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Abstract in English and Sintesi in italiano

ON PLANE CREMONA MAPS OF SMALL DEGREE AND THEIR
QUADRATIC LENGTHS

ABSTRACT. The plane Cremona group Cr(P?) is the group of birational transformations of
the complex projective plane. By the famous Noether-Castelnuovo theorem, every birational
map ¢ € Cr(P?) is the composition of finitely many (ordinary) quadratic maps. This leads
to the notion of (ordinary) quadratic length of a given plane Cremona map. While quadratic
maps are classically very well-known, only recently Cerveau and Déserti extensively studied
and gave a classification of cubic plane Cremona maps. However, it turns out that their

classification is not complete and it contains some inaccuracies.

In this thesis, we first give a fine and complete classification of cubic plane Cremona maps,
up to a natural notion of equivalence, by using the so-called enriched weighted proximity
graph associated to the base points of the homaloidal net defining the given cubic plane
Cremona map. We then classify such enriched weighted proximity graphs also for quartic
plane Cremona maps. This allows to compute exactly the ordinary quadratic length and
the quadratic length of cubic plane Cremona maps and, in many cases, also of quartic plane

Cremona maps.

SULLE TRASFORMAZIONI PIANE DI CREMONA DI GRADO
BASSO E LE LORO LUNGHEZZE QUADRATICHE

SINTESI. Il gruppo di Cremona Cr(P?) ¢ il gruppo di trasformazioni birazionali del pi-
ano proiettivo complesso. Per il famoso teorema di Noether-Castelnuovo, ogni trasfor-
mazione birazionale ¢ € Cr(P?) & la composizione di un numero finito di trasformazioni
quadratiche (ordinarie). Cio porta alla nozione di lunghezza quadratica (ordinaria) di una
data trasformazione cremoniana. Mentre le trasformazioni quadratiche sono classicamente
molto conosciute, solo recentemente Cerveau e Déserti hanno studiato in dettaglio e dato
una classificazione delle trasformazioni cremoniane cubiche. Tuttavia, e risultato che la loro

classificazione € incompleta e contiene qualche inaccuratezza.

In questa tesi, prima diamo una classificazione fine e completa della trasformazioni cremo-
niane cubiche, a meno di una nozione naturale di equivalenza, usando il cosiddetto grafo
di prossimita pesato e arricchito, associato ai punti base della rete omaloidica che definisce
la data trasformazione cremoniana cubica. Poi classifichiamo tali grafi di prossimita pesati
e arricchiti anche per le trasformazioni cremoniane quartiche. Cio ci permette di calcolare
esattamente le lunghezze quadratiche (ordinarie) delle trasformazioni cremoniane cubiche e,

in molti casi, anche di quelle quartiche.

Keywords and phrases: cubic plane Cremona maps, quartic plane Cremona maps, quadratic

length, ordinary quadratic length, de Jonquieres maps.
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Introduction

We work over the field C of complex numbers.

We denote by P? the projective plane and by Cr(P?) the plane Cremona group, that is
the group of birational maps P? --» P2. Recall that the celebrated Noether-Castelnuovo
Theorem says that Cr(P?) is generated by the automorphisms of P? and the elementary

quadratic transformation

o: P? -5 P2, [x:y:z]— [yz:zz: 2y
Note that a presentation of Cr(IP?) involving exactly these generators have been found only
very recently by Urech and Zimmermann in [24].
In other words, any plane Cremona map ¢: P? --» P? can be written as

(,0:O{nOO'OO{n_loa'O-~-OOqOO'OOéO

where a; € Aut(P?) for any i = 0,...,n, for some integer n.
Let us say that a decomposition of ¢ as above is “minimal” if so is n among all decomposi-
tions of ¢. Let us call such n the “ordinary quadratic length” of ¢ and denote it by oql(yp).
Recall that a quadratic plane Cremona map is called “ordinary” if it has three proper base

points. In other words, oql(y) is the minimal number of ordinary quadratic maps needed to

decompose ¢.

Similarly, let us define the “quadratic length” of a plane Cremona map ¢ as the minimal

number of quadratic maps needed to decompose ¢ and let us denote it by ql(¢p).

Let us say that two plane Cremona maps ¢, @' : P? --» P? are equivalent if there exist two
automorphisms «, o’ € Aut(P?) such that ¢’ = o/ o ¢ o . The classification of equivalence
classes of quadratic plane Cremona maps is very well-known from the beginning of the study

of plane Cremona maps more than one hundred years ago.

Nonetheless, a classification of equivalence classes of cubic plane Cremona maps has been

described only few years ago by Cerveau and Déserti in [11]: they find 32 types of cubic
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plane Cremona maps, namely 27 types are a single map whereas 4 types are families of
maps depending on one parameter and one type is a family of maps depending on two
parameters. Their classification is based on the detailed analysis of those plane curves which

are contracted by a cubic plane Cremona map.

However, it turns out that the classification in [11] is not complete and it contains some

inaccuracies, see Section 4.2 for a more detailed account:

e we found a map that does not occur in their list;

e we found that their type 17, that is a single map, should be replaced by a one-parameter

set of maps;
e we found that their type 19 is equivalent to a particular case of their type 18;

e we found that their type 31 is equivalent to a particular case of their type 30.

One of the main purpose of this thesis is giving a complete classification of equivalence classes
of cubic plane Cremona maps. Our classification is based on the study of enriched weighted
prozimity graphs of the base points of the homaloidal net defining a plane Cremona map.
Accordingly, we divide cubic plane Cremona maps into 31 types, namely 25 types are single
maps, 5 types are families of maps depending on one parameter and 1 type is a family of
maps depending on two parameters. Two maps of two different types are not equivalent.
Moreover, we find the conditions when two maps of the same type (depending on parame-
ters) are equivalent. Then, using our classification, we compute exactly the quadratic length

and ordinary quadratic length of all cubic plane Cremona maps.

Furthermore, we generalize this approach to study quartic plane Cremona maps and we
compute their quadratic length and ordinary quadratic length. Concerning quartic plane
Cremona maps, recall that they can divided in de Jonquieres maps, that have a triple base
point and 6 simple base points, and non-de Jonquieres maps, that have 3 double base points
and 3 simple base points. We give a complete list of all possible enriched weighted proximity
graphs of the base points of all quartic plane Cremona maps, namely there are exactly 449
types of enriched weighted proximity graphs of quartic de Jonquieres maps and 119 types
of enriched weighted proximity graphs of quartic non-de Jonquieres maps. Using these clas-
sifications, we compute the quadratic lengths and the ordinary quadratic lengths of many

quartic Cremona maps.

In details, this thesis is divided into five chapters.

In Chapter 1: a very brief summary of the most relevant results about plane curves, blowing-
ups and plane birational maps is provided with little or no proof, simply to fix notation and
to set the stage. In particular, we give a way to describe infinitely near points that we call

standard coordinates. Some applications to plane conics are presented right after that.



Let us describe the content of Chapter 2: we recall in detail the proximity matrices and the
admissible oriented graphs which encode sequences of blowing-ups. It allows us to define
the so-called enriched weighted proximity graph for a given plane Cremona map, based on
proximity relations among the base points of the map, together with some other properties,
for instance collinearity properties of the base points or at least 6 base points are on an

irreducible conic and so on.

In Chapter 3: we introduce the notion of quadratic length and ordinary quadratic length.
We study their first properties, in particular those related with weighted proximity graphs

of de Jonquiéres maps.

In Chapter 4: we give a complete classification of equivalence classes of cubic plane Cremona
maps. This allows us compute the quadratic length and the ordinary quadratic length of all
cubic plane Cremona maps.

We finish the thesis with Chapter 5, where we extensively study quartic plane Cremona

maps and their quadratic length and ordinary quadratic length.
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Chapter 1
Generalities on plane Cremona maps

A comprehensive understanding of plane Cremona maps requires some background in alge-
braic geometry. This chapter aims to recall basic concepts, properties and well-known facts
of plane Cremona maps, simply to fix notation and to set the stage. Most results in this
chapter can be found in almost any introduction to algebraic geometry and, for a more in

depth treatment, we suggest some sources on the subject such as [16, 19].
Throughout this thesis, we work over C, the field of complex numbers. To avoid confusion,
we adopt the following notational conventions.

Notation 1.1. Any non-zero complex number z can be written uniquely as follows
z=re" =r(cos(d) +isin(f)), withr >0, and g € [0,2m).

The angle 6 is called the argument of z and the real number r is the norm of z.

Any non-zero complex number z = r(cos(d) + isin(d)) has two square roots, namely

S Y RTA) —

From now on, we denote zg by /2 and 21 by —/z.

For any ¢ € C such that > # 4, set t* = V12 — 4, t, = (t +1*)/2 and t_ = (t — t*)/2, that
is, t. are the roots of the equation x2 — tx + 1 = 0. Note that, if t> # 4 then t, # t_ and
tot_ #0.

By a surface, we mean a smooth projective irreducible algebraic surface over C.

1.1 Plane curves

The main reference for this section is Chapter 2 in [21].



1.1.1 Affine curves in C?

Let f(x,y) be a non-constant polynomial in two variables with complex coefficients. One

says that f(x,y) has no repeated factors if one cannot write

2
fl,y) = (9(z,9)) h(z,y)
where g(z,y) and h(z,y) are polynomials and g(x,y) is non-constant.

Definition 1.2. Let f(z,y) be a non-constant polynomial in two variables with complex

coefficients and no repeated factors. Then, the affine curve C' in C* defined by f(x,y) is

C = {(m,y) € (C2|f(:v,y) = O}.

Remark 1.3. Two polynomials f(z,y) and g(x,y) define the same affine curves in C? if
and only if they are scalar multiples of each other, and a polynomial with repeated factors is

then thought of as defining a curve with multiplicities attached.

Definition 1.4. The degree d of the curve C' defined by f(z,y) = > . ¢, x"y® is the degree
of the polynomial f, i.e.
d = max {7“ + s‘cm =+ O}.

Definition 1.5. An affine curve C defined by a polynomial f(z,y) is called irreducible if
the polynomial f is irreducible, that is, if f(z,y) has no factors other than constants and

scalar multiples of itself.
If the irreducible factors of f(z,y) are

fl(xvy)v st ,fk(«T,y),

then the curves defined by f;(x,y) are called the irreducible components of C' for any i =
1,...,k.
1.1.2 The projective plane
Definition 1.6. The complex projective plane P? is the set
€\ {(0,0,0)}/ ~
where ~ is the equivalence relation
(r,y,2) ~ (29,2 ) & INeC 12/ =X,y = Ny, 2" = Az

A point of P? is denoted by [z : y : 2].



Note that P? is covered by three affine charts, namely P? = Uy U U; U U, where

Up={[z:y:2] € P’z £0},
U ={lz:y:2 € P|ly#0},
Uy ={lz:y:2] € P*|z #0},

and one can identify U; with C? for each ¢ = 0, 1, 2. For instance, one has U, ~ C? where an
isomorphism ¢ : Uy — C2 ; is defined by
x

olle sy = (42) (11)

with inverse
(7,9)— [T:7:1].

The complement of Us in P? is the projective line defined by z = 0 which we can identify
with P! via the map

[z:y:0] — [z:y]

In other words, P? is the disjoint union of a copy of C? and a copy of P! which we think of

as “the line at infinity”.

1.1.3 Projective curves in P?

Recall that a polynomial F(z,y, z) is called homogeneous of degree d if
F(Az, Ay, Az) = M F(x,y, 2)
for all A € C. Note that the first partial derivatives of I’ are homogeneous polynomials of

degree d — 1.

Definition 1.7. Let F(x,y, z) be a non-constant homogeneous polynomial in three variables
x,y, z with complex coefficients. Assume that F'(x,y, z) has no repeated factors. Then, the

projective curve C' in P? defined by F(z,y, z) is
C={lz:y:2] € P’|F(z,y,2) =0}.

Note that the condition F'(z,y,z) = 0 is independent of the choice of homogeneous coordi-

nates [x : y : z] because F' is a homogeneous polynomial and hence
F(Ax, \y,\z) =0 <= F(z,y,2) =0
for any A € C*.

Remark 1.8. Just as for curves in C?, it is in fact that the case that two homogeneous poly-
nomials F(x,y,z) and G(x,y, z) with no repeated factors define the same projective curves
in P2 if and only if they are scalar multiples of each other, and a homogeneous polynomial
with repeated factors can be thought of as defining a curve with multiplicities attached to its

components.



Definition 1.9. The degree of a projective curve C' in P? defined by a homogeneous poly-
nomial F'(z,y, z) is the degree of F(z,y, z). The curve C is called irreducible if F(z,y,z) is
irreducible, i.e. F(x,y, z) has no non-constant polynomial factors other than scalar multiples
of itself. An irreducible projective curve D defined by a homogeneous polynomial G(z,y, 2)

is called a component of C if G(z,y, z) divides F(x,y, 2).

1.1.4 From affine to projective curves and vice versa

Affine and projective curves are closely related. From an affine curve C' one can obtain a
projective curve C' by adding points at infinity. Vice versa, from a projective curve C' one

can obtain an affine curve C' by discarding points at infinity.

Let F(z,y,z) be a non-constant homogeneous polynomial of degree d. Under the identifi-
cation (1.1) of U, with C?, the intersection with U, of the projective curve C defined by
F is the affine curve C' in C? defined by the (possibly inhomogeneous) polynomial in two
variables

F(z,y,1).
This polynomial has degree d provided that z = 0 is not a factor of F(z,y,z) (i.e. C does

not contain the line z = 0).

Conversely, if f(x,y) is a polynomial of degree d in two variables = and y, say

f(xvy) = EE: @ns$rys7
r+s<d
then the affine curve C' defined by f(z,y) is the intersection of U, (identified with C?) with
the projective curve C' in P? defined by the homogeneous polynomial
d ry r, s, d—r—s
2fl =, = | = s .
H20) = X awrys
r4s<d
The intersection of this projective curve with the line at infinity z = 0 is the set of points

{[az cy:0] € IP’2‘ Z and,r:cryd”" = 0}.

0<r<d

§ r, d—r
Qr.d—r Y

0<r<d

However, the polynomial

can be factorised as a product of linear factors
H (Oéix + @y)-
1<i<d
This factors correspond to points [—/3; : ;] in P!; when P! is identified with the line 2z = 0
in P2, these points are precisely the points of C \ C.
In this way, we get a bijective correspondence between affine curves C' in C? and projective

curves C' in P? not containing the line at infinity z = 0.

4



1.1.5 Automorphisms of the projective plane

The projective plane is an excellent backdrop for studying the classical algebraic geometry,
and so, among other things, it will be useful to understand automorphisms of the projective

plane.

Notation 1.10. We denote by Autc(P?), or simply Aut(P?), the group of automorphisms
of P2, that it is isomorphic to the quotient PGL3 of the general linear group GLs by the
one-dimensional subgroup of scalar matrices {)\I | A € (C*}, see for instance Proposition
11.46, §11 in [18].

More precisely, an automorphism «a : P? — P2 is of the following form
a([x Ty Z]) = [anx + a12Y + @132 1 G21X + QoY + Q232 1 A31T + A32Y + a332’}

where a;; € C for any 4, j € {1,2,3} and the (3 x 3)-matrix M = (a;;) satisfies det(M) # 0.
One says that M is the associated matriz of the automorphism «, or simply one says that «
is defined by M.

Lemma 1.11. (The Four Points Lemma) Let p; = [x; @ y; @ z] (i = 1,2,3,4) be four
points in the projective plane such that no three of them are collinear. Then, there is a
unique automorphism of P2, sending e; = [1: 0 : 0],ea = [0:1:0],e3 =1[0:0: 1] and
eg = [1:1:1], to p1,pa, p3 and py, respectively.

Proof. See §11.2 in [17]. O

Definition 1.12. Two projective curves defined respectively by two polynomials F, G in
IP? are called projectively equivalent if there exists an automorphism a of P? and a scalar
A € C*, for which G = A\(F o ).

Note that projective equivalence is an equivalence relation, and that projectively equivalent

curves have the same degree. Moreover, F' is reduced if and only if so is G.

1.1.6 Plane conics

Any conic C in P? is defined by a quadratic polynomial

Q(%yaz):<x Y Z)A(x Y z)T

where A is a (3 x 3) non-zero symmetric complex matrix.
Note that C is irreducible if and only if det(A) # 0.

More precisely, a plane conic C' is defined as follows
Q(z,y,2) = ar® + bry + cy® + dvz + eyz + f2%

5



which is associated to the matrix

. 2 b d
A:§ b 2¢ e
d e 2f

Remark 1.13. Let C be an irreducible conic and € be a line in P?. Then, C'N{ is nonempty
and it consists of at most two points.

When C' N ¢ is just one point py, one says that £ is tangent to C at pg and we denote ¢ by
T (C).

Note that, if po € C, then C has a unique tangent line at po, while, if po ¢ C, then there are

exactly two tangent lines to C' passing through pg.

Lemma 1.14 (cf. [23, Lem 1.2.3, Sec 1.2]). Any two irreducible conics can be mapped each

other by projective transformations.

Proof. Let C' be an irreducible conic. It suffices to show that there exists a projective
transformation that maps C to the conic Cy: 2z — y?> = 0. On C, take mutually distinct
points py, po and ps. Let py be the intersection point of T}, (C') and 7}, (C'). Clearly, no three
among p1, P2, P3, p4 are collinear. Therefore, by Lemma 1.11, there exists an automorphism
a of P2 that sends pi, p2, p3, Pa tO €1, €3, €4, €2, respectively. Hence, o sends C to the conic
Co. O

The proof of the previous lemma shows also the following:

Lemma 1.15. Let n € {1,2,3}. Let Cy,Cy be irreducible conics. Let py,...,p, € C1 and
let qi,...,q, € Cy. Then, there exists an auotmorphism o of P? such that a(Cy) = Cy and

ap) =q,i=1,...,n.
We recall the following result, taken directly from §5.2 of Chapter 5 in [26]:

Lemma 1.16. Suppose pi, ps, p3, pa, ps € P? are any five points such that no three of them

are collinear. Then, there is a unique irreducible conic passing through pq, ..., ps.

In Section 1.3.1, we will generalize the previous result to infinitely near points, when it is

possible.

1.2 Blowing-ups

The notion of blowing-up is the most fundamental one in the subject of birational geometry.

In this section, we study the blowing-up map. References for this section are [3] and [19].



1.2.1 Blowing-up of a surface at a point

Firstly, we will construct the blowing-up of A% at 0 := (0,0).
Consider the product A? x P!, suppose that x,y are the affine coordinates of A? and u, v are

the homogeneous coordinates of P*. Then,

Definition 1.17. The blowing-up of A* at 0 is the closed subset Blg(A?) of A? x P! defined
by
Blo(A%) = {((z,y), [u: v]) € A* x P! | zv = uy}.

We have a natural morphism ¢ : Blg(A?) — A? obtained by restricting the projection map

pr; of A% x P! onto the first factor. In other words, the following diagram commutes:

Blo(A2) ——— A2 x P!

¥ © pry

A2,
Lemma 1.18. (1) Ifp € A? and p # 0, then o' (p) consists of a single point.
(2) ¢71(0) ~P".

(3) The points of ¢=1(0) are in one-to-one correspondence with the set of lines through 0
in AZ.

(4) Blo(A?)\ ¢7(0) is isomorphic to A?\ {0 }.
(5) Blo(A?) is irreducible.

Proof. (1) Let p = (wg,90) € A%\ {0}, suppose that zo # 0 (resp. yo # 0). Now, if
(p,[u:v]) € ¢7(p) then v = ELNY (resp. u = ﬂv), so [u : v] is uniquely determined
o Yo

as a point in P'. By setting u = zy (resp. v = 1), we have [u : v] = [zg : yo]. Thus,

©~1(p) consists of a single point.
(2) ¢7(0) consists of all points (0, [u: v]) for any [u: v] € P, subject to no restriction.
(3) A line [ through 0 in A? can be given by parametric equations
{z=at,y=0t|t e A}

where a,b € C are not both zero. Now, consider the line I’ = ¢! (l \ {O}) in
Blp(A?) \ ¢~1(0). It is given parametrically by

{z=at,y=0bt,u=at,o="0t|te A"\ {0}}.



Since u, v are homogeneous coordinates in P!, we can write I’ as follows
{z=at,y=bt,u=a,v=>|t € A"\ {0}}.

These equations make sense also for t+ = 0, and give the closure I’ of I in Blg(A?).
Now I’ meets ¢~ '(0) in the point ¢ = [u : v] € P!, so we see that sending [ to ¢ gives

one-to-one correspondence between lines through 0 in A% and points of ¢~1(0).

(4) Let p = (z0,40) € A\ {0}7 define ¢(p) = ((5’307%),[% : yo]) € Blo(A?). Then,
¥ A2\ {0} — Blg(A?)\ ¢~ 1(0) is an isomorphism which is the inverse of the restriction

of ¢ to Blg(A?)\ ¢ 1(0).

(5) Blp(A?) is the union of Blg(A?) \ »~1(0) and ¢ '(0). The first piece is isomorphic to
A%\ {O }, hence irreducible. On the other hand, we have just seen that every point
of ¢71(0) is in the closure of some subset (the line I') of Blg(A?) \ ¢7'(0). Hence,
Blp(A?) \ ¢71(0) is dense in Blg(A?), and Blg(A?) is irreducible.

]

Definition 1.19. If Y is a closed subvariety of A? passing through 0, we define the blowing-
up of Y at 0 to be Y = gp‘l(Y\ {0 }), where ¢ : Blg(A?) — A? is the blowing-up of A?
at the point O described above. We denote also by ¢ : Y — Y the morphism obtained by
restricting ¢ : Blg(A%) — A% to Y.

Remark 1.20. Note that ¢ induces an isomorphism of Y \ ¢*(0) to Y\ {0}, so that ¢ is

a birational morphism off/ toY.

Remark 1.21. 7o blow up any other point p of A%, make a linear change of coordinates

sending p to 0.

Definition 1.22. Let ¢ : Blg(A?) — A? be the blowing-up of A? at 0 as in Definition 1.17.
Then, we can write Blg(A?) = A2~ UA2 ~ where

1,91 z2,Y2

A2 = {((@,@n),[1:m])} C Blo(A?),
Aig’w = {((xgyg,y2>, [(L’Q . 1])} C Blo(A2>

are called respectively the first and the second chart of the blowing-up. The restriction of ¢
to the first chart A2 is given by

T1,Y1

Ail,yl — Ai,w (($1,$1y1), [1: y1]) — (21, 2191),
while the restriction of ¢ to the second chart A2 ,.y0 18 given by

Aiz,yg — Ai,y? ((Jfgyg,yg), ['IQ : 1]) — (Jfng,yg).

Note that ¢1(0) ~ P! is locally defined by z; = 0 in the first chart A2 and by y, = 0 in

z1,Y1
2
the second chart A7 .



Remark 1.23. Let Y be an affine curve in A% defined by the equation f(x,y) = 0 and let
m = multo(Y) be the multiplicity of the curve Y at 0. Then, the strict transform Y of Y is
locally defined in the first chart A2 . by

z1,Y1
flevay) _
7"
and in the second chart Aim by
f(xzymyz) —0
—m =V
Y2

Definition 1.24. Let S be a surface and p € S. Then, there exist a surface S and a

morphism 7 : S — S, which are unique up to isomorphisms, such that
(i) the restriction of 7 to 77*(S '\ {p}) is an isomorphism onto S\ {p};
(it) E:=m(p), is isomorphic to P'.
We shall say that 7 is the blowing-up of S at p and E' is the exceptional curve of .

Take a neighbourhood U of p on which there exist local coordinates z,y at p (i.e. the curves
x =0,y = 0 intersect transversely at p). We can assume that p is the only point of U in the
intersection of these two curves. Define the subvariety U of U x P* by

U:={((z,y),[u:v]) € UxP"|zv=uy}.

It is clear that the projection 7 : U — U is an isomorphism over the points of U where at
most one of the coordinates z, y vanishes, while 77'(p) = {p} x P'. We get S by passing U
and S\ {p} along U\ {p} = U\ 7 (p).

Definition 1.25. Let C be an irreducible curve on S. The closure of 7! (C\ {p}) in S is

an irreducible curve C' on S, which we call the strict transform of C. Let us call 7~'(C') the

total inverse image of C' and 7*C' the total transform of C'.

Remark 1.26. Note that 7= (C) coincides with C if and only if p & C, otherwise n=(C) =
CUE.

Proposition 1.27. Let S be a surface, 7 : S — S the blowing-up of a point p € S and
E C S the exceptional curve. Then,

(i) there is an isomorphism PicS @ Z — Pic S defined by (C,n) — 7*C + nE. Hence,
Pic S = n* Pic S @ ZE.

(i1) for each C,D € PicS, one has 7*C.7*D = C.D. Moreover, E.n*C =0 and E? = —1.
(iti) Kg=m"Ks+E.
Proof. See Lemma 1.3 in [3]. O

Lemma 1.28. Let 7 be as above and let C' be an irreducible curve on S. Setting m > 0 the
multiplicity of C' at p, one has 7°C = C +mE, C.E =m and C* = C* —m.

Proof. See Lemma 1.2 in [3]. O



1.2.2 A sequence of blowing-ups of points

Definition 1.29. Let p; € P? = S, be a point. Consider the blowing-up m; : S; — P? at p;

and denote by E} = m;'(p1) the exceptional curve.

Let po € S7 and 75 : S5 — 57 be the blowing-up of S at p,. We denote the exceptional curve
by E2 and the strict transform of E in Sy by EZ. One observes that if py ¢ E}, then the
total transform of E} in Sy coincides with the strict transform E?. Otherwise, if p» € EY,
by Remark 1.26 and Lemma 1.28, it follows:

(myom) '(p1) =m (E}) = E} U E} and m(E}) = E} + Ej.
Repeating the construction r times, one defines for all i = 1,...,7r:

e the blowing-up m; : S; — S;_1 of S;_1 at p; € S;_q;

the exceptional curve E! = 7r; '(p;) of S;;

for any j >4, m;; : S; — S;—1 the composition m; o w11 0...0mj;

the total transform E; = 7, | (E}) of E} in S = S,;

for any j > 4, the strict transform E? of E! in Sj;

e the strict transform E; := E! of E! in S;
° (, )Z and (,) respectively the intersection number in S; and in S.

All these data form the sequence of blowing-ups
7T:7T1r3S:STE>ST_1—>...—)51350:]P)2

at the points py,...,p,. From now on, with abuse of notation, we say that E; and E; are

respectively the strict and the total transform of the point p; in S.

Remark 1.30. Note that the strict transform EZJ for any 7 > 1 can be defined inductively:

o [mE ameE
w;(Eg'*l)—Eﬂi if p; € B

J

Lemma 1.31 (cf. [7, Lem 1.1.8, Chap 1]). Let 7 : S — P? be a sequence of blowing-ups of
r points, as above. Then, one has
PicS = PicP? & Z",

1 a set of generators of 7.

where PicP? < Pic S is defined by C +— 7*(C) and {EZ*

The intersection numbers of the E are

}139

-1 ifi=y,

0 otherwise.

(Ef E) = 6y =

10



Proof. The first part of assertion follows by induction on r and Proposition 1.27.

As for the second part, by definition of £} and by part (i7) of Proposition 1.27, one has
(E:7 Ez*) = (W:+1,T<EZ)7W;<+1,T(E§)) - (Ezszzz)Z =—-L
Similarly, if 7 > ¢, one has
(Ez*ij*) = (W;H,r(ﬁﬂ,j(Ef)):W;+1,r(E§)) = (7;+1,j<Eii)7E§)j = 0.
m

Remark 1.32 (see e.g. [7, §1.3.7]). One can see that another set of generators of Z" in
the previous lemma is {E;}1<i<,. Moreover, the basis change matrices N = (n;;) and M =
(my;) = N7t such that

T T
=1 j=1

are given by N = I, — Q) where I, is the (r x r) identity matriz and Q = (g;;) is defined by

1 ifp; € BT
Qi = ‘
0 otherwise.

In Chapter 2, QT will be called the prozimity matriz of .

Blowing-ups of points are so important because any birational map between surfaces factors

through blowing-ups in the following sense:

Theorem 1.33. Let ¢ : X --» Y be a birational map between surfaces. Then, there is a
surface Z and birational morphisms wx : Z — X and 7y : Z — Y, which are sequences of

blowing-ups of points, such that the following diagram commutes:

Z

UP's Ty

For the proof see e.g. Theorem 4.9, §3.3, Chapter 4 in [25]. In particular, the theorem is a

corollary of the following two results:

e Let X be a surface and ¢ : X --» P a rational map. Then, there exists a sequence
of blowing-ups of points of surfaces X,, = ... 3 X; 2% X such that the composite

rational map Y = pom o...om, : X,, — P" is morphism.

e Let ¢ : X — Y be a birational morphism between surfaces. Then, there exists a
sequence of blowing-ups of points 7; : Y; = Y, fori=1,...,r where Yy =YY, = X
such that ¢ = m o...om,. In other words, any birational morphism between surfaces

can be factored in to a sequence of blowing-ups of points.

11



1.2.3 Bubble space of P?

Definition 1.34 (cf. [15, §7.3.2]). We denote by B(P?) the so-called bubble space of P?, which
is defined as follows. Consider all surfaces X above P?, i.e. all surfaces X such that there
exists a birational morphism X — P2. If X;, X, are two surfaces above P2, say 7 : X; — P?
and my: Xy — P? are birational morphisms, one identifies p; € X; with p, € X, if the
birational map (m) 'm: X; --+» X5 is a local isomorphism at p;, that sends p; to p;. The
bubble space B(P?) is the union of all points of all surfaces above P? modulo the equivalence

relation generated by these identifications.

For any birational morphism X — P2, there is an injective map X — B(P?), therefore we
will identify points of X with their images in B(PP?).

One says that p; € B(P?) is infinitely near p, € B(P?), say p1 € X; and py € X,, with
birational morphisms 7y : X; — P? and my: Xy — P2, if the birational map (my) 'y : X --»
X5 is defined at pq, sends p; to ps, but is not a local isomorphism at p;. In such a case we
write that p; > po.

One moreover says that p; is in the first neighbourhood of py, or that p; is infinitely near
p2 of the first order, if (my)~'m; corresponds locally to the blow-up of p. In such a case we
write that p; =1 po.

If p; > po then one can define the infinitesimal order of p; with respect to p, by induction,
namely if p; =1 ps and p3 = po for some k, then p; is infinitely near ps of order k + 1.

If p; > ps and p; € X1, then there is a unique irreducible curve Fy C X7 which corresponds
to the exceptional curve of the blowing-up of p; € X5. One says that p, is prozimate to ps
if p1 € E5. In such a case we write that p; --» pg. Clearly, if p; =1 ps, then p; --+ po, but
the converse is not always true.

If py --» po and p; >, po with & > 1, then we say that p; is satellite to ps and we write
p1 © po. Otherwise, if p; is not satellite to ps, then we denote by p; @ po.

One says that a point p € P2 C B(IP?) is a proper point of P2.
Remark 1.35. Each point of B(P?) \ P? is infinitely near a unique point of P2.

Remark 1.36. If p; = pr, say

Pr=1P2=1P3 71" " >1Pk—1 1 Pk,
and py --+ pg, then p; ==+ pg also for each i =2,... k — 1.

Notation 1.37. If p; = ps € P2 where p; € X; and 7 : X; — P? is a birational morphism,
we say that a plane curve C' passes through p; if C' passes through p, and the strict transform

of C' on X, via 7 passes through p;.

Proposition 1.38 (Proximity inequality). Let ¢ : S — P? be a birational morphism, that

15 the composition of the blowing-ups w1, ..., such as in Definition 1.29. Let C' be a plane

12



curve and let C; be the strict transform of C' in S; for i = 1,...,r. Setting Cy = C' and

m; = mult,, (C;_1) fori=1,...,r, one has, for each j =1,...,r,
m; 2 Z mi.
Pk-—?Pj
Proof. See §2.2 in [1] or Theorem 3.5.3, Corollary 3.5.4 in [9]. O

1.3 Standard coordinates of infinitely near points

In this section, we want to give a way to describe infinitely near points that we call standard

coordinates.

Let py = [a:b: c] € P2 Let us consider three cases:

(1) if ¢ # 0, then p; = [%:l—):l] =la:b:1);

(17) if ¢ =0 and b # 0, then p; = {%:1:0} =[a:1:0];

(i73) if c=b=0, then p; =[1:0:0].
In case (i), we work on the affine chart Uy ~ CZ2_, so that p; corresponds to the point

I7y7

P, = (@,b), and we define the isomorphism a;: CZ; — C2 by

al(xay) = (E_a7y_l_))'

In case (ii), we work on the affine chart U; ~ CZ_, so that p; corresponds to the point

z,2?

Py = (@,0), and we define the isomorphism ay: C2, — C3 by

o (T,Z) = (T — @, %).

In case (iii), we work on the affine chart Uy ~ C2., so that p; corresponds to the point

gz
p1 = (0,0), and we define the isomorphism «; : C%,z — C% by

Z0,Y0
a1(¥,7) = (¥,2).

In all three cases, we defined «; in such a way that a;(p,) = (0,0) € Cio,yo'
We blow-up Cio,yo at (0,0) and we consider the first chart C2 .y Where the blowing-up map
is given in coordinates by z¢y = 1, yo = x1y1, cf. Definition 1.22.

In this chart, the exceptional curve E; has local equation x; = 0, hence a point ps =1 p1
corresponds either to the point (0,t3) € E; with 5 € C or to the point which is the origin of
the second chart. In the former case, let us say that p, has standard coordinates ps = (p1, t2),
while in the latter case let us say that p, has standard coordinates ps = (p1,00). Setting
P! = C U {00}, let us denote the standard coordinates of ps by ps = (p1,ts) with t, € PL.

13



Remark 1.39. Recall that a point py =1 p1 corresponds to the direction of a line passing
through py. More precisely, one can see that the point ps = (p1,t2), with py = [a : b : |,
corresponds to the line defined by the following equation

(cy—bz:tQ(cx—az) when ¢ # 0 and ty € C,
cx—az =0 when ¢ # 0 and ty = 0o,

bz = ta(br — ay) when ¢ =0,b# 0 and ty € C,
bxr = ay when ¢ = 0,b # 0 and ty = oo,
z =ty when b=c=0 and ty € C,
\y:() when b=c =0 and ty = co.

In other words, the above equations define the unique line passing through p, and ps.

We want to go on by blowing-up at py = (py,1ts), with t, € P! = CU {oo}. Either t, € C

or ty = oo. In the former case, with notation as above, let ap: C2 =~ — C2 _ be the

T1,Y1 Z1,Y1

isomorphism defined by
a1, y1) = (21,91 — t2).

2

0,90
at (0,0) that we write Ciiﬂyi’ where the blowing-up map is given by zo = z{y},yo = v|. Let
Q9. CQ

T

In the latter case, ps corresponds to the origin of the second chart of the blowing-up of C

= C2 . be the isomorphism

1 1,91

1:Y

042($Ilay£) = (yi,l’&)
2
Z1,Y1

the point ps corresponds to the origin (0, 0).

In this way, in both cases, in C the exceptional curve F4 has local equation z; = 0 and

We blow-up (C%hgl at (0,0) and we consider the first chart Cizw where the blowing-up map
is given in coordinates by ¥y = x3,%1 = Z2y.. In this chart, the exceptional curve E5 has
local equation xs = 0, hence a point ps »=; py corresponds either to the point (0,t3) € Fy

with t3 € C or to the point which is the origin of the second chart.
Let us say that ps has standard coordinates p3 = (p,lo,t3), where either t3 € C in the

former case or t3 = 0o in the latter case.

Note that the strict transform of E; can be seen only in the second chart and it meets
E5 at the origin of the second chart. In other words, the point with standard coordinates

(p1, t2, 00) is satellite to p;.

More generally, let us proceed by induction of the infinitesimal order. Suppose that we have
blown-up the point p,_; with standard coordinates p,_; = (py,ta,...,t,—1), with t; € P! =
CU{o0}, i =2,...,7 — 1. Following the procedure described above, we may assume that

pr_1 is the origin of a chart C,%r_ in such a way that the exceptional curve E,_; has

1,9r—1
local equation Zz,_; = 0.

In the first chart of the blowing up of C? at (0,0), given in coordinates by Z,_; =

Tr—1,Yr—1

Ty, Yr_1 = Ty, the exceptional curve F, has local equation z, = 0, hence a point p, =1 p._1

14



corresponds either to the point (0,t,) € E, with ¢, € C or to the point which is the origin

of the second chart, given in coordinates by Z,_1 = 2, Y, Yr_1 = Y-

Let us say that p, has standard coordinates p, = (p1,to,...,t.), where ¢, € C in the former

case and ¢, = oo in the latter case.

The above discussion proves the following:

Lemma 1.40. Let p; € P2. Then, there is a one-to-one correspondence between points
infinitely near py of order r and (P')" = P! x ... x P,

r-times
Corollary 1.41. There is a one-to-one correspondence between points infinitely near a
proper point of order r and W = P? x (P!)".
Definition 1.42. We call standard coordinates of an infinitely near point the point of W

obtained with the above construction.

Example 1.43. Let C be the conic in P? defined by 2xy + 3yz — 2> = 0. A point of C is
p1=[—1:1:2]. We claim that C passes through the points with standard coordinates

B 1 B 11 111 11 11
P2 = | P1, 9 ’ P3s = | P1, 272 ) D1, 2a2) 2 ) P1, 2727 272 )
and so on.

In the affine chart U, ~ C2_, the point p; corresponds to the point p; = (—1/2,1/2) and

z,y?
C' is locally defined by 2zg + 37 — 1 = 0. The isomorphism oy : C2; — C2  ~ defined by
o1 (7,7) = (41/2,5 — 1/2) is such that oy (p1) = (0,0) and C'is locally defined in C , by
21‘0y0 —I— o —f- 2y0 = 0 (12)

In the first chart of the blow-up of Cimyo at (0,0), given in coordinates by zg = x1, Yo = T191,
the strict transform of C' has local equation 2z1y; + 2y; + 1 = 0, so that it passes through
the point (0,—1/2) and we say that C' passes through the point ps >=; p; with standard
coordinates p, = (p1, —1/2).

Let ap: C2  — C2 _ be the isomorphism as(z1,41) = (71,y; + 1/2). In the first chart

T1,Y1 1,51
of the blow-up of (C%hg1 at (0,0), given in coordinates by Ty = x9,7; = Xays, the strict

transform of C' has local equation 2z9y, — x5 + 2yo = 0 so that it passes through the point
(0,1/2) and we say that C' passes through the point p3 >=; ps with standard coordinates
ps = (p1,—1/2,1/2).
Let ag: C? — C2

T2,Y2 2,92

be the isomorphism as(xs,y2) = (2,y2 — 1/2). In the first chart

of the blow-up of C%Q@ at (0,0), given in coordinates by Ty = x3,7, = x3ys, the strict

transform of C' has local equation
223ys + 3+ 2y3 = 0

that is the same equation (1.2), replacing x3 with xy and y3 with yo. It follows that the
subsequent infinitely near points have standard coordinates (p;, —1/2,1/2,—1/2,1/2,...).
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Example 1.44. Let us denote by F'(n) the n-th Fibonacci number, starting from F(0) =
F(1) =1, then F(n) = F(n—1)+ F(n —2) for n > 2.

For n > 1, let C,, be the curve in P? defined by xfyF+h) _ 2F(+2) — 0 The curve C,
has a singular point of multiplicity F'(n + 1) at p; = [1 : 0 : 0]. We claim that C,, passes

through the points po, ps, ..., ppi1 With respective standard coordinates
p2:(pluoo)7 p3:(p17oo7oo)7 p4:(pluoovoo7oo)7 R pn+1:<p17oo7"'7oo)7
——
n times
with respective multiplicities F'(n), F(n — 1), ..., F(0). In particular, for n > 3, one has

that Pn © Pn—2-

We prove the claim by induction on n. For n = 1, the curve C; has equation zy? — 2% = 0,
so (] has a cusp at p; with cuspidal tangent the line y = 0, so the strict transform of C}
passes through p, with standard coordinates (p;, 00) and it passes through ps = (p1, 0o, 00).

Note that p3 ® p;.
For n > 2, in the affine chart Uy ~ C2 _, the point p; corresponds to the origin p; = (0,0) and

9,2
C,, is locally defined by g# 1) — zF(+2) — . The isomorphism a : c:. — C,,, defined
by a4(y, 2) = (g, 2) is such that a;(p;) = (0,0) and C,, is locally defined in (C?L,M0 by
x(l)«“(nﬂ) B yé?(nm) _0

In the second chart of the blow-up of Ciwo at (0,0), given in coordinates by xy = z1y1, Yo =

Y1, the strict transform of C,, has local equation

A g,

so that it has multiplicity F'(n) at the origin (0, 0), that is the point with standard coordinates
p2 = (p1,00).
Let ay: C2~ — C2

71,91 1,71 the strict trans-

be the isomorphism as(z1,91) = (y1,21). In CZ |

form of C,, has local equation
In the second chart of the blow-up of C2 L at (0,0), given in coordinates by T = xays, ¥ =

Yo, the strict transform of C,, has local equation

LBQF(TL) _ yé’(n—l) =0,

so that it has multiplicity F'(n — 1) at the origin (0,0), that is the point with standard

coordinates ps = (p1, 00, 00).

Let ag: C?. . — C2

T2,y2 T2,02 the strict trans-

be the isomorphism as(z2,y2) = (y2,22). In C, |

form of C,, has local equation

F(n— F(n
2y Y — gy =0,

and we conclude by the induction hypothesis.
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1.3.1 Conics and infinitely near points

Remark 1.45. Ifp; € P2 p3 =1 py =1 p1 and p3Opy, i.e. ps -+ p1, then there is no smooth

curve passing through py, p2, p3 because of the proximity inequality at p;.

Lemma 1.46. If p; € P2, p3 = py =1 p1 and pi,ps,p3 are collinear, namely ps lies on
the strict transform of the line passing through py and ps, then there is no irreducible conic

passing through py, ps, ps.

Proof. Up to automorphisms of P?, we may assume that p; = [1:0: 0] and py = (p1,0), so
p3 is uniquely determined by py, ps, namely p3 = (p1,0,0).
Suppose that C' is an irreducible conic passing through p;, po. Then, C' has equation

a2y2 + asxrz + aqyz + as2> =0

where as, as, a4, a5 € C and as, a3 # 0 because C' is irreducible.

2

We work in the affine chart Uy ~ C2 . and we consider the isomorphism ay: C;, — CZ

defined by a1(g, 2) = (y, 2), where the conic C' has local equation
2 2 _
Az + azyo + asToyo + asyy = 0.

In the first chart of the blowing-up of C2 . at the origin (0,0), where xg = x1,90 = T1Y1,

Z0,Y0

the strict transform of C' has local equation

a1 + azy + a41y1 + a5x1yf =0.

2
T1,Y1°

Note that ps is just the origin of C
Then, the strict transform of C' via the blowing-up of C2 at the origin (0,0) has local

Z1,Y1

equation in the first chart, where xy = 5, y1 = x2ys,

az + azys + asr2ys + G5952?J§ =0.

> -, but the strict transform of C' does not pass through

(0,0) because as # 0. O

Note that p3 is just the origin of C

Remark 1.47. It is easy to check that if py € P2, p3 =1 pa =1 p1, p3 @ p1 and py, p2, p3 are

not collinear, then there are irreducible conics passing through pi, pa, ps3.

Remark 1.48. Note that if p1 € P2, py =1 p1, p3 =1 p1 and py # ps, then there is no

1rreducible conic passing through py, ps, ps.

Lemma 1.49. Let pi,po, p3,psa € P? and ps =1 p1 such that no three among py,...,ps are

collinear. Then, there exists a unique irreducible conic passing through pi, ..., ps.

Proof. Up to automorphisms of P2, we may assume that p; = [1:0:0],po =1[0:1:0],p3 =
[0:0:1],py = [1:1:1]. Then, ps has standard coordinates ps = (p1,t5), namely ps is
infinitely near p; of the first order in the direction of the line z—t5y = 0, where t5 € C\ {0, 1}:
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indeed, if t5 = 0, then ps, p2, p1 would be collinear; if t5 = 1, then ps, p4, p1 would be collinear

and finally, if t5 = oo, then ps, p3, p1 would be collinear. Then, one can check that the conic
rz —tszy + (t; — 1)yz =0
is the unique irreducible conic passing through py, ..., ps. O

Lemma 1.50. Let py,py,p3s € P? and ps =1 ps =1 p1 such that ps @ py and no three

among p1, ..., ps are collinear. Then, there exists a unique irreducible conic passing through

P1,..-,Ds5-

Proof. Up to automorphisms of P2, we may assume that p; = [1:0:0],po =1[0:1:0],p3 =
[0 :0 : 1] and that p, has standard coordinates py = (p1,1), namely p, is infinitely near
py of the first order in the direction of the line y = 2. Then, p5 has standard coordinates
ps = (p1,1,t5), where t5 € C*: indeed, if t5 = 0 then ps, ps, p1 would be collinear and if

ts = 00, then ps ® p;. Then, one can check that the conic
rz — 2y —tsyz =0
is the unique irreducible conic passing through py, ..., ps. O

Lemma 1.51. Let p1,ps, p3 € P? and ps =1 p1,ps =1 p2 such that no three among p1, ..., ps

are collinear. Then, there exists a unique irreducible conic passing through py,. .., ps.

Proof. Up to automorphisms of P2, we may assume that p; = [1:0:0],po =[0:1:0],p3 =
[0:0: 1] and that the two lines, one through p;,ps, and the other one through po, ps, meet
at [1:1: 1], namely py is infinitely near p; of the first order in the direction of the line y = 2
and pjs is infinitely near py of the first order in the direction of the line x = z. In other words,
p4 has standard coordinates py; = (p1, 1) and ps has standard coordinates ps = (p2,1). Then,
it is clear that the conic

zy —yz—xz=20
is the unique irreducible conic passing through py, ..., ps. O

Lemma 1.52. Let py,ps € P? and ps =1 p3 =1 p1,ps =1 p2 such that ps @ p1 and no three

among pi, ..., ps are collinear. Then, there exists a unique irreducible conic passing through

pl?"’7p5'

Proof. Up to automorphisms of P2, we may assume that p; = [1:0:0],po =[0:1:0], and
that the two lines, one through p;, ps and the other one through ps, ps, meet at [0 : 0 : 1],
namely ps is infinitely near p; of the first order in the direction of the line y = 0 and py4
is infinitely near ps of the first order in the direction of the line x = 0. In other words, p3
has standard coordinates p3 = (p1,00) and p4 has standard coordinates py = (pa, 00). Then,
ps has standard coordinates ps = (p1, 00,t5) where t5 € C*: indeed, if t; = 0 then ps, p3, ;1

would be collinear and if t5 = oo, then ps ® p;. One can check that the conic
tsxy — 22 =0
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is the unique irreducible conic passing through py, ..., ps. O

Remark 1.53. The previous lemmas are a more precise explanation of Remark 4.2.1 in

Chapter V in [19].

Lemma 1.54. Let p1,ps € P? and ps =1 ps =1 p3 =1 p1 such that py @ p1,ps @ ps3 and no
three among p1,...,ps are collinear. Then, there exists a unique irreducible conic passing

through py, ..., ps.

Proof. Up to automorphisms of P?, we may assume that p; = [1:0:0], p, =[0:1:0] and
p3, p4 have standard coordinates respectively p3 = (p1,00) and py = (p1, 00, 1), according
to the proof of the previous lemma. Then, ps has standard coordinates ps = (p1, 00,1, t5)
where t5 € C: indeed, if p5; = 0o, then we would have p5 ® p3, contradicting the hypothesis.
One can check that the conic

zy +tsyz — 22 =0
is the unique irreducible conic passing through py, ..., ps. O]

Lemma 1.55. Let ps =1 ps =1 p3 =1 P2 =1 p1 € P? such that ps @ pr,ps @ p2,ps D ps
and pi, p2, p3 are not collinear. Then, there exists a unique irreducible conic passing through

bi,...,DPs5.

Proof. Up to automorphisms of P2, we may assume that p; = [1: 0 : 0] and ps, p3, ps have
standard coordinates respectively p, = (p1,00), p3 = (p1,00,1), ps = (p1,00,1,0), according
to the proof of the previous lemma. Then, ps has standard coordinates ps = (p1, 00, 1,0, t5)
where t5 € C: indeed, if t; = oo, then we would have ps ® p3, contradicting the hypothesis.
One can check that the conic

vy — 22 +t5y° =0

is the unique irreducible conic passing through pq, ..., ps. O

1.4 Plane Cremona maps

The plane Cremona group, denoted by Cr(P?) or Bir(P?), is the group of birational maps of

the projective plane P? into itself. Such maps can be written as the following form

@: P? —-5 P?, [z :y: 2] = [po(z,y, 2) s p1(z,y, 2) : pa(x,y, 2)] (1.3)

where ¢; € Clx,y, z]q for any i = 0,1,2 are homogeneous polynomials of the same degree
d, that is called the degree of ¢ if ¢y, 1, 2 have no common factor. Usually, abusing of
notation, let us write (1.3) as ¢ = [o : Y1 : Pa).

Plane Cremona maps of degree 1 are automorphisms of P2, i.e. elements of Aut(PP?) ~ PGLs.
Plane Cremona maps of degree 2 (3, 4, resp.) are called quadratic (cubic, quartic, resp.).

The elementary quadratic transformation is:

o: P? -5 P2, [x:y:z]—[yz:zz: xy. (1.4)
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The fundamental result concerning the plane Cremona group is the following theorem:

Theorem 1.56 (Noether-Castelnuovo). The group Cr(P?) is generated by Aut(P?) and o.
Proof. See [10] or [1] for a modern reference. O

Let ¢ € Cr(P?) be a plane Cremona map of degree d. Then, let py,...,p, € P? be the
(proper) base points of the net (linear system of dimension 2) A defining ¢. According to
Theorem 1.33, there exist a surface Z and birational morphisms 7;: Z — P? and my: Z — P?
such that m = ¢ o ;. The birational morphism 7, : Z — P? is the sequence of blowing-up
maps at points pi,...,p, and p,i1,...,p. € B(P?) as in Section 1.2. Denote by my, ..., m,
the multiplicities of pq,...,p, of the net A, namely the multiplicities at pi,...,p, (of the
strict transform) of a general curve of the net A. With a little abuse of notation, let us say
that p1,...,p, are the base points of ¢ with respective multiplicities mq, ..., m,, and let us

write m; = mult,, (¢) for i = 1,...,r. Then, it is classically known that (see e.g [1, §2.5]),

d2—1=im§, 3(d—1) :im,-, (1.5)
=1 =1

and (d;mq,...,m,) is called the characteristic of .

Recall that not all solutions (d;my, ..., m,) of conditions (1.5) are characteristic of a plane

Cremona map (see e.g [1, §5.2]).

Definition 1.57. A plane Cremona map ¢ is called de Jonquieres if it has degree d and a

base point of multiplicity d — 1.

Equations (1.5) imply that plane Cremona maps of degree 2 and 3 are de Jonquiéres.
Definition 1.58. A plane Cremona map ¢ is called involutory, or an involution, if ¢! = o.

Definition 1.59. Let us say that two plane Cremona maps ¢, ¢': P? ——s P? are equivalent

if there exist two automorphisms a, o’ € Aut(P?) such that
¢ =a opoa.

Remark 1.60. The automorphism o' changes the basis of the homaloidal net defining @,
while o changes the position of the base points of the map. In particular, two plane Cremona

maps defined by the same homaloidal net are equivalent.

1.4.1 Quadratic plane Cremona maps

We have already defined the elementay quadratic transformation o in (1.4). The map o is

clearly an involution and it has the coordinate points as base points of multiplicity 1.

Definition 1.61. Let us say that a quadratic plane Cremona map ¢ is ordinary if ¢ has

three proper base points.
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Remark 1.62. Let py, pa, ps be the proper base points of an ordinary quadratic map . Since
there exists an automorphism o: P? — P? that maps p1,ps, ps to the coordinate points, it

follows that ¢ is equivalent to o.

On the other hand, a plane Cremona map equivalent to o is clearly ordinary quadratic.

Remark 1.63. For each o € Aut(P?), the map o~ oo o« is involutory ordinary quadratic,

but not all involutory ordinary quadratic maps have this form, like e.g. the map ¢ = [yz :

zy w2, of. [24].
There are other two fundamental quadratic maps, which are not ordinary.

Example 1.64. The quadratic map
p: P2 s P2 [y 2] oy 2% yz)], (1.6)

is an involution which is not ordinary, namely p has two proper base points p; = [1: 0 : 0],
po = [0 : 1:0] and the third base point p3 is the point infinitely near p; with standard

coordinates ps = (p1,00), that is the point in the direction of the line y = 0.

Example 1.65. The quadratic map

2

7 P? s P2, [z:y: 2] (22 oy y? — 22, (1.7)

is an involution which has only one proper base point, that is p; = [0 : 0 : 1], while the
other two base points py and p3 are infinitely near p; and they have standard coordinates

respectively ps = (p1,00) and ps = (p1, 00, 1).

Remark 1.66. [t is classical well-known that any quadratic plane Cremona map is equivalent

to one and only one among o, p and T.

More generally, one can see that the set of quadratic plane Cremona maps has a natural
structure of quasi-projective variety of dimension 14 in P, whose properties have been ex-

tensively studied by Cerveau and Déserti in [11].

Definition 1.67. Let us say that a quadratic plane Cremona map ¢ is
e of the second type if  is equivalent to p;
e of the third type if ¢ is equivalent to 7.

In the next sections, we will need to construct examples of quadratic plane Cremona maps

with some given property. Let us now see some of these constructions.

Example 1.68. Let pg, p1,po be three non-collinear points in P2. An involutory ordinary

quadratic plane Cremona map based at pg, p1, p2 can be easily constructed as follows.
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Suppose that the coordinates of pg, p1, p2 are

respectively [a; : ag @ as), [by : be : bs] and

FEEN [c1 : o @ c3). Let a be the automorphism of
/ \
o/ NG P2 associated to the matrix
/ \
/// \\\\ aq b1 C1
FARREEEE PRRRRREE- M=|ay, by o | €PCGLs, (18
az by c3

where det(M) # 0 because pg, p1, p2 are not
aligned. Then, the plane Cremona map ¢ defined by ¢ = aocoa™! is an ordinary, involutory

quadratic map based at pg, p1, po.

Example 1.69. Let po, p1 be two distinct points in P? and let py be infinitely near py in the
direction of a line ¢, not passing through p;. An involutory quadratic plane Cremona map

based at pg, p1, p2 can be constructed as follows.

Suppose that the coordinates of py, p; are re-
spectively [a; : ag : ag, [b1 : ba : b3]. Choose
a point ¢ = [¢; : ¢o @ ¢3) on £ different from
po. Let a be the automorphism of P? asso-
ciated to the matrix M as in (1.8), that has
det(M) # 0 because py, p1, g are not aligned.
- p Then, the plane Cremona map ¢ defined by

1

¢ = aopoaqa " is an involutory quadratic

map based at pg, p1, po.

We need to know the behaviour of plane Cremona maps under the composition with ordinary

quadratic maps. A first result is the following classical proposition.

Proposition 1.70. Let py, po, p3 be the base points of an involutory ordinary quadratic plane
Cremona map o: P? ——» P2, Let p: P? ——s P2 be a plane Cremona map of degree d > 1
with base points py,...,p. and possibly p1,ps, ps. Denote by m; the multiplicity of ¢ at p;,
i=1,...,7r (that is m; = 0 if p; is not a base point of ¢, i = 1,2,3). Suppose, moreover,
that py, . .., pr are proper points not lying on the triangle with vertices pi, ps, ps.

Then, the composite map @ o o~ = p o p has degree d — €, where
e =my +mg+ms—d,

and it has o(p;), i = 4,...,r, as base points of multiplicity m;. Furthermore, it has multi-

plicity m; —e >0 at p;, i = 1,2,3 (that is, p; is not a base point of p o o when € =m;).

Proof. See, e.g., Corollary 4.2.6 in [1]. O

Proposition 1.71. Let pi,pa,p3 be the base points of a quadratic plane Cremona map

0:P? ——> P2, Let p: P? ——» P? be a plane Cremona map of degree d > 1 with base points
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D4, - -, Dr and possibly p1, pa, p3. Denote by m; the multiplicity of ¢ at p;, i =1,...,r (that
is m; = 0 if p; is not a base point of p, i =1,2,3).

Then, the composite map @ o 0~ ! has degree d — e, where
€=mq +mg+msz—d.
Proof. See, e.g., Proposition 4.2.5 in [1]. H

We will later see what happens when the base points of ¢ are either infinitely near or

belonging to the triangle with vertices py, ps, ps.

23



Chapter 2

Weighted proximity graphs of plane

Cremona maps

In this chapter we first recall the definition and the main properties of the proximity matrices
and the admissible oriented graphs which encode sequences of blowing-ups. We then define
the weighted proximity graph of a given plane Cremona map, starting from the proximity
properties of the base points of the Cremona map. For small degree maps, we finally intro-
duce the enriched weighted proximity graph that we will use to classify equivalence classes

of plane Cremona maps.

2.1 Admissible digraphs

For notation and definitions about directed graphs, see e.g. [2]. For more properties of

admissible graphs, we refer to [7, Chap. 1].

Definition 2.1. A directed graph, or briefly digraph, G is a pair G = (V, F') where V is a
finite set of elements, called vertices, and F'is a set of ordered pairs of distinct elements of
V. An element (u,v) € F where u,v € V is denoted by u — v, and it is called an are, or an

arrow, from u to v.

Remark 2.2. According to Definition 2.1, a digraph has no loop, i.e. an arrow u — u where

u s a vertexr, and it has no multiple arcs between the same vertices.

Definition 2.3. Let G = (V, F') be a digraph. Then the ezternal degree and internal degree

of a vertex v of GG are respectively defined as follows:
outdeg(v) = #{u € V|v — u}, indeg(v) = #{u € V]u — v}.

Definition 2.4. Let G = (V, F) be a digraph. Choose a bijection v : {1, e ,n} -V,

where n = V' is the number of vertices of G. Then the (n x n)-matrix Ag = (a;;) defined
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L if (i) = ¥(),

0 otherwise

aij =

is called the adjacency matriz of G with respect to .
Definition 2.5. A digraph G = (V, F)) is called acyclic if it has no cycle.

Remark 2.6. Let G = (V, F) be an acyclic digraph. Then, G has at least one vertex of
external degree 0, see Proposition 1.4.2 in [2].

Remark 2.7. Let G = (V, F) be an acyclic digraph. Then, there exists an ordering of the
vertices of G such that the adjacency matriz Ag is a strictly lower triangular matriz, see
Proposition 1.4.3 in [2].

Definition 2.8. Two digraphs G = (V, F') and G' = (V' F') are isomorphic if there exists
a bijection ¢ : V' — V’ such that for any u,v € V:

(u,v) € F <= (¢(u),p(v)) € F', that is, u — v <= ¢(u) = ¢(v).

Definition 2.9. Let us say that a digraph G = (V, F') is admissible if it is acyclic and

satisfies the following three properties:

(1) each vertex has the external degree at most two;
11) if outdeg(u) = 2, say u — v and u — w, then either v — w or w — v;
g y

(73i) fixing two vertices v and w, then there exists at most one vertex u such that v — v

and u — w.

Remark 2.10. By Property (ii), each vertex u of external degree 2 is the vertez of a triangle

as in Figure 2.1.(a), up to isomorphisms.

Figure 2.1: (a) Admissible triangle and (b) non-admissible quadrilateral.

Remark 2.11. Property (iii) implies that the quadrilateral of Figure 2.1.(b) is not admissi-
ble. In fact there are only two types of admissible quadrilaterals, up to isomorphisms, shown

m Figure 2.2.
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Figure 2.2: Admissible quadrilaterals.

Lemma 2.12. An admissible, connected, digraph G has exactly one vertex with external

degree 0.

Proof. By Remark 2.6, there is at least a vertex of external degree 0. Suppose that we have
two vertices u and v of external degree 0. Since G is connected, then there exists a (non-
directed) path starting at u and ending at v and we can choose one such path of minimum
length k. Note that k > 2 since u — v and v — u are not possible, because outdeg(u) =
outdeg(v) = 0. Denote such path from u to v by {u = ug, w1}, {us,us}, ..., {ur_1,v = uy}.
We claim that there exists a vertex u;, 1 < j < k, of external degree 2 for G in the path,
that means that

Uj —> Uj—1, Uj —> Ujt1.

In fact, we know that u; — ug, since uy = u has external degree 0. If u; — uq, then wu; is
the vertex we are looking for, otherwise we consider the path starting from u; and ending
to ur = v. Our claim follows by induction on the length of the path. Then by property (i)
of Definition 2.9, there exists an arrow either w;_; — ;41 or w11 — u;_1, so there exists a
path that connects v and v with £ — 1 edges, a contradiction with the assumption that £ is

minimal. O

Corollary 2.13. The number of connected components of an admissible digraph is equal to

the number of vertices with external degree 0.

2.2 Proximity matrices

The main reference for this section is [7, Chap. 1].

Let m : S — P? be a birational morphism. As we saw in Section 1.2.2 of Chapter 1, the
morphism 7 is the composition of finitely many of blowing-ups at single points. Denote by
p1,-- -, pr € B(P?) the blown-up points, so that m = 7 omy0...om, where m; is the blowing-up

at the point p; for each 2 =1,...,r.

Definition 2.14. Let us associate to a birational morphism 7 : S — P? a digraph G, with

r vertices p1,...,p, and there is an arrow p; — p; if and only if p; is proximate to p;.

Definition 2.15. With notation as in Section 1.2.2 in Chapter 1, the adjacency matrix
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Q) = (¢;j) = Ag, of the digraph G, is defined by

1 ifp e B,

Gij = _ .
0 ifp & E;

and we call () the proximity matriz associated with the birational morphism 7, or simply

proximity matrix of 7.
Remark 2.16. In [1], the notion of prozimity matriz of a cluster is different.

Remark 2.17. Note that the order of the blowing-up points is important in the definition

of the proximity matrix.

Example 2.18. Let us blow up p; = [1:0:0],po = [0:1:0] and p3 > p; with standard
coordinate p3 = (p1,00), i.e. p3 corresponds to the line y = 0, either in the order py, ps, p3
or pi,ps, pe. Accordingly, we find isomorphic surfaces S and S’ and birational morphisms
7:8 = P2and 7 : S — P? with #/ = moi where i : S — S is the isomorphism.
The digraphs G, and G, are the same, up to isomorphisms, but the respective proximity

matrices ) = Ag, and Q' = Ag , are different:

000
Q=100 0f, Q =
100

o = O
o o O
o O O

Note that Q' = PQP where P = P~! is the permutation matrix

1 00
P=10 01
010

Let us recall the properties of a proximity matrix:

Proposition 2.19. Let Q be the proximity matriz of a birational morphism © : S — P2
Then

(1) Q is a strictly lower triangular matriz;

(2) all entries of Q are either 0 or 1;

(3) in each row of Q, there are at most two non-zero entries;
(4) no row with two non-zero entries is repeated;

(5) if quj = qri = 1 with i > j, then ¢;; = 1.

27



Proof. Properties (1) and (2) are obvious while Property (3) follows from the fact that a
point can belong to at most two strict transforms of distinct exceptional curves. Using

notation of Section 1.2.2 in Chapter 1, one observes that
p€E ' —=ENE=0=ENE'=0  fork>i

Therefore, if p;, € E]]-“_1 NEFY for k =i > j, then p; € E;_l, that is Property (5). Moreover,
after blowing-up p, = EF™' n Ej’?_l, it follows that EF N Ef = (), so that there is no other

row with the same two non-zero entries, that is Property (4). O]

Lemma 2.20. In the previous proposition, Properties (4) and (5) can be replaced by the

following formula
Gij = ZQkiij> Jor 1> j. (2.1)
k

Proof. Suppose that (4) and (5) hold. Then, the sum in Formula (2.1) is either 0 or 1.
If it is 0, then Formula (2.1) is trivially verified, otherwise, if it is 1, Property (5) implies
that ¢;; = 1 and Formula (2.1) holds. Vice versa, suppose that Formula (2.1) holds. If
Qkj = Q& = 1 with ¢ > j, then Formula (2.1) implies ¢;; > 1, that is ¢;; = 1 by Property (2).
So Property (5) holds. Suppose that Property (4) fails, that means there are two different
rows with the same two non-zero entries. Then Formula (2.1) implies ¢;; > 2, a contradiction
with Property (2). O

Remark 2.21. We now list other properties of the prorimity matriz () associated to a

birational morphism m, which is the composition of the blowing-up at points p1,...,p. €
B(P?):

o if p; =1 pj, then q;; = 1;

the i-th row of Q is zero if and only if p; € P?;

if BE;NE; #0 and i > j, then ¢;; = 1;

if 5 =1 and E; N E; =0, then there exists k > i such that qx; = g = 1;

pr 1s satellite if and only if the k-th row of Q) has two non-zero entries;

® if gri = qij = 1 with i > j, then p, © p;.
Remark 2.22. Let p, © p;, namely py is satellite to p;j. Then, py =, p; with n = 2, i.e.
there ewists pj,, ..., p;, ., such that
Pk 71 Pjpy 71 -+ 71 Pjs 71 Pjs 1 Dj-

Note that p;, ©p; for each i =2,...,n—1. Indeed, with notation of Section 1.2.2 in Chapter
1, one has
Pk O pj < pp ——>pj < Pi € E;fl

that implies that p;, € Eji_l foreachi=1,...,n—1.
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Lemma 2.23. Suppose that Q) is a (rxr)-matriz satisfying Properties (1)—(5) of Proposition
2.19. Then, there exists a birational morphism m : S — P? such that Q is its proximity

matrix.

Proof. We proceed by induction on r. If » = 1, then @ is the zero-matrix and 7 is just the
blowing-up at a point p; € P2. Let @’ be the (r — 1) x (r — 1) submatrix of @ obtained by
removing the last row and the last column. Note that (" also satisfies Properties (1) — (5) of
Proposition 2.19 and, by induction hypothesis, there exists a birational morphism 7’ : S’ —
P? such that Q' is its proximity matrix. Let py,...,p,_; € B(PP?) be the blown-up points of

7'. Now, there are three cases:

(7) the r-th row has no non-zero entry;
(74) the r-th row has only one non-zero entrys;

(77i) the r-th row has two non-zero entries.

In case (i), choose a general point p, € S’, that is a general point p, € P2.

In case (i7), one has ¢,; = 1 for some 1 < j < r — 1. Choose a general point p, € E;_l.

In case (iii), one has ¢,; = ¢, = 1 for some 1 < j < i < r — 1. Then Property (5) in
Proposition 2.19 implies that ¢; = 1 so E; N E} # (). Property (4) implies that the point
EFN E]k’ has not been blown-up for each k =4 +1,...,7 — 1. Choose p, = E; "' N E]’f_l.

In all three cases, let 7, : S — S’ be the blowing-up of S’ at p, and define 7 =’ om,.. [

Corollary 2.24. A digraph G is admissible if and only if there exists a birational morphism
7 :S — P? such that G = G,.

Proof. If G is admissible, then there exists an ordering of the vertices of G such that the
adjacency matrix Ag of G is strictly lower triangular and Properties (2) — (5) in Proposition
2.19 follow from Properties (7), (i7), (i7i) of Definition 2.9. Hence, @ is the proximity matrix
of a birational morphism 7 : S — P? by the previous lemma. Conversely, if 7 : S — P? is
a birational morphism, its proximity matrix () satisfies Properties (1) — (5) in Proposition

2.19 and hence the corresponding digraph is admissible according to Definition 2.9. ]

2.3 Weighted proximity graph of a plane Cremona map

Definition 2.25. Let G = (V, F) be a digraph. Let us say that G is weighted if each vertex of
G is marked with a positive integer number, namely G = (V| F,w) where w : V — N = Z.

is a map.

Remark 2.26. In [2], such digraphs are called vertex-weighted. A weighted digraph according
to [2] is a digraph where one attaches weights to the arcs. We do not need to do that, so we

omit “vertex” in the definition of weighted digraph.
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Definition 2.27. Let ¢ : P2 --s P? be a plane Cremona map. Let us associate to ¢ a
weighted digraph G, called the weighted prozimity graph of (the base points of ) y, defined

as follows:
e the vertices of G,, are the base points py,...,p, € B(P?) of ¢, cf. Section 1.4;
e there is an arrow p; — p; if and only if p; is proximate to pj;

e cach vertex p; is weighted with the multiplicity mult,,(¢) of ¢ at p;.

Example 2.28. A de Jonquieres map of degree d has weighted proximity graph with 2d — 1
vertices, one with weight d — 1 and the other 2d — 2 vertices with weight 1.

Remark 2.29. Note that the number of connected components of G, equals the number of

proper base points in P? among the base points py,...,p. € B(P?) of ¢, by Corollary 2.15.

Remark 2.30. Clearly, two equivalent plane Cremona maps have the same weighted proz-

imity graph. The converse is true for quadratic maps but it is not true in general.
Example 2.31. We will see in Chapter 4 that the two cubic plane Cremona maps
010 = [ yPz  ayz), and o = [2(y? +22) y(y? + 22) : 2y2]

have the same weighted proximity graph

O—0 OO0

but they are not equivalent.

Notation 2.32. When we draw the weighted proximity graph of a plane Cremona map ¢,

for readers’ convenience we write proper base points in red and infinitely near points in black.

Example 2.33. Let 0, p and 7 be the quadratic maps defined in Section 1.4 of Chapter 1.
Their respective proximity graphs G,, G, and G, are:

H-O O © 6-0—0 O  6-0—0—0

Remark 2.34. Let

G = @C@\@ and G = @C@%,

then there is mno plane Cremona map with G or G' as weighted proximity graph, cf. the

proximity inequality 1.38, Remark 1.45 and Remark 1.48.
In the next chapters we will deal with cubic and quartic plane Cremona maps. Therefore
we classify their weighted proximity graphs.

Theorem 2.35. There are exactly 21 weighted proximity graphs of cubic plane Cremona

maps, up to isomorphism, that are listed in Table 2.1.

There are exactly 143 weighted proximity graphs of quartic plane Cremona maps, up to
1somorphism, namely 90 of quartic plane de Jonquiéres maps, that are listed in Table 2.2

and 53 of quartic plane non-de Jonquiéres maps, that are listed in Table 2.3.
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Table 2.1: Weighted proximity graphs of cubic plane Cremona maps

Weighted proximity graph n° Weighted proximity graph

O—DOD—D—0D| | 1|O0—D—0D OO

OO0 0O—0| | 2|00 O0—0—-0

w [ |~ | B

OZOD—D O | 2O O—0O—-0O—O0

OO ®W O® O

15

O=0 000 40— O 0—0

O—O—0O—00| 7] O0—0O O—O

DD O O[5l O O—0—d

OO @ O] | v]|eo—® © © O

NeJ oo =~ S | Ot A~

OO D O0—0| | *O0 O O 00

10| Q—D—D—0D O |20 O© O©O O O©

Table 2.2: Weighted proximity graphs of quartic plane de Jonquieres maps
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Proof of Theorem 2.35. Weighted proximity graphs of cubic plane Cremona maps can be
constructed by hand, recalling the properties of admissible graphs. Indeed, such a graph
has 5 vertices, one with weight 2 and the other four with weight 1. Moreover, the proximity
inequalities implies that only the double point may have satellite points and there can be at
most one of them. For the same reason, a simple base point may have at most one proximate

point while the double point may have at most two proximate points. These conditions are
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Table 2.3: Weighted proximity graphs of quartic plane non de Jonquieres maps
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enough to find the 21 weighted proximity graphs of cubic plane Cremona maps, that are
listed in Table 2.1.

Indeed, we may start from the weighted graph with no arrow, that is number 21 in the list
of Table 2.1. We then add one arrow at each time in such a way that the graph is still
admissible and the weights satisfy the proximity inequalities for all vertices. For example, if
we add one arrow to graph 21, then we find exactly two non-isomorphic weighted proximity
graphs, that are numbers 19 and 20. If we add a second arrow, then we find other 5 graphs,
that are numbers 14-18. And so on: in the following step we find the graphs with three
arrows, that are numbers 7-13. In the next step, we find number 2—-6 with four arrows and

finally there is only one graph, number 1, with five arrows.
This procedure has also been implemented in Maple, in order to double check the result.
We proceed similarly for weighted proximity graphs of quartic plane Cremona maps.

First, we note that a quartic plane Cremona map either is de Jonquieres or it is not de
Jonquieres. In the former case, the graph has 7 vertices, one with weight 3 and the other
six with weight 1. In the latter case, the graph has 6 vertices, three with weight 2 and the
other three with weight 1.

Let us consider first the de Jonquieres case.

We start from the weighted graph with no arrow (number 90 in the table) and we then add

one arrow at each time. We then find:

e 2 graphs with one arrow;

5 graphs with two arrows;

11 graphs with three arrows;

19 graphs with four arrows;

24 graphs with five arrows;

19 graphs with six arrows;

8 graphs with seven arrows;
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e finally 1 graph with eight arrows;

that sum up to 90 weighted proximity graphs.
Concerning the non-de Jonquieres case, we proceed exactly in the same way.

We start from the weighted graph with no arrow (number 53 in the table) and we then add

one arrow at each time. We then find:

e 3 graphs with one arrow;

9 graphs with two arrows;

16 graphs with three arrows;

16 graphs with four arrows;

7 graphs with five arrows;

finally 1 graph with six arrows.

that sum up to 53 weighted proximity graphs. ]

Remark 2.36. By improving the algorithm that computes the number of weighted prozimity

graphs of de Jonquieres maps of degree d, one can check that there are exactly

e 346 of them in degree 5,

1199 of them in degree 6,

3876 of them in degree 7,

11710 of them in degree 8,

33635 of them in degree 9,

e 92149 of them in degree 10.

In degree larger than 10, the computer runs out of memory.

2.4 Enriched weighted proximity graph of a plane Cre-

mona map

We will see that, in order to classify equivalence classes of plane Cremona maps, the position
of the base points is also important. Therefore, it is convenient to add to the weighted
proximity graph some projective information on the position of the base points of a plane

Cremona map. We first consider the case of plane Cremona maps of small degree.
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Definition 2.37. Let us add to the weighted proximity graph G, of a cubic plane Cremona
map ¢ the list of lines passing through three base points of . Let us call this object the
enriched weighted proximity graph of .

Remark 2.38. These lines are unexpected, in the sense that three points in general position

are not aligned.

A line through three base points of a cubic plane Cremona map ¢ cannot pass through the
(proper) base point of multiplicity 2, otherwise the linear system defining the map would be
reducible by Bézout Theorem. For the same reason, a line cannot pass through all four simple
base points of p. Furthermore, there cannot be two different such lines, because they should

have two points in common.

Notation 2.39. The line passing through three base points of a cubic plane Cremona map

are indicated as curves in the pictures of weighted proximity graphs.

Theorem 2.40. There are exactly 31 enriched weighted proximity graphs of cubic plane

Cremona maps, up to isomorphism, listed in Table 4.2 at page 57.

Proof. Recall that a line ¢ passes through an infinitely near point p only if ¢ passes through
the proper point ¢ such that p > ¢ and the strict transform of ¢ passes through p. Therefore,
the enriched weighted proximity graph cannot include a line passing through a base point

infinitely near the base point of multiplicity 2, by the previous remark.

Hence, there is no line through three base points in the weighted proximity graphs 1-11, 14
and 15 in Table 2.1.

Let us denote by p; the base point of multiplicity 2 and by ps, ..., ps the other simple base
points going from left to right in the pictures of the weighted proximity graphs in Table 2.1.

The weighted proximity graph 12 in Table 2.1 may have a line through the proper simple
base point p3 and both of its infinitely near base points, that are p, and ps. Accordingly, we
find the two enriched weighted proximity graphs 10 and 11 in Table 4.2.

Similarly, the weighted proximity graph 13 in Table 2.1 may have a line through ps, ps, p4
and we find the two enriched weighted proximity graphs 8 and 9 in Table 4.2.

Then, the weighted proximity graph 16 in Table 2.1 may have a line through ps, p4, ps and
we find the two enriched weighted proximity graphs 22 and 23 in Table 4.2.

The weighted proximity graph 17 in Table 2.1 may have either a line through ps, p4, ps
or a line through ps, ps, ps, that however give two isomorphic enriched weighted proximity
graphs, hence we find the two enriched weighted proximity graphs 20 and 21 in Table 4.2.
The weighted proximity graph 18 in Table 2.1 may have either a line through ps, ps4, ps or a
line through ps, ps, ps. Accordingly, we find the three enriched weighted proximity graphs
17, 18 and 19 in Table 4.2.

The weighted proximity graph 19 in Table 2.1 may have a line through ps3, ps, ps and we
find the two enriched weighted proximity graphs 28 and 29 in Table 4.2.
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The weighted proximity graph 20 in Table 2.1 may have either a line through ps, p3, ps or
a line through ps, ps, ps. (There could be also a line through ps, ps, ps but the resulting
enriched weighted proximity graph would be isomorphic to a previous one.) Accordingly, we
find the three enriched weighted proximity graphs 24, 25 and 26 in Table 4.2.

Finally, the weighted proximity graph 21 in Table 2.1 may have four different lines that
however give four isomorphic enriched weighted proximity graph. Hence we find the two

enriched weighted proximity graphs 30 and 31 in Table 4.2. O]

Definition 2.41. Let us add to the weighted proximity graph G, of a quartic de Jonquiéres
map ¢ the list of lines passing through three, or four, base points of ¢ and the list of
(irreducible) conics passing through siz base points of ¢. Let us call this object the enriched

weighted proximity graph of .
Remark 2.42. These conics are unexpected, as well as the lines, in the sense that six points
i general position are not contained in any conic.

Since a quartic plane de Jonquieres map has 7 base points, the map ¢ cannot have two

distinct conics by Bézout Theorem.
Stmilarly, a line cannot pass through five base points of ¢; a line and a conic cannot have

more than two points in common.

Theorem 2.43. There are exactly 449 enriched weighted prorimity graphs of quartic plane

de Jonquieres maps, up to isomorphism, listed in Table 5.1 at page 9/.

Proof. The case by case analysis is too long to be presented here.

We first constructed the enriched weighted proximity graphs by adding lines and/or a conic
to the 90 weighted proximity graph.

We then checked with the computer that these enriched weighted proximity graphs are

pairwise not isomorphic and that they are all. O

Definition 2.44. Let us add to the weighted proximity graph G of a quartic non-de Jon-
quieres map ¢ the list of lines passing through three base points of ¢. Let us call this object
the enriched weighted proximity graph of .

Remark 2.45. Recall that ¢ has three base points of multiplicity 2 and three simple base
points. By Bézout Theorem, the lines may pass either through three simple base points or
through two simple base points and one base point of multiplicity 2. In other words, a line

cannot pass through two base points of multiplicity 2.

Similarly, there cannot be any conic passing through all siz base points.

Theorem 2.46. There are exactly 119 enriched weighted prozimity graphs of quartic non-de

Jonquiéres maps, up to isomorphism, listed in Table 5.3 at page 122.

Proof. The case by case analysis is again too long to be presented here and the proof is done

with the help of the computer. O
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More generally, we are interested in de Jonquieres of arbitrary degree.

Definition 2.47. Let us add to the weighted proximity graph G, of a plane de Jonquieres
map  of degree d > 3 the list of unexpected contractible rational curves, where “contractible”

means that the curve is Cremona equivalent to a line and “unexpected” means that

e the curve is a line passing through three, or more, base points (at most through d base

points);
e the curve is an irreducible conic passing through six, or more, base points;

e the curve is an irreducible cubic with a double point passing through at least 7 points. . .

and so on, until the curve is irreducible of degree at most d — 2. Let us call this object the

enriched weighted proximity graph of .
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Chapter 3

Lengths in the Cremona group

3.1 Decompositions of a plane Cremona map

According to Noether-Castelnuovo Theorem 1.56, any plane Cremona map ¢: P? --» P? can
be written as

Y =0, 0000, 1000 01000 (3.1)

where «; € Aut(P?) for any i = 0, ..., n, for some integer n.

Definition 3.1. Let us call (3.1) a decomposition of . Let us say that a decomposition (3.1)
is minimal if n is minimal among all decompositions of . Let us call such n the ordinary

quadratic length of ¢ and let us denote it by oql(¢y).

Therefore, the ordinary quadratic length of a plane Cremona map ¢ of degree > 2 is the

minimum n such that there exist ordinary quadratic maps ¥, ¥s, ..., ¥, with

P =1Yn0p_10---0p0y. (3.2)

Definition 3.2. Let us call the quadratic length of plane Cremona map ¢ the minimum n
such that there exists a decomposition (3.2) where v; is a (not necessarily ordinary) quadratic

map, for each i = 1,...,n, and denote it by ql(¢).

Recall that Blanc and Furter in [6] defined the length of a plane Cremona map ¢ as the
minimum n such that there exists a decomposition (3.2) where 1; is a de Jonquiéres map,

for each i = 1,...,n, and denoted it by lgth(y). Clearly, one has that

lgth(p) < ql(v) < odql(p).

Remark 3.3. In order to compute the ordinary quadratic length of plane Cremona maps, it
suffices to work with involutory ordinary quadratic maps. Indeed, any decomposition (3.1)

can be written as the composition of an automorphism and involutory quadratic maps:
p=al,o---o((ayoag)tooo(aoay))o(ayoooa)

where o, = q,, © a1 0 -+ + 0 (O .
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Remark 3.4. Two equivalent plane Cremona maps clearly have the same length, quadratic

length and ordinary quadratic length.
The following lemma is a straightforward application of the definitions.
Lemma 3.5. Let ¢ : P? ——s P? be a plane Cremona map. Then,
oql(p) = 0 if and only if p € Aut(P?).

Moreover, one has

e oql(p) =1 if and only if ¢ is an ordinary quadratic map;

e ql(p) =1 if and only if ¢ is a quadratic map;

e lgth(yp) =1 if and only if v is a de Jonquiéres map.

Corollary 3.6. Let ¢ : P2 ——s P2 be a plane Cremona map of degree d > 3. Then,

oql(y) > ql(p) > 2.

Example 3.7. Let p be the quadratic map defined in (1.6). It is classically well-known that

oql(p) = 2. A minimal decomposition of p is:
p=lr:z—y:zloooz:y+z:zlooofr:y—=z:z.

Example 3.8. Let 7 be the quadratic map defined in (1.7). It is classically well-known that

7 is the composition of two quadratic maps of the second type and therefore the composition

of four ordinary quadratic maps. A decomposition of 7, given in [11], is:
T=ly—x:2y—zv:x—y+zjooo[r+z:x:ylooco[-y:x—3y+z:x]o

(3.3)
ocgolr+z:x:yloocoly—x:—2x+z:2x—y|

However, we found no reference with a proof that oql(7) = 4, hence that the above decom-
position is minimal, even if we believe that it was classically known. On the other hand, we
will see in a moment that oql(7) > 3, because 7 has a base point which is infinitely near of
order 2. A proof of the fact that oql(7) = 4 can be seen as a consequence of the computation

of ordinary quadratic lengths of cubic plane Cremona maps in Chapter 4.

Corollary 3.9. Let p: P? ——» P2 be a plane Cremona map of degree d > 5. Then,

oql(¢) > ql(p) > 3.

Proof. We claim that, if ql(¢) < 2, then deg(y) < 4. This is trivial if ql(¢) < 1. Suppose
that ql(¢) = 2, namely ¢ = py o p1, where py, po are quadratic maps. Let pq, pa, p3 be the

base points of py. If my, my, ms are the multiplicities of p;* at py, pa, p3, respectively, then
deg(p) = deg(pa 0 p1) =4 —mqg —mg —mgz < 4,
that is our claim. O
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Lemma 3.10. Let p: P2 -——» P? be a plane de Jonquiéres map of degree d < 5. Then,

oql(¢) > ql(p) >d — 1.

Proof. 1t is trivial if d < 3. Let us first consider the case d = 4.

By contradiction, suppose that ql(¢) < 2. Clearly, ql(¢) cannot be less than 2, so we can
write ¢ = 0y 0 g1, where g1, 05 are two quadratic plane Cremona maps. In other words, one
has that ¢ o o] ' is the quadratic map g,. We claim that Proposition 1.71 implies that the

composition ¢ o o; ! has always degree > 3, that is a contradiction.

We now prove our claim. Suppose that pg, p1,...,ps are the base points of ¢, where py is

the triple base point and p, ..., pg are simple base points.

We distinguish four possibilities:

e if p; has base points pg, p;, p; with 0 <7 < j <6, then p o 07! has degree 3;

e if p; has base points py, p; with 0 < 7 < 6 and p; is not a base point of g; for any j
such that 0 < j < 6 and j # 0,4, then ¢ o ;' has degree 4;

e if p; has base point py and p1,. .., ps are not base points of o, then @ o o; ' has degree
5;

e if py is not a base point of g, then 5 < deg(p o o;') < 8.

Our claim is proved.
We are left with the case d = 5.
By contradiction, suppose that ql(¢) < 3, hence, ql(¢) = 3 by Corollary 3.9 and we can

write o = p3 0 09 0 91, where g1, 09, 03 are quadratic plane Cremona maps. In other words,

one has that ¢ o o' = g3 0 0, has quadratic length 2.

Let py be the base point of multiplicity 4 of ¢. There are two cases: either p, is a base point

of 01 or pg is not a base point of o;.

In the former case, the map ¢ o o' = p3 0 0 is a de Jonquieres map of degree d’ with
4 <d <6. If d =5,6, then Corollary 3.9 gives a contradiction. Otherwise d’ = 4, that is

another contradiction with the first part of this proof.

In the latter case, the map @ o 0;' = p3 0 oy has degree d” with 7 < d” < 10 and we get

again a contradiction with Corollary 3.9. O

Definition 3.11. Let ¢ be a plane Cremona map. Let us define the height hy,(p) of a point
p € B(P?) with respect to o as follows:

0 if p is not a base point of ¢,
hy(p) =1 if p is a proper base point of ¢,
n+1 if pis a base point of v and p =, p’ € P2.
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Definition 3.12. Let ¢ be a plane Cremona map. Let us also define the load of a proper

base point p with respect to ¢ as follows:
load,(p) = #{¢ is a base point of ¢ ! q>-p}+1,
that is the number of base points of ¢ which are infinitely near p increased by 1.

Remarks 3.13. (i) If p is a simple proper base point of ¢, then the proximity inequality
implies that base points that are infinitely near p cannot be satellite; in other words,
there is a sequence p, >1 Pn_1 =1 - =1 p1 =1 p where p; is a base point infinitely
near p of order i, i = 1,...,n; therefore, load,(p) is equal to the maximum height of

base points that are infinitely near p.

(ii) If ¢ is a de Jonquiéres map of degree d and it has a unique proper base point p, then
load,,(p) = 2d — 1.

Notation 3.14. Let o be an involutory ordinary quadratic map and let p;, pa, p3 € P? be
its base points. Denote by ¢; ({5, {3, resp.) the line passing through p, and ps (p; and ps,
p1 and po, resp.) and denote by T' the triangle ¢4 U ¢; U ¢3, as in Figure 3.1 at page 46.

Let us define a bijection g: B(P?) — B(P?) induced by ¢ as follows:
° o(p) = olp), if p € P2\ T;

e o(p) is the point infinitely near p; of order 1 in the direction of the strict transform of

the line passing through p; and p, if p € ¢; \ {p;, px}, {i, 75, k} ={1,2,3};

e 0(p) is the point infinitely near p; of order 1 in the direction of the line ¢;, if p is the
point infinitely near p; of order 1 in the direction of the line ¢;, where {7, j} C {1, 2, 3};

e 0(p) is the point g € ¢; such that the line passing through p; and ¢ is the strict transform
of the line passing through p; in the direction of the point p, if p is infinitely near p; of
order 1 (not lying on ¢; and ¢, {i,j,k} = {1,2,3});

e o(p) is the point infinitely near o(p’) of order n in the direction of the strict transform

of a plane curve C, if p is infinitely near p’ € P? and C is a curve passing through p.
Let us say that g(p) € B(P?) is the point corresponding to p € B(IP?) via o.

The following proposition is a generalization of Proposition 1.70, where now infinitely near

base points are allowed.

Proposition 3.15. Let py, po, p3 be the base points of an involutory ordinary quadratic plane
Cremona map o: P? --» P2, Let p: P* ——s P? be a plane Cremona map of degree d > 1
with base points py,...,p. and possibly py,ps, p3. Denote by m; the multiplicity of ¢ at p;,
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Figure 3.1: The resolution of an involutory ordinary quadratic map o

i=1,...,r (that is m; = 0 if p; is not a base point of v, i = 1,2,3). Denote by o(p) the
(possibly infinitely near) point corresponding to p via o as in Notation 3.14.

Then, the composite map p o o~! = p o o has degree d — €, where
e =my +mg+ms—d,

and it has o(p;), i = 4,...,r, as base point of multiplicity m;. Furthermore, it has multiplicity

m; —e >0 at p;, i =1,2,3 (that is, p; is not a base point of ¢ o o when € =m;).
Proof. Cf. Proposition 4.2.5 in [1]. O

Lemma 3.16. Let ¢ be a plane Cremona map and o an involutory ordinary quadratic map.
If p € B(P?) and p = o(p) € B(P?) as in Notation 3.14, then

-1< hw(p) - h‘POQ(ﬁ) <L
Proof. Set ¢’ = p o p. Let us see the possible cases:

e if p is not a base point of ¢, that is h,(p) = 0, then either p is not a base point of
¢ or pis a proper base point of ¢’ by Proposition 3.15 and Notation 3.14. In the
former case, one has h,/ (p) = 0, whereas in the latter case one has h, (p) = 1, and the

assertion follows;

e if p is a proper base point of ¢, that is h,(p) = 1, then Proposition 3.15 and Notation

3.14 imply that three cases may occur:

(1) p is not a base point of ¢/,

(2) p is still a proper base point of ¢/,
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(3) pis a base point of ¢’ which is infinitely near (of order 1) a proper base point,
accordingly, one has h,/ (p) =0, h(p) =1, hy(p) = 2, and the assertion follows;

e if p is a base point of ¢ and p is infinitely near p’ of order n, where p’ is a proper base
point of ¢, that is h,(p) = n+1 and h,(p’) = 1, then the previous analysis shows that
0 <hgy(p') <2 and accordingly n < h,(p) < n+ 2, that is the assertion.

We conclude that the assertion holds in any case. O]

Proposition 3.17. Let ¢ be a plane Cremona map. Then

odl(g) > max{h,(p) | p € B(P*)}.

Proof. Let us set n = oql(¢) and let

Y =000P,00p,-10::0030 01

be a minimal decomposition of ¢, where g;, ¢ = 1, ..., n, is an involutory ordinary quadratic

map and « is an automorphism of P2. We proceed by induction on n. Let us set

m(p) = max{h,(p) | p € B(P*)}.

The assertion is clearly true for n = 0,1 because an automorphism has no base point and

an ordinary quadratic map has exactly three points of height 1.

We then suppose that n > 2 and we denote ¢ o g1 by ¢, so that oql(¢’) = n — 1 and by
induction hypothesis n — 1 > m(¢’). Now Lemma 3.16 implies that

he(01(p)) = he(p) - 1,
for any p € B(P?), hence m(¢') > m(yp) — 1. Therefore, we conclude that
n=odl(p) = (n—1) +1>m(e) +1=m(p),

that is the assertion. O

3.2 Quadratic length of de Jonquieres maps

In this section we give an upper bound for the quadratic length of plane de Jonquiéres maps

of fixed degree d. For this purpose, we will proceed by induction on the degree d.
The following lemma is classically very well-known.

Lemma 3.18. Let ¢ be a plane de Jonquieres map of degree d > 3. If some simple base point

of v is proper. Then, there exists an involutory quadratic map o such that oo™ = pop

15 a plane de Jonquieres map of degree d — 1.
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Proof. Let p; be the maximal multiplicity base point of ¢ and let py be a simple proper base

point of ¢. Then, there are three possible cases:

e there exists at least another simple proper base point of ¢;
e there exists a simple base point of ¢ infinitely near p; of order 1;

e there exists a simple base point of ¢ infinitely near p, of order 1.

In all three cases, let us choose such a point and call it p3. Then, the point p3 cannot be
aligned with p; and p,, hence there exists an involutory quadratic map o based at pq, ps, ps3.

We conclude that ¢ o ¢ is a plane de Jonquieres map of degree d — 1. O

The following proposition can be found in [1].

Proposition 3.19. Let ¢ be a plane de Jonquieéres map of degree d. Then, there exists a
quadratic transformation o such that the composite map oo~ is a plane de Jonquicres map

of the same degree d and having at least one simple proper base point.

Proof. See Proposition 8.4.2 in [1]. O

Corollary 3.20. Let ¢ be a plane de Jonquieres map of degree d. Then, either there exists
an involutory quadratic map o1 such that o o1 has degree d— 1, or there exist two quadratic

maps o1, 02 such that ps 0 w o 01 is a plane de Jonquicres map of degree d — 1.

Proof. In the former case, we apply Lemma 3.18, while in the latter case we first apply

Proposition 3.19 to the de Jonquieres map ¢! and we then conclude by Lemma 3.18.  [J

Lemma 3.18 and Proposition 3.19 have been used in [1] in order to give an easy proof of
the classically well-known fact that a plane de Jonquieres map can be resolved in (ordinary)

quadratic maps. Using the same technique, we prove the following

Theorem 3.21. Let ¢ be a plane de Jonquiéres map of degree d. Then,
al(e) < 2d — 3.

Proof. By induction on the degree d. If d = 2, then ql(¢) = 1 = 2-2—3, that is the assertion.
If d > 2, then Corollary 3.20 implies that there exist two quadratic transformations p; and
02 such that ps 000 is a plane de Jonquieres map of degree d—1. By induction hypothesis,

one has
ql(o20p00) <2(d—1)—3=2d—5.

It follows that
al(p) < dl(ee0popr)+2<2d -3,

that is the assertion. O]
For some specific case, we can find a better upper bound.
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Lemma 3.22. Let ¢ be a plane de Jonquicres map of degree d > 2. Suppose that the weighted
proximity graph of ¢ is

d — 1 vertices
Pda-1

®\@\@/@@ @

@

Pd Pd+1 P2d—2

d — 1 vertices

Then, the quadratic length ql(¢) of ¢ is at most d — 1.

Proof. By induction on the degree d.
If d = 2, then ¢ is a quadratic map (of the second type), hence ql(¢) = 1, that is the

assertion.

For d > 2, let ¢ be an involutory quadratic map based at pg, pg and p; (clearly, po, pa, p1 are
not collinear). Then, the composite map ¢ o p=! = ¢ o p has degree d — 1 and its weighted
proximity graph is

d — 2 vertices

o oo

d — 2 vertices

®

By induction hypothesis, the quadratic length of ¢ o p is such that

ql(¢pop) <d-—2.

It follows that
ql(¢) < dl(poo) +1<d-1,

that is the assertion. O

3.3 On ordinary quadratic length of de Jonquieres maps

Proposition 3.23. Let ¢ € Cr(P?) be a de Jonquiéres map of degree d > 3. Let py be
the maximal multiplicity base point and suppose that the simple base points pq, ..., pog_o are

either proper or infinitely near py of order 1. Then, one has

oql(p) < d.

For convenience, one can reorder the simple base points of ¢ in such a way py,...,p; are

proper and pii1, . .., Pag—2 are infinitely near pg of order 1, where d —1 <1 < 2d — 2.
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Proof. By induction on the degree d.

For d = 3, the statement holds, as we will see in Table 4.2 at page 57.

Assume as induction hypothesis that within any degree d where d > 3, the statement holds.
Now, let consider ¢ a de Jonquieres map of degree d+1 under assumptions of the proposition.
Since d > 3, then ¢ has degree d+1 > 4 and ¢ has at least three simple proper base points.
Let p be an ordinary quadratic map centered at pg, pi,po. Then ¢ o p=! has degree d and

has similar assumption. Therefore, by induction hypothesis, one has

oql(pop ) <d.

Hence,
oql(p) <oql(pop ) +1<d+1.

]

Remark 3.24. In the proof of Proposition 3.23, let pjy be the mazimal multiplicity of pop™?.
If p3,...,p; where 3 < j < @ are on the line passing through py,ps then they correspond to
points infinitely near py of order 1, while p;i1,...,paa—2 correspond to simple proper base

points of po p~t.

Lemma 3.25. Let ¢ € Cr(P?) be a de Jonquiéres map of degree d > 3. Suppose that the
same assumptions of Proposition 3.23 hold, namely that the simple base points py, ..., Pag_2
are either proper or infinitely near the mazimal multiplicity base point poy of order 1. Suppose

moreover that

e if d is even, then the enriched weighted proximity graph of ¢ is not isomorphic to the

following form

d —1 vertices

Pa Pd+1 P2d—2

o8& b

@) OO O

Po 2 P2 Pd-1

d — 1 vertices

e and if d is odd, then the enriched weighted proximity graph of ¢ is not isomorphic to
the following form

d — 2 vertices

Pd+1 Pd+2 P2d—2

®\@\“/@@ _— (3.5)

@

Do D1 P2 Pa

d wvertices

where the curves means that py,...,pq—1 are collinear in the former case and

it means p,...,pq are collinear in the latter case, then oql(y) < d — 1.
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Proof. By induction on the degree d.

In case of degree d = 3, the enriched weighted proximity graph of ¢ is either one of types
27,29, 30, 31 in Table 4.2 at page 57, that we will prove in Chapter 4 that oql(¢) = 2.

In case of degree d = 4, the enriched weighted proximity graph of ¢ is either one of types
72.1,84.4 with ¢ = 1,...,4, 88.5 with y = 1,...,8, 90.k with £k = 1,...,12 in Table 5.1 at
page 94. Choose two simple proper base points p;,ps and let p be an involutory ordinary
quadratic map based at pg,p1,p2. Then, ¢ o p is a de Jonquieres map of degree 3 with
its enriched weighted proximity graph is one of types 27,29,30,31 in Table 4.2, and then
oql(¢ o p) = 2. Note that, type 28 in Table 4.2 can not occur because of the assumption in

the statement of the lemma. Therefore, one has

oql(¢) < ogl(pop) +1=3.

Hence, the assertion holds true for degree d = 3, 4.
Suppose by induction that d > 5 and that the assertion is true for d — 1. There are two

cases: either d is odd or d is even.

(I) If d is odd, we consider two sub-cases:

(a) if the simple base points are py,...,ps1 and they are collinear, namely the en-
riched weighted proximity graph is of the following form

d — 1 vertices

®\@\@/®@ .

d — 1 vertices

O

Pd-1

Set p; an involutory ordinary quadratic map based at pg, p1, p2. Then, ¢ o p; has
even degree (d — 1) and its enriched weighted proximity graph is of the following

form

d — 3 vertices

Da Pis1 Pha-1
A Ph

P P

d — 1 vertices

which is not isomorphic to (3.4). By hypothesis induction, one has
oql{(pop) <(d—1)—1=d-2.

Then,
oql(p) < oql(pop)+1<(d—2)+1=d—1.

(b) If the simple proper base points of ¢ are py,...,p; with i > d — 1 and they are

not all collinear, namely there exists p; for some j = 3,...,¢, such that p; does
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not lie on the line passing through py, po. Set p; an involutory ordinary quadratic
map base at pg, p1,p2. Then, ¢ o p; has degree (d — 1) and either it has at least
d simple proper base points if i = d — 1, or it has at least (d — 1) simple proper
base points which are not all aligned if ¢+ > d, and if it has infinitely near points
then they are infinitely near the maximal multiplicity base point of the first order.
That means ¢ o p; satisfies the assumption of the lemma, it has even degree and
its enriched weighted proximity graph is not isomorphic to (3.4). By hypothesis
induction, one has
oql(pop) <(d—1)—1=d—-2.

It follows
oql(p) <oql(pop)+1<(d—2)+1=d—1.

(I1) If d is even, we consider two sub-cases:

()

if the simple proper base points of ¢ are py, ..., ps and they are collinear, namely
the enriched weighted proximity graph of ¢ is of the following form

d — 2 vertices

o0

d vertices

®

Pa

Set p; an involutory ordinary quadratic map based at pg, p1, po. Then, ¢ o p; has
odd degree (d — 1) and its enriched weighted proximity graph is of the following

form

d — 2 vertices

Pt P Phi-a
A P

/
P Pa—2

d — 2 vertices

which is not isomorphic to (3.5). By hypothesis induction, one has
oql{(pop) <(d—1)—1=d-2.

Then,
oql(p) <oql(pop)+1<(d—2)+1=d—1.

If the simple proper base points of ¢ are pq,...,p; with ¢+ > d and they are not
all aligned, namely there exists p; for some j = 3,...,4, such that p; does not lie
on the line passing through p;,ps. Set p; an involutory ordinary quadratic map
base at pg, p1,p2. Then, ¢ o p; has degree (d — 1), it has at least (d — 1) simple
proper base points which are not all aligned and if it has infinitely near points

then they are infinitely near the maximal multiplicity base point of the first order.
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That means ¢ o p; satisfies the assumption of the lemma, it has odd degree and
its enriched weighted proximity graph is not isomorphic to (3.5). By hypothesis
induction, one has

oql{pop) <(d—1)—1=d-2.

It follows
oql(¢) <oql(pop)+1<(d—2)+1=d—1.
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Chapter 4
Cubic plane Cremona maps

In this chapter, we classify equivalence classes of cubic plane Cremona maps. Moreover, by
using this classification, we compute the quadratic length and the ordinary quadratic length
of all cubic plane Cremona maps. The main tool of the classification is the enriched weighted
proximity graph of the base points of a plane Cremona map. A previous “classification” was
obtained by Cerveau and Déserti, cf. [11] and Section 4.2.

4.1 Classification theorems
Let us set C* = C\ {0, 1} and let us define the following maps:
g1,92: (C X(C _>(C XC 9 gl(avb):<b7a’)7 g?(a’vb) = <5 _) .

Therefore, g3 := g2 © g1 = g1 © g2 is the map (a,b) — (1/b,1/a). Clearly,

G= {ldu 91, 92, 93}

is a group, under the composition, which is isomorphic to ((Z/2Z)?, +).
For a # b and a,b € C**, let us denote by S’ the following set

s {wn (551 (o =)
=) () () )

S={g(s)| g€ Gand s €S} (4.1)

and let us define

Theorem 4.1. Any cubic plane Cremona map is equivalent to one of the maps in Table 4.1
at page 56, where the first 25 types are single maps, types 26-30 depend on one parameter
v # 0,1 and type 31 depends on two parameters a,b, where a,b # 0,1 and a # b.

Two cubic plane Cremona maps of two different types are not equivalent.

Concerning the types depending on parameters:
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® ¥y, that is type 26 in Table 4.1 with parameter v # 0,1, is equivalent to @ if and
only if either v/ =~ ory =~/(v —1);
® ©o7 ., that is type 27 in Table 4.1 with parameter v # 0,1, is equivalent to @or o if and

only if either v/ =~ ory = 1/v;

o forn € {28,29,30}, the map ¢, ., that is type n in Table 4.1 with parameter v # 0,1,

is equivalent to @, if and only if

1 1 —1
7/6{77_71_77 ) J 77 }
Y =7y v=1 ~v

® 314, that is type 31 in Table 4.1 with two parameters a,b # 0,1, a # b, is equivalent
to w310 if and only if (a',b') € S, where S is defined in (4.1).

In Table 4.1 at page 56, the first column lists our type, the second column lists the formula of
the maps, the third column lists the corresponding types in [11], cf. Section 4.2, and finally

the fourth column lists the types of the inverse maps.

Using the above classification theorem, it is easy to compute the ordinary quadratic length

and the quadratic length of all cubic plane Cremona maps:

Theorem 4.2. Plane Cremona maps equivalent to type 1 in Table 4.1 have quadratic length

3, while all other cubic plane Cremona maps have quadratic length 2.

A plane Cremona map equivalent to type n, 1 < n < 31, in Table 4.1 has the respective
ordinary quadratic length listed in the third column in Table 4.2 at page 57.

Corollary 4.3. The ordinary quadratic length of T is oql(tT) = 4, hence the decomposition

(3.3) of T is minimal.

Proof. Let py,p2, p3s be the base points of 7, where p3 = ps = p; € P? and let £ be the line
through p; and ps. Proposition 3.17 implies that oql(7) > 3 and the decomposition (3.3)
says that oql(r) < 4. Suppose by contradiction that oql(7) = 3. Then, there exists an
involutory ordinary quadratic map v such that oql(7 o 1)) = 2. Either p; is a base point of
Y or it is not. In the latter case, 7 o 1) has a base point of height 3, hence Proposition 3.17
implies oql(70) > 3, a contradiction. In the former case, if one of the other two base points
of 1 lies on the line ¢, then p, corresponds to a base point of the map 7 o ¢ which is still
infinitely near and, therefore, 7 o 1 has still a base point of height 3 and we get again the
same contradiction. Otherwise, the map 7 o ¢ has the proximity graph of type 24 in Table

4.2, which has ordinary quadratic length 3, according to Theorem 4.2, a contradiction. [

We are going to prove these theorems in Sections 4.3 and 4.4.
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Table 4.1: Types of cubic plane Cremona maps.

i Map [11] | Inv
1 (227 +y3 : y2? 1 2 1|1
2 [z(2? +yz) : v y(a? + y2)] 20 | 8
3 (222 2% + zyz : 2P 5
4 [222 0 2 + 2% + zyz : 127 4 4
5 (222 2Py + 23 x2?) 5 3
6 (2% (z —y) s 2y(z —y) : zyz + °] 12 | 6
7 [z(2? 4+ y2) s y(2? + yz) : 2y?] 24 | 17
8 [wyz :yz? 23 — 2%y 6 2
9 [v?z : z(zz + y?) : y(zz + y?)) 21 | 9
10 (23 y?2 : xyz] 7 | 10
11 [2(y* + x2) : y(y? + x2) : 2y2] 22 | 18
12 (222 1 2%y @ 23 2 | 12
13 [z(y? + x2) s y(y? + x2) : 297 23 | 20
14 (23 2%y : (z — y)yz] 11 | 15
15 [y : xy? (2 — y)?2] (x) | 14
16 [z(2? + yz) s y(2? + y2) : zy(z — y)] 28 | 24
17 [vyz 1 y?2 : x2(y? — x2)] 10 | 7
18 [22(y — 2) : zy(y — 2) : y?2] 8 | 11
19 [z(2? + yz + x2) s y(2? + yz + 22) : 2yz2| 26 | 19
20 (222 xyz  y? (2 — 2)] 9 |13
21 [z(zy + 22z + yz) :y(zy + x2 + yz) @ xyz] 25 | 21
22 [z2(z +y) :yz(z +y) : 2y? 13 | 22
23 (2 + zy + y2) : y(2 + zy + y2) : TY2] 27 | 25
24 [zyz: (y —2)yz : 2(z — y)(y — 2)] 15 | 16
25 [2(z +y)(y +2) y(z +y)(y + 2) : zy2] 14 ] 23
26 [v(yez —vy? — 2y +4?) s yay(z —y) (2 — 2)] 29 | 26
27 [y2?y : yay? : (z +y)(x + yy)2] 16 | 27
28 [y(x —y) s wz(y — ) = 2(y + ) (y — o)) 177 | 28
29 [zy(z —y) : x(zy — vy + vz — yz2) : 2%y — YAty + 22?2 — 2] 30 | 30
30 [z(zy +yrz — 122 — yy?) tyxz(e —y) s vz(z —y)(z + )] 18 | 29
laz(—abxz + aby® — bwy + b*xz + axy — ay?) : ax(—abzz + abyz + axy
31 32 | 31

—ayz — bry + bxz) 1 —a?bx’z + a?by?z + a*x?y — a’*y*z — Viaty + b

22]
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Table 4.2: Enriched weighted proximity graphs and ordinary quadratic lengths of the cubic

plane Cremona maps.

i | Enriched weighted prox. graph | oq t | Enriched weighted prox. graph | oq
1 OTO—-0—0—0 |6 | 16|0—0—0 O O3
2 | Q—0D—0O—0O—O|5| |[71O O OO0
3OS0 O—0—D |5 | B8O O O—0O—O®|3

19O O O—0O—0O) 3
HOEO—0 00| | il 0re e s
5 OO D5 1D O—D O—D]| 2
6@%@@422@@@@@3
T O—0O—0—0® O+ |30 O O—0O:
31 O—O—0O—0O|5| |40 O O O—OD:3
110 OO0 1| |50 O O O—O|:>2
W0 OO0V 3] x| O O O—0O:
HO—0 0005|500 0 © O :
2O OO 3| [3]0—0 O O O3
BIO—O—0O O3] 20— O O O:
HOTO W 003 [0 O O O O:
50D @ @3] (MO O O O O
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4.2 Comparison with the classification in [11]

In this section we compare our classification with the one in [11]. The classification in [11] is
divided in 32 types, namely 27 types are a single map each, 4 types are families depending
on one parameter and 1 type is a family depending on two parameters. Their classification
is based on the analysis of plane curves contracted by a cubic plane Cremona map. We will

freely use Notation 1.1 at page 1.

Remark 4.4. The classification in [11] is not complete. Our type 15 does not occur in their

list, even if it is equivalent to the inverse of their type 11.

Remarks 4.5. & In [11], their type 19 is equivalent to a specific case of their type 18
with parameter vy = —3/\/5. In particular, let us denote by Y19 and P13, the two
maps of their type 19 and their type 18 with parameter v respectively, then

thig =20 — 2121 V2 — 22] 0 b1z, 0 [w — y 1 V22 1 V2(z — y)].

& Similarly, in [11], their type 31 is equivalent to their type 30 with parameter o = 3//2.
Indeed, let us denote by 131 and 30 the two maps of their type 31 and their type 30

with parameter v respectively, then
P31 = [y—|—\/§a: =y :2(z—y) o0z +y: —V2y T + 2z].

This explains why the two types 19 and 31 in [11] do not appear in the third column of
our Table 4.1.

Remark 4.6. Let 117 be type 17 in [11], that is

Y[z 2]) = [z2(x +y) s yz(z +y) - oy(z —y)).

Then, 117 is equivalent to our type 28 in Table 4.1 with vy = —1, because

[y :y+z:x] o pagqy =7

However, it seems that our type 28 with v # —1 does not occur in the list in [11]. This
explains why we added 1 at type 17 in the third column of Table 4.1.

Remarks 4.7. & Let woy be the map of type 24 in Table 4.1. Then, o4 is equivalent to
type 15 in [11], that is Pi5([x 1y @ 2]) = [z(z+y) (2 +y+2) cy(x+y)(z+y+2) : 2y2].
Indeed, one has

pouolr:x+y:x+y+z]=1s.

& Let o5, be the map of type 26 with parameter v # 0,1 in Table 4.1. Let 1o, be the
map of type 29 with parameter t # 0,1 in [11], that is

Yoo r([w:y: 2]) = [y + towy + w2 + y2) 1 y(y° + tay + 22 + y2) : xy2].
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Then, one has that
[ty —x : t(y — t2) : ty] © Ya6, O [~z 1 Y 1 Y + 2] = Yooy,
1
where vy = T—¢ that shows that o, is equivalent to ag ;.

& Let pa7., be the map of type 27 with parameter v # 0,1 in Table 4.1. Let 115, be the
map of type 16 with parameter t such that t> # 4 in [11], that is

Unee([z:y 2 2]) = [w(2® + o + tay) 1 y(® + y* + tay) : 2y2).
Then, one has that V16 and
P10 0 [—(t-z+y) i thx+y 2],

where vy = t_/t4, are defined by the same homaloidal net, therefore par7 -, is equivalent
to V164

& Let a9, be the map of type 29 with parameter v # 0,1 in Table 4.1. Let 130, be the
map of type 30 with parameter t such that t*> # 4 in [11], that is

Yaoi([zy:2]) = [x(x2 +y? + tay + xz) y(x2 +y? + toy + xz) : xyzl.
Then, one has that 130 and
P29 0 [t°y 1t (y +12) 1ty + a0+ 2)],

where vy = §+2_t" are defined by the same homaloidal net, therefore pag -, 1s equivalent
t0 P30,-

& Let ps0., be the map of type 30 with parameter v # 0,1 in Table 4.1. Let 115, be the
map of type 18 with parameter t such that t*> # 4 in [11], that is

Vise([r iy 2]) = [w(2® + 9 +toy +towz +yz) y(@® +y* +toy +toaz +y2) - ayz).
Then, one has that psg~,, where yo =ttty — 1, and

Pigpofr: —tyy ity —tx — 1%
are defined by the same homaloidal net, therefore 3o, s equivalent to Yrg.

& Let p31.4 be the map of type 31 with two parameters a,b such that a # b and a,b # 0,1
in Table 4.1. Let 1394y be the map of type 32 with two parameters t, h such that t* # 4
and h # ty in [11], that is

Usosn([r 1y 2]) = [x(tay + haz + 2° +y* + y2) 1 y(toy + haz + 2° + y* + yz2) : vy2].

Then, one has that V324 and

(2—tt)h  h )

¥31,a0,b0 © [t.l’ ot -yt —y — Z]a (a07 bO) = ( h— ¢t "¢t
- Ut U+

are defined by the same homaloidal net, therefore w31 440, S equivalent to Ysay .
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Remarks 4.8. & Let 119 be type 19 in [11], that is

Yo([z:y:z2]) =yl —y)(x+2)2(x—y)(z—y) yz(z +y)]

Then, 1ng is equivalent to w39 1, that is type 30 in Table 4.1, with parameter v = —1,

because

ly—x+z:x—y:y—z]lopsg_10[—x:y:z] =1,
& Let 1p31 be type 19 in [11], that is
Ysi([z:y:2]) = [w(x® +yz +22) s y(@® +yz + 22)  ay(z — y)).

Then, 131 1s equivalent to pag _1, that is type 29 in Table 4.1, with parameter v = —1,

because

[~y 2z —y—2z:22)0pag (ne_1) 0 [Ty : 2T + 22] = .

Remark 4.9. In Section 6.4, Théoréme 6.39 in [11], there is a list of decompositions in
quadratic maps of their 32 types of cubic plane Cremona maps. Note that the decompositions
of types 25 and 26 are exchanged and the decomposition of type 24 is incorrect. A correct

decomposition in quadratic maps of their type 24 (our type 7) is:

[z(z® +y2) ty(x? +y2) x| =[r:2z:ylopoly:x+y:zlopolz:y:al

Table 4.3: Decompositions of the 31 cubic plane Cremona maps listed in Table 4.1.

f A decomposition a,, ©c g 0,100 0---0q; 000 Qg
ag = [2Ty + 225z : 12y : 8x — 8y|, a5 = [2x + By : by — x : 15z + 152],
1 ay=[2x+2z:5x:3x+ 10y —2zl,az3 = [z —y: 2+ 2y —x: 2y,

ay=[z:2—-2x:20+2y—zlaos =[x —y:z—x+y:2x—yl,ag=[y:y+z: x|

as=[8y—8r:x+z:4dx],as=[r+y:y:z—2x
2 az3=[20:—y—2x:y+2r—2z,aa=y—z:x:x+2—1y,

ag=[z:z—x:yl,ag=[r:2: 2+

as =4y Ay + 3z dy+4zl,as =83z —z: 2 -y yl,
3 a3 =1[924+3x:y:3z2—yl,aa =[By+4z—x: 2 — 2z : 3z,
ag=y+z:x—y+z:y—zl,o=Ry:x+z:x— 2z,

au=y+z:x+2z:z—ylas=20:y—z:y+ 2|,

4 ay=ly—4dr—4z:x:zZ,ay=[y+z:x:y—z,ap=_2y:x+z:x — 2|
as =[dy+42: 1224+ 24+ 9y : 6y + 82|,y = 2y + 2 : =20 — 2z : 2z + 22],
5 a3 =2y :2y—z+x:z—yl,aa=[22+2x—y:2z—y:y,
y=y—cr—z:2z24zx:c+z,p=[r—z:y: 2|
ay=[-2y—dr:dr:2x+y+2zl,a3=[r—2z:z:yl,an=[y:2z—2y —x: 2z,
6 ag=y—z:x+y:22l,o=x—y:x+y:x+y+ 2z
. a=y—z:y:y—zas=[r:z:z24yl,aa=[z:y—x—z: 2,

ap=[r:y:z+zl,o=[x:2+2:y—2x]
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as =2y —dx — 4y : 8x + 9y + 2|,y = 20 — 2y : 2y — x : = + 22|,

8 az=lr+y:xv:z—y—2z,,aa=[r+y:—22:2x+y+ 2z,
o =R2r+y:y: 20 —y+2z,ap=[-2z:2+2:y+ 7|
9 ag=z—y:x:zjag=[r:y+z:zjaa=[x:2x—y: 2,
ap=lr:y+z:zl,ap=[r:2—y:9
10 az=[r+y:—y—z:ylaw=[z—x:x+y: -y
ag=z:xv—z:y+z—zxj,ap=[r:x+z:2+Y
11 az=z:x:ylaw=[r:z+z—y:zlag=[x:y+z:z,an=[v:2—y:y
19 azs=[-r:x—z:x+yl,aa=[y—z:z:y+2),
=y rz+y:z—x—yla=[-z:c+z:y— 2
13| as=[r:y:zljaw=z—y:z:x+z—ylar=x:y+z:zl,ap=[z:2—y:9|
4| agg=r+tz:z:ylaa=[r:2—y:z—al,ar=[x:y+z:2zl,0=[y:2z—x: 1]
15 az=lz—yryt+zidy—dalaa=[r+y:y:z],
ap=ly—z+2z:x—y:x+yl,ag=[r:y: 2|
a3 =[-z:y:2y—z],ae=[y:x:x+ 2,
16 ap=r+z:—z:y—20—-2z,ap=[x:x+2:y—
17 ag=[-y:ox—y:3y+zag=lrt+yy:a=[ry—a+z),
ap=lr:y—x:zl,ao=[y:y+z:ax—1y
Blag=r+z:z:z—ylag=[z:y+z:zlag=y—z:z—y—z:x],ap=[z:y: 2]
19 az=[r:z:—ylaw=y:z—y:zj,ar=[r:z:y—z],ap=[x:x+ 2y
50 az=[z—y:z:x+zl,aa=[r:y+z: 2|,
ap=z—zr—y:z—y:y,am=[x:y:z
21 =y zlag=:y:x+y+z,ap=[r:y: 2
az=y—2z:z:x+zl,aa=[r:y+2: 2,
22 o =r+y—z:20+y:—zv—yl,aw=[x:y: 2
23 ay=[r:—y:zlaoa=ly+z:z:x4+y+zl,ap=[z:2:—x—1
az=[x:y:zlaa=[r+z:2—x:6z—4y,
24 ap=[r:y+z:zl,ap=1[y—2x:22—3y:y
25 ay=[—z:z:ylaoy=z:x+y:y+zl,ao=[2:y:—x—1]
o6 ay=[y(yr—2r+y)+r+z: 90w —r+y) (T +y),
ar=((y—Dz—yy+2):y(y—2)yzlag=[z:y: 2]
. ar=[(vr+y) =y +y): (y-1*%ar=haty:—z—y: (v - 1)z,
ag=[r:y: 2]
- as=[z:P(@+y) Y@+t ae=+yy -y —w: 2,
ar=[zir—qy:—yz]ap =[r:y: 7]
- ay=ly+z:y—az:y(y—x—2)—x+y+ 2z,
am=[r—y:r—qy:(1-9y)z—z+la=[zr:y:2
30 az = [Yr+ 1 -yy—z:v0yx—y) (v + Dz —y)),
ap=y+z)—y:yt+z:x+zap=[z—x:y—x:
as = [a(a(z + (b—1)22) + by) : alax +y) : by — ((b— 1)z — x)a®—
31 —((1=0bz—2x)—y)al,a; =[ax —by:y—x:(b—1)ax —bla— 1)y + (a — b)z],

ag=[r:y: 2]
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Remark 4.10. For types 9,11,13,14, 18,19, 20, 21, 22, 23, 24, 25, 26, 27,29, 30 and 31, the

decompositions listed in [11] are already minimal.

Among 31 cubic plane Cremona maps listed in Table 4.1, for those maps where their ordinary
quadratic lengths are at least 3, we give in Table 4.4 other decompositions into (not necessary

ordinary) quadratic maps.

Table 4.4: Decomposition into quadratic maps of some types.

i A minimal decomposition into quadratic maps

1 [x:z:ylopolz:ry:x]oTolz:y:—x]opofr:z:y]

2 [x+z:y:zjopoly—x:z:x]oToly:aw: —2]

3 z:x:ylopolz:y:ax]oTolz:x: —y]

4 [y:z:xjoToy:ax:—zloTox:z:—y

5 [x:z:yloTo[—z:—y:x+z]opoly—z:x:2]

6 |[~y:z:z]opolx+y+2z:y+z:—z]opolx+z:x:y— 2]
7T | |[-x—z:z:ylopo[—z—y:x+y+z:z]opolz—x:y:x
8 [y:x:—z]loTolz:x+z:ylopolz—z:y: 2]

9 |[y:—x—z:zjopo|—2z—z:x+y+z:zlopofx—y:z:y]
10 [y:x+z:2]opolz—y:x+z:y|lopolz—x:y: ]

11 x:z:z—ylopolzixt+y+z:iylopolz—y:a:y]

12 zix+z:iylopolz+z—y:z:ylopoly—z:x: 2]

13 [z:y:zxjoooly+ar+z:z:ylopolz—y:x:y]

14 ly:y+z:—xlopolr+z:z—y:ylopolz—x:y: 1]
15 [x:2z+4+x:ylopoly:z:x—yloo

16 | [zr:2z:y+zjopoly:x—z—y:y+zlooofx+z:y—x:x
17 [y:x:—z2]oTo00

18 [x+z2:2:—ylopoly—x:y—2:7]00

19 [z:x:y+z]opolzix—y—z:ylooo[z+z:y:x

20 [y:z:x+z]opolz—x—y:x:y|loo

22 y—z:z:x+4+z2]opolz—z—y:x:x+y|loo

24 ly+z2z:—2:x—z]opolr—y+z2:y—x:x]oo

28| [x:2—y:2vz2—(1+y)ylopo[(l—=7)z:z—y:2—"yy|oo

Remark 4.11. With those maps (including types 21,23,25,26, 27,29, 30,31 listed in Table
4.1), whose have the ordinary quadratic length ezxactly 2 (hence their quadratic lengths are

also 2), then their minimal decompositions into quadratic maps can be found in Table 4.3.
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4.3 Proof of the Classification Theorem 4.1

The results in Chapter 2 imply that any cubic plane Cremona map has an enriched weighted
proximity graph of the 31 types in Table 4.2. We will show that a cubic plane Cremona map
with enriched weighted proximity graph of type n, 1 < mn < 31, in Table 4.2 is equivalent to
the map of type n in Table 4.1 at page 56.

Lemma 4.12. Let oy be the map 1 in Table 4.1 and let 11 be a map with enriched weighted
proximity graph 1 in Table 4.2. Then, 1 is equivalent to ¢;.

Proof. The base points of ¢; are pp = [1 : 0 : 0] of multiplicity 2 and py,...,ps with
Ps >1 P3 =1 P2 =1 P1 >1 Po and ps ® py, whose standard coordinates are p; = (po,0),
p2 = (po,0,00), p3 = (o, 0,00, —1), ps = (po, 0, 00, —1,0).

The base points of i, are gy of multiplicity 2 and ¢1,...,qs With ¢4 >1 ¢3 >1 ¢ =1 @1 >1 Qo
and g ® po. Clearly, there exists an automorphism a; of P? such that a;(py) = ¢o and
a1(p1) = q1, so that also aq(ps) = go.

The base points of 11 o a; are then py, p1, p2, ¢5, ¢) where g5 has standard coordinates g5 =
(po, 0,00, us3) for some ug € C* because, if ug were 0, then ¢4 would be proximate to pg, a

contradiction, and, if ug were oo, then ¢5 would be proximate to p;, again a contradiction.

An automorphism ay of P? that fixes pg, p1, p2 and that maps p3 to ¢j is
as([x:y:z]) =[—x:uzy : usz].

The base points of ¥ o ay o ay are then py, p1, P2, 3, ¢ where ¢ has standard coordinates
q] = (po, 0,00, —1,uy) for some uy € C because, if uy were oo, then ¢ would be proximate

to po, a contradiction.

An automorphism az of P? that fixes pg, p1, p2, p3 and that maps py to ¢f is
as([z:y:z]) = [3x: 3y + ugz : 32].

Therefore, the maps ¢, and ¥, o a; o ap 0 a3 are defined by the same homaloidal net and,

hence, ; and 1), are equivalent. O

Lemma 4.13. Let @y be the map defined by type 2 in Table 4.1 at page 56. Then, ps has
only proper base point pg = [0 : 0 : 1] of multiplicity 2 and other base points py, pa, P3, Pa
satisfy py =1 p3 =1 P2 =1 p1 =1 Do where their standard coordinates respectively are p; =
(p0,0),p2 = (po,0,—1),p3 = (po,0,—1,0) and py = (po,0,—1,0,0), that is each p; in the

direction of the conic ¢y : 22 +yz =0 for anyi=1,...,4.
Proof. Consider s, : P? —-» P? defined by

o[z iy 2]) = [x(2® +y2) : v® : y(a® +y2)].
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The map has only proper base point py = [0 : 0 : 1] and its multiplicity 2.

A curve C of the linear system associated to ¢ is of the following form
Mz (2 +yz) + Ay’ + Asy(2® + yz) =0,

for some [\; : Ao : \3] € P2
In the affine chart Uy = {[z : y : 2] € P?|z # 0} ~ Az, so that py corresponds to the origin
0 = (0,0), the curve C has local equation

Co: MT(T +7) + MP° + AY(T° +7) =0
and the local equation of the conic ¢y is
2 .
Coq T +y =0.

¢ Blowing-up A2

T,y

Y = x1Y1, one has

at 0 and consider the first chart given in coordinates by * = x; and

e the exception curve Ej is defined by x; = 0;

e the strict transform of the curve C, is given by

Cai: )\gailyi’ + A3z1y1 + /\3yf + A1z + Ayr = 0;

e the strict transform of the conic ¢y, is

Coa1 - 1+ y1 = 0.

Then, p; = EyNCyiNcagr is the origin of A2 In other words, the standard coordinates of

T1,Y1°

p1 w.r.t @9 is p1 = (po, 0). Moreover, one can easy check that p; is the only point infinitely

near pg of the first order.

2

214, at 0 and consider the first chart given in coordinates by z; = x5 and

4 Blowing-up A

Y1 = TaYs, one has

e the exception curve FEj is defined by x5 = 0;

e the strict transform of the curve C,; is given by

Caz : AaT3ys + A3Tays + Aoy + My + Ay = 0;

e the strict transform of the conic cy,; is

02a2:1+y2:0.
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It follows the local coordinate of ps = E1 N Cua N Cago in Aiwz is po = (0,—1). Thus, the
standard coordinates of py w.r.t ¢y is p2 = (po, 0, —1) and clearly ps @ po.

¢ Blowing-up A2~ at p, = (0,—1).

Z2,Y2

Consider a : A2, =~ — A%y a linear change coordinates defined as follows

i) :X,
Yo =Y —1.

With the new coordinates, py is the origin of A%QY and the equations of the curve C,o and

the conic co40 respectively are
Cho s M X3Y 2 — 30 X3Y 2 + 30X3Y — X3 + M XY?2 — XY + 0, Y =0,

and
Coq2 - Y =0.

Blowing-up A%QY at 0 and consider the first chart given in coordinates by X = x3 and

Y = x3y3, one has

e the exception curve FEj is defined by z3 = 0;

e the strict transform of the curve C5 is given by
Cas = Mys + (23y5 — 3235 + 323ys — 3) Ao + (23y5 — w3y3) A3 = O;
e the strict transform of the conic cyg9 is
243 Y3 = 0.

Then, p3 = E5 N Cuz N cau3 is the origin of A§37y3. It follows the standard coordinates of ps
w.r.t P2 is b3 = (p07 07 _17 0)

2
3,43

4 Blowing-up A at 0 and consider the first chart given in coordinates by x3 = x4 and

Y3 = T4, Ya, one has

e the exception curve FEj is defined by z4 = 0;

e the strict transform of the curve C3 is given by
Caa = My + (25ys — 3233 + 325ys — 24) Ao + (23yF — 4ya) A3 = 0.
e the strict transform of the conic cy,3 is
C2a4 Y4 = 0.
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2

244, D other words, the

Then, the local coordinate of py = E3 N Cuy N Coqq is the origin of A
standard coordinates of py w.r.t ¢y is ps = (po, 0, —1,0,0). ]

Lemma 4.14. Let py be the map 2 in Table 4.1 and let 15 be a map with enriched weighted
prozimity graph 2 in Table 4.2. Then, 1y s equivalent to @o.

Proof. The base points of ¢y are pg = [0 : 0 : 1] of multiplicity 2 and py, . . ., py with standard
coordinates p; = (po,0), p2 = (po,0,—1), p3 = (po,0,—1,0), ps = (po,0,—1,0,0). So there
is a unique irreducible conic passing through po, ..., ps, that is C;: 2% + yz = 0. Let ¢y be
the double base point of 15 and let ¢1,...,qs be the simple base points of 5. According
to Lemma 1.55, there is a unique irreducible conic C5 passing through qq, ..., qs. Moreover,
Lemma 1.15 implies that there exists an automorphism « of P? such that a(g) = po and
a(Cq) = C4. This forces a(q;) = pi, i = 1,2, 3,4. Therefore, 15 is equivalent to . ]

Lemma 4.15. Let 3 be the map 3 in Table 4.1 and let 13 be a map with enriched weighted
proximity graph 3 in Table 4.2. Then, 13 is equivalent to @s.

Proof. The base points of ¢3 are pg = [0 : 1 : 0] of multiplicity 2 and p1, ps, p3, ps where
p1 =1 po and py 1 p3 =1 pa2 1 po with standard coordinates p; = (po, 0), p2 = (po,0), ps =
(po, 0, —1) and py = (po, 0, —1,0).
The base points of 13 are qo of multiplicity 2 and ¢y, ..., qs where ¢; =1 qo and q4 >1 q3 >
q2 =1 qo- Clearly, there exists an automorphism «; of P? such that a;(g;) = p; for i = 0,1, 2.
The base points of ¢35 o ay are then py, p1, pa, ¢4, ¢4 where ¢4 has standard coordinates ¢ =
(po, 0, u3) for some uz € C* because, if uz were 0, then ¢4 would be aligned with py and ps, a
contradiction, and, if ug were oo, then ¢4 would be proximate to pg, again a contradiction.
An automorphism «ay of P? that fixes pg, p1,p2 and that maps p3 = (po,0,—1) to ¢§ =
(o, 0,u3) is

ag([x:y:z]) = Jusx : —y = usz].
The base points of 13 0 ay 0 ay are then pg, p1, P2, 3, ¢ where ¢ has standard coordinates
¢} = (po,0,—1,uy) for some uy € C because, if uy were co, then ¢} would be proximate to

P2, a contradiction.

An automorphism az of P? that fixes pg, p1, p2, p3 and that maps py to ¢f is
as(f[x:y:z])=[r:y—usx: 2]

Therefore, the maps @3 and 13 o a3 o ap 0 a3 are defined by the same homaloidal net and,

hence, 3 and 13 are equivalent. O

Lemma 4.16. Let @4 be the map 4 in Table 4.1 and let 14 be a map with enriched weighted
prozimaty graph 4 in Table 4.2. Then, ¥4 s equivalent to @y.

Proof. The base points of ¢, are pg = [0 : 1 : 0] of multiplicity 2 and py,...,ps where
P3 =1 p1 =1 po and py =1 P2 =1 Po, with standard coordinates p; = (po, ), ps = (po, 00, —1),
P2 = (p070) &Hd Ps = (p0707 _]-)
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The base points of 1, are qo of multiplicity 2 and qi,...,qs where g3 =1 ¢1 =1 o and
q1 =1 @2 =1 Go- Clearly, there exists an automorphism «; of P? such that a;(p;) = ¢; for
i=0,1,2.

The base points of 14 0 a; are then po, p1, p2, ¢5, ¢ where g5 has standard coordinates g5 =
(po, 00, ug) for some ug € C* because, if ug were 0, then ¢ would be aligned with py and py,

a contradiction, and, if us were oo, then g5 would be proximate to py, again a contradiction.
An automorphism ay of P? that fixes py, p1,p2 and that maps p3 = (pg, 00, —1) to ¢4 =
(po, 00, u3) is

asz([x:y:z]) =[—usx:y: z].
The base points of ¢4 0 aj 0 ay are then pg, p1, P2, 3, ¢] where ¢/ has standard coordinates

¢} = (po,0,uy) for some uy € C* because, if uy were 0, then ¢} would be aligned with py and

pe, a contradiction, and if uy were oo, then ¢ would be proximate to pg, a contradiction.
An automorphism az of P? that fixes py, p1, p2, p3 and that maps py = (po,0, —1) to ¢} =

<p07 07 'LL4) is

gy (—ug)32).

az([z 1y 2]) = [(—ua)
Therefore, the maps ¢4 and 14 o a; o as 0 a3 are defined by the same homaloidal net and,

hence, ¢4 and 1, are equivalent. O

Lemma 4.17. Let 5 be the map 5 in Table 4.1 and let 15 be a map with enriched weighted
proximity graph 5 in Table 4.2. Then, 15 is equivalent to @s.

Proof. The base points of @5 are pg = [0 : 1 : 0] of multiplicity 2, p; = [1 : 0 : 0] and
P2, D3, P4 Where py =1 p3 =1 pa >1 po and p3 ® pg, with standard coordinates py = (pg, 00),
p3 = (po, 00, 00) and py = (po, 00, 00, —1).

The base points of 15 are gy € P? of multiplicity 2, ¢; € P? and g, g3, @1 Where ¢ =1 g3 =1
q2 =1 qo and g3 ® qo. Clearly, there exists an automorphism «; of P? such that a;(p;) = ¢
for i =0, 1,2. It follows that also aq(ps) = gs.

The base points of 15 o a; are then pg, p1, pe, ps, ¢4 where ¢} has standard coordinates g =
(po, 00, 00, uy) for some uy € C* because, if uy were 0, then ¢} would be proximate to pg, a
contradiction, and, if us were oo, then ¢} would be proximate to ps, again a contradiction.
An automorphism ay of P? that fixes po, p1, p2, p3s and that maps py = (pg, 00,00, —1) to
¢4 = (po, 00, 00, uy) is

ag([x:y:z]) =z —ugy: 2.
Therefore, the maps @5 and 15 0 a1 o g are defined by the same homaloidal net and, hence,

s and Y5 are equivalent. O]

Lemma 4.18. Let pg be the map 6 in Table 4.1 and let g be a map with enriched weighted
proximity graph 6 in Table 4.2. Then, 1 is equivalent to @g.
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Proof. The base points of g are pg = [0 : 0 : 1] of multiplicity 2, py = [1 : 1 : —1]
and pa, p3, ps where ps =1 po and py =1 ps =1 po, with standard coordinates ps = (po,0),
p3 = (po, 00) and py = (po, 00, —1).

The base points of ¥4 are gy € P? of multiplicity 2, ¢; € P? and ¢», 3, ¢4 where g2 =1 qo and
q1 =1 g3 =1 Go- Clearly, there exists an automorphism «; of P? such that a;(p;) = ¢; for
1=20,1,2,3.

The base points of 1 o oy are then pg, p1, ps2, ps3, ¢4 where ¢j has standard coordinates g =
(po, 00, uy) for some uy € C* because, if uy were 0, then ¢} would be aligned with py and ps,

a contradiction, and, if uy were oo, then ¢j would be proximate to pg, again a contradiction.
An automorphism ay of P? that fixes pg, p1, p2, p3 and that maps py = (po, 00, —1) to ¢} =
(po, 00, u4) is

as([xy:z])=lr:y: (—us— 1)z —uyz].
Therefore, the maps ¢g and 15 0 a1 0 g are defined by the same homaloidal net and, hence,

e and g are equivalent. O

Lemma 4.19. Let p; be the map 7 in Table 4.1 and let 17 be a map with enriched weighted
proximity graph 7 in Table 4.2. Then, 17 is equivalent to @7.

Proof. The base points of @7 are pg = [0 : 0 : 1] of multiplicity 2, p; = [0 : 1 : 0] and
P2, P3, P4 Where py =1 p3 =1 pa =1 po with standard coordinates ps = (po,0), p3 = (po, 0, —1),
s = (po,0,—1,00). So there is a unique irreducible conic passing through p, . .., ps, that is
Ci: 22 +yz = 0. The base points of 17 are gy of multiplicity 2 and ¢, ..., qs where ¢; € P?

and q4 >1 q3 =1 @2 =1 qo- According to Lemma 1.54, there is a unique irreducible conic Cy

passing through qq, . . ., g4. Moreover, Lemma 1.15 implies that there exists an automorphism
a of P? such that a(C}) = Cy and «a(p;) = ¢;, i = 0,1. This forces a(p;) = ¢;, i = 2,3, 4.
Therefore, 17 is equivalent to . O

Lemma 4.20. Let pg be the map 8 in Table 4.1 and let 1g be a map with enriched weighted
proximity graph 8 in Table 4.2. Then, g is equivalent to pg.

Proof. The base points of @g are pg = [0 : 1 : 0] of multiplicity 2, py = [1 : 0 : 0] and pa, p3, ps
where pg =1 p3 =1 pe >1 p1 with standard coordinates py = (p;,00),p3 = (p1,00,0) and
ps = (p1,00,0,1).

The base points of 15 are gy of multiplicity 2, ¢; € P? and ¢s, g3, ¢4 Where g4 =1 g3 =1 ¢2 =1 @1
and ¢s is aligned with ¢; and ¢,. Clearly, there exists an automorphism o; of P? such that

a1(p;) = ¢; for i = 0,1,2. It follows that also a;(p3) = ¢s.

The base points of 15 o a; are then pg, p1, ps, ps, ¢4 where ¢} has standard coordinates g; =
(p1,00,0,uy) for some uy € C* because, if uy were 0, then ¢ would be aligned with pq, ps, ps,

a contradiction, and, if uy were oo, then ¢} would be proximate to po, again a contradiction.

68



An automorphism ay of P? that fixes pg, p1, p2, p3 and that maps py = (p1,00,0,1) to ¢} =
(p07 oo, 07 U4) is

ag([x:y:z]) =]z uy: 2.

Therefore, the maps ¢g and g o aq o0 ap are defined by the same homaloidal net and, hence,

g and g are equivalent. O

Lemma 4.21. Let g be the map 9 in Table 4.1 and let 19 be a map with enriched weighted
prozimity graph 9 in Table 4.2. Then, g is equivalent to pg.

Proof. The base points of @9 are pg = [0 : 0 : 1] of multiplicity 2, p; = [1 : 0 : 0] and
D2, P3, P4 Where py =1 p3 =1 pa =1 p1 with standard coordinates p; = (p1,0), p3 = (p1,0, —1),
ps = (p1,0,—1,0). So there is a unique irreducible conic passing through py, ..., p4, that is
Ci: 2z +y* = 0. The base points of 1)y are gy of multiplicity 2 and ¢, ..., qs where ¢, € P?

and q4 >1 q3 =1 ¢2 >=1 q1- According to Lemma 1.54, there is a unique irreducible conic Cy

passing through qq, . . ., 4. Moreover, Lemma 1.15 implies that there exists an automorphism
a of P? such that a(C}) = Cy and a(p;) = ¢, i = 0,1. This forces a(p;) = ¢, i = 2,3, 4.
Therefore, 19 is equivalent to g. O]

Lemma 4.22. Let p19 be the map 10 in Table 4.1 and let 119 be a map with enriched
wetghted proximity graph 10 in Table 4.2. Then, 119 is equivalent to pg.

Proof. The base points of ¢ are pg = [0 : 0 : 1] of multiplicity 2, p; = [0 : 1 : 0] and pa, ps, ps
where py =1 po and py =1 ps =1 p1 with standard coordinates ps = (po,0),ps = (p1,0)
and py = (p1,0,0). The base points of 115 are gy of multiplicity 2, ¢; € P? and g, q3, q4
where g2 =1 qo and q4 >1 q3 =1 ¢1 and g4 is aligned with ¢; and ¢3. Clearly, there exists an
automorphism «; of P? such that a;(p;) = ¢; for i = 0, 1,2, 3. It follows that also a;(ps) = qa,
so the maps 19 and ¥1g o a7 are defined by the same homaloidal net, therefore ¢y and

are equivalent. ]

Lemma 4.23. Let @11 be the map 11 in Table 4.1 and let 111 be a map with enriched
weighted proximity graph 11 in Table 4.2. Then, 111 is equivalent to ¢11.

Proof. The base points of 17 are py = [0 : 0 : 1] of multiplicity 2, p; = [1 : 0 : 0] and pa, p3, ps
where py 1 po and py =1 p3 =1 p1 with standard coordinates py = (po, >0), p3 = (p1,0),
ps = (p1,0,—1). So there is a unique irreducible conic passing through py, ..., ps, that is
Ci: xz+y? = 0. The base points of ¢ are gy of multiplicity 2 and ¢, ..., qs where ¢, € P?
and ¢ =1 qo and q4 >1 ¢3 =1 ¢1. According to Lemma 1.52, there is a unique irreducible
conic Cy passing through qqg,...,qs. Moreover, Lemma 1.15 implies that there exists an
automorphism «a of P? such that a(C;) = Cy and a(p;) = ¢;, i = 0, 1. This forces a(p;) = ¢,
1 = 2,3,4. Therefore, 11, is equivalent to ¢1;. O

Lemma 4.24. Let o195 be the map 12 in Table 4.1 and let 1o be a map with enriched
weighted proximity graph 12 in Table 4.2. Then, 115 is equivalent to ¢1s.
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Proof. The base points of 15 are py = [0 : 1 : 0] of multiplicity 2, p; = [1 : 0 : 0] and pa, p3, ps
where p3 =1 p1, pa =1 p2 =1 po and py ® py with standard coordinates ps = (pg, 00), ps =
(p1,00) and py = (po, 00, 0). The base points of 15 are gy of multiplicity 2, ¢; € P? and
42, q3,qs Where q3 =1 q1, q4 =1 g2 >=1 ¢o and g4 ® qo. Clearly, there exists an automorphism
ay of P? such that ay(p;) = ¢ for i = 0,1,2,3. Tt follows that also a;(ps) = qu, so the
maps 12 and 15 0 ap are defined by the same homaloidal net, therefore @15 and 15 are

equivalent. O

Lemma 4.25. Let p13 be the map 13 in Table 4.1 and let 113 be a map with enriched
weighted proximity graph 13 in Table 4.2. Then, 113 is equivalent to 3.

Proof. The base points of 13 are pg = [0 : 0 : 1] of multiplicity 2, p; = [1: 0 : 0] and pa, p3, ps
where py 1 p; and py =1 p3 >1 po with standard coordinates p, = (p1,0), ps = (po, ),
ps = (po, 00, —1). So there is a unique irreducible conic passing through po, ..., ps, that is
Ci: 2z +y? = 0. The base points of 115 are gy of multiplicity 2 and ¢, . .., qq where ¢; € P?
and ¢ >=1 ¢1 and g4 =1 q3 =1 qo. According to Lemma 1.52, there is a unique irreducible
conic Uy passing through qq,...,qs. Moreover, Lemma 1.15 implies that there exists an
automorphism «a of P? such that «(C}) = Cy and a(p;) = ¢;, i = 0, 1. This forces a(p;) = g;,
1 = 2,3,4. Therefore, 113 is equivalent to ¢13. O

Lemma 4.26. Let p14 be the map 14 in Table 4.1 and let 114 be a map with enriched
weighted proximity graph 14 in Table 4.2. Then, 114 is equivalent to 4.

Proof. The base points of ¢4 are py = [0 : 0 : 1] of multiplicity 2, p; = [0: 1 : 0] and pa, p3, ps
where ps =1 po, p3 =1 po and py =1 p; with standard coordinates py = (po,0), ps = (po, 1)
and py = (p1,0). The base points of 114 are gy of multiplicity 2, ¢; € P? and ¢, g3, g4 where
G2 =1 qo, @3 =1 qo and g4 =1 q1. Clearly, there exists an automorphism o; of P? such that
ay(p;) = ¢ fori=0,1,2,4.

The base points of ¢4 0 ag are then pg, p1, p2, ¢5, p4 where g5 has standard coordinates ¢ =
(po, ug) for some uz € C* because, if uz were 0, then ¢5 would be equal to ps, a contradiction,

and, if usz were oo, then ¢5 would be aligned with py and p;, again a contradiction.

An automorphism ay of P? that fixes po, p1, p2, p4 and that maps p3 = (po, 1) to ¢4 = (po, u3)

is
ag([x:y:z]) =]z :ugy: 2.
Therefore, the maps ¢14 and 914 0 0 5 are defined by the same homaloidal net and, hence,

14 and 14 are equivalent. n

Lemma 4.27. Let p15 be the map 15 in Table 4.1 and let 115 be a map with enriched
weighted proximity graph 15 in Table 4.2. Then, 115 is equivalent to ¢15.

Proof. The base points of @15 are pg = [0 : 0 : 1] of multiplicity 2, py = [0 : 1 : 0],
pe = [1 : 0 :0] and p3,ps where py >1 p3 =1 po and py ® py with standard coordinates
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p3 = (po, 1) and py = (po, 1,00). The base points of 115 are gy of multiplicity 2, q;, gy € P?
and g3, g1 where g4 =1 ¢3 =1 ¢o and ¢4 ® qo. Clearly, there exists an automorphism o; of P?
such that a;(p;) = ¢; for i = 0,1,2,3. It follows that also a;(ps) = ¢4, so the maps 15 and

Y15 0 a are defined by the same homaloidal net, therefore @15 and 15 are equivalent. [

Lemma 4.28. Let o156 be the map 16 in Table 4.1 and let 116 be a map with enriched
wetghted proximity graph 16 in Table 4.2. Then, 116 is equivalent to p6.

Proof. The base points of 16 are pg = [0 : 0 : 1] of multiplicity 2, p; = [0 : 1 : 0],
pa = [1:1: —1] and ps,py where py =1 p3 =1 po with standard coordinates ps = (po, 0),
ps = (po,0,—1). So there is a unique irreducible conic passing through py, ..., ps, that is
C:: 22+yz = 0. The base points of 114 are g of multiplicity 2 and qi, . . ., g4 where ¢y, go € P?

and g4 >1 g3 =1 qo. According to Lemma 1.50, there is a unique irreducible conic Cy passing

through qo, . . ., qs. Moreover, Lemma 1.15 implies that there exists an automorphism « of P?
such that o(Cy) = Cy and a(p;) = ¢;, ¢ = 0,1,2. This forces a(p;) = ¢;, i = 3,4. Therefore,
W16 18 equivalent to 6. O]

Lemma 4.29. Let o7 be the map 17 in Table 4.1 and let Y17 be a map with enriched
weighted proximity graph 17 in Table 4.2. Then, 117 is equivalent to oi7.

Proof. The base points of @7 are pg = [0 : 0 : 1] of multiplicity 2, py = [1 : 0 : 0],
po = [0:1:0] and p3, py where py =1 ps >=1 p1 with standard coordinates ps = (p1,0) and
ps = (p1,0,1). The base points of 7 are gy of multiplicity 2, q1, ¢ € P? and ¢3, g4 where
qs =1 g3 =1 q1 and g3 is aligned with ¢; and ¢s. Clearly, there exists an automorphism «; of

P? such that a;(p;) = ¢; for i = 0,1,2. Tt follows that also a;(p3) = g3.

The base points of 117 o ay are then pg,p1,p2, ps, ¢y where ¢ has standard coordinates
¢, = (p1,0,u4) for some uy € C* because, if uy were 0, then ¢; would be aligned with
p1,p2 and p3, a contradiction, and, if uy were oo, then ¢; would be satellite to p;, again a

contradiction.
An automorphism ay of P? that fixes po, p1, p2, p3 and that maps py = (p1,0,1) to ¢} =
(P1,0,uy) is
as([z:y:z]) =|wr:y: 2.
Therefore, the maps @17 and 117 01 0 5 are defined by the same homaloidal net and, hence,

w17 and 17 are equivalent. O

Lemma 4.30. Let p13 be the map 18 in Table 4.1 and let 115 be a map with enriched
weighted proximity graph 18 in Table 4.2. Then, 115 is equivalent to ¢ig.

Proof. The base points of @15 are pg = [0 : 0 : 1] of multiplicity 2, p; = [1 : 0 : 0],
po = [0:1:0] and p3, py where p; =1 ps >1 p1 with standard coordinates p3 = (p1,1) and
ps = (p1,1,0). The base points of 15 are gy of multiplicity 2, q1,q € P? and g¢3, g4 where

qs >1 q3 =1 q1 and qq is aligned with ¢; and g¢3. Clearly, there exists an automorphism a; of
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P? such that ay(p;) = ¢; for i = 0,1,2,3. It follows that also a;(ps) = qu, so the maps ©is

and 1130y are defined by the same homaloidal net, therefore 15 and 15 are equivalent. [

Lemma 4.31. Let p19 be the map 19 in Table 4.1 and let 119 be a map with enriched
weighted proximity graph 19 in Table 4.2. Then, 119 is equivalent to ¢1g.

Proof. The base points of @9 are pg = [0 : 0 : 1] of multiplicity 2, py = [0 : 1 : 0],
pe = [1:0: —1] and p3,py where py >=1 p3 =1 p; with standard coordinates p; = (pi,0),
ps = (p1,0,—1). So there is a unique irreducible conic passing through py, ..., ps, that is
Ci: 22 + 22+ yz = 0. The base points of ¥19 are gy of multiplicity 2 and ¢, ..., qs where
G1,q92 € P2 and g4 =1 ¢3 =1 ¢1. According to Lemma 1.50, there is a unique irreducible
conic Cy passing through qq,...,qs. Moreover, Lemma 1.15 implies that there exists an
automorphism « of P? such that a(Cy) = C and a(p;) = ¢, ¢ = 0,1,2. This forces
a(p;) = ¢, © = 3,4. Therefore, 119 is equivalent to ¢1g. ]

Lemma 4.32. Let @oq be the map 20 in Table 4.1 and let 19 be a map with enriched
weighted proximity graph 20 in Table 4.2. Then, 1oy is equivalent to paq.

Proof. The base points of @9y are pg = [0 : 0 : 1] of multiplicity 2, py = [1 : 0 : 0],
po = [0:1:0] and ps, py where ps =1 p; and pyg >1 p2 with standard coordinates ps = (p1,0)
and py = (p2, 1). The base points of 1y are gy of multiplicity 2, q1, ¢ € P? and g3, g4 where
q3 =1 q1 and q4 =1 @2 and ¢z is aligned with ¢; and ¢. Clearly, there exists an automorphism
ay of P? such that ay(p;) = ¢ for i = 0,1,2,4. Tt follows that also a;(p3) = g3, so the
maps @9 and 9y o ay are defined by the same homaloidal net, therefore oy and 1)y are

equivalent. O

Lemma 4.33. Let py1 be the map 21 in Table 4.1 and let 91 be a map with enriched
weighted proximity graph 21 in Table 4.2. Then, 191 is equivalent to o .

Proof. The base points of 9 are pg = [0 : 0 : 1] of multiplicity 2, py = [1 : 0 : 0],
pe = [0 :1:0] and p3, ps where ps =1 p; and ps =1 ps with standard coordinates p3 =
(p1,—1), pa = (p2, —1). So there is a unique irreducible conic passing through py,. .., p4,
that is C: xy + xz 4+ yz = 0. The base points of 19, are gy of multiplicity 2 and ¢;,...,q
where q1,q2 € P2, g5 =1 q1 and ¢4 =1 ¢2. According to Lemma 1.51, there is a unique
irreducible conic C5 passing through qq, ..., qs. Moreover, Lemma 1.15 implies that there
exists an automorphism « of P? such that a(C}) = Cy and a(p;) = ¢;, @ = 0,1, 2. This forces
a(p;) = ¢;, © = 3,4. Therefore, 19 is equivalent to ¢o;. H

Lemma 4.34. Let ooy be the map 22 in Table 4.1 and let a9 be a map with enriched
weighted proximity graph 22 in Table 4.2. Then, 199 is equivalent to @as.

Proof. The base points of gy are pg = [0 : 0 : 1] of multiplicity 2, p; = [1 : 0 : 0],
po = [0:1:0] and p3, py where p3 1 pg and py > p; with standard coordinates ps = (pg, —1)
and ps = (p1,0). The base points of 19 are gy of multiplicity 2, ¢1, g2 € P? and ¢3, g4 where
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q3 =1 qo and q4 =1 ¢1 and ¢y is aligned with ¢; and ¢,. Clearly, there exists an automorphism
ay of P? such that ay(p;) = ¢ for i = 0,1,2,3. Tt follows that also a;(ps) = q4, so the
maps (oo and s 0 a are defined by the same homaloidal net, therefore @q9o and 9y are

equivalent. O

Lemma 4.35. Let po3 be the map 23 in Table 4.1 and let o3 be a map with enriched
wetghted proximity graph 23 in Table 4.2. Then, 193 is equivalent to po3.

Proof. The base points of 3 are pg = [0 : 0 : 1] of multiplicity 2, p; = [0 : 1 : 0],
pa = [1 : =1 : 0] and ps,ps where ps =1 po and ps, =1 p; with standard coordinates
p3s = (po,0), py = (p1,—1). So there is a unique irreducible conic passing through p, ..., p4,
that is C: 22 + a2y + yz = 0. The base points of 13 are gy of multiplicity 2 and qi,...,q
where ¢i1,q2 € P?, q3 =1 qo and ¢4 =1 ¢:1. According to Lemma 1.51, there is a unique
irreducible conic C5 passing through qq, ..., qs. Moreover, Lemma 1.15 implies that there
exists an automorphism « of P? such that a(C}) = Cy and a(p;) = ¢;, @ = 0,1, 2. This forces
a(p;) = ¢;, © = 3,4. Therefore, 193 is equivalent to ¢o3. ]

Lemma 4.36. Let poy be the map 24 in Table 4.1 and let 9y be a map with enriched
weighted proximity graph 24 in Table 4.2. Then, 19y is equivalent to pay.

Proof. The base points of @94 are pg = [0 : 0 : 1] of multiplicity 2, py = [1 : 0 : 0],
po=1[0:1:0], p3=[1:1:0] and py; where ps >1 p; with standard coordinates p, = (p1, 1).
The base points of 14 are gy of multiplicity 2, ¢1, ¢2, g3 € P? and ¢4 where g4 =1 ¢; and g3 is
aligned with ¢; and ¢,. Clearly, there exists an automorphism «a; of P? such that ay(p;) = ¢;
fori=0,1,2,3.

The base points of 1oy o ay are then pg,p1,p2, ps, ¢y where ¢ has standard coordinates
¢, = (p1,uq) for some uy € C* because, if uy were 0, then ¢ would be aligned with p;, ps
and ps, a contradiction, and, if uy were oo, then ¢} would be aligned with py ad p;, again a

contradiction.
An automorphism ay of P? that fixes po, p1, po, p3 and that maps py = (p1, 1) to ¢4 = (p1, us)
is
as([z:y:z]) =[x y:uszl
Therefore, the maps @94 and 194 0 1 0 5 are defined by the same homaloidal net and, hence,

w94 and 19y are equivalent. O

Lemma 4.37. Let po5 be the map 25 in Table 4.1 and let 95 be a map with enriched
weighted proximity graph 25 in Table 4.2. Then, 195 is equivalent to as.

Proof. The base points of @95 are pg = [0 : 0 : 1] of multiplicity 2, p; = [1 : 0 : 0],
ppo=10:1:—1], ps = [1: —1:0] and py where p; >; p; with standard coordinates
ps = (p1,0). The base points of 5 are gy of multiplicity 2, ¢1,¢2,q3 € P? and q4 where

qs =1 q and ¢ is aligned with ¢; and ¢,. Clearly, there exists an automorphism a; of P?
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such that aq(p;) = ¢; for 1 = 0,1,2,3. It follows that also a;(ps) = qu, so the maps ¢o5 and

195 0 ap are defined by the same homaloidal net, therefore @o5 and 195 are equivalent. [

Lemma 4.38. Let po~ be the map 26 in Table 4.1 with parameter v and let 1 be a map
with enriched weighted proximity graph 26 in Table 4.2. Then, 1y is equivalent to @i for
some v # 0, 1.

Proof. The base points of g6, are pg = [0 : 0 : 1] of multiplicity 2, py = [1 : 0 : 0],
pa=1[0:1:0],p3 =[1:1:1]and py where ps > p; with standard coordinates py = (p1,1/7).
The base points of 196 are gy of multiplicity 2, ¢i1, ¢2, ¢z € P? and q4 where ¢4 =1 ¢;. Clearly,

there exists an automorphism a; of P? such that a;(p;) = ¢; for i =0, 1,2, 3.

The base points of 19 0 ay are then pg, p1, p2, ps, ¢y where ¢ has standard coordinates
¢, = (p1, uq) for some uy € C** because, if uy were 0, then ¢} would be aligned with p; and p,
a contradiction; if us were oo, then ¢; would be aligned with py ad p;, again a contradiction,
and, if uy were 1, then ¢; would be aligned with p; and ps, still a contradiction. Setting
v = 1/u4, the maps g6, and 19 0 a; are defined by the same homaloidal net, therefore

26,4 and 1oe are equivalent. O

Lemma 4.39. Let py7, be the map 27 in Table 4.1 with parameter v and let Yo7 be a map
with enriched weighted proximity graph 27 in Table 4.2. Then, 197 is equivalent to a7 for
some v # 0, 1.

Proof. The base points of 7. are pg = [0 : 0 : 1] of multiplicity 2, py = [0 : 1 : 0],
p2 = [1:0:0] and ps, py where p3 =1 py and py =1 pp with standard coordinates ps = (pg, —1)
and py = (po, —1/7). The base points of ¢y; are gy of multiplicity 2, ¢1, ¢ € P? and g3, q4
where g3 =1 qo and g4 =1 qo. Clearly, there exists an automorphism «; of P? such that
ay(p;) = ¢q; for i =0,1,2,3.

The base points of 197 o ay are then pg, p1, p2, ps, ¢y where ¢ has standard coordinates
¢, = (po,uy) for some uy € C** because, if uy were 0, then ¢} would be aligned with pg
and py, a contradiction; if uy were oo, then ¢, would be aligned with py ad p;, again a
contradiction, and, if uy were 1, then ¢; would be equal to ps, still a contradiction. Setting
v = —1/uy, the maps o7, and 197 0 oy are defined by the same homaloidal net, therefore

a7~ and 1oy are equivalent. O]

Lemma 4.40. Let pog~ be the map 28 in Table 4.1 with parameter v and let g be a map
with enriched weighted proximity graph 28 in Table 4.2. Then, 1sg is equivalent to pag ., for
some v # 0, 1.

Proof. The base points of ¢as. are pg = [0 : 0 : 1] of multiplicity 2, py = [0 : 1 : 0],
pe=1[1:0:0], ps=1[1:1:0] and py where ps >=1 py with standard coordinates ps = (po, ).
The base points of s are gy of multiplicity 2, qi, 2, g3 € P? and ¢4 where ¢4 =1 qo and
1, G2, q3 are collinear. Clearly, there exists an automorphism «; of P? such that ay(p;) = ¢
forv=0,1,2,3.
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The base points of 1sg 0 oy are then pg, p1, p2, p3, ¢4 where ¢) = (po,uy) for some uy € C**
because, if uy were 0, then ¢} would be aligned with py and py, a contradiction; if u, were
0o, then ¢ would be aligned with py ad p;, again a contradiction, and, if u, were 1, then ¢}
would be aligned with py and pj3, still a contradiction. Setting v = u4, the maps 9g, and

g 0 v; are defined by the same homaloidal net, therefore ¢gg ., and 19g are equivalent. [

Lemma 4.41. Let a9~ be the map 29 in Table 4.1 with parameter v and let a9 be a map
with enriched weighted proximity graph 29 in Table 4.2. Then, 1)ag is equivalent to a9 for
some v # 0, 1.

Proof. The base points of a9, are pg = [0 : 0 : 1] of multiplicity 2, p; = [0 : 1 : 0],
pa=1[1:0:0], p3 =[1:1:1] and py where py =1 po with standard coordinates ps = (po, 7).
The base points of 1y are gy of multiplicity 2, q1, ¢2, ¢z € P? and ¢4 where ¢4 =1 qo. Clearly,

there exists an automorphism «; of P? such that oy (p;) = ¢; for i = 0,1,2,3.

The base points of ¢q9 o o are then pg, p1, p2, ps3, ¢4 where ¢4 = (po,us) for some uy € C**
because, if uy were 0, then ¢} would be aligned with py and py, a contradiction; if uy were
0o, then ¢ would be aligned with py ad p;, again a contradiction, and, if uy were 1, then ¢}
would be aligned with py and pj3, still a contradiction. Setting v = w4, the maps 99, and

a9 0 1 are defined by the same homaloidal net, therefore ¢y, and 199 are equivalent. [

Lemma 4.42. Let 30, be the map 30 in Table 4.1 with parameter v and let 13y be a map
with enriched weighted proximity graph 30 in Table 4.2. Then, 3o is equivalent to s~ for
some v # 0, 1.

Proof. The base points of 3., are pg = [0 : 0 : 1] of multiplicity 2, p; = [0 : 1 : 0],
po=1[1:0:0], p3 =[y:1:0 and p, = [1 : 1 : 1]. The base points of 13 are g
of multiplicity 2, ¢i, ¢, qs3,q2 € P? where qi, o, g3 are collinear. Clearly, there exists an
automorphism «; of P? such that a;(p;) = ¢; for i = 0,1,2, 4.

The base points of ¢5 0 oy are then pg, p1, pa, ¢4, P4 Where ¢5 = [ug : 1 : 0] for some uz € C**
because, if us were 0, then ¢; would be equal to p;, a contradiction, and, if ug were 1, then ¢}
would be aligned with py and p4, again a contradiction. Setting v = ug, the maps 3, and

30 o av; are defined by the same homaloidal net, therefore 3, and 13 are equivalent. [

Lemma 4.43. Let @314y be the map 31 in Table 4.1 with parameters a,b and let 13 be a
map with enriched weighted proximity graph 51 in Table 4.2. Then, 131 is equivalent to ps1 5
for some a,b# 0,1, a # .

Proof. The base points of g1, are pg = [0 : 0 : 1] of multiplicity 2, p; = [0 : 1 : 0],
pp=1[1:0:0],ps =[1:1:1) and py = [a : b : 1]. The base points of 15, are gy of
multiplicity 2 and q1,¢2, q3,qa € P2, Clearly, there exists an automorphism «; of P? such
that aq(p;) = ¢; for i =0,1,2,3.

The base points of 1310 are then py, p1, p2, p3, ¢4 where ¢} = [ty : uy : v4] with ty, uy,vs € C*:

indeed,

5



e vy # 0 because otherwise ¢; would be aligned with p; and po;
e uy # 0 because otherwise ¢j would be aligned with py and py;

e ¢, # 0 because otherwise ¢; would be aligned with py and ps.
Moreover, t4 /vy and uy /vy satisfy the following conditions:

e t,/vy # 1 because otherwise ¢j would be aligned with p; and ps;
e uy/vy # 1 because otherwise ¢) would be aligned with ps and ps;

o ty/vy # uy/vy because otherwise ¢j would be aligned with py and ps.

Setting a = t4/vy and b = wuy /vy, it follows that a,b € C** and a # b, the maps @31 4, and

31 0 are defined by the same homaloidal net, therefore ¢3; 45 and 13; are equivalent. [

Lemma 4.44. Set 6~ the map of type 26 in Table 4.1 with parameter v where v # 0, 1.
Then, o6 is equivalent to as~ if and only if either v =y or v =~ /(v — 1).

Proof. Let po,p1,...,ps be the base points of g6 as in the proof of Lemma 4.38.

An automorphism « of P? that fixes the homaloidal net defining ¢9 -, and that is different
from the identity, is such that a(p;) = p;, i = 0,1, a(p2) = ps and a(ps) = py. Therefore, «
is unique and it is defined by

affzy:z)=ly—z:y:y—=2
so a(p4) has standard coordinates (pi1, (v —1)/7), hence a5/ (y—1) is equivalent to o . [

Lemma 4.45. Set o7, the map of type 27 in Table 4.1 with parameter v where v # 0, 1.
Then, oz~ is equivalent to o7 if and only if either v/ =~ or ' =1/7.

Proof. Let po, p1, pa2, p3, P4 be the base points of ¢o7,, as in the proof of Lemma 4.39.
The base points of o7 are ¢; = p;, i =0,1,2,3, and ¢ = (o, —1/7').
Suppose that o7,/ is equivalent to ¢s7.,. This implies that there exist automorphisms

aq, ..., a4 of P2 with the following properties:

(1) oy is such that aq(p;) = ¢;, 1 =0,1,2,3,4;

(2) ag is such that as(p;) = q;, i =0, 1,2, as(ps) = q4 and as(ps) = ¢s;

(3) g is such that as(p;) = ¢;, i = 0,3,4, az(p1) = ¢2 and az(p2) = q1;

(4) ay is such that au(po) = qo, cu(p1) = g2, cu(p2) = @1, cu(ps) = @1 and a(ps) = gs.

Then, Case (1) occurs only if 4/ = v and «; is the identity. Case (2) occurs only if v/ =1/~
and ao([z 1y : 2]) =[x : vy : —yz]. Case (3) occurs only if v/ = 1/y and az([z:y: z]) = [y :
x: —z]. Case (4) occurs only if 7/ =~ and au([z :y: 2]) = [yy: x: 2]. O
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Before moving on other types, let us first recall several definitions from permutations with

cycle notation.

S,, denotes the set of permutations of {1,2,...,n}. s € G, is a one-to-one and onto mapping
from {1,2,...,n} to itself. An explicit representation of s can be given by the 2 x n matrix:
1 2 3 n
s(1) s(2) s(3) s(n)

or simply by {s(1),5(2),s(3),...,s(n)}. Every permutation of a finite set can be written
as a cycle or a product of disjoint cycles. More precisely, the elements in each cycle are
put inside parentheses, ordered so that s(i) immediately follows i. Without any confusion,
one can consider a cycle as fixing any element not appearing in it and particularly, the
permutation which fixes all elements is denoted by (1). We list in Tables 4.5 and 4.6 all

permutations and their cycle notations of &3 and &, respectively.

Table 4.5: 6 permutations of Gs.

permutation cycle
’ s; of G, notation
1 {1, 2,3} (1)
2 {1,3,2} (23)
3 {2,1,3} (12)
4 {2,3,1} (123)
5 {3,2,1} (13)
6 {3,1,2} (132)

Table 4.6: 24 permutations of &;.

permutation cycle permutation cycle permutation cycle
! s; of G, notation { s; of G, notation { s; of G, notation
1| {1,2,3,4} (1) 9 {3,1,2,4} (132) 17| {3,2,4,1} (134)
21 {2,1,3,4} (12) 10 | {3,2,1,4} (13) 18 || {3,1,4,2} (1342)
31 {1,2,4,3} (34) 11 {4,1,2,3} (1432) 19| {4,2,3,1} (14)
41 {2,1,4,3} | (12)(34) 12 || {4,2,1,3} (143) 20| {4,1,3,2} (142)
51 {1,3,2,4} (23) 13| {2,3,4,1} (1234) 21 || {3,4,1,2} | (13)(24)
61 {2,3,1,4} (123) 14 || {1,3,4,2} (234) 22 | {3,4,2,1} (1324)
71 {1,4,2,3} (243) 15 || {2,4,3,1} (124) 23 || {4,3,1,2} (1423)
81 {2,4,1,3} (1243) 16 || {1,4,3,2} (24) 24 | {4,3,2,1} | (14)(23)
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Lemma 4.46. Forn € {28,29,30}, set ¢, the map of type n in Table 4.1 with parameter
v where v # 0,1. Then, - is equivalent to @, if and only if

1 1 —1
7/6{77_71_77 ) il 7’7 }
gl L=y v=1 ~n

Proof. We first consider the case n = 28.
The map o5, has base points py = [0 : 0 : 1] of multiplicity 2, p; =[0:1:0], po =[1:0: 0],
ps = [1:1:0] and ps where py =1 po with standard coordinates py = (po, 7).
The base points of ¢os . are qo, ..., q where ¢; = p;, 1 =0,1,2,3 and ¢4 = (po,7’).
Suppose that gg . is equivalent to ¢ag.. This implies that there exist automorphisms
ai, ..., ag of P? such that, for i = 1,...,6, one has o;(p;) = ¢;, j = 0,4, and

a;i(pj) = @s,;jy for j=1,2,3,

where s1,...,84 are the six elements of &3 given in Table 4.5.
e Case ¢ = 1 occurs only if v/ = v and a4 is the identity.

Casei=2occursonly if ¥ =1 —~vand ap =[x : 2 — ¥y : z].

Case i =3 occurs only if ¥/ =1/y and a3 = [y : = : z].

Case i =4 occurs only if v/ =1/(1 = y) and ay = [z —y : z : 2].

Case i = 5 occurs only if v/ =v/(y—1) and a5 = [z —y : —y : 2].
e Casei=06occurs only if v/ =~/(y—1)and ag = [y : y — z : 2].
We proceed similarly for n = 29. The map (99 - has the same base points p;, i = 0,1, 2,4, of
@98~ but p; = [1 : 1 : 1]. The base points of a9 are qq,...,q where ¢; =p;, i =0,1,2,3
and ¢4 = (q0,7").
If og - 1s equivalent to ¢og -, then there exist automorphisms aq, . . ., ag of P? with the same
above properties that occur exactly when + is as above and «; is the identity,
ap=[r:x—y:x— 2z, ag=[y:x:z|, ag=[r—y:x:x— 2z,
as=[y—x:iyy—z, ag=[yy—z:iy—z]
Finally, for n = 30, the map 39~ has the same base points p;, © = 0,1,2, of 9, but
ps =[y:1:0]and py = [1:1:1]. The base points of @3y, are qo,...,q where ¢; = p;,
i=0,1,2,4and g3 =[y :1:0].
If @30, is equivalent to @3, then there exist automorphisms ay, .. ., ag of P? with the same

above properties that occur exactly when + is as above and «; is the identity,

w=l(—Da:iqy—z:(y—1  as=ly:w:2,
ag=[yy—a:(y—1Dax:(y—1)z as=[y—x:(y—1y:(v—1)z],
ag=[(v—Dy:yy—x:(y—1)z].
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Remark 4.47. One may check that the numbers in the set of Lemma 4.46 are all different
if and only if
11 \/' 1 V3
f)/ ¢ 7 7_ 5 Y5 045 + a6 *
22 99 2

Lemma 4.48. Set 31,4 the map of type 31 in Table 4.1 with two parameters a,b where
a#banda,b#0,1. Then, 314 is equivalent to ps1 4 if and only if (o', V') € S, where
S is defined in (4.1).

Proof. The base points of @314 are pg = [0: 0 : 1] of multiplicity 2 and four simple base
points py =[0:1:0],po =[1:0:0],p3 =[1:1:1],ps = [a:b:1]. Similarly, the base points
of @314y are qo,...,qs where ¢; =p;, i =0,1,2,3 and qe = [d : b :1].

Suppose that @31 o is equivalent to @3 ,5. Then, there exists an automorphism, says v, of
P? such that v(po) = qo and v maps p1,...,ps to a permutation of qi, g2, g3, qs. Therefore,
for each element s;, i = 1,...,24, of &4 there is an automorphism ~;, i = 1,...,24, of P?
such that

Yi(ps) = @sjy  forj=1,....4,
and, accordingly, we find the values of (a’,b’) for each one of the 24 cases. In Table 4.7, we

list the automorphisms v;, ¢ = 1,...,24 and their corresponding values of (a’, V).

Table 4.7: Automorphisms 71, ..., 724 of P? and their corresponding values of (a’,¥’)

: (g 7) V)
1 [x:y: 2] (a,b)
2 ly:x: 2] (b, a)
11
3 [bx : ay : abz] <5,5>
11
4 lay : bz : abz] (5’5)
5 [ _yio—] a a—>
TIr—Yy:x—2 — T
a—b a
6 [z —y:x:x— 2z (a—l’a—l)
7 T r—y r—Z a—1 a—1
a a—b a—1 a ‘a—"b
g r—y T T—2 a—1 a—-1
a—b a a-1 a—b" a
b b—a
9 y:iy—az:y—2 (E’b—l)
b—a b
10 ly—z:y:y—2] (b—l’m)
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[ay — bz .(a—l)y%_(b—a)z_

24 : :
y YT Ty b— 1

. Yy r—y y-—=z b—1 b—1
b a—b b-—1 b 'b—a
N ry oy oy b—1 b—1
a—b b b—1 b—a' b
b—a 1
1 — : : —
3 [bx — ay : bx : b(x — az)] (b(l—a)’l—a
1 b—a
14 [bx : bxr — ay : b(x — az)] (1—a b(l—a))
ay —br  az—x bla—1)
15 {a—b 'x'a—l] (a—b’l a
cay —br az—x o bla—1)
16 |:._'L' a—b . a_1:| (1 a, (I—b
a—b 1
17 lay — bx : ay : a(y — b2)] <a(1—b)’1—b>
1 a—>b
1 : - : —
8 lay : ay — bx : a(y — bz)] (1—()’@(1—1)))
ay —br  bz—y a(l—b) =
19 {a—b'y'b—l} <a—b’1 b
cay—br bz—y _a(l=0)
20 [“ a—b'b—l} Ob’a—b
I ay—bxr (1—->b)x (b—a)z a—1 bla—1)
21 —x: :
I ’ a a—1 @ a-1 —|—y— b—1"ab-1)
fay—bx ~ (1-bz  (b—a)z bla—1) a—1
e I e s ] b—1)b—1
[ ay—bxr (a—1)y (b—a)z b—1 a(b—1)
2 —x: : -
3 _Z/ xr b b_1 + b_1 x a—l’b(a—l)
1
1

]

Remark 4.49. One may check that the pairs in S are all different if and only if (a,b) does

not belong to the following set:
1 2b—1
oA
+

o)l (=)

U%mm‘:ﬁi%gb——ii%g} %m@

L%mfﬂ%@:@ae{—ligglibgpéigg}}

2 272 2
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4.4 Ordinary quadratic length of cubic plane Cremona

maps

In this section we prove Theorem 4.2. Theorem 4.1 implies that it suffices to compute the
lengths of the cubic plane Cremona maps listed in Table 4.1 at page 56.

Recall that the quadratic length, and hence the ordinary quadratic length, of cubic plane
Cremona maps is at least 2 (Corollary 3.6). On the other hand, in Table 4.3 at page 60 and
Table 4.4 at page 62 there are decompositions of all types of plane cubic maps, but type 1,
in exactly two quadratic maps. So, in order to complete the proof of the first assertion of

Theorem 4.2, it remains to prove the following lemma.

Lemma 4.50. Let p; € Cr(P?) be the map 1 in Table 4.1. Then, @1 has quadratic length 3.

Proof. Let p; be the double base point of ¢ and let ps,...,ps be its simple base points,
that are all infinitely near p;, namely ps =1 ps =1 p3 =1 p2 =1 p1 where p3 ® p;. Hence, a
quadratic map can be based at p; and at py, but not at ps, c¢f. Remark 2.34.

The decomposition in Table 4.4 at page 62 implies that g(¢;) < 3. By contradiction, suppose
that ql(¢1) = 2. Then, there should exist a quadratic map p such that ql(yp; 0 p™!) =1, so

¢1 0 p~! should be a quadratic map by Lemma 3.5. However,

e if p is not based at p;, then ¢; o p~! has degree 6, a contradiction;
e if p is based at p;, but not at py, then ¢; o p~! has degree 4, again a contradiction;

e finally, if p is based at p; and p, then ¢, o p~! has degree 3, a contradiction.
Hence, we conclude that ql(yq) = 3. O

We now prove the second assertion of Theorem 4.2, that is that the cubic plane Cremona
map of type n, 1 < n < 31, in Table 4.1 at page 56 has the respective ordinary quadratic
length listed in the third column in Table 4.2 at page 57.

The decompositions in Table 4.3 at page 60 show that the maps of types 21, 23, 25, 26, 27,
29, 30, 31 have the ordinary quadratic length exactly 2.

Recall that Proposition 3.17 says the ordinary quadratic length of a plane Cremona map is
at least the maximum height of its base points. In particular, the maps ¢,, n = 10, 11, 12,
13, 15, 16, 18, 19, have oql(¢,) > 3 and the decompositions in Table 4.3 at page 60 show
that indeed oql(¢,) = 3. Similarly, the maps ¢,, n = 2, 7, 9, have oql(y,) > 4 and the
decompositions in Table 4.3 show that oql(p,) = 4.

We now consider the maps of the remaining types, going backwards from the last types to

the first ones.

Lemma 4.51. Let pog be the map 28 in Table 4.1. Then, oql(yas) = 3.
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Proof. Let p; be the double base point of pog and ps, ps, ps the proper simple base points
of @og, which are collinear. The decomposition of ysg in Table 4.3 shows that oql(pss) < 3.
Suppose by contradiction that oql(ysg) = 2. Therefore, there should exist an ordinary
quadratic map p such that oql(gsg o p~!) = 1, i.e. the map o5 0 p~! should be an ordinary
quadratic map. Since (g 0 p~! should have degree 2, the map p must be based at p; and
two proper simple base points of (g, say p3, ps. However, in that case, the quadratic map
95 © p~t is not ordinary, because ps would correspond to an infinitely near base point of

a5 0 p~ L, a contradiction. O

Remark 4.52. The same argument used in the proof of Lemma 4.51 shows that the maps
20, 22, 24 in Table 4.1 have ordinary quadratic length exactly 3.

Lemma 4.53. Let @17 be the map 17 in Table 4.1. Then, oql(yp17) = 4.

Proof. The enriched weighted proximity graph of ;7 is listed in Table 4.2 at page 57. Let
p1 be the double base point, ps, p3 the two proper simple base points and py4, ps such that
D5 =1 P4 =1 P3 Where po, p3, py are aligned. Then,

3 < ogl(pir) < 4

because of the decomposition of @7 in Table 4.3 and the fact that the height of ps5 with
respect to q7 is 3, cf. Proposition 3.17.

Suppose by contradiction that oql(¢17) = 3. Then, there should exist an ordinary quadratic
map p such that oql(¢i7 0 p~!) = 2. In particular, p must be based at p3, otherwise, the
maximum height of the base points of the map ¢;7 o p~! would be still 3 and Proposition
3.17 would give a contradiction.

If p is based also at py (or at another point on the line passing through ps and ps), then py

1

would correspond to an infinitely near base point of 17 0 p7" and the maximum height of

the base points of 17 0 p~! would be again 3, a contradiction.
There are now two cases: either p; is a base point of p or p; is not a base point of p.

In the former case, the map (7 0 p~* would have the enriched weighted proximity graph 24
in Table 4.2, and therefore would have ordinary quadratic length 3, as we noted in Remark

4.52, a contradiction.

In the latter case, the map ¢170p~ ! would have degree 5, and therefore its ordinary quadratic

length cannot be 2 by Corollary 3.9, a contradiction.
Hence, we conclude that oql(pq7) = 4. O

Lemma 4.54. Let p14 be the map 14 in Table 4.1. Then, oql(y14) = 3.

Proof. The decomposition of ¢14 in Table 4.3 shows that oql(¢14) < 3. Suppose by contra-
diction that oql(pi4) = 2. Therefore, there should exist an ordinary quadratic map p such

that oql(¢s0p™') = 1, i.e. the map @140 p~! should be an ordinary quadratic map. In other
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words, p should be based at the double base point of 14 and other two proper simple base

points of 4, theat however do not exist. O

Lemma 4.55. Let @g be the map 8 in Table 4.1. Then, oql(ps) = 5.

Proof. The enriched weighted proximity graph of g is listed in Table 4.2. Let p; be the
double base point, ps the proper simple base point and ps, ps, ps the other infinitely near
base points such that ps =1 ps =1 p3 =1 p2 where po, p3, ps are aligned. Then,

4 < oql(ps) <5

because of the decomposition of g in Table 4.3 and the fact that the height of ps with
respect to g is 4, cf. Proposition 3.17.

Suppose by contradiction that oql(ypg) = 4. Then, there should exist an ordinary quadratic
map p; such that oql(yg o p;) = 3. In particular, p; must be based at p,, otherwise, the
maximum height of the base points of the map ¢g o p;' would be still 4 and Proposition
3.17 would give a contradiction. For the same reason, p; cannot be based at p, and also at

a point on the line passing through p, and ps.
There are now two cases: either p; is a base point of p; or p; is not a base point of p;.

In the former case, the map ypgo p~! would have the enriched weighted proximity graph 17 in
Table 4.2, and therefore it would have ordinary quadratic length 4, as we proved in Lemma

4.53, a contradiction.

In the latter case, the map pgop~! would have degree 5 and the following weighted proximity
graph:

o b P 23 A 5 I

where py, pl), pt are aligned. Furthermore, there should exist an ordinary quadratic map py
such that oql(pg o p;* o p;') = 2. In particular, p, must be based at p/, otherwise the
maximum height of the base points of the map g0 p; ' op,! would be still 3 and Proposition
3.17 would give a contradiction. For the same reason, ps cannot be based at p) and also at
pp or at another point on the line passing through p) and pi. Therefore, p, is based at p)
and other two points where g o p~! has multiplicity < 2, hence the map @go p; ' op;*! would

have degree > 5 and we get a contraction with Corollary 3.9.

We conclude that oql(pg) = 5. O

Lemma 4.56. Let @g be the map 6 in Table 4.1. Then, oql(pg) = 4.

Proof. The enriched weighted proximity graph of g is listed in Table 4.2. Let p; be the
double base point, ps the proper simple base point and ps, p3, ps the other infinitely near
base points such that py >=1 p; and psy =1 p3 =1 p1. Then,

3 < oql(pg) <4
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because of the decomposition of g in Table 4.3 and the fact that the height of p, with
respect to g is 3, cf. Proposition 3.17.

Suppose by contradiction that oql(ywg) = 3. Then, there should exist an ordinary quadratic
map p such that oql(yps o p~1) = 2. In particular, p must be based at p;, otherwise the
maximum height of the base points of the map g o p~! would be still 3 and Proposition
3.17 would give a contradiction. For the same reason, p; cannot be based at p; and also at
a point on the line passing through p; and ps.

There are now two cases: either p is based at ps or p is not based at ps.

In the former case, the map g o p~! would have the enriched weighted proximity graph 24
in Table 4.2, and therefore it would have ordinary quadratic length 3 (cf. Remark 4.52), a

contradiction.

In the latter case, the map pgop~! would be a de Jonquieres map of degree 4, a contradiction
with Lemma 3.10.

Therefore, we conclude that oql(yg) = 4. O

Lemma 4.57. Let @5 be the map 5 in Table 4.1. Then, oql(ys) = 5.

Proof. The enriched weighted proximity graph of 5 is listed in Table 4.2. Let p; be the
double base point, ps the proper simple base point and ps, p3, ps the other infinitely near
base points such that py =1 p3 =1 p2 =1 p1 with p3 ® p;. Then,

4 <oql(ps) <5

because of the decomposition of @5 in Table 4.3 and the fact that the height of p, with
respect to 5 is 4, cf. Proposition 3.17.

Suppose by contradiction that oql(yps) = 4. Then, there should exist an ordinary quadratic
map p; such that ogl(yp o p;*) = 3. This implies that p; must be based at p;, otherwise the
maximum height of the base points of the map 50 p; ' would be still 4 and Proposition 3.17
would give a contradiction. For the same reason, p; cannot be based at p; and at a point on
the line passing through p; and p,.

There are now two cases: either ps is a base point of p; or ps is not a base point of p;.

In the former case, the map 5 o p;* would have enriched weighted proximity graph of type
17 in Table 4.2 and, therefore, it would have ordinary quadratic length 4 by Lemma 4.53, a
contradiction.

In the latter case, the map @s0p;* would be a de Jonquitres map of degree 4 and its weighted
proximity graph would be

T

% P Ph

where pi,, pf, P}, p are aligned.
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Then, there should exist an ordinary quadratic map p, such that oql(ps o p;'o pyt) = 2.
The map p, must be based at p), and not at p), p5, otherwise the maximum height of the
base points of the map 5 0 p;* o p; " would be at least 3, a contradiction with Proposition
3.17. If py is not based at pj, then deg(ps o p;' o py') > 6 and we get a contradiction with
Corollary 3.9. Otherwise p, is based at p; and, furthermore, either p} is a base point of po

or p} is not a base point of ps.
In the latter case, the map 5 0 p; ' o p,* would be a de Jonquieres map of degree 4 and we
get a contradiction with Lemma 3.10.

In the former case, the map 50 p; ' o py ' would have the enriched weighted proximity graph

of type 24 in Table 4.2 and its ordinary quadratic length would be 3, a contradiction.
Hence, we conclude that oql(ys) = 5. [

Lemma 4.58. Let @4 be the map 4 in Table 4.1. Then, oql(p,) = 4.

Proof. The enriched weighted proximity graph of ¢, is listed in Table 4.2. Let p; be the
double base point, ps, p3, p4, ps the infinitely near simple base points such that p3 =1 ps =1 p1
and ps =1 ps =1 p1. Then,

3<oql(py) <4

because of the decomposition of ¢4 in Table 4.3 and the fact that the heights of p3 and of
ps with respect to 4 are 3, cf. Proposition 3.17.

Suppose by contradiction that oql(y,) = 3. Then, there should exist an ordinary quadratic
map p such that oql(¢ o p=!) = 2. In particular, p must be based at p;. Then, the map

@pop~tis ade Jonquieres map of degree 4 and we get a contradiction with Lemma 3.10. [

Lemma 4.59. Let @3 be the map 8 in Table 4.1. Then, oql(ys) = 5.

Proof. The enriched weighted proximity graph of (3 is listed in Table 4.2. Let p; be the
double base point, ps, p3, ps, ps the infinitely near simple base points such that ps >; p; and
Ps =1 Pa =1 p3 »1 p1. Then,

4 < oql(ps) <5
because of the decomposition of 3 in Table 4.3 and the fact that the height of p, with
respect to 3 is 4, cf. Proposition 3.17.
Suppose by contradiction that oql(yps) = 4. Then, there should exist an ordinary quadratic
map p; such that oqgl(ps o p;*) = 3. In particular, p; must be based at p; and not at a
point lying on the line passing through p; and p3, otherwise the maximum height of the base
points with respect to 3 o p;' would be still 4. Then, @3 0 p;* is a de Jonquieres map of
degree 4 and its weighted proximity graph is:

s -

, /
Po 2

where p), ph, ph, P}y are aligned.
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Then, there should exist an ordinary quadratic map p, such that oql(ps o p;to pyt) = 2.
The map po must be based at p), otherwise the maximum height of the base points of the
map 30 p; o p,' would be at least 3, a contradiction with Proposition 3.17. Furthermore,
the map p, must be based also at pj,, otherwise the degree of 30 p;* o p; ! would be larger

than 4, a contradiction with Corollary 3.9.

There are now two cases: either py is based at p), for some i € {1,2,3}, or py is not based
at p.ph, Pl

In the former case, the map 30 p; ' o p, ! would have the enriched weighted proximity graph
of type 14 in Table 4.2, a contradiction with Lemma 4.54.

In the latter case, the map 30 p; ' op,! is a de Jonquieres map of degree 4, a contradiction

with Lemma 3.10.

Hence, we conclude that oql(ys) = 5. O

Lemma 4.60. Let @1 be the map 1 in Table 4.1. Then, oql(y;) = 6.

Proof. The enriched weighted proximity graph of ¢ is listed in Table 4.2. Let p; be the
double base point, ps, p3, ps, ps the infinitely near simple base points such that ps =1 ps =1
p3 =1 p2 =1 p1 With p3 © p;. Then,

5 <oql(pr) <6

because of the decomposition of ¢; in Table 4.3 and the fact that the height of p; with
respect to ¢ is 5, cf. Proposition 3.17.

Suppose by contradiction that oql(y;) = 5. Then, there should exist an ordinary quadratic
map p; such that ogl(yp; o p;*) = 4. In particular, p; must be based at p; and not at a
point lying on the line passing through p; and ps, otherwise the maximum height of the base
points with respect to ¢; o p;* would be still 5. So the map ¢; 0 p;* is a de Jonquieres map
of degree 4 and its weighted proximity graph is:

® 0 0O 00—

/ ,
Py Pe

where pl, ph, ph, p) are aligned.

Then, there should exist an ordinary quadratic map p, such that ogl(,p; 0 p; 0 py') = 3. In
particular, the map ps must be based at pj and not at p/,p), (or at another point lying on
the line passing through p} and p))), otherwise the maximum height of the base points of the

map ¢, o0 p; o py " is 4, a contradiction with Proposition 3.17.
There are now two cases: either ps is based at p{, or ps is not based at pj,.

In the former case, the map ;0 p; 0 p; ' is a de Jonquieres map of degree 4 and its enriched

weighted proximity graph is (4.2) and we reach a contradiction as in the proof of Lemma
4.59.

In the latter case, the map ¢, o p;* o p;* has degree 7 and its weighted proximity graph is:
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" W i " o o

where pf, p%, pg are aligned and also p(, pJ, pt, pg are collinear.

Then, there should exist an ordinary quadratic map ps such that oql(p10p; opytopst) = 2.
Thus, p3 must be based at pfi, otherwise the maximum height of the base points of ¢, 0p; "o
py ' opstis 3, a contradiction with Proposition 3.17. This implies that ¢ 0 p;* 0 py* o p3*

would have degree > 6, a contradiction with Corollary 3.9.

Hence, we conclude that oql(y) = 6. O
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Chapter 5
Quartic plane Cremona maps

In this chapter, we deal with quartic plane Cremona maps. In Chapter 2 we classified
enriched weighted proximity graphs of quartic plane Cremona maps. In principle, one could
get a finer classification of equivalence classes of quartic plane Cremona maps by applying

the techniques already used in Chapter 4 for cubic plane Cremona maps.

However, this would require a lot of time and patience. Furthermore, for the purpose to
compute the quadratic length and the ordinary quadratic length of a map, it is sufficient to
know its enriched weighted proximity graph. Recall that a quartic plane Cremona map may
or may not be a de Jonquieres, thus it is natural to give two separate classifications, one for

quartic plane de Jonquieres maps and the other for quartic plane non-de Jonquieres maps.

5.1 Quartic plane de Jonquiéres maps

In this section we describe the results contained in Table 5.1. The ordinary quadratic lengths
and quadratic lengths of quartic plane de Jonquieres maps associated to the graphs are given
in the third and the fourth columns, respectively. In many cases, the computation of the
exact ordinary quadratic length requires a case by case analysis that we have not yet carried
out. In that case, we put a lower bound and an upper bound for the ordinary quadratic
length: the number written in bold means that we found a decomposition with that number
of ordinary quadratic maps and we believe that it is the correct number. Finally, the types

of the inverse maps are listed in the fifth column of Table 5.1.

On the other hand, a list of examples of quartic plane de Jonquieres maps with enriched

weighted proximity graphs in Table 5.1 is also given in Table 5.2.

Theorem 5.1. Let ¢, € Cr(P?) be a quartic plane de Jonquicres map with enriched weighted
prozimity graph of type n in Table 5.1. Then, the ordinary quadratic length of ¢, (or a lower
bound and an upper bound of it) is listed in the third column of Table 5.1 and the quadratic
length of v, is listed in the fourth column of Table 5.1.

Proof. The upper bound for the ordinary quadratic length has been obtained by constructing
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a decomposition with that number of ordinary quadratic maps. The lower bound follows

from the height of proper base points either of the map or of its inverse. n

Next, let us consider some particular quartic plane de Jonquieres maps.

Lemma 5.2. Let ¢ be quartic plane Cremona map defined by §1.1 in Table 5.2 at page
108. Then, ¢ has only a proper base point py = [1 : 0 : 0] of multiplicity 3 and other

base points pi,pa, P3, Pa, Ps, Pe SALiSfy pe =1 Ps =1 pa =1 Pp3 =1 P2 =1 p1 =1 po where there
standard coordinates respectively are p; = (po,0),p2 = (po,0,00),p3 = (po,0,00,00),ps =

(va Oa o0, 00, _1)7175 = (p()v 07 00, &0, _17 O) and Pe = (pOa 07 0, 60, _17 07 O)
Proof. Let 1 be a quartic plane Cremona map defined by
pr(lery:2]) = w2’ +yt oyt 2,

that is given by #1.1 in Table 5.2. The map has only proper base point py = [1 : 0 : 0] with
multiplicity 3.

A curve @ of the linear system associated to ¢ is of the following form:
(@2 + ) + day2® + A3zt =0,

for some [A; : Ay : \3] € P2
In the affine chart Uy = {[x : y : 2] € P*|z # 0} ~ A2

73 S0 that pg corresponds to the origin

0 = (0,0), the curve @ has local equation
Qo : M(Z+7) + XyZ® + N7 = 0.

4 Blowing-up A%E at 0 and consider the first chart given in coordinates by y = 4,z =
Y121, one has
— the exception curve Ej is defined by y; = 0;

— the strict transform of the curve @), is given by
Qa1 : M (2 + y1) + Aey2] + Asyazt = 0.

Then, p; = EyNQ, = 0 the origin of A? In other words, the standard coordinates

Y1,21°

of p1 w.r.t ¢ is p1 = (po, 0). Moreover, one can check that p; is the only point infinitely

near pg of the first order.

4 Blowing-up Az at 0 and consider the second chart given in coordinates by y; =

1,21

YoZo, 21 = Z2, one has

— the exception curve F; is defined by zy = 0;

— the strict transform of @), is given by
Qa2+ Mi(25 + 2) + Aoy + Asyazy = 0.
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ss.zpe 1D Other

It follows the local coordinates of po = E7 N Q. = 0 is the origin of A

words, the standard coordinates of p; w.r.t ¢1 is ps = (po,0,00) and one can check
p2 @ po-

2

4.2, at 0 and consider the second chart given in coordinates by y, =

Blowing-up A

Y323, 2o = 23, one has
— the exceptional curve Ej is defined by 23 = 0;
— the strict transform of ()2 is given by

Qa3 = M (23 + Y3) + Aayszzs + A3yzzz = 0.

Then, ps = E2NQq3 = (0,0) is the origin of Ai% It follows the standard coordinates
of ps w.r.t o1 is ps = (po, 0, 00, 00).

Blowing-up A2 _ at 0 and consider the first chart given in coordinates y3 = 4, 23 =
g-up A,

3,23

Ys24, one has

— the exceptional curve Ej is defined by y4 = 0;

— the strict transform of (),3 is given by
Qas : M (24 + 1) + Xyt 4+ \syjz; = 0.

Then, the local coordinates of py = E3 N Qu4 in Ai,% is py = (0,—1). Therefore, the

standard coordinates of py w.r.t ¢ is py = (po, 0, 00, 00, —1).

Blowing-up A2 _ at py = (0, —1).

Ya,24

Consider o : A2, — A, a linear change coordinates defined as follows

ys =Y,
Z4 =7 -1

With the new coordinates, p, is the origin of A?/, , and the curve (),4 becomes
Qa4 : )\12 —+ /\2Y3(Z — ].)3 —+ )\3Y4(Z — ]_)4 =0.

Blowing-up A%’ » at 0 and consider the first chart given in coordinates by Y = y5, Z =

Y525, one has

— the exceptional curve Ej is defined by y5 = 0;

— the strict transform of (.4 is given by
Qs+ Mzs + Aoy (Yszs — 1)° 4 Ayl (ys25 — 1)* = 0.

Then, the point ps = E4 N Qu5 = (0,0) is the origin of A? It follows the standard

Y5,25 "

coordinates of ps w.r.t ¢ is ps = (po, 0, 00, 00, —1,0).
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Ys5,25

¢ Blowing-up A at 0 and consider the first given in coordinates by y5 = ye, 25 = Y626,

one has
— the exceptional curve Ej is defined by yg = 0;

— the strict transform of )5 is given by
Qaﬁ : )\12:6 + /\gyﬁ(ngG — 1)3 + Agyg(ygzﬁ — 1)4 = 0

Therefore ps = E5 N Que = (0,0) the origin of AZ and then its standard coordinates

6,26

w.r.t ¥1 is Ps = (p(]a 07007 o0, _17070)

2

2526 b 0 and consider the first chart given in coordinates by yg = y7, 26 =

4 Blowing-up A

Y727, one has

— the exceptional curve Ej is defined by y; = 0;

— the strict transform of ()¢ is given by

Qar = Mzr + Ma(yizr — 1)° + Mgy (Y320 — 1) = 0,

which is a smooth curve.

Example 5.3. A decomposition of ¢; in 8 ordinary quadratic maps is

o1(lxy:z]) = [12x+56y —8lz: —12x — 8y : 12z + 4y|o[—y + 6z : y — 22 : 8z + 2y|o
[—92 — 13y — 12z :y+32: 3yloBxr+2—y:y —2:3z2]o
[dr+y+22:2y: —y—2zlolx+2:3y —2: —2y|o
2r+2z4+y:y+2z:—ylolr—z+y:2y—z:z—ylolx:y:y+ 2]
Example 5.4. Let ¢4 be the quartic plane de Jonquieres map listed in Table 5.2 at page
108 with number 3.2:

pallry e 2]) = [yP (w2 — y°) — 2" ryz(ez — y?) 222z — o).

One can show that its enriched weighted proximity graph is of the following form

Po P P2 P3

where the brown dashed curve is a conic. Moreover, a decomposition of ¢, in 8 ordinary

quadratic maps is

oalry:z])= [Re+19y+2z:8y:de+4dyloly—x:x:zlo|—y:x:y—8x+ z]o
[—z:z—2x:4x+2ylo2z:x4+y—z:z|o[-2y: 20+ 2y —2: 2z —2y|o
y+ax+z:z+y:ylofr:y:z+ylolz:y:z2—y]
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The following figure simulates the process of resolution of ¢y:

(=2) | B1
(-2) (=2)
O Eo Eq
lBlm TBZPG
| (—1)
: E¢
| e
| (=2) | E5
I (—1) (=2)
———
P1 | Eq E4
Bl (-2) | E
l Po (—2) 3
(4) 2
\ / P (—=2) | Ex
(=2)
N _
PO Eq

Figure 5.1: The resolution of ¢4

We now give an example of how to give a finer classification of quartic plane de Jonquieres

maps of a given type.

Example 5.5. & Let consider quartic plane de Jonquiéres maps with enriched weighted

proximity graph of Type 58.1 in Table 5.1, that is

O—0~0 O—O OO

Po 2 p2
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Up to automorphisms, one may suppose that pg = [1 : 0 : 0],p3 = [0:1:0],p5 =
[0:0:1] € P2 py =1 p1 =1 po, P2 ® po where their standard coordinates are p; =
(po, 1), p2 = (po, 1,00), in other words p; =1 po in the direction of the line {y — z = 0},
and py =1 ps where the standard coordinates of py is py = (ps, —1), that is ps >1 p3
in the direction of the line {x + z = 0}. The point ps =1 ps is the only base point
which is not fixed, the standard coordinates of pg is pg = (ps,t) for some ¢t € C* (note
that, t # 0, 00, otherwise either pg, ps, ps or ps, ps, pg are collinear, contradiction), that
means pg =1 ps in the direction of the line {y — tx = 0}. These maps depend on 1

parameter ¢ € C* and have the following form:

wss1e([1:y:2)) = [y(ay? — 2wyz + 22 +y22)  y?2? - —z(tey® — 2twyz + to2® — y2?)).

In particular, one has @55 1+ is equivalent to @sg.1 ¢ if and only if either ¢ =t or t’ = 1/t.

More precisely, one has

Wss1e = 21y x]opsgrio[—tr 2yl
Moreover, when ¢t = —1 then 551 _; is given by Type 58.1 in Table 5.2.

& Quartic plane de Jonquieres maps with enriched weighted proximity graph of Type
58.2 in Table 5.1, that is the graph as Type 58.1 such that ps,p4, ps are collinear.
Up to automorphisms, one may suppose that pg = [1 : 0 : 0],ps3 = [0 : 1 : 0],p5s =
[0:0:1] € P2 py =1 p1 =1 po, p2 ® po where their standard coordinates are p; =
(po, 1), p2 = (po, 1,00), ps =1 p3 where the standard coordinates of p4 is py = (p3, 00),
namely py > p3 in the direction of the line passing through ps, ps that is {x = 0}, and
Pe =1 s where the standard coordinates of pg is ps = (ps, —1), in other words pg >=1 ps
in the direction of the line {x +y = 0}. The map is given by Type 58.2 in Table 5.1,
that is

wssol[z 1y 2]) = [oy(y — 2)? 1 2% : 20y® — 3wz + 22° + y2P).

& Quartic plane de Jonquieres maps with enriched weighted proximity graph of Type
58.3 in Table 5.1, that is the graph as Type 58.1 such that ps, ps, ps, pg are collinear.
Up to automorphisms, one may suppose that pg =[1:0:0],p3=1[0:1:0],ps=1[0:0:
1] € P2, py =1 p1 =1 Po, P2 ® po where their standard coordinates are p; = (po, 1), p2 =
(po, 1,00), ps =1 ps where the standard coordinates of p, is ps = (p3, 0), and pg >1 ps
where the standard coordinates of pg is pg = (ps, 00), in other words, py >1 ps and
pe =1 ps in the direction of the line passing through ps, ps that is {x = 0}. The map

is given by Type 58.3 in Table 5.1, that is
esss(fz iy z)) =[zyly —2)* xRy + 2)(y — 2)° : y*27).

& Quartic plane de Jonquieres maps with enriched weighted proximity graph of Type
58.4 in Table 5.1, that is the graph as Type 58.1 such that there exists a conic passing
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through po, p1, ps, P4, Ps, P¢. Up to automorphisms, one may suppose that pp = [1:0:
0,p3=1[0:1:0,ps =[0:0:1] € P2 py =1 p1 =1 po, p» © po where their standard
coordinates are p; = (pg, —1),p2 = (po, —1,00), that means py =1 p; in the direction
of the line y + z = 0, py >=1 p3 where the standard coordinates of p, is py = (ps, —1),
namely py >1 ps in the direction of the line {z + z = 0}, and pg =1 ps. Since there
exists a unique conic passing through py, p1, p2, P3, Pa, ps, that is {zy + zz + yz = 0},
then pg is uniquely determined and its standard coordinates is ps = (ps, —1), that
means pg >1 ps in the direction of the line {x + y = 0}. The map is given by Type
58.3 in Table 5.1

wssa([r Yy 2]) = [y(ey? + 2oyz + 222 + y22) : y?2? : 2(wy® + 22yz + 227 + y2?)].

Table 5.1: Enriched weighted proximity graphs and ordinary quadratic lengths of quartic

plane de Jonquieres maps

i Enriched weighted proximity graph oql | ql | Inv
(1)

11 | OO0 0~0—0—0 5|5 | 11
NV o

01 | OO0~~~ | 7 | 4| 123
(M (1

3.1@@\91@)\1/@7342,5

3.2 (2;1,2,3,4,5,6) -8 3| 3.2

1 |0 W00

@ 6-7 | 4| 14.1

@ 6 | 3| 675

5.2 (2:1,3,4,5,6,7) 6 | 3| 41.3

6.1@@@@@6461
7-1@m®®®5366.9

51 | OO0 —O—O| 463 | s1

OO

©)
y
©
©

9.1 O—0O—0—0 —0O—0 4-5 | 3 | 64.7

o1 | DD O D—D—D | 56| 3| o
DD O DD | 56| 3| i




12.1 4-5 20.1
13.1 @m@@ 3-6 13.1
i | OO O—0—® D ler| 4|
51 | OO DD~ D¢ |3 61
o1 | OO~ O P
16.2 (2:1,2,3,4,5,6) 41.5
16.3 (2:1,2,3,4,5,7) 6-7 | 3| 16.3
7 | OO |« D—0—0O O ;54 17.1
51| OO O—0O—0—D D5 |3 519
18.2 (2:1,3,4,5,6,7) 5 65.5
19.1 @5—/@‘—}@‘—@‘—@ @ 4 80.17
201 | O—O—D—D —O O 12.1
21.1 @@@‘_@‘_CD @ 4-5 29.1
291 @m@@ @ 4-5 45.1
23.1 @m@ @ 3-4 23.1
24.1 @m O O—0O 5-6 10.1
25.1 @/GD\(D @ @ @‘_@ 5 66.8
26.1 @ @ @ @ @ @‘_® 5 66.12
26.2 (2:1,2,3,4,5,6) 5 39.5
26.3 (2:1,2,3,4,6,7) 5-6 26.3
271 @%@@ @‘_® 80.18
27.2 (2:1,3,4,5,6,7) 63.6
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28.1 343|788
201 | @—O—O—QO O—O| 453 211
30.1 @@@‘_@ @‘_® 341 31| 301
1 | OO O—O O—O | 445 | 501
01 | —O—0O—0O O—0O—0O , 32.1
32.2 (1,5,6,7) 4 322
VO
331 | —O—0O0—0O O—0O—0O 64.6
33.2 (1,5,6,7) 64.8
34.1 0000 OO0 4 | 3 164.10
342 (1:5,6,7) 4 | 36411
343 (2:1,2,3,4,5,6) 4 [ 3] 343
34.4 (2:1,2,3,5,6,7) 45 3| 344
34.5 (1:5,6,7), (2:1,2,3,4,5,6) 4 3] 345
5 OO D O—O—0| 4 || s
35.2 (1,5,6,7) 4 | 3] 512
36.1 @/\@) @‘_CD‘ @ 3-4 80.19
36.2 (1,5,6,7) 3.4 80.22
36.3 (2:1,2,3,5,6.,7) 3.4 63.5
OO O—0—® .
37.2 (1:5,6,7) 68.2
51 | OO0 O—0—0—D| 4 |35 65
38.2 (1:4,5,6) 4 | 3] 66.7
38.3 (1:4,5,6,7) 4 | 3] 383
38.4 (2:1,2,4,5,6,7) 4 | 3] 393
01 | O—0O—0 OO0, 66.11
39.2 (1:4,5,6) A 66.13
39.3 (1,4,5,6,7) A 38.4
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39.4 (2;1,2,4,5,6,7) 39.4
39.5 (2:1,2,3,4,5,6) 26.2
0 OO D 00—~ 4 3 s
40.2 (1;4,5,6) 4 | 3| 817
40.3 (1;4,5,6,7) 4 3 | 40.3
40.4 (2:1,2,4,5,6,7) 4 | 3| 654
41.1 @‘_® @ @ @ @ @ 5 | 31| 679
41.2 (1;3,4,5) 5 3] 678
41.3 (1:3,4,5,6) 6 | 3] 52
41.4 (2;1,3,4,5,6,7) 5 | 3] 414
41.5 (2;1,2,3,4,5,6) 6 | 3| 16.2
o1 | O O—0O—0—00—0~D| 4 | 3| o
42.2 (1;2,3,4) 6 | 3| 42.2
42.3 (1;2,3,4,5) 7 14| 21
42 .4 (2;2,3 4,5,6 7) 6 3 42 .4
42.5 (2:1,2,3,4,5,6) 7 13| 31
o1 | EOOSD—D D D sgls| s
i | DO DD O D5 |5 s
o1 | D OSD—D D s3] o
61 |00 00D O O 4 |3l
46.2 (2;1,3,4,5,6,7) 4 79.7
47.1 @m‘_@ @ @ 34| 31| 471
VO
51 | OO0 O Of ;5 |3 as
w1 | O—0O—0—0-0 O O ; 81.12
49.2 (2:1,2,3,4,5,6) 5 65.8
49.3 (2:1,2,3,4,6,7) 5-6 49.3
1 | D O—D @ @ laals| s
om0 © =0, |4 e
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51.2 (1;5,6,7) 4 ]3] 352
52.1 @ @ @ @ @ ®‘_® 4 | 3180.26
52.2 (1:5,6,7) 4 | 318032
52.3 (2:1,2,3,4,5,6) 4 3] 606
52.4 (2:1,2,3,4,6,7) 4 | 316310
52.5 (2:1,2,3,5,6,7) 45| 3| 525
52.6 (1:5,6,7),(2:1,2,3,4,5,6) 4 3] 608
52.7 (1:5,6,7),(2:1,2,3,4,6,7) 4 | 36311
AN
31 | O—0O—0O0—0 O O—O 80.16
53.2 (1;5,6,7) 80.20
0 [ OESDD © O—O) || s
54.9 (1;5,6,7) 34 54.9
51 |0 OO O O—0
55.2 (1;5,6,7) 86.7
55.3 (2:1,3,4,5,6,7) 775
o DD © O—O) 4 || 1
56.2 (1:5,6,7) 34 73.2
57.1 O—0O—0 O—0O O—0O 3 | 78.10
57.2 (1;4,5,6) 3 | 7812
57.3 (1;4,5,6,7) 34| 3| 584
57.4 (2:1,2,3,4,5,6) 3 | 3] 574
57.5 (2:1,2,4,5,6,7) 343|575
57.6 (1:4,5,6),(2:1,2,3,4,6,7) 34| 3| 57.6
58.1 @C®>@ @‘_® @‘_® 3 | 78.3
58.2 (1;4,5.,6) 3| 786
58.3 (1;4,5,6.7) 34| 3| 583
58.4 (2:1,2,4,5,6,7) 343 57.3
01 |00 O—0O OO ;|3 0
59.2 (1;4,5,6) 3 | 38620
59.3 (1;4,5,6,7) 3 [ 3] 593
59.4 (2:1,2,4,5,6,7) 3 3] 776
60.1 @‘ ®‘_® @ @‘_CD‘ @ 3 | 380.23
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60.2 (1:5,6,7) 3 |3 80.31
60.3 (1:4,5,6) 3-4 | 3 |80.33
60.4 (1:4,5,6,7) 34| 3| 61.5
60.5 (2:1,2,3,5,6,7) 3 13| 639
60.6 (2:1,2,3,4,5,6) 4 |31 523
60.7 (2:1,2,4,5,6,7) 34| 3| 60.7
60.8 (1:5,6,7),(2:1,2,3,4,5,6) 4 |31 526
60.9 (1;4,5,6),(2;1,2,3,5,6,7) 34| 3 |63.12
61.1 @% O O—0O—0 3 |31 80.8
61.2 (1;5,6,7) 3 13 /80.15
61.3 (1:4,5,6) 3-4| 3 |80.21
61.4 (1:4,5,6,7) 34| 3| 614
61.5 (2:1,2,4,5,6,7) 34| 3| 604
62.1 @C.m O OO0 3 |31 876
62.2 (1:5,6,7) 3 |3 |87.11
62.3 (1:4,5,6) 34| 3 |87.15
62.4 (1:4,5,6,7) 34| 3| 624
62.5 (2:1,2,4,5,6,7) 313|795
63.1 O—0 O—0O O—0O—0O 3 | 38024
63.2 (1;5,6,7) 3 |3 80.28
63.3 (1;3,5,6) 3-4 | 3 |80.27
63.4 (1;3,4,5) 3 |3 180.29
63.5 (1;3,5,6,7) 34| 3| 363
63.6 (1;3,4,5,6) 4 |31 272
63.7 (1;3,4,5),(1;5,6,7) 3 13 180.30
63.8 (2:1,3,4,5,6,7) 3 13| 638
63.9 (2:1,2,3,5,6,7) 3 13| 605
63.10 (2:1,2,3,4,5,6) 4 |31 524
63.11 (1:5,6,7),(2:1,2,3,4,5,6) 4 | 3| 527
63.12 (1;3,4,5),(2;1,2,3,5,6,7) 34| 3| 60.9
64.1 ® O—0—0 O—0O—0 3 |3 641
64.2 (1;2,5,6) 34| 3| 64.2
64.3 (1:5,6,7) 3 13| 643
64.4 (1;2,3,4),(1;2,5,6) 34| 3| 644
64.5 (1;2,3,4),(1:5,6,7) 3 13| 645
64.6 (1:2,5,6,7) 4 | 3| 331
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64.7 (1;2,3,5,6) 4513 91
64.8 (1;2,3,4),(1:2,5,6,7) 4 |31 332
64.9 (2:2,3,4,5,6,7) 3 |31 649
64.10 (2:1,2,3,4,5,6) 4 |31 34.1
64.11 (1;5,6,7),(2;1,2,3,4,5,6) 4 | 3| 34.2
65.1 O—0 O O—0O—0O—0O 4 | 3|81.11
65.2 (1;3,4,5) 4 | 38114
65.3 (1;4,5,6) 4 | 38113
65.4 (1;4,5,6,7) 4 | 3 404
65.5 (1;3,4,5,6) 5 | 3] 182
65.6 (2:1,3,4,5,6,7) 4 |31 656
65.7 (2:1,2,4,5,6,7) 4 |31 657
65.8 (2:1,2,3,4,5,6) 5 | 3] 49.2
65.9 (1;3.4,5),(2:1,2,4,5,6,7) 4-5| 3| 65.9
66.1 ® O—0 O—0O—0O—0O 4 |31 66.1
66.2 (1;2,3,4) 4 | 3| 664
66.3 (1;2,4,5) 4 |31 663
66.4 (1;4,5,6) 4 |31 662
66.5 (1;4,5,6,7) 4 |31 381
66.6 (1;2,3,4),(1:4,5,6) 4 |31 66.6
66.7 (1;2,3,4),(1;4,5,6,7) 4 |31 382
66.8 (1:2,3,4,5) 5 13| 251
66.9 (1;2,4,5,6) 5 3| 7.1
66.10 (2:1,2,4,5,6,7) 4 |31 39.1
66.11 (2:2,3,4,5,6,7) 4 | 3| 173
66.12 (2;1,2,3,4,5,6) 5 | 3] 26.1
66.13 (1;2,3,4),(2:1,2,4,5,6,7) 4 | 3| 392
71 |© O 0—0—0—0—0]; |5 ou
67.2 (1;2,3,4) 5 |31 673
67.3 (1:3,4,5) 5 |31 67.2
67.4 (1;2,3,4,5) 6 | 3| 15.1
67.5 (1;3,4,5,6) 6 | 3] 5.1
67.6 (2:2,3,4,5,6,7) 5 |3 676
67.7 (2:1,2,3,4,5,6) 6 | 3| 16.1
67.8 (1;2,3,4),(2:1,3,4,5,6,7) 5 | 3] 41.2
67.9 (2;1,3,4,5,6,7) 5 | 3] 411
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68.1 37.1
68.2 (1:5,6,7) 37.2
w1 | OFO—0—D © © O 4|3 s
69.2 (1:5,6,7) 4 87.14
01 | O—0O—0O—0 O O Oy |3 sr1s
70.2 (1:5,6,7) 4 | 3]87.22
70.3 (2:1,2,3,4,5,6) 4 | 31]79.10
70.4 (2:1,2,3,5,6,7) 45| 3| 704
70.5 (1:5,6,7),(2:1,2,3,4,5.,6) 4 | 317913
71.1 @C'M‘—@ @ @ @ ]9.5
71.2 (1:5,6,7) 89.13
71.3 (2:1,3,4,5,6,7) 85.5
21 OO0 © O O s
72.2 (1:5,6,7) 3-4 72.2
21 |OFO=00 © O O 4|5
73.2 (1:5,6,7) 3-4 56.2
74.1 @(@\@ o O OO0 3 |3 ] 89.7
74.2 (1:4,5,6) 3 | 3[89.14
74.3 (1:5,6,7) 3 | 3]89.15
74.4 (1:4,5,6,7) 3 |3 744
74.5 (2:1,2,4,5,6,7) 3 131 856
75.1 O—0—0 O O OO 3 | 38621
75.2 (1:4,5,6) 3 | 386.29
75.3 (1:5,6,7) 3 | 3|86.31
75.4 (1:4,5,6,7) 34| 3] 765
75.5 (2:1,2,3,4,5,6) 3|3 755
75.6 (2:1,2,3,4,6,7) 3 |3 |77.11
75.7 (2:1,2,4,5,6,7) 34| 3| 7.7
75.8 (1:4,5,6),(2:1,2,3,5,6,7) 34| 3 |77.16
75.9 (1;5,6,7),(2:1,2,3,4,6.7) 3 |3|7715
75.10 (1:5,6,7),(2:1,2,3,4,5.,6) 3 | 3|75.10
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OO O © OO

76.1 3 13| 868
76.2 (1:4,5,6) 3 |3 86.19
76.3 (1:5,6,7) 3 |3 86.18
76.4 (1:4,5,6,7) 34| 3| 764
76.5 (2:1,2,4,5,6,7) 34| 3| 754
77.1 O—0 O O—0O OO 3 | 38622
77.2 (1;3,4,6) 3 |3 |86.27
77.3 (1;3,4,5) 3 |3 86.28
77.4 (1;4,5,6) 3 |3 86.26
775 (1;3,4,5,6) 3 13| 553
77.6 (1:4,5,6,7) 3 13| 594
77.7 (1;3,4,5),(1;3,6,7) 3 |3 86.32
77.8 (1;3,4,5),(1;4,6,7) 3 13 86.30
77.9 (2:1,3,4,5,6,7) 313|779
77.10 (2:1,2,4,5,6,7) 3 137710
77.11 (2:1,2,3,4,5,6) 3 13| 756
77.12 (1;3,4,6),(2:1,2,4,5,6,7) 34| 3 |77.12
77.13 (1;3,4,5),(2:1,2,4,5,6,7) 3 |3 |77.13
77.14 (1;3,4,5),(1;3,6,7),(2:1,2,4,5,6,7) 3| 77.14
77.15 (1;3,4,5),(2;1,2,3,4,6,7) 3| 75.9
77.16 (1:4,5,6),(2:1,2,3,4,6,7) 34| 3| 758
78.1 ® OO O0—0O OO 3 13| 781
78.2 (1:4,5,6) 3 13| 782
78.3 (1:4,5,6,7) 3 |3 581
78.4 (1;2,3,4),(1:4,5,6) 3 13| 784
78.5 (1;2,3,6),(1:4,5,6) 3 13| 785
78.6 (1;2,3,4),(1:4,5,6,7) 3 | 3| 582
78.7 (1;2,4,6) 34| 3| 787
78.8 (1;2,4,6,7) 4 |31 281
78.9 (2:2,3,4,5,6,7) 3 13| 789
78.10 (2:1,2,3,4,5,6) 313|571
78.11 (1;2,3,4),(1;2,6,7),(1;4,5,6) 3 |3 |78.11
78.12 (1:4,5,6),(2:1,2,3,4,6,7) 3 13| 572
79.1 O—0 O O O—0O—0O 3 | 38717
79.2 (1;3,4,5) 3 |3 |87.21
79.3 (1;4,5,6) 3 |3 87.20
79.4 (1:5,6,7) 3 |3 |87.19
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79.5 (1;4,5,6,7) 3 |31 625
79.6 (1;3,4,5),(1:5,6,7) 3 | 38723
79.7 (1;3,4,5,6) 4 | 3| 46.2
79.8 (2:1,3,4,5,6,7) 3 |31 798
79.9 (2:1,2,3,5,6,7) 3131 799
79.10 (2:1,2,3,4,5,6) 4 |31 703
79.11 (1;3.4,5),(2:1,2,4,5,6,7) 3 |3 1]79.12
79.12 (1;4,5,6),(2:1,2,3,5,6,7) 3 |3 1]79.11
79.13 (1;5,6,7),(2:1,2,3,4,5,6) 4 |31 705
80.1 ® O0—0O O O—0—W0O 3 |31 801
80.2 (1;2,4,5) 3 |31 80.6
80.3 (1;2,3,4) 3 131807
80.4 (1:2,3,5) 3 |31 805
80.5 (1:4,5,6) 3|31 804
80.6 (1:2,5,6) 3 |31 80.2
80.7 (1:5,6,7) 3 131 803
80.8 (1;4,5,6,7) 3 13 611
80.9 (1;2,4,5),(1:5,6,7) 3 | 318014
80.10 (1;2,3,4),(1:5,6,7) 3 | 3 180.10
80.11 (1;2,3,4),(1:4,5,6) 3 | 38012
80.12 (1;2,3,5),(1:5,6,7) 3 | 318011
80.13 (1;2,3,5),(1:4,5,6) 3 | 318013
80.14 (1;2,3,4),(1;2,5,6) 3 |31 80.9
80.15 (1;2,3,4),(1:4,5,6,7) 3 13| 612
80.16 (1;2,3,4,5) 4 | 31| 531
80.17 (1;2,4,5,6) 4 |31 191
80.18 (1;2,3,5,6) 4 | 3| 271
80.19 (1;2,5,6,7) 4 |31 36.1
80.20 (1;2,3,4,5),(1:5,6,7) 4 | 3] 532
80.21 (1;2,3,5),(1:4,5,6,7) 34| 3| 613
80.22 (1;2,3,4),(1:2,5,6,7) 4 |31 362
80.23 (2:1,2,4,5,6,7) 3 |31 60.1
80.24 (2:1,2,3,5,6,7) 3 |31 631
80.25 (2:2,3,4,5,6,7) 3 | 318025
80.26 (2:1,2,3,4,5,6) 4 | 3| 521
80.27 (1;2,4,5),(2:1,2,3,5,6,7) 34| 3| 633
80.28 (1;2,3,4),(2:1,2,3,5,6,7) 3 |31 63.2
80.29 (1;4,5,6),(2:1,2,3,5,6,7) 3 |31 634
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80.30 (1;2,3,4),(1:4,5,6),(2;1,2,3,5,6,7) 3 |3 637
80.31 (1;:2,3,4),(2;1,2,4,5,6,7) 3 |31 602
80.32 (1:5,6,7),(2;1,2,3,4,5,6) 4 | 3| 522
80.33 (1;2,3,5),(2;1,2,4,5,6,7) 34| 3| 60.3
81.1 @ @ @ @ @ @ @ 4 3| 81.1
81.2 (1;2,3,4) 4 | 3| 814
81.3 (1;3,4,5) 4 | 3] 813
81.4 (1;:4,5,6) 4 | 3] 81.2
81.5 (1:4,5,6,7) 4 | 3] 401
81.6 (1:2,3,4),(1:4,5,6) 4 | 31| 81.6
81.7 (1;2,3,4),(1;4,5,6,7) 4 | 3| 402
81.8 (1;2,3,4,5) 5 [ 3] 48.1
81.9 (1;3,4,5,6) 5 | 3] 18.1
81.10 (2;2,3,4,5,6,7) 4 | 3 |81.10
81.11 (2:1,2,4,5,6,7) 4 | 31651
81.12 (2:1,2,3,4,5,6) 5 | 3] 49.1
81.13 (1;2,3,4),(2;1,3,4,5,6,7) 4 | 3] 653
81.14 (1;3,4,5),(2:1,2,4,5,6,7) 4 | 3] 652
82.1 @‘_CD‘_@ @ @ @ @ 3 | 38917
82.2 (1;5,6,7) 3 | 38922
82.3 (1;4,5,6,7) 3-4| 3| 834
82.4 (2:1,2,3,4,5,6) 3 | 3 |85.10
82.5 (2;1,2,4,5,6,7) 3-4 | 3| 825
82.6 (1;5,6,7),(2;1,2,3,4,5,6) 3 | 38516
51 |00 O O © O; s s
83.2 (1;5,6,7) 3 |3 89.16
83.3 (1:4,5,6,7) 3-4| 3| 8.3
83.4 (2:1,2,4,5,6,7) 34| 3| 823
W OO O O © O; s ws
84.2 (1:5,6,7) 3 13| 906
84.3 (1:4,5,6,7) 3 |3 ] 84.3
84.4 (2:1,2,4,5,6,7) 3 | 3| 883
85.1 @‘_@ @ @ @ ®‘_® 3 | 3|89.18
85.2 (1;3,4,5) 3 | 318923
85.3 (1:4,5,6) 3 | 318920
85.4 (1;5,6,7) 3 |3 8921
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85.5 (1;3,4,5,6) 3 13|73
85.6 (1:4,5,6,7) 3 13| 745
85.7 (1;3,4,5),(1;5,6,7) 3 13 /89.25
85.8 (1;3,6,7),(1:4,5,6) 3 | 3|89.24
85.9 (2:1,3,4,5,6,7) 3 13| 859
85.10 (2:1,2,3,4,5,6) 3 |31 824
85.11 (2:1,2,3,4,6,7) 3 | 38511
85.12 (1;3,4,5),(2;1,2,3,4,6,7) 3 |3 |85.14
85.13 (1:4,5,6),(2;1,2,3,5,6,7) 3 | 38513
85.14 (1;5,6,7),(2:1,2,3,4,6,7) 3 | 38512
85.15 (1;3,4,5),(1;5,6,7),(2:1,2,3,4,6,7) 3 138515
85.16 (1;5,6,7),(2;1,2,3,4,5,6) 3 13| 826
86.1 ® OO0 O O 00O 3 13 86.1
86.2 (1:4,5,6) 3 13| 865
86.3 (1:2,5,6) 3 13| 863
86.4 (1,5,6,7) 3 13| 864
86.5 (1;2,6,7) 3 13| 862
86.6 (1;2,4,5,6) 3 |3 44.1
86.7 (1;2,5,6,7) 3 |3 551
86.8 (1:4,5,6,7) 3 13| 761
86.9 (1:2,3,6,7) 3 13| 591
86.10 (1;2,3,4),(1:4,5,6) 3 |3 86.16
86.11 (1;2,3,6),(1:4,5,6) 3 | 3|86.11
86.12 (1;2,6,7),(1:4,5,6) 3 |3 86.12
86.13 (1;2,3,4),(1;2,5,6) 3 | 386.13
86.14 (1;2,3,4),(1:5,6,7) 3 |3 |86.14
86.15 (1;2,3,5),(1;5,6,7) 3 |3 86.15
86.16 (1;2,3,6),(1;5,6,7) 3 |3 86.10
86.17 (1;2,3,4),(1;2,5,6,7) 3 13| 552
86.18 (1;2,3,4),(1:4,5,6,7) 313|763
86.19 (1;2,3,6),(1:4,5,6,7) 3 13| 762
86.20 (1;2,3,6,7),(1:4,5,6) 3 13| 592
86.21 (2:1,2,3,4,5,6) 3 13| 751
86.22 (2:1,2,3,4,6,7) 3 13| 771
86.23 (2:2,3,4,5,6,7) 3 |3 86.23
86.24 (1:2,3,4),(1;2,6,7),(1;:4,5,6) 3 |3 |86.24
86.25 (1;2,3,5),(1;2,4,6),(1;5,6,7) 3 |3 86.25
86.26 (1:4,5,6),(2;1,2,3,5,6,7) 3 13| 774
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86.27 (1;2,5,6),(2;1,2,3,4,6,7) 313|772
86.28 (1;5,6,7),(2;1,2,3,4,6,7) 313|773
86.29 (1;2,6,7),(2;1,2,3,4,5,6) 3 13| 752
86.30 (1:2,3,4),(1:4,5,6),(2:1,2,3,5,6,7) 313|778
86.31 (1:5,6,7),(2:1,2,3,4,5,6) 3 13| 7.3
86.32 (1:2,3,4),(1:4,6,7),(2:1,2,3,5,6,7) 313|777
87.1 ® O O O0—0—0 3 13| 871
87.2 (1;2,3,4) 3 13| 875
87.3 (1;3,4,5) 3 13| 874
87.4 (1:4,5,6) 3 13| 873
87.5 (1:5,6,7) 3 | 3| 872
87.6 (1:4,5,6,7) 3 13| 621
87.7 (1;2,3,4),(1:5,6,7) 3 | 3| 877
87.8 (1;2,3,4),(1:4,5,6) 3 | 3|87.10
87.9 (1;2,3,5),(1:4,5,6) 3 13| 879
87.10 (1;3,4,5),(1:5,6,7) 3 | 3| 878
87.11 (1;2,3,4),(1:4,5,6,7) 3 |31 622
87.12 (1;2,3,4,5) 4 |31 69.1
87.13 (1;3,4,5,6) 4 | 31 46.1
87.14 (1;2,3,4,5),(1;5,6,7) 4 |31 692
87.15 (1;2,3,5),(1:4,5,6,7) 34| 3| 623
87.16 (2:2,3,4,5,6,7) 3 | 3|87.16
87.17 (2:1,2,3,5,6,7) 3 13| 791
87.18 (2:1,2,3,4,5,6) 4 |31 701
87.19 (1:2,3,4),(2:1,2,3,5,6,7) 3 13| 794
87.20 (1;3,4,5),(2:1,2,4,5,6,7) 3 13| 793
87.21 (1:4,5,6),(2;1,2,3,5,6,7) 3 13| 792
87.22 (1;5,6,7),(2;1,2,3,4,5,6) 4 |31 702
87.23 1:2,3,4),(1:4,5,6),(2:1,2,3,5,6,7) 3 13| 796
88.1 O—0 O O O O O 3 131908
88.2 (1:5,6,7) 3 1319012
88.3 (1:4,5,6,7) 3 |3 844
88.4 (1;3,4,5),(1:5,6,7) 3 |3 90.11
88.5 (2:1,3,4,5,6,7) 3 13| 885
88.6 (2:1,2,3,4,5,6) 3 13| 886
88.7 (1;5,6,7),(2;1,2,3,4,5,6) 3 | 3| 887
88.8 (1;3,4,5),(1;5,6,7),(2:1,2,3,4,6,7) 3 | 3| 888
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89.1 3 13| 891
89.2 (1:2,4,5) 3 |3 89.2
89.3 (1;5,6,7) 3 13| 894
89.4 (1;2,3,4) 3 13| 893
89.5 (1;2,4,5,6) 3 13| 711
89.6 (1:4,5,6,7) 3 |3/ 831
89.7 (1;:2,3,4,5) 3 13| 741
89.8 (1:2,4,5),(1:5,6,7) 3 | 3]89.12
89.9 (1:2,4,5),(1:2,6,7) 3 13/ 899
89.10 (1:2,3,4),(1:5,6,7) 3 | 389.10
89.11 (1:2,3,4),(1:4,5,6) 3 | 38911
89.12 (1:2,3,4),(1:2,5,6) 3 |3 8.8
89.13 (1;2,3,4),(1:2,5,6,7) 3 13| 71.2
89.14 (1;2,3,4,5),(1;2,6,7) 3 | 3| 742
89.15 (1:2,3,4,5),(1:5,6,7) 3 13| 743
89.16 (1:2,3,4),(1:4,5,6,7) 3 |3 83.2
89.17 (2:1,2,4,5,6,7) 3 13 821
89.18 (2:1,2,3,4,5,6) 3 13/ 851
89.19 (2:2,3,4,5,6,7) 3 | 38919
89.20 (1:2,4,5),(2:1,2,3,5,6,7) 3 3] 8.3
89.21 (1:5,6,7),(2:1,2,3,4,5.,6) 3 |3 854
89.22 (1:2,3,4),(2:1,2,4,5,6,7) 3 |3 822
89.23 (1;2,3,4),(2:1,2,3,5,6,7) 3 |3 852
89.24 (1;:2,4,5),(1:5,6,7),(2:1,2,3,4,6,7) 3 |3 8.8
89.25 (1;2,3,4),(1:4,5,6),(2:1,2,3,5,6,7) 3 |3 8.7
89.26 (1:2,3,4),(1:2,5,6),(1:4,6,7) 3 | 3]89.26
01 |@ © O O O O Of; 3] 01
90.2 (1:5,6,7) 3 13 90.2
90.3 (1:4,5,6,7) 3 |3 841
90.4 (1:2,3,4),(1:5,6,7) 3 13| 904
90.5 (1;3,4,5),(1:5,6,7) 3 13905
90.6 (1:2,3,4),(1:4,5,6,7) 3 | 3| 84.2
90.7 (2:2,3,4,5,6,7) 3 3] 90.7
90.8 (2:1,2,3,4,5,6) 3 |3 881
90.9 (1:2,3,4),(1:3,5,7),(1:4,5,6) 3 3] 90.9
90.10 (1:2,3,4),(1:2,6,7),(1:3,5,7),(1:4,5,6) 3 13109010
90.11 (1:2,3,4),(1:4,5,6),(2:1,2,3,5,6,7) 3 | 3| 884
90.12 (1:5,6,7),(2:1,2,3,4,5.,6) 3 | 3| 88.2
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Table 5.2: List of 449 quartic plane de Jonquieres maps with their enriched weighted prox-

imity graphs listed in Table 5.1 respectively

i Map
1.1 (223 + 9t 1 y23 0 24
2.1 [—ayz? — 222° +yt + P2 —ay2® — 22 + gt + Y22 — 2928 Y
3.1 [—2%(zz — y?) : —ylazyz — 222 — oy + %2 — 23) : —z(xyz — 3 — 23)]
3.2 [ (zz —y?) — 24t yz(wz — y?) 22 (22 — y?)]
4.1 [—zy2? — 22 + oyt +y22? g3 2
5.1 [2(y + 2) (w2 + 9°) s y(zyz + 22° + ¢3 + y?2 + 23) @ 21

5.2 ly(y + 2)(xz + )+ —(y — 2)(y + 2) (22 +y°) : 2]
6.1 [—zyz? — 22 + oyt — 20222 w22 (2 +y) =22 (y — 2)(2 + y)]

[132y2? — 132y — 3xy®z + 3wz — yt — 632 — 259222 : y(323 — day’+

.1 +drz? — 3 — 3yPz — Tyz?) : 8wy — 8wyz? — yt + 149222 + 321]

8.1 [—zyz? — 22 + oyt — 20222 y2 (2 +y)? =22y — 2)(2 + )Y

9.1 [y(2zy* — 2222 — ® + Byz?) : 2(2xy® — 222% — y® + By2?) : —(y — 2)*(z + y)?]
10.1 | [Bayz? + 3223 + y* — 6y22% — 8y2® 1 2(3y2? — xyz — 222 + y° + 3y%2) : 22 (xy + 22 + 22)]
11.1 (223 — zy?z + 4y + 11y32 + 93222 ty(2 +y) : (2 — 3y) (2 + v)?]
12.1 [2y%2 — 223 + y* + 9222 (2 +y)(eyz — 222 + 4% — y?2 +y2?) s wyPe — 228 + gt + 2
13.1 (w23 — 2?2 —yt — 2082 + 4222 tyz(z — ) (2 +y) s 223 — ayPr — Yyt — 232 + 24
14.1 (223 —y* + 22 1 222 g2
15.1 (132 — ay2? — 202° + yt gyt — ay2? — w23 + P2y
16.1 [zy2? — 2’z + 228 — gt + 32 22 (22 +9%) (2 +y)(vyz — 22% + 4P — yP2 + y2?))
16.2 [2y?z — 2% + y* 22 (w2 + y?) yz(zz + y* + 27)]
16.3 lyz(zz +y?) : 22 (xz + v?) : y(zyz + v° + 2°)]
17.1 [y — zy2? — w23 Y% y2d
18.1 [zy?z — 222 + ¢ 2(2 + y) (22 + 47) : y2?]
18.2 ly(z +y)(@z +y*) : (2 —y)(z +y)(xz +y°) 1 y2]
19.1 [y(2zy? — 222% — y® + Byz?) : 2xy?z — 2223 + byt + 4Pz — 5y?2? y(y — 2) (2 + )7
20.1 [yt — wyz? — 223 + 2032 y?2(2 +y) yz(z — ) (2 + )]
21.1 [4yz3 — 3xyz? — 323 + yt 1 2(2wyz + 2022 + y° — 3y2?) : 22 (—ay — w2 + y* + 2y2)]
22.1 [22% — 2y?z — 5y — T3z 2 (2 +4)? y(z — 2u) (2 + 4)?)
23.1 [2(wy? — 22 +29°) 1 y°(y — 2) (2 + y) 1 yz(y — 2) (2 + )]
24.1 [yt — 223 32 0 Y222
25.1 [yt — zy2? — w23 2(y® — 22?) Y22
26.1 [yz(xz +v%) s 2 (2 + y2 + 2%) : (2 —y)(zyz + 222 + y° + %2 + y2?)]
26.2 2 (zz +y?) tyz(zz + y?) : 22 (w2 + y* + y2)]
26.3 [wy?z + 223 + ¢t s yz(zz +92) : 22 (w2 + y?)]
27.1 ly(z +y)(@z +9?) 1 y?2% (2 —y)(wyz + 22° +y° + y?2 + y2?)]
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27.2 [wy?z — 223+t 2(wyz + 222 +93) 1 9?27
28.1 [y(zy? — 222 +293) : 2(2y? — 222 + 203) : 2 (y — 2) (2 + )]
29.1 [y — 2y2? — w23 32 y??
30.1 [wyz? + 223 +y* : 2(y® — 2yz — 22?) : 22 (xy + 22 + 2]
31.1 [wy?z — 223 + yt 32 0 y?2?]
32.1 [yt yz: 2% (22 + y?)]
32.2 [22% 0yt y32]
33.1 ly(y® — x2?) 1 2z 1 22 (w2 + y?)]
33.2 (2% y(y® — x2?) @ 2]
34.1 [y (zz +y?) s yz(zz + v + yz2) : —2(2zyz — x2* + 29° — y2?)]
34.2 [y?(xz + %)t yz(zz + 4% + y2) : 23(y + 7))
34.3 (2 (xz +y?) yz(zz + y?) : 22(y? — 22)]
34.4 [y(xyz — 222 + ) yz(xz + y?) : 22 (22 + 2]
34.5 (232 s xy(y? — x2) 2 (y? — 22)]
35.1 [yt 32 22 (vy + 22 + 3y? + y2)]
35.2 ' P2 22y + o) (@ + )]
36.1 (32t y(zyz + 222 + 3 + y2?) : y2® — 3zy?z — 2zy2? + 22° — 3y
36.2 [222(2 +y) : y(ayz + 222 + y3) : y32]
36.3 [y(zyz + 222 + %) 1 22 1 22 (2y + x2 + y?)]
37.1 [yt 32 —z(wy? — 222 — y?2)]
37.2 [22(z —y)(y + 2) : y* : y32]
38.1 [yt y(zy? — 2xyz + w22 + y2?) : 2(ay? — 2xyz + 22% + 3y + y2?)]
38.2 [yt y(zy? — 2zyz + 222 — 2y%2 + y2?) 2y + 2)(2y? — 2oyz + 222 — 2922 + y2?)]
38.3 [yt y(zy? — 2wyz + 222 — 2y%2 + y2?) : 2wy® — 3wy?z + 123 — Y32 + y2?)
38.4 [y yly — 2)(zy — 2z —y2) : (y — 2)(y + 2)(zvy — 22 — y2)]
39.1 | [ (—zy +xz—3y* +yz) 1 yly — 2)(vy — vz — y? —yz2) : 2y — 2ay2? + 223 + yt + y2?]
39.2 [y (zy — vz + 3y* — yz) : y(ay® — 222 + 5y — y2?) : 20y® — xy?z — 223 + 9yt — y2?]
39.3 [ (xy — w2 + 3y? — yz2)  y(ay? — 222 + 5y — y2?) s oy — 223 + Tyt — y2?]
39.4 [ (xy — 22 + 3% — y2) t y(ayz — 222 + 3y — y2?) s wy2? — 223 + 3yt — y2?]
39.5 (2 (xy — w2 — y2) s yz(vy — vz — yz2) : 20y3 — 20922 + ayz? — 228 — 2yt — y2d]
40.1 ' : —y(oy® —22® — 2y%2 — y2°) ¢ (y — 2)(y + 2) 22y — 22 — y2)]
40.2 [yt —y(ay? — 22% — y2?) « —z2(2y? — 222 + 29° — y2?)]
403 ' —y(zy® —22® —y2?) : —2(y — 2)(y + 2)(x + y)]
40.4 ' —yly — 2)(wy + 2z +y2) : —(y — 2)(y + 2)(ay + 22 + y2)]
[2(22%2 — 2zy® + wyz — 3y® — y?2) : (y + x) (222 — 2y — y3) -
4“ —(y+ ) (@*z — ay? — xyz + )
41.2 [2y?2 : —y(x2% — 9°) : 2(2yz — 222 + y°)]
41.3 [wy?z : xyz? « —x23 + )
41.4 [y (zz + y?) : yz(zy + 22 + y?) : 22 (vy + 22 + ¥?)]
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41.5 [y (xz + %)t yz(zz + 4?) : 2(2y® + 222 + y?2)]
42.1 (2 (z2 +y?) « —y(zy? — 222 — y22) s 2y — 292 + 223 + Y227
42.2 [P y(ryz — 22° +y3) - —2(2xy? — 2yz + 222 — o°)]
42.3 (32 2z ay2? — w23 + o]
42.4 [ (xz +9°%) : —y(zy? — x2? — y?2) : —z(2y? — 222 — y?2)]
42.5 (2 (2 + y?) cyz(zz + y?) 2y’ + 22 + y?22)]
[vy? — 3zy?z + 3wyz? — 223 + y32 vy — 3wy®z + 3wy — 123 + Y22t
43.1 ry? — 3wy?z + 3wyz? — 123 + Y2
44.1 [y(zy? — 222 + 2y°2) : 2(zy? — 22% + 20%2) 1 yz(y — 2)(2 + y)]
45.1 [ry? — wy?z —ay2? + 22° — 232 0 —y?2(y — 2) : —yz(y — 2)(2 + v)]
46.1 [—zy(z — y)? : 2(32%y + 222 — 2y — y?2) : y(z + y)(2? + 22 — y2)]
46.2 [—y(xy? — 222 + y* + 3y2?) s yz(y — 2)% : 2(zy? — 2% + 3y*2 + 2%)]
47.1 [22(2 +y) : —yz(y — 2)(z + y) : —229° + 2?2 + 22y2% — 223 — 5Pz + 2]
[—xy? + day?z — Bryz? + 2223 + yP2 + —2xy® + Tay?z — Sxy2?® + 3w2® + y22%

48.1 —3zy3 + 10zy%2 — 11lzy2? + 4223 + y29]

[y(z +y)(vy — vz +y2) : —y(5ay? — Sxyz + 3x22 + 9° + 2%z — 2%) -
49.1 —14zy® + 232y%2 — 100y2? + 123 — dy* — 392 + 2]
49.2 [—xy® — 22922 + day2? — 228 + oyt — 432 yz(oy — 22 +y2) 22wy — 22 + y2)]

[yz(zy — 2 + y2) : —y(axy? — doyz + 322% + y3 — 2922 — 23) -
49.3 —2xy3 + bay?z — 2wyz? — 123 — 2yt + 332 + 2]
50.1 [wy? — xy?z — 2y2® + 22° — 83z 1 22 (2 +y) : —yz(y — 2)(2 + 9]
51.1 (32 1 4?22« —xy® + 3wy?z — 3wyz? + 123 + y2I)
51.2 [Pz 222 s —(y — 2)(2y? — 2xyz + 22% + 4 + yP2 + y2?)]
[2(342%y + 34x%2 — 32xy® + 3bxyz — 33y° + y?2) :
52.1 3623y + 36232 — 3522y? + 3622yz — 3day® + oyt (v +y)(y — 22)(2vy + 22 + y2)]
52.2 [—y(y — 2)(zy — vz + y?) s yz(zy — 22 + y2) : 209> — 3wy2? + 223 + 2yt + y29]
52.3 [ (zy — 22 + y2) s yz(vy — 2z + yz) « =229 + 6xy?z — Bayz? + x2° + y27)
52.4 [—y(ay? — 222 — y® + 3y%2) s yz(vy — vz + y2) : 2%(2y — 22 + Y2)]
[—y(xy? — 3xyz + 2222 — y?2) « —y(22y? — Sayz + 322° — yz?) -

52.5 —2xy3 + day?z — vyz? — 123 + Y2
52.6 [2°(2 — y) s wy(y® — 22) 1 P (y° — 22)]
52.7 (232 wy(y? — 2y — x2) 1 y*(y? — 2% — 22)]
53.1 [y(zy? — 2zyz + 222 + y%2)  y(ay? — 2zyz + 222 + y2?) : 2(wy? — 2wyz + 222 + y2?)]
53.2 [y(zy? — 2zyz + 222 + %)« —y22(y — 2) : 2(2y?® — 22yz + 222 + y2?)]
54.1 2y — xy?z — xy2® + 123 + y2d o yiz o y?R?
54.2 [(z + y)(zy? — 2zyz + 222 + v — y?2 + y2?) : y32 @ Y227
55.1 | [zy® + 3ay?z — 4wz® + 2232 — dy23 : z(ay® + wyz — 2222 + 8y® — 2y2%) : —y?2(y — 2)]
55.2 [zy? + 3zy?2 — 4wz + 18y32 : z(xy? + wyz — 2222 + 6y3) : —y?2(y — 2)]
55.3 [y(zy? — 222 + 2y22) : —y?2(2 +y) : 2(2y? — 2% — y® — y2?)]
56.1 [—162y%2 + 16223 + 3y* : —2(8zy? — 8x2? — 3y3) : —z(day? — 4x2? — 3y*2)]
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56.2 [22(y — 2)(2 +y) 1 ¥*(y — 22)(y + 22) : y?2(y — 22)]
57.1 [2(3xy? — Bayz + 2222 + 2y2?) : y(2zy? — 3vyz + w22 + 2y°%2) : yz(wvy — 22 + 2y2)]
57.2 [22(y — 2)? : y(2wy? — Bzyz + x22 + 2y°2) @ yz(xy — 22 + 2y2)]
57.3 22y + 2)(y — 2)? s 2y(y — 2)? : y? (Y — 22 + 22?)]
57.4 [—y(xy? — 222 + 2y22) : ay + 223 + 2032 + 23 y? (xy + 22 + 2yz + 22)]
57.5 lyz(zy + 22 —y2) : —z(xy? — 22* — 3y?z — y2?) 1 y*(vy + 22 + yz + 227)]
57.6 [2%(y — 2)(x — y) s w(2y — 2%z — y’r +9°) (v — 22)]
58.1 [y(zy? — 2zyz + 222 + y?2) 1 Y222« —2(—ay?® + 2xyz — 222 — y2?)]
58.2 [zy(y — 2)? 1 y?22 : 223 — 3ay?z + 223 + Y23
58.3 [ry(y — 2)% s 22y + 2)(y — 2)* : y*27]
58.4 [y(zy? + 2zyz + 222 + y22) 1 y22? : 2(wy? + 2zyz + 222 + y2?)]
59.1 [y(xy? — 222 + 2y22) @ z(wy? — 222 — y2?) : y?2?]
59.2 [y(xy? — 222 +2y22) s w2(y — 2)(2 + y) : y?2%]
59.3 [zy(y — 2)(z +y) t22(y — 2) (2 +y) 1 y*2%
59.4 [y(zy? — 222 + y%2) : 2(ay® — 222 — y2?) 1 y?2?)
[y(3zy* — bryz + 222% + 2y2?) : Twy® — 9wy?z + 2023 + 49?22 + 2923

00.1 y*(vy — 22 + 2y2)]
60.2 [y(3zy* — Bryz + 222% + 2y2?) : bry® — Twy?z + 2223 + 2y23 : y?* (vy — z2 + 2y2)]
60.3 [zy(y — 2)? : bay® — Tey?z + 2223 + 29222« y?(vy — vz + 2y2)]
60.4 [ey(y — 2)* 1 2(2y + 2)(y — 2)* : y*(2y — 2 + 2y2)]
60.5 | [y(zy? — 3zyz + 2w2? — 2y2?) : 2y® — 3ay’z + 2223 — 4y?2% — 2923y (vy — 2 + 2y2)]
60.6 [—yz(zy — 22 +y2) : —wy’ + 22° — 29222 — y23 2 (ay — 22 + y2)|
60.7 [y(zy? — 3wyz + 2022 — 2y2?) : 2y® — 20y%2 + 12% — 2% — Y23 (Y — 22 + 2y2)]
60.8 [2%2(x — 2y) : zy(zz + v?) : v (x2 + 7))
60.9 [(z — 2y)(z + 2y)(z2z + y?) : 2yz @ y?(2y — 222 — 29?)]
61.1 [(y + 22)(zy? — 2zyz + 22 + y2?2) : 2(ay? — 2zyz + 222 + y2?) : y32]
61.2 [wy3 — 3wyz? + 2023 — 3y?2? + 2y23 : 2(wy? — 2wyz + 222 — 2922 + y2?) 1 y32]
61.3 [zy® — 3ayz? + 222 + 29222 2(wy? — 2xyz + 222 + 922) 2]
61.4 [z(y +22)(y — 2)? s 22(y — 2)? : y32]
61.5 [zy? — 3wyz? + 2023 + y?2% — 2y23 : 2(y — 2)(xy — w2 + y2) : Y2

[2(82%2 — 8xy? + 8xyz — 5y?) : w(18222 — 18zy* + 13wyz — Hy?z2) :
62.1 16232 — 1622y% + 162%y2 — 5y
62.2 ly(zy? — 22% — y2?) @ 2(xy? — 222 — y2?) : 2]
62.3 lyz(y — 2)(z +y) : 2(xy? — 22 — y?2) : 2]
62.4 lyr(y — 2)(z +y) t22(y — 2)(2 + y) : y°2]
62.5 [y(zy? — 22?2 —y2?) 1 2(y — 2)(zvy + 22 + y2) : y°2]
63.1 [2y — 223 + 32 — 29222 —y23 : 2(wy? — 22 — 2922 —y2?) 22wy — 2z — y? — y2)]
63.2 [(y — 2)(zy? + 2yz + 22° + 22 + y2?2) : 2(ay? — 222 —y2?) : 22(y — 2)(y + )]
63.3 [(z +y)(2y? — wyz + 222 +y22) : 2(20y? — 222 — 9%2) : 22 (ay + 22 + 2]
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63.4 [y — 23 — 20222 — 23« 2(ay® — 12% — 2%z — y2?) 22 (ay — w2 — Y — y2)]
63.5 2y + a3+ 32 w2(y — 2) (2 +y) s 222(2 + y)]
63.6 [2y? + 223 + y?2? : 2(wy? — 222 — y?2) @ 22 (wy + 22 + 4?)]
63.7 [2y® + 22% +y2® : z(wy? — 222 —y2?) 222+ y)(y + 7))
63.8 [2y + 223 + 932 — 9?22 —y23  2(z +y)(ay — 22 +y2) 1 22 (2y + 22 — 29 — y2)]
63.9 2y + 223 — 32 —y?2% +y2d  2(y — 2)(wy + 22 +y2) 22 (2y + 22+ y2))
63.10 [2y? + 223 + 32 + 222 + y22 : 2(2 +y)(vy — 22 — y2) : 22 (2y + 22 + 29% + y2)]
63.11 [22(zy + 22 +y2) : —x(z — y)(zy + 22 + y2) : Py + %2 + 2y® + 2]
63.12 [2(z —y)(xz — y?) : 2(2?2 — 2y — 2yz + y?2) : 2032 — 22%9° — 2%yz + ¢
64.1 | [(z +y)(zy? — xyz + 22° + y?2 + y2?) : 2(22y® + x2% + 2y%2 + y2?) 1 2220y — vz — y2))
64.2 [—y2(xy — 222 + yz) : 2y2? 2y + 2223 + 32 + 29227
64.3 [ (2 +2) ryz(zy + 22 + y2) : 222y + 222 + 2y22 + y2?)]
64.4 Y3 (2 + x) : 2(xy? + 22 + y?2) © ayz?]
64.5 (2 (z 4+ ) s yz(vy + 22 +yz) : 23(y + 2)]
64.6 (Y2 (zy — 222 + yz2) : xyz? 22
64.7 [zy? + 223 + y222%  wy?z : ay2?
64.8 (3 (z + ) : 2y2? @ 123
64.9 2y + 223 — 32 + 20222 — y23 220y — w2? — 292 + y2?) : 22 (2ay + w2 — y2)]
64.10 [ry? — 223 — Pz — 222 +y2  2(y — 2)(xy + 22 — y2) @ 2% (vy + 22 — Y2)]
64.11 [2(x —y)(zz — y?) : (z —y)(z + y)(zz — ¥?) : %2 — 22y* + 2Pyz — 229%2 + 4°2]
65.1 [yz(2zy — vz — y?) 1 2(3zy? — 222 — y® — y?2) : yP(xz — y?)]
65.2 [—y2z2 : 2(2eyz — 222 + 2 — y?2) y(x2? — y3 + y22)]
65.3 [wyz(y — 2) : —2(x2? — y3) s y* (22 — y?)]
65.4 [ryz(y — 2) 1 2z(y — 2) (2 +y) 1 y* (22 — )]
65.5 (222 2y2? 22 + gt — 2]
65.6 [yz(xy — 2z —y?) : 2(z +y)(vy — 22 — ¥*) : —y* (222 + 3?)]

[—y(3xy? — zyz — 2222 — 2y?2) : 3wy — Bayz? + 2wz — Y3z + 2y%22 -
65.7 y(8zy? — 8x2% + y® — 8y?2)]
65.8 [yz(zz +y?) : —2(z + y)(zy — 22 — y?) : v (22 + y?)]
65.9 [ry?z cy(2?2 — Pz + %) x(z — y) (22 — y?)]
66.1 [y (zy + x2 +y2) : y(2oy? + 222 + 2%z + y2?) : 20y® + 22° + 2032 + 29727 + y2?]
66.2 [P —yz(2xy — w2 —y2) 1 —2(20y® — 122 — 2y%2 — y2?)]
66.3 [(y — 2)(xy? + zyz + 222 + y22)  2y’z 2 22 (wy + 22 + 3?)]
66.4 (—z 4+ y)(zy? + xyz + 222 + y?2 + y2?) : 2(wy? + 222 + y2?) 1 y2?(y + 7))
66.5 [2(zy + 22 +y2) y22(y +2) : 22y + 7))
66.6 a s z(xy? + 222 + y2?) y2?(y + 2)]
66.7 [Pz y2(y + 2) : 22 (y + )]
66.8 [Pz wy?z 22 (wy + 22 + y?)]
66.9 [2y? + 223 + y32 : xy?z : 2y2?]
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66.10 [ (xy + 22 +y2) cylay? + 222 + 22 + y2?) oy + 223 + y32 + 922 + y2d
66.11 [ (zy + 22 +y2) : —y(2ay? — 222 + 2y%2 — y2?) 1 6y + 223 + 6y32 — 29222 + y2I]
66.12 [2y — 223 + 32 + 9222 —y2d s 2(wy? + 222 — P2 +y2?) 22 (ay — vz + 27 — y2)]
66.13 [2(z —y)(xz —9?) s y(@ —y)(2z — y°) 1 y(a®s — y’z — ayz + y°2)]
67.1 (=2 (2zy — 2z — y?) : —y(y — 2)(zy + 22 + y?) : —day® + 223 + 3y* — 32 + y?2?]
67.2 [Pz y(xz? —y3 +y%2) « —2(3zy? — 222 + 3 — y?2)]
67.3 [—y?z(y — 2) : —wy + 2yz? — 222 + 32 —(2 + y) (vy? — 2yz + 22° — y?)]
67.4 (32 wy?z 0 —2wy2? + 228 + yt — 2]
67.5 [—y?r(y —2) : —yx(y — 2)(z +y) : 22° — 3]
67.6 [ (Bzy + 22 +9%) : —y(1lay? — 222 + 9% — y?2) 1 dlayd + 223 + 3y* — P2 + 1227
67.7 [ (zy + 22 + 9% —yly — 2)(zy + 22 + %)« —2y® + 22° + 3yt — y32 + 222
67.8 [2(z —y)(zz — ¥*) ry(z — y)(2z — y°) 1 2]
67.9 [Tx(2z —y)(zz +y?) : T2z — y) (22 + y)(z2z + y?) : 242°2 + 242%y* — Ty?2]
[3z23 4+ 8y* — 2492 + 16y22% : y(z — y) 2y — 2)(y — 22) :
o (= = 9)(2y — =)y = 2)(22 + Ty)]
68.2 [22° 1 y*(2y — 2)(y — 2) s yly — 2)(2y — 2) (2 + 3y)]
[—8xyz? + Twz3 + 8y* — 24132 + 169222 : y(6x22 — 6y> + 25y22 — 33y2? + 1423) :

69.1 6ryz? — 6yt + 21y32 — 19y22% + 424
69.2 (223 0 —y(2x2? — 2y3 + 3y?z — y2?) : —y(6x22 — 6y> + Ty?z — 23)]

[2(32%y + 42?2 — 6zy? + dwyz — 5y?) « —dx(x —y)(2zy + 22 + y? + y2)
70.1 T3y + 4232 — 102%y? — bry® + 4y32]

(223 y(doyz — 8wz? + 4y — 4y?z — y2? + 23) -
70.2 (y — 2)(dayz + 4y3 + 49?2 — yz2 — 23)]
ly(y +22)(zz +y? +yz — 22%) 1 y2(3wz + 3y? + 2yz — 522)

- 2y — )@z + 4+ yz — )
70.4 22922 — Te2® + 2yt + 2032 + Ty23 + 220t yz(2z + y?) : 2%(v2 + 92)]
70.5 [2(x +y)(xz —y?) ry(z +y) (¥ — 22) s wy(a® — vy + 22 — y?)]

[—y(26zyz — 38x2% + 26y° + 11y%z — 3Ty2?) : —y(18zyz — 69222 + 18y3+
711 19y%2 — 372%) : —64xy?z + 30Tzy2? — 64y* — 10y%2 + 7427
71.2 | [ryz?: —yQRuyz + 2y — Ty 2 + Tyz? — 223) : —1day?z — 14y* + 4532 — 35222 + 424
71.3 [ (x2 + 3% + 22) s yz(xz + 4% + 22)  ayz + doyz2? + gyt + 5y + 427

[—y(2zyz + 2x2* + 10y® — 29y%2 + 15y22) : y(y — 2)(2y — 2)(y — 22) :
= (v — 2)(2y — 2)(y — 22)(22 + Ty)]
[y(2xyz + 2222 — 6y — 15y%2 — Ty2?) s y(y + 22)(3y + 2)(2y + 2) :
2.2 (22 — 11y)(y + 22)(3y + 2)(2y + 2)]
73.1 [wyz? + 223 — 129 + 12032 : 22y — 2)(y — 2) 1 y(y — 2)(2y — 2)(2 + 3y)]
73.2 [222(= +y) 1 ¥y — 2)(y — 2) 1 y(y — 2)(2y — 2) (2 + 3y)]
[=31zy?z + 3wyz? + 3422® — 6yt : —(y — 2)(8xyz + 8wz + ¢3) :

74.1

—(y — 2)(z + y)(doz + y°)]
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74.2 [(y — 2)(xyz + 22 — 6y3) : wy2? + 223 + 8yt — 10932 : y?(2y — 2)(y — 2)]
74.3 [22(y — 2)(z +y) 122 (z +y) : —y*(y — 2)(z + y)]
74.4 [22(y — 2)(z +y) 122z +y) 1 y* 2y — 2)(y — 2)]
74.5 [vy2? + 22° + 29" ¢ (y — 2)(wyz +22° —°) 1 —(y — 2) (2 + y) (22 + ¢*)]
75.1 [y(y + 22)(zz + y? — 2yz2) : —22(bry — 2xz — 3y?) : —yz(6xz — y? — Syz2)]
75.2 [y(2zyz + 22% + 2y — 5y?2) : —2(3zyz — x2? — 2¢3) : —y22(z — y)]
75.3 [—42%2(3x — 2y) : 22(9222 — 8wy? + 49°) : 8123z — 322%y? — 8xy?z + Sy’
75.4 [wy2? : 22% 0 —y? (22 + y? — 27)]
75.5 [—2x1%2 + 2y2? — 6223 — 2y 2 (w2 + v +y2)  wy?z + 622° + yt + Y22
75.6 [y(zyz + 1022 + 3° — 10y2?) : 22(bay + 22z — 3y?) : yz(6x2 + y* — Syz)]
75.7 [wy?2 — 3wy2? + 223 + vt - —yz(xz — y?) y(oyz — 322 + y3 + y22)]
75.8 [w(2?2 —y3) 0 —y2?(y — 2) : =2 (2% — 2y + 22 — y?)]
75.9 [2%2(x —y)  2y(y® + vy — 222) : —y(z — y)(2vy — 22 + ¥°)]
75.10 [22(y — 2)(—y + 22) : —z(22%y — 22%2 — zy® — v3) 1 y* (22 + y?)]
76.1 [—22(Bay — 2xz — 3y?) : y(622° + y* — Tyz?) : —yz(6zz — y* — 5yz)]
76.2 [—2(3zyz — x2? — 2y3) : y(x2? + 2y — 3y?2) : —yz2(z — y)]
76.3 [y(z2% + 4y — dy?2) 223 + 8y* — 832 : v (2y — 2)(y — 2)]
76.4 [wyz? 1 223 y? 2y — 2)(y — 2)]
76.5 [Bzyz? + x2% — 2yt yz(xz + y?); —y(3x2% — 2y — y2?)]
[—923y — 9232 + 85x%y? — 18xy> + 932 : y(222%y — 9222 — 18xy* + 9y°2) :
771 y*(102* — 18xy — 9z2 + Yy2)]
77.2 [—2%(2zy + 622 — y* + 6y2) : xyz(z +y) : 8x3y + 24232 + 232%y2 — 221° + 132
77.3 | [6x(2%y + 2?2 + 22yz — 3y22) : 6xy(ay + 3xz — 3y2) : y(102%2 + 62y? — Tryz — 3y°2)]
77.4 [wy3 + 223 + 32 — 39222t 22(y — 2) (2 + y) : 22 (2y + 22 — 2?)]
77.5 [22(y — 2)(z +y) s 22%(2 +y) : —zy® — 22° — 32 + 4?27
77.6 [2y? + 223 — 20222t 22(y — 2) (2 +y) : 22 (xy + 22 — 29%)]
77.7 2yz(zy + 222 + 3yz) : 2y(zy? — 422 + yP2 — dy2?) : 22 (y + 22) (y + 2)]
77.8 [—3xy® + zy?z — 4x2® — 3y32 2y + 2y2® + 2223 + Y3z dwyd + 4wz’ + 4Pz + Y22
S, (22 — y)(zy? — zyz — 2222 — y?2 — 2y2?%) : 2(2xy? — xyz — 3222 — 3y2?) :
2(2 +y)(ay — 2 — yz)]
[dzy® + 4223 + dy2 + 1Ty?22 + dy2® : 2(2xy® — 222% — Ty?z — 2y2?%) -
77.10 22(xy + x2 + 3y* + y2)]
77.11 [wy? + Bay?z — dwzd — Pz — 4y 22 (vy + 22 +y2) : 2(y — 2)(vy + 22 + y2)]
77.12 [—yzz(y + 2) : y?(2wy + 222 + 2yz — 2%) @ day® + bay?z — x2° + 4Pz — y2°]
[2(zy? — zyz — 222 — 2y2?) : wy? — 3zy2? — 2023 + Pz — 2y2°
77.13 22(4zy + dxz + y* + 4yz)]
77.14 (2 + 228 + 32 +y2? 0 —2(wy? — wyz — 2227 — 292?) @ 2(y — 2)(wvy + 22 + y2)]
77.15 [z +y)(z —y) s ay(zy + yz + x2) s y(ly — 2)(xy + yz + 22)]
77.16 (22272 + y? + 2u2) : —z2(x +y) (22 — y) : 22%2 + 2Pyz + 2y + y32]
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[(z — y)(2%y + 2222 + 3zy? — 13wyz + 422 + 3y%2) : 2(y — 2)(x — y)(zvy — 222 + y2) :

78.1 2(y — 2)(3x%y — bz — xy® + 2wyz + 3122 — y?2 — yz2?)]
78.2 [zy? + 322% — Ty?2% + 3y2® : 2(wy? + 2222 — by?z + 2y2?) : 2%(vy + vz — 3y? + y2)]
78.3 [y(zy? — 3w2% + 2y2?) : yz(zy — 222 + y2) @ 2%(x2 — y?)]
78.4 [y(zy? + 222 — 2yz?) s y?2(x — 2) : =22 By — vz — y* — y2)]
78.5 [P (zy — 2wz + 2%) 1 y22(x — y) : 2(20y® + 122 — 4’2 + y2?)]
78.6 [y(zy? + 222 — 2y2?) 1 y22(x — 2) : —22(20y — 22 — ¥?)]
78.7 [—ay?z + 2y2? . —ay® — 32 +y22? —ay® — 2022 + 22 — Y32 + Y2
78.8 [—zy?z + zy2? : —xy?z + 228 —xy® — P2 + Y22
78.9 [y(zy? + 5x2% + y?z — Ty2?) t yz(xy + 22 — 2yz) : —2%(bey — vz — 3y? — yz2)]
78.10 ly(y — 2)(zy + vz — 2y2) : yz(vy — 222 + y2) : —22(20y — 22 — 3y* + 2y2)]
[z(y — 2)%(x —y) : (x — y) (2?2 + 22y® — Bayz + x2° + y2?) :
78.11 232 + brPy? — 11a?yz + 32222 — day® + Tay’z — y2d)
(x4 22)%*(vy + x2z +y2) : (y +22)(x + 22)(2y + 22 + y2) :
78.12 —(y + 22) (2?2 — xy? — Bayz — 2x2° — 2y2?)]
79.1 [y? (622 — By — Tyz) : y(12222 — Ty — 17y%2) : 24x23 — 29y* — 43y32 + 241222]
79.2 [2(zy? — dayz + 2227 + 2y22) : w23 — bayz? + y* + 3y22% : 2(w2? — 2wyz + 3 + y?2)]
79.3 [zyz(y +22) : 1layz? — 2023 + 2% — 29222« —2(13wyz + 2222 — 293 + 222)]
79.4 (2 (622 — By? — Tyz) : y(12222 — Ty® — 17y?2) : 24223 — 17y* — 31932
79.5 [22(y — 22)(y + 22) : 22%(y — 22) : w23 — y* + 2]
79.6 [—y(Bryz — x2? — 2y3) : —Tay?z + 22° + 6yt : —y?2(z — y)]
79.7 [wy?2 : xyz? : 2223 + yt — 332 + 2227
79.8 [—y(ryz — 222 + 6y3) : xy’z + 223 + 6y* + y?22 : y? (222 + 6y* + y2)]
79.9 [yz(5xy + 2xz — 3y?) : 2(bry® + 42?2 — by + 4y*2) : y* (672 + y? — Sy2)]
79.10 [2(4xy? — 6xyz + 22° + y?2) : —y*(zz — ¥°) : —yz(vz — y?)]
79.11 (232 + 22y? — 18zy® — 9t : y(2?2 — bay? — 3y°) : —ay?(2y — 2)]
79.12 [z(z —y)(vz + %) : —zyz(2z +y) : 232 + 2%y* + 22%y2 — 3]
79.13 [zy(zz + y?) : —22(27 + y)(3x — y) : 62°2 + 22y2z + y!]
80.1 [y(zy? + 8222 + 1?2 + 8y2?) : yz(ay — 222 — 2yz) : —2%(Tey — 222 + 3y? — 2y2)]
80.2 [y(zy? + 222% + y?2 + 2y2?)  2yPz 0 —22(3wy — 222 — y? — 2y2)]
80.3 Y2 (z + ) : 22 (22 + 2y% + y2) : yz(2zy + 22 + y2)]
80.4 [y(zy? + 422% + 4yz?) : yz(vy — 202 — 2y2) : —22(Toy — 222 + 3y* — 2y2)]
80.5 [ (zy + 222 +yz) : y22(y + o) —2(22y? — 222 — 2y%2 — y2?)]
80.6 [y(zy? — 8x2% + y?2) : zyz(y + 22) : 2%(bry + 2z2 + 2y?)]
80.7 [zy? — 16223 + 22 — 1623 @ 2(zy? + 4o2? + 4y2?) : 22 (z + y)(y + 22)]
80.8 [y?(2xy + 3z + 2y2) s y22(y + x) : 23 (y + 1))
80.9 (2?2 —y(y — 2)(zy + 22 + yz) : —(y — 2)(2y® + 2yz + x2° + y*2 + y2?)]
80.10 (2 (2 +2) : 2(3wy? — 4x2? — 4y2?) : 22 (y + 2)(y + 22)]
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80.11 [Pz + )t y22(y + x) : 2(22y* + 222 + 2922 + y2?)]
80.12 [zy? — 8x23 — 8yz3 : z(wy? + 4x2? + 4yz?) : 2% (2 + y)(y + 22)]
80.13 [2z(z +y) : 22y + 223 + 20227 + y2d Y22 (y + 7))
80.14 (2 (z + ) : 22 (z2 + 9°) : 2yz(z + y)]
80.15 Pz + )y (y+ ) 22y + o))
80.16 [Pz wy?z 0 =223y — 22 + y? — y2)]
80.17 [wy?z s 2yz? « —(y — 2)(2y® + zyz + 222 + y?2)]
80.18 [yz(y — 22)(y + 22) : zyz(y + 22) : 2%(5zy + 222 + 2y?)]
80.19 [zy® +1622° + 122 : 22(y — 22)(y + 22) @ 222 (y + 22)]
80.20 [ir :wy?z : 22(y + )2y + 2)]
80.21 222y + 2) : y2i(y + o) : 23(y + )]
80.22 [P (2 + ) 22(y — 22)(y + 22) : 22%(y + 22)]
80.23 [—y2(zy — 222 + y2) 220y — 22 — y2) : 2(2y + 2) 22y — 22 — Y2)]
80.24 [P (x — 2) t yz(ay — 202 — 2yz) + —2%(3zy — 222 + y* — 2y2)]
(Y2 (xz — 22y — 2yz) : y(8xy? + x2* + 8y?z + yz?) :
80.25 (z — 2y)(4xy? 4 2zy2z + 22 + 4y*2 + y2?)]
[wy3 — 2123 + 32 — 49?22 — 2923« 2(wy? + 2227 + 4y?2 + 2y2?) -
80.26 22(zy — 2wz — 3y — 2y2)]
80.27 [—2?yz : x(x — y)(zy + 22 + y2) : y* (2 — 2y — y2)]
80.28 [23(y + 2) : y? (22 + 22y + 3wz + 2y2) @ y(2?2 — day? — doyz — 4y*2)]
80.29 [22(2zy + 272 + yz2) 2y (2 + 2) : dady + dadz — 22y? + 2yd + Y32
80.30 [23(y +2) s 2y (x + 2) s yly — ) (xy + 22 + y2)]
80.31 [23(y +32) : xy(zy + 22 +y2) : y(y — ) (xy + 22 + y2)]
80.32 [—2%(zy + 22 + y2) : 2(z — y)(vy + x2 + y2) : 203y + 2232 — xy® — y32]
80.33 [222(22 — y) : —x(22%2 + zy® + y?2) : 222 + 2%y — 2y’ — 2]
[y(92y? — 13zyz + 222 + 2y%2) : (y — 2)(2T2y? — doyz — dw2? — 4y?2) -
811 Y (ry — 202 + ¢°)]
81.2 [y(3zy? — bryz + 222 + y*2) : (y — 2)(152y? — xyz — 222 — y?2) : —y(z — y)]
81.3 =2z 3y — 2) : —21ay® + 22° — P2 + y22?  y(Toy? — 222 + 3 — y22)]
[4y32 — 3wy + 3wy?z — 4wz3 : 3wyz? — 3xy® — 10223 + 10932 -
8l.4 83z — 3xy® — 82 + 3y
81.5 lyz(3y — 22)(y — 2) : (22 + 5y)(y — 2)(3y — 22) : y*(xy — 222 + y?)]
81.6 [yz(2y — 2)(y — 2) : 62y — 62y?2 + 22° — 32 : —y3(z — y)]
81.7 lyz(2y — 2)(y — 2) t2(y — 2)(2y — 2)(2 + 3y) : —y*(x —y)]
81.8 [P yPaz s —(2y — 2)(22? — y3 + y22)]
81.9 (=22 (2y — 2) : —yx(2y — 2)(2y + 2) : —Tay® + 22° + y* — 2]
(4% (3zy + 272 + 3y?) : —y(15xy? — 4222 + 9y® — 4y?2) :
81.10

75xy® + 8x23 + 45yt — 8yz + 8y?2?]

[y(92y? + 2yz — bxz? — by?2) : 9wy — Bayz? + 123 — 6y32 + 222
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81.11

y(y — 2)(wy + 22 + y°)]

81.12 [yz(zz + y?) : 222 + 3wyz + 223 — 32 + y?22% P (v2 + 42)]
81.13 23z — y)(xz + y?) : (922 — y?)(xz + v*) : 1822 + 182%y* — 2zy%z — 2]
81.14 [2(z —y)(zz+v*) : (z —y)(x +y)(zz + %) : —y*2(22 + y)]
[—xy?z + 23xyz? + 2622% — y* + 32 1 —(y + 2)(wyz — 10222 + 3 — y?2) -
82.1 —xy?z + 1Tey2? + 20223 — yt + y2?]
82.2 [222(y + 22) : —wy?z — 8wz® — y* + 9?22 1 2(612% — Y3 + y2?)]
82.3 [wyz? 223 1 —y(zyz + y3 + 2y%2 — yz? — 223)]
524 | [2ee 1 32 1 02) oy a7 s D) (g )+ D)t 1 D)
82.5 [—y(y — 2)(4zz + 4y* + 3yz) : y(2y — 2) (222 + 29> + yz — 22) : 22(222 + > + 2?)]
[#2(22°% — 3zy + 222 + y? + y2) : —x (22 — y)(22% — 3zy + 272 + 9y* + y2) -
82.6 8zt — 2023y + 8232 + 16222 — day® + y32]
83.1 [262y22% + 28223 — yt + 32 ¢ (y + 2) (12222 — 32 + y22) : 202y2? + 22223 — y* + y2?]
83.2 [222(y + 22) : —1222% — y* + y?2? 1 2(6222 — ¢ + y2?)]
83.3 [zy2? 223 s —y(y — 2)(y + 22) (2 + y)]
83.4 [—y(222% + y® + 4y?2 — y2?) s yz(wz + v + 22) : 22y2? + 228 + yt + 4Pz + 27
[y(594xyz — 312222 + 466y> — 1233y*2 + 485y2?) : y(314xyz + 178x2%+
84.1 +586y% — 1563y%2 + 4852%) : 15582922 — Sddayz? + 1106y* — 2411332 + 29127]
842 | [(z—y)(y+22)(y —22)(2 +vy) : yz(y + 22)(x — y) : 2(xy* — dayz + 2y?2 — y2? + 223)]
84.3 [—hryz? + yt + 421 . —yP2(z —y) : —y2(x —y)]
84.4 (2 (22 +y? + 22) s yz(zz + 9% + 22) - =282z + 13wyz? — 22y* — 10932 + 224
[y(93zyz — 150222 — 943> + 208y2?) : —645xyz? + 558x23 — 212y* + 386y%22 :
85.1 y(4222% + 669> + 31y%2 — 181y2?)]
[2(62%y + 6222 — 222y + 11zyz — y?) : z(122%y + 12022 — 452y? + 22vyz — y°2) :
85.2 —y(52%y — 6272 + )]
[y(5zyz + 1722 — 6y — 18y2?) : —Twyz? + bxz® + 36y — 129222 :
85.3 y(1222% — 6y° + 5y?z — 13y2?)]
(422122 + 269 + 19yz — 8722) : y(4222% + 58y> + 23y?z — 165y2z?) :
85.4 8422% + 110y* + 61y>> — 339y222]
85.5 [Txy?z — zy2? + 222° + 6yt - —y?2(x —y) : —y22(z — y)]
85.6 [zyz(y — 2) 22y — 2)(z + ) : —y*(3z2 + 2y + yz — 622)]
85.7 [y22(x + 2y — 32) : —z(dwyz — 3w2? + 2% — 3y%2) : —y(3z2% — 2y + 11y%z — 12y2?)]
[y?(xz — 6y + 1Tyz — 122%) : y(z2? — 49 + 12¢%2 — 9yz?) :
85.8 2223 — 6yt + 19¢y%2 — 159227
85.9 [bry?z + dryz? + 222% + 6y* : yz(zy + 22 + y?) : —y(5ryz + 322% + 6y3 — 2y2?)]
[Txy?z + vyz? — 2223 + 3yt + —2(4ay® + vyz — 2222 — 3y3) -
85.10 2(4xy? + dayz — 222 + 3y22)]
85.11 | [2(bzy? + 15zyz — 2222 — 12y%2) : byt — 15xy2? — 18223 — 8y?2% : 2(y — 22)(v2 + ¥?)]
85.12 [z(4x + y)(z2 + y?) : —x(4a®z — 22y° + 2yz — y?2) : —12232 — 182%y* + 2%yz + ]
85.13 | [2z(z + 2y)(xz + y?) : 22(y*2 — 6222 — 10zyz — 9y°) : 12232 + 212%y2 + 192y° + 2y
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85.14 [z(z — y)(xz + y?) : 2222 + y) Bz — y) : 2*y? — 53z — 22yz — ¢
85.15 | [322%y? + 4a?yz — 232 — 3yt : y(daPy + 3222 — xy? — 3y3)  y(daPy + 42%2 — zyz — 49°)]
85.16 [Bry(zz +v?) : —x(x — y)(day + 4oz + 3y2) : dady + 432 — 4a?y? — 22yz + 3y
86.1 | [y*(vy — Twz +yz + 1122) : —yz(5ay — 222 — 6yz) : —2(13xy? — 4wz? — 14y*2 — 4y2?)]
[23y — 2232 — 622%y? — 22%y2 + 62222 — 522y + 622y 2 + xyz? — 6223 — 1569°2 + 224 -
86.2 —y3(x — 2)(x + 2) : y(622%y + 2%z + day? — 6yz — 222 + 12y%2 + 23)]
86.3 [—zay(z +y): (z+y)(2y® + 2yz — 222 + %2 — y2?) 1 2 (zy + yz — 22)]
86.4 [—y?(xy — Bz +yz + 72%) 1 yz(3wy — vz — 4yz) : 2(3wy® — x2? — 3y?z — y2?)]
86.5 [—y?(xy — Txz + yz + 1122) : yz(boy — 2xz — 6yz) : 2(Txy? — 4x2% — 6y°2)]
86.6 [y2zz : xyz? : —(y — 2)(xy® + zyz + 222 + y?2 + y2?)]
86.7 [—y?(2zy — Brz 4 2yz + 422) : 2yx(y — 2) s w2(y — 2)(2 + y)]
86.8 [y(zy? + dzyz + 222% + y%2) : 22 (y + 2) : 2%y(y + )]
86.9 [z(y — 2)(y + 22)? : w2(y + 22)(y — 2) : —2(Tzy® — 422? — 6y°2)]
86.10 [2y3 + 2zy?2 — 8w23 + 932 — 8y23 : 2(wy? + wyz + 2022 + 2y2?) + —y?2(v — 2)]
86.11 [42%(3xz + 2y? — byz) : dwz(3z — 2y)(z — y) : —15232 + 192%yz — 1229° + 8y°2]
86.12 [y — 402y2% + 64223 + Y32 wz2(y — 22)(y — 42) : —y2? (22 — y)]
86.13 [—zzy(z+y) : (2 +y)(xy® + 2yz — 222 + y%2 — y2?) v (zy + 322 + yz — 22)]
86.14 [y(zy? — 2zyz — 4w2? + y?2) + —2(3zy? + 3zyz — 2w2% — 2y2?) 1 yz(3wy + 4wz + y2)]
[22(3y — 22)(y + 4z) : 22(1922%y — 128222 + 3zy? — y?2) :
86.15 — 15362y + 1024232 + 6zy° — 2y°7]
86.16 | [81lzy?z — 10zy® — 324wz — 1032 : w2(y + 22)(y — 32) : 2(1Tzy* — 108z2% — 10y>2)]
86.17 [zy + 18223 + 122 + 2y%2% : w2(y — 32)(y + 32) : 2% (y — 32)]
86.18 [—y(xy? + zyz — 222 +9%2) : 22 (y + ) : v* (2 + y) (2 + 2)]
86.19 [P (z 4+ ) : —zz2(y + 22)(y — 32) : y?2(2 + 2)]
86.20 [2(—62 +y)(y + 22)(y + 42) : w2(y + 42)(y + 22) : 2%y(22 + y)]
86.21 [—y(zy? — 322% + y?2) : 22 (vy — 22 — y2) : y2(vy — 22 — y2))
[y(4zy?® + 3xyz + x2% + 4y?2) : y2® — bay® — day?z + 123 — 5z
86.22 y*(2? — 3zy — 22 — 3y2)]
9293 — 40223 + 9y32 + 26222 — 40y23 : 2(3wy? — 8x2? + Ty?z — 8yz?) :
86.23 22(zy — 22z + 2y* — 2y2)]
86.24 [2%(y + 2)(y — 22) : 2y?(z + 2) : 42y + 4232 + 2%9? + 2]
86.25 [22(y + 2) (22 — y) : (22%y + 222 — 2y? — y?2) : 4oy + 4oz — xy® — 2]
86.26 [23y + 232 + bxy? — 2xy® — 232 y(3x%y + 222 — 22y% — 29°2) : 2y? (27 + 2)]
86.27 [22(zxy + 22 — y? + 2y2) : —zyz(2x +y) : 23y + 232 + 32%yz — 2yd — 32
86.28 [22(y + 2) (27 + y) : —2(3z%y + 3222 + zyz — y?2) : 223y + 2232 + wyd + y32]
86.29 (22 (zy + vz +y2) s x(y — x)(2y + 22 + y2) : Y2z — 23y — 232 — HrPy?]
86.30 [22(y + 2) (22 + y) : 2y? (22 + 2) : 423y + 4232 + 22%9% + 2y + 2]
86.31 [=32%(zy + x2 + y2) : 223y + 2232 — 2%y* — 3wy — 6y32 : 3x(x — y)(xy + 12 + y2)|
86.32 (23 (y + 2)(—y + 22) : —z(2Py + 2%2 — 2yz + y?2) : 203y + 2232 — xy® — 32
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87.1 [—yz(5ay — 22z — 3y?) : 2(5ay? + 4x2% — 5y — 4y%2) : y*(xy — 1022 + 3 + 8y2)]
[—5232 + 5x2y? + 922yz — 27yt + 18y32 : by®(x — 3y + 22) :
87.2 5y(5a2z + zyz — 18y° + 129%2)]
87.3 [—yz(5ry + 2x2 — 3y?) : 2(192y? — 4a2? — 11y° + 4y%2) : P (y — 22)(z — y)]
87.4 [yz(z +y)(2y + 2) : —2(2zy® — x2% + y?2) : y*(dwy + 322 + y2)]
87.5 [22(y +22)(y — 2) : 3zy® + 262y*2 — 32223 + 3y* : —2(Twy? — dwz? — 3y3)]
87.6 [22(y — 22)(y + 22) : 22%(y + 22) : —wy® — 32223 — y* + y32]
87.7 [z2(y — 2)(3y — 42) : y(xy® — 10xyz + 8x2? + y3) : —yz(bry — 4z — y?])
87.8 lyz(y — 2)(z +y) : 2(22y* — 222 + 9%2) : —y*(2 + )]
87.9 [—yz(y — 2)(z +y) : 2y — xy?z + 22 — Y22 —y?2(x — y)]
87.10 [y(4zy? — 3zyz + 2022 — 3y?2) : 24xy® — Toy?z + 4x2® — 212« —y*(y — 22)(x — y)]
87.11 [z2y(3y — 22) : ¥ (x +y — 2) : 22(3y — 22)(3y + 22)]
87.12 [2(3xy? + wyz — 2% + y22) 1 ¥ (x — y) : y?2(z — y)]
87.13 [y2z(2y + 2) : —yz(2y — 2)(2y + 2) : —102y® — 223 + 132 + y?2?]
87.14 [—2(y — 2)(2y — 2)(y — 22) : —y’(@ —y) : —y*2(z — y)]
87.15 [22(y — 22)(y + 22) : 22%(y — 22) : 2y — 4oz — yt + 32
[y(8zy* — 3zyz — 2w2% + 633) : 13wy?z — 4wz — 10y* + 4y?2% -
87.16 v (2zy — 222 + 4y — y2)]
8717 | [y(2zy? — wyz + 12 — 4y®) : 3zy® — 2wy%2 + 223 — 3yt — 9?22 2 (2y + 22 — Hy? + y2)]
87.18 [18xy3 + 27xyz + 122y22 + x2% — 4?22 - v (vy + 22 + y?) : yz(ay + 22 + y?)]
87.19 [2(y — 32)(zz + %) : (y* — 92?)(Bz + y)(zz + ¥?) : 12232 + 122%y? — 42%y2 + 1°2]
87.20 [3z(2z + 3y)(xz + y?) : (9y? — 42?)(zz + y?) : 9?2 (x + y) — 222 (4wz + 4y* + Yy2)]
87.21 [3z(z — 3y) (22 +¥*) 1 yBy — ) (zz + ¥*) : 3y2(2x + y)(y — )]
87.22 [Bzy(zz + %) : 3y*(xz + y?) : 3z(x — y)(Bx — y)(y + 22)]
87.23 [2(62 4+ y)(zz + y?) : (y — 62) (62 + y)(xz + ¥?) : y2(2z + y)(y — 3z)]
[—78662y%2 + 1155xy22 + 3699223 — 2144y* + 51563222 : 1434zy*2 — 936223 + 106+
88.1 1155y%2 — 17599222 : 82562y — 4374x2® + 2524y* — 7561y222 + 1155y2°%]
[—y(5lzyz — 18x2% — 20y — 51y%2 + 38y2?) : —33wy?z + 12223 + 4yt + 21932 — 4y?2% -
88.2 y(15zyz — 8y — 21y%2 + 8yz2 + 623)]
[242y%2 + 102yz? + 9223 — 4yt + 419222 : y?2(2y — 4o — 32) :
88.3 15y2% — 48xy?z — 18223 + 8y* — 92y22?]
88.4 [2(62% — 6xy? + bryz — Ty?2) : 6ay(a? + Twz — y? — Syz) : 6yz(y — 3x)(2z — y)]
88.5 [—9Txy?z + dlwyz? — 6223 + 6yt — 41y32 + 97y22% : —yz(xy — 22) : —2%(vy — 22)]
88.6 [—y?(zz — y?) : —yz(zz — y?) : 2(62y® — 23wyz — 2222 + 30y?z — 13y2? + 223)]
[4z* — 623y + 4232 + 22%y* — 35xy®z — 2532 : y2(22 + Hy)(z + y) :
88.7 122* — 1423y + 12232 + 22y® — 1092y?2 — 85¢°32]
[2(623 — 2%y — 62y* — 6ayz +9°) : (2 +y)(2xy + yz — 222) :
88.8 1022y? — 102 + 112%yz + 2]
20 1 [y(970xy? + 53zyz — 69922 + 1072y3 — 13969%2) : 11156xy® — T84Txy2* + 159323+

12024y* — 15492132 « —y(1188zy? — 822222 + 1262y — 1575y%2 — 53y22)]
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[—y(1722y* — 4392yz — 105222 — 1723 + 5449°2) : 572xy> — 1919212+

89.2 315223 — 572y + 1604y2 : —y?(3day — 882 — 34y? + 123yz — 3522))]
[—y(128xy? — 20zyz — 45x2% — 34y® — 29y%2) : —1028zy® + 3952y2? + 45223+
89.3 264y* + 324132 : y(362y? — 15222 — 8y® — 18y%2 + byz?)]
A [y(2862y? + 3bxyz — 159222 + 280y° — 280y%2) : 3572xy3 — 1943zy2? + 105223+
89. 3360y" — 336052 : —y(384wy? — 201222 + 35057 — 31522 — 35¢22)]
89.5 [2(6xy? — 132yz + 3wz + 4y%2) : —y(y — 32)(y + 32)(x — ) : —y2(y — 32)(z — y)]
89.6 | [—24zy® — 92zy’z + 30wyz? + 27wz + 6432+ —y3(4x — 2y + 32) : y?2(4x — 2y + 32)]
[—yx(2y + 2)(y — 32) : (=32 + 5y)(y — 32)(2y + 2) :
89.7 v (4zy + 2372 + 14y? — 21yz + 722)]
208 [2(10xy? + bryz — 3wz? — 12y%2) : y(doy? — dayz — 9x2? — 4y3 + 13y2?) :
‘ yz(5yz — 3wz — 2y?)]
89.9 | [2(zy? + 3zyz + 2227 — 6y3) : —y(22y* — dayz — 22 — 2y 4+ 5y°%2) : yz(y — 2)(x — 2y)]
[—y(1162y* — 8zyz — 9xz? — 649> + 64y%2) : —1060zy® + 85xy2? + 18w23+
89.10 4 3, . 2 2 3 2 2
576y* — 576y°z : y(36xy® — 3xz* — 20y° 4 18y°z + 2yz*))
20 11 [y(8zy* + 9zyz — 9222 + 10y> — 10y22) : 1dwy® + 8lzy?z — 27x2% + 40y* — 40132 :
! v (y —32)(z —y + 2)]
[y(58xy? — 55xyz + 3wz? + 40y® — 40y?2) : 910xy® — 811xy?z + w23+
89.12 640y* — 640y°z : —y*(192y — 172z + 13y* — 12yz — 2?)]
89.13 [22y(z —y) : 22%9% — 232 + 2y® — 2y32 1 22%% — 232 + wyPz — 2y37]
89.14 [22(2? + 22 — y* — 2y2) : 2y2(22 — y) : y2(2z — y) (27 + y)]
89.15 [—yz(2y + 2)(2y — 32) : 2(—32 + 4y)(2y — 32) 2y + 2) : —y*(y — 2)(2z — 2y + 2)]
89.16 [2(2y — 2)(y = 32)(z +y) : yP’l@ —y +2) Pz + y)(@ —y + 2)]
89.17 | [—12xy3 — 102y?2 + bwyz? + 222% + 6yt y? (w2 + y2 +y2) : —yly — 2)(z2 + y* + y2)]
2293 — 11zy?2 — 53xyz? — 6223 + 70032 - y(2y + 2)(x2 — ¥?) :
89.18 2 _ _ 2 2, 2
y(2zy® — 1layz — 4lxz? 4+ 58y°z — 6y27)]
89.19 [wy?2 — 4w23 — 30yt : —y(10zy? — 4w2? — 3y?2) : —1222% — 100y* + y22?]
[42%(52% + 172z — by? + y=2) : dx(5x® + 112%2 — bay? + y?2) :
89.20 4 3 3. 2,2 3 3
50z* + baty + 1522°z — 502y — bay® + 4y°z]
89.21 [2(22 —y)(zz + 9?) : (42? — y?) (22 + y?) : 2(2%y — 22% — ) — 209* (22 + 2)]
89.22 [22yz + 2y® 2?2 +yt Yt — 623y — 6232 — Tay? — Tayz — xy?2]
89.23 (232 + 22y? : 2?yz + xy? : 6232 — batyz — 2zyPz + P2
89.24 (232 + 2%y? : 2%yz + 2y? 1 6232 — Bayz — wyz + yt + 2]
89.25 (232 + 2%y? : 2?yz + wy? 12232 — 4aPyz — 3zyPz + y32]
20.96 [2(bryz + 2y° — 6222 — 3xy?) : w(62°2 — zy? — Yzy2z + 2y%2) :
: 24132 — 62°%y* — 322%y2 + 2y°32]
[~y (586xy* — 315xyz — 619222 + 884y?z — 53623) : —548xy® + 76Twyz? + 105223+
90.1 668y23 — 992132 : y(4162y* — 734222 + 634y*2z + 315y2% — 63123)]
00.2 [y(198zy? — 885xyz + 103222 + 972y%2 — 38823) : 30xy® + 203xy?2 + 103223+

322y2% — 65832 : —y(66xy* — 3981yz + 633y%2 — 103y2? — 19823)]

[—2xy® + 8xy?z — 1layz? + 4wz3 + y32 : —6xy® + 252y%2 — 33wyz? + 12223 + 2222 -
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90.3

—18zy3 + Thay?z — 97xy2? + 36123 + 4y2?]

[y(20xy? + 36xyz + 49222 — 48y 2 + 4823) : 28xy> + ATwyz? + 923 — 4832 + 48y23 -

90.4 —y(4xy? + 1722% — 6y?2 — 9y2% + 1523)]
[44zy® + Tryz? + 159223 — 68y32 — 49y2® + 11721 : 2(44xy? — 96xyz + 241222 — 432+
90.5 20123 — 197y22) : —z(dayz + 17222 + 2y — 11y%2 — 6y22 + 152%)]
[Bzy® — 8xy?z + 11layz? — 4x2® — 3yt + y32 : 9wy® — 23wy?2 + 33zy2? — 12223+
90.6 2y?2% — 9yt : 2Txy® — 692y%2 + 101wyz? — 36223 — 27yt + 4y2?]
[y(6xy? + 2xyz + 2222 + 13y%2 + Ty2?) : 100xy?z — 318wy> — 773y 2z — 34Ty* 2%+
90.7 +8123 1 y(42zy? — 122y + 103y?2 + 53yz2 + 423)]
90.8 [yz(y? — xz) : 22(y* — x2) : 62y — 3bwy?z + 622y2% — 35223 + 6y2°]
[10z* — 1523y + 10232 + bay? — 322%yz + 12932 : (z — y)(302® — Szly+
90.9 +302%2 — 535y2 — ldwyz — 149°%2) : byz(z + y)(3z — 2y)]
90.10 22 — 323y + 2232 + 2%y* — 42 ¢ (v — y) (623 — 22y + 62%2 — 2y? + 6y2z + 6y%2)
' yz(z +y)(2y — x)]
90.11 [22%(22% — 3zy + 222 + y* — 4yz) : 2(z — y)(62° — 22y + 6222 — zy? — 6ayz — 6y?2) :
' yz(x +y)(3y — x)]
90.12 [2(22% — 3wy + 2wz + y? + dyz) : 62% — T3y + 6232 + 222%yz + 2y — 10932

yz(z +y)(2y — )]

5.2 Quartic plane non-de Jonquieres maps

In this section we compute the ordinary quadratic length of quartic plane non-de Jonquiéres

maps, starting from the classification of enriched weighted proximity graph of such maps

that we found in Chapter 2. Totally, we found 119 different enriched weighted proximity
graphs, listed in Table 5.3.

Theorem 5.6. Let p, € Cr(P?) be a quartic plane non-de Jonquiéres map with enriched

weighted proximity graph of type n in Table 5.3. Then, the ordinary quadratic length of ¢,
is listed in the third column of Table 5.3.

Concerning the quadratic length, it is straightforward to show that quartic plane non-de

Jonquieres maps have quadratic length 2.

We give two examples of quartic plane non-de Jonquieres maps. The first one, that has

enriched weighted proximity graph of type 1.1 in Table 5.3, is given by

o[z iy 2]) = [2ta’yz — tat — 2Py — t2y® + 2y’ + 2yt — tyP” yt

4

ota’yz — tat — 2ty — (t + D)ay® + 2txy’z + yiz — ty?2?]

where t € C, while the second one, that has enriched weighted proximity graph of type 3.1

in Table 5.3, is given by

ez :y:z]) = [y’ +2%y+ ((t—1)y° —yz)z+ (2 -3t +h)y’) :

v (@ oy + (= 1)y* —yz): (V" + 2y2)2° — ' +
(2t — 2)yPx + (12 — 8t + 2h + 5)y* — 327
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where t, h € C.

Table 5.3: Enriched weighted proximity graphs and ordinary quadratic lengths of quartic

plane non-de Jonquieres maps

f Enriched weighted proximity graph | oql
11| OO |
21 | D—D—OTD DD
3.1 @ @ @ @ @ @ 7
10O O—O=O—-0—0D ¢
1@ O—@TD OO 4
1 @D O—OTOXD | 4
$11 00 000 O s
9.1 @‘_CD @ @ @ @ 4
01| O—0 OTOXD—D]| s
| O—@ 0@ OO0 4

12| @0—0 O=0 -0 1
12.1 @‘_@ @ @ @ @ 5
13.1 @‘_@‘_® @‘—@‘—@ 4
4
4

1| OTOXD  O—0—0D

51| Q0 0 O—0—0| s
16.1 @‘_@‘_@ @‘—CD‘—@ 4
17.1 O—0——0 O—WO 4
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17.2 @@ 5
181 | )—2) @/®\® ol
19.1 | @—®) @/®\® ol
1 | O—0—0—0D— O .
2110 © O0—0O—0—] ;.
e O O O—0O—0D—0D] .
22.1 @ @ @ @ 1 @ :
210 @ 00 00
220 O OO 00|
0 O—0 00— 00—,
10O 00 00— ,
vy O O—0 O—D—D]| ,
2612 @O—Q @C.M )
2711 @O—Q) @C.m 2
w110 O0—00—0O—0 O,
20110 O—@<DXD O 4
30.1 | (2 @‘—@CCD\@ ol
01 00— 00— O,
0 O O0—0—0 O,
1y O—0) O—0O—0 O],
23| (D—@) O—D—D O «
33.1 ol
33.2 ol




34.1 o
34.2 ol
35.1 ol
35.2 —
36.1 oI
36.2 o s
36.3 @«—@_@ OO O s
il O—0—Q@ O—0 O,
0 0O 0 00— ,
7,10 O O O—0—0|,
30 O O O0—0O—O| ,
w110 O O0—0O—0 O,
38212 @ @4_®4_® T
w3 O O O0—0O—0 O],
301 @ ol
3022 @ — @ 3
01| @ 4
102 | (2 3
103 | (2) @4_®4_®@4_® 3
10— 00— 0O— ,
12| @—Q @@@@ 3
13| O—Q O—0 O—0|
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414

41.5

42.1

42.2

42.3

42.4

43.1

43.2

43.3

44.1

44.2

45.1

45.2

45.3

45.4

45.5

46.1

46.2

46.3

47.1

47.2

47.3

474

gole [oo | [o

ololo oo |o |lodele|des|e
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Glossary of Notations

Aut(P?)
Blp(A?)
B(P?)
p=q
P>k q
p--*4q
POgq
pda
Cr(P?)
oql(y)
al(ep)
lgth(e)
h,(p)
load,,(p)
G=(V,E)
(u,v) or u = v
deg(u)
outdeg(u)
indeg(u)

group of automorphisms of P?

blowing-up of A? at 0

bubble space of P?

p is infinitely near ¢

p is infinitely near ¢ of order k

p is proximate to ¢

p is satellite to ¢

p is not satellite to ¢

plane Cremona group

ordinary quadratic length of plane Cremona map ¢
quadratic length of plane Cremona map ¢

length of plane Cremona map ¢

height of a point p € B(P?) w.r.t plane Cremona map ¢
load of a proper base point p w.r.t plane Cremona map ¢
a graph where V-set of vertices and E-set of edges

arc (oriented edge) from u to v

degree of vertex u

external degree of vertex u

internal degree of vertex u

adjacency matrix of oriented graph GG

weighted directed graph associated to plane Cremona map ¢

multiplicity of a plane Cremona map ¢ at the base point p
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