform distribution U [a, b] over a non-empty real interval
[a, b] can also be described as U [a+b

2
−
√

3ς, a+b
2

+
√

3ς], where ς is its standard
deviation. Modelling ς = ς(t) as a time-dependent quantity, we see that the
zero-mean distribution

U [−
√

3ς(t),
√

3ς(t)] (5.29)

converges to δ0 if ς(t) → 0 as t → 0. We thus modelled µf
ω`
, µb
ω`
, µf
β`

and

µb
β`

as products of independent uniform distributions of the form (5.29). In
other words, we added a zero-mean uniform noise of given standard devia-
tion to each parameter. We defined these random variables to be independent
but not necessarily identically distributed (i.e, different parameters could be
added noises whose measures had different standard deviations). To anneal
the measures to Dirac’s deltas, we used their component’s standard devia-
tions as time-dependent hyperparameters. We ran all the experiments for
1000 epochs on machines equipped with an Intel Xeon E5-2640v4 CPU, four
Nvidia GTX1080 Ti GPUs, and 128 GB of memory.

CIFAR-10 The CIFAR-10 data set [74] consists of 32 × 32 pixels RGB
images grouped into ten classes. It comprises 50k training points and 10k
test points. For our experiments, we split the 50k images training set in a
45k images actual training set and a 5k validation set [102]. We performed
data augmentation by resizing, random cropping and random flipping the
images. The preprocessing consisted of a normalization of the three channels
described by means µ = (0.4914, 0.4822, 0.4465) and standard deviations σ =
(0.2470, 0.2430, 0.2610). For the sake of comparison with related work, we
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used the same VGG-like architecture used by [121, 122] and [132], consisting
of six convolutional layers followed by three fully connected layers. The exact
topology is described in Table 5.5. We used the per-class hinge loss also

Layer Input shape Type C`/n` P F S Output shape

ϕ1 3 × 32 × 32
Conv2d 128 1 3 1

128 × 32 × 32BatchNorm2d -
QuantAct -

ϕ2 128 × 32 × 32

Conv2d 128 1 3 1

128 × 16 × 16
MaxPool2d - 0 2 2
BatchNorm2d -
QuantAct -

ϕ3 128 × 16 × 16
Conv2d 256 1 3 1

256 × 16 × 16BatchNorm2d -
QuantAct -

ϕ4 256 × 16 × 16

Conv2d 256 1 3 1

256 × 8 × 8
MaxPool2d - 0 2 2
BatchNorm2d -
QuantAct -

ϕ5 256 × 8 × 8
Conv2d 512 1 3 1

512 × 8 × 8BatchNorm2d -
QuantAct -

ϕ6 512 × 8 × 8

Conv2d 512 1 3 1

512 × 4 × 4
MaxPool2d - 0 2 2
BatchNorm2d -
QuantAct -

ϕ7 8192
FC 1024 -

1024BatchNorm1d -
QuantAct -

ϕ8 1024
FC 1024 -

1024BatchNorm1d -
QuantAct -

ϕ9 1024
FC 10 -

10
BatchNorm1d -

Table 5.1: The VGG-like network used for CIFAR-10 experiments. For each
map, C`/n` indicate the number of neuron planes in a convolutional layer
or the number of neurons in a normal layer, P the padding, F the spatial
dimensions of the neuron columns and S the stride.

used by [121, 122] in combination with the Adam optimisation algorithm [54].
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The learning rate was initialized to 0.001 and decreased to 0.0001 at epoch
700. We set a batch size of 256. In the first experiment we used syncrhonous
ANA (Algorithm 4). We heuristically opted for hierarchical annealing of
the noise, starting from layer ϕm1 to layer ϕmL . This strategy was meant
to allow the representations of lower layers to stabilise before transitioning
to differentiable approximations with too high Lipschitz constants in the
upper layers thus avoiding the exploding gradients problem (this potentially
disruptive effect can derived as a corollary from Theorem 5). The standard
deviations regulating the noises of the layers ϕξ` , ` = 1, . . . , L were initialized

to ςf
ω`

(0) = ςb
ω`

(0) = ςf
β`

(0) = ςb
β`

(0) = ς`(0) =
√

3/6 (in order to describe the

uniform distribution U [−1,+1]) and annealed following the linear decay

ς`(t) =

(
1− min(max(0, t− 50(`− 1)), 50

50

)
ς`(0) , (5.30)

where t denotes the training epoch. The idea was that ς` should decay
from

√
3/6 at epoch 50(` − 1) to zero at epoch 50`. Since the noise dis-

tribution had to be annealed to get a quantized network, the limitation
of synchronous ANA was that it prevented gradients from flowing through
multi-step functions and adjusting the lower layers’ parameters. To circum-
vent this problem, we experimented with Algorithm 5 using forward mea-
sures µf

ω`
, µf
β`

whose controlling standard deviations were again initialized

to ςf
ω`

(0) = ςb
ω`

(0) = ςf
β`

(0) = ςb
β`

(0) =
√

3/6. We annealed the standard

deviations of the forward noises trying both the linear annealing (5.30) and
the quadratic annealing

ς`(t) =

(
1− min(max(0, t− 50(`− 1)), 50

50

)2

ς`(t) .

The standard deviations regulating the backward noises were kept constant.
Since all the network’s parameters could be updated even after the noise
had been removed from the forward pass computational graph, both the
linear and quadratic settings outperformed synchronous annealing, showing
no relevant mutual difference. Validation accuracies for the linear annealing
scheme are reported in Table 5.5.

ImageNet The part of the ImageNet database [75] used for the image clas-
sification track of the ILSVRC challenge [76] consists of 224×224 pixels RGB
images grouped into 1000 classes. It comprises 1.2M training points and 50k
validation points. We performed data augmentation using a pipeline of ran-
dom resizing and cropping, random flipping, random colours alterations and
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random PCA-based lighting changes. The colour alterations consisted of ran-
dom changes of brightness, contrast and saturation (these transformations
are essentially linear interpolations between the original image and trans-
formations of its greyscale version). The lighting changes were performed
by randomly rescaling the three RGB channels using coefficients which de-
pend on the eigenvalues obtained applying a per-pixel PCA on the ImageNet
dataset. The preprocessing consisted of a normalization of the three chan-
nels described by means µ = (0.485, 0.456, 0.406) and standard deviations
σ = (0.229, 0.224, 0.225). For the sake of comparison with related research,
we experimented on AlexNet [88]. This network topology is described in
Table 5.5. We used the cross-entropy loss function in combination with the
Adam optimisation algorithm. The learning rate was initialized to 0.001
and decreased to 0.0001 at epoch 700. The batch size was set to 512. The
standard deviations regulating the noises of the layers ϕξ` , ` = 1, . . . , L were

initialized to ςf
ω`

(0) = ςb
ω`

(0) = ςf
β`

(0) = ςb
β`

(0) = ς`(0) =
√

3/6. We annealed
the forward noises’ standard deviations using the delayed linear annealing

ς`(t) =

(
1− min(max(0, t− 50(`)), 50

50

)
ς`(0) ,

where t denotes the training epoch. The idea was that ς` should have decayed
from

√
3/6 at epoch 50` to zero at epoch 50(`+ 1). The standard deviations

regulating the backward noises were kept constant at
√

3/6. We also ex-
perimented with mixed precision networks. In particular, we quantized the
residual branches of a MobileNetV2 [95] while keeping the bottleneck layers
at full-precision (see also [125]). We also took care of quantizing the in-
put tensors to all the residual branches to ensure the computationally costly
convolution operations are performed with ternary operands. Although this
yields a network which is only partially quantized, the operations performed
in the residual branches of a MobileNetV2 amount to approximately 70% of
the total operations and contain approximately 30% of the total parameters,
yielding a significant reduction in both computational effort and memory
footprint. Validation accuracies are reported in Table 5.5.

Comparisons between ANA and similar low-bitwidth (BNNs, TNNs) quan-
tization methods are reported in Table 5.5. To perform a more direct com-
parison to a TNN trained with GXNOR-Net [132], we evaluated our method
on CIFAR-10 with a VGG-like network. Here we observed a 1.76% inferior
accuracy; however, we could not verify the scalability of the GXNOR-Net
algorithm to deeper networks. We remark that deep learning frameworks do
not implement optimised libraries to support gradient-free algorithms, and
we think an exploration of initialisation strategies for ANA could further im-
prove the resulting accuracy. On AlexNet we achieved a validation accuracy
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Layer Input shape Type C`/n` P F S Output shape

ϕ1 3 × 227 × 227

Conv2d 64 2 11 4

64 × 27 × 27
MaxPool2d - 0 3 2
BatchNorm2d -
QuantAct -

ϕ2 64 × 27 × 27

Conv2d 192 2 5 1

192 × 13 × 13
MaxPool2d - 0 3 2
BatchNorm2d -
QuantAct -

ϕ3 192 × 13 × 13
Conv2d 384 1 3 1

384 × 13 × 13BatchNorm2d -
QuantAct -

ϕ4 384 × 13 × 13
Conv2d 256 1 3 1

256 × 13 × 13BatchNorm2d -
QuantAct -

ϕ5 256 × 13 × 13

Conv2d 256 1 3 1

256 × 6 × 6
MaxPool2d - 0 3 2
BatchNorm2d -
QuantAct -

ϕ6 9216
FC 4096 -

4096BatchNorm1d -
QuantAct -

ϕ7 4096
FC 4096 -

4096BatchNorm1d -
QuantAct -

ϕ8 4096
FC 1000 -

1000
BatchNorm1d -

Table 5.2: The AlexNet model used in part of the experiments on ImageNet.
For each map, C`/n` indicate the number of neuron planes in a convolutional
layer or the number of neurons in a normal layer, P the padding, F the
spatial dimensions of the neuron columns and S the stride.

of 45.8%. In comparison to the most widely known STE (41.8% accuracy)
[121, 122], the network trained with ANA showed a clear reduction of the
accuracy gap to the full-precision network (54.7% accuracy) by 31%. Com-
paring to a BNN trained with XNOR-Net, our trained TNN apparently has
a richer configuration space and the achieved accuracy gain is less distinct.
However, note that XNOR-Net does not quantize the first and last layers
[123]. Moreover, this algorithm require to dynamically compute the L1-norm
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Problem Network Topology
—— Top-1 accuracy ——
Full-precision Ternary

CIFAR-10 VGG-like 94.40% 90.74%

ImageNet
AlexNet 54.71% 45.80%
MobileNetV2 71.25% 64.79%1

1 Only the residual branches of MobileNetV2 were quantized
(∼70% of MACs and ∼30% of parameters).

Table 5.3: Top-1 validation accuracy of ANA on both CIFAR-10 and Ima-
geNet datasets.

of every representation at each forward pass. To analyze the application of
TNNs to a more recent and compute-optimised network, we evaluated the
accuracy of MobileNetV2 with quantized residuals (i.e., training a partially
quantized network). This simplified 70% of the network’s convolution op-
erations and reduced by 30% its memory foortprint, while introducing an
accuracy loss of only 6.46% from 71.25% to 64.79%.

Algorithm Type
CIFAR-10 ——– ImageNet ——–
VGG-like AlexNet MobileNetV22

STE [121, 122] BNN 89.85% 41.80% -
XNOR-Net1[123] BNN - 44.20% -
GXNOR-Net [132] TNN 92.50% - -
ANA TNN 90.74% 45.80% 64.79%

1 The first layer is not quantized; the linear part of the last layer
does not use quantized parameters.
2 Only the residual branches of MobileNetV2 were quantized (∼70%
of MACs and ∼30% of parameters).

Table 5.4: Comparison between the Top-1 validation accuracies of ANA and
similar methods described in QNN literature.

Artificial neural networks have proven to be general purpose machine
learning systems, and have therefore seen widespread adoption throughout
the scientific community. We ascribe the major part of the merit of this
success to their fitness to parallel computers. Recent years have seen an
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increase in research about computer architectures specifically designed for
ANNs, like tensor processing units (TPUs). But in order to deploy ANNs on
resource-constrained devices such as embedded devices, we need to simplify
their arithmetic and program spaces further. This ultimately translates into
dropping the differentiability which lies at the heart of backpropagation [42,
43].

The idea of quantized neural networks is not new: research in ANNs was
born around systems whose weights and activation functions were quantized
[28, 29, 30, 35, 37, 32, 39, 33, 38]. Nevertheless, we can now address this
return to the origins with more tools than those which were available fifty
years ago. In particular, we have attacked this problem using functional
analysis and probability theory. Similarly to quantum mechanics, to recover
continuity and differentiability on a space of non-differentiable functions we
need to interpret it as an ensemble. In order to train our systems efficiently
on existing software frameworks [55, 56] we had to develop a gradient-based
rule similar to backpropagation. Therefore, we have traded some formal
correctness against efficient training. Preliminary benchmark results of our
algorithm are promising: we plan to analyse more in-depth the annealing
strategies for the probability measures according to which the additive noise
is distributed.
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Figure 5.3: The regularisation effect of additive noise on the non-
differentiable multi-step function

ς(x) =


−1, if x ∈ (−∞,−0.5)

0, if x ∈ [−0.5, 0.5)

1, if x ∈ [0.5,+∞) .

Blue lines represent (ς ∗µ)(x), and red lines its derivative d(ς∗µ)
dx

(x). Different
examples of probability measures µ are depicted for different values of their
variances σ: (a1, a2) uniform, (b1, b2) Gaussian and (c1, c2) logistic.
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Figure 5.4: The regularisation effect of additive noise on the non-
differentiable multi-step function

ς(x) =



−2, if x ∈ (−∞,−1.5)

−1, if x ∈ [−1.5,−0.5)

0, if x ∈ [−0.5, 0.5)

1, if x ∈ [0.5, 1.5)

2, if x ∈ [1.5,+∞) .

Blue lines represent (ς ∗µ)(x), and red lines its derivative d(ς∗µ)
dx

(x). Different
examples of probability measures µ are depicted for different values of their
variances σ: (a1, a2) uniform, (b1, b2) Gaussian and (c1, c2) logistic.



Chapter 6

Conclusions

To get meaningful insights, we need clear questions. Evaluating machine
learning systems is a particularly challenging task since it requires answering
questions from diverse fields: mathematics, algorithms theory and computer
architectures. From a modelling perspective, we need to know which classes
of objects (for example, which function spaces) the system can approximate,
and how many components it needs to reach a desired degree of approxi-
mation (for example, the number of trees in a random forest or the number
of neurons and layers in an artificial neural network). From an algorithmic
perspective, we need to estimate the complexity of learning and inference
algorithms in terms of the size of the individual input sample (usually an
array) and of the size of the system’s data set. From an engineering perspec-
tive, we need to assess the latency and energy consumption of the system
when it is run on a given computer architecture.

From a modelling perspective, support vector machines and their kernel
extensions [139, 140, 141] can implement every function in a reproducing ker-
nel Hilbert space (RKHS) [142], but choosing the kernels and tuning them
to acceptable levels of accuracy require time and expertise; moreover, the
resulting programs can not be directly reused on related tasks. Decision
trees [143, 144, 145] have a branching structure that can be understood by
humans (they are so-called white-box models) and they can process in a uni-
fied way both categorical and numerical data, but they are poor function
approximators for all but the simplest functions. Random forests are en-
semble machine learning systems based on decision trees [146]. At the time
of writing, the theory behind random forests is not fully understood, and
just a few efforts have been devoted to their analysis [147, 148]; they seem
to be powerful function approximators which do not suffer from overfitting
but are also black-box models which are not easy to reuse after being trained
on a specific task. Artificial neural networks are dense in different spaces of

127
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real functions defined on compact domains [44, 45], and the interest received
by these systems in recent years has motivated a detailed analysis of their
representational capabilities [149, 150]. With respect to other machine learn-
ing systems, artificial neural networks have the advantage of having modular
structures: with proper design at modelling time, the representations com-
puted by a hidden layer of a neural network trained on one problem can be
reused to solve problems that share similarities with the original one. This
property can save practitioners valuable modelling time. We exemplified this
point with the analyser of driving perceptions in Section 4.3. All these ma-
chine learning systems can directly operate only on spaces of simple entities,
usually vector spaces. We have also presented learning systems capable of
analysing spaces of probability distributions. As exemplified by the finger-
print method in Section 2.2, these systems require complex ad-hoc modelling
and are often built upon assumptions which limit the number of problems to
which they can be applied.

When time constraints are not an issue, it is sufficient to consider statis-
tical metrics. However, in many real-world scenarios, the family of systems
that can actually be considered is constrained by the data set size (for learn-
ing) or by the structure of the system’s programs (for inference). Let N
denote the data set size and n denote the size of a generic input instance.
The learning algorithm for a support vector machine is a quadratic program-
ming problem [48], and its time cost is O(nN2). Inference is not as prob-
lematic since it requires O(nN) operations. The cost of training a decision
tree is O(nN2), although we must observe that heuristics that take linear
time O(nN) have been proposed [151]. The cost of inference is Ω(log(N))
and O(N), depending on the structure of the grown tree. Random forests
just multiply these costs by the number of trees they are composed of and
therefore have the same complexity. The most used learning algorithm for
artificial neural networks (backpropagation combined with stochastic gradi-
ent descent) is an online algorithm with cost O(nN). The cost of inference is
O(n2). The inference algorithms for all these systems (except decision trees)
can be highly parallelised. As for the learning algorithms, artificial neural
networks seem to be the clear winner, although we must observe that the size
n of their inputs is usually greater than that of other algorithms. For exam-
ple, the inputs of computer vision tasks are often images with thousands of
pixels: in these cases, the impact of the input size is not negligible.

Computer architectures metrics are an essential filter, especially for ap-
plications with constrained resources, be it latency, energy or both. Support
vector machines rely on floating-point arithmetic: this is not a limitation
by itself, but it requires ISAs including floating-point instructions. Random
forests are useful at many tasks, but they have data-dependent branching
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structures which make it hard to use SIMD architectures efficiently. The par-
allel nature of artificial neural networks and the homogeneity of the compu-
tational primitive implemented by each neuron (the dot product) are instead
optimal for SIMD computer architectures. Since quantized neural networks
are in principle equivalent to classical artificial neural networks (at least on
the set of targets represented by continuous functions defined on compact
domains), it makes sense to develop specialised hardware accelerators. As
we said, learning on bags is a relatively unexplored field and it is conse-
quently hard to make general evaluations about the hardware suitability of
the respective systems.

System Approximation Reuse
—- Time cost —-

SIMD
Training Inference

SVM High 7 O(nN2) O(nN) 3

DT Low 3 O(nN2) O(N) 7

RF High 7 O(nN2) O(N) 7

ANN High 3 O(nN) O(n2) 3

Table 6.1: Comparison of different supervised machine learning systems. Ar-
tificial neural networks (ANNs) have many desirable properties when com-
pared to support vector machines (SVMs), decision trees (DTs) and random
forests (RFs). Amongst the systems which have program spaces which are
dense in large function spaces, only ANNs can save modelling time. Their
learning algorithm has linear time complexity in the data set size, which
makes them suitable to solve big data problems. Moreover, their computa-
tional structure makes them suitable for parallel SIMD computer architec-
tures.

Quantized neural networks can be executed efficiently on specialised hard-
ware accelerators, making their deployment on edge computers affordable.
We showed that quantized neural networks can approximate any real contin-
uous function defined on a compact domain with arbitrary accuracy, though
the bound on the number of required units is exponential. We have developed
additive noise annealing, a gradient-based learning algorithm that leverages
the role of probability in the regularisation of non-differentiable functions.
The interpretation of quantized neural networks, but also of more general
artificial neural networks, as ensembles of deterministic programs poses in-
triguing questions. For example, which classes of objects can such systems
approximate? How could we model their evolution? Research on gradient-
free probabilistic learning algorithms would be interesting, but could not
rely on the support of software libraries and specialised hardware, two facts
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that can significantly reduce the pace of innovation in this direction. Are
there alternatives to improve the statistical fit of quantized neural networks?
The program space of a machine learning system plays a capital role in de-
termining its approximation properties. Neural architecture search (NAS)
techniques dynamically alter the program space of artificial neural networks.
These techniques have been explored using genetic algorithms [152] or rein-
forcement learning [153], techniques which have slow convergence times and
require hardware support which is unaffordable for all but the biggest tech-
nology companies. More recently, efficient gradient-based NAS algorithms
[154] or randomly structured programs [155] have been proposed. We argue
that, in the short-to-medium term, the joint application of gradient-based
learning and efficient NAS algorithms will be a more realistic and practi-
cal alternative to train quantized neural networks than using probabilistic
program spaces and gradient-free learning algorithms.

During this thesis project, we came to realize that learning theory and
learning technology are two sides of the same coin. Though not yet estab-
lished as a discipline by its own, machine learning lives at the intersection
of diverse disciplines: it can receive invaluable benefits from collaborations
between experts of these disciplines, but it requires them to grow more aware
of the relationships between their approach and those of other scientists. We
hope that this thesis can serve them as a compass along this path.
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