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Abstract in English and Sintesi in italiano

On plane Cremona maps of small degree and their
quadratic lengths

Abstract. The plane Cremona group Cr(P2) is the group of birational transformations of

the complex projective plane. By the famous Noether-Castelnuovo theorem, every birational

map ϕ ∈ Cr(P2) is the composition of finitely many (ordinary) quadratic maps. This leads

to the notion of (ordinary) quadratic length of a given plane Cremona map. While quadratic

maps are classically very well-known, only recently Cerveau and Déserti extensively studied

and gave a classification of cubic plane Cremona maps. However, it turns out that their

classification is not complete and it contains some inaccuracies.

In this thesis, we first give a fine and complete classification of cubic plane Cremona maps,

up to a natural notion of equivalence, by using the so-called enriched weighted proximity

graph associated to the base points of the homaloidal net defining the given cubic plane

Cremona map. We then classify such enriched weighted proximity graphs also for quartic

plane Cremona maps. This allows to compute exactly the ordinary quadratic length and

the quadratic length of cubic plane Cremona maps and, in many cases, also of quartic plane

Cremona maps.

Sulle trasformazioni piane di Cremona di grado
basso e le loro lunghezze quadratiche

Sintesi. Il gruppo di Cremona Cr(P2) è il gruppo di trasformazioni birazionali del pi-

ano proiettivo complesso. Per il famoso teorema di Noether-Castelnuovo, ogni trasfor-

mazione birazionale ϕ ∈ Cr(P2) è la composizione di un numero finito di trasformazioni

quadratiche (ordinarie). Ciò porta alla nozione di lunghezza quadratica (ordinaria) di una

data trasformazione cremoniana. Mentre le trasformazioni quadratiche sono classicamente

molto conosciute, solo recentemente Cerveau e Déserti hanno studiato in dettaglio e dato

una classificazione delle trasformazioni cremoniane cubiche. Tuttavia, è risultato che la loro

classificazione è incompleta e contiene qualche inaccuratezza.

In questa tesi, prima diamo una classificazione fine e completa della trasformazioni cremo-

niane cubiche, a meno di una nozione naturale di equivalenza, usando il cosiddetto grafo

di prossimità pesato e arricchito, associato ai punti base della rete omaloidica che definisce

la data trasformazione cremoniana cubica. Poi classifichiamo tali grafi di prossimità pesati

e arricchiti anche per le trasformazioni cremoniane quartiche. Ciò ci permette di calcolare

esattamente le lunghezze quadratiche (ordinarie) delle trasformazioni cremoniane cubiche e,

in molti casi, anche di quelle quartiche.

Keywords and phrases: cubic plane Cremona maps, quartic plane Cremona maps, quadratic

length, ordinary quadratic length, de Jonquières maps.
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Introduction

We work over the field C of complex numbers.

We denote by P2 the projective plane and by Cr(P2) the plane Cremona group, that is

the group of birational maps P2 99K P2. Recall that the celebrated Noether-Castelnuovo

Theorem says that Cr(P2) is generated by the automorphisms of P2 and the elementary

quadratic transformation

σ : P2 99K P2, [x : y : z] 7→ [yz : xz : xy].

Note that a presentation of Cr(P2) involving exactly these generators have been found only

very recently by Urech and Zimmermann in [24].

In other words, any plane Cremona map ϕ : P2 99K P2 can be written as

ϕ = αn ◦ σ ◦ αn−1 ◦ σ ◦ · · · ◦ α1 ◦ σ ◦ α0

where αi ∈ Aut(P2) for any i = 0, . . . , n, for some integer n.

Let us say that a decomposition of ϕ as above is “minimal” if so is n among all decomposi-

tions of ϕ. Let us call such n the “ordinary quadratic length” of ϕ and denote it by oql(ϕ).

Recall that a quadratic plane Cremona map is called “ordinary” if it has three proper base

points. In other words, oql(ϕ) is the minimal number of ordinary quadratic maps needed to

decompose ϕ.

Similarly, let us define the “quadratic length” of a plane Cremona map ϕ as the minimal

number of quadratic maps needed to decompose ϕ and let us denote it by ql(ϕ).

Let us say that two plane Cremona maps ϕ, ϕ′ : P2 99K P2 are equivalent if there exist two

automorphisms α, α′ ∈ Aut(P2) such that ϕ′ = α′ ◦ ϕ ◦ α. The classification of equivalence

classes of quadratic plane Cremona maps is very well-known from the beginning of the study

of plane Cremona maps more than one hundred years ago.

Nonetheless, a classification of equivalence classes of cubic plane Cremona maps has been

described only few years ago by Cerveau and Déserti in [11]: they find 32 types of cubic
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plane Cremona maps, namely 27 types are a single map whereas 4 types are families of

maps depending on one parameter and one type is a family of maps depending on two

parameters. Their classification is based on the detailed analysis of those plane curves which

are contracted by a cubic plane Cremona map.

However, it turns out that the classification in [11] is not complete and it contains some

inaccuracies, see Section 4.2 for a more detailed account:

• we found a map that does not occur in their list;

• we found that their type 17, that is a single map, should be replaced by a one-parameter

set of maps;

• we found that their type 19 is equivalent to a particular case of their type 18;

• we found that their type 31 is equivalent to a particular case of their type 30.

One of the main purpose of this thesis is giving a complete classification of equivalence classes

of cubic plane Cremona maps. Our classification is based on the study of enriched weighted

proximity graphs of the base points of the homaloidal net defining a plane Cremona map.

Accordingly, we divide cubic plane Cremona maps into 31 types, namely 25 types are single

maps, 5 types are families of maps depending on one parameter and 1 type is a family of

maps depending on two parameters. Two maps of two different types are not equivalent.

Moreover, we find the conditions when two maps of the same type (depending on parame-

ters) are equivalent. Then, using our classification, we compute exactly the quadratic length

and ordinary quadratic length of all cubic plane Cremona maps.

Furthermore, we generalize this approach to study quartic plane Cremona maps and we

compute their quadratic length and ordinary quadratic length. Concerning quartic plane

Cremona maps, recall that they can divided in de Jonquières maps, that have a triple base

point and 6 simple base points, and non-de Jonquières maps, that have 3 double base points

and 3 simple base points. We give a complete list of all possible enriched weighted proximity

graphs of the base points of all quartic plane Cremona maps, namely there are exactly 449

types of enriched weighted proximity graphs of quartic de Jonquières maps and 119 types

of enriched weighted proximity graphs of quartic non-de Jonquières maps. Using these clas-

sifications, we compute the quadratic lengths and the ordinary quadratic lengths of many

quartic Cremona maps.

In details, this thesis is divided into five chapters.

In Chapter 1: a very brief summary of the most relevant results about plane curves, blowing-

ups and plane birational maps is provided with little or no proof, simply to fix notation and

to set the stage. In particular, we give a way to describe infinitely near points that we call

standard coordinates. Some applications to plane conics are presented right after that.
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Let us describe the content of Chapter 2: we recall in detail the proximity matrices and the

admissible oriented graphs which encode sequences of blowing-ups. It allows us to define

the so-called enriched weighted proximity graph for a given plane Cremona map, based on

proximity relations among the base points of the map, together with some other properties,

for instance collinearity properties of the base points or at least 6 base points are on an

irreducible conic and so on.

In Chapter 3: we introduce the notion of quadratic length and ordinary quadratic length.

We study their first properties, in particular those related with weighted proximity graphs

of de Jonquières maps.

In Chapter 4: we give a complete classification of equivalence classes of cubic plane Cremona

maps. This allows us compute the quadratic length and the ordinary quadratic length of all

cubic plane Cremona maps.

We finish the thesis with Chapter 5, where we extensively study quartic plane Cremona

maps and their quadratic length and ordinary quadratic length.
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Chapter 1

Generalities on plane Cremona maps

A comprehensive understanding of plane Cremona maps requires some background in alge-

braic geometry. This chapter aims to recall basic concepts, properties and well-known facts

of plane Cremona maps, simply to fix notation and to set the stage. Most results in this

chapter can be found in almost any introduction to algebraic geometry and, for a more in

depth treatment, we suggest some sources on the subject such as [16, 19].

Throughout this thesis, we work over C, the field of complex numbers. To avoid confusion,

we adopt the following notational conventions.

Notation 1.1. Any non-zero complex number z can be written uniquely as follows

z = reiθ = r
(

cos(θ) + i sin(θ)
)
, with r > 0, and θ ∈ [0, 2π).

The angle θ is called the argument of z and the real number r is the norm of z.

Any non-zero complex number z = r
(

cos(θ) + i sin(θ)
)

has two square roots, namely

z0 =
√
r

[
cos

(
θ

2

)
+ i sin

(
θ

2

)]
, z1 = −z0.

From now on, we denote z0 by
√
z and z1 by −

√
z.

For any t ∈ C such that t2 6= 4, set t• =
√
t2 − 4, t+ = (t + t•)/2 and t− = (t − t•)/2, that

is, t± are the roots of the equation x2 − tx + 1 = 0. Note that, if t2 6= 4 then t+ 6= t− and

t+, t− 6= 0.

By a surface, we mean a smooth projective irreducible algebraic surface over C.

1.1 Plane curves

The main reference for this section is Chapter 2 in [21].
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1.1.1 Affine curves in C2

Let f(x, y) be a non-constant polynomial in two variables with complex coefficients. One

says that f(x, y) has no repeated factors if one cannot write

f(x, y) =
(
g(x, y)

)2
h(x, y)

where g(x, y) and h(x, y) are polynomials and g(x, y) is non-constant.

Definition 1.2. Let f(x, y) be a non-constant polynomial in two variables with complex

coefficients and no repeated factors. Then, the affine curve C in C2 defined by f(x, y) is

C =
{

(x, y) ∈ C2
∣∣f(x, y) = 0

}
.

Remark 1.3. Two polynomials f(x, y) and g(x, y) define the same affine curves in C2 if

and only if they are scalar multiples of each other, and a polynomial with repeated factors is

then thought of as defining a curve with multiplicities attached.

Definition 1.4. The degree d of the curve C defined by f(x, y) =
∑

r,s cr,sx
rys is the degree

of the polynomial f , i.e.

d = max
{
r + s

∣∣cr,s 6= 0
}
.

Definition 1.5. An affine curve C defined by a polynomial f(x, y) is called irreducible if

the polynomial f is irreducible, that is, if f(x, y) has no factors other than constants and

scalar multiples of itself.

If the irreducible factors of f(x, y) are

f1(x, y), . . . , fk(x, y),

then the curves defined by fi(x, y) are called the irreducible components of C for any i =

1, . . . , k.

1.1.2 The projective plane

Definition 1.6. The complex projective plane P2 is the set

C3 \
{

(0, 0, 0)
}/
∼

where ∼ is the equivalence relation

(x, y, z) ∼ (x′, y′, z′)⇔ ∃λ ∈ C∗ : x′ = λx, y′ = λy, z′ = λz.

A point of P2 is denoted by [x : y : z].
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Note that P2 is covered by three affine charts, namely P2 = U0 ∪ U1 ∪ U2 where

U0 =
{

[x : y : z] ∈ P2
∣∣x 6= 0

}
,

U1 =
{

[x : y : z] ∈ P2
∣∣y 6= 0

}
,

U2 =
{

[x : y : z] ∈ P2
∣∣z 6= 0

}
,

and one can identify Ui with C2 for each i = 0, 1, 2. For instance, one has U2 ' C2 where an

isomorphism φ : U2 → C2
x,y is defined by

φ([x : y : z]) =

(
x

z
,
y

z

)
(1.1)

with inverse

(x, y) 7−→ [x : y : 1].

The complement of U2 in P2 is the projective line defined by z = 0 which we can identify

with P1 via the map

[x : y : 0] 7−→ [x : y].

In other words, P2 is the disjoint union of a copy of C2 and a copy of P1 which we think of

as “the line at infinity”.

1.1.3 Projective curves in P2

Recall that a polynomial F (x, y, z) is called homogeneous of degree d if

F (λx, λy, λz) = λdF (x, y, z)

for all λ ∈ C. Note that the first partial derivatives of F are homogeneous polynomials of

degree d− 1.

Definition 1.7. Let F (x, y, z) be a non-constant homogeneous polynomial in three variables

x, y, z with complex coefficients. Assume that F (x, y, z) has no repeated factors. Then, the

projective curve C in P2 defined by F (x, y, z) is

C =
{

[x : y : z] ∈ P2
∣∣F (x, y, z) = 0

}
.

Note that the condition F (x, y, z) = 0 is independent of the choice of homogeneous coordi-

nates [x : y : z] because F is a homogeneous polynomial and hence

F (λx, λy, λz) = 0⇐⇒ F (x, y, z) = 0

for any λ ∈ C∗.

Remark 1.8. Just as for curves in C2, it is in fact that the case that two homogeneous poly-

nomials F (x, y, z) and G(x, y, z) with no repeated factors define the same projective curves

in P2 if and only if they are scalar multiples of each other, and a homogeneous polynomial

with repeated factors can be thought of as defining a curve with multiplicities attached to its

components.
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Definition 1.9. The degree of a projective curve C in P2 defined by a homogeneous poly-

nomial F (x, y, z) is the degree of F (x, y, z). The curve C is called irreducible if F (x, y, z) is

irreducible, i.e. F (x, y, z) has no non-constant polynomial factors other than scalar multiples

of itself. An irreducible projective curve D defined by a homogeneous polynomial G(x, y, z)

is called a component of C if G(x, y, z) divides F (x, y, z).

1.1.4 From affine to projective curves and vice versa

Affine and projective curves are closely related. From an affine curve C one can obtain a

projective curve C̃ by adding points at infinity. Vice versa, from a projective curve C̃ one

can obtain an affine curve C by discarding points at infinity.

Let F (x, y, z) be a non-constant homogeneous polynomial of degree d. Under the identifi-

cation (1.1) of U2 with C2, the intersection with U2 of the projective curve C̃ defined by

F is the affine curve C in C2 defined by the (possibly inhomogeneous) polynomial in two

variables

F (x, y, 1).

This polynomial has degree d provided that z = 0 is not a factor of F (x, y, z) (i.e. C̃ does

not contain the line z = 0).

Conversely, if f(x, y) is a polynomial of degree d in two variables x and y, say

f(x, y) =
∑
r+s≤d

ar,sx
rys,

then the affine curve C defined by f(x, y) is the intersection of U2 (identified with C2) with

the projective curve C̃ in P2 defined by the homogeneous polynomial

zdf

(
x

z
,
y

z

)
=
∑
r+s≤d

ar,sx
ryszd−r−s.

The intersection of this projective curve with the line at infinity z = 0 is the set of points{
[x : y : 0] ∈ P2

∣∣ ∑
0≤r≤d

ar,d−rx
ryd−r = 0

}
.

However, the polynomial ∑
0≤r≤d

ar,d−rx
ryd−r

can be factorised as a product of linear factors∏
1≤i≤d

(
αix+ βiy

)
.

This factors correspond to points [−βi : αi] in P1; when P1 is identified with the line z = 0

in P2, these points are precisely the points of C̃ \ C.

In this way, we get a bijective correspondence between affine curves C in C2 and projective

curves C̃ in P2 not containing the line at infinity z = 0.
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1.1.5 Automorphisms of the projective plane

The projective plane is an excellent backdrop for studying the classical algebraic geometry,

and so, among other things, it will be useful to understand automorphisms of the projective

plane.

Notation 1.10. We denote by AutC(P2), or simply Aut(P2), the group of automorphisms

of P2, that it is isomorphic to the quotient PGL3 of the general linear group GL3 by the

one-dimensional subgroup of scalar matrices
{
λI | λ ∈ C∗

}
, see for instance Proposition

11.46, §11 in [18].

More precisely, an automorphism α : P2 → P2 is of the following form

α([x : y : z]) =
[
a11x+ a12y + a13z : a21x+ a22y + a23z : a31x+ a32y + a33z

]
where aij ∈ C for any i, j ∈ {1, 2, 3} and the (3× 3)-matrix M =

(
aij
)

satisfies det(M) 6= 0.

One says that M is the associated matrix of the automorphism α, or simply one says that α

is defined by M .

Lemma 1.11. (The Four Points Lemma) Let pi = [xi : yi : zi] (i = 1, 2, 3, 4) be four

points in the projective plane such that no three of them are collinear. Then, there is a

unique automorphism of P2, sending e1 = [1 : 0 : 0], e2 = [0 : 1 : 0], e3 = [0 : 0 : 1] and

e4 = [1 : 1 : 1], to p1, p2, p3 and p4, respectively.

Proof. See §11.2 in [17].

Definition 1.12. Two projective curves defined respectively by two polynomials F,G in

P2 are called projectively equivalent if there exists an automorphism α of P2 and a scalar

λ ∈ C∗, for which G = λ(F ◦ α).

Note that projective equivalence is an equivalence relation, and that projectively equivalent

curves have the same degree. Moreover, F is reduced if and only if so is G.

1.1.6 Plane conics

Any conic C in P2 is defined by a quadratic polynomial

Q(x, y, z) =
(
x y z

)
A
(
x y z

)T
where A is a (3× 3) non-zero symmetric complex matrix.

Note that C is irreducible if and only if det(A) 6= 0.

More precisely, a plane conic C is defined as follows

Q(x, y, z) = ax2 + bxy + cy2 + dxz + eyz + fz2,

5



which is associated to the matrix

A =
1

2

2a b d

b 2c e

d e 2f

 .

.

Remark 1.13. Let C be an irreducible conic and ` be a line in P2. Then, C ∩ ` is nonempty

and it consists of at most two points.

When C ∩ ` is just one point p0, one says that ` is tangent to C at p0 and we denote ` by

Tp0(C).

Note that, if p0 ∈ C, then C has a unique tangent line at p0, while, if p0 /∈ C, then there are

exactly two tangent lines to C passing through p0.

Lemma 1.14 (cf. [23, Lem 1.2.3, Sec 1.2]). Any two irreducible conics can be mapped each

other by projective transformations.

Proof. Let C be an irreducible conic. It suffices to show that there exists a projective

transformation that maps C to the conic C0 : xz − y2 = 0. On C, take mutually distinct

points p1, p2 and p3. Let p4 be the intersection point of Tp1(C) and Tp2(C). Clearly, no three

among p1, p2, p3, p4 are collinear. Therefore, by Lemma 1.11, there exists an automorphism

α of P2 that sends p1, p2, p3, p4 to e1, e3, e4, e2, respectively. Hence, α sends C to the conic

C0.

The proof of the previous lemma shows also the following:

Lemma 1.15. Let n ∈ {1, 2, 3}. Let C1, C2 be irreducible conics. Let p1, . . . , pn ∈ C1 and

let q1, . . . , qn ∈ C2. Then, there exists an auotmorphism α of P2 such that α(C1) = C2 and

α(pi) = qi, i = 1, . . . , n.

We recall the following result, taken directly from §5.2 of Chapter 5 in [26]:

Lemma 1.16. Suppose p1, p2, p3, p4, p5 ∈ P2 are any five points such that no three of them

are collinear. Then, there is a unique irreducible conic passing through p1, . . . , p5.

In Section 1.3.1, we will generalize the previous result to infinitely near points, when it is

possible.

1.2 Blowing-ups

The notion of blowing-up is the most fundamental one in the subject of birational geometry.

In this section, we study the blowing-up map. References for this section are [3] and [19].
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1.2.1 Blowing-up of a surface at a point

Firstly, we will construct the blowing-up of A2 at 0 := (0, 0).

Consider the product A2×P1, suppose that x, y are the affine coordinates of A2 and u, v are

the homogeneous coordinates of P1. Then,

Definition 1.17. The blowing-up of A2 at 0 is the closed subset Bl0(A2) of A2×P1 defined

by

Bl0(A2) :=
{(

(x, y), [u : v]
)
∈ A2 × P1 | xv = uy

}
.

We have a natural morphism ϕ : Bl0(A2) → A2 obtained by restricting the projection map

pr1 of A2 × P1 onto the first factor. In other words, the following diagram commutes:

Bl0(A2) A2 × P1

A2.

pr1ϕ �

Lemma 1.18. (1) If p ∈ A2 and p 6= 0, then ϕ−1(p) consists of a single point.

(2) ϕ−1(0) ' P1.

(3) The points of ϕ−1(0) are in one-to-one correspondence with the set of lines through 0

in A2.

(4) Bl0(A2) \ ϕ−1(0) is isomorphic to A2 \
{

0
}

.

(5) Bl0(A2) is irreducible.

Proof. (1) Let p = (x0, y0) ∈ A2 \
{

0
}

, suppose that x0 6= 0 (resp. y0 6= 0). Now, if(
p, [u : v]

)
∈ ϕ−1(p) then v =

y0

x0

u (resp. u =
x0

y0

v), so [u : v] is uniquely determined

as a point in P1. By setting u = x0 (resp. v = y0), we have [u : v] = [x0 : y0]. Thus,

ϕ−1(p) consists of a single point.

(2) ϕ−1(0) consists of all points
(
0, [u : v]

)
for any [u : v] ∈ P1, subject to no restriction.

(3) A line l through 0 in A2 can be given by parametric equations{
x = at, y = bt | t ∈ A1

}
where a, b ∈ C are not both zero. Now, consider the line l′ = ϕ−1

(
l \
{

0
})

in

Bl0(A2) \ ϕ−1(0). It is given parametrically by{
x = at, y = bt, u = at, v = bt | t ∈ A1 \ {0}

}
.
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Since u, v are homogeneous coordinates in P1, we can write l′ as follows{
x = at, y = bt, u = a, v = b | t ∈ A1 \ {0}

}
.

These equations make sense also for t = 0, and give the closure l′ of l in Bl0(A2).

Now l′ meets ϕ−1(0) in the point q = [u : v] ∈ P1, so we see that sending l to q gives

one-to-one correspondence between lines through 0 in A2 and points of ϕ−1(0).

(4) Let p = (x0, y0) ∈ A2 \
{

0
}

, define ψ(p) =
(
(x0, y0), [x0 : y0]

)
∈ Bl0(A2). Then,

ψ : A2\{0} → Bl0(A2)\ϕ−1(0) is an isomorphism which is the inverse of the restriction

of ϕ to Bl0(A2) \ ϕ−1(0).

(5) Bl0(A2) is the union of Bl0(A2) \ ϕ−1(0) and ϕ−1(0). The first piece is isomorphic to

A2 \
{

0
}

, hence irreducible. On the other hand, we have just seen that every point

of ϕ−1(0) is in the closure of some subset (the line l′) of Bl0(A2) \ ϕ−1(0). Hence,

Bl0(A2) \ ϕ−1(0) is dense in Bl0(A2), and Bl0(A2) is irreducible.

Definition 1.19. If Y is a closed subvariety of A2 passing through 0, we define the blowing-

up of Y at 0 to be Ỹ = ϕ−1
(
Y \

{
0
})

, where ϕ : Bl0(A2) → A2 is the blowing-up of A2

at the point 0 described above. We denote also by ϕ : Ỹ → Y the morphism obtained by

restricting ϕ : Bl0(A2)→ A2 to Ỹ .

Remark 1.20. Note that ϕ induces an isomorphism of Ỹ \ϕ−1(0) to Y \
{

0
}

, so that ϕ is

a birational morphism of Ỹ to Y .

Remark 1.21. To blow up any other point p of A2, make a linear change of coordinates

sending p to 0.

Definition 1.22. Let ϕ : Bl0(A2)→ A2 be the blowing-up of A2 at 0 as in Definition 1.17.

Then, we can write Bl0(A2) = A2
x1,y1
∪ A2

x2,y2
where

A2
x1,y1

=
{(

(x1, x1y1), [1 : y1]
)}
⊂ Bl0(A2),

A2
x2,y2

=
{(

(x2y2, y2), [x2 : 1]
)}
⊂ Bl0(A2)

are called respectively the first and the second chart of the blowing-up. The restriction of ϕ

to the first chart A2
x1,y1

is given by

A2
x1,y1
−→ A2

x,y,
(
(x1, x1y1), [1 : y1]

)
7−→ (x1, x1y1),

while the restriction of ϕ to the second chart A2
x2,y2

is given by

A2
x2,y2
−→ A2

x,y,
(
(x2y2, y2), [x2 : 1]

)
7−→ (x2y2, y2).

Note that ϕ−1(0) ' P1 is locally defined by x1 = 0 in the first chart A2
x1,y1

and by y2 = 0 in

the second chart A2
x2,y2

.
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Remark 1.23. Let Y be an affine curve in A2 defined by the equation f(x, y) = 0 and let

m = mult0(Y ) be the multiplicity of the curve Y at 0. Then, the strict transform Ỹ of Y is

locally defined in the first chart A2
x1,y1

by

f(x1, x1y1)

xm1
= 0

and in the second chart A2
x2,y2

by
f(x2y2, y2)

ym2
= 0.

Definition 1.24. Let S be a surface and p ∈ S. Then, there exist a surface S̃ and a

morphism π : S̃ → S, which are unique up to isomorphisms, such that

(i) the restriction of π to π−1
(
S \

{
p
})

is an isomorphism onto S \
{
p
}

;

(ii) E := π−1(p), is isomorphic to P1.

We shall say that π is the blowing-up of S at p and E is the exceptional curve of π.

Take a neighbourhood U of p on which there exist local coordinates x, y at p (i.e. the curves

x = 0, y = 0 intersect transversely at p). We can assume that p is the only point of U in the

intersection of these two curves. Define the subvariety Ũ of U × P1 by

Ũ :=
{(

(x, y), [u : v]
)
∈ U × P1 | xv = uy

}
.

It is clear that the projection π : Ũ → U is an isomorphism over the points of U where at

most one of the coordinates x, y vanishes, while π−1(p) = {p} × P1. We get S by passing Ũ

and S \ {p} along U \ {p} ∼= Ũ \ π−1(p).

Definition 1.25. Let C be an irreducible curve on S. The closure of π−1
(
C \

{
p
})

in S̃ is

an irreducible curve C̃ on S̃, which we call the strict transform of C. Let us call π−1(C) the

total inverse image of C and π∗C the total transform of C.

Remark 1.26. Note that π−1(C) coincides with C̃ if and only if p 6∈ C, otherwise π−1(C) =

C̃ ∪ E.

Proposition 1.27. Let S be a surface, π : S̃ → S the blowing-up of a point p ∈ S and

E ⊂ S̃ the exceptional curve. Then,

(i) there is an isomorphism PicS ⊕ Z → Pic S̃ defined by (C, n) 7→ π∗C + nE. Hence,

Pic S̃ = π∗ PicS ⊕ ZE.

(ii) for each C,D ∈ PicS, one has π∗C.π∗D = C.D. Moreover, E.π∗C = 0 and E2 = −1.

(iii) KS̃ = π∗KS + E.

Proof. See Lemma II.3 in [3].

Lemma 1.28. Let π be as above and let C be an irreducible curve on S. Setting m > 0 the

multiplicity of C at p, one has π∗C = C̃ +mE, C̃.E = m and C̃2 = C2 −m.

Proof. See Lemma II.2 in [3].
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1.2.2 A sequence of blowing-ups of points

Definition 1.29. Let p1 ∈ P2 = S0 be a point. Consider the blowing-up π1 : S1 → P2 at p1

and denote by E1
1 = π−1

1 (p1) the exceptional curve.

Let p2 ∈ S1 and π2 : S2 → S1 be the blowing-up of S1 at p2. We denote the exceptional curve

by E2
2 and the strict transform of E1

1 in S2 by E2
1 . One observes that if p2 6∈ E1

1 , then the

total transform of E1
1 in S2 coincides with the strict transform E2

1 . Otherwise, if p2 ∈ E1
1 ,

by Remark 1.26 and Lemma 1.28, it follows:

(π1 ◦ π2)−1(p1) = π−1
2 (E1

1) = E2
1 ∪ E2

2 and π∗2(E1
1) = E2

1 + E2
2 .

Repeating the construction r times, one defines for all i = 1, . . . , r:

• the blowing-up πi : Si → Si−1 of Si−1 at pi ∈ Si−1;

• the exceptional curve Ei
i = π−1

i (pi) of Si;

• for any j > i, πij : Sj → Si−1 the composition πi ◦ πi+1 ◦ . . . ◦ πj;

• the total transform E∗i = π∗i+1,r(E
i
i) of Ei

i in S = Sr;

• for any j > i, the strict transform Ej
i of Ei

i in Sj;

• the strict transform Ei := Er
i of Ei

i in S;

•
(
,
)
i

and
(
,
)

respectively the intersection number in Si and in S.

All these data form the sequence of blowing-ups

π = π1r : S = Sr
πr→ Sr−1 → . . .→ S1

π1→ S0 = P2

at the points p1, . . . , pr. From now on, with abuse of notation, we say that Ei and E∗i are

respectively the strict and the total transform of the point pi in S.

Remark 1.30. Note that the strict transform Ej
i for any j > i can be defined inductively:

Ej
i =

π∗j (E
j−1
i ) if pj 6∈ Ej−1

i ,

π∗j (E
j−1
i )− Ej

j if pj ∈ Ej−1
i .

Lemma 1.31 (cf. [7, Lem 1.1.8, Chap 1]). Let π : S → P2 be a sequence of blowing-ups of

r points, as above. Then, one has

PicS ∼= PicP2 ⊕ Zr,

where PicP2 ↪→ PicS is defined by C 7→ π∗(C) and
{
E∗i
}

1≤i≤r is a set of generators of Zr.
The intersection numbers of the E∗i are

(
E∗i , E

∗
j

)
= −δij =

−1 if i = j,

0 otherwise.
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Proof. The first part of assertion follows by induction on r and Proposition 1.27.

As for the second part, by definition of E∗i and by part (ii) of Proposition 1.27, one has(
E∗i , E

∗
i

)
=
(
π∗i+1,r(E

i
i), π

∗
i+1,r(E

i
i)
)

=
(
Ei
i , E

i
i

)
i

= −1.

Similarly, if j > i, one has(
E∗i , E

∗
j

)
=
(
π∗j+1,r(π

∗
i+1,j(E

i
i)), π

∗
j+1,r(E

j
j )
)

=
(
π∗i+1,j(E

i
i), E

j
j

)
j

= 0.

Remark 1.32 (see e.g. [7, §1.3.7]). One can see that another set of generators of Zr in

the previous lemma is {Ei}1≤i≤r. Moreover, the basis change matrices N = (nij) and M =

(mij) = N−1, such that

Ei =
r∑
j=1

nijE
∗
j , E∗i =

r∑
j=1

mijEj

are given by N = Ir −Q where Ir is the (r × r) identity matrix and Q = (qij) is defined by

qij =

1 if pj ∈ Ej−1
i ,

0 otherwise.

In Chapter 2, QT will be called the proximity matrix of π.

Blowing-ups of points are so important because any birational map between surfaces factors

through blowing-ups in the following sense:

Theorem 1.33. Let ϕ : X 99K Y be a birational map between surfaces. Then, there is a

surface Z and birational morphisms πX : Z → X and πY : Z → Y , which are sequences of

blowing-ups of points, such that the following diagram commutes:

X
ϕ

Y.

Z

πX πY
	

For the proof see e.g. Theorem 4.9, §3.3, Chapter 4 in [25]. In particular, the theorem is a

corollary of the following two results:

• Let X be a surface and ϕ : X 99K Pn a rational map. Then, there exists a sequence

of blowing-ups of points of surfaces Xm
πm→ . . .

π2→ X1
π1→ X such that the composite

rational map ψ = ϕ ◦ π1 ◦ . . . ◦ πm : Xm → Pn is morphism.

• Let ϕ : X → Y be a birational morphism between surfaces. Then, there exists a

sequence of blowing-ups of points πi : Yi → Yi−1 for i = 1, . . . , r where Y0 = Y, Yr = X

such that ϕ = π1 ◦ . . . ◦ πr. In other words, any birational morphism between surfaces

can be factored in to a sequence of blowing-ups of points.
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1.2.3 Bubble space of P2

Definition 1.34 (cf. [15, §7.3.2]). We denote by B(P2) the so-called bubble space of P2, which

is defined as follows. Consider all surfaces X above P2, i.e. all surfaces X such that there

exists a birational morphism X → P2. If X1, X2 are two surfaces above P2, say π1 : X1 → P2

and π2 : X2 → P2 are birational morphisms, one identifies p1 ∈ X1 with p2 ∈ X2 if the

birational map (π2)−1π1 : X1 99K X2 is a local isomorphism at p1, that sends p1 to p2. The

bubble space B(P2) is the union of all points of all surfaces above P2 modulo the equivalence

relation generated by these identifications.

For any birational morphism X → P2, there is an injective map X → B(P2), therefore we

will identify points of X with their images in B(P2).

One says that p1 ∈ B(P2) is infinitely near p2 ∈ B(P2), say p1 ∈ X1 and p2 ∈ X2, with

birational morphisms π1 : X1 → P2 and π2 : X2 → P2, if the birational map (π2)−1π1 : X1 99K

X2 is defined at p1, sends p1 to p2, but is not a local isomorphism at p1. In such a case we

write that p1 � p2.

One moreover says that p1 is in the first neighbourhood of p2, or that p1 is infinitely near

p2 of the first order, if (π2)−1π1 corresponds locally to the blow-up of p2. In such a case we

write that p1 �1 p2.

If p1 � p2 then one can define the infinitesimal order of p1 with respect to p2 by induction,

namely if p1 �1 p3 and p3 �k p2 for some k, then p1 is infinitely near p2 of order k + 1.

If p1 � p2 and p1 ∈ X1, then there is a unique irreducible curve E2 ⊂ X1 which corresponds

to the exceptional curve of the blowing-up of p2 ∈ X2. One says that p1 is proximate to p2

if p1 ∈ E2. In such a case we write that p1 99K p2. Clearly, if p1 �1 p2, then p1 99K p2, but

the converse is not always true.

If p1 99K p2 and p1 �k p2 with k > 1, then we say that p1 is satellite to p2 and we write

p1 � p2. Otherwise, if p1 is not satellite to p2, then we denote by p1 6� p2.

One says that a point p ∈ P2 ⊂ B(P2) is a proper point of P2.

Remark 1.35. Each point of B(P2) \ P2 is infinitely near a unique point of P2.

Remark 1.36. If p1 �k pk, say

p1 �1 p2 �1 p3 �1 · · · �1 pk−1 �1 pk,

and p1 99K pk, then pi 99K pk also for each i = 2, . . . , k − 1.

Notation 1.37. If p1 � p2 ∈ P2 where p1 ∈ X1 and π1 : X1 → P2 is a birational morphism,

we say that a plane curve C passes through p1 if C passes through p2 and the strict transform

of C on X1 via π1 passes through p1.

Proposition 1.38 (Proximity inequality). Let ϕ : S → P2 be a birational morphism, that

is the composition of the blowing-ups π1, . . . , πr such as in Definition 1.29. Let C be a plane
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curve and let Ci be the strict transform of C in Si for i = 1, . . . , r. Setting C0 = C and

mi = multpi(Ci−1) for i = 1, . . . , r, one has, for each j = 1, . . . , r,

mj >
∑

pk99Kpj

mk.

Proof. See §2.2 in [1] or Theorem 3.5.3, Corollary 3.5.4 in [9].

1.3 Standard coordinates of infinitely near points

In this section, we want to give a way to describe infinitely near points that we call standard

coordinates.

Let p1 = [a : b : c] ∈ P2. Let us consider three cases:

(i) if c 6= 0, then p1 =

[
a

c
:
b

c
: 1

]
= [a : b : 1];

(ii) if c = 0 and b 6= 0, then p1 =

[
a

b
: 1 : 0

]
= [a : 1 : 0];

(iii) if c = b = 0, then p1 = [1 : 0 : 0].

In case (i), we work on the affine chart U2 ' C2
x,y, so that p1 corresponds to the point

p1 = (a, b), and we define the isomorphism α1 : C2
x,y → C2

x0,y0
by

α1(x, y) = (x− a, y − b).

In case (ii), we work on the affine chart U1 ' C2
x,z, so that p1 corresponds to the point

p1 = (a, 0), and we define the isomorphism α1 : C2
x,z → C2

x0,y0
by

α1(x, z) = (x− a, z).

In case (iii), we work on the affine chart U0 ' C2
y,z, so that p1 corresponds to the point

p̄1 = (0, 0), and we define the isomorphism α1 : C2
y,z → C2

x0,y0
by

α1(y, z) = (y, z).

In all three cases, we defined α1 in such a way that α1(p1) = (0, 0) ∈ C2
x0,y0

.

We blow-up C2
x0,y0

at (0, 0) and we consider the first chart C2
x1,y1

where the blowing-up map

is given in coordinates by x0 = x1, y0 = x1y1, cf. Definition 1.22.

In this chart, the exceptional curve E1 has local equation x1 = 0, hence a point p2 �1 p1

corresponds either to the point (0, t2) ∈ E1 with t2 ∈ C or to the point which is the origin of

the second chart. In the former case, let us say that p2 has standard coordinates p2 = (p1, t2),

while in the latter case let us say that p2 has standard coordinates p2 = (p1,∞). Setting

P1 = C ∪ {∞}, let us denote the standard coordinates of p2 by p2 = (p1, t2) with t2 ∈ P1.
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Remark 1.39. Recall that a point p2 �1 p1 corresponds to the direction of a line passing

through p1. More precisely, one can see that the point p2 = (p1, t2), with p1 = [a : b : c],

corresponds to the line defined by the following equation

cy − bz = t2(cx− az) when c 6= 0 and t2 ∈ C,

cx− az = 0 when c 6= 0 and t2 =∞,

bz = t2(bx− ay) when c = 0, b 6= 0 and t2 ∈ C,

bx = ay when c = 0, b 6= 0 and t2 =∞,

z = t2y when b = c = 0 and t2 ∈ C,

y = 0 when b = c = 0 and t2 =∞.

In other words, the above equations define the unique line passing through p1 and p2.

We want to go on by blowing-up at p2 = (p1, t2), with t2 ∈ P1 = C ∪ {∞}. Either t2 ∈ C
or t2 = ∞. In the former case, with notation as above, let α2 : C2

x1,y1
→ C2

x̄1,ȳ1
be the

isomorphism defined by

α2(x1, y1) = (x1, y1 − t2).

In the latter case, p2 corresponds to the origin of the second chart of the blowing-up of C2
x0,y0

at (0, 0) that we write C2
x′1,y

′
1
, where the blowing-up map is given by x0 = x′1y

′
1, y0 = y′1. Let

α2 : C2
x′1,y

′
1
→ C2

x̄1,ȳ1
be the isomorphism

α2(x′1, y
′
1) = (y′1, x

′
1).

In this way, in both cases, in C2
x̄1,ȳ1

the exceptional curve E1 has local equation x̄1 = 0 and

the point p2 corresponds to the origin (0, 0).

We blow-up C2
x̄1,ȳ1

at (0, 0) and we consider the first chart C2
x2,y2

where the blowing-up map

is given in coordinates by x̄1 = x2, ȳ1 = x2y2. In this chart, the exceptional curve E2 has

local equation x2 = 0, hence a point p3 �1 p2 corresponds either to the point (0, t3) ∈ E2

with t3 ∈ C or to the point which is the origin of the second chart.

Let us say that p3 has standard coordinates p3 = (p1, t2, t3), where either t3 ∈ C in the

former case or t3 =∞ in the latter case.

Note that the strict transform of E1 can be seen only in the second chart and it meets

E2 at the origin of the second chart. In other words, the point with standard coordinates

(p1, t2,∞) is satellite to p1.

More generally, let us proceed by induction of the infinitesimal order. Suppose that we have

blown-up the point pr−1 with standard coordinates pr−1 = (p1, t2, . . . , tr−1), with ti ∈ P1 =

C ∪ {∞}, i = 2, . . . , r − 1. Following the procedure described above, we may assume that

pr−1 is the origin of a chart C2
x̄r−1,ȳr−1

in such a way that the exceptional curve Er−1 has

local equation x̄r−1 = 0.

In the first chart of the blowing up of C2
x̄r−1,ȳr−1

at (0, 0), given in coordinates by x̄r−1 =

xr, ȳr−1 = xryr, the exceptional curve Er has local equation xr = 0, hence a point pr �1 pr−1
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corresponds either to the point (0, tr) ∈ Er with tr ∈ C or to the point which is the origin

of the second chart, given in coordinates by x̄r−1 = xryr, ȳr−1 = yr.

Let us say that pr has standard coordinates pr = (p1, t2, . . . , tr), where tr ∈ C in the former

case and tr =∞ in the latter case.

The above discussion proves the following:

Lemma 1.40. Let p1 ∈ P2. Then, there is a one-to-one correspondence between points

infinitely near p1 of order r and (P1)
r

= P1 × . . .× P1︸ ︷︷ ︸
r-times

.

Corollary 1.41. There is a one-to-one correspondence between points infinitely near a

proper point of order r and W = P2 × (P1)
r
.

Definition 1.42. We call standard coordinates of an infinitely near point the point of W

obtained with the above construction.

Example 1.43. Let C be the conic in P2 defined by 2xy + 3yz − z2 = 0. A point of C is

p1 = [−1 : 1 : 2]. We claim that C passes through the points with standard coordinates

p2 =

(
p1,−

1

2

)
, p3 =

(
p1,−

1

2
,
1

2

)
,

(
p1,−

1

2
,
1

2
,−1

2

)
,

(
p1,−

1

2
,
1

2
,−1

2
,
1

2

)
,

and so on.

In the affine chart U2 ' C2
x̄,ȳ, the point p1 corresponds to the point p̄1 = (−1/2, 1/2) and

C is locally defined by 2x̄ȳ + 3ȳ − 1 = 0. The isomorphism α1 : C2
x̄,ȳ → C2

x0,y0
defined by

α1(x̄, ȳ) = (x̄+ 1/2, ȳ− 1/2) is such that α1(p̄1) = (0, 0) and C is locally defined in C2
x0,y0

by

2x0y0 + x0 + 2y0 = 0. (1.2)

In the first chart of the blow-up of C2
x0,y0

at (0, 0), given in coordinates by x0 = x1, y0 = x1y1,

the strict transform of C has local equation 2x1y1 + 2y1 + 1 = 0, so that it passes through

the point (0,−1/2) and we say that C passes through the point p2 �1 p1 with standard

coordinates p2 = (p1,−1/2).

Let α2 : C2
x1,y1

→ C2
x̄1,ȳ1

be the isomorphism α2(x1, y1) = (x1, y1 + 1/2). In the first chart

of the blow-up of C2
x̄1,ȳ1

at (0, 0), given in coordinates by x̄1 = x2, ȳ1 = x2y2, the strict

transform of C has local equation 2x2y2 − x2 + 2y2 = 0 so that it passes through the point

(0, 1/2) and we say that C passes through the point p3 �1 p2 with standard coordinates

p3 = (p1,−1/2, 1/2).

Let α3 : C2
x2,y2

→ C2
x̄2,ȳ2

be the isomorphism α3(x2, y2) = (x2, y2 − 1/2). In the first chart

of the blow-up of C2
x̄2,ȳ2

at (0, 0), given in coordinates by x̄2 = x3, ȳ2 = x3y3, the strict

transform of C has local equation

2x3y3 + x3 + 2y3 = 0

that is the same equation (1.2), replacing x3 with x0 and y3 with y0. It follows that the

subsequent infinitely near points have standard coordinates (p1,−1/2, 1/2,−1/2, 1/2, . . .).
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Example 1.44. Let us denote by F (n) the n-th Fibonacci number, starting from F (0) =

F (1) = 1, then F (n) = F (n− 1) + F (n− 2) for n ≥ 2.

For n ≥ 1, let Cn be the curve in P2 defined by xF (n)yF (n+1) − zF (n+2) = 0. The curve Cn

has a singular point of multiplicity F (n + 1) at p1 = [1 : 0 : 0]. We claim that Cn passes

through the points p2, p3, . . . , pn+1 with respective standard coordinates

p2 = (p1,∞) , p3 = (p1,∞,∞) , p4 = (p1,∞,∞,∞) , . . . , pn+1 = (p1,∞, . . . ,∞︸ ︷︷ ︸
n times

),

with respective multiplicities F (n), F (n − 1), . . ., F (0). In particular, for n ≥ 3, one has

that pn � pn−2.

We prove the claim by induction on n. For n = 1, the curve C1 has equation xy2 − z3 = 0,

so C1 has a cusp at p1 with cuspidal tangent the line y = 0, so the strict transform of C1

passes through p2 with standard coordinates (p1,∞) and it passes through p3 = (p1,∞,∞).

Note that p3 � p1.

For n ≥ 2, in the affine chart U0 ' C2
ȳ,z̄, the point p1 corresponds to the origin p̄1 = (0, 0) and

Cn is locally defined by ȳF (n+1) − z̄F (n+2) = 0. The isomorphism α1 : C2
ȳ,z̄ → C2

x0,y0
defined

by α1(ȳ, z̄) = (ȳ, z̄) is such that α1(p̄1) = (0, 0) and Cn is locally defined in C2
x0,y0

by

x
F (n+1)
0 − yF (n+2)

0 = 0.

In the second chart of the blow-up of C2
x0,y0

at (0, 0), given in coordinates by x0 = x1y1, y0 =

y1, the strict transform of Cn has local equation

x
F (n+1)
1 − yF (n)

1 = 0,

so that it has multiplicity F (n) at the origin (0, 0), that is the point with standard coordinates

p2 = (p1,∞).

Let α2 : C2
x1,y1
→ C2

x̄1,ȳ1
be the isomorphism α2(x1, y1) = (y1, x1). In C2

x̄1,ȳ1
, the strict trans-

form of Cn has local equation

x̄
F (n)
1 − ȳF (n+1)

1 = 0.

In the second chart of the blow-up of C2
x̄1,ȳ1

at (0, 0), given in coordinates by x̄1 = x2y2, ȳ1 =

y2, the strict transform of Cn has local equation

x
F (n)
2 − yF (n−1)

2 = 0,

so that it has multiplicity F (n − 1) at the origin (0, 0), that is the point with standard

coordinates p3 = (p1,∞,∞).

Let α3 : C2
x2,y2
→ C2

x̄2,ȳ2
be the isomorphism α3(x2, y2) = (y2, x2). In C2

x̄2,ȳ2
, the strict trans-

form of Cn has local equation

x
F (n−1)
2 − yF (n)

2 = 0,

and we conclude by the induction hypothesis.
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1.3.1 Conics and infinitely near points

Remark 1.45. If p1 ∈ P2, p3 �1 p2 �1 p1 and p3�p1, i.e. p3 99K p1, then there is no smooth

curve passing through p1, p2, p3 because of the proximity inequality at p1.

Lemma 1.46. If p1 ∈ P2, p3 �1 p2 �1 p1 and p1, p2, p3 are collinear, namely p3 lies on

the strict transform of the line passing through p1 and p2, then there is no irreducible conic

passing through p1, p2, p3.

Proof. Up to automorphisms of P2, we may assume that p1 = [1 : 0 : 0] and p2 = (p1, 0), so

p3 is uniquely determined by p1, p2, namely p3 = (p1, 0, 0).

Suppose that C is an irreducible conic passing through p1, p2. Then, C has equation

a2y
2 + a3xz + a4yz + a5z

2 = 0

where a2, a3, a4, a5 ∈ C and a2, a3 6= 0 because C is irreducible.

We work in the affine chart U0 ' C2
y,z and we consider the isomorphism α1 : C2

ȳ,z̄ → C2
x0,y0

defined by α1(ȳ, z̄) = (ȳ, z̄), where the conic C has local equation

a2x
2
0 + a3y0 + a4x0y0 + a5y

2
0 = 0.

In the first chart of the blowing-up of C2
x0,y0

at the origin (0, 0), where x0 = x1, y0 = x1y1,

the strict transform of C has local equation

a2x1 + a3y1 + a4x1y1 + a5x1y
2
1 = 0.

Note that p2 is just the origin of C2
x1,y1

.

Then, the strict transform of C via the blowing-up of C2
x1,y1

at the origin (0, 0) has local

equation in the first chart, where x1 = x2, y1 = x2y2,

a2 + a3y2 + a4x2y2 + a5x2y
2
2 = 0.

Note that p3 is just the origin of C2
y2,z2

but the strict transform of C does not pass through

(0, 0) because a2 6= 0.

Remark 1.47. It is easy to check that if p1 ∈ P2, p3 �1 p2 �1 p1, p3 6� p1 and p1, p2, p3 are

not collinear, then there are irreducible conics passing through p1, p2, p3.

Remark 1.48. Note that if p1 ∈ P2, p2 �1 p1, p3 �1 p1 and p2 6= p3, then there is no

irreducible conic passing through p1, p2, p3.

Lemma 1.49. Let p1, p2, p3, p4 ∈ P2 and p5 �1 p1 such that no three among p1, . . . , p5 are

collinear. Then, there exists a unique irreducible conic passing through p1, . . . , p5.

Proof. Up to automorphisms of P2, we may assume that p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 =

[0 : 0 : 1], p4 = [1 : 1 : 1]. Then, p5 has standard coordinates p5 = (p1, t5), namely p5 is

infinitely near p1 of the first order in the direction of the line z−t5y = 0, where t5 ∈ C\{0, 1}:
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indeed, if t5 = 0, then p5, p2, p1 would be collinear; if t5 = 1, then p5, p4, p1 would be collinear

and finally, if t5 =∞, then p5, p3, p1 would be collinear. Then, one can check that the conic

xz − t5xy + (t5 − 1)yz = 0

is the unique irreducible conic passing through p1, . . . , p5.

Lemma 1.50. Let p1, p2, p3 ∈ P2 and p5 �1 p4 �1 p1 such that p5 6� p1 and no three

among p1, . . . , p5 are collinear. Then, there exists a unique irreducible conic passing through

p1, . . . , p5.

Proof. Up to automorphisms of P2, we may assume that p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 =

[0 : 0 : 1] and that p4 has standard coordinates p4 = (p1, 1), namely p4 is infinitely near

p1 of the first order in the direction of the line y = z. Then, p5 has standard coordinates

p5 = (p1, 1, t5), where t5 ∈ C∗: indeed, if t5 = 0 then p5, p4, p1 would be collinear and if

t5 =∞, then p5 � p1. Then, one can check that the conic

xz − xy − t5yz = 0

is the unique irreducible conic passing through p1, . . . , p5.

Lemma 1.51. Let p1, p2, p3 ∈ P2 and p4 �1 p1, p5 �1 p2 such that no three among p1, . . . , p5

are collinear. Then, there exists a unique irreducible conic passing through p1, . . . , p5.

Proof. Up to automorphisms of P2, we may assume that p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 =

[0 : 0 : 1] and that the two lines, one through p1, p4 and the other one through p2, p5, meet

at [1 : 1 : 1], namely p4 is infinitely near p1 of the first order in the direction of the line y = z

and p5 is infinitely near p2 of the first order in the direction of the line x = z. In other words,

p4 has standard coordinates p4 = (p1, 1) and p5 has standard coordinates p5 = (p2, 1). Then,

it is clear that the conic

xy − yz − xz = 0

is the unique irreducible conic passing through p1, . . . , p5.

Lemma 1.52. Let p1, p2 ∈ P2 and p5 �1 p3 �1 p1, p4 �1 p2 such that p5 6� p1 and no three

among p1, . . . , p5 are collinear. Then, there exists a unique irreducible conic passing through

p1, . . . , p5.

Proof. Up to automorphisms of P2, we may assume that p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], and

that the two lines, one through p1, p3 and the other one through p2, p4, meet at [0 : 0 : 1],

namely p3 is infinitely near p1 of the first order in the direction of the line y = 0 and p4

is infinitely near p2 of the first order in the direction of the line x = 0. In other words, p3

has standard coordinates p3 = (p1,∞) and p4 has standard coordinates p4 = (p2,∞). Then,

p5 has standard coordinates p5 = (p1,∞, t5) where t5 ∈ C∗: indeed, if t5 = 0 then p5, p3, p1

would be collinear and if t5 =∞, then p5 � p1. One can check that the conic

t5xy − z2 = 0
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is the unique irreducible conic passing through p1, . . . , p5.

Remark 1.53. The previous lemmas are a more precise explanation of Remark 4.2.1 in

Chapter V in [19].

Lemma 1.54. Let p1, p2 ∈ P2 and p5 �1 p4 �1 p3 �1 p1 such that p4 6� p1, p5 6� p3 and no

three among p1, . . . , p4 are collinear. Then, there exists a unique irreducible conic passing

through p1, . . . , p5.

Proof. Up to automorphisms of P2, we may assume that p1 = [1 : 0 : 0], p2 = [0 : 1 : 0] and

p3, p4 have standard coordinates respectively p3 = (p1,∞) and p4 = (p1,∞, 1), according

to the proof of the previous lemma. Then, p5 has standard coordinates p5 = (p1,∞, 1, t5)

where t5 ∈ C: indeed, if p5 =∞, then we would have p5 � p3, contradicting the hypothesis.

One can check that the conic

xy + t5yz − z2 = 0

is the unique irreducible conic passing through p1, . . . , p5.

Lemma 1.55. Let p5 �1 p4 �1 p3 �1 p2 �1 p1 ∈ P2 such that p3 6� p1, p4 6� p2, p5 6� p3

and p1, p2, p3 are not collinear. Then, there exists a unique irreducible conic passing through

p1, . . . , p5.

Proof. Up to automorphisms of P2, we may assume that p1 = [1 : 0 : 0] and p2, p3, p4 have

standard coordinates respectively p2 = (p1,∞), p3 = (p1,∞, 1), p4 = (p1,∞, 1, 0), according

to the proof of the previous lemma. Then, p5 has standard coordinates p5 = (p1,∞, 1, 0, t5)

where t5 ∈ C: indeed, if t5 =∞, then we would have p5 � p3, contradicting the hypothesis.

One can check that the conic

xy − z2 + t5y
2 = 0

is the unique irreducible conic passing through p1, . . . , p5.

1.4 Plane Cremona maps

The plane Cremona group, denoted by Cr(P2) or Bir(P2), is the group of birational maps of

the projective plane P2 into itself. Such maps can be written as the following form

ϕ : P2 99K P2, [x : y : z] 7→ [ϕ0(x, y, z) : ϕ1(x, y, z) : ϕ2(x, y, z)] (1.3)

where ϕi ∈ C[x, y, z]d for any i = 0, 1, 2 are homogeneous polynomials of the same degree

d, that is called the degree of ϕ if ϕ0, ϕ1, ϕ2 have no common factor. Usually, abusing of

notation, let us write (1.3) as ϕ = [ϕ0 : ϕ1 : ϕ2].

Plane Cremona maps of degree 1 are automorphisms of P2, i.e. elements of Aut(P2) ' PGL3.

Plane Cremona maps of degree 2 (3, 4, resp.) are called quadratic (cubic, quartic, resp.).

The elementary quadratic transformation is:

σ : P2 99K P2, [x : y : z] 7→ [yz : xz : xy]. (1.4)
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The fundamental result concerning the plane Cremona group is the following theorem:

Theorem 1.56 (Noether-Castelnuovo). The group Cr(P2) is generated by Aut(P2) and σ.

Proof. See [10] or [1] for a modern reference.

Let ϕ ∈ Cr(P2) be a plane Cremona map of degree d. Then, let p1, . . . , pn ∈ P2 be the

(proper) base points of the net (linear system of dimension 2) Λ defining ϕ. According to

Theorem 1.33, there exist a surface Z and birational morphisms π1 : Z → P2 and π2 : Z → P2

such that π2 = ϕ ◦ π1. The birational morphism π1 : Z → P2 is the sequence of blowing-up

maps at points p1, . . . , pn and pn+1, . . . , pr ∈ B(P2) as in Section 1.2. Denote by m1, . . . ,mr

the multiplicities of p1, . . . , pr of the net Λ, namely the multiplicities at p1, . . . , pr (of the

strict transform) of a general curve of the net Λ. With a little abuse of notation, let us say

that p1, . . . , pr are the base points of ϕ with respective multiplicities m1, . . . ,mr, and let us

write mi = multpi(ϕ) for i = 1, . . . , r. Then, it is classically known that (see e.g [1, §2.5]),

d2 − 1 =
r∑
i=1

m2
i , 3(d− 1) =

r∑
i=1

mi, (1.5)

and (d;m1, . . . ,mr) is called the characteristic of ϕ.

Recall that not all solutions (d;m1, . . . ,mr) of conditions (1.5) are characteristic of a plane

Cremona map (see e.g [1, §5.2]).

Definition 1.57. A plane Cremona map ϕ is called de Jonquières if it has degree d and a

base point of multiplicity d− 1.

Equations (1.5) imply that plane Cremona maps of degree 2 and 3 are de Jonquières.

Definition 1.58. A plane Cremona map ϕ is called involutory, or an involution, if ϕ−1 = ϕ.

Definition 1.59. Let us say that two plane Cremona maps ϕ, ϕ′ : P2 99K P2 are equivalent

if there exist two automorphisms α, α′ ∈ Aut(P2) such that

ϕ′ = α′ ◦ ϕ ◦ α.

Remark 1.60. The automorphism α′ changes the basis of the homaloidal net defining ϕ,

while α changes the position of the base points of the map. In particular, two plane Cremona

maps defined by the same homaloidal net are equivalent.

1.4.1 Quadratic plane Cremona maps

We have already defined the elementay quadratic transformation σ in (1.4). The map σ is

clearly an involution and it has the coordinate points as base points of multiplicity 1.

Definition 1.61. Let us say that a quadratic plane Cremona map ϕ is ordinary if ϕ has

three proper base points.
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Remark 1.62. Let p1, p2, p3 be the proper base points of an ordinary quadratic map ϕ. Since

there exists an automorphism α : P2 → P2 that maps p1, p2, p3 to the coordinate points, it

follows that ϕ is equivalent to σ.

On the other hand, a plane Cremona map equivalent to σ is clearly ordinary quadratic.

Remark 1.63. For each α ∈ Aut(P2), the map α−1 ◦ σ ◦α is involutory ordinary quadratic,

but not all involutory ordinary quadratic maps have this form, like e.g. the map ϕ = [yz :

xy : xz], cf. [24].

There are other two fundamental quadratic maps, which are not ordinary.

Example 1.64. The quadratic map

ρ : P2 99K P2, [x : y : z] 7→ [xy : z2 : yz], (1.6)

is an involution which is not ordinary, namely ρ has two proper base points p1 = [1 : 0 : 0],

p2 = [0 : 1 : 0] and the third base point p3 is the point infinitely near p1 with standard

coordinates p3 = (p1,∞), that is the point in the direction of the line y = 0.

Example 1.65. The quadratic map

τ : P2 99K P2, [x : y : z] 7→ [x2 : xy : y2 − xz], (1.7)

is an involution which has only one proper base point, that is p1 = [0 : 0 : 1], while the

other two base points p2 and p3 are infinitely near p1 and they have standard coordinates

respectively p2 = (p1,∞) and p3 = (p1,∞, 1).

Remark 1.66. It is classical well-known that any quadratic plane Cremona map is equivalent

to one and only one among σ, ρ and τ .

More generally, one can see that the set of quadratic plane Cremona maps has a natural

structure of quasi-projective variety of dimension 14 in P17, whose properties have been ex-

tensively studied by Cerveau and Déserti in [11].

Definition 1.67. Let us say that a quadratic plane Cremona map ϕ is

• of the second type if ϕ is equivalent to ρ;

• of the third type if ϕ is equivalent to τ .

In the next sections, we will need to construct examples of quadratic plane Cremona maps

with some given property. Let us now see some of these constructions.

Example 1.68. Let p0, p1, p2 be three non-collinear points in P2. An involutory ordinary

quadratic plane Cremona map based at p0, p1, p2 can be easily constructed as follows.
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2̀

`
1

`0

p0

p1 p2

Suppose that the coordinates of p0, p1, p2 are

respectively [a1 : a2 : a3], [b1 : b2 : b3] and

[c1 : c2 : c3]. Let α be the automorphism of

P2 associated to the matrix

M =

a1 b1 c1

a2 b2 c2

a3 b3 c3

 ∈ PGL3, (1.8)

where det(M) 6= 0 because p0, p1, p2 are not

aligned. Then, the plane Cremona map ϕ defined by ϕ = α◦σ◦α−1 is an ordinary, involutory

quadratic map based at p0, p1, p2.

Example 1.69. Let p0, p1 be two distinct points in P2 and let p2 be infinitely near p0 in the

direction of a line `, not passing through p1. An involutory quadratic plane Cremona map

based at p0, p1, p2 can be constructed as follows.

`

p0

p1 q

Suppose that the coordinates of p0, p1 are re-

spectively [a1 : a2 : a3], [b1 : b2 : b3]. Choose

a point q = [c1 : c2 : c3] on ` different from

p0. Let α be the automorphism of P2 asso-

ciated to the matrix M as in (1.8), that has

det(M) 6= 0 because p0, p1, q are not aligned.

Then, the plane Cremona map ϕ defined by

ϕ = α ◦ ρ ◦ α−1 is an involutory quadratic

map based at p0, p1, p2.

We need to know the behaviour of plane Cremona maps under the composition with ordinary

quadratic maps. A first result is the following classical proposition.

Proposition 1.70. Let p1, p2, p3 be the base points of an involutory ordinary quadratic plane

Cremona map % : P2 99K P2. Let ϕ : P2 99K P2 be a plane Cremona map of degree d > 1

with base points p4, . . . , pr and possibly p1, p2, p3. Denote by mi the multiplicity of ϕ at pi,

i = 1, . . . , r (that is mi = 0 if pi is not a base point of ϕ, i = 1, 2, 3). Suppose, moreover,

that p4, . . . , pr are proper points not lying on the triangle with vertices p1, p2, p3.

Then, the composite map ϕ ◦ %−1 = ϕ ◦ % has degree d− ε, where

ε = m1 +m2 +m3 − d,

and it has %(pi), i = 4, . . . , r, as base points of multiplicity mi. Furthermore, it has multi-

plicity mi − ε ≥ 0 at pi, i = 1, 2, 3 (that is, pi is not a base point of ϕ ◦ % when ε = mi).

Proof. See, e.g., Corollary 4.2.6 in [1].

Proposition 1.71. Let p1, p2, p3 be the base points of a quadratic plane Cremona map

% : P2 99K P2. Let ϕ : P2 99K P2 be a plane Cremona map of degree d > 1 with base points
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p4, . . . , pr and possibly p1, p2, p3. Denote by mi the multiplicity of ϕ at pi, i = 1, . . . , r (that

is mi = 0 if pi is not a base point of ϕ, i = 1, 2, 3).

Then, the composite map ϕ ◦ %−1 has degree d− ε, where

ε = m1 +m2 +m3 − d.

Proof. See, e.g., Proposition 4.2.5 in [1].

We will later see what happens when the base points of ϕ are either infinitely near or

belonging to the triangle with vertices p1, p2, p3.
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Chapter 2

Weighted proximity graphs of plane

Cremona maps

In this chapter we first recall the definition and the main properties of the proximity matrices

and the admissible oriented graphs which encode sequences of blowing-ups. We then define

the weighted proximity graph of a given plane Cremona map, starting from the proximity

properties of the base points of the Cremona map. For small degree maps, we finally intro-

duce the enriched weighted proximity graph that we will use to classify equivalence classes

of plane Cremona maps.

2.1 Admissible digraphs

For notation and definitions about directed graphs, see e.g. [2]. For more properties of

admissible graphs, we refer to [7, Chap. 1].

Definition 2.1. A directed graph, or briefly digraph, G is a pair G = (V, F ) where V is a

finite set of elements, called vertices, and F is a set of ordered pairs of distinct elements of

V . An element (u, v) ∈ F where u, v ∈ V is denoted by u→ v, and it is called an arc, or an

arrow, from u to v.

Remark 2.2. According to Definition 2.1, a digraph has no loop, i.e. an arrow u→ u where

u is a vertex, and it has no multiple arcs between the same vertices.

Definition 2.3. Let G = (V, F ) be a digraph. Then the external degree and internal degree

of a vertex v of G are respectively defined as follows:

outdeg(v) = ]
{
u ∈ V

∣∣v → u
}
, indeg(v) = ]

{
u ∈ V

∣∣u→ v
}
.

Definition 2.4. Let G = (V, F ) be a digraph. Choose a bijection ψ :
{

1, . . . , n
}
→ V ,

where n = ]V is the number of vertices of G. Then the (n × n)-matrix AG = (aij) defined
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by

aij =

1 if ψ(i)→ ψ(j),

0 otherwise

is called the adjacency matrix of G with respect to ψ.

Definition 2.5. A digraph G = (V, F ) is called acyclic if it has no cycle.

Remark 2.6. Let G = (V, F ) be an acyclic digraph. Then, G has at least one vertex of

external degree 0, see Proposition 1.4.2 in [2].

Remark 2.7. Let G = (V, F ) be an acyclic digraph. Then, there exists an ordering of the

vertices of G such that the adjacency matrix AG is a strictly lower triangular matrix, see

Proposition 1.4.3 in [2].

Definition 2.8. Two digraphs G = (V, F ) and G′ = (V ′, F ′) are isomorphic if there exists

a bijection φ : V → V ′ such that for any u, v ∈ V :

(u, v) ∈ F ⇐⇒ (φ(u), φ(v)) ∈ F ′, that is, u→ v ⇐⇒ φ(u)→ φ(v).

Definition 2.9. Let us say that a digraph G = (V, F ) is admissible if it is acyclic and

satisfies the following three properties:

(i) each vertex has the external degree at most two;

(ii) if outdeg(u) = 2, say u→ v and u→ w, then either v → w or w → v;

(iii) fixing two vertices v and w, then there exists at most one vertex u such that u → v

and u→ w.

Remark 2.10. By Property (ii), each vertex u of external degree 2 is the vertex of a triangle

as in Figure 2.1.(a), up to isomorphisms.

(a)

u

w

v

(b)

u

w

v

t

Figure 2.1: (a) Admissible triangle and (b) non-admissible quadrilateral.

Remark 2.11. Property (iii) implies that the quadrilateral of Figure 2.1.(b) is not admissi-

ble. In fact there are only two types of admissible quadrilaterals, up to isomorphisms, shown

in Figure 2.2.
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u

w

v

t

u

w

v

t

Figure 2.2: Admissible quadrilaterals.

Lemma 2.12. An admissible, connected, digraph G has exactly one vertex with external

degree 0.

Proof. By Remark 2.6, there is at least a vertex of external degree 0. Suppose that we have

two vertices u and v of external degree 0. Since G is connected, then there exists a (non-

directed) path starting at u and ending at v and we can choose one such path of minimum

length k. Note that k ≥ 2 since u → v and v → u are not possible, because outdeg(u) =

outdeg(v) = 0. Denote such path from u to v by {u = u0, u1}, {u1, u2}, . . . , {uk−1, v = uk}.
We claim that there exists a vertex uj, 1 6 j < k, of external degree 2 for G in the path,

that means that

uj → uj−1, uj → uj+1.

In fact, we know that u1 → u0, since u0 = u has external degree 0. If u1 → u2, then u1 is

the vertex we are looking for, otherwise we consider the path starting from u1 and ending

to uk = v. Our claim follows by induction on the length of the path. Then by property (ii)

of Definition 2.9, there exists an arrow either uj−1 → uj+1 or uj+1 → uj−1, so there exists a

path that connects u and v with k − 1 edges, a contradiction with the assumption that k is

minimal.

Corollary 2.13. The number of connected components of an admissible digraph is equal to

the number of vertices with external degree 0.

2.2 Proximity matrices

The main reference for this section is [7, Chap. 1].

Let π : S → P2 be a birational morphism. As we saw in Section 1.2.2 of Chapter 1, the

morphism π is the composition of finitely many of blowing-ups at single points. Denote by

p1, . . . , pr ∈ B(P2) the blown-up points, so that π = π1◦π2◦. . .◦πr where πi is the blowing-up

at the point pi for each i = 1, . . . , r.

Definition 2.14. Let us associate to a birational morphism π : S → P2 a digraph Gπ with

r vertices p1, . . . , pr and there is an arrow pi → pj if and only if pi is proximate to pj.

Definition 2.15. With notation as in Section 1.2.2 in Chapter 1, the adjacency matrix
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Q = (qij) = AGπ of the digraph Gπ is defined by

qij =

1 if pi ∈ Ei−1
j ,

0 if pi 6∈ Ei−1
j

and we call Q the proximity matrix associated with the birational morphism π, or simply

proximity matrix of π.

Remark 2.16. In [1], the notion of proximity matrix of a cluster is different.

Remark 2.17. Note that the order of the blowing-up points is important in the definition

of the proximity matrix.

Example 2.18. Let us blow up p1 = [1 : 0 : 0], p2 = [0 : 1 : 0] and p3 �1 p1 with standard

coordinate p3 = (p1,∞), i.e. p3 corresponds to the line y = 0, either in the order p1, p2, p3

or p1, p3, p2. Accordingly, we find isomorphic surfaces S and S ′ and birational morphisms

π : S → P2 and π′ : S ′ → P2 with π′ = π ◦ i where i : S ′ → S is the isomorphism.

The digraphs Gπ and Gπ′ are the same, up to isomorphisms, but the respective proximity

matrices Q = AGπ and Q′ = AGπ′ are different:

Q =

0 0 0

0 0 0

1 0 0

 , Q′ =

0 0 0

1 0 0

0 0 0

 .

Note that Q′ = PQP where P = P−1 is the permutation matrix

P =

1 0 0

0 0 1

0 1 0

 .

Let us recall the properties of a proximity matrix:

Proposition 2.19. Let Q be the proximity matrix of a birational morphism π : S → P2.

Then

(1) Q is a strictly lower triangular matrix;

(2) all entries of Q are either 0 or 1;

(3) in each row of Q, there are at most two non-zero entries;

(4) no row with two non-zero entries is repeated;

(5) if qkj = qki = 1 with i > j, then qij = 1.
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Proof. Properties (1) and (2) are obvious while Property (3) follows from the fact that a

point can belong to at most two strict transforms of distinct exceptional curves. Using

notation of Section 1.2.2 in Chapter 1, one observes that

pi 6∈ Ei−1
j =⇒ Ei

j ∩ Ei
i = ∅ =⇒ Ek

j ∩ Ek
i = ∅ for k > i.

Therefore, if pk ∈ Ek−1
j ∩Ek−1

i for k > i > j, then pi ∈ Ei−1
j , that is Property (5). Moreover,

after blowing-up pk = Ek−1
i ∩ Ek−1

j , it follows that Ek
i ∩ Ek

j = ∅, so that there is no other

row with the same two non-zero entries, that is Property (4).

Lemma 2.20. In the previous proposition, Properties (4) and (5) can be replaced by the

following formula

qij ≥
∑
k

qkiqkj, for i > j. (2.1)

Proof. Suppose that (4) and (5) hold. Then, the sum in Formula (2.1) is either 0 or 1.

If it is 0, then Formula (2.1) is trivially verified, otherwise, if it is 1, Property (5) implies

that qij = 1 and Formula (2.1) holds. Vice versa, suppose that Formula (2.1) holds. If

qkj = qki = 1 with i > j, then Formula (2.1) implies qij > 1, that is qij = 1 by Property (2).

So Property (5) holds. Suppose that Property (4) fails, that means there are two different

rows with the same two non-zero entries. Then Formula (2.1) implies qij > 2, a contradiction

with Property (2).

Remark 2.21. We now list other properties of the proximity matrix Q associated to a

birational morphism π, which is the composition of the blowing-up at points p1, . . . , pr ∈
B(P2):

• if pi �1 pj, then qij = 1;

• the i-th row of Q is zero if and only if pi ∈ P2;

• if Ei ∩ Ej 6= ∅ and i > j, then qij = 1;

• if qij = 1 and Ei ∩ Ej = ∅, then there exists k > i such that qkj = qki = 1;

• pk is satellite if and only if the k-th row of Q has two non-zero entries;

• if qki = qkj = 1 with i > j, then pk � pj.

Remark 2.22. Let pk � pj, namely pk is satellite to pj. Then, pk �n pj with n > 2, i.e.

there exists pj1 , . . . , pjn−1, such that

pk �1 pjn−1 �1 . . . �1 pj2 �1 pj1 �1 pj.

Note that pji�pj for each i = 2, . . . , n−1. Indeed, with notation of Section 1.2.2 in Chapter

1, one has

pk � pj ⇐⇒ pk 99K pj ⇐⇒ pk ∈ Ek−1
j

that implies that pji ∈ E
ji−1
j for each i = 1, . . . , n− 1.
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Lemma 2.23. Suppose that Q is a (r×r)-matrix satisfying Properties (1)−(5) of Proposition

2.19. Then, there exists a birational morphism π : S → P2 such that Q is its proximity

matrix.

Proof. We proceed by induction on r. If r = 1, then Q is the zero-matrix and π is just the

blowing-up at a point p1 ∈ P2. Let Q′ be the (r − 1)× (r − 1) submatrix of Q obtained by

removing the last row and the last column. Note that Q′ also satisfies Properties (1)− (5) of

Proposition 2.19 and, by induction hypothesis, there exists a birational morphism π′ : S ′ →
P2 such that Q′ is its proximity matrix. Let p1, . . . , pr−1 ∈ B(P2) be the blown-up points of

π′. Now, there are three cases:

(i) the r-th row has no non-zero entry;

(ii) the r-th row has only one non-zero entry;

(iii) the r-th row has two non-zero entries.

In case (i), choose a general point pr ∈ S ′, that is a general point pr ∈ P2.

In case (ii), one has qrj = 1 for some 1 6 j 6 r − 1. Choose a general point pr ∈ Er−1
j .

In case (iii), one has qrj = qri = 1 for some 1 6 j < i 6 r − 1. Then Property (5) in

Proposition 2.19 implies that qij = 1 so Ei
j ∩ Ei

i 6= ∅. Property (4) implies that the point

Ek
i ∩ Ek

j has not been blown-up for each k = i+ 1, . . . , r − 1. Choose pr = Er−1
i ∩ Er−1

j .

In all three cases, let πr : S → S ′ be the blowing-up of S ′ at pr and define π = π′ ◦ πr.

Corollary 2.24. A digraph G is admissible if and only if there exists a birational morphism

π : S → P2 such that G = Gπ.

Proof. If G is admissible, then there exists an ordering of the vertices of G such that the

adjacency matrix AG of G is strictly lower triangular and Properties (2)− (5) in Proposition

2.19 follow from Properties (i), (ii), (iii) of Definition 2.9. Hence, Q is the proximity matrix

of a birational morphism π : S → P2 by the previous lemma. Conversely, if π : S → P2 is

a birational morphism, its proximity matrix Q satisfies Properties (1) − (5) in Proposition

2.19 and hence the corresponding digraph is admissible according to Definition 2.9.

2.3 Weighted proximity graph of a plane Cremona map

Definition 2.25. Let G = (V, F ) be a digraph. Let us say that G is weighted if each vertex of

G is marked with a positive integer number, namely G = (V, F, w) where w : V → N = Z>0

is a map.

Remark 2.26. In [2], such digraphs are called vertex-weighted. A weighted digraph according

to [2] is a digraph where one attaches weights to the arcs. We do not need to do that, so we

omit “vertex” in the definition of weighted digraph.
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Definition 2.27. Let ϕ : P2 99K P2 be a plane Cremona map. Let us associate to ϕ a

weighted digraph Gϕ, called the weighted proximity graph of (the base points of) ϕ, defined

as follows:

• the vertices of Gϕ are the base points p1, . . . , pr ∈ B(P2) of ϕ, cf. Section 1.4;

• there is an arrow pi → pj if and only if pi is proximate to pj;

• each vertex pi is weighted with the multiplicity multpi(ϕ) of ϕ at pi.

Example 2.28. A de Jonquières map of degree d has weighted proximity graph with 2d− 1

vertices, one with weight d− 1 and the other 2d− 2 vertices with weight 1.

Remark 2.29. Note that the number of connected components of Gϕ equals the number of

proper base points in P2 among the base points p1, . . . , pr ∈ B(P2) of ϕ, by Corollary 2.13.

Remark 2.30. Clearly, two equivalent plane Cremona maps have the same weighted prox-

imity graph. The converse is true for quadratic maps but it is not true in general.

Example 2.31. We will see in Chapter 4 that the two cubic plane Cremona maps

ϕ10 = [x3 : y2z : xyz], and ϕ11 = [x(y2 + xz) : y(y2 + xz) : xyz]

have the same weighted proximity graph

2 1 1 1 1

but they are not equivalent.

Notation 2.32. When we draw the weighted proximity graph of a plane Cremona map ϕ,

for readers’ convenience we write proper base points in red and infinitely near points in black.

Example 2.33. Let σ, ρ and τ be the quadratic maps defined in Section 1.4 of Chapter 1.

Their respective proximity graphs Gσ, Gρ and Gτ are:

Gσ = 1 1 1 Gρ = 1 1 1 Gτ = 1 1 1

Remark 2.34. Let

G = 1 1 1 and G′ = 1 1 1 ,

then there is no plane Cremona map with G or G′ as weighted proximity graph, cf. the

proximity inequality 1.38, Remark 1.45 and Remark 1.48.

In the next chapters we will deal with cubic and quartic plane Cremona maps. Therefore

we classify their weighted proximity graphs.

Theorem 2.35. There are exactly 21 weighted proximity graphs of cubic plane Cremona

maps, up to isomorphism, that are listed in Table 2.1.

There are exactly 143 weighted proximity graphs of quartic plane Cremona maps, up to

isomorphism, namely 90 of quartic plane de Jonquières maps, that are listed in Table 2.2

and 53 of quartic plane non-de Jonquières maps, that are listed in Table 2.3.
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Table 2.1: Weighted proximity graphs of cubic plane Cremona maps

no Weighted proximity graph

1 2 1 1 1 1

2 2 1 1 1 1

3 2 1 1 1 1

4 2 1 1 1 1

5 2 1 1 1 1

6 2 1 1 1 1

7 2 1 1 1 1

8 2 1 1 1 1

9 2 1 1 1 1

10 2 1 1 1 1

no Weighted proximity graph

11 2 1 1 1 1

12 2 1 1 1 1

13 2 1 1 1 1

14 2 1 1 1 1

15 2 1 1 1 1

16 2 1 1 1 1

17 2 1 1 1 1

18 2 1 1 1 1

19 2 1 1 1 1

20 2 1 1 1 1

21 2 1 1 1 1

Table 2.2: Weighted proximity graphs of quartic plane de Jonquières maps

] Weighted proximity graph

1 3 1 1 1 1 1 1

2 3 1 1 1 1 1 1

3 3 1 1 1 1 1 1

4 3 1 1 1 1 1 1

5 3 1 1 1 1 1 1

6 3 1 1 1 1 1 1

7 3 1 1 1 1 1 1

8 3 1 1 1 1 1 1
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9 3 1 1 1 1 1 1

10 3 1 1 1 1 1 1

11 3 1 1 1 1 1 1

12 3 1 1 1 1 1 1

13 3 1 1 1 1 1 1

14 3 1 1 1 1 1 1

15 3 1 1 1 1 1 1

16 3 1 1 1 1 1 1

17 3 1 1 1 1 1 1

18 3 1 1 1 1 1 1

19 3 1 1 1 1 1 1

20 3 1 1 1 1 1 1

21 3 1 1 1 1 1 1

22 3 1 1 1 1 1 1

23 3 1 1 1 1 1 1

24 3 1 1 1 1 1 1

25 3 1 1 1 1 1 1

26 3 1 1 1 1 1 1
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27 3 1 1 1 1 1 1

28 3 1 1 1 1 1 1

29 3 1 1 1 1 1 1

30 3 1 1 1 1 1 1

31 3 1 1 1 1 1 1

32 3 1 1 1 1 1 1

33 3 1 1 1 1 1 1

34 3 1 1 1 1 1 1

35 3 1 1 1 1 1 1

36 3 1 1 1 1 1 1

37 3 1 1 1 1 1 1

38 3 1 1 1 1 1 1

39 3 1 1 1 1 1 1

40 3 1 1 1 1 1 1

41 3 1 1 1 1 1 1

42 3 1 1 1 1 1 1

43 3 1 1 1 1 1 1

44 3 1 1 1 1 1 1

45 3 1 1 1 1 1 1

46 3 1 1 1 1 1 1
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47 3 1 1 1 1 1 1

48 3 1 1 1 1 1 1

49 3 1 1 1 1 1 1

50 3 1 1 1 1 1 1

51 3 1 1 1 1 1 1

52 3 1 1 1 1 1 1

53 3 1 1 1 1 1 1

54 3 1 1 1 1 1 1

55 3 1 1 1 1 1 1

56 3 1 1 1 1 1 1

57 3 1 1 1 1 1 1

58 3 1 1 1 1 1 1

59 3 1 1 1 1 1 1

60 3 1 1 1 1 1 1

61 3 1 1 1 1 1 1

62 3 1 1 1 1 1 1

63 3 1 1 1 1 1 1

64 3 1 1 1 1 1 1

65 3 1 1 1 1 1 1

66 3 1 1 1 1 1 1

67 3 1 1 1 1 1 1

68 3 1 1 1 1 1 1

69 3 1 1 1 1 1 1
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70 3 1 1 1 1 1 1

71 3 1 1 1 1 1 1

72 3 1 1 1 1 1 1

73 3 1 1 1 1 1 1

74 3 1 1 1 1 1 1

75 3 1 1 1 1 1 1

76 3 1 1 1 1 1 1

77 3 1 1 1 1 1 1

78 3 1 1 1 1 1 1

79 3 1 1 1 1 1 1

80 3 1 1 1 1 1 1

81 3 1 1 1 1 1 1

82 3 1 1 1 1 1 1

83 3 1 1 1 1 1 1

84 3 1 1 1 1 1 1

85 3 1 1 1 1 1 1

86 3 1 1 1 1 1 1

87 3 1 1 1 1 1 1

88 3 1 1 1 1 1 1

89 3 1 1 1 1 1 1

90 3 1 1 1 1 1 1

Proof of Theorem 2.35. Weighted proximity graphs of cubic plane Cremona maps can be

constructed by hand, recalling the properties of admissible graphs. Indeed, such a graph

has 5 vertices, one with weight 2 and the other four with weight 1. Moreover, the proximity

inequalities implies that only the double point may have satellite points and there can be at

most one of them. For the same reason, a simple base point may have at most one proximate

point while the double point may have at most two proximate points. These conditions are
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Table 2.3: Weighted proximity graphs of quartic plane non de Jonquières maps

no Weighted proximity graph

1 2 2 2 1 1 1

2 2 2 2 1 1 1

3 2 2 2 1 1 1

4 2 2 2 1 1 1

5 2 2 2 1 1 1

6 2 2 2 1 1 1

7 2 1 2 2 1 1

8 2 1 2 2 1 1

9 2 1 2 2 1 1

10 2 2 2 1 1 1

11 2 2 2 1 1 1

12 2 2 2 1 1 1

13 2 1 1 2 2 1

14 2 1 1 2 2 1

15 2 1 1 2 2 1

16 2 2 2 1 1 1

17 2 2 2 1 1 1

18 2 2 2 1 1 1

19 2 2 2 1 1 1

20 2 2 2 1 1 1

21 2 2 2 1 1 1

no Weighted proximity graph

22 2 2 2 1 1 1

23 2 2 2 1 1 1

24 2 1 2 1 2 1

25 2 2 1 2 1 1

26 2 2 1 2 1 1

27 2 2 1 2 1 1

28 2 2 2 1 1 1

29 2 2 2 1 1 1

30 2 2 2 1 1 1

31 2 2 1 2 1 1

32 2 2 2 1 1 1

33 2 2 2 1 1 1

34 2 2 2 1 1 1

35 2 2 2 1 1 1

36 2 2 2 1 1 1

37 2 2 2 1 1 1

38 2 2 2 1 1 1

39 2 2 2 1 1 1

40 2 2 2 1 1 1

41 2 2 2 1 1 1

42 2 2 2 1 1 1

43 2 2 1 1 2 1
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no Weighted proximity graph

44 2 2 2 1 1 1

45 2 2 1 1 1 2

46 2 2 2 1 1 1

47 2 2 2 1 1 1

48 2 2 2 1 1 1

no Weighted proximity graph

49 2 2 2 1 1 1

50 2 2 2 1 1 1

51 2 2 2 1 1 1

52 2 2 2 1 1 1

53 2 2 2 1 1 1

enough to find the 21 weighted proximity graphs of cubic plane Cremona maps, that are

listed in Table 2.1.

Indeed, we may start from the weighted graph with no arrow, that is number 21 in the list

of Table 2.1. We then add one arrow at each time in such a way that the graph is still

admissible and the weights satisfy the proximity inequalities for all vertices. For example, if

we add one arrow to graph 21, then we find exactly two non-isomorphic weighted proximity

graphs, that are numbers 19 and 20. If we add a second arrow, then we find other 5 graphs,

that are numbers 14–18. And so on: in the following step we find the graphs with three

arrows, that are numbers 7–13. In the next step, we find number 2–6 with four arrows and

finally there is only one graph, number 1, with five arrows.

This procedure has also been implemented in Maple, in order to double check the result.

We proceed similarly for weighted proximity graphs of quartic plane Cremona maps.

First, we note that a quartic plane Cremona map either is de Jonquières or it is not de

Jonquières. In the former case, the graph has 7 vertices, one with weight 3 and the other

six with weight 1. In the latter case, the graph has 6 vertices, three with weight 2 and the

other three with weight 1.

Let us consider first the de Jonquières case.

We start from the weighted graph with no arrow (number 90 in the table) and we then add

one arrow at each time. We then find:

• 2 graphs with one arrow;

• 5 graphs with two arrows;

• 11 graphs with three arrows;

• 19 graphs with four arrows;

• 24 graphs with five arrows;

• 19 graphs with six arrows;

• 8 graphs with seven arrows;
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• finally 1 graph with eight arrows;

that sum up to 90 weighted proximity graphs.

Concerning the non-de Jonquières case, we proceed exactly in the same way.

We start from the weighted graph with no arrow (number 53 in the table) and we then add

one arrow at each time. We then find:

• 3 graphs with one arrow;

• 9 graphs with two arrows;

• 16 graphs with three arrows;

• 16 graphs with four arrows;

• 7 graphs with five arrows;

• finally 1 graph with six arrows.

that sum up to 53 weighted proximity graphs.

Remark 2.36. By improving the algorithm that computes the number of weighted proximity

graphs of de Jonquières maps of degree d, one can check that there are exactly

• 346 of them in degree 5,

• 1199 of them in degree 6,

• 3876 of them in degree 7,

• 11710 of them in degree 8,

• 33635 of them in degree 9,

• 92149 of them in degree 10.

In degree larger than 10, the computer runs out of memory.

2.4 Enriched weighted proximity graph of a plane Cre-

mona map

We will see that, in order to classify equivalence classes of plane Cremona maps, the position

of the base points is also important. Therefore, it is convenient to add to the weighted

proximity graph some projective information on the position of the base points of a plane

Cremona map. We first consider the case of plane Cremona maps of small degree.
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Definition 2.37. Let us add to the weighted proximity graph Gϕ of a cubic plane Cremona

map ϕ the list of lines passing through three base points of ϕ. Let us call this object the

enriched weighted proximity graph of ϕ.

Remark 2.38. These lines are unexpected, in the sense that three points in general position

are not aligned.

A line through three base points of a cubic plane Cremona map ϕ cannot pass through the

(proper) base point of multiplicity 2, otherwise the linear system defining the map would be

reducible by Bézout Theorem. For the same reason, a line cannot pass through all four simple

base points of ϕ. Furthermore, there cannot be two different such lines, because they should

have two points in common.

Notation 2.39. The line passing through three base points of a cubic plane Cremona map

are indicated as dashed green curves in the pictures of weighted proximity graphs.

Theorem 2.40. There are exactly 31 enriched weighted proximity graphs of cubic plane

Cremona maps, up to isomorphism, listed in Table 4.2 at page 57.

Proof. Recall that a line ` passes through an infinitely near point p only if ` passes through

the proper point q such that p � q and the strict transform of ` passes through p. Therefore,

the enriched weighted proximity graph cannot include a line passing through a base point

infinitely near the base point of multiplicity 2, by the previous remark.

Hence, there is no line through three base points in the weighted proximity graphs 1–11, 14

and 15 in Table 2.1.

Let us denote by p1 the base point of multiplicity 2 and by p2, . . . , p5 the other simple base

points going from left to right in the pictures of the weighted proximity graphs in Table 2.1.

The weighted proximity graph 12 in Table 2.1 may have a line through the proper simple

base point p3 and both of its infinitely near base points, that are p4 and p5. Accordingly, we

find the two enriched weighted proximity graphs 10 and 11 in Table 4.2.

Similarly, the weighted proximity graph 13 in Table 2.1 may have a line through p2, p3, p4

and we find the two enriched weighted proximity graphs 8 and 9 in Table 4.2.

Then, the weighted proximity graph 16 in Table 2.1 may have a line through p3, p4, p5 and

we find the two enriched weighted proximity graphs 22 and 23 in Table 4.2.

The weighted proximity graph 17 in Table 2.1 may have either a line through p2, p4, p5

or a line through p2, p3, p4, that however give two isomorphic enriched weighted proximity

graphs, hence we find the two enriched weighted proximity graphs 20 and 21 in Table 4.2.

The weighted proximity graph 18 in Table 2.1 may have either a line through p3, p4, p5 or a

line through p2, p3, p4. Accordingly, we find the three enriched weighted proximity graphs

17, 18 and 19 in Table 4.2.

The weighted proximity graph 19 in Table 2.1 may have a line through p3, p4, p5 and we

find the two enriched weighted proximity graphs 28 and 29 in Table 4.2.
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The weighted proximity graph 20 in Table 2.1 may have either a line through p2, p3, p4 or

a line through p2, p4, p5. (There could be also a line through p3, p4, p5 but the resulting

enriched weighted proximity graph would be isomorphic to a previous one.) Accordingly, we

find the three enriched weighted proximity graphs 24, 25 and 26 in Table 4.2.

Finally, the weighted proximity graph 21 in Table 2.1 may have four different lines that

however give four isomorphic enriched weighted proximity graph. Hence we find the two

enriched weighted proximity graphs 30 and 31 in Table 4.2.

Definition 2.41. Let us add to the weighted proximity graph Gϕ of a quartic de Jonquières

map ϕ the list of lines passing through three, or four, base points of ϕ and the list of

(irreducible) conics passing through six base points of ϕ. Let us call this object the enriched

weighted proximity graph of ϕ.

Remark 2.42. These conics are unexpected, as well as the lines, in the sense that six points

in general position are not contained in any conic.

Since a quartic plane de Jonquières map has 7 base points, the map ϕ cannot have two

distinct conics by Bézout Theorem.

Similarly, a line cannot pass through five base points of ϕ; a line and a conic cannot have

more than two points in common.

Theorem 2.43. There are exactly 449 enriched weighted proximity graphs of quartic plane

de Jonquières maps, up to isomorphism, listed in Table 5.1 at page 94.

Proof. The case by case analysis is too long to be presented here.

We first constructed the enriched weighted proximity graphs by adding lines and/or a conic

to the 90 weighted proximity graph.

We then checked with the computer that these enriched weighted proximity graphs are

pairwise not isomorphic and that they are all.

Definition 2.44. Let us add to the weighted proximity graph Gϕ of a quartic non-de Jon-

quières map ϕ the list of lines passing through three base points of ϕ. Let us call this object

the enriched weighted proximity graph of ϕ.

Remark 2.45. Recall that ϕ has three base points of multiplicity 2 and three simple base

points. By Bézout Theorem, the lines may pass either through three simple base points or

through two simple base points and one base point of multiplicity 2. In other words, a line

cannot pass through two base points of multiplicity 2.

Similarly, there cannot be any conic passing through all six base points.

Theorem 2.46. There are exactly 119 enriched weighted proximity graphs of quartic non-de

Jonquières maps, up to isomorphism, listed in Table 5.3 at page 122.

Proof. The case by case analysis is again too long to be presented here and the proof is done

with the help of the computer.
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More generally, we are interested in de Jonquières of arbitrary degree.

Definition 2.47. Let us add to the weighted proximity graph Gϕ of a plane de Jonquières

map ϕ of degree d ≥ 3 the list of unexpected contractible rational curves, where “contractible”

means that the curve is Cremona equivalent to a line and “unexpected” means that

• the curve is a line passing through three, or more, base points (at most through d base

points);

• the curve is an irreducible conic passing through six, or more, base points;

• the curve is an irreducible cubic with a double point passing through at least 7 points. . .

and so on, until the curve is irreducible of degree at most d− 2. Let us call this object the

enriched weighted proximity graph of ϕ.
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Chapter 3

Lengths in the Cremona group

3.1 Decompositions of a plane Cremona map

According to Noether-Castelnuovo Theorem 1.56, any plane Cremona map ϕ : P2 99K P2 can

be written as

ϕ = αn ◦ σ ◦ αn−1 ◦ σ ◦ · · · ◦ α1 ◦ σ ◦ α0 (3.1)

where αi ∈ Aut(P2) for any i = 0, . . . , n, for some integer n.

Definition 3.1. Let us call (3.1) a decomposition of ϕ. Let us say that a decomposition (3.1)

is minimal if n is minimal among all decompositions of ϕ. Let us call such n the ordinary

quadratic length of ϕ and let us denote it by oql(ϕ).

Therefore, the ordinary quadratic length of a plane Cremona map ϕ of degree ≥ 2 is the

minimum n such that there exist ordinary quadratic maps ψ1, ψ2, . . . , ψn with

ϕ = ψn ◦ ψn−1 ◦ · · · ◦ ψ2 ◦ ψ1. (3.2)

Definition 3.2. Let us call the quadratic length of plane Cremona map ϕ the minimum n

such that there exists a decomposition (3.2) where ψi is a (not necessarily ordinary) quadratic

map, for each i = 1, . . . , n, and denote it by ql(ϕ).

Recall that Blanc and Furter in [6] defined the length of a plane Cremona map ϕ as the

minimum n such that there exists a decomposition (3.2) where ψi is a de Jonquières map,

for each i = 1, . . . , n, and denoted it by lgth(ϕ). Clearly, one has that

lgth(ϕ) ≤ ql(ϕ) ≤ oql(ϕ).

Remark 3.3. In order to compute the ordinary quadratic length of plane Cremona maps, it

suffices to work with involutory ordinary quadratic maps. Indeed, any decomposition (3.1)

can be written as the composition of an automorphism and involutory quadratic maps:

ϕ = α′n ◦ · · · ◦ ((α1 ◦ α0)−1 ◦ σ ◦ (α1 ◦ α0)) ◦ (α−1
0 ◦ σ ◦ α0)

where α′n = αn ◦ αn−1 ◦ · · · ◦ α1 ◦ α0.
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Remark 3.4. Two equivalent plane Cremona maps clearly have the same length, quadratic

length and ordinary quadratic length.

The following lemma is a straightforward application of the definitions.

Lemma 3.5. Let ϕ : P2 99K P2 be a plane Cremona map. Then,

oql(ϕ) = 0 if and only if ϕ ∈ Aut(P2).

Moreover, one has

• oql(ϕ) = 1 if and only if ϕ is an ordinary quadratic map;

• ql(ϕ) = 1 if and only if ϕ is a quadratic map;

• lgth(ϕ) = 1 if and only if ϕ is a de Jonquières map.

Corollary 3.6. Let ϕ : P2 99K P2 be a plane Cremona map of degree d ≥ 3. Then,

oql(ϕ) ≥ ql(ϕ) ≥ 2.

Example 3.7. Let ρ be the quadratic map defined in (1.6). It is classically well-known that

oql(ρ) = 2. A minimal decomposition of ρ is:

ρ = [x : z − y : z] ◦ σ ◦ [x : y + z : z] ◦ σ ◦ [x : y − z : z].

Example 3.8. Let τ be the quadratic map defined in (1.7). It is classically well-known that

τ is the composition of two quadratic maps of the second type and therefore the composition

of four ordinary quadratic maps. A decomposition of τ , given in [11], is:

τ = [y − x : 2y − x : x− y + z] ◦ σ ◦ [x+ z : x : y] ◦ σ ◦ [−y : x− 3y + z : x] ◦

◦ σ ◦ [x+ z : x : y] ◦ σ ◦ [y − x : −2x+ z : 2x− y].
(3.3)

However, we found no reference with a proof that oql(τ) = 4, hence that the above decom-

position is minimal, even if we believe that it was classically known. On the other hand, we

will see in a moment that oql(τ) ≥ 3, because τ has a base point which is infinitely near of

order 2. A proof of the fact that oql(τ) = 4 can be seen as a consequence of the computation

of ordinary quadratic lengths of cubic plane Cremona maps in Chapter 4.

Corollary 3.9. Let ϕ : P2 99K P2 be a plane Cremona map of degree d ≥ 5. Then,

oql(ϕ) ≥ ql(ϕ) ≥ 3.

Proof. We claim that, if ql(ϕ) ≤ 2, then deg(ϕ) ≤ 4. This is trivial if ql(ϕ) ≤ 1. Suppose

that ql(ϕ) = 2, namely ϕ = ρ2 ◦ ρ1, where ρ1, ρ2 are quadratic maps. Let p1, p2, p3 be the

base points of ρ2. If m1,m2,m3 are the multiplicities of ρ−1
1 at p1, p2, p3, respectively, then

deg(ϕ) = deg(ρ2 ◦ ρ1) = 4−m1 −m2 −m3 ≤ 4,

that is our claim.
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Lemma 3.10. Let ϕ : P2 99K P2 be a plane de Jonquières map of degree d ≤ 5. Then,

oql(ϕ) ≥ ql(ϕ) ≥ d− 1.

Proof. It is trivial if d ≤ 3. Let us first consider the case d = 4.

By contradiction, suppose that ql(ϕ) ≤ 2. Clearly, ql(ϕ) cannot be less than 2, so we can

write ϕ = %2 ◦ %1, where %1, %2 are two quadratic plane Cremona maps. In other words, one

has that ϕ ◦ %−1
1 is the quadratic map %2. We claim that Proposition 1.71 implies that the

composition ϕ ◦ %−1
1 has always degree ≥ 3, that is a contradiction.

We now prove our claim. Suppose that p0, p1, . . . , p6 are the base points of ϕ, where p0 is

the triple base point and p1, . . . , p6 are simple base points.

We distinguish four possibilities:

• if %1 has base points p0, pi, pj with 0 < i < j ≤ 6, then ϕ ◦ %−1
1 has degree 3;

• if %1 has base points p0, pi with 0 < i ≤ 6 and pj is not a base point of %1 for any j

such that 0 ≤ j ≤ 6 and j 6= 0, i, then ϕ ◦ %−1
1 has degree 4;

• if %1 has base point p0 and p1, . . . , p6 are not base points of %1, then ϕ ◦ %−1
1 has degree

5;

• if p0 is not a base point of %1, then 5 ≤ deg(ϕ ◦ %−1
1 ) ≤ 8.

Our claim is proved.

We are left with the case d = 5.

By contradiction, suppose that ql(ϕ) ≤ 3, hence, ql(ϕ) = 3 by Corollary 3.9 and we can

write ϕ = %3 ◦ %2 ◦ %1, where %1, %2, %3 are quadratic plane Cremona maps. In other words,

one has that ϕ ◦ %−1
1 = %3 ◦ %2 has quadratic length 2.

Let p0 be the base point of multiplicity 4 of ϕ. There are two cases: either p0 is a base point

of %1 or p0 is not a base point of %1.

In the former case, the map ϕ ◦ %−1
1 = %3 ◦ %2 is a de Jonquières map of degree d′ with

4 ≤ d′ ≤ 6. If d′ = 5, 6, then Corollary 3.9 gives a contradiction. Otherwise d′ = 4, that is

another contradiction with the first part of this proof.

In the latter case, the map ϕ ◦ %−1
1 = %3 ◦ %2 has degree d′′ with 7 ≤ d′′ ≤ 10 and we get

again a contradiction with Corollary 3.9.

Definition 3.11. Let ϕ be a plane Cremona map. Let us define the height hϕ(p) of a point

p ∈ B(P2) with respect to ϕ as follows:

hϕ(p) =


0 if p is not a base point of ϕ,

1 if p is a proper base point of ϕ,

n+ 1 if p is a base point of ϕ and p �n p′ ∈ P2.
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Definition 3.12. Let ϕ be a plane Cremona map. Let us also define the load of a proper

base point p with respect to ϕ as follows:

loadϕ(p) = ]
{
q is a base point of ϕ

∣∣ q � p
}

+ 1,

that is the number of base points of ϕ which are infinitely near p increased by 1.

Remarks 3.13. (i) If p is a simple proper base point of ϕ, then the proximity inequality

implies that base points that are infinitely near p cannot be satellite; in other words,

there is a sequence pn �1 pn−1 �1 · · · �1 p1 �1 p where pi is a base point infinitely

near p of order i, i = 1, . . . , n; therefore, loadϕ(p) is equal to the maximum height of

base points that are infinitely near p.

(ii) If ϕ is a de Jonquières map of degree d and it has a unique proper base point p, then

loadϕ(p) = 2d− 1.

Notation 3.14. Let % be an involutory ordinary quadratic map and let p1, p2, p3 ∈ P2 be

its base points. Denote by `1 (`2, `3, resp.) the line passing through p2 and p3 (p1 and p3,

p1 and p2, resp.) and denote by T the triangle `1 ∪ `2 ∪ `3, as in Figure 3.1 at page 46.

Let us define a bijection %̄ : B(P2)→ B(P2) induced by % as follows:

• %̄(p) = p, if p = pi, i = 1, 2, 3;

• %̄(p) = %(p), if p ∈ P2 \ T ;

• %̄(p) is the point infinitely near pi of order 1 in the direction of the strict transform of

the line passing through pi and p, if p ∈ `i \ {pj, pk}, {i, j, k} = {1, 2, 3};

• %̄(p) is the point infinitely near pj of order 1 in the direction of the line `i, if p is the

point infinitely near pi of order 1 in the direction of the line `j, where {i, j} ⊂ {1, 2, 3};

• %̄(p) is the point q ∈ `i such that the line passing through pi and q is the strict transform

of the line passing through pi in the direction of the point p, if p is infinitely near pi of

order 1 (not lying on `j and `k, {i, j, k} = {1, 2, 3});

• %̄(p) is the point infinitely near %(p′) of order n in the direction of the strict transform

of a plane curve C, if p is infinitely near p′ ∈ P2 and C is a curve passing through p.

Let us say that %̄(p) ∈ B(P2) is the point corresponding to p ∈ B(P2) via %.

The following proposition is a generalization of Proposition 1.70, where now infinitely near

base points are allowed.

Proposition 3.15. Let p1, p2, p3 be the base points of an involutory ordinary quadratic plane

Cremona map % : P2 99K P2. Let ϕ : P2 99K P2 be a plane Cremona map of degree d > 1

with base points p4, . . . , pr and possibly p1, p2, p3. Denote by mi the multiplicity of ϕ at pi,
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Figure 3.1: The resolution of an involutory ordinary quadratic map %

i = 1, . . . , r (that is mi = 0 if pi is not a base point of ϕ, i = 1, 2, 3). Denote by %̄(p) the

(possibly infinitely near) point corresponding to p via % as in Notation 3.14.

Then, the composite map ϕ ◦ %−1 = ϕ ◦ % has degree d− ε, where

ε = m1 +m2 +m3 − d,

and it has %̄(pi), i = 4, . . . , r, as base point of multiplicity mi. Furthermore, it has multiplicity

mi − ε ≥ 0 at pi, i = 1, 2, 3 (that is, pi is not a base point of ϕ ◦ % when ε = mi).

Proof. Cf. Proposition 4.2.5 in [1].

Lemma 3.16. Let ϕ be a plane Cremona map and % an involutory ordinary quadratic map.

If p ∈ B(P2) and p̄ = %̄(p) ∈ B(P2) as in Notation 3.14, then

−1 ≤ hϕ(p)− hϕ◦%(p̄) ≤ 1.

Proof. Set ϕ′ = ϕ ◦ %. Let us see the possible cases:

• if p is not a base point of ϕ, that is hϕ(p) = 0, then either p̄ is not a base point of

ϕ′ or p̄ is a proper base point of ϕ′ by Proposition 3.15 and Notation 3.14. In the

former case, one has hϕ′(p̄) = 0, whereas in the latter case one has hϕ′(p̄) = 1, and the

assertion follows;

• if p is a proper base point of ϕ, that is hϕ(p) = 1, then Proposition 3.15 and Notation

3.14 imply that three cases may occur:

(1) p̄ is not a base point of ϕ′,

(2) p̄ is still a proper base point of ϕ′,
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(3) p̄ is a base point of ϕ′ which is infinitely near (of order 1) a proper base point,

accordingly, one has hϕ′(p̄) = 0, hϕ′(p̄) = 1, hϕ′(p̄) = 2, and the assertion follows;

• if p is a base point of ϕ and p is infinitely near p′ of order n, where p′ is a proper base

point of ϕ, that is hϕ(p) = n+ 1 and hϕ(p′) = 1, then the previous analysis shows that

0 ≤ hϕ′(p̄
′) ≤ 2 and accordingly n ≤ hϕ′(p̄) ≤ n+ 2, that is the assertion.

We conclude that the assertion holds in any case.

Proposition 3.17. Let ϕ be a plane Cremona map. Then

oql(ϕ) ≥ max{hϕ(p) | p ∈ B(P2)}.

Proof. Let us set n = oql(ϕ) and let

ϕ = α ◦ %n ◦ %n−1 ◦ · · · ◦ %2 ◦ %1

be a minimal decomposition of ϕ, where %i, i = 1, . . . , n, is an involutory ordinary quadratic

map and α is an automorphism of P2. We proceed by induction on n. Let us set

m(ϕ) = max{hϕ(p) | p ∈ B(P2)}.

The assertion is clearly true for n = 0, 1 because an automorphism has no base point and

an ordinary quadratic map has exactly three points of height 1.

We then suppose that n ≥ 2 and we denote ϕ ◦ %1 by ϕ′, so that oql(ϕ′) = n − 1 and by

induction hypothesis n− 1 ≥ m(ϕ′). Now Lemma 3.16 implies that

hϕ′(%̄1(p)) ≥ hϕ(p)− 1,

for any p ∈ B(P2), hence m(ϕ′) ≥ m(ϕ)− 1. Therefore, we conclude that

n = oql(ϕ) = (n− 1) + 1 ≥ m(ϕ′) + 1 ≥ m(ϕ),

that is the assertion.

3.2 Quadratic length of de Jonquières maps

In this section we give an upper bound for the quadratic length of plane de Jonquières maps

of fixed degree d. For this purpose, we will proceed by induction on the degree d.

The following lemma is classically very well-known.

Lemma 3.18. Let ϕ be a plane de Jonquières map of degree d ≥ 3. If some simple base point

of ϕ is proper. Then, there exists an involutory quadratic map % such that ϕ ◦ %−1 = ϕ ◦ %
is a plane de Jonquières map of degree d− 1.
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Proof. Let p1 be the maximal multiplicity base point of ϕ and let p2 be a simple proper base

point of ϕ. Then, there are three possible cases:

• there exists at least another simple proper base point of ϕ;

• there exists a simple base point of ϕ infinitely near p1 of order 1;

• there exists a simple base point of ϕ infinitely near p2 of order 1.

In all three cases, let us choose such a point and call it p3. Then, the point p3 cannot be

aligned with p1 and p2, hence there exists an involutory quadratic map % based at p1, p2, p3.

We conclude that ϕ ◦ % is a plane de Jonquières map of degree d− 1.

The following proposition can be found in [1].

Proposition 3.19. Let ϕ be a plane de Jonquières map of degree d. Then, there exists a

quadratic transformation % such that the composite map %◦ϕ−1 is a plane de Jonquières map

of the same degree d and having at least one simple proper base point.

Proof. See Proposition 8.4.2 in [1].

Corollary 3.20. Let ϕ be a plane de Jonquières map of degree d. Then, either there exists

an involutory quadratic map %1 such that ϕ◦%1 has degree d−1, or there exist two quadratic

maps %1, %2 such that %2 ◦ ϕ ◦ %1 is a plane de Jonquières map of degree d− 1.

Proof. In the former case, we apply Lemma 3.18, while in the latter case we first apply

Proposition 3.19 to the de Jonquières map ϕ−1 and we then conclude by Lemma 3.18.

Lemma 3.18 and Proposition 3.19 have been used in [1] in order to give an easy proof of

the classically well-known fact that a plane de Jonquières map can be resolved in (ordinary)

quadratic maps. Using the same technique, we prove the following

Theorem 3.21. Let ϕ be a plane de Jonquières map of degree d. Then,

ql(ϕ) 6 2d− 3.

Proof. By induction on the degree d. If d = 2, then ql(φ) = 1 = 2 ·2−3, that is the assertion.

If d > 2, then Corollary 3.20 implies that there exist two quadratic transformations %1 and

%2 such that %2◦ϕ◦%1 is a plane de Jonquières map of degree d−1. By induction hypothesis,

one has

ql(%2 ◦ ϕ ◦ %1) 6 2(d− 1)− 3 = 2d− 5.

It follows that

ql(ϕ) 6 ql(%2 ◦ ϕ ◦ %1) + 2 6 2d− 3,

that is the assertion.

For some specific case, we can find a better upper bound.
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Lemma 3.22. Let φ be a plane de Jonquières map of degree d > 2. Suppose that the weighted

proximity graph of φ is

d-1

p0

1

p2

1

p1

· · · 1

pd−1

1
pd

1
pd+1

. . . 1
p2d−2

d− 1 vertices

d− 1 vertices

Then, the quadratic length ql(φ) of φ is at most d− 1.

Proof. By induction on the degree d.

If d = 2, then φ is a quadratic map (of the second type), hence ql(φ) = 1, that is the

assertion.

For d > 2, let % be an involutory quadratic map based at p0, pd and p1 (clearly, p0, pd, p1 are

not collinear). Then, the composite map φ ◦ %−1 = φ ◦ % has degree d − 1 and its weighted

proximity graph is

d-1

11 · · · 1

1 1 . . . 1

d− 2 vertices

d− 2 vertices

By induction hypothesis, the quadratic length of φ ◦ % is such that

ql(φ ◦ %) 6 d− 2.

It follows that

ql(φ) 6 ql(φ ◦ %) + 1 6 d− 1,

that is the assertion.

3.3 On ordinary quadratic length of de Jonquières maps

Proposition 3.23. Let ϕ ∈ Cr(P2) be a de Jonquières map of degree d > 3. Let p0 be

the maximal multiplicity base point and suppose that the simple base points p1, . . . , p2d−2 are

either proper or infinitely near p0 of order 1. Then, one has

oql(ϕ) 6 d.

For convenience, one can reorder the simple base points of ϕ in such a way p1, . . . , pi are

proper and pi+1, . . . , p2d−2 are infinitely near p0 of order 1, where d− 1 6 i 6 2d− 2.
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Proof. By induction on the degree d.

For d = 3, the statement holds, as we will see in Table 4.2 at page 57.

Assume as induction hypothesis that within any degree d where d > 3, the statement holds.

Now, let consider ϕ a de Jonquières map of degree d+1 under assumptions of the proposition.

Since d > 3, then ϕ has degree d+ 1 ≥ 4 and ϕ has at least three simple proper base points.

Let ρ be an ordinary quadratic map centered at p0, p1, p2. Then ϕ ◦ ρ−1 has degree d and

has similar assumption. Therefore, by induction hypothesis, one has

oql(ϕ ◦ ρ−1) 6 d.

Hence,

oql(ϕ) 6 oql(ϕ ◦ ρ−1) + 1 6 d+ 1.

Remark 3.24. In the proof of Proposition 3.23, let p′0 be the maximal multiplicity of ϕ◦ρ−1.

If p3, . . . , pj where 3 6 j 6 i are on the line passing through p1, p2 then they correspond to

points infinitely near p′0 of order 1, while pi+1, . . . , p2d−2 correspond to simple proper base

points of ϕ ◦ ρ−1.

Lemma 3.25. Let ϕ ∈ Cr(P2) be a de Jonquières map of degree d ≥ 3. Suppose that the

same assumptions of Proposition 3.23 hold, namely that the simple base points p1, . . . , p2d−2

are either proper or infinitely near the maximal multiplicity base point p0 of order 1. Suppose

moreover that

• if d is even, then the enriched weighted proximity graph of ϕ is not isomorphic to the

following form

d-1

p0

1

pd+1

1

pd

· · · 1

p2d−2

1
p1

1
p2

. . . 1
pd−1

d− 1 vertices

d− 1 vertices

(3.4)

• and if d is odd, then the enriched weighted proximity graph of ϕ is not isomorphic to

the following form

d-1

p0

1

pd+2

1

pd+1

· · · 1

p2d−2

1
p1

1
p2

. . . 1
pd

d vertices

d− 2 vertices

(3.5)

where the dashed green curves means that p1, . . . , pd−1 are collinear in the former case and

it means p1, . . . , pd are collinear in the latter case, then oql(ϕ) ≤ d− 1.
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Proof. By induction on the degree d.

In case of degree d = 3, the enriched weighted proximity graph of ϕ is either one of types

27, 29, 30, 31 in Table 4.2 at page 57, that we will prove in Chapter 4 that oql(ϕ) = 2.

In case of degree d = 4, the enriched weighted proximity graph of ϕ is either one of types

72.1, 84.i with i = 1, . . . , 4, 88.j with j = 1, . . . , 8, 90.k with k = 1, . . . , 12 in Table 5.1 at

page 94. Choose two simple proper base points p1, p2 and let ρ be an involutory ordinary

quadratic map based at p0, p1, p2. Then, ϕ ◦ ρ is a de Jonquières map of degree 3 with

its enriched weighted proximity graph is one of types 27, 29, 30, 31 in Table 4.2, and then

oql(ϕ ◦ ρ) = 2. Note that, type 28 in Table 4.2 can not occur because of the assumption in

the statement of the lemma. Therefore, one has

oql(ϕ) ≤ oql(ϕ ◦ ρ) + 1 = 3.

Hence, the assertion holds true for degree d = 3, 4.

Suppose by induction that d ≥ 5 and that the assertion is true for d − 1. There are two

cases: either d is odd or d is even.

(I) If d is odd, we consider two sub-cases:

(a) if the simple base points are p1, . . . , pd−1 and they are collinear, namely the en-

riched weighted proximity graph is of the following form

d-1

p0

1

pd+1

1

pd

· · · 1

p2d−2

1
p1

1
p2

. . . 1
pd−1

d− 1 vertices

d− 1 vertices

Set ρ1 an involutory ordinary quadratic map based at p0, p1, p2. Then, ϕ ◦ ρ1 has

even degree (d− 1) and its enriched weighted proximity graph is of the following

form

d-2

p′0

1

p′d+1

1

p′d

· · · 1

p′2d−4

1
p′1

1
p′2

. . . 1
p′d−1

d− 1 vertices

d− 3 vertices

which is not isomorphic to (3.4). By hypothesis induction, one has

oql(ϕ ◦ ρ1) ≤ (d− 1)− 1 = d− 2.

Then,

oql(ϕ) ≤ oql(ϕ ◦ ρ1) + 1 ≤ (d− 2) + 1 = d− 1.

(b) If the simple proper base points of ϕ are p1, . . . , pi with i ≥ d − 1 and they are

not all collinear, namely there exists pj for some j = 3, . . . , i, such that pj does
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not lie on the line passing through p1, p2. Set ρ1 an involutory ordinary quadratic

map base at p0, p1, p2. Then, ϕ ◦ ρ1 has degree (d − 1) and either it has at least

d simple proper base points if i = d − 1, or it has at least (d − 1) simple proper

base points which are not all aligned if i ≥ d, and if it has infinitely near points

then they are infinitely near the maximal multiplicity base point of the first order.

That means ϕ ◦ ρ1 satisfies the assumption of the lemma, it has even degree and

its enriched weighted proximity graph is not isomorphic to (3.4). By hypothesis

induction, one has

oql(ϕ ◦ ρ1) ≤ (d− 1)− 1 = d− 2.

It follows

oql(ϕ) ≤ oql(ϕ ◦ ρ1) + 1 ≤ (d− 2) + 1 = d− 1.

(II) If d is even, we consider two sub-cases:

(c) if the simple proper base points of ϕ are p1, . . . , pd and they are collinear, namely

the enriched weighted proximity graph of ϕ is of the following form

d-1

p0

1

pd+2

1

pd+1

· · · 1

p2d−2

1
p1

1
p2

. . . 1
pd

d vertices

d− 2 vertices

Set ρ1 an involutory ordinary quadratic map based at p0, p1, p2. Then, ϕ ◦ ρ1 has

odd degree (d− 1) and its enriched weighted proximity graph is of the following

form

d-2

p′0

1

p′d

1

p′d−1

· · · 1

p′2d−4

1
p′1

1
p′2

. . . 1
p′d−2

d− 2 vertices

d− 2 vertices

which is not isomorphic to (3.5). By hypothesis induction, one has

oql(ϕ ◦ ρ1) ≤ (d− 1)− 1 = d− 2.

Then,

oql(ϕ) ≤ oql(ϕ ◦ ρ1) + 1 ≤ (d− 2) + 1 = d− 1.

(d) If the simple proper base points of ϕ are p1, . . . , pi with i ≥ d and they are not

all aligned, namely there exists pj for some j = 3, . . . , i, such that pj does not lie

on the line passing through p1, p2. Set ρ1 an involutory ordinary quadratic map

base at p0, p1, p2. Then, ϕ ◦ ρ1 has degree (d − 1), it has at least (d − 1) simple

proper base points which are not all aligned and if it has infinitely near points

then they are infinitely near the maximal multiplicity base point of the first order.
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That means ϕ ◦ ρ1 satisfies the assumption of the lemma, it has odd degree and

its enriched weighted proximity graph is not isomorphic to (3.5). By hypothesis

induction, one has

oql(ϕ ◦ ρ1) ≤ (d− 1)− 1 = d− 2.

It follows

oql(ϕ) ≤ oql(ϕ ◦ ρ1) + 1 ≤ (d− 2) + 1 = d− 1.
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Chapter 4

Cubic plane Cremona maps

In this chapter, we classify equivalence classes of cubic plane Cremona maps. Moreover, by

using this classification, we compute the quadratic length and the ordinary quadratic length

of all cubic plane Cremona maps. The main tool of the classification is the enriched weighted

proximity graph of the base points of a plane Cremona map. A previous “classification” was

obtained by Cerveau and Déserti, cf. [11] and Section 4.2.

4.1 Classification theorems

Let us set C∗∗ = C \ {0, 1} and let us define the following maps:

g1, g2 : C∗∗ × C∗∗ → C∗∗ × C∗∗, g1(a, b) = (b, a), g2(a, b) =

(
1

a
,
1

b

)
.

Therefore, g3 := g2 ◦ g1 = g1 ◦ g2 is the map (a, b) 7→ (1/b, 1/a). Clearly,

G = {id, g1, g2, g3}

is a group, under the composition, which is isomorphic to ((Z/2Z)2,+).

For a 6= b and a, b ∈ C∗∗, let us denote by S ′ the following set

S ′ =

{
(a, b),

(
a

a− 1
,
a− b
a− 1

)
,

(
b

b− 1
,
b− a
b− 1

)
,(

a− b
b(a− 1)

,
1

1− a

)
,

(
b− a
a(b− 1)

,
1

1− b

)
,

(
a− 1

b− 1
,
b(a− 1)

a(b− 1)

)}
and let us define

S = {g(s) | g ∈ G and s ∈ S ′}. (4.1)

Theorem 4.1. Any cubic plane Cremona map is equivalent to one of the maps in Table 4.1

at page 56, where the first 25 types are single maps, types 26-30 depend on one parameter

γ 6= 0, 1 and type 31 depends on two parameters a, b, where a, b 6= 0, 1 and a 6= b.

Two cubic plane Cremona maps of two different types are not equivalent.

Concerning the types depending on parameters:
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• ϕ26,γ, that is type 26 in Table 4.1 with parameter γ 6= 0, 1, is equivalent to ϕ26,γ′ if and

only if either γ′ = γ or γ′ = γ/(γ − 1);

• ϕ27,γ, that is type 27 in Table 4.1 with parameter γ 6= 0, 1, is equivalent to ϕ27,γ′ if and

only if either γ′ = γ or γ′ = 1/γ;

• for n ∈ {28, 29, 30}, the map ϕn,γ, that is type n in Table 4.1 with parameter γ 6= 0, 1,

is equivalent to ϕn,γ′ if and only if

γ′ ∈
{
γ,

1

γ
, 1− γ, 1

1− γ
,

γ

γ − 1
,
γ − 1

γ

}
.

• ϕ31,a,b, that is type 31 in Table 4.1 with two parameters a, b 6= 0, 1, a 6= b, is equivalent

to ϕ31,a′,b′ if and only if (a′, b′) ∈ S, where S is defined in (4.1).

In Table 4.1 at page 56, the first column lists our type, the second column lists the formula of

the maps, the third column lists the corresponding types in [11], cf. Section 4.2, and finally

the fourth column lists the types of the inverse maps.

Using the above classification theorem, it is easy to compute the ordinary quadratic length

and the quadratic length of all cubic plane Cremona maps:

Theorem 4.2. Plane Cremona maps equivalent to type 1 in Table 4.1 have quadratic length

3, while all other cubic plane Cremona maps have quadratic length 2.

A plane Cremona map equivalent to type n, 1 ≤ n ≤ 31, in Table 4.1 has the respective

ordinary quadratic length listed in the third column in Table 4.2 at page 57.

Corollary 4.3. The ordinary quadratic length of τ is oql(τ) = 4, hence the decomposition

(3.3) of τ is minimal.

Proof. Let p1, p2, p3 be the base points of τ , where p3 � p2 � p1 ∈ P2 and let ` be the line

through p1 and p2. Proposition 3.17 implies that oql(τ) ≥ 3 and the decomposition (3.3)

says that oql(τ) ≤ 4. Suppose by contradiction that oql(τ) = 3. Then, there exists an

involutory ordinary quadratic map ψ such that oql(τ ◦ ψ) = 2. Either p1 is a base point of

ψ or it is not. In the latter case, τ ◦ ψ has a base point of height 3, hence Proposition 3.17

implies oql(τ ◦ψ) ≥ 3, a contradiction. In the former case, if one of the other two base points

of ψ lies on the line `, then p2 corresponds to a base point of the map τ ◦ ψ which is still

infinitely near and, therefore, τ ◦ ψ has still a base point of height 3 and we get again the

same contradiction. Otherwise, the map τ ◦ ψ has the proximity graph of type 24 in Table

4.2, which has ordinary quadratic length 3, according to Theorem 4.2, a contradiction.

We are going to prove these theorems in Sections 4.3 and 4.4.
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Table 4.1: Types of cubic plane Cremona maps.

] Map [11] Inv

1 [xz2 + y3 : yz2 : z3] 1 1

2 [x(x2 + yz) : y3 : y(x2 + yz)] 20 8

3 [xz2 : x3 + xyz : z3] 3 5

4 [x2z : x3 + z3 + xyz : xz2] 4 4

5 [x2z : x2y + z3 : xz2] 5 3

6 [x2(x− y) : xy(x− y) : xyz + y3] 12 6

7 [x(x2 + yz) : y(x2 + yz) : xy2] 24 17

8 [xyz : yz2 : z3 − x2y] 6 2

9 [y2z : x(xz + y2) : y(xz + y2)] 21 9

10 [x3 : y2z : xyz] 7 10

11 [x(y2 + xz) : y(y2 + xz) : xyz] 22 18

12 [xz2 : x2y : z3] 2 12

13 [x(y2 + xz) : y(y2 + xz) : xy2] 23 20

14 [x3 : x2y : (x− y)yz] 11 15

15 [x2y : xy2 : (x− y)2z] (?) 14

16 [x(x2 + yz) : y(x2 + yz) : xy(x− y)] 28 24

17 [xyz : y2z : x(y2 − xz)] 10 7

18 [x2(y − z) : xy(y − z) : y2z] 8 11

19 [x(x2 + yz + xz) : y(x2 + yz + xz) : xyz] 26 19

20 [x2z : xyz : y2(x− z)] 9 13

21 [x(xy + xz + yz) : y(xy + xz + yz) : xyz] 25 21

22 [xz(x+ y) : yz(x+ y) : xy2] 13 22

23 [x(x2 + xy + yz) : y(x2 + xy + yz) : xyz] 27 25

24 [xyz : (y − x)yz : x(x− y)(y − z)] 15 16

25 [x(x+ y)(y + z) : y(x+ y)(y + z) : xyz] 14 23

26 [x(γxz − γy2 − xy + y2) : γxy(z − y) : γy2(z − x)] 29 26

27 [γx2y : γxy2 : (x+ y)(x+ γy)z] 16 27

28 [xy(x− y) : xz(y − γx) : z(y + γx)(y − γx)] 17† 28

29 [xy(x− y) : x(xy − γxy + γxz − yz) : x2y − γ2x2y + γ2x2z − y2z] 30 30

30 [x(xy + γxz − xz − γy2) : γxz(x− y) : γz(x− y)(x+ y)] 18 29

[ax(−abxz + aby2 − b2xy + b2xz + axy − ay2) : ax(−abxz + abyz + axy
31 −ayz − bxy + bxz) : −a2bx2z + a2by2z + a2x2y − a2y2z − b2x2y + b2x2z] 32 31
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Table 4.2: Enriched weighted proximity graphs and ordinary quadratic lengths of the cubic

plane Cremona maps.

] Enriched weighted prox. graph oq

1 2 1 1 1 1 6

2 2 1 1 1 1 5

3 2 1 1 1 1 5

4 2 1 1 1 1 4

5 2 1 1 1 1 5

6 2 1 1 1 1 4

7 2 1 1 1 1 4

8 2 1 1 1 1 5

9 2 1 1 1 1 4

10 2 1 1 1 1 3

11 2 1 1 1 1 3

12 2 1 1 1 1 3

13 2 1 1 1 1 3

14 2 1 1 1 1 3

15 2 1 1 1 1 3

] Enriched weighted prox. graph oq

16 2 1 1 1 1 3

17 2 1 1 1 1 4

18 2 1 1 1 1 3

19 2 1 1 1 1 3

20 2 1 1 1 1 3

21 2 1 1 1 1 2

22 2 1 1 1 1 3

23 2 1 1 1 1 2

24 2 1 1 1 1 3

25 2 1 1 1 1 2

26 2 1 1 1 1 2

27 2 1 1 1 1 2

28 2 1 1 1 1 3

29 2 1 1 1 1 2

30 2 1 1 1 1 2

31 2 1 1 1 1 2
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4.2 Comparison with the classification in [11]

In this section we compare our classification with the one in [11]. The classification in [11] is

divided in 32 types, namely 27 types are a single map each, 4 types are families depending

on one parameter and 1 type is a family depending on two parameters. Their classification

is based on the analysis of plane curves contracted by a cubic plane Cremona map. We will

freely use Notation 1.1 at page 1.

Remark 4.4. The classification in [11] is not complete. Our type 15 does not occur in their

list, even if it is equivalent to the inverse of their type 11.

Remarks 4.5. ♣ In [11], their type 19 is equivalent to a specific case of their type 18

with parameter γ0 = −3/
√

2. In particular, let us denote by ψ19 and ψ18,γ the two

maps of their type 19 and their type 18 with parameter γ respectively, then

ψ19 = [2x− z : z :
√

2y − 2x] ◦ ψ18,γ0 ◦ [x− y :
√

2x :
√

2(z − y)].

♣ Similarly, in [11], their type 31 is equivalent to their type 30 with parameter γ0 = 3/
√

2.

Indeed, let us denote by ψ31 and ψ30,γ the two maps of their type 31 and their type 30

with parameter γ respectively, then

ψ31 = [y +
√

2x : −y : 2(z − y)] ◦ ψ30,γ0 ◦ [x+ y : −
√

2y : x+ 2z].

This explains why the two types 19 and 31 in [11] do not appear in the third column of

our Table 4.1.

Remark 4.6. Let ψ17 be type 17 in [11], that is

ψ17([x : y : z]) = [xz(x+ y) : yz(x+ y) : xy(x− y)].

Then, ψ17 is equivalent to our type 28 in Table 4.1 with γ0 = −1, because

[y : y + z : x] ◦ ϕ28,γ0 = ψ17.

However, it seems that our type 28 with γ 6= −1 does not occur in the list in [11]. This

explains why we added † at type 17 in the third column of Table 4.1.

Remarks 4.7. ♣ Let ϕ24 be the map of type 24 in Table 4.1. Then, ϕ24 is equivalent to

type 15 in [11], that is ψ15([x : y : z]) = [x(x+ y)(z+ y+x) : y(x+ y)(z+ y+x) : xyz].

Indeed, one has

ϕ24 ◦ [x : x+ y : x+ y + z] = ψ15.

♣ Let ϕ26,γ be the map of type 26 with parameter γ 6= 0, 1 in Table 4.1. Let ψ29,t be the

map of type 29 with parameter t 6= 0, 1 in [11], that is

ψ29,t([x : y : z]) = [x(y2 + txy + xz + yz) : y(y2 + txy + xz + yz) : xyz].
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Then, one has that

[ty − x : t(y − tz) : ty] ◦ ϕ26,γ0 ◦ [−tx : y : y + z] = ψ29,t,

where γ0 =
1

1− t
, that shows that ϕ26,γ0 is equivalent to ψ29,t.

♣ Let ϕ27,γ be the map of type 27 with parameter γ 6= 0, 1 in Table 4.1. Let ψ16,t be the

map of type 16 with parameter t such that t2 6= 4 in [11], that is

ψ16,t([x : y : z]) = [x(x2 + y2 + txy) : y(x2 + y2 + txy) : xyz].

Then, one has that ψ16,t and

ϕ27,γ0 ◦ [−(t−x+ y) : t+x+ y : z],

where γ0 = t−/t+, are defined by the same homaloidal net, therefore ϕ27,γ0 is equivalent

to ψ16,t.

♣ Let ϕ29,γ be the map of type 29 with parameter γ 6= 0, 1 in Table 4.1. Let ψ30,t be the

map of type 30 with parameter t such that t2 6= 4 in [11], that is

ψ30,t([x : y : z]) = [x(x2 + y2 + txy + xz) : y(x2 + y2 + txy + xz) : xyz].

Then, one has that ψ30,t and

ϕ29,γ0 ◦ [t•y : t+(y + t−x) : t+y + x+ z)],

where γ0 =
1

2
+

t

2t•
, are defined by the same homaloidal net, therefore ϕ29,γ0 is equivalent

to ψ30,t.

♣ Let ϕ30,γ be the map of type 30 with parameter γ 6= 0, 1 in Table 4.1. Let ψ18,t be the

map of type 18 with parameter t such that t2 6= 4 in [11], that is

ψ18,t([x : y : z]) = [x(x2 + y2 + txy + t+xz + yz) : y(x2 + y2 + txy + t+xz + yz) : xyz].

Then, one has that ϕ30,γ0, where γ0 = tt+ − 1, and

ψ18,t ◦ [x : −t+y : t+y − t−x− t•z]

are defined by the same homaloidal net, therefore ϕ30,γ0 is equivalent to ψ18,t.

♣ Let ϕ31,a,b be the map of type 31 with two parameters a, b such that a 6= b and a, b 6= 0, 1

in Table 4.1. Let ψ32,t,h be the map of type 32 with two parameters t, h such that t2 6= 4

and h 6= t± in [11], that is

ψ32,t,h([x : y : z]) = [x(txy + hxz + x2 + y2 + yz) : y(txy + hxz + x2 + y2 + yz) : xyz].

Then, one has that ψ32,t,h and

ϕ31,a0,b0 ◦ [t•x : −t−x− y : −t−x− y − z], (a0, b0) =

(
(2− tt+)h

h− t+
,

h

h− t+

)
,

are defined by the same homaloidal net, therefore ϕ31,a0,b0 is equivalent to ψ32,t,h.

59



Remarks 4.8. ♣ Let ψ19 be type 19 in [11], that is

ψ19([x : y : z]) = [y(x− y)(x+ z) : x(x− y)(z − y) : yz(x+ y)].

Then, ψ19 is equivalent to ϕ30,−1, that is type 30 in Table 4.1, with parameter γ = −1,

because

[y − x+ z : x− y : y − z] ◦ ϕ30,−1 ◦ [−x : y : z] = ψ19.

♣ Let ψ31 be type 19 in [11], that is

ψ31([x : y : z]) = [x(x2 + yz + xz) : y(x2 + yz + xz) : xy(x− y)].

Then, ψ31 is equivalent to ϕ29,−1, that is type 29 in Table 4.1, with parameter γ = −1,

because

[−y : 2x− y − z : 2x] ◦ ϕ29,(γ=−1) ◦ [x : y : 2x+ 2z] = ψ31.

Remark 4.9. In Section 6.4, Théorème 6.39 in [11], there is a list of decompositions in

quadratic maps of their 32 types of cubic plane Cremona maps. Note that the decompositions

of types 25 and 26 are exchanged and the decomposition of type 24 is incorrect. A correct

decomposition in quadratic maps of their type 24 (our type 7) is:

[x(x2 + yz) : y(x2 + yz) : xy2] = [x : z : y] ◦ ρ ◦ [y : x+ y : z] ◦ ρ ◦ [z : y : x].

Table 4.3: Decompositions of the 31 cubic plane Cremona maps listed in Table 4.1.

] A decomposition αn ◦ σ ◦ αn−1 ◦ σ ◦ · · · ◦ α1 ◦ σ ◦ α0

α6 = [27y + 225z : 12y : 8x− 8y], α5 = [2x+ 5y : 5y − x : 15x+ 15z],

1 α4 = [2x+ 2z : 5x : 3x+ 10y − 2z], α3 = [x− y : z + 2y − x : 2y],

α2 = [z : z − 2x : 2x+ 2y − z], α1 = [x− y : z − x+ y : 2x− y], α0 = [y : y + z : x]

α5 = [8y − 8x : x+ z : 4x], α4 = [x+ y : y : z − x],

2 α3 = [2x : −y − 2x : y + 2x− 2z], α2 = [y − x : x : x+ z − y],

α1 = [x : z − x : y], α0 = [x : z : x+ y]

α5 = [4y : 4y + 3x : 4y + 4z], α4 = [3x− z : z − y : y],

3 α3 = [9z + 3x : y : 3z − y], α2 = [3y + 4z − x : x− z : 3x],

α1 = [y + z : x− y + z : y − z], α0 = [2y : x+ z : x− z],

α4 = [y + z : x+ 2z : z − y], α3 = [2x : y − z : y + z],
4 α2 = [y − 4x− 4z : x : z], α1 = [y + z : x : y − z], α0 = [2y : x+ z : x− z]

α5 = [4y + 4z : 12z + x+ 9y : 6y + 8z], α4 = [2y + z : −2x− z : 2x+ 2z],

5 α3 = [2y : 2y − z + x : z − y], α2 = [2z + 2x− y : 2z − y : y],

α1 = [y − x− z : 2z + x : x+ z], α0 = [x− z : y : z]

α4 = [−2y − 4x : 4x : 2x+ y + 2z], α3 = [x− 2z : z : y], α2 = [y : z − 2y − x : 2x],
6 α1 = [y − x : x+ y : 2z], α0 = [x− y : x+ y : x+ y + 2z]

α4 = [y − x : y : y − z], α3 = [x : z : z + y], α2 = [z : y − x− z : x],
7 α1 = [x : y : x+ z], α0 = [x : x+ z : y − x]
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α5 = [2y : −4x− 4y : 8x+ 9y + z], α4 = [2x− 2y : 2y − x : x+ 2z],

8 α3 = [x+ y : x : z − y − 2x], α2 = [x+ y : −2x : 2x+ y + z],

α1 = [2x+ y : y : 2x− y + 2z], α0 = [−z : x+ z : y + z]

α4 = [z − y : x : z], α3 = [x : y + z : z], α2 = [x : x− y : z],
9 α1 = [x : y + z : z], α0 = [x : z − y : y]

α3 = [x+ y : −y − z : y], α2 = [z − x : x+ y : −y],
10 α1 = [z : x− z : y + z − x], α0 = [x : x+ z : x+ y]

11 α3 = [z : x : y], α2 = [x : x+ z − y : z], α1 = [x : y + z : z], α0 = [x : z − y : y]

α3 = [−x : x− z : x+ y], α2 = [y − x : x : y + z],
12 α1 = [y : x+ y : z − x− y], α0 = [−z : x+ z : y − z]

13 α3 = [x : y : z], α2 = [z − y : z : x+ z − y], α1 = [x : y + z : z], α0 = [z : x− y : y]

14 α3 = [x+ z : z : y], α2 = [x : z − y : z − x], α1 = [x : y + z : z], α0 = [y : z − x : x]

α3 = [z − y : y + z : 4y − 4x], α2 = [x+ y : y : z],
15 α1 = [y − x+ 2z : x− y : x+ y], α0 = [x : y : z]

α3 = [−x : y : 2y − z], α2 = [y : x : x+ z],
16 α1 = [x+ z : −z : y − 2x− 2z], α0 = [x : x+ z : y − x]

α4 = [−y : x− y : 3y + z], α3 = [x+ y : y : z], α2 = [z : x : y − x+ z],
17 α1 = [x : y − x : z], α0 = [y : y + z : x− y]

18 α3 = [x+ z : z : z − y], α2 = [x : y + z : z], α1 = [y − x : z − y − x : x], α0 = [x : y : z]

19 α3 = [x : z : −y], α2 = [y : z − y : x], α1 = [x : z : y − x], α0 = [x : x+ z : y]

α3 = [z − y : z : x+ z], α2 = [x : y + z : z],
20 α1 = [z − x− y : x− y : y], α0 = [x : y : z]

21 α2 = [x : y : z], α1 = [x : y : x+ y + z], α0 = [x : y : z]

α3 = [y − 2z : z : x+ z], α2 = [x : y + z : z],
22 α1 = [x+ y − z : 2x+ y : −x− y], α0 = [x : y : z]

23 α2 = [x : −y : z], α1 = [y + z : z : x+ y + z], α0 = [z : x : −x− y]

α3 = [x : y : z], α2 = [x+ z : z − x : 6z − 4y],
24 α1 = [x : y + z : z], α0 = [y − 2x : 2z − 3y : y]

25 α2 = [−x : z : y], α1 = [z : x+ y : y + z], α0 = [z : y : −x− y]

α2 = [γ(γx− 2x+ y) + x+ z : γ(γx− x+ y) : γ(γx+ y)],
26 α1 = [γ((γ − 1)x− γy + z) : γ(y − x) : γx], α0 = [x : y : z]

α2 = [γ(γx+ y) : −γ(x+ y) : (γ − 1)2z], α1 = [γx+ y : −x− y : (γ − 1)z],
27 α0 = [x : y : z]

α3 = [z : γ2(x+ y) : γ2(x+ γx+ γy)], α2 = [x+ γy − y : −γy : z],
28 α1 = [x : x− γy : −γz], α0 = [x : y : z]

α2 = [y + z : y − x : γ(y − x− z)− x+ y + z],
29 α1 = [x− y : x− γy : (1− γ)z − x+ γy], α0 = [x : y : z]

α2 = [γ2x+ (1− γ)y − z : γ(γx− y) : γ((γ + 1)x− y)],
30 α1 = [γ(y + z)− y : y + z : x+ z], α0 = [z − x : y − x : x]

α2 = [a(a(x+ (b− 1)2z) + by) : a(ax+ y) : by − ((b− 1)z − x)a2−
31 −(b((1− b)z − x)− y)a], α1 = [ax− by : y − x : (b− 1)ax− b(a− 1)y + (a− b)z],

α0 = [x : y : z]
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Remark 4.10. For types 9, 11, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30 and 31, the

decompositions listed in [11] are already minimal.

Among 31 cubic plane Cremona maps listed in Table 4.1, for those maps where their ordinary

quadratic lengths are at least 3, we give in Table 4.4 other decompositions into (not necessary

ordinary) quadratic maps.

Table 4.4: Decomposition into quadratic maps of some types.

] A minimal decomposition into quadratic maps

1 [x : z : y] ◦ ρ ◦ [z : y : x] ◦ τ ◦ [z : y : −x] ◦ ρ ◦ [x : z : y]

2 [x+ z : y : z] ◦ ρ ◦ [y − x : z : x] ◦ τ ◦ [y : x : −z]

3 [z : x : y] ◦ ρ ◦ [z : y : x] ◦ τ ◦ [z : x : −y]

4 [y : z : x] ◦ τ ◦ [y : x : −z] ◦ τ ◦ [x : z : −y]

5 [x : z : y] ◦ τ ◦ [−z : −y : x+ z] ◦ ρ ◦ [y − z : x : z]

6 [−y : z : x] ◦ ρ ◦ [x+ y + 2z : y + z : −z] ◦ ρ ◦ [x+ z : x : y − x]

7 [−x− z : z : y] ◦ ρ ◦ [−z − y : x+ y + z : z] ◦ ρ ◦ [z − x : y : x]

8 [y : x : −z] ◦ τ ◦ [z : x+ z : y] ◦ ρ ◦ [x− z : y : z]

9 [y : −x− z : z] ◦ ρ ◦ [−2z − x : x+ y + z : z] ◦ ρ ◦ [x− y : z : y]

10 [y : x+ z : z] ◦ ρ ◦ [z − y : x+ z : y] ◦ ρ ◦ [z − x : y : x]

11 [x : z : z − y] ◦ ρ ◦ [z : x+ y + z : y] ◦ ρ ◦ [z − y : x : y]

12 [z : x+ z : y] ◦ ρ ◦ [x+ z − y : z : y] ◦ ρ ◦ [y − z : x : z]

13 [z : y : x] ◦ σ ◦ [y + x+ z : z : y] ◦ ρ ◦ [z − y : x : y]

14 [y : y + z : −x] ◦ ρ ◦ [x+ z : z − y : y] ◦ ρ ◦ [z − x : y : x]

15 [x : z + x : y] ◦ ρ ◦ [y : z : x− y] ◦ σ
16 [x : z : y + z] ◦ ρ ◦ [y : x− z − y : y + z] ◦ σ ◦ [x+ z : y − x : x]

17 [y : x : −z] ◦ τ ◦ σ
18 [x+ z : z : −y] ◦ ρ ◦ [y − x : y − z : x] ◦ σ
19 [z : x : y + z] ◦ ρ ◦ [z : x− y − z : y] ◦ σ ◦ [x+ z : y : x]

20 [y : z : x+ z] ◦ ρ ◦ [z − x− y : x : y] ◦ σ
22 [y − z : z : x+ z] ◦ ρ ◦ [z − x− y : x : x+ y] ◦ σ
24 [y + z : −z : x− z] ◦ ρ ◦ [x− y + z : y − x : x] ◦ σ
28 [x : z − y : 2γz − (1 + γ)y] ◦ ρ ◦ [(1− γ)z : x− y : x− γy] ◦ σ

Remark 4.11. With those maps (including types 21, 23, 25, 26, 27, 29, 30, 31 listed in Table

4.1), whose have the ordinary quadratic length exactly 2 (hence their quadratic lengths are

also 2), then their minimal decompositions into quadratic maps can be found in Table 4.3.
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4.3 Proof of the Classification Theorem 4.1

The results in Chapter 2 imply that any cubic plane Cremona map has an enriched weighted

proximity graph of the 31 types in Table 4.2. We will show that a cubic plane Cremona map

with enriched weighted proximity graph of type n, 1 ≤ n ≤ 31, in Table 4.2 is equivalent to

the map of type n in Table 4.1 at page 56.

Lemma 4.12. Let ϕ1 be the map 1 in Table 4.1 and let ψ1 be a map with enriched weighted

proximity graph 1 in Table 4.2. Then, ψ1 is equivalent to ϕ1.

Proof. The base points of ϕ1 are p0 = [1 : 0 : 0] of multiplicity 2 and p1, . . . , p4 with

p4 �1 p3 �1 p2 �1 p1 �1 p0 and p2 � p0, whose standard coordinates are p1 = (p0, 0),

p2 = (p0, 0,∞), p3 = (p0, 0,∞,−1), p4 = (p0, 0,∞,−1, 0).

The base points of ψ1 are q0 of multiplicity 2 and q1, . . . , q4 with q4 �1 q3 �1 q2 �1 q1 �1 q0

and q2 � p0. Clearly, there exists an automorphism α1 of P2 such that α1(p0) = q0 and

α1(p1) = q1, so that also α1(p2) = q2.

The base points of ψ1 ◦ α1 are then p0, p1, p2, q
′
3, q
′
4 where q′3 has standard coordinates q′3 =

(p0, 0,∞, u3) for some u3 ∈ C∗ because, if u3 were 0, then q′3 would be proximate to p0, a

contradiction, and, if u3 were ∞, then q′3 would be proximate to p1, again a contradiction.

An automorphism α2 of P2 that fixes p0, p1, p2 and that maps p3 to q′3 is

α2([x : y : z]) = [−x : u3y : u3z].

The base points of ψ1 ◦ α1 ◦ α2 are then p0, p1, p2, p3, q
′′
4 where q′′4 has standard coordinates

q′′4 = (p0, 0,∞,−1, u4) for some u4 ∈ C because, if u4 were ∞, then q′′4 would be proximate

to p2, a contradiction.

An automorphism α3 of P2 that fixes p0, p1, p2, p3 and that maps p4 to q′′4 is

α3([x : y : z]) = [3x : 3y + u4z : 3z].

Therefore, the maps ϕ1 and ψ1 ◦ α1 ◦ α2 ◦ α3 are defined by the same homaloidal net and,

hence, ϕ1 and ψ1 are equivalent.

Lemma 4.13. Let ϕ2 be the map defined by type 2 in Table 4.1 at page 56. Then, ϕ2 has

only proper base point p0 = [0 : 0 : 1] of multiplicity 2 and other base points p1, p2, p3, p4

satisfy p4 �1 p3 �1 p2 �1 p1 �1 p0 where their standard coordinates respectively are p1 =

(p0, 0), p2 = (p0, 0,−1), p3 = (p0, 0,−1, 0) and p4 = (p0, 0,−1, 0, 0), that is each pi in the

direction of the conic c2 : x2 + yz = 0 for any i = 1, . . . , 4.

Proof. Consider ϕ2 : P2 99K P2 defined by

ϕ2([x : y : z]) = [x(x2 + yz) : y3 : y(x2 + yz)].
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The map has only proper base point p0 = [0 : 0 : 1] and its multiplicity 2.

A curve C of the linear system associated to ϕ2 is of the following form

λ1x(x2 + yz) + λ2y
3 + λ3y(x2 + yz) = 0,

for some [λ1 : λ2 : λ3] ∈ P2.

In the affine chart U2 = {[x : y : z] ∈ P2|z 6= 0} ' Ax,y, so that p0 corresponds to the origin

0 = (0, 0), the curve C has local equation

Ca : λ1x(x2 + y) + λ2y
3 + λ3y(x2 + y) = 0

and the local equation of the conic c2 is

c2a : x2 + y = 0.

� Blowing-up A2
x,y at 0 and consider the first chart given in coordinates by x = x1 and

y = x1y1, one has

• the exception curve E0 is defined by x1 = 0;

• the strict transform of the curve Ca is given by

Ca1 : λ2x1y
3
1 + λ3x1y1 + λ3y

2
1 + λ1x1 + λ1y1 = 0;

• the strict transform of the conic c2a is

c2a1 : x1 + y1 = 0.

Then, p1 = E0∩Ca1∩ c2a1 is the origin of A2
x1,y1

. In other words, the standard coordinates of

p1 w.r.t ϕ2 is p1 = (p0, 0). Moreover, one can easy check that p1 is the only point infinitely

near p0 of the first order.

� Blowing-up A2
x1,y1

at 0 and consider the first chart given in coordinates by x1 = x2 and

y1 = x2y2, one has

• the exception curve E1 is defined by x2 = 0;

• the strict transform of the curve Ca1 is given by

Ca2 : λ2x
3
2y

3
2 + λ3x2y

2
2 + λ3x2y2 + λ1y2 + λ1 = 0;

• the strict transform of the conic c2a1 is

c2a2 : 1 + y2 = 0.
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It follows the local coordinate of p2 = E1 ∩ Ca2 ∩ c2a2 in A2
x2,y2

is p2 = (0,−1). Thus, the

standard coordinates of p2 w.r.t ϕ2 is p2 = (p0, 0,−1) and clearly p2 6� p0.

� Blowing-up A2
x2,y2

at p2 = (0,−1).

Consider α : A2
x2,y2
→ A2

X,Y a linear change coordinates defined as followsx2 = X,

y2 = Y − 1.

With the new coordinates, p2 is the origin of A2
X,Y and the equations of the curve Ca2 and

the conic c2a2 respectively are

Ca2 : λ2X
3Y 3 − 3λ2X

3Y 2 + 3λ2X
3Y − λ2X

3 + λ3XY
2 − λ3XY + λ1Y = 0,

and

c2a2 : Y = 0.

Blowing-up A2
X,Y at 0 and consider the first chart given in coordinates by X = x3 and

Y = x3y3, one has

• the exception curve E2 is defined by x3 = 0;

• the strict transform of the curve Ca2 is given by

Ca3 : λ1y3 + (x5
3y

3
3 − 3x4

3y
2
3 + 3x3

3y3 − x2
3)λ2 + (x2

3y
2
3 − x3y3)λ3 = 0;

• the strict transform of the conic c2a2 is

c2a3 : y3 = 0.

Then, p3 = E2 ∩ Ca3 ∩ c2a3 is the origin of A2
x3,y3

. It follows the standard coordinates of p3

w.r.t ϕ2 is p3 = (p0, 0,−1, 0).

� Blowing-up A2
x3,y3

at 0 and consider the first chart given in coordinates by x3 = x4 and

y3 = x4, y4, one has

• the exception curve E3 is defined by x4 = 0;

• the strict transform of the curve Ca3 is given by

Ca4 : λ1y4 + (x7
4y

3
4 − 3x5

4y
2
4 + 3x3

4y4 − x4)λ2 + (x3
4y

2
4 − x4y4)λ3 = 0.

• the strict transform of the conic c2a3 is

c2a4 : y4 = 0.
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Then, the local coordinate of p4 = E3 ∩Ca4 ∩ c2a4 is the origin of A2
x4,y4

. In other words, the

standard coordinates of p4 w.r.t ϕ2 is p4 = (p0, 0,−1, 0, 0).

Lemma 4.14. Let ϕ2 be the map 2 in Table 4.1 and let ψ2 be a map with enriched weighted

proximity graph 2 in Table 4.2. Then, ψ2 is equivalent to ϕ2.

Proof. The base points of ϕ2 are p0 = [0 : 0 : 1] of multiplicity 2 and p1, . . . , p4 with standard

coordinates p1 = (p0, 0), p2 = (p0, 0,−1), p3 = (p0, 0,−1, 0), p4 = (p0, 0,−1, 0, 0). So there

is a unique irreducible conic passing through p0, . . . , p4, that is C1 : x2 + yz = 0. Let q0 be

the double base point of ψ2 and let q1, . . . , q4 be the simple base points of ψ2. According

to Lemma 1.55, there is a unique irreducible conic C2 passing through q0, . . . , q4. Moreover,

Lemma 1.15 implies that there exists an automorphism α of P2 such that α(q0) = p0 and

α(C2) = C1. This forces α(qi) = pi, i = 1, 2, 3, 4. Therefore, ψ2 is equivalent to ϕ2.

Lemma 4.15. Let ϕ3 be the map 3 in Table 4.1 and let ψ3 be a map with enriched weighted

proximity graph 3 in Table 4.2. Then, ψ3 is equivalent to ϕ3.

Proof. The base points of ϕ3 are p0 = [0 : 1 : 0] of multiplicity 2 and p1, p2, p3, p4 where

p1 �1 p0 and p4 �1 p3 �1 p2 �1 p0 with standard coordinates p1 = (p0,∞), p2 = (p0, 0), p3 =

(p0, 0,−1) and p4 = (p0, 0,−1, 0).

The base points of ψ3 are q0 of multiplicity 2 and q1, . . . , q4 where q1 �1 q0 and q4 �1 q3 �1

q2 �1 q0. Clearly, there exists an automorphism α1 of P2 such that α1(qi) = pi for i = 0, 1, 2.

The base points of ψ3 ◦ α1 are then p0, p1, p2, q
′
3, q
′
4 where q′3 has standard coordinates q′3 =

(p0, 0, u3) for some u3 ∈ C∗ because, if u3 were 0, then q′3 would be aligned with p0 and p2, a

contradiction, and, if u3 were ∞, then q′3 would be proximate to p0, again a contradiction.

An automorphism α2 of P2 that fixes p0, p1, p2 and that maps p3 = (p0, 0,−1) to q′3 =

(p0, 0, u3) is

α2([x : y : z]) = [u3x : −y : u3z].

The base points of ψ3 ◦ α1 ◦ α2 are then p0, p1, p2, p3, q
′′
4 where q′′4 has standard coordinates

q′′4 = (p0, 0,−1, u4) for some u4 ∈ C because, if u4 were ∞, then q′′4 would be proximate to

p2, a contradiction.

An automorphism α3 of P2 that fixes p0, p1, p2, p3 and that maps p4 to q′′4 is

α3([x : y : z]) = [x : y − u4x : z].

Therefore, the maps ϕ3 and ψ3 ◦ α1 ◦ α2 ◦ α3 are defined by the same homaloidal net and,

hence, ϕ3 and ψ3 are equivalent.

Lemma 4.16. Let ϕ4 be the map 4 in Table 4.1 and let ψ4 be a map with enriched weighted

proximity graph 4 in Table 4.2. Then, ψ4 is equivalent to ϕ4.

Proof. The base points of ϕ4 are p0 = [0 : 1 : 0] of multiplicity 2 and p1, . . . , p4 where

p3 �1 p1 �1 p0 and p4 �1 p2 �1 p0, with standard coordinates p1 = (p0,∞), p3 = (p0,∞,−1),

p2 = (p0, 0) and p4 = (p0, 0,−1).

66



The base points of ψ4 are q0 of multiplicity 2 and q1, . . . , q4 where q3 �1 q1 �1 q0 and

q4 �1 q2 �1 q0. Clearly, there exists an automorphism α1 of P2 such that α1(pi) = qi for

i = 0, 1, 2.

The base points of ψ4 ◦ α1 are then p0, p1, p2, q
′
3, q
′
4 where q′3 has standard coordinates q′3 =

(p0,∞, u3) for some u3 ∈ C∗ because, if u3 were 0, then q′3 would be aligned with p0 and p1,

a contradiction, and, if u3 were ∞, then q′3 would be proximate to p0, again a contradiction.

An automorphism α2 of P2 that fixes p0, p1, p2 and that maps p3 = (p0,∞,−1) to q′3 =

(p0,∞, u3) is

α3([x : y : z]) = [−u3x : y : z].

The base points of ψ4 ◦ α1 ◦ α2 are then p0, p1, p2, p3, q
′′
4 where q′′4 has standard coordinates

q′′4 = (p0, 0, u4) for some u4 ∈ C∗ because, if u4 were 0, then q′4 would be aligned with p0 and

p2, a contradiction, and if u4 were ∞, then q′′4 would be proximate to p0, a contradiction.

An automorphism α3 of P2 that fixes p0, p1, p2, p3 and that maps p4 = (p0, 0,−1) to q′′4 =

(p0, 0, u4) is

α3([x : y : z]) = [(−u4)2/3x : y : (−u4)1/3z].

Therefore, the maps ϕ4 and ψ4 ◦ α1 ◦ α2 ◦ α3 are defined by the same homaloidal net and,

hence, ϕ4 and ψ4 are equivalent.

Lemma 4.17. Let ϕ5 be the map 5 in Table 4.1 and let ψ5 be a map with enriched weighted

proximity graph 5 in Table 4.2. Then, ψ5 is equivalent to ϕ5.

Proof. The base points of ϕ5 are p0 = [0 : 1 : 0] of multiplicity 2, p1 = [1 : 0 : 0] and

p2, p3, p4 where p4 �1 p3 �1 p2 �1 p0 and p3 � p0, with standard coordinates p2 = (p0,∞),

p3 = (p0,∞,∞) and p4 = (p0,∞,∞,−1).

The base points of ψ5 are q0 ∈ P2 of multiplicity 2, q1 ∈ P2 and q2, q3, q4 where q4 �1 q3 �1

q2 �1 q0 and q3 � q0. Clearly, there exists an automorphism α1 of P2 such that α1(pi) = qi

for i = 0, 1, 2. It follows that also α1(p3) = q3.

The base points of ψ5 ◦ α1 are then p0, p1, p2, p3, q
′
4 where q′4 has standard coordinates q′4 =

(p0,∞,∞, u4) for some u4 ∈ C∗ because, if u4 were 0, then q′4 would be proximate to p0, a

contradiction, and, if u4 were ∞, then q′4 would be proximate to p2, again a contradiction.

An automorphism α2 of P2 that fixes p0, p1, p2, p3 and that maps p4 = (p0,∞,∞,−1) to

q′4 = (p0,∞,∞, u4) is

α2([x : y : z]) = [x : −u4y : z].

Therefore, the maps ϕ5 and ψ5 ◦α1 ◦α2 are defined by the same homaloidal net and, hence,

ϕ5 and ψ5 are equivalent.

Lemma 4.18. Let ϕ6 be the map 6 in Table 4.1 and let ψ6 be a map with enriched weighted

proximity graph 6 in Table 4.2. Then, ψ6 is equivalent to ϕ6.
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Proof. The base points of ϕ6 are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [1 : 1 : −1]

and p2, p3, p4 where p2 �1 p0 and p4 �1 p3 �1 p0, with standard coordinates p2 = (p0, 0),

p3 = (p0,∞) and p4 = (p0,∞,−1).

The base points of ψ6 are q0 ∈ P2 of multiplicity 2, q1 ∈ P2 and q2, q3, q4 where q2 �1 q0 and

q4 �1 q3 �1 q0. Clearly, there exists an automorphism α1 of P2 such that α1(pi) = qi for

i = 0, 1, 2, 3.

The base points of ψ6 ◦ α1 are then p0, p1, p2, p3, q
′
4 where q′4 has standard coordinates q′4 =

(p0,∞, u4) for some u4 ∈ C∗ because, if u4 were 0, then q′4 would be aligned with p0 and p3,

a contradiction, and, if u4 were ∞, then q′4 would be proximate to p0, again a contradiction.

An automorphism α2 of P2 that fixes p0, p1, p2, p3 and that maps p4 = (p0,∞,−1) to q′4 =

(p0,∞, u4) is

α2([x : y : z]) = [x : y : (−u4 − 1)x− u4z].

Therefore, the maps ϕ6 and ψ6 ◦α1 ◦α2 are defined by the same homaloidal net and, hence,

ϕ6 and ψ6 are equivalent.

Lemma 4.19. Let ϕ7 be the map 7 in Table 4.1 and let ψ7 be a map with enriched weighted

proximity graph 7 in Table 4.2. Then, ψ7 is equivalent to ϕ7.

Proof. The base points of ϕ7 are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [0 : 1 : 0] and

p2, p3, p4 where p4 �1 p3 �1 p2 �1 p0 with standard coordinates p2 = (p0, 0), p3 = (p0, 0,−1),

p4 = (p0, 0,−1,∞). So there is a unique irreducible conic passing through p0, . . . , p4, that is

C1 : x2 + yz = 0. The base points of ψ7 are q0 of multiplicity 2 and q1, . . . , q4 where q1 ∈ P2

and q4 �1 q3 �1 q2 �1 q0. According to Lemma 1.54, there is a unique irreducible conic C2

passing through q0, . . . , q4. Moreover, Lemma 1.15 implies that there exists an automorphism

α of P2 such that α(C1) = C2 and α(pi) = qi, i = 0, 1. This forces α(pi) = qi, i = 2, 3, 4.

Therefore, ψ7 is equivalent to ϕ7.

Lemma 4.20. Let ϕ8 be the map 8 in Table 4.1 and let ψ8 be a map with enriched weighted

proximity graph 8 in Table 4.2. Then, ψ8 is equivalent to ϕ8.

Proof. The base points of ϕ8 are p0 = [0 : 1 : 0] of multiplicity 2, p1 = [1 : 0 : 0] and p2, p3, p4

where p4 �1 p3 �1 p2 �1 p1 with standard coordinates p2 = (p1,∞), p3 = (p1,∞, 0) and

p4 = (p1,∞, 0, 1).

The base points of ψ8 are q0 of multiplicity 2, q1 ∈ P2 and q2, q3, q4 where q4 �1 q3 �1 q2 �1 q1

and q3 is aligned with q1 and q2. Clearly, there exists an automorphism α1 of P2 such that

α1(pi) = qi for i = 0, 1, 2. It follows that also α1(p3) = q3.

The base points of ψ8 ◦ α1 are then p0, p1, p2, p3, q
′
4 where q′4 has standard coordinates q′4 =

(p1,∞, 0, u4) for some u4 ∈ C∗ because, if u4 were 0, then q′4 would be aligned with p1, p2, p3,

a contradiction, and, if u4 were ∞, then q′4 would be proximate to p2, again a contradiction.
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An automorphism α2 of P2 that fixes p0, p1, p2, p3 and that maps p4 = (p1,∞, 0, 1) to q′4 =

(p0,∞, 0, u4) is

α2([x : y : z]) = [x : u4y : z].

Therefore, the maps ϕ8 and ψ8 ◦α1 ◦α2 are defined by the same homaloidal net and, hence,

ϕ8 and ψ8 are equivalent.

Lemma 4.21. Let ϕ9 be the map 9 in Table 4.1 and let ψ9 be a map with enriched weighted

proximity graph 9 in Table 4.2. Then, ψ9 is equivalent to ϕ9.

Proof. The base points of ϕ9 are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [1 : 0 : 0] and

p2, p3, p4 where p4 �1 p3 �1 p2 �1 p1 with standard coordinates p2 = (p1, 0), p3 = (p1, 0,−1),

p4 = (p1, 0,−1, 0). So there is a unique irreducible conic passing through p0, . . . , p4, that is

C1 : xz + y2 = 0. The base points of ψ9 are q0 of multiplicity 2 and q1, . . . , q4 where q1 ∈ P2

and q4 �1 q3 �1 q2 �1 q1. According to Lemma 1.54, there is a unique irreducible conic C2

passing through q0, . . . , q4. Moreover, Lemma 1.15 implies that there exists an automorphism

α of P2 such that α(C1) = C2 and α(pi) = qi, i = 0, 1. This forces α(pi) = qi, i = 2, 3, 4.

Therefore, ψ9 is equivalent to ϕ9.

Lemma 4.22. Let ϕ10 be the map 10 in Table 4.1 and let ψ10 be a map with enriched

weighted proximity graph 10 in Table 4.2. Then, ψ10 is equivalent to ϕ10.

Proof. The base points of ϕ10 are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [0 : 1 : 0] and p2, p3, p4

where p2 �1 p0 and p4 �1 p3 �1 p1 with standard coordinates p2 = (p0, 0), p3 = (p1, 0)

and p4 = (p1, 0, 0). The base points of ψ10 are q0 of multiplicity 2, q1 ∈ P2 and q2, q3, q4

where q2 �1 q0 and q4 �1 q3 �1 q1 and q4 is aligned with q1 and q3. Clearly, there exists an

automorphism α1 of P2 such that α1(pi) = qi for i = 0, 1, 2, 3. It follows that also α1(p4) = q4,

so the maps ϕ10 and ψ10 ◦ α1 are defined by the same homaloidal net, therefore ϕ10 and ψ10

are equivalent.

Lemma 4.23. Let ϕ11 be the map 11 in Table 4.1 and let ψ11 be a map with enriched

weighted proximity graph 11 in Table 4.2. Then, ψ11 is equivalent to ϕ11.

Proof. The base points of ϕ11 are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [1 : 0 : 0] and p2, p3, p4

where p2 �1 p0 and p4 �1 p3 �1 p1 with standard coordinates p2 = (p0,∞), p3 = (p1, 0),

p4 = (p1, 0,−1). So there is a unique irreducible conic passing through p0, . . . , p4, that is

C1 : xz + y2 = 0. The base points of ψ11 are q0 of multiplicity 2 and q1, . . . , q4 where q1 ∈ P2

and q2 �1 q0 and q4 �1 q3 �1 q1. According to Lemma 1.52, there is a unique irreducible

conic C2 passing through q0, . . . , q4. Moreover, Lemma 1.15 implies that there exists an

automorphism α of P2 such that α(C1) = C2 and α(pi) = qi, i = 0, 1. This forces α(pi) = qi,

i = 2, 3, 4. Therefore, ψ11 is equivalent to ϕ11.

Lemma 4.24. Let ϕ12 be the map 12 in Table 4.1 and let ψ12 be a map with enriched

weighted proximity graph 12 in Table 4.2. Then, ψ12 is equivalent to ϕ12.
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Proof. The base points of ϕ12 are p0 = [0 : 1 : 0] of multiplicity 2, p1 = [1 : 0 : 0] and p2, p3, p4

where p3 �1 p1, p4 �1 p2 �1 p0 and p4 � p0 with standard coordinates p2 = (p0,∞), p3 =

(p1,∞) and p4 = (p0,∞,∞). The base points of ψ12 are q0 of multiplicity 2, q1 ∈ P2 and

q2, q3, q4 where q3 �1 q1, q4 �1 q2 �1 q0 and q4 � q0. Clearly, there exists an automorphism

α1 of P2 such that α1(pi) = qi for i = 0, 1, 2, 3. It follows that also α1(p4) = q4, so the

maps ϕ12 and ψ12 ◦ α1 are defined by the same homaloidal net, therefore ϕ12 and ψ12 are

equivalent.

Lemma 4.25. Let ϕ13 be the map 13 in Table 4.1 and let ψ13 be a map with enriched

weighted proximity graph 13 in Table 4.2. Then, ψ13 is equivalent to ϕ13.

Proof. The base points of ϕ13 are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [1 : 0 : 0] and p2, p3, p4

where p2 �1 p1 and p4 �1 p3 �1 p0 with standard coordinates p2 = (p1, 0), p3 = (p0,∞),

p4 = (p0,∞,−1). So there is a unique irreducible conic passing through p0, . . . , p4, that is

C1 : xz + y2 = 0. The base points of ψ13 are q0 of multiplicity 2 and q1, . . . , q4 where q1 ∈ P2

and q2 �1 q1 and q4 �1 q3 �1 q0. According to Lemma 1.52, there is a unique irreducible

conic C2 passing through q0, . . . , q4. Moreover, Lemma 1.15 implies that there exists an

automorphism α of P2 such that α(C1) = C2 and α(pi) = qi, i = 0, 1. This forces α(pi) = qi,

i = 2, 3, 4. Therefore, ψ13 is equivalent to ϕ13.

Lemma 4.26. Let ϕ14 be the map 14 in Table 4.1 and let ψ14 be a map with enriched

weighted proximity graph 14 in Table 4.2. Then, ψ14 is equivalent to ϕ14.

Proof. The base points of ϕ14 are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [0 : 1 : 0] and p2, p3, p4

where p2 �1 p0, p3 �1 p0 and p4 �1 p1 with standard coordinates p2 = (p0, 0), p3 = (p0, 1)

and p4 = (p1, 0). The base points of ψ14 are q0 of multiplicity 2, q1 ∈ P2 and q2, q3, q4 where

q2 �1 q0, q3 �1 q0 and q4 �1 q1. Clearly, there exists an automorphism α1 of P2 such that

α1(pi) = qi for i = 0, 1, 2, 4.

The base points of ψ14 ◦ α1 are then p0, p1, p2, q
′
3, p4 where q′3 has standard coordinates q′3 =

(p0, u3) for some u3 ∈ C∗ because, if u3 were 0, then q′3 would be equal to p2, a contradiction,

and, if u3 were ∞, then q′3 would be aligned with p0 and p1, again a contradiction.

An automorphism α2 of P2 that fixes p0, p1, p2, p4 and that maps p3 = (p0, 1) to q′3 = (p0, u3)

is

α2([x : y : z]) = [x : u3y : z].

Therefore, the maps ϕ14 and ψ14 ◦α1 ◦α2 are defined by the same homaloidal net and, hence,

ϕ14 and ψ14 are equivalent.

Lemma 4.27. Let ϕ15 be the map 15 in Table 4.1 and let ψ15 be a map with enriched

weighted proximity graph 15 in Table 4.2. Then, ψ15 is equivalent to ϕ15.

Proof. The base points of ϕ15 are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [0 : 1 : 0],

p2 = [1 : 0 : 0] and p3, p4 where p4 �1 p3 �1 p0 and p4 � p0 with standard coordinates
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p3 = (p0, 1) and p4 = (p0, 1,∞). The base points of ψ15 are q0 of multiplicity 2, q1, q2 ∈ P2

and q3, q4 where q4 �1 q3 �1 q0 and q4 � q0. Clearly, there exists an automorphism α1 of P2

such that α1(pi) = qi for i = 0, 1, 2, 3. It follows that also α1(p4) = q4, so the maps ϕ15 and

ψ15 ◦ α1 are defined by the same homaloidal net, therefore ϕ15 and ψ15 are equivalent.

Lemma 4.28. Let ϕ16 be the map 16 in Table 4.1 and let ψ16 be a map with enriched

weighted proximity graph 16 in Table 4.2. Then, ψ16 is equivalent to ϕ16.

Proof. The base points of ϕ16 are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [0 : 1 : 0],

p2 = [1 : 1 : −1] and p3, p4 where p4 �1 p3 �1 p0 with standard coordinates p3 = (p0, 0),

p4 = (p0, 0,−1). So there is a unique irreducible conic passing through p0, . . . , p4, that is

C1 : x2+yz = 0. The base points of ψ16 are q0 of multiplicity 2 and q1, . . . , q4 where q1, q2 ∈ P2

and q4 �1 q3 �1 q0. According to Lemma 1.50, there is a unique irreducible conic C2 passing

through q0, . . . , q4. Moreover, Lemma 1.15 implies that there exists an automorphism α of P2

such that α(C1) = C2 and α(pi) = qi, i = 0, 1, 2. This forces α(pi) = qi, i = 3, 4. Therefore,

ψ16 is equivalent to ϕ16.

Lemma 4.29. Let ϕ17 be the map 17 in Table 4.1 and let ψ17 be a map with enriched

weighted proximity graph 17 in Table 4.2. Then, ψ17 is equivalent to ϕ17.

Proof. The base points of ϕ17 are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [1 : 0 : 0],

p2 = [0 : 1 : 0] and p3, p4 where p4 �1 p3 �1 p1 with standard coordinates p3 = (p1, 0) and

p4 = (p1, 0, 1). The base points of ψ17 are q0 of multiplicity 2, q1, q2 ∈ P2 and q3, q4 where

q4 �1 q3 �1 q1 and q3 is aligned with q1 and q2. Clearly, there exists an automorphism α1 of

P2 such that α1(pi) = qi for i = 0, 1, 2. It follows that also α1(p3) = q3.

The base points of ψ17 ◦ α1 are then p0, p1, p2, p3, q
′
4 where q′4 has standard coordinates

q′4 = (p1, 0, u4) for some u4 ∈ C∗ because, if u4 were 0, then q′4 would be aligned with

p1, p2 and p3, a contradiction, and, if u4 were ∞, then q′4 would be satellite to p1, again a

contradiction.

An automorphism α2 of P2 that fixes p0, p1, p2, p3 and that maps p4 = (p1, 0, 1) to q′4 =

(p1, 0, u4) is

α2([x : y : z]) = [u4x : y : z].

Therefore, the maps ϕ17 and ψ17 ◦α1 ◦α2 are defined by the same homaloidal net and, hence,

ϕ17 and ψ17 are equivalent.

Lemma 4.30. Let ϕ18 be the map 18 in Table 4.1 and let ψ18 be a map with enriched

weighted proximity graph 18 in Table 4.2. Then, ψ18 is equivalent to ϕ18.

Proof. The base points of ϕ18 are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [1 : 0 : 0],

p2 = [0 : 1 : 0] and p3, p4 where p4 �1 p3 �1 p1 with standard coordinates p3 = (p1, 1) and

p4 = (p1, 1, 0). The base points of ψ18 are q0 of multiplicity 2, q1, q2 ∈ P2 and q3, q4 where

q4 �1 q3 �1 q1 and q4 is aligned with q1 and q3. Clearly, there exists an automorphism α1 of
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P2 such that α1(pi) = qi for i = 0, 1, 2, 3. It follows that also α1(p4) = q4, so the maps ϕ18

and ψ18◦α1 are defined by the same homaloidal net, therefore ϕ18 and ψ18 are equivalent.

Lemma 4.31. Let ϕ19 be the map 19 in Table 4.1 and let ψ19 be a map with enriched

weighted proximity graph 19 in Table 4.2. Then, ψ19 is equivalent to ϕ19.

Proof. The base points of ϕ19 are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [0 : 1 : 0],

p2 = [1 : 0 : −1] and p3, p4 where p4 �1 p3 �1 p1 with standard coordinates p3 = (p1, 0),

p4 = (p1, 0,−1). So there is a unique irreducible conic passing through p0, . . . , p4, that is

C1 : x2 + xz + yz = 0. The base points of ψ19 are q0 of multiplicity 2 and q1, . . . , q4 where

q1, q2 ∈ P2 and q4 �1 q3 �1 q1. According to Lemma 1.50, there is a unique irreducible

conic C2 passing through q0, . . . , q4. Moreover, Lemma 1.15 implies that there exists an

automorphism α of P2 such that α(C1) = C2 and α(pi) = qi, i = 0, 1, 2. This forces

α(pi) = qi, i = 3, 4. Therefore, ψ19 is equivalent to ϕ19.

Lemma 4.32. Let ϕ20 be the map 20 in Table 4.1 and let ψ20 be a map with enriched

weighted proximity graph 20 in Table 4.2. Then, ψ20 is equivalent to ϕ20.

Proof. The base points of ϕ20 are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [1 : 0 : 0],

p2 = [0 : 1 : 0] and p3, p4 where p3 �1 p1 and p4 �1 p2 with standard coordinates p3 = (p1, 0)

and p4 = (p2, 1). The base points of ψ20 are q0 of multiplicity 2, q1, q2 ∈ P2 and q3, q4 where

q3 �1 q1 and q4 �1 q2 and q3 is aligned with q1 and q2. Clearly, there exists an automorphism

α1 of P2 such that α1(pi) = qi for i = 0, 1, 2, 4. It follows that also α1(p3) = q3, so the

maps ϕ20 and ψ20 ◦ α1 are defined by the same homaloidal net, therefore ϕ20 and ψ20 are

equivalent.

Lemma 4.33. Let ϕ21 be the map 21 in Table 4.1 and let ψ21 be a map with enriched

weighted proximity graph 21 in Table 4.2. Then, ψ21 is equivalent to ϕ21.

Proof. The base points of ϕ21 are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [1 : 0 : 0],

p2 = [0 : 1 : 0] and p3, p4 where p3 �1 p1 and p4 �1 p2 with standard coordinates p3 =

(p1,−1), p4 = (p2,−1). So there is a unique irreducible conic passing through p0, . . . , p4,

that is C1 : xy + xz + yz = 0. The base points of ψ21 are q0 of multiplicity 2 and q1, . . . , q4

where q1, q2 ∈ P2, q3 �1 q1 and q4 �1 q2. According to Lemma 1.51, there is a unique

irreducible conic C2 passing through q0, . . . , q4. Moreover, Lemma 1.15 implies that there

exists an automorphism α of P2 such that α(C1) = C2 and α(pi) = qi, i = 0, 1, 2. This forces

α(pi) = qi, i = 3, 4. Therefore, ψ21 is equivalent to ϕ21.

Lemma 4.34. Let ϕ22 be the map 22 in Table 4.1 and let ψ22 be a map with enriched

weighted proximity graph 22 in Table 4.2. Then, ψ22 is equivalent to ϕ22.

Proof. The base points of ϕ22 are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [1 : 0 : 0],

p2 = [0 : 1 : 0] and p3, p4 where p3 �1 p0 and p4 �1 p1 with standard coordinates p3 = (p0,−1)

and p4 = (p1, 0). The base points of ψ22 are q0 of multiplicity 2, q1, q2 ∈ P2 and q3, q4 where
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q3 �1 q0 and q4 �1 q1 and q4 is aligned with q1 and q2. Clearly, there exists an automorphism

α1 of P2 such that α1(pi) = qi for i = 0, 1, 2, 3. It follows that also α1(p4) = q4, so the

maps ϕ22 and ψ22 ◦ α1 are defined by the same homaloidal net, therefore ϕ22 and ψ22 are

equivalent.

Lemma 4.35. Let ϕ23 be the map 23 in Table 4.1 and let ψ23 be a map with enriched

weighted proximity graph 23 in Table 4.2. Then, ψ23 is equivalent to ϕ23.

Proof. The base points of ϕ23 are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [0 : 1 : 0],

p2 = [1 : −1 : 0] and p3, p4 where p3 �1 p0 and p4 �1 p1 with standard coordinates

p3 = (p0, 0), p4 = (p1,−1). So there is a unique irreducible conic passing through p0, . . . , p4,

that is C1 : x2 + xy + yz = 0. The base points of ψ23 are q0 of multiplicity 2 and q1, . . . , q4

where q1, q2 ∈ P2, q3 �1 q0 and q4 �1 q1. According to Lemma 1.51, there is a unique

irreducible conic C2 passing through q0, . . . , q4. Moreover, Lemma 1.15 implies that there

exists an automorphism α of P2 such that α(C1) = C2 and α(pi) = qi, i = 0, 1, 2. This forces

α(pi) = qi, i = 3, 4. Therefore, ψ23 is equivalent to ϕ23.

Lemma 4.36. Let ϕ24 be the map 24 in Table 4.1 and let ψ24 be a map with enriched

weighted proximity graph 24 in Table 4.2. Then, ψ24 is equivalent to ϕ24.

Proof. The base points of ϕ24 are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [1 : 0 : 0],

p2 = [0 : 1 : 0], p3 = [1 : 1 : 0] and p4 where p4 �1 p1 with standard coordinates p4 = (p1, 1).

The base points of ψ24 are q0 of multiplicity 2, q1, q2, q3 ∈ P2 and q4 where q4 �1 q1 and q3 is

aligned with q1 and q2. Clearly, there exists an automorphism α1 of P2 such that α1(pi) = qi

for i = 0, 1, 2, 3.

The base points of ψ24 ◦ α1 are then p0, p1, p2, p3, q
′
4 where q′4 has standard coordinates

q′4 = (p1, u4) for some u4 ∈ C∗ because, if u4 were 0, then q′4 would be aligned with p1, p2

and p3, a contradiction, and, if u4 were ∞, then q′4 would be aligned with p0 ad p1, again a

contradiction.

An automorphism α2 of P2 that fixes p0, p1, p2, p3 and that maps p4 = (p1, 1) to q′4 = (p1, u4)

is

α2([x : y : z]) = [x : y : u4z].

Therefore, the maps ϕ24 and ψ24 ◦α1 ◦α2 are defined by the same homaloidal net and, hence,

ϕ24 and ψ24 are equivalent.

Lemma 4.37. Let ϕ25 be the map 25 in Table 4.1 and let ψ25 be a map with enriched

weighted proximity graph 25 in Table 4.2. Then, ψ25 is equivalent to ϕ25.

Proof. The base points of ϕ25 are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [1 : 0 : 0],

p2 = [0 : 1 : −1], p3 = [1 : −1 : 0] and p4 where p4 �1 p1 with standard coordinates

p4 = (p1, 0). The base points of ψ25 are q0 of multiplicity 2, q1, q2, q3 ∈ P2 and q4 where

q4 �1 q1 and q4 is aligned with q1 and q2. Clearly, there exists an automorphism α1 of P2
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such that α1(pi) = qi for i = 0, 1, 2, 3. It follows that also α1(p4) = q4, so the maps ϕ25 and

ψ25 ◦ α1 are defined by the same homaloidal net, therefore ϕ25 and ψ25 are equivalent.

Lemma 4.38. Let ϕ26,γ be the map 26 in Table 4.1 with parameter γ and let ψ26 be a map

with enriched weighted proximity graph 26 in Table 4.2. Then, ψ26 is equivalent to ϕ26,γ for

some γ 6= 0, 1.

Proof. The base points of ϕ26,γ are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [1 : 0 : 0],

p2 = [0 : 1 : 0], p3 = [1 : 1 : 1] and p4 where p4 �1 p1 with standard coordinates p4 = (p1, 1/γ).

The base points of ψ26 are q0 of multiplicity 2, q1, q2, q3 ∈ P2 and q4 where q4 �1 q1. Clearly,

there exists an automorphism α1 of P2 such that α1(pi) = qi for i = 0, 1, 2, 3.

The base points of ψ26 ◦ α1 are then p0, p1, p2, p3, q
′
4 where q′4 has standard coordinates

q′4 = (p1, u4) for some u4 ∈ C∗∗ because, if u4 were 0, then q′4 would be aligned with p1 and p2,

a contradiction; if u4 were∞, then q′4 would be aligned with p0 ad p1, again a contradiction,

and, if u4 were 1, then q′4 would be aligned with p1 and p3, still a contradiction. Setting

γ = 1/u4, the maps ϕ26,γ and ψ26 ◦ α1 are defined by the same homaloidal net, therefore

ϕ26,γ and ψ26 are equivalent.

Lemma 4.39. Let ϕ27,γ be the map 27 in Table 4.1 with parameter γ and let ψ27 be a map

with enriched weighted proximity graph 27 in Table 4.2. Then, ψ27 is equivalent to ϕ27,γ for

some γ 6= 0, 1.

Proof. The base points of ϕ27,γ are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [0 : 1 : 0],

p2 = [1 : 0 : 0] and p3, p4 where p3 �1 p0 and p4 �1 p0 with standard coordinates p3 = (p0,−1)

and p4 = (p0,−1/γ). The base points of ψ27 are q0 of multiplicity 2, q1, q2 ∈ P2 and q3, q4

where q3 �1 q0 and q4 �1 q0. Clearly, there exists an automorphism α1 of P2 such that

α1(pi) = qi for i = 0, 1, 2, 3.

The base points of ψ27 ◦ α1 are then p0, p1, p2, p3, q
′
4 where q′4 has standard coordinates

q′4 = (p0, u4) for some u4 ∈ C∗∗ because, if u4 were 0, then q′4 would be aligned with p0

and p2, a contradiction; if u4 were ∞, then q′4 would be aligned with p0 ad p1, again a

contradiction, and, if u4 were 1, then q′4 would be equal to p3, still a contradiction. Setting

γ = −1/u4, the maps ϕ27,γ and ψ27 ◦ α1 are defined by the same homaloidal net, therefore

ϕ27,γ and ψ27 are equivalent.

Lemma 4.40. Let ϕ28,γ be the map 28 in Table 4.1 with parameter γ and let ψ28 be a map

with enriched weighted proximity graph 28 in Table 4.2. Then, ψ28 is equivalent to ϕ28,γ for

some γ 6= 0, 1.

Proof. The base points of ϕ28,γ are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [0 : 1 : 0],

p2 = [1 : 0 : 0], p3 = [1 : 1 : 0] and p4 where p4 �1 p0 with standard coordinates p4 = (p0, γ).

The base points of ψ28 are q0 of multiplicity 2, q1, q2, q3 ∈ P2 and q4 where q4 �1 q0 and

q1, q2, q3 are collinear. Clearly, there exists an automorphism α1 of P2 such that α1(pi) = qi

for i = 0, 1, 2, 3.
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The base points of ψ28 ◦ α1 are then p0, p1, p2, p3, q
′
4 where q′4 = (p0, u4) for some u4 ∈ C∗∗

because, if u4 were 0, then q′4 would be aligned with p0 and p2, a contradiction; if u4 were

∞, then q′4 would be aligned with p0 ad p1, again a contradiction, and, if u4 were 1, then q′4

would be aligned with p0 and p3, still a contradiction. Setting γ = u4, the maps ϕ28,γ and

ψ28 ◦ α1 are defined by the same homaloidal net, therefore ϕ28,γ and ψ28 are equivalent.

Lemma 4.41. Let ϕ29,γ be the map 29 in Table 4.1 with parameter γ and let ψ29 be a map

with enriched weighted proximity graph 29 in Table 4.2. Then, ψ29 is equivalent to ϕ29,γ for

some γ 6= 0, 1.

Proof. The base points of ϕ29,γ are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [0 : 1 : 0],

p2 = [1 : 0 : 0], p3 = [1 : 1 : 1] and p4 where p4 �1 p0 with standard coordinates p4 = (p0, γ).

The base points of ψ29 are q0 of multiplicity 2, q1, q2, q3 ∈ P2 and q4 where q4 �1 q0. Clearly,

there exists an automorphism α1 of P2 such that α1(pi) = qi for i = 0, 1, 2, 3.

The base points of ψ29 ◦ α1 are then p0, p1, p2, p3, q
′
4 where q′4 = (p0, u4) for some u4 ∈ C∗∗

because, if u4 were 0, then q′4 would be aligned with p0 and p2, a contradiction; if u4 were

∞, then q′4 would be aligned with p0 ad p1, again a contradiction, and, if u4 were 1, then q′4

would be aligned with p0 and p3, still a contradiction. Setting γ = u4, the maps ϕ29,γ and

ψ29 ◦ α1 are defined by the same homaloidal net, therefore ϕ29,γ and ψ29 are equivalent.

Lemma 4.42. Let ϕ30,γ be the map 30 in Table 4.1 with parameter γ and let ψ30 be a map

with enriched weighted proximity graph 30 in Table 4.2. Then, ψ30 is equivalent to ϕ30,γ for

some γ 6= 0, 1.

Proof. The base points of ϕ30,γ are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [0 : 1 : 0],

p2 = [1 : 0 : 0], p3 = [γ : 1 : 0] and p4 = [1 : 1 : 1]. The base points of ψ30 are q0

of multiplicity 2, q1, q2, q3, q4 ∈ P2 where q1, q2, q3 are collinear. Clearly, there exists an

automorphism α1 of P2 such that α1(pi) = qi for i = 0, 1, 2, 4.

The base points of ψ30 ◦ α1 are then p0, p1, p2, q
′
3, p4 where q′3 = [u3 : 1 : 0] for some u3 ∈ C∗∗

because, if u3 were 0, then q′3 would be equal to p1, a contradiction, and, if u3 were 1, then q′3

would be aligned with p0 and p4, again a contradiction. Setting γ = u3, the maps ϕ30,γ and

ψ30 ◦ α1 are defined by the same homaloidal net, therefore ϕ30,γ and ψ30 are equivalent.

Lemma 4.43. Let ϕ31,a,b be the map 31 in Table 4.1 with parameters a, b and let ψ31 be a

map with enriched weighted proximity graph 31 in Table 4.2. Then, ψ31 is equivalent to ϕ31,γ

for some a, b 6= 0, 1, a 6= b.

Proof. The base points of ϕ31,γ are p0 = [0 : 0 : 1] of multiplicity 2, p1 = [0 : 1 : 0],

p2 = [1 : 0 : 0], p3 = [1 : 1 : 1] and p4 = [a : b : 1]. The base points of ψ31 are q0 of

multiplicity 2 and q1, q2, q3, q4 ∈ P2. Clearly, there exists an automorphism α1 of P2 such

that α1(pi) = qi for i = 0, 1, 2, 3.

The base points of ψ31◦α1 are then p0, p1, p2, p3, q
′
4 where q′4 = [t4 : u4 : v4] with t4, u4, v4 ∈ C∗:

indeed,
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• v4 6= 0 because otherwise q′4 would be aligned with p1 and p2;

• u4 6= 0 because otherwise q′4 would be aligned with p0 and p1;

• t4 6= 0 because otherwise q′4 would be aligned with p0 and p2.

Moreover, t4/v4 and u4/v4 satisfy the following conditions:

• t4/v4 6= 1 because otherwise q′4 would be aligned with p1 and p3;

• u4/v4 6= 1 because otherwise q′4 would be aligned with p2 and p3;

• t4/v4 6= u4/v4 because otherwise q′4 would be aligned with p0 and p3.

Setting a = t4/v4 and b = u4/v4, it follows that a, b ∈ C∗∗ and a 6= b, the maps ϕ31,a,b and

ψ31 ◦α1 are defined by the same homaloidal net, therefore ϕ31,a,b and ψ31 are equivalent.

Lemma 4.44. Set ϕ26,γ the map of type 26 in Table 4.1 with parameter γ where γ 6= 0, 1.

Then, ϕ26,γ is equivalent to ϕ26,γ′ if and only if either γ′ = γ or γ′ = γ/(γ − 1).

Proof. Let p0, p1, . . . , p4 be the base points of ϕ26,γ as in the proof of Lemma 4.38.

An automorphism α of P2 that fixes the homaloidal net defining ϕ26,γ, and that is different

from the identity, is such that α(pi) = pi, i = 0, 1, α(p2) = p3 and α(p3) = p2. Therefore, α

is unique and it is defined by

α([x : y : z]) = [y − x : y : y − z].

so α(p4) has standard coordinates (p1, (γ−1)/γ), hence ϕ26,γ/(γ−1) is equivalent to ϕ26,γ.

Lemma 4.45. Set ϕ27,γ the map of type 27 in Table 4.1 with parameter γ where γ 6= 0, 1.

Then, ϕ27,γ is equivalent to ϕ27,γ′ if and only if either γ′ = γ or γ′ = 1/γ.

Proof. Let p0, p1, p2, p3, p4 be the base points of ϕ27,γ as in the proof of Lemma 4.39.

The base points of ϕ27,γ′ are qi = pi, i = 0, 1, 2, 3, and q4 = (q0,−1/γ′).

Suppose that ϕ27,γ′ is equivalent to ϕ27,γ. This implies that there exist automorphisms

α1, . . . , α4 of P2 with the following properties:

(1) α1 is such that α1(pi) = qi, i = 0, 1, 2, 3, 4;

(2) α2 is such that α2(pi) = qi, i = 0, 1, 2, α2(p3) = q4 and α2(p4) = q3;

(3) α3 is such that α3(pi) = qi, i = 0, 3, 4, α3(p1) = q2 and α3(p2) = q1;

(4) α4 is such that α4(p0) = q0, α4(p1) = q2, α4(p2) = q1, α4(p3) = q4 and α4(p4) = q3.

Then, Case (1) occurs only if γ′ = γ and α1 is the identity. Case (2) occurs only if γ′ = 1/γ

and α2([x : y : z]) = [x : γy : −γz]. Case (3) occurs only if γ′ = 1/γ and α3([x : y : z]) = [y :

x : −z]. Case (4) occurs only if γ′ = γ and α4([x : y : z]) = [γy : x : z].
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Before moving on other types, let us first recall several definitions from permutations with

cycle notation.

Sn denotes the set of permutations of {1, 2, . . . , n}. s ∈ Sn is a one-to-one and onto mapping

from {1, 2, . . . , n} to itself. An explicit representation of s can be given by the 2×n matrix:[
1 2 3 . . . n

s(1) s(2) s(3) . . . s(n)

]

or simply by {s(1), s(2), s(3), . . . , s(n)}. Every permutation of a finite set can be written

as a cycle or a product of disjoint cycles. More precisely, the elements in each cycle are

put inside parentheses, ordered so that s(i) immediately follows i. Without any confusion,

one can consider a cycle as fixing any element not appearing in it and particularly, the

permutation which fixes all elements is denoted by (1). We list in Tables 4.5 and 4.6 all

permutations and their cycle notations of S3 and S4 respectively.

Table 4.5: 6 permutations of S3.

permutation cycle
i

si of S3 notation

1 {1, 2, 3} (1)

2 {1, 3, 2} (23)

3 {2, 1, 3} (12)

4 {2, 3, 1} (123)

5 {3, 2, 1} (13)

6 {3, 1, 2} (132)

Table 4.6: 24 permutations of S4.

permutation cycle
i

si of S4 notation

1 {1, 2, 3, 4} (1)

2 {2, 1, 3, 4} (12)

3 {1, 2, 4, 3} (34)

4 {2, 1, 4, 3} (12)(34)

5 {1, 3, 2, 4} (23)

6 {2, 3, 1, 4} (123)

7 {1, 4, 2, 3} (243)

8 {2, 4, 1, 3} (1243)

permutation cycle
i

si of S4 notation

9 {3, 1, 2, 4} (132)

10 {3, 2, 1, 4} (13)

11 {4, 1, 2, 3} (1432)

12 {4, 2, 1, 3} (143)

13 {2, 3, 4, 1} (1234)

14 {1, 3, 4, 2} (234)

15 {2, 4, 3, 1} (124)

16 {1, 4, 3, 2} (24)

permutation cycle
i

si of S4 notation

17 {3, 2, 4, 1} (134)

18 {3, 1, 4, 2} (1342)

19 {4, 2, 3, 1} (14)

20 {4, 1, 3, 2} (142)

21 {3, 4, 1, 2} (13)(24)

22 {3, 4, 2, 1} (1324)

23 {4, 3, 1, 2} (1423)

24 {4, 3, 2, 1} (14)(23)
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Lemma 4.46. For n ∈ {28, 29, 30}, set ϕn,γ the map of type n in Table 4.1 with parameter

γ where γ 6= 0, 1. Then, ϕn,γ′ is equivalent to ϕn,γ if and only if

γ′ ∈
{
γ,

1

γ
, 1− γ, 1

1− γ
,

γ

γ − 1
,
γ − 1

γ

}
.

Proof. We first consider the case n = 28.

The map ϕ28,γ has base points p0 = [0 : 0 : 1] of multiplicity 2, p1 = [0 : 1 : 0], p2 = [1 : 0 : 0],

p3 = [1 : 1 : 0] and p4 where p4 �1 p0 with standard coordinates p4 = (p0, γ).

The base points of ϕ28,γ′ are q0, . . . , q4 where qi = pi, i = 0, 1, 2, 3 and q4 = (p0, γ
′).

Suppose that ϕ28,γ′ is equivalent to ϕ28,γ. This implies that there exist automorphisms

α1, . . . , α6 of P2 such that, for i = 1, . . . , 6, one has αi(pj) = qj, j = 0, 4, and

αi(pj) = qsi(j) for j = 1, 2, 3,

where s1, . . . , s6 are the six elements of S3 given in Table 4.5.

• Case i = 1 occurs only if γ′ = γ and α1 is the identity.

• Case i = 2 occurs only if γ′ = 1− γ and α2 = [x : x− y : z].

• Case i = 3 occurs only if γ′ = 1/γ and α3 = [y : x : z].

• Case i = 4 occurs only if γ′ = 1/(1− γ) and α4 = [x− y : x : z].

• Case i = 5 occurs only if γ′ = γ/(γ − 1) and α5 = [x− y : −y : z].

• Case i = 6 occurs only if γ′ = γ/(γ − 1) and α6 = [y : y − x : z].

We proceed similarly for n = 29. The map ϕ29,γ has the same base points pi, i = 0, 1, 2, 4, of

ϕ28,γ but p3 = [1 : 1 : 1]. The base points of ϕ29,γ′ are q0, . . . , q4 where qi = pi, i = 0, 1, 2, 3

and q4 = (q0, γ
′).

If ϕ28,γ′ is equivalent to ϕ28,γ, then there exist automorphisms α1, . . . , α6 of P2 with the same

above properties that occur exactly when γ′ is as above and α1 is the identity,

α2 = [x : x− y : x− z], α3 = [y : x : z], α4 = [x− y : x : x− z],

α5 = [y − x : y : y − z], α6 = [y : y − x : y − z].

Finally, for n = 30, the map ϕ30,γ has the same base points pi, i = 0, 1, 2, of ϕ28,γ but

p3 = [γ : 1 : 0] and p4 = [1 : 1 : 1]. The base points of ϕ30,γ′ are q0, . . . , q4 where qi = pi,

i = 0, 1, 2, 4 and q3 = [γ′ : 1 : 0].

If ϕ30,γ′ is equivalent to ϕ30,γ, then there exist automorphisms α1, . . . , α6 of P2 with the same

above properties that occur exactly when γ′ is as above and α1 is the identity,

α2 = [(γ − 1)x : γy − x : (γ − 1)z], α3 = [y : x : z],

α4 = [γy − x : (γ − 1)x : (γ − 1)z], α5 = [γy − x : (γ − 1)y : (γ − 1)z],

α6 = [(γ − 1)y : γy − x : (γ − 1)z].
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Remark 4.47. One may check that the numbers in the set of Lemma 4.46 are all different

if and only if

γ /∈

{
−1, 2,

1

2
,
1

2
− i
√

3

2
,
1

2
+ i

√
3

2

}
.

Lemma 4.48. Set ϕ31,a,b the map of type 31 in Table 4.1 with two parameters a, b where

a 6= b and a, b 6= 0, 1. Then, ϕ31,a′,b′ is equivalent to ϕ31,a,b if and only if (a′, b′) ∈ S, where

S is defined in (4.1).

Proof. The base points of ϕ31,a,b are p0 = [0 : 0 : 1] of multiplicity 2 and four simple base

points p1 = [0 : 1 : 0], p2 = [1 : 0 : 0], p3 = [1 : 1 : 1], p4 = [a : b : 1]. Similarly, the base points

of ϕ31,a′,b′ are q0, . . . , q4 where qi = pi, i = 0, 1, 2, 3 and q4 = [a′ : b′ : 1].

Suppose that ϕ31,a′,b′ is equivalent to ϕ31,a,b. Then, there exists an automorphism, says γ, of

P2 such that γ(p0) = q0 and γ maps p1, . . . , p4 to a permutation of q1, q2, q3, q4. Therefore,

for each element si, i = 1, . . . , 24, of S4 there is an automorphism γi, i = 1, . . . , 24, of P2

such that

γi(pj) = qsi(j) for j = 1, . . . , 4,

and, accordingly, we find the values of (a′, b′) for each one of the 24 cases. In Table 4.7, we

list the automorphisms γi, i = 1, . . . , 24 and their corresponding values of (a′, b′).

Table 4.7: Automorphisms γ1, . . . , γ24 of P2 and their corresponding values of (a′, b′)

i γi([x : y : z]) (a′, b′)

1 [x : y : z] (a, b)

2 [y : x : z] (b, a)

3 [bx : ay : abz]

(
1

a
,
1

b

)
4 [ay : bx : abz]

(
1

b
,

1

a

)
5 [x : x− y : x− z]

(
a

a− 1
,
a− b
a− 1

)
6 [x− y : x : x− z]

(
a− b
a− 1

,
a

a− 1

)
7

[
x

a
:
x− y
a− b

:
x− z
a− 1

] (
a− 1

a
,
a− 1

a− b

)
8

[
x− y
a− b

:
x

a
:
x− z
a− 1

] (
a− 1

a− b
,
a− 1

a

)
9 [y : y − x : y − z]

(
b

b− 1
,
b− a
b− 1

)
10 [y − x : y : y − z]

(
b− a
b− 1

,
b

b− 1

)
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11

[
y

b
:
x− y
a− b

:
y − z
b− 1

] (
b− 1

b
,
b− 1

b− a

)
12

[
x− y
a− b

:
y

b
:
y − z
b− 1

] (
b− 1

b− a
,
b− 1

b

)
13 [bx− ay : bx : b(x− az)]

(
b− a
b(1− a)

,
1

1− a

)
14 [bx : bx− ay : b(x− az)]

(
1

1− a
,
b− a
b(1− a)

)
15

[
ay − bx
a− b

: x :
az − x
a− 1

] (
b(a− 1)

a− b
, 1− a

)
16

[
x :

ay − bx
a− b

:
az − x
a− 1

] (
1− a, b(a− 1)

a− b

)
17 [ay − bx : ay : a(y − bz)]

(
a− b
a(1− b)

,
1

1− b

)
18 [ay : ay − bx : a(y − bz)]

(
1

1− b
,
a− b
a(1− b)

)
19

[
ay − bx
a− b

: y :
bz − y
b− 1

] (
a(1− b)
a− b

, 1− b
)

20

[
y :

ay − bx
a− b

:
bz − y
b− 1

] (
1− b, a(1− b)

a− b

)
21

[
y − x :

ay − bx
a

:
(1− b)x
a− 1

+
(b− a)z

a− 1
+ y

] (
a− 1

b− 1
,
b(a− 1)

a(b− 1)

)
22

[
ay − bx

a
: y − x :

(1− b)x
a− 1

+
(b− a)z

a− 1
+ y

] (
b(a− 1)

a(b− 1)
,
a− 1

b− 1

)
23

[
y − x :

ay − bx
b

:
(a− 1)y

b− 1
+

(b− a)z

b− 1
− x
] (

b− 1

a− 1
,
a(b− 1)

b(a− 1)

)
24

[
ay − bx

b
: y − x :

(a− 1)y

b− 1
+

(b− a)z

b− 1
− x
] (

a(b− 1)

b(a− 1)
,
b− 1

a− 1

)

Remark 4.49. One may check that the pairs in S are all different if and only if (a, b) does

not belong to the following set:{(
a,

1

a

)∣∣∣∣a 6= −1

}
∪
{(

a,
2a− 1

a

)∣∣∣∣a 6= 1

2

}
∪
{(

2b− 1

b
, b

)∣∣∣∣b 6= 1

2

}
∪
{

(a, b)

∣∣∣∣a =
3

2
± i
√

3

6
, b = −1

2
± i
√

3

6

}
∪
{

(a, a)

∣∣∣∣a ∈ {1

2
± i
√

3

6
,
3

2
± i
√

3

2

}}
∪
{

(a,−a),
(
a,−a

)∣∣∣∣a ∈ {− 1

2
± i
√

3

2
,
1

2
± i
√

3

2
,−1

2
± i
√

3

6

}}
.
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4.4 Ordinary quadratic length of cubic plane Cremona

maps

In this section we prove Theorem 4.2. Theorem 4.1 implies that it suffices to compute the

lengths of the cubic plane Cremona maps listed in Table 4.1 at page 56.

Recall that the quadratic length, and hence the ordinary quadratic length, of cubic plane

Cremona maps is at least 2 (Corollary 3.6). On the other hand, in Table 4.3 at page 60 and

Table 4.4 at page 62 there are decompositions of all types of plane cubic maps, but type 1,

in exactly two quadratic maps. So, in order to complete the proof of the first assertion of

Theorem 4.2, it remains to prove the following lemma.

Lemma 4.50. Let ϕ1 ∈ Cr(P2) be the map 1 in Table 4.1. Then, ϕ1 has quadratic length 3.

Proof. Let p1 be the double base point of ϕ1 and let p2, . . . , p5 be its simple base points,

that are all infinitely near p1, namely p5 �1 p4 �1 p3 �1 p2 �1 p1 where p3 � p1. Hence, a

quadratic map can be based at p1 and at p2, but not at p3, cf. Remark 2.34.

The decomposition in Table 4.4 at page 62 implies that q(ϕ1) ≤ 3. By contradiction, suppose

that ql(ϕ1) = 2. Then, there should exist a quadratic map ρ such that ql(ϕ1 ◦ ρ−1) = 1, so

ϕ1 ◦ ρ−1 should be a quadratic map by Lemma 3.5. However,

• if ρ is not based at p1, then ϕ1 ◦ ρ−1 has degree 6, a contradiction;

• if ρ is based at p1, but not at p2, then ϕ1 ◦ ρ−1 has degree 4, again a contradiction;

• finally, if ρ is based at p1 and p2, then ϕ1 ◦ ρ−1 has degree 3, a contradiction.

Hence, we conclude that ql(ϕ1) = 3.

We now prove the second assertion of Theorem 4.2, that is that the cubic plane Cremona

map of type n, 1 ≤ n ≤ 31, in Table 4.1 at page 56 has the respective ordinary quadratic

length listed in the third column in Table 4.2 at page 57.

The decompositions in Table 4.3 at page 60 show that the maps of types 21, 23, 25, 26, 27,

29, 30, 31 have the ordinary quadratic length exactly 2.

Recall that Proposition 3.17 says the ordinary quadratic length of a plane Cremona map is

at least the maximum height of its base points. In particular, the maps ϕn, n = 10, 11, 12,

13, 15, 16, 18, 19, have oql(ϕn) ≥ 3 and the decompositions in Table 4.3 at page 60 show

that indeed oql(ϕn) = 3. Similarly, the maps ϕn, n = 2, 7, 9, have oql(ϕn) ≥ 4 and the

decompositions in Table 4.3 show that oql(ϕn) = 4.

We now consider the maps of the remaining types, going backwards from the last types to

the first ones.

Lemma 4.51. Let ϕ28 be the map 28 in Table 4.1. Then, oql(ϕ28) = 3.
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Proof. Let p1 be the double base point of ϕ28 and p3, p4, p5 the proper simple base points

of ϕ28, which are collinear. The decomposition of ϕ28 in Table 4.3 shows that oql(ϕ28) ≤ 3.

Suppose by contradiction that oql(ϕ28) = 2. Therefore, there should exist an ordinary

quadratic map ρ such that oql(ϕ28 ◦ ρ−1) = 1, i.e. the map ϕ28 ◦ ρ−1 should be an ordinary

quadratic map. Since ϕ28 ◦ ρ−1 should have degree 2, the map ρ must be based at p1 and

two proper simple base points of ϕ28, say p3, p4. However, in that case, the quadratic map

ϕ28 ◦ ρ−1 is not ordinary, because p5 would correspond to an infinitely near base point of

ϕ28 ◦ ρ−1, a contradiction.

Remark 4.52. The same argument used in the proof of Lemma 4.51 shows that the maps

20, 22, 24 in Table 4.1 have ordinary quadratic length exactly 3.

Lemma 4.53. Let ϕ17 be the map 17 in Table 4.1. Then, oql(ϕ17) = 4.

Proof. The enriched weighted proximity graph of ϕ17 is listed in Table 4.2 at page 57. Let

p1 be the double base point, p2, p3 the two proper simple base points and p4, p5 such that

p5 �1 p4 �1 p3 where p2, p3, p4 are aligned. Then,

3 6 oql(ϕ17) 6 4

because of the decomposition of ϕ17 in Table 4.3 and the fact that the height of p5 with

respect to ϕ17 is 3, cf. Proposition 3.17.

Suppose by contradiction that oql(ϕ17) = 3. Then, there should exist an ordinary quadratic

map ρ such that oql(ϕ17 ◦ ρ−1) = 2. In particular, ρ must be based at p3, otherwise, the

maximum height of the base points of the map ϕ17 ◦ ρ−1 would be still 3 and Proposition

3.17 would give a contradiction.

If ρ is based also at p2 (or at another point on the line passing through p3 and p2), then p4

would correspond to an infinitely near base point of ϕ17 ◦ ρ−1 and the maximum height of

the base points of ϕ17 ◦ ρ−1 would be again 3, a contradiction.

There are now two cases: either p1 is a base point of ρ or p1 is not a base point of ρ.

In the former case, the map ϕ17 ◦ ρ−1 would have the enriched weighted proximity graph 24

in Table 4.2, and therefore would have ordinary quadratic length 3, as we noted in Remark

4.52, a contradiction.

In the latter case, the map ϕ17◦ρ−1 would have degree 5, and therefore its ordinary quadratic

length cannot be 2 by Corollary 3.9, a contradiction.

Hence, we conclude that oql(ϕ17) = 4.

Lemma 4.54. Let ϕ14 be the map 14 in Table 4.1. Then, oql(ϕ14) = 3.

Proof. The decomposition of ϕ14 in Table 4.3 shows that oql(ϕ14) ≤ 3. Suppose by contra-

diction that oql(ϕ14) = 2. Therefore, there should exist an ordinary quadratic map ρ such

that oql(ϕ14 ◦ρ−1) = 1, i.e. the map ϕ14 ◦ρ−1 should be an ordinary quadratic map. In other
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words, ρ should be based at the double base point of ϕ14 and other two proper simple base

points of ϕ14, theat however do not exist.

Lemma 4.55. Let ϕ8 be the map 8 in Table 4.1. Then, oql(ϕ8) = 5.

Proof. The enriched weighted proximity graph of ϕ8 is listed in Table 4.2. Let p1 be the

double base point, p2 the proper simple base point and p3, p4, p5 the other infinitely near

base points such that p5 �1 p4 �1 p3 �1 p2 where p2, p3, p4 are aligned. Then,

4 6 oql(ϕ8) 6 5

because of the decomposition of ϕ8 in Table 4.3 and the fact that the height of p5 with

respect to ϕ8 is 4, cf. Proposition 3.17.

Suppose by contradiction that oql(ϕ8) = 4. Then, there should exist an ordinary quadratic

map ρ1 such that oql(ϕ8 ◦ ρ−1
1 ) = 3. In particular, ρ1 must be based at p2, otherwise, the

maximum height of the base points of the map ϕ8 ◦ ρ−1
1 would be still 4 and Proposition

3.17 would give a contradiction. For the same reason, ρ1 cannot be based at p2 and also at

a point on the line passing through p2 and p3.

There are now two cases: either p1 is a base point of ρ1 or p1 is not a base point of ρ1.

In the former case, the map ϕ8 ◦ρ−1 would have the enriched weighted proximity graph 17 in

Table 4.2, and therefore it would have ordinary quadratic length 4, as we proved in Lemma

4.53, a contradiction.

In the latter case, the map ϕ8◦ρ−1 would have degree 5 and the following weighted proximity

graph:

3
p′0

2
p′1

2
p′2

2
p′3

1
p′4

1
p′5

1
p′6

.

where p′0, p
′
4, p
′
5 are aligned. Furthermore, there should exist an ordinary quadratic map ρ2

such that oql(ϕ8 ◦ ρ−1
1 ◦ ρ−1

2 ) = 2. In particular, ρ2 must be based at p′4, otherwise the

maximum height of the base points of the map ϕ8 ◦ρ−1
1 ◦ρ−1

2 would be still 3 and Proposition

3.17 would give a contradiction. For the same reason, ρ2 cannot be based at p′4 and also at

p′0 or at another point on the line passing through p′4 and p′5. Therefore, ρ2 is based at p′4

and other two points where ϕ8 ◦ρ−1 has multiplicity ≤ 2, hence the map ϕ8 ◦ρ−1
1 ◦ρ−1

2 would

have degree ≥ 5 and we get a contraction with Corollary 3.9.

We conclude that oql(ϕ8) = 5.

Lemma 4.56. Let ϕ6 be the map 6 in Table 4.1. Then, oql(ϕ6) = 4.

Proof. The enriched weighted proximity graph of ϕ6 is listed in Table 4.2. Let p1 be the

double base point, p5 the proper simple base point and p2, p3, p4 the other infinitely near

base points such that p2 �1 p1 and p4 �1 p3 �1 p1. Then,

3 6 oql(ϕ6) 6 4
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because of the decomposition of ϕ6 in Table 4.3 and the fact that the height of p4 with

respect to ϕ6 is 3, cf. Proposition 3.17.

Suppose by contradiction that oql(ϕ6) = 3. Then, there should exist an ordinary quadratic

map ρ such that oql(ϕ6 ◦ ρ−1) = 2. In particular, ρ must be based at p1, otherwise the

maximum height of the base points of the map ϕ6 ◦ ρ−1 would be still 3 and Proposition

3.17 would give a contradiction. For the same reason, ρ1 cannot be based at p1 and also at

a point on the line passing through p1 and p3.

There are now two cases: either ρ is based at p5 or ρ is not based at p5.

In the former case, the map ϕ6 ◦ ρ−1 would have the enriched weighted proximity graph 24

in Table 4.2, and therefore it would have ordinary quadratic length 3 (cf. Remark 4.52), a

contradiction.

In the latter case, the map ϕ6◦ρ−1 would be a de Jonquières map of degree 4, a contradiction

with Lemma 3.10.

Therefore, we conclude that oql(ϕ6) = 4.

Lemma 4.57. Let ϕ5 be the map 5 in Table 4.1. Then, oql(ϕ5) = 5.

Proof. The enriched weighted proximity graph of ϕ5 is listed in Table 4.2. Let p1 be the

double base point, p5 the proper simple base point and p2, p3, p4 the other infinitely near

base points such that p4 �1 p3 �1 p2 �1 p1 with p3 � p1. Then,

4 6 oql(ϕ5) 6 5

because of the decomposition of ϕ5 in Table 4.3 and the fact that the height of p4 with

respect to ϕ5 is 4, cf. Proposition 3.17.

Suppose by contradiction that oql(ϕ5) = 4. Then, there should exist an ordinary quadratic

map ρ1 such that oql(ϕ ◦ ρ−1
1 ) = 3. This implies that ρ1 must be based at p1, otherwise the

maximum height of the base points of the map ϕ5 ◦ρ−1
1 would be still 4 and Proposition 3.17

would give a contradiction. For the same reason, ρ1 cannot be based at p1 and at a point on

the line passing through p1 and p2.

There are now two cases: either p5 is a base point of ρ1 or p5 is not a base point of ρ1.

In the former case, the map ϕ5 ◦ ρ−1
1 would have enriched weighted proximity graph of type

17 in Table 4.2 and, therefore, it would have ordinary quadratic length 4 by Lemma 4.53, a

contradiction.

In the latter case, the map ϕ5◦ρ−1
1 would be a de Jonquières map of degree 4 and its weighted

proximity graph would be

3
p′0

1
p′1

1
p′2

1
p′3

1
p′4

1
p′5

1
p′6

.

where p′2, p
′
3, p
′
4, p
′
5 are aligned.
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Then, there should exist an ordinary quadratic map ρ2 such that oql(ϕ5 ◦ ρ−1
1 ◦ ρ−1

2 ) = 2.

The map ρ2 must be based at p′4, and not at p′2, p
′
3, otherwise the maximum height of the

base points of the map ϕ5 ◦ ρ−1
1 ◦ ρ−1

2 would be at least 3, a contradiction with Proposition

3.17. If ρ2 is not based at p′0, then deg(ϕ5 ◦ ρ−1
1 ◦ ρ−1

2 ) ≥ 6 and we get a contradiction with

Corollary 3.9. Otherwise ρ2 is based at p′0 and, furthermore, either p′1 is a base point of ρ2

or p′1 is not a base point of ρ2.

In the latter case, the map ϕ5 ◦ ρ−1
1 ◦ ρ−1

2 would be a de Jonquières map of degree 4 and we

get a contradiction with Lemma 3.10.

In the former case, the map ϕ5 ◦ρ−1
1 ◦ρ−1

2 would have the enriched weighted proximity graph

of type 24 in Table 4.2 and its ordinary quadratic length would be 3, a contradiction.

Hence, we conclude that oql(ϕ5) = 5.

Lemma 4.58. Let ϕ4 be the map 4 in Table 4.1. Then, oql(ϕ4) = 4.

Proof. The enriched weighted proximity graph of ϕ4 is listed in Table 4.2. Let p1 be the

double base point, p2, p3, p4, p5 the infinitely near simple base points such that p3 �1 p2 �1 p1

and p5 �1 p4 �1 p1. Then,

3 6 oql(ϕ4) 6 4

because of the decomposition of ϕ4 in Table 4.3 and the fact that the heights of p3 and of

p5 with respect to ϕ4 are 3, cf. Proposition 3.17.

Suppose by contradiction that oql(ϕ4) = 3. Then, there should exist an ordinary quadratic

map ρ such that oql(ϕ ◦ ρ−1) = 2. In particular, ρ must be based at p1. Then, the map

ϕ ◦ ρ−1 is a de Jonquières map of degree 4 and we get a contradiction with Lemma 3.10.

Lemma 4.59. Let ϕ3 be the map 3 in Table 4.1. Then, oql(ϕ3) = 5.

Proof. The enriched weighted proximity graph of ϕ3 is listed in Table 4.2. Let p1 be the

double base point, p2, p3, p4, p5 the infinitely near simple base points such that p2 �1 p1 and

p5 �1 p4 �1 p3 �1 p1. Then,

4 6 oql(ϕ3) 6 5

because of the decomposition of ϕ3 in Table 4.3 and the fact that the height of p4 with

respect to ϕ3 is 4, cf. Proposition 3.17.

Suppose by contradiction that oql(ϕ3) = 4. Then, there should exist an ordinary quadratic

map ρ1 such that oql(ϕ3 ◦ ρ−1
1 ) = 3. In particular, ρ1 must be based at p1 and not at a

point lying on the line passing through p1 and p3, otherwise the maximum height of the base

points with respect to ϕ3 ◦ ρ−1
1 would be still 4. Then, ϕ3 ◦ ρ−1

1 is a de Jonquières map of

degree 4 and its weighted proximity graph is:

3
p′0

1
p′1

1
p′2

1
p′3

1
p′4

1
p′5

1
p′6

(4.2)

where p′1, p
′
2, p
′
3, p
′
4 are aligned.
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Then, there should exist an ordinary quadratic map ρ2 such that oql(ϕ3 ◦ ρ−1
1 ◦ ρ−1

2 ) = 2.

The map ρ2 must be based at p′4, otherwise the maximum height of the base points of the

map ϕ3 ◦ ρ−1
1 ◦ ρ−1

2 would be at least 3, a contradiction with Proposition 3.17. Furthermore,

the map ρ2 must be based also at p′0, otherwise the degree of ϕ3 ◦ ρ−1
1 ◦ ρ−1

2 would be larger

than 4, a contradiction with Corollary 3.9.

There are now two cases: either ρ2 is based at p′i, for some i ∈ {1, 2, 3}, or ρ2 is not based

at p′1.p
′
2, p
′
3.

In the former case, the map ϕ3 ◦ρ−1
1 ◦ρ−1

2 would have the enriched weighted proximity graph

of type 14 in Table 4.2, a contradiction with Lemma 4.54.

In the latter case, the map ϕ3 ◦ ρ−1
1 ◦ ρ−1

2 is a de Jonquières map of degree 4, a contradiction

with Lemma 3.10.

Hence, we conclude that oql(ϕ3) = 5.

Lemma 4.60. Let ϕ1 be the map 1 in Table 4.1. Then, oql(ϕ1) = 6.

Proof. The enriched weighted proximity graph of ϕ1 is listed in Table 4.2. Let p1 be the

double base point, p2, p3, p4, p5 the infinitely near simple base points such that p5 �1 p4 �1

p3 �1 p2 �1 p1 with p3 � p1. Then,

5 6 oql(ϕ1) 6 6

because of the decomposition of ϕ1 in Table 4.3 and the fact that the height of p5 with

respect to ϕ1 is 5, cf. Proposition 3.17.

Suppose by contradiction that oql(ϕ1) = 5. Then, there should exist an ordinary quadratic

map ρ1 such that oql(ϕ1 ◦ ρ−1
1 ) = 4. In particular, ρ1 must be based at p1 and not at a

point lying on the line passing through p1 and p2, otherwise the maximum height of the base

points with respect to ϕ1 ◦ ρ−1
1 would be still 5. So the map ϕ1 ◦ ρ−1

1 is a de Jonquières map

of degree 4 and its weighted proximity graph is:

3
p′0

1
p′1

1
p′2

1
p′3

1
p′4

1
p′5

1
p′6

where p′1, p
′
2, p
′
3, p
′
4 are aligned.

Then, there should exist an ordinary quadratic map ρ2 such that oql(ϕ1 ◦ ρ−1
1 ◦ ρ−1

2 ) = 3. In

particular, the map ρ2 must be based at p′3 and not at p′1, p
′
2 (or at another point lying on

the line passing through p′3 and p′4), otherwise the maximum height of the base points of the

map ϕ1 ◦ ρ−1
1 ◦ ρ−1

2 is 4, a contradiction with Proposition 3.17.

There are now two cases: either ρ2 is based at p′0 or ρ2 is not based at p′0.

In the former case, the map ϕ1 ◦ρ−1
1 ◦ρ−1

2 is a de Jonquières map of degree 4 and its enriched

weighted proximity graph is (4.2) and we reach a contradiction as in the proof of Lemma

4.59.

In the latter case, the map ϕ1 ◦ ρ−1
1 ◦ ρ−1

2 has degree 7 and its weighted proximity graph is:
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4
p′′0

3
p′′1

3
p′′2

3
p′′3

1
p′′4

1
p′′5

1
p′′6

1
p′′7

1
p′′8

where p′′2, p
′′
3, p
′′
6 are aligned and also p′′0, p

′′
4, p
′′
5, p
′′
6 are collinear.

Then, there should exist an ordinary quadratic map ρ3 such that oql(ϕ1◦ρ−1
1 ◦ρ−1

2 ◦ρ−1
3 ) = 2.

Thus, ρ3 must be based at p′′6, otherwise the maximum height of the base points of ϕ1 ◦ρ−1
1 ◦

ρ−1
2 ◦ ρ−1

3 is 3, a contradiction with Proposition 3.17. This implies that ϕ1 ◦ ρ−1
1 ◦ ρ−1

2 ◦ ρ−1
3

would have degree ≥ 6, a contradiction with Corollary 3.9.

Hence, we conclude that oql(ϕ) = 6.
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Chapter 5

Quartic plane Cremona maps

In this chapter, we deal with quartic plane Cremona maps. In Chapter 2 we classified

enriched weighted proximity graphs of quartic plane Cremona maps. In principle, one could

get a finer classification of equivalence classes of quartic plane Cremona maps by applying

the techniques already used in Chapter 4 for cubic plane Cremona maps.

However, this would require a lot of time and patience. Furthermore, for the purpose to

compute the quadratic length and the ordinary quadratic length of a map, it is sufficient to

know its enriched weighted proximity graph. Recall that a quartic plane Cremona map may

or may not be a de Jonquières, thus it is natural to give two separate classifications, one for

quartic plane de Jonquières maps and the other for quartic plane non-de Jonquières maps.

5.1 Quartic plane de Jonquières maps

In this section we describe the results contained in Table 5.1. The ordinary quadratic lengths

and quadratic lengths of quartic plane de Jonquières maps associated to the graphs are given

in the third and the fourth columns, respectively. In many cases, the computation of the

exact ordinary quadratic length requires a case by case analysis that we have not yet carried

out. In that case, we put a lower bound and an upper bound for the ordinary quadratic

length: the number written in bold means that we found a decomposition with that number

of ordinary quadratic maps and we believe that it is the correct number. Finally, the types

of the inverse maps are listed in the fifth column of Table 5.1.

On the other hand, a list of examples of quartic plane de Jonquières maps with enriched

weighted proximity graphs in Table 5.1 is also given in Table 5.2.

Theorem 5.1. Let ϕn ∈ Cr(P2) be a quartic plane de Jonquières map with enriched weighted

proximity graph of type n in Table 5.1. Then, the ordinary quadratic length of ϕn (or a lower

bound and an upper bound of it) is listed in the third column of Table 5.1 and the quadratic

length of ϕn is listed in the fourth column of Table 5.1.

Proof. The upper bound for the ordinary quadratic length has been obtained by constructing
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a decomposition with that number of ordinary quadratic maps. The lower bound follows

from the height of proper base points either of the map or of its inverse.

Next, let us consider some particular quartic plane de Jonquières maps.

Lemma 5.2. Let ϕ1 be quartic plane Cremona map defined by ]1.1 in Table 5.2 at page

108. Then, ϕ has only a proper base point p0 = [1 : 0 : 0] of multiplicity 3 and other

base points p1, p2, p3, p4, p5, p6 satisfy p6 �1 p5 �1 p4 �1 p3 �1 p2 �1 p1 �1 p0 where there

standard coordinates respectively are p1 = (p0, 0), p2 = (p0, 0,∞), p3 = (p0, 0,∞,∞), p4 =

(p0, 0,∞,∞,−1), p5 = (p0, 0,∞,∞,−1, 0) and p6 = (p0, 0,∞,∞,−1, 0, 0).

Proof. Let ϕ1 be a quartic plane Cremona map defined by

ϕ1([x : y : z]) = [xz3 + y4 : yz3 : z4],

that is given by ]1.1 in Table 5.2. The map has only proper base point p0 = [1 : 0 : 0] with

multiplicity 3.

A curve Q of the linear system associated to ϕ1 is of the following form:

λ1(xz3 + y4) + λ2yz
3 + λ3z

4 = 0,

for some [λ1 : λ2 : λ3] ∈ P2.

In the affine chart U1 = {[x : y : z] ∈ P2|x 6= 0} ' A2
y,z, so that p0 corresponds to the origin

0 = (0, 0), the curve Q has local equation

Qa : λ1(z3 + y4) + λ2yz
3 + λ3z

4 = 0.

� Blowing-up A2
y,z at 0 and consider the first chart given in coordinates by y = y1, z =

y1z1, one has

– the exception curve E0 is defined by y1 = 0;

– the strict transform of the curve Qa is given by

Qa1 : λ1(z3
1 + y1) + λ2y1z

3
1 + λ3y1z

4
1 = 0.

Then, p1 = E0∩Qa1 = 0 the origin of A2
y1,z1

. In other words, the standard coordinates

of p1 w.r.t ϕ1 is p1 = (p0, 0). Moreover, one can check that p1 is the only point infinitely

near p0 of the first order.

� Blowing-up A2
y1,z1

at 0 and consider the second chart given in coordinates by y1 =

y2z2, z1 = z2, one has

– the exception curve E1 is defined by z2 = 0;

– the strict transform of Qa1 is given by

Qa2 : λ1(z2
2 + y2) + λ2y2z

3
2 + λ3y2z

4
2 = 0.
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It follows the local coordinates of p2 = E1 ∩ Qa2 = 0 is the origin of A2
y2,z2

. In other

words, the standard coordinates of p2 w.r.t ϕ1 is p2 = (p0, 0,∞) and one can check

p2 6� p0.

� Blowing-up A2
y2,z2

at 0 and consider the second chart given in coordinates by y2 =

y3z3, z2 = z3, one has

– the exceptional curve E2 is defined by z3 = 0;

– the strict transform of Qa2 is given by

Qa3 : λ1(z3 + y3) + λ2y3z
3
3 + λ3y3z

4
3 = 0.

Then, p3 = E2∩Qa3 = (0, 0) is the origin of A2
y3,z3

. It follows the standard coordinates

of p3 w.r.t ϕ1 is p3 = (p0, 0,∞,∞).

� Blowing-up A2
y3,z3

at 0 and consider the first chart given in coordinates y3 = y4, z3 =

y4z4, one has

– the exceptional curve E3 is defined by y4 = 0;

– the strict transform of Qa3 is given by

Qa4 : λ1(z4 + 1) + λ2y
3
4z

3
4 + λ3y

4
4z

4
4 = 0.

Then, the local coordinates of p4 = E3 ∩ Qa4 in A2
y4,z4

is p4 = (0,−1). Therefore, the

standard coordinates of p4 w.r.t ϕ1 is p4 = (p0, 0,∞,∞,−1).

� Blowing-up A2
y4,z4

at p4 = (0,−1).

Consider α : A2
y4,z4
→ A2

Y,Z a linear change coordinates defined as followsy4 = Y,

z4 = Z − 1.

With the new coordinates, p4 is the origin of A2
Y,Z and the curve Qa4 becomes

Qa4 : λ1Z + λ2Y
3(Z − 1)3 + λ3Y

4(Z − 1)4 = 0.

Blowing-up A2
Y,Z at 0 and consider the first chart given in coordinates by Y = y5, Z =

y5z5, one has

– the exceptional curve E4 is defined by y5 = 0;

– the strict transform of Qa4 is given by

Qa5 : λ1z5 + λ2y
2
5(y5z5 − 1)3 + λ3y

3
5(y5z5 − 1)4 = 0.

Then, the point p5 = E4 ∩ Qa5 = (0, 0) is the origin of A2
y5,z5

. It follows the standard

coordinates of p5 w.r.t ϕ1 is p5 = (p0, 0,∞,∞,−1, 0).
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� Blowing-up A2
y5,z5

at 0 and consider the first given in coordinates by y5 = y6, z5 = y6z6,

one has

– the exceptional curve E5 is defined by y6 = 0;

– the strict transform of Qa5 is given by

Qa6 : λ1z6 + λ2y6(y2
6z6 − 1)3 + λ3y

2
6(y2

6z6 − 1)4 = 0.

Therefore p6 = E5 ∩Qa6 = (0, 0) the origin of A2
y6,z6

and then its standard coordinates

w.r.t ϕ1 is p6 = (p0, 0,∞,∞,−1, 0, 0).

� Blowing-up A2
y6,z6

at 0 and consider the first chart given in coordinates by y6 = y7, z6 =

y7z7, one has

– the exceptional curve E6 is defined by y7 = 0;

– the strict transform of Qa6 is given by

Qa7 : λ1z7 + λ2(y3
7z7 − 1)3 + λ3y7(y3

7z7 − 1)4 = 0,

which is a smooth curve.

Example 5.3. A decomposition of ϕ1 in 8 ordinary quadratic maps is

ϕ1([x : y : z]) = [12x+ 56y − 81z : −12x− 8y : 12x+ 4y]σ[−y + 6z : y − 2z : 8x+ 2y]σ

[−9x− 13y − 12z : y + 3z : 3y]σ[3x+ z − y : y − z : 3z]σ

[4x+ y + 2z : 2y : −y − 2z]σ[x+ z : 3y − z : −2y]σ

[2x+ 2z + y : y + 2z : −y]σ[x− z + y : 2y − z : z − y]σ[x : y : y + z].

Example 5.4. Let ϕ4 be the quartic plane de Jonquières map listed in Table 5.2 at page

108 with number 3.2:

ϕ4([x : y : z]) = [y2(xz − y2)− z4 : yz(xz − y2) : z2(xz − y2)].

One can show that its enriched weighted proximity graph is of the following form

3
p0

1
p1

1
p2

1
p3

1
p4

1
p5

1
p6

where the brown dashed curve is a conic. Moreover, a decomposition of ϕ4 in 8 ordinary

quadratic maps is

ϕ4([x : y : z]) = [2x+ 19y + 2z : 8y : 4x+ 4y]σ[y − x : x : z]σ[−y : x : y − 8x+ z]σ

[−z : z − 2x : 4x+ 2y]σ[2z : x+ y − z : x]σ[−2y : 2x+ 2y − z : z − 2y]σ

[y + x+ z : z + y : y]σ[x : y : z + y]σ[x : y : z − y].

91



The following figure simulates the process of resolution of ϕ4:
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Figure 5.1: The resolution of ϕ4

We now give an example of how to give a finer classification of quartic plane de Jonquières

maps of a given type.

Example 5.5. ♣ Let consider quartic plane de Jonquières maps with enriched weighted

proximity graph of Type 58.1 in Table 5.1, that is

3
p0

1
p1

1
p2

1
p3

1
p4

1
p5

1
p6 .
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Up to automorphisms, one may suppose that p0 = [1 : 0 : 0], p3 = [0 : 1 : 0], p5 =

[0 : 0 : 1] ∈ P2, p2 �1 p1 �1 p0, p2 � p0 where their standard coordinates are p1 =

(p0, 1), p2 = (p0, 1,∞), in other words p1 �1 p0 in the direction of the line {y− z = 0},
and p4 �1 p3 where the standard coordinates of p4 is p4 = (p3,−1), that is p4 �1 p3

in the direction of the line {x + z = 0}. The point p6 �1 p5 is the only base point

which is not fixed, the standard coordinates of p6 is p6 = (p5, t) for some t ∈ C∗ (note

that, t 6= 0,∞, otherwise either p0, p5, p6 or p3, p5, p6 are collinear, contradiction), that

means p6 �1 p5 in the direction of the line {y − tx = 0}. These maps depend on 1

parameter t ∈ C∗ and have the following form:

ϕ58.1,t([x : y : z]) = [y(xy2 − 2xyz + xz2 + y2z) : y2z2 : −z(txy2 − 2txyz + txz2 − yz2)].

In particular, one has ϕ58.1,t is equivalent to ϕ58.1,t′ if and only if either t′ = t or t′ = 1/t.

More precisely, one has

ϕ58.1,t = [z : y : x] ◦ ϕ58.1,1/t ◦ [−tx : z : y].

Moreover, when t = −1 then ϕ58.1,−1 is given by Type 58.1 in Table 5.2.

♣ Quartic plane de Jonquières maps with enriched weighted proximity graph of Type

58.2 in Table 5.1, that is the graph as Type 58.1 such that p3, p4, p5 are collinear.

Up to automorphisms, one may suppose that p0 = [1 : 0 : 0], p3 = [0 : 1 : 0], p5 =

[0 : 0 : 1] ∈ P2, p2 �1 p1 �1 p0, p2 � p0 where their standard coordinates are p1 =

(p0, 1), p2 = (p0, 1,∞), p4 �1 p3 where the standard coordinates of p4 is p4 = (p3,∞),

namely p4 �1 p3 in the direction of the line passing through p3, p5 that is {x = 0}, and

p6 �1 p5 where the standard coordinates of p6 is p6 = (p5,−1), in other words p6 �1 p5

in the direction of the line {x + y = 0}. The map is given by Type 58.2 in Table 5.1,

that is

ϕ58.2([x : y : z]) = [xy(y − z)2 : y2z2 : 2xy3 − 3xy2z + xz3 + yz3].

♣ Quartic plane de Jonquières maps with enriched weighted proximity graph of Type

58.3 in Table 5.1, that is the graph as Type 58.1 such that p3, p4, p5, p6 are collinear.

Up to automorphisms, one may suppose that p0 = [1 : 0 : 0], p3 = [0 : 1 : 0], p5 = [0 : 0 :

1] ∈ P2, p2 �1 p1 �1 p0, p2� p0 where their standard coordinates are p1 = (p0, 1), p2 =

(p0, 1,∞), p4 �1 p3 where the standard coordinates of p4 is p4 = (p3,∞), and p6 �1 p5

where the standard coordinates of p6 is p6 = (p5,∞), in other words, p4 �1 p3 and

p6 �1 p5 in the direction of the line passing through p3, p5 that is {x = 0}. The map

is given by Type 58.3 in Table 5.1, that is

ϕ58.3([x : y : z]) = [xy(y − z)2 : x(2y + z)(y − z)2 : y2z2].

♣ Quartic plane de Jonquières maps with enriched weighted proximity graph of Type

58.4 in Table 5.1, that is the graph as Type 58.1 such that there exists a conic passing
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through p0, p1, p3, p4, p5, p6. Up to automorphisms, one may suppose that p0 = [1 : 0 :

0], p3 = [0 : 1 : 0], p5 = [0 : 0 : 1] ∈ P2, p2 �1 p1 �1 p0, p2 � p0 where their standard

coordinates are p1 = (p0,−1), p2 = (p0,−1,∞), that means p2 �1 p1 in the direction

of the line y + z = 0, p4 �1 p3 where the standard coordinates of p4 is p4 = (p3,−1),

namely p4 �1 p3 in the direction of the line {x + z = 0}, and p6 �1 p5. Since there

exists a unique conic passing through p0, p1, p2, p3, p4, p5, that is {xy + xz + yz = 0},
then p6 is uniquely determined and its standard coordinates is p6 = (p5,−1), that

means p6 �1 p5 in the direction of the line {x + y = 0}. The map is given by Type

58.3 in Table 5.1

ϕ58.4([x : y : z]) = [y(xy2 + 2xyz + xz2 + y2z) : y2z2 : z(xy2 + 2xyz + xz2 + yz2)].

Table 5.1: Enriched weighted proximity graphs and ordinary quadratic lengths of quartic

plane de Jonquières maps

] Enriched weighted proximity graph oql ql Inv

1.1 3 1 1 1 1 1 1 7-8 5 1.1

2.1 3 1 1 1 1 1 1 7 4 42.3

3.1 3 1 1 1 1 1 1 7 3 42.5

3.2 (2;1,2,3,4,5,6) 7-8 3 3.2

4.1 3 1 1 1 1 1 1 6-7 4 14.1

5.1 3 1 1 1 1 1 1 6 3 67.5

5.2 (2;1,3,4,5,6,7) 6 3 41.3

6.1 3 1 1 1 1 1 1 6 4 6.1

7.1 3 1 1 1 1 1 1 5 3 66.9

8.1 3 1 1 1 1 1 1 4-6 3 8.1

9.1 3 1 1 1 1 1 1 4-5 3 64.7

10.1 3 1 1 1 1 1 1 5-6 3 24.1

11.1 3 1 1 1 1 1 1 5-6 3 43.1
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12.1 3 1 1 1 1 1 1 4-5 3 20.1

13.1 3 1 1 1 1 1 1 3-6 3 13.1

14.1 3 1 1 1 1 1 1 6-7 4 4.1

15.1 3 1 1 1 1 1 1 6 3 67.4

16.1 3 1 1 1 1 1 1 6 3 67.7

16.2 (2;1,2,3,4,5,6) 6 3 41.5

16.3 (2;1,2,3,4,5,7) 6-7 3 16.3

17.1 3 1 1 1 1 1 1 5-6 3 17.1

18.1 3 1 1 1 1 1 1 5 3 81.9

18.2 (2;1,3,4,5,6,7) 5 3 65.5

19.1 3 1 1 1 1 1 1 4 3 80.17

20.1 3 1 1 1 1 1 1 4-5 3 12.1

21.1 3 1 1 1 1 1 1 4-5 3 29.1

22.1 3 1 1 1 1 1 1 4-5 3 45.1

23.1 3 1 1 1 1 1 1 3-4 3 23.1

24.1 3 1 1 1 1 1 1 5-6 3 10.1

25.1 3 1 1 1 1 1 1 5 3 66.8

26.1 3 1 1 1 1 1 1 5 3 66.12

26.2 (2;1,2,3,4,5,6) 5 3 39.5

26.3 (2;1,2,3,4,6,7) 5-6 3 26.3

27.1 3 1 1 1 1 1 1 4 3 80.18

27.2 (2;1,3,4,5,6,7) 4 3 63.6
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28.1 3 1 1 1 1 1 1 3-4 3 78.8

29.1 3 1 1 1 1 1 1 4-5 3 21.1

30.1 3 1 1 1 1 1 1 3-4 3 30.1

31.1 3 1 1 1 1 1 1 3-4 3 50.1

32.1 3 1 1 1 1 1 1 4 3 32.1

32.2 (1;5,6,7) 4 3 32.2

33.1 3 1 1 1 1 1 1 4 3 64.6

33.2 (1;5,6,7) 4 3 64.8

34.1 3 1 1 1 1 1 1 4 3 64.10

34.2 (1;5,6,7) 4 3 64.11

34.3 (2;1,2,3,4,5,6) 4 3 34.3

34.4 (2;1,2,3,5,6,7) 4-5 3 34.4

34.5 (1;5,6,7), (2;1,2,3,4,5,6) 4 3 34.5

35.1 3 1 1 1 1 1 1 4 3 51.1

35.2 (1;5,6,7) 4 3 51.2

36.1 3 1 1 1 1 1 1 3-4 3 80.19

36.2 (1;5,6,7) 3-4 3 80.22

36.3 (2;1,2,3,5,6,7) 3-4 3 63.5

37.1 3 1 1 1 1 1 1 4 3 68.1

37.2 (1;5,6,7) 4 3 68.2

38.1 3 1 1 1 1 1 1 4 3 66.5

38.2 (1;4,5,6) 4 3 66.7

38.3 (1;4,5,6,7) 4 3 38.3

38.4 (2;1,2,4,5,6,7) 4 3 39.3

39.1 3 1 1 1 1 1 1 4 3 66.11

39.2 (1;4,5,6) 4 3 66.13

39.3 (1;4,5,6,7) 4 3 38.4
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39.4 (2;1,2,4,5,6,7) 4 3 39.4

39.5 (2;1,2,3,4,5,6) 5 3 26.2

40.1 3 1 1 1 1 1 1 4 3 81.5

40.2 (1;4,5,6) 4 3 81.7

40.3 (1;4,5,6,7) 4 3 40.3

40.4 (2;1,2,4,5,6,7) 4 3 65.4

41.1 3 1 1 1 1 1 1 5 3 67.9

41.2 (1;3,4,5) 5 3 67.8

41.3 (1;3,4,5,6) 6 3 5.2

41.4 (2;1,3,4,5,6,7) 5 3 41.4

41.5 (2;1,2,3,4,5,6) 6 3 16.2

42.1 3 1 1 1 1 1 1 6 3 42.1

42.2 (1;2,3,4) 6 3 42.2

42.3 (1;2,3,4,5) 7 4 2.1

42.4 (2;2,3,4,5,6,7) 6 3 42.4

42.5 (2;1,2,3,4,5,6) 7 3 3.1

43.1 3 1 1 1 1 1 1 5-6 3 11.1

44.1 3 1 1 1 1 1 1 3 3 86.6

45.1 3 1 1 1 1 1 1 4-5 3 22.1

46.1 3 1 1 1 1 1 1 4 3 87.13

46.2 (2;1,3,4,5,6,7) 4 3 79.7

47.1 3 1 1 1 1 1 1 3-4 3 47.1

48.1 3 1 1 1 1 1 1 5 3 81.8

49.1 3 1 1 1 1 1 1 5 3 81.12

49.2 (2;1,2,3,4,5,6) 5 3 65.8

49.3 (2;1,2,3,4,6,7) 5-6 3 49.3

50.1 3 1 1 1 1 1 1 3-4 3 31.1

51.1 3 1 1 1 1 1 1 4 3 35.1
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51.2 (1;5,6,7) 4 3 35.2

52.1 3 1 1 1 1 1 1 4 3 80.26

52.2 (1;5,6,7) 4 3 80.32

52.3 (2;1,2,3,4,5,6) 4 3 60.6

52.4 (2;1,2,3,4,6,7) 4 3 63.10

52.5 (2;1,2,3,5,6,7) 4-5 3 52.5

52.6 (1;5,6,7),(2;1,2,3,4,5,6) 4 3 60.8

52.7 (1;5,6,7),(2;1,2,3,4,6,7) 4 3 63.11

53.1 3 1 1 1 1 1 1 4 3 80.16

53.2 (1;5,6,7) 4 3 80.20

54.1 3 1 1 1 1 1 1 3 3 54.1

54.2 (1;5,6,7) 3-4 3 54.2

55.1 3 1 1 1 1 1 1 3 3 86.7

55.2 (1;5,6,7) 3 3 86.7

55.3 (2;1,3,4,5,6,7) 3 3 77.5

56.1 3 1 1 1 1 1 1 3 3 73.1

56.2 (1;5,6,7) 3-4 3 73.2

57.1 3 1 1 1 1 1 1 3 3 78.10

57.2 (1;4,5,6) 3 3 78.12

57.3 (1;4,5,6,7) 3-4 3 58.4

57.4 (2;1,2,3,4,5,6) 3 3 57.4

57.5 (2;1,2,4,5,6,7) 3-4 3 57.5

57.6 (1;4,5,6),(2;1,2,3,4,6,7) 3-4 3 57.6

58.1 3 1 1 1 1 1 1 3 3 78.3

58.2 (1;4,5,6) 3 3 78.6

58.3 (1;4,5,6,7) 3-4 3 58.3

58.4 (2;1,2,4,5,6,7) 3-4 3 57.3

59.1 3 1 1 1 1 1 1 3 3 86.9

59.2 (1;4,5,6) 3 3 86.20

59.3 (1;4,5,6,7) 3 3 59.3

59.4 (2;1,2,4,5,6,7) 3 3 77.6

60.1 3 1 1 1 1 1 1 3 3 80.23
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60.2 (1;5,6,7) 3 3 80.31

60.3 (1;4,5,6) 3-4 3 80.33

60.4 (1;4,5,6,7) 3-4 3 61.5

60.5 (2;1,2,3,5,6,7) 3 3 63.9

60.6 (2;1,2,3,4,5,6) 4 3 52.3

60.7 (2;1,2,4,5,6,7) 3-4 3 60.7

60.8 (1;5,6,7),(2;1,2,3,4,5,6) 4 3 52.6

60.9 (1;4,5,6),(2;1,2,3,5,6,7) 3-4 3 63.12

61.1 3 1 1 1 1 1 1 3 3 80.8

61.2 (1;5,6,7) 3 3 80.15

61.3 (1;4,5,6) 3-4 3 80.21

61.4 (1;4,5,6,7) 3-4 3 61.4

61.5 (2;1,2,4,5,6,7) 3-4 3 60.4

62.1 3 1 1 1 1 1 1 3 3 87.6

62.2 (1;5,6,7) 3 3 87.11

62.3 (1;4,5,6) 3-4 3 87.15

62.4 (1;4,5,6,7) 3-4 3 62.4

62.5 (2;1,2,4,5,6,7) 3 3 79.5

63.1 3 1 1 1 1 1 1 3 3 80.24

63.2 (1;5,6,7) 3 3 80.28

63.3 (1;3,5,6) 3-4 3 80.27

63.4 (1;3,4,5) 3 3 80.29

63.5 (1;3,5,6,7) 3-4 3 36.3

63.6 (1;3,4,5,6) 4 3 27.2

63.7 (1;3,4,5),(1;5,6,7) 3 3 80.30

63.8 (2;1,3,4,5,6,7) 3 3 63.8

63.9 (2;1,2,3,5,6,7) 3 3 60.5

63.10 (2;1,2,3,4,5,6) 4 3 52.4

63.11 (1;5,6,7),(2;1,2,3,4,5,6) 4 3 52.7

63.12 (1;3,4,5),(2;1,2,3,5,6,7) 3-4 3 60.9

64.1 3 1 1 1 1 1 1 3 3 64.1

64.2 (1;2,5,6) 3-4 3 64.2

64.3 (1;5,6,7) 3 3 64.3

64.4 (1;2,3,4),(1;2,5,6) 3-4 3 64.4

64.5 (1;2,3,4),(1;5,6,7) 3 3 64.5

64.6 (1;2,5,6,7) 4 3 33.1
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64.7 (1;2,3,5,6) 4-5 3 9.1

64.8 (1;2,3,4),(1;2,5,6,7) 4 3 33.2

64.9 (2;2,3,4,5,6,7) 3 3 64.9

64.10 (2;1,2,3,4,5,6) 4 3 34.1

64.11 (1;5,6,7),(2;1,2,3,4,5,6) 4 3 34.2

65.1 3 1 1 1 1 1 1 4 3 81.11

65.2 (1;3,4,5) 4 3 81.14

65.3 (1;4,5,6) 4 3 81.13

65.4 (1;4,5,6,7) 4 3 40.4

65.5 (1;3,4,5,6) 5 3 18.2

65.6 (2;1,3,4,5,6,7) 4 3 65.6

65.7 (2;1,2,4,5,6,7) 4 3 65.7

65.8 (2;1,2,3,4,5,6) 5 3 49.2

65.9 (1;3,4,5),(2;1,2,4,5,6,7) 4-5 3 65.9

66.1 3 1 1 1 1 1 1 4 3 66.1

66.2 (1;2,3,4) 4 3 66.4

66.3 (1;2,4,5) 4 3 66.3

66.4 (1;4,5,6) 4 3 66.2

66.5 (1;4,5,6,7) 4 3 38.1

66.6 (1;2,3,4),(1;4,5,6) 4 3 66.6

66.7 (1;2,3,4),(1;4,5,6,7) 4 3 38.2

66.8 (1;2,3,4,5) 5 3 25.1

66.9 (1;2,4,5,6) 5 3 7.1

66.10 (2;1,2,4,5,6,7) 4 3 39.1

66.11 (2;2,3,4,5,6,7) 4 3 173

66.12 (2;1,2,3,4,5,6) 5 3 26.1

66.13 (1;2,3,4),(2;1,2,4,5,6,7) 4 3 39.2

67.1 3 1 1 1 1 1 1 5 3 67.1

67.2 (1;2,3,4) 5 3 67.3

67.3 (1;3,4,5) 5 3 67.2

67.4 (1;2,3,4,5) 6 3 15.1

67.5 (1;3,4,5,6) 6 3 5.1

67.6 (2;2,3,4,5,6,7) 5 3 67.6

67.7 (2;1,2,3,4,5,6) 6 3 16.1

67.8 (1;2,3,4),(2;1,3,4,5,6,7) 5 3 41.2

67.9 (2;1,3,4,5,6,7) 5 3 41.1
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68.1 3 1 1 1 1 1 1 4 3 37.1

68.2 (1;5,6,7) 4 3 37.2

69.1 3 1 1 1 1 1 1 4 3 87.12

69.2 (1;5,6,7) 4 3 87.14

70.1 3 1 1 1 1 1 1 4 3 87.18

70.2 (1;5,6,7) 4 3 87.22

70.3 (2;1,2,3,4,5,6) 4 3 79.10

70.4 (2;1,2,3,5,6,7) 4-5 3 70.4

70.5 (1;5,6,7),(2;1,2,3,4,5,6) 4 3 79.13

71.1 3 1 1 1 1 1 1 3 3 89.5

71.2 (1;5,6,7) 3 3 89.13

71.3 (2;1,3,4,5,6,7) 3 3 85.5

72.1 3 1 1 1 1 1 1 3 3 72.1

72.2 (1;5,6,7) 3-4 3 72.2

73.1 3 1 1 1 1 1 1 3 3 56.1

73.2 (1;5,6,7) 3-4 3 56.2

74.1 3 1 1 1 1 1 1 3 3 89.7

74.2 (1;4,5,6) 3 3 89.14

74.3 (1;5,6,7) 3 3 89.15

74.4 (1;4,5,6,7) 3 3 74.4

74.5 (2;1,2,4,5,6,7) 3 3 85.6

75.1 3 1 1 1 1 1 1 3 3 86.21

75.2 (1;4,5,6) 3 3 86.29

75.3 (1;5,6,7) 3 3 86.31

75.4 (1;4,5,6,7) 3-4 3 76.5

75.5 (2;1,2,3,4,5,6) 3 3 75.5

75.6 (2;1,2,3,4,6,7) 3 3 77.11

75.7 (2;1,2,4,5,6,7) 3-4 3 75.7

75.8 (1;4,5,6),(2;1,2,3,5,6,7) 3-4 3 77.16

75.9 (1;5,6,7),(2;1,2,3,4,6,7) 3 3 77.15

75.10 (1;5,6,7),(2;1,2,3,4,5,6) 3 3 75.10
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76.1 3 1 1 1 1 1 1 3 3 86.8

76.2 (1;4,5,6) 3 3 86.19

76.3 (1;5,6,7) 3 3 86.18

76.4 (1;4,5,6,7) 3-4 3 76.4

76.5 (2;1,2,4,5,6,7) 3-4 3 75.4

77.1 3 1 1 1 1 1 1 3 3 86.22

77.2 (1;3,4,6) 3 3 86.27

77.3 (1;3,4,5) 3 3 86.28

77.4 (1;4,5,6) 3 3 86.26

77.5 (1;3,4,5,6) 3 3 55.3

77.6 (1;4,5,6,7) 3 3 59.4

77.7 (1;3,4,5),(1;3,6,7) 3 3 86.32

77.8 (1;3,4,5),(1;4,6,7) 3 3 86.30

77.9 (2;1,3,4,5,6,7) 3 3 77.9

77.10 (2;1,2,4,5,6,7) 3 3 77.10

77.11 (2;1,2,3,4,5,6) 3 3 75.6

77.12 (1;3,4,6),(2;1,2,4,5,6,7) 3-4 3 77.12

77.13 (1;3,4,5),(2;1,2,4,5,6,7) 3 3 77.13

77.14 (1;3,4,5),(1;3,6,7),(2;1,2,4,5,6,7) 3 3 77.14

77.15 (1;3,4,5),(2;1,2,3,4,6,7) 3 3 75.9

77.16 (1;4,5,6),(2;1,2,3,4,6,7) 3-4 3 75.8

78.1 3 1 1 1 1 1 1 3 3 78.1

78.2 (1;4,5,6) 3 3 78.2

78.3 (1;4,5,6,7) 3 3 58.1

78.4 (1;2,3,4),(1;4,5,6) 3 3 78.4

78.5 (1;2,3,6),(1;4,5,6) 3 3 78.5

78.6 (1;2,3,4),(1;4,5,6,7) 3 3 58.2

78.7 (1;2,4,6) 3-4 3 78.7

78.8 (1;2,4,6,7) 4 3 28.1

78.9 (2;2,3,4,5,6,7) 3 3 78.9

78.10 (2;1,2,3,4,5,6) 3 3 57.1

78.11 (1;2,3,4),(1;2,6,7),(1;4,5,6) 3 3 78.11

78.12 (1;4,5,6),(2;1,2,3,4,6,7) 3 3 57.2

79.1 3 1 1 1 1 1 1 3 3 87.17

79.2 (1;3,4,5) 3 3 87.21

79.3 (1;4,5,6) 3 3 87.20

79.4 (1;5,6,7) 3 3 87.19
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79.5 (1;4,5,6,7) 3 3 62.5

79.6 (1;3,4,5),(1;5,6,7) 3 3 87.23

79.7 (1;3,4,5,6) 4 3 46.2

79.8 (2;1,3,4,5,6,7) 3 3 79.8

79.9 (2;1,2,3,5,6,7) 3 3 79.9

79.10 (2;1,2,3,4,5,6) 4 3 70.3

79.11 (1;3,4,5),(2;1,2,4,5,6,7) 3 3 79.12

79.12 (1;4,5,6),(2;1,2,3,5,6,7) 3 3 79.11

79.13 (1;5,6,7),(2;1,2,3,4,5,6) 4 3 70.5

80.1 3 1 1 1 1 1 1 3 3 80.1

80.2 (1;2,4,5) 3 3 80.6

80.3 (1;2,3,4) 3 3 80.7

80.4 (1;2,3,5) 3 3 80.5

80.5 (1;4,5,6) 3 3 80.4

80.6 (1;2,5,6) 3 3 80.2

80.7 (1;5,6,7) 3 3 80.3

80.8 (1;4,5,6,7) 3 3 61.1

80.9 (1;2,4,5),(1;5,6,7) 3 3 80.14

80.10 (1;2,3,4),(1;5,6,7) 3 3 80.10

80.11 (1;2,3,4),(1;4,5,6) 3 3 80.12

80.12 (1;2,3,5),(1;5,6,7) 3 3 80.11

80.13 (1;2,3,5),(1;4,5,6) 3 3 80.13

80.14 (1;2,3,4),(1;2,5,6) 3 3 80.9

80.15 (1;2,3,4),(1;4,5,6,7) 3 3 61.2

80.16 (1;2,3,4,5) 4 3 53.1

80.17 (1;2,4,5,6) 4 3 19.1

80.18 (1;2,3,5,6) 4 3 27.1

80.19 (1;2,5,6,7) 4 3 36.1

80.20 (1;2,3,4,5),(1;5,6,7) 4 3 53.2

80.21 (1;2,3,5),(1;4,5,6,7) 3-4 3 61.3

80.22 (1;2,3,4),(1;2,5,6,7) 4 3 36.2

80.23 (2;1,2,4,5,6,7) 3 3 60.1

80.24 (2;1,2,3,5,6,7) 3 3 63.1

80.25 (2;2,3,4,5,6,7) 3 3 80.25

80.26 (2;1,2,3,4,5,6) 4 3 52.1

80.27 (1;2,4,5),(2;1,2,3,5,6,7) 3-4 3 63.3

80.28 (1;2,3,4),(2;1,2,3,5,6,7) 3 3 63.2

80.29 (1;4,5,6),(2;1,2,3,5,6,7) 3 3 63.4
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80.30 (1;2,3,4),(1;4,5,6),(2;1,2,3,5,6,7) 3 3 63.7

80.31 (1;2,3,4),(2;1,2,4,5,6,7) 3 3 60.2

80.32 (1;5,6,7),(2;1,2,3,4,5,6) 4 3 52.2

80.33 (1;2,3,5),(2;1,2,4,5,6,7) 3-4 3 60.3

81.1 3 1 1 1 1 1 1 4 3 81.1

81.2 (1;2,3,4) 4 3 81.4

81.3 (1;3,4,5) 4 3 81.3

81.4 (1;4,5,6) 4 3 81.2

81.5 (1;4,5,6,7) 4 3 40.1

81.6 (1;2,3,4),(1;4,5,6) 4 3 81.6

81.7 (1;2,3,4),(1;4,5,6,7) 4 3 40.2

81.8 (1;2,3,4,5) 5 3 48.1

81.9 (1;3,4,5,6) 5 3 18.1

81.10 (2;2,3,4,5,6,7) 4 3 81.10

81.11 (2;1,2,4,5,6,7) 4 3 65.1

81.12 (2;1,2,3,4,5,6) 5 3 49.1

81.13 (1;2,3,4),(2;1,3,4,5,6,7) 4 3 65.3

81.14 (1;3,4,5),(2;1,2,4,5,6,7) 4 3 65.2

82.1 3 1 1 1 1 1 1 3 3 89.17

82.2 (1;5,6,7) 3 3 89.22

82.3 (1;4,5,6,7) 3-4 3 83.4

82.4 (2;1,2,3,4,5,6) 3 3 85.10

82.5 (2;1,2,4,5,6,7) 3-4 3 82.5

82.6 (1;5,6,7),(2;1,2,3,4,5,6) 3 3 85.16

83.1 3 1 1 1 1 1 1 3 3 89.6

83.2 (1;5,6,7) 3 3 89.16

83.3 (1;4,5,6,7) 3-4 3 83.3

83.4 (2;1,2,4,5,6,7) 3-4 3 82.3

84.1 3 1 1 1 1 1 1 3 3 90.3

84.2 (1;5,6,7) 3 3 90.6

84.3 (1;4,5,6,7) 3 3 84.3

84.4 (2;1,2,4,5,6,7) 3 3 88.3

85.1 3 1 1 1 1 1 1 3 3 89.18

85.2 (1;3,4,5) 3 3 89.23

85.3 (1;4,5,6) 3 3 89.20

85.4 (1;5,6,7) 3 3 89.21
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85.5 (1;3,4,5,6) 3 3 71.3

85.6 (1;4,5,6,7) 3 3 74.5

85.7 (1;3,4,5),(1;5,6,7) 3 3 89.25

85.8 (1;3,6,7),(1;4,5,6) 3 3 89.24

85.9 (2;1,3,4,5,6,7) 3 3 85.9

85.10 (2;1,2,3,4,5,6) 3 3 82.4

85.11 (2;1,2,3,4,6,7) 3 3 85.11

85.12 (1;3,4,5),(2;1,2,3,4,6,7) 3 3 85.14

85.13 (1;4,5,6),(2;1,2,3,5,6,7) 3 3 85.13

85.14 (1;5,6,7),(2;1,2,3,4,6,7) 3 3 85.12

85.15 (1;3,4,5),(1;5,6,7),(2;1,2,3,4,6,7) 3 3 85.15

85.16 (1;5,6,7),(2;1,2,3,4,5,6) 3 3 82.6

86.1 3 1 1 1 1 1 1 3 3 86.1

86.2 (1;4,5,6) 3 3 86.5

86.3 (1;2,5,6) 3 3 86.3

86.4 (1;5,6,7) 3 3 86.4

86.5 (1;2,6,7) 3 3 86.2

86.6 (1;2,4,5,6) 3 3 44.1

86.7 (1;2,5,6,7) 3 3 55.1

86.8 (1;4,5,6,7) 3 3 76.1

86.9 (1;2,3,6,7) 3 3 59.1

86.10 (1;2,3,4),(1;4,5,6) 3 3 86.16

86.11 (1;2,3,6),(1;4,5,6) 3 3 86.11

86.12 (1;2,6,7),(1;4,5,6) 3 3 86.12

86.13 (1;2,3,4),(1;2,5,6) 3 3 86.13

86.14 (1;2,3,4),(1;5,6,7) 3 3 86.14

86.15 (1;2,3,5),(1;5,6,7) 3 3 86.15

86.16 (1;2,3,6),(1;5,6,7) 3 3 86.10

86.17 (1;2,3,4),(1;2,5,6,7) 3 3 55.2

86.18 (1;2,3,4),(1;4,5,6,7) 3 3 76.3

86.19 (1;2,3,6),(1;4,5,6,7) 3 3 76.2

86.20 (1;2,3,6,7),(1;4,5,6) 3 3 59.2

86.21 (2;1,2,3,4,5,6) 3 3 75.1

86.22 (2;1,2,3,4,6,7) 3 3 77.1

86.23 (2;2,3,4,5,6,7) 3 3 86.23

86.24 (1;2,3,4),(1;2,6,7),(1;4,5,6) 3 3 86.24

86.25 (1;2,3,5),(1;2,4,6),(1;5,6,7) 3 3 86.25

86.26 (1;4,5,6),(2;1,2,3,5,6,7) 3 3 77.4
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86.27 (1;2,5,6),(2;1,2,3,4,6,7) 3 3 77.2

86.28 (1;5,6,7),(2;1,2,3,4,6,7) 3 3 77.3

86.29 (1;2,6,7),(2;1,2,3,4,5,6) 3 3 75.2

86.30 (1;2,3,4),(1;4,5,6),(2;1,2,3,5,6,7) 3 3 77.8

86.31 (1;5,6,7),(2;1,2,3,4,5,6) 3 3 75.3

86.32 (1;2,3,4),(1;4,6,7),(2;1,2,3,5,6,7) 3 3 77.7

87.1 3 1 1 1 1 1 1 3 3 87.1

87.2 (1;2,3,4) 3 3 87.5

87.3 (1;3,4,5) 3 3 87.4

87.4 (1;4,5,6) 3 3 87.3

87.5 (1;5,6,7) 3 3 87.2

87.6 (1;4,5,6,7) 3 3 62.1

87.7 (1;2,3,4),(1;5,6,7) 3 3 87.7

87.8 (1;2,3,4),(1;4,5,6) 3 3 87.10

87.9 (1;2,3,5),(1;4,5,6) 3 3 87.9

87.10 (1;3,4,5),(1;5,6,7) 3 3 87.8

87.11 (1;2,3,4),(1;4,5,6,7) 3 3 62.2

87.12 (1;2,3,4,5) 4 3 69.1

87.13 (1;3,4,5,6) 4 3 46.1

87.14 (1;2,3,4,5),(1;5,6,7) 4 3 69.2

87.15 (1;2,3,5),(1;4,5,6,7) 3-4 3 62.3

87.16 (2;2,3,4,5,6,7) 3 3 87.16

87.17 (2;1,2,3,5,6,7) 3 3 79.1

87.18 (2;1,2,3,4,5,6) 4 3 70.1

87.19 (1;2,3,4),(2;1,2,3,5,6,7) 3 3 79.4

87.20 (1;3,4,5),(2;1,2,4,5,6,7) 3 3 79.3

87.21 (1;4,5,6),(2;1,2,3,5,6,7) 3 3 79.2

87.22 (1;5,6,7),(2;1,2,3,4,5,6) 4 3 70.2

87.23 (1;2,3,4),(1;4,5,6),(2;1,2,3,5,6,7) 3 3 79.6

88.1 3 1 1 1 1 1 1 3 3 90.8

88.2 (1;5,6,7) 3 3 90.12

88.3 (1;4,5,6,7) 3 3 84.4

88.4 (1;3,4,5),(1;5,6,7) 3 3 90.11

88.5 (2;1,3,4,5,6,7) 3 3 88.5

88.6 (2;1,2,3,4,5,6) 3 3 88.6

88.7 (1;5,6,7),(2;1,2,3,4,5,6) 3 3 88.7

88.8 (1;3,4,5),(1;5,6,7),(2;1,2,3,4,6,7) 3 3 88.8
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89.1 3 1 1 1 1 1 1 3 3 89.1

89.2 (1;2,4,5) 3 3 89.2

89.3 (1;5,6,7) 3 3 89.4

89.4 (1;2,3,4) 3 3 89.3

89.5 (1;2,4,5,6) 3 3 71.1

89.6 (1;4,5,6,7) 3 3 83.1

89.7 (1;2,3,4,5) 3 3 74.1

89.8 (1;2,4,5),(1;5,6,7) 3 3 89.12

89.9 (1;2,4,5),(1;2,6,7) 3 3 89.9

89.10 (1;2,3,4),(1;5,6,7) 3 3 89.10

89.11 (1;2,3,4),(1;4,5,6) 3 3 89.11

89.12 (1;2,3,4),(1;2,5,6) 3 3 89.8

89.13 (1;2,3,4),(1;2,5,6,7) 3 3 71.2

89.14 (1;2,3,4,5),(1;2,6,7) 3 3 74.2

89.15 (1;2,3,4,5),(1;5,6,7) 3 3 74.3

89.16 (1;2,3,4),(1;4,5,6,7) 3 3 83.2

89.17 (2;1,2,4,5,6,7) 3 3 82.1

89.18 (2;1,2,3,4,5,6) 3 3 85.1

89.19 (2;2,3,4,5,6,7) 3 3 89.19

89.20 (1;2,4,5),(2;1,2,3,5,6,7) 3 3 85.3

89.21 (1;5,6,7),(2;1,2,3,4,5,6) 3 3 85.4

89.22 (1;2,3,4),(2;1,2,4,5,6,7) 3 3 82.2

89.23 (1;2,3,4),(2;1,2,3,5,6,7) 3 3 85.2

89.24 (1;2,4,5),(1;5,6,7),(2;1,2,3,4,6,7) 3 3 85.8

89.25 (1;2,3,4),(1;4,5,6),(2;1,2,3,5,6,7) 3 3 85.7

89.26 (1;2,3,4),(1;2,5,6),(1;4,6,7) 3 3 89.26

90.1 3 1 1 1 1 1 1 3 3 90.1

90.2 (1;5,6,7) 3 3 90.2

90.3 (1;4,5,6,7) 3 3 84.1

90.4 (1;2,3,4),(1;5,6,7) 3 3 90.4

90.5 (1;3,4,5),(1;5,6,7) 3 3 90.5

90.6 (1;2,3,4),(1;4,5,6,7) 3 3 84.2

90.7 (2;2,3,4,5,6,7) 3 3 90.7

90.8 (2;1,2,3,4,5,6) 3 3 88.1

90.9 (1;2,3,4),(1;3,5,7),(1;4,5,6) 3 3 90.9

90.10 (1;2,3,4),(1;2,6,7),(1;3,5,7),(1;4,5,6) 3 3 90.10

90.11 (1;2,3,4),(1;4,5,6),(2;1,2,3,5,6,7) 3 3 88.4

90.12 (1;5,6,7),(2;1,2,3,4,5,6) 3 3 88.2
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Table 5.2: List of 449 quartic plane de Jonquières maps with their enriched weighted prox-

imity graphs listed in Table 5.1 respectively

] Map

1.1 [xz3 + y4 : yz3 : z4]

2.1 [−xyz2 − 2xz3 + y4 + y3z : −xyz2 − xz3 + y4 + y2z2 − 2yz3 : z4]

3.1 [−z2(xz − y2) : −y(xyz − xz2 − y3 + y2z − z3) : −z(xyz − y3 − z3)]

3.2 [y2(xz − y2)− z4 : yz(xz − y2) : z2(xz − y2)]

4.1 [−xyz2 − xz3 + y4 + y2z2 : yz3 : z4]

5.1 [z(y + z)(xz + y2) : y(xyz + xz2 + y3 + y2z + z3) : z4]

5.2 [y(y + z)(xz + y2) : −(y − z)(y + z)(xz + y2) : z4]

6.1 [−xyz2 − xz3 + y4 − 2y2z2 : yz2(z + y) : −z2(y − z)(z + y)]

[13xyz2 − 13xy3 − 3xy2z + 3xz3 − y4 − 6y3z − 25y2z2 : y(3z3 − 4xy2+
7.1 +4xz2 − y3 − 3y2z − 7yz2) : 8xy3 − 8xyz2 − y4 + 14y2z2 + 3z4]

8.1 [−xyz2 − xz3 + y4 − 2y2z2 : yz(z + y)2 : −z(2y − z)(z + y)2]

9.1 [y(2xy2 − 2xz2 − y3 + 5yz2) : z(2xy2 − 2xz2 − y3 + 5yz2) : −(y − z)2(z + y)2]

10.1 [3xyz2 + 3xz3 + y4 − 6y2z2 − 8yz3 : z(3yz2 − xyz − xz2 + y3 + 3y2z) : z2(xy + xz + z2)]

11.1 [xz3 − xy2z + 4y4 + 11y3z + 9y2z2 : y(z + y)3 : (z − 3y)(z + y)3]

12.1 [xy2z − xz3 + y4 + y2z2 : (z + y)(xyz − xz2 + y3 − y2z + yz2) : xy2z − xz3 + y4 + z4]

13.1 [xz3 − xy2z − y4 − 2y3z + y2z2 : yz(z − y)(z + y) : xz3 − xy2z − y4 − 2y3z + z4]

14.1 [xz3 − y4 + y3z : y2z2 : yz3]

15.1 [y3z − xyz2 − 2xz3 + y4 : y4 − xyz2 − xz3 + y2z2 : yz3]

16.1 [xyz2 − xy2z + xz3 − y4 + y3z : z2(xz + y2) : (z + y)(xyz − xz2 + y3 − y2z + yz2)]

16.2 [xy2z − xz3 + y4 : z2(xz + y2) : yz(xz + y2 + z2)]

16.3 [yz(xz + y2) : z2(xz + y2) : y(xyz + y3 + z3)]

17.1 [y4 − xyz2 − xz3 : y2z2 : yz3]

18.1 [xy2z − xz3 + y4 : z(z + y)(xz + y2) : yz3]

18.2 [y(z + y)(xz + y2) : (z − y)(z + y)(xz + y2) : yz3]

19.1 [y(2xy2 − 2xz2 − y3 + 5yz2) : 2xy2z − 2xz3 + 5y4 + 4y3z − 5y2z2 : y(y − z)(z + y)2]

20.1 [y4 − xyz2 − xz3 + 2y3z : y2z(z + y) : yz(z − y)(z + y)]

21.1 [4yz3 − 3xyz2 − 3xz3 + y4 : z(2xyz + 2xz2 + y3 − 3yz2) : z2(−xy − xz + y2 + 2yz)]

22.1 [xz3 − xy2z − 5y4 − 7y3z : y2(z + y)2 : y(z − 2y)(z + y)2]

23.1 [z(xy2 − xz2 + 2y3) : y2(y − z)(z + y) : yz(y − z)(z + y)]

24.1 [y4 − xz3 : y3z : y2z2]

25.1 [y4 − xyz2 − xz3 : z(y3 − xz2) : y2z2]

26.1 [yz(xz + y2) : y2(xz + y2 + z2) : (z − y)(xyz + xz2 + y3 + y2z + yz2)]

26.2 [y2(xz + y2) : yz(xz + y2) : z2(xz + y2 + yz)]

26.3 [xy2z + xz3 + y4 : yz(xz + y2) : z2(xz + y2)]

27.1 [y(z + y)(xz + y2) : y2z2 : (z − y)(xyz + xz2 + y3 + y2z + yz2)]
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27.2 [xy2z − xz3 + y4 : z(xyz + xz2 + y3) : y2z2]

28.1 [y(xy2 − xz2 + 2y3) : z(xy2 − xz2 + 2y3) : y2(y − z)(z + y)]

29.1 [y4 − xyz2 − xz3 : y3z : y2z2]

30.1 [xyz2 + xz3 + y4 : z(y3 − xyz − xz2) : z2(xy + xz + y2)]

31.1 [xy2z − xz3 + y4 : y3z : y2z2]

32.1 [y4 : y3z : z2(xz + y2)]

32.2 [xz3 : y4 : y3z]

33.1 [y(y3 − xz2) : y3z : z2(xz + y2)]

33.2 [xz3 : y(y3 − xz2) : y3z]

34.1 [y2(xz + y2) : yz(xz + y2 + yz) : −z(2xyz − xz2 + 2y3 − yz2)]

34.2 [y2(xz + y2) : yz(xz + y2 + yz) : z3(y + x)]

34.3 [y2(xz + y2) : yz(xz + y2) : z2(y2 − xz)]

34.4 [y(xyz − xz2 + y3) : yz(xz + y2) : z2(xz + y2)]

34.5 [x3z : xy(y2 − xz) : y2(y2 − xz)]

35.1 [y4 : y3z : z2(xy + xz + 3y2 + yz)]

35.2 [y4 : y3z : z2(y + z)(x+ y)]

36.1 [y3z : y(xyz + xz2 + y3 + yz2) : yz3 − 3xy2z − 2xyz2 + xz3 − 3y4]

36.2 [xz2(z + y) : y(xyz + xz2 + y3) : y3z]

36.3 [y(xyz + xz2 + y3) : y3z : z2(xy + xz + y2)]

37.1 [y4 : y3z : −z(xy2 − xz2 − y2z)]

37.2 [xz(z − y)(y + z) : y4 : y3z]

38.1 [y4 : y(xy2 − 2xyz + xz2 + yz2) : z(xy2 − 2xyz + xz2 + y3 + yz2)]

38.2 [y4 : y(xy2 − 2xyz + xz2 − 2y2z + yz2) : (2y + z)(xy2 − 2xyz + xz2 − 2y2z + yz2)]

38.3 [y4 : y(xy2 − 2xyz + xz2 − 2y2z + yz2) : 2xy3 − 3xy2z + xz3 − 3y3z + yz3]

38.4 [y4 : y(y − z)(xy − xz − yz) : (y − z)(y + z)(xy − xz − yz)]

39.1 [y2(−xy + xz − 3y2 + yz) : y(y − z)(xy − xz − y2 − yz) : xy3 − 2xyz2 + xz3 + y4 + yz3]

39.2 [y2(xy − xz + 3y2 − yz) : y(xy2 − xz2 + 5y3 − yz2) : 2xy3 − xy2z − xz3 + 9y4 − yz3]

39.3 [y2(xy − xz + 3y2 − yz) : y(xy2 − xz2 + 5y3 − yz2) : xy3 − xz3 + 7y4 − yz3]

39.4 [y2(xy − xz + 3y2 − yz) : y(xyz − xz2 + 3y3 − yz2) : xyz2 − xz3 + 3y4 − yz3]

39.5 [y2(xy − xz − yz) : yz(xy − xz − yz) : 2xy3 − 2xy2z + xyz2 − xz3 − 2y4 − yz3]

40.1 [y4 : −y(xy2 − xz2 − 2y2z − yz2) : (y − z)(y + z)(2xy − xz − yz)]

40.2 [y4 : −y(xy2 − xz2 − yz2) : −z(xy2 − xz2 + 2y3 − yz2)]

40.3 [y4 : −y(xy2 − xz2 − yz2) : −z(y − z)(y + z)(x+ y)]

40.4 [y4 : −y(y − z)(xy + xz + yz) : −(y − z)(y + z)(xy + xz + yz)]

[x(2x2z − 2xy2 + xyz − 3y3 − y2z) : (y + x)(x2z − xy2 − y3) :
41.1 −(y + x)(x2z − xy2 − xyz + y2z)]

41.2 [xy2z : −y(xz2 − y3) : z(xyz − xz2 + y3)]

41.3 [xy2z : xyz2 : −xz3 + y4]

41.4 [y2(xz + y2) : yz(xy + xz + y2) : z2(xy + xz + y2)]
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41.5 [y2(xz + y2) : yz(xz + y2) : z(xy2 + xz2 + y2z)]

42.1 [y2(xz + y2) : −y(xy2 − xz2 − y2z) : xy3 − xy2z + xz3 + y2z2]

42.2 [y3x : y(xyz − xz2 + y3) : −z(2xy2 − xyz + xz2 − y3)]

42.3 [y3x : xy2z : xyz2 − xz3 + y4]

42.4 [y2(xz + y2) : −y(xy2 − xz2 − y2z) : −z(xy2 − xz2 − y2z)]

42.5 [y2(xz + y2) : yz(xz + y2) : xy3 + xz3 + y2z2)]

[xy3 − 3xy2z + 3xyz2 − xz3 + y3z : xy3 − 3xy2z + 3xyz2 − xz3 + y2z2 :
43.1 xy3 − 3xy2z + 3xyz2 − xz3 + yz3]

44.1 [y(xy2 − xz2 + 2y2z) : z(xy2 − xz2 + 2y2z) : yz(y − z)(z + y)]

45.1 [xy3 − xy2z − xyz2 + xz3 − 2y3z : −y2z(y − z) : −yz(y − z)(z + y)]

46.1 [−xy(x− y)2 : x(3x2y + x2z − xy2 − y2z) : y(x+ y)(x2 + xz − yz)]

46.2 [−y(xy2 − xz2 + y3 + 3yz2) : yz(y − z)2 : z(xy2 − xz2 + 3y2z + z3)]

47.1 [y2z(z + y) : −yz(y − z)(z + y) : −2xy3 + xy2z + 2xyz2 − xz3 − 5y3z + z4]

[−xy3 + 4xy2z − 5xyz2 + 2xz3 + y3z : −2xy3 + 7xy2z − 8xyz2 + 3xz3 + y2z2 :
48.1 −3xy3 + 10xy2z − 11xyz2 + 4xz3 + yz3]

[y(z + y)(xy − xz + yz) : −y(5xy2 − 8xyz + 3xz2 + y3 + 2y2z − z3) :
49.1 −14xy3 + 23xy2z − 10xyz2 + xz3 − 4y4 − 3y3z + z4]

49.2 [−xy3 − 2xy2z + 4xyz2 − xz3 + y4 − 4y3z : yz(xy − xz + yz) : z2(xy − xz + yz)]

[yz(xy − xz + yz) : −y(xy2 − 4xyz + 3xz2 + y3 − 2y2z − z3) :
49.3 −2xy3 + 5xy2z − 2xyz2 − xz3 − 2y4 + 3y3z + z4]

50.1 [xy3 − xy2z − xyz2 + xz3 − 8y3z : y2z(z + y) : −yz(y − z)(z + y)]

51.1 [y3z : y2z2 : −xy3 + 3xy2z − 3xyz2 + xz3 + yz3]

51.2 [y3z : y2z2 : −(y − z)(xy2 − 2xyz + xz2 + y3 + y2z + yz2)]

[x(34x2y + 34x2z − 32xy2 + 35xyz − 33y3 + y2z) :
52.1 36x3y + 36x3z − 35x2y2 + 36x2yz − 34xy3 + y4 : (x+ y)(y − 2x)(xy + xz + yz)]

52.2 [−y(y − z)(xy − xz + y2) : yz(xy − xz + yz) : 2xy3 − 3xyz2 + xz3 + 2y4 + yz3]

52.3 [y2(xy − xz + yz) : yz(xy − xz + yz) : −2xy3 + 6xy2z − 5xyz2 + xz3 + yz3]

52.4 [−y(xy2 − xz2 − y3 + 3y2z) : yz(xy − xz + yz) : z2(xy − xz + yz)]

[−y(xy2 − 3xyz + 2xz2 − y2z) : −y(2xy2 − 5xyz + 3xz2 − yz2) :
52.5 −2xy3 + 4xy2z − xyz2 − xz3 + yz3]

52.6 [x3(z − y) : xy(y2 − xz) : y2(y2 − xz)]

52.7 [x3z : xy(y2 − xy − xz) : y2(y2 − x2 − xz)]

53.1 [y(xy2 − 2xyz + xz2 + y2z) : y(xy2 − 2xyz + xz2 + yz2) : z(xy2 − 2xyz + xz2 + yz2)]

53.2 [y(xy2 − 2xyz + xz2 + y3) : −y2z(y − z) : z(xy2 − 2xyz + xz2 + yz2)]

54.1 [xy3 − xy2z − xyz2 + xz3 + yz3 : y3z : y2z2]

54.2 [(z + y)(xy2 − 2xyz + xz2 + y3 − y2z + yz2) : y3z : y2z2]

55.1 [xy3 + 3xy2z − 4xz3 + 22y3z − 4yz3 : z(xy2 + xyz − 2xz2 + 8y3 − 2yz2) : −y2z(y − z)]

55.2 [xy3 + 3xy2z − 4xz3 + 18y3z : z(xy2 + xyz − 2xz2 + 6y3) : −y2z(y − z)]

55.3 [y(xy2 − xz2 + 2y2z) : −y2z(z + y) : z(xy2 − xz2 − y3 − yz2)]

56.1 [−16xy2z + 16xz3 + 3y4 : −z(8xy2 − 8xz2 − 3y3) : −z(4xy2 − 4xz2 − 3y2z)]
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56.2 [xz(y − z)(z + y) : y2(y − 2z)(y + 2z) : y2z(y − 2z)]

57.1 [z(3xy2 − 5xyz + 2xz2 + 2yz2) : y(2xy2 − 3xyz + xz2 + 2y2z) : yz(xy − xz + 2yz)]

57.2 [xz(y − z)2 : y(2xy2 − 3xyz + xz2 + 2y2z) : yz(xy − xz + 2yz)]

57.3 [x(2y + z)(y − z)2 : xy(y − z)2 : y2(xy − xz + 2z2)]

57.4 [−y(xy2 − xz2 + 2y2z) : xy3 + xz3 + 2y3z + yz3 : y2(xy + xz + 2yz + z2)]

57.5 [yz(xy + xz − yz) : −z(xy2 − xz2 − 3y2z − yz2) : y2(xy + xz + yz + 2z2)]

57.6 [x2(y − z)(x− y) : x(x2y − x2z − y2x+ y3) : y2(y2 − xz)]

58.1 [y(xy2 − 2xyz + xz2 + y2z) : y2z2 : −z(−xy2 + 2xyz − xz2 − yz2)]

58.2 [xy(y − z)2 : y2z2 : 2xy3 − 3xy2z + xz3 + yz3]

58.3 [xy(y − z)2 : x(2y + z)(y − z)2 : y2z2]

58.4 [y(xy2 + 2xyz + xz2 + y2z) : y2z2 : z(xy2 + 2xyz + xz2 + yz2)]

59.1 [y(xy2 − xz2 + 2y2z) : z(xy2 − xz2 − yz2) : y2z2]

59.2 [y(xy2 − xz2 + 2y2z) : xz(y − z)(z + y) : y2z2]

59.3 [xy(y − z)(z + y) : xz(y − z)(z + y) : y2z2]

59.4 [y(xy2 − xz2 + y2z) : z(xy2 − xz2 − yz2) : y2z2]

[y(3xy2 − 5xyz + 2xz2 + 2yz2) : 7xy3 − 9xy2z + 2xz3 + 4y2z2 + 2yz3 :
60.1 y2(xy − xz + 2yz)]

60.2 [y(3xy2 − 5xyz + 2xz2 + 2yz2) : 5xy3 − 7xy2z + 2xz3 + 2yz3 : y2(xy − xz + 2yz)]

60.3 [xy(y − z)2 : 5xy3 − 7xy2z + 2xz3 + 2y2z2 : y2(xy − xz + 2yz)]

60.4 [xy(y − z)2 : x(2y + z)(y − z)2 : y2(xy − xz + 2yz)]

60.5 [y(xy2 − 3xyz + 2xz2 − 2yz2) : xy3 − 3xy2z + 2xz3 − 4y2z2 − 2yz3 : y2(xy − xz + 2yz)]

60.6 [−yz(xy − xz + yz) : −xy3 + xz3 − 2y2z2 − yz3 : y2(xy − xz + yz)]

60.7 [y(xy2 − 3xyz + 2xz2 − 2yz2) : xy3 − 2xy2z + xz3 − y2z2 − yz3 : y2(xy − xz + 2yz)]

60.8 [x2z(x− 2y) : xy(xz + y2) : y2(xz + y2)]

60.9 [(x− 2y)(x+ 2y)(xz + y2) : x2yz : y2(xy − 2xz − 2y2)]

61.1 [(y + 2z)(xy2 − 2xyz + xz2 + yz2) : z(xy2 − 2xyz + xz2 + yz2) : y3z]

61.2 [xy3 − 3xyz2 + 2xz3 − 3y2z2 + 2yz3 : z(xy2 − 2xyz + xz2 − 2y2z + yz2) : y3z]

61.3 [xy3 − 3xyz2 + 2xz3 + 2y2z2 : z(xy2 − 2xyz + xz2 + y2z) : y3z]

61.4 [x(y + 2z)(y − z)2 : xz(y − z)2 : y3z]

61.5 [xy3 − 3xyz2 + 2xz3 + y2z2 − 2yz3 : z(y − z)(xy − xz + yz) : y3z]

[x(8x2z − 8xy2 + 8xyz − 5y3) : x(18x2z − 18xy2 + 13xyz − 5y2z) :
62.1 16x3z − 16x2y2 + 16x2yz − 5y4]

62.2 [y(xy2 − xz2 − yz2) : z(xy2 − xz2 − yz2) : y3z]

62.3 [yx(y − z)(z + y) : z(xy2 − xz2 − y2z) : y3z]

62.4 [yx(y − z)(z + y) : xz(y − z)(z + y) : y3z]

62.5 [y(xy2 − xz2 − yz2) : z(y − z)(xy + xz + yz) : y3z]

63.1 [xy3 − xz3 + y3z − 2y2z2 − yz3 : z(xy2 − xz2 − 2y2z − yz2) : z2(xy − xz − y2 − yz)]

63.2 [(y − z)(xy2 + xyz + xz2 + y2z + yz2) : z(xy2 − xz2 − yz2) : z2(y − z)(y + x)]

63.3 [(z + y)(xy2 − xyz + xz2 + y2z) : z(xy2 − xz2 − y2z) : z2(xy + xz + y2)]
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63.4 [xy3 − xz3 − 2y2z2 − yz3 : z(xy2 − xz2 − 2y2z − yz2) : z2(xy − xz − y2 − yz)]

63.5 [xy3 + xz3 + y3z : xz(y − z)(z + y) : xz2(z + y)]

63.6 [xy3 + xz3 + y2z2 : z(xy2 − xz2 − y2z) : z2(xy + xz + y2)]

63.7 [xy3 + xz3 + yz3 : z(xy2 − xz2 − yz2) : z2(z + y)(y + x)]

63.8 [xy3 + xz3 + y3z − y2z2 − yz3 : z(z + y)(xy − xz + yz) : z2(xy + xz − 2y2 − yz)]

63.9 [xy3 + xz3 − y3z − y2z2 + yz3 : z(y − z)(xy + xz + yz) : z2(xy + xz + yz)]

63.10 [xy3 + xz3 + y3z + y2z2 + yz3 : z(z + y)(xy − xz − yz) : z2(xy + xz + 2y2 + yz)]

63.11 [x2(xy + xz + yz) : −x(x− y)(xy + xz + yz) : x3y + x3z + xy3 + y3z]

63.12 [x(x− y)(xz − y2) : x(x2z − xy2 − xyz + y2z) : 2x3z − 2x2y2 − x2yz + y4];

64.1 [(z + y)(xy2 − xyz + xz2 + y2z + yz2) : z(2xy2 + xz2 + 2y2z + yz2) : z2(2xy − xz − yz)]

64.2 [−y2(xy − 2xz + yz) : xyz2 : xy3 + 2xz3 + y3z + 2y2z2]

64.3 [y3(z + x) : yz(xy + xz + yz) : z(2xy2 + xz2 + 2y2z + yz2)]

64.4 [y3(z + x) : z(xy2 + xz2 + y2z) : xyz2]

64.5 [y3(z + x) : yz(xy + xz + yz) : z3(y + x)]

64.6 [y2(xy − 2xz + yz) : xyz2 : xz3]

64.7 [xy3 + xz3 + y2z2 : xy2z : xyz2]

64.8 [y3(z + x) : xyz2 : xz3]

64.9 [xy3 + xz3 − y3z + 2y2z2 − yz3 : z(2xy2 − xz2 − 2y2z + yz2) : z2(2xy + xz − yz)]

64.10 [xy3 − xz3 − y3z − y2z2 + yz3 : z(y − z)(xy + xz − yz) : z2(xy + xz − yz)]

64.11 [x(x− y)(xz − y2) : (x− y)(x+ y)(xz − y2) : x3z − x2y2 + x2yz − 2xy2z + y3z]

65.1 [yz(2xy − xz − y2) : z(3xy2 − xz2 − y3 − y2z) : y2(xz − y2)]

65.2 [−y2xz : z(2xyz − xz2 + y3 − y2z) : y(xz2 − y3 + y2z)]

65.3 [xyz(y − z) : −z(xz2 − y3) : y2(xz − y2)]

65.4 [xyz(y − z) : xz(y − z)(z + y) : y2(xz − y2)]

65.5 [y2xz : xyz2 : xz3 + y4 − y3z]

65.6 [yz(xy − xz − y2) : z(z + y)(xy − xz − y2) : −y2(2xz + y2)]

[−y(3xy2 − xyz − 2xz2 − 2y2z) : 3xy3 − 5xyz2 + 2xz3 − 3y3z + 2y2z2 :
65.7 y(8xy2 − 8xz2 + y3 − 8y2z)]

65.8 [yz(xz + y2) : −z(z + y)(xy − xz − y2) : y2(xz + y2)]

65.9 [xy2z : y(x2z − y2x+ y3) : x(x− y)(xz − y2)]

66.1 [y2(xy + xz + yz) : y(2xy2 + xz2 + 2y2z + yz2) : 2xy3 + xz3 + 2y3z + 2y2z2 + yz3]

66.2 [y3x : −yz(2xy − xz − yz) : −z(2xy2 − xz2 − 2y2z − yz2)]

66.3 [(y − z)(xy2 + xyz + xz2 + y2z) : xy2z : z2(xy + xz + y2)]

66.4 [(−z + y)(xy2 + xyz + xz2 + y2z + yz2) : z(xy2 + xz2 + yz2) : yz2(y + x)]

66.5 [y2(xy + xz + yz) : yz2(y + x) : z3(y + x)]

66.6 [y3x : z(xy2 + xz2 + yz2) : yz2(y + x)]

66.7 [y3x : yz2(y + x) : z3(y + x)]

66.8 [y3x : xy2z : z2(xy + xz + y2)]

66.9 [xy3 + xz3 + y3z : xy2z : xyz2]
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66.10 [y2(xy + xz + yz) : y(xy2 + xz2 + y2z + yz2) : xy3 + xz3 + y3z + y2z2 + yz3]

66.11 [y2(xy + xz + yz) : −y(2xy2 − xz2 + 2y2z − yz2) : 6xy3 + xz3 + 6y3z − 2y2z2 + yz3]

66.12 [xy3 − xz3 + y3z + y2z2 − yz3 : z(xy2 + xz2 − y2z + yz2) : z2(xy − xz + 2y2 − yz)]

66.13 [x(x− y)(xz − y2) : y(x− y)(xz − y2) : y(x2z − y2x− xyz + y2z)]

67.1 [−y2(2xy − xz − y2) : −y(y − z)(xy + xz + y2) : −4xy3 + xz3 + 3y4 − y3z + y2z2]

67.2 [y3x : y(xz2 − y3 + y2z) : −z(3xy2 − xz2 + y3 − y2z)]

67.3 [−y2x(y − z) : −xy3 + xyz2 − xz3 + y3z : −(z + y)(xy2 − xyz + xz2 − y3)]

67.4 [y3x : xy2z : −2xyz2 + xz3 + y4 − y3z]

67.5 [−y2x(y − z) : −yx(y − z)(z + y) : xz3 − y4]

67.6 [y2(3xy + xz + y2) : −y(11xy2 − xz2 + y3 − y2z) : 41xy3 + xz3 + 3y4 − y3z + y2z2]

67.7 [y2(xy + xz + y2) : −y(y − z)(xy + xz + y2) : −xy3 + xz3 + 3y4 − y3z + y2z2]

67.8 [x(x− y)(xz − y2) : y(x− y)(xz − y2) : y3z]

67.9 [7x(2x− y)(xz + y2) : 7(2x− y)(2x+ y)(xz + y2) : 24x3z + 24x2y2 − 7y3z]

[3xz3 + 8y4 − 24y3z + 16y2z2 : y(z − y)(2y − z)(y − 2z) :
68.1 (z − y)(2y − z)(y − 2z)(2z + 7y)]

68.2 [xz3 : y2(2y − z)(y − z) : y(y − z)(2y − z)(z + 3y)]

[−8xyz2 + 7xz3 + 8y4 − 24y3z + 16y2z2 : y(6xz2 − 6y3 + 25y2z − 33yz2 + 14z3) :
69.1 6xyz2 − 6y4 + 21y3z − 19y2z2 + 4z4]

69.2 [xz3 : −y(2xz2 − 2y3 + 3y2z − yz2) : −y(6xz2 − 6y3 + 7y2z − z3)]

[x(3x2y + 4x2z − 6xy2 + 4xyz − 5y3) : −4x(x− y)(2xy + xz + y2 + yz) :
70.1 7x3y + 4x3z − 10x2y2 − 5xy3 + 4y3z]

[xz3 : y(4xyz − 8xz2 + 4y3 − 4y2z − yz2 + z3) :
70.2 (y − z)(4xyz + 4y3 + 4y2z − yz2 − z3)]

[y(y + 2z)(xz + y2 + yz − 2z2) : yz(3xz + 3y2 + 2yz − 5z2) :
70.3 z(y − z)(xz + y2 + yz − z2)]

70.4 [2xy2z − 7xz3 + 2y4 + 2y3z + 7yz3 + 2z4 : yz(xz + y2) : z2(xz + y2)]

70.5 [x(x+ y)(xz − y2) : y(x+ y)(y2 − xz) : xy(x2 − xy + xz − y2)]

[−y(26xyz − 38xz2 + 26y3 + 11y2z − 37yz2) : −y(18xyz − 69xz2 + 18y3+
71.1 19y2z − 37z3) : −64xy2z + 307xyz2 − 64y4 − 10y3z + 74z4]

71.2 [xyz2 : −y(2xyz + 2y3 − 7y2z + 7yz2 − 2z3) : −14xy2z − 14y4 + 45y3z − 35y2z2 + 4z4]

71.3 [y2(xz + y2 + z2) : yz(xz + y2 + z2) : xy2z + 4xyz2 + y4 + 5y3z + 4z4]

[−y(2xyz + 2xz2 + 10y3 − 29y2z + 15yz2) : y(y − z)(2y − z)(y − 2z) :
72.1 (y − z)(2y − z)(y − 2z)(2z + 7y)]

[y(2xyz + 2xz2 − 6y3 − 15y2z − 7yz2) : y(y + 2z)(3y + z)(2y + z) :
72.2 (2z − 11y)(y + 2z)(3y + z)(2y + z)]

73.1 [xyz2 + xz3 − 12y4 + 12y3z : y2(2y − z)(y − z) : y(y − z)(2y − z)(z + 3y)]

73.2 [xz2(z + y) : y2(2y − z)(y − z) : y(y − z)(2y − z)(z + 3y)]

[−31xy2z + 3xyz2 + 34xz3 − 6y4 : −(y − z)(8xyz + 8xz2 + y3) :
74.1 −(y − z)(z + y)(4xz + y2)]
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74.2 [(y − z)(xyz + xz2 − 6y3) : xyz2 + xz3 + 8y4 − 10y3z : y2(2y − z)(y − z)]

74.3 [xz(y − z)(z + y) : xz2(z + y) : −y2(y − z)(z + y)]

74.4 [xz(y − z)(z + y) : xz2(z + y) : y2(2y − z)(y − z)]

74.5 [xyz2 + xz3 + 2y4 : (y − z)(xyz + xz2 − y3) : −(y − z)(z + y)(xz + y2)]

75.1 [y(y + 2z)(xz + y2 − 2yz) : −z2(5xy − 2xz − 3y2) : −yz(6xz − y2 − 5yz)]

75.2 [y(2xyz + xz2 + 2y3 − 5y2z) : −z(3xyz − xz2 − 2y3) : −yz2(x− y)]

75.3 [−4x2z(3x− 2y) : 2x(9x2z − 8xy2 + 4y3) : 81x3z − 32x2y2 − 8xy2z + 8y4]

75.4 [xyz2 : xz3 : −y2(xz + y2 − z2)]

75.5 [−2xy2z + xyz2 − 6xz3 − 2y4 : y2(xz + y2 + yz) : xy2z + 6xz3 + y4 + y2z2]

75.6 [y(xyz + 10xz2 + y3 − 10yz2) : z2(5xy + 2xz − 3y2) : yz(6xz + y2 − 5yz)]

75.7 [xy2z − 3xyz2 + xz3 + y4 : −yz(xz − y2) : y(xyz − 3xz2 + y3 + yz2)]

75.8 [x(x2z − y3) : −yx2(y − z) : −y2(x2 − xy + xz − y2)]

75.9 [x2z(x− y) : xy(y2 + xy − 2xz) : −y(x− y)(xy − xz + y2)]

75.10 [x2(y − z)(−y + 2x) : −x(2x2y − 2x2z − xy2 − y3) : y2(xz + y2)]

76.1 [−z2(5xy − 2xz − 3y2) : y(6xz2 + y3 − 7yz2) : −yz(6xz − y2 − 5yz)]

76.2 [−z(3xyz − xz2 − 2y3) : y(xz2 + 2y3 − 3y2z) : −yz2(x− y)]

76.3 [y(xz2 + 4y3 − 4y2z) : xz3 + 8y4 − 8y3z : y2(2y − z)(y − z)]

76.4 [xyz2 : xz3 : y2(2y − z)(y − z)]

76.5 [3xyz2 + xz3 − 2y4 : yz(xz + y2);−y(3xz2 − 2y3 − yz2)]

[−9x3y − 9x3z + 85x2y2 − 18xy3 + 9y3z : y(22x2y − 9x2z − 18xy2 + 9y2z) :
77.1 y2(10x2 − 18xy − 9xz + 9yz)]

77.2 [−x2(2xy + 6xz − y2 + 6yz) : xyz(x+ y) : 8x3y + 24x3z + 23x2yz − 2xy3 + y3z]

77.3 [6x(x2y + x2z + 2xyz − 3y2z) : 6xy(xy + 3xz − 3yz) : y(10x2z + 6xy2 − 7xyz − 3y2z)]

77.4 [xy3 + xz3 + y3z − 3y2z2 : xz(y − z)(z + y) : z2(xy + xz − 2y2)]

77.5 [xz(y − z)(z + y) : xz2(z + y) : −xy3 − xz3 − y3z + y2z2]

77.6 [xy3 + xz3 − 2y2z2 : xz(y − z)(z + y) : z2(xy + xz − 2y2)]

77.7 [2yz(xy + 2xz + 3yz) : 2y(xy2 − 4xz2 + y2z − 4yz2) : z2(y + 2z)(y + x)]

77.8 [−3xy3 + xy2z − 4xz3 − 3y3z : xy3 + xyz2 + 2xz3 + y3z : 4xy3 + 4xz3 + 4y3z + y2z2]

[(2z − y)(xy2 − xyz − 2xz2 − y2z − 2yz2) : z(2xy2 − xyz − 3xz2 − 3yz2) :
77.9 z(z + y)(xy − xz − yz)]

[4xy3 + 4xz3 + 4y3z + 17y2z2 + 4yz3 : z(2xy2 − 2xz2 − 7y2z − 2yz2) :
77.10 z2(xy + xz + 3y2 + yz)]

77.11 [xy3 + 5xy2z − 4xz3 − y3z − 4yz3 : z2(xy + xz + yz) : z(y − z)(xy + xz + yz)]

77.12 [−yzx(y + z) : y2(2xy + 2xz + 2yz − z2) : 4xy3 + 5xy2z − xz3 + 4y3z − yz3]

[z(xy2 − xyz − 2xz2 − 2yz2) : xy3 − 3xyz2 − 2xz3 + y3z − 2yz3 :
77.13 z2(4xy + 4xz + y2 + 4yz)]

77.14 [xy3 + xz3 + y3z + yz3 : −z(xy2 − xyz − 2xz2 − 2yz2) : z(y − z)(xy + xz + yz)]

77.15 [x2(x+ y)(z − y) : xy(xy + yz + xz) : y(y − x)(xy + yz + xz)]

77.16 [x2(2xz + y2 + 2yz) : −xz(x+ y)(2x− y) : 2x3z + x2yz + xy3 + y3z]
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[(x− y)(x2y + 2x2z + 3xy2 − 13xyz + 4xz2 + 3y2z) : 2(y − z)(x− y)(xy − 2xz + yz) :
78.1 2(y − z)(3x2y − 5x2z − xy2 + 2xyz + 3xz2 − y2z − yz2)]

78.2 [xy3 + 3xz3 − 7y2z2 + 3yz3 : z(xy2 + 2xz2 − 5y2z + 2yz2) : z2(xy + xz − 3y2 + yz)]

78.3 [y(xy2 − 3xz2 + 2yz2) : yz(xy − 2xz + yz) : z2(xz − y2)]

78.4 [y(xy2 + xz2 − 2yz2) : y2z(x− z) : −z2(3xy − xz − y2 − yz)]

78.5 [y2(xy − 2xz + z2) : yz2(x− y) : z(2xy2 + xz2 − 4y2z + yz2)]

78.6 [y(xy2 + xz2 − 2yz2) : y2z(x− z) : −z2(2xy − xz − y2)]

78.7 [−xy2z + xyz2 : −xy3 − y3z + y2z2 : −xy3 − 2xy2z + xz3 − y3z + yz3]

78.8 [−xy2z + xyz2 : −xy2z + xz3 : −xy3 − y3z + y2z2]

78.9 [y(xy2 + 5xz2 + y2z − 7yz2) : yz(xy + xz − 2yz) : −z2(5xy − xz − 3y2 − yz)]

78.10 [y(y − z)(xy + xz − 2yz) : yz(xy − 2xz + yz) : −z2(2xy − xz − 3y2 + 2yz)]

[x(y − z)2(x− y) : (x− y)(x2z + 2xy2 − 5xyz + xz2 + yz2) :
78.11 x3z + 5x2y2 − 11x2yz + 3x2z2 − 4xy3 + 7xy2z − yz3]

[(x+ 2z)2(xy + xz + yz) : (y + 2z)(x+ 2z)(xy + xz + yz) :
78.12 −(y + 2z)(x2z − xy2 − 5xyz − 2xz2 − 2yz2)]

79.1 [y2(6xz − 5y2 − 7yz) : y(12xz2 − 7y3 − 17y2z) : 24xz3 − 29y4 − 43y3z + 24y2z2]

79.2 [z(xy2 − 4xyz + 2xz2 + 2y2z) : 3xz3 − 5xyz2 + y4 + 3y2z2 : z(xz2 − 2xyz + y3 + y2z)]

79.3 [xyz(y + 2z) : 11xyz2 − 2xz3 + 2y4 − 2y2z2 : −z(13xyz + 2xz2 − 2y3 + 2y2z)]

79.4 [y2(6xz − 5y2 − 7yz) : y(12xz2 − 7y3 − 17y2z) : 24xz3 − 17y4 − 31y3z]

79.5 [xz(y − 2z)(y + 2z) : xz2(y − 2z) : 8xz3 − y4 + y3z]

79.6 [−y(3xyz − xz2 − 2y3) : −7xy2z + xz3 + 6y4 : −y2z(x− y)]

79.7 [xy2z : xyz2 : 2xz3 + y4 − 3y3z + 2y2z2]

79.8 [−y(xyz − xz2 + 6y3) : xy2z + xz3 + 6y4 + y2z2 : y2(2xz + 6y2 + yz)]

79.9 [yz(5xy + 2xz − 3y2) : z(5xy2 + 4xz2 − 5y3 + 4y2z) : y2(6xz + y2 − 5yz)]

79.10 [z(4xy2 − 6xyz + xz2 + y2z) : −y2(xz − y2) : −yz(xz − y2)]

79.11 [x3z + x2y2 − 18xy3 − 9y4 : y(x2z − 5xy2 − 3y3) : −xy2(2y − z)]

79.12 [x(x− y)(xz + y2) : −xyz(2x+ y) : x3z + x2y2 + 2x2yz − y4]

79.13 [xy(xz + y2) : −xz(2x+ y)(3x− y) : 6x3z + x2yz + y4]

80.1 [y(xy2 + 8xz2 + y2z + 8yz2) : yz(xy − 2xz − 2yz) : −z2(7xy − 2xz + 3y2 − 2yz)]

80.2 [y(xy2 + 2xz2 + y2z + 2yz2) : xy2z : −z2(3xy − 2xz − y2 − 2yz)]

80.3 [y3(z + x) : z2(xz + 2y2 + yz) : yz(2xy + xz + yz)]

80.4 [y(xy2 + 4xz2 + 4yz2) : yz(xy − 2xz − 2yz) : −z2(7xy − 2xz + 3y2 − 2yz)]

80.5 [y2(xy + 2xz + yz) : yz2(y + x) : −z(2xy2 − xz2 − 2y2z − yz2)]

80.6 [y(xy2 − 8xz2 + y2z) : xyz(y + 2z) : z2(5xy + 2xz + 2y2)]

80.7 [xy3 − 16xz3 + y3z − 16yz3 : z(xy2 + 4xz2 + 4yz2) : z2(x+ y)(y + 2z)]

80.8 [y2(2xy + 3xz + 2yz) : yz2(y + x) : z3(y + x)]

80.9 [xy2z : −y(y − z)(xy + xz + yz) : −(y − z)(xy2 + xyz + xz2 + y2z + yz2)]

80.10 [y3(z + x) : z(3xy2 − 4xz2 − 4yz2) : z2(y + x)(y + 2z)]
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80.11 [y3(z + x) : yz2(y + x) : z(2xy2 + xz2 + 2y2z + yz2)]

80.12 [xy3 − 8xz3 − 8yz3 : z(xy2 + 4xz2 + 4yz2) : z2(x+ y)(y + 2z)]

80.13 [y2x(z + y) : 2xy3 + xz3 + 2y2z2 + yz3 : yz2(y + x)]

80.14 [y3(z + x) : z2(xz + y2) : xyz(z + y)]

80.15 [y3(z + x) : yz2(y + x) : z3(y + x)]

80.16 [y3x : xy2z : −z2(3xy − xz + y2 − yz)]

80.17 [xy2z : xyz2 : −(y − z)(xy2 + xyz + xz2 + y2z)]

80.18 [yx(y − 2z)(y + 2z) : xyz(y + 2z) : z2(5xy + 2xz + 2y2)]

80.19 [xy3 + 16xz3 + y3z : xz(y − 2z)(y + 2z) : xz2(y + 2z)]

80.20 [y3x : xy2z : z2(y + x)(2y + z)]

80.21 [y2x(2y + z) : yz2(y + x) : z3(y + x)]

80.22 [y3(z + x) : xz(y − 2z)(y + 2z) : xz2(y + 2z)]

80.23 [−y2(xy − 2xz + yz) : yz(2xy − xz − yz) : z(2y + z)(2xy − xz − yz)]

80.24 [y3(x− z) : yz(xy − 2xz − 2yz) : −z2(3xy − 2xz + y2 − 2yz)]

[y2(xz − 2xy − 2yz) : y(8xy2 + xz2 + 8y2z + yz2) :
80.25 (z − 2y)(4xy2 + 2xyz + xz2 + 4y2z + yz2)]

[xy3 − 2xz3 + y3z − 4y2z2 − 2yz3 : z(xy2 + 2xz2 + 4y2z + 2yz2) :
80.26 z2(xy − 2xz − 3y2 − 2yz)]

80.27 [−x2yz : x(x− y)(xy + xz + yz) : y2(x2 − xy − yz)]

80.28 [x3(y + z) : y2(x2 + 2xy + 3xz + 2yz) : y(x2z − 4xy2 − 4xyz − 4y2z)]

80.29 [x2(2xy + 2xz + yz) : xy2(x+ z) : 4x3y + 4x3z − x2y2 + xy3 + y3z]

80.30 [x3(y + z) : xy2(x+ z) : y(y − x)(xy + xz + yz)]

80.31 [x3(y + 3z) : xy(xy + xz + yz) : y(y − x)(xy + xz + yz)]

80.32 [−x2(xy + xz + yz) : x(x− y)(xy + xz + yz) : 2x3y + 2x3z − xy3 − y3z]

80.33 [x2z(2x− y) : −x(2x2z + xy2 + y2z) : 2x3z + x2y2 − xy3 − y3z]

[y(9xy2 − 13xyz + 2xz2 + 2y2z) : (y − z)(27xy2 − 4xyz − 4xz2 − 4y2z) :
81.1 y2(xy − 2xz + y2)]

81.2 [y(3xy2 − 5xyz + xz2 + y2z) : (y − z)(15xy2 − xyz − xz2 − y2z) : −y3(x− y)]

81.3 [−y2x(3y − z) : −21xy3 + xz3 − y3z + y2z2 : y(7xy2 − xz2 + y3 − y2z)]

[4y3z − 3xy3 + 3xy2z − 4xz3 : 3xyz2 − 3xy3 − 10xz3 + 10y3z :
81.4 8y3z − 3xy3 − 8xz3 + 3y4]

81.5 [yx(3y − 2z)(y − z) : x(2z + 5y)(y − z)(3y − 2z) : y2(xy − 2xz + y2)]

81.6 [yx(2y − z)(y − z) : 6xy3 − 6xy2z + xz3 − y3z : −y3(x− y)]

81.7 [yx(2y − z)(y − z) : x(y − z)(2y − z)(z + 3y) : −y3(x− y)]

81.8 [y3x : y2xz : −(2y − z)(xz2 − y3 + y2z)]

81.9 [−y2x(2y − z) : −yx(2y − z)(2y + z) : −7xy3 + xz3 + y4 − y3z]

[y2(3xy + 2xz + 3y2) : −y(15xy2 − 4xz2 + 9y3 − 4y2z) :
81.10 75xy3 + 8xz3 + 45y4 − 8y3z + 8y2z2]

[y(9xy2 + xyz − 5xz2 − 5y2z) : 9xy3 − 5xyz2 + xz3 − 6y3z + y2z2 :
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81.11 y(y − z)(xy + xz + y2)]

81.12 [yz(xz + y2) : 2xy3 + 3xy2z + xz3 − y3z + y2z2 : y2(xz + y2)]

81.13 [x(3x− y)(xz + y2) : (9x2 − y2)(xz + y2) : 18x3z + 18x2y2 − 2xy2z − y3z]

81.14 [x(x− y)(xz + y2) : (x− y)(x+ y)(xz + y2) : −y2z(2x+ y)]

[−xy2z + 23xyz2 + 26xz3 − y4 + y3z : −(y + z)(xyz − 10xz2 + y3 − y2z) :
82.1 −xy2z + 17xyz2 + 20xz3 − y4 + yz3]

82.2 [xz2(y + 2z) : −xy2z − 8xz3 − y4 + y2z2 : z(6xz2 − y3 + yz2)]

82.3 [xyz2 : xz3 : −y(xyz + y3 + 2y2z − yz2 − 2z3)]

82.4 [yz(2xz + 3y2 + yz) : y(y − z)(xz + y2 − yz − z2) : −(y − z)(z + y)(xz + y2 + z2)]

82.5 [−y(y − z)(4xz + 4y2 + 3yz) : y(2y − z)(2xz + 2y2 + yz − z2) : z2(2xz + y2 + z2)]

[x2(2x2 − 3xy + 2xz + y2 + yz) : −x(2x− y)(2x2 − 3xy + 2xz + y2 + yz) :
82.6 8x4 − 20x3y + 8x3z + 16x2y2 − 4xy3 + y3z]

83.1 [26xyz2 + 28xz3 − y4 + y3z : (y + z)(12xz2 − y3 + y2z) : 20xyz2 + 22xz3 − y4 + yz3]

83.2 [xz2(y + 2z) : −12xz3 − y4 + y2z2 : z(6xz2 − y3 + yz2)]

83.3 [xyz2 : xz3 : −y(y − z)(y + 2z)(z + y)]

83.4 [−y(2xz2 + y3 + 4y2z − yz2) : yz(xz + y2 + z2) : 2xyz2 + xz3 + y4 + 4y3z + z4]

[y(594xyz − 312xz2 + 466y3 − 1233y2z + 485yz2) : y(314xyz + 178xz2+
84.1 +586y3 − 1563y2z + 485z3) : 1558xy2z − 544xyz2 + 1106y4 − 2411y3z + 291z4]

84.2 [(z − y)(y + 2z)(y − 2z)(z + y) : yz(y + 2z)(x− y) : z(xy2 − 4xyz + 2y2z − yz2 + 2z3)]

84.3 [−5xyz2 + y4 + 4z4 : −y2z(x− y) : −yz2(x− y)]

84.4 [y2(xz + y2 + z2) : yz(xz + y2 + z2) : −28xy2z + 13xyz2 − 22y4 − 10y3z + 2z4]

[y(93xyz − 150xz2 − 94y3 + 208yz2) : −645xyz2 + 558xz3 − 212y4 + 386y2z2 :
85.1 y(42xz2 + 66y3 + 31y2z − 181yz2)]

[x(6x2y + 6x2z − 22xy2 + 11xyz − y3) : x(12x2y + 12x2z − 45xy2 + 22xyz − y2z) :
85.2 −y(5x2y − 6x2z + y3)]

[y(5xyz + 17xz2 − 6y3 − 18yz2) : −7xyz2 + 5xz3 + 36y4 − 12y2z2 :
85.3 y(12xz2 − 6y3 + 5y2z − 13yz2)]

[y2(21xz + 26y2 + 19yz − 87z2) : y(42xz2 + 58y3 + 23y2z − 165yz2) :
85.4 84xz3 + 110y4 + 61y3z − 339y2z2]

85.5 [7xy2z − 9xyz2 + 2xz3 + 6y4 : −y2z(x− y) : −yz2(x− y)]

85.6 [xyz(y − z) : xz(y − z)(z + y) : −y2(3xz + 2y2 + yz − 6z2)]

85.7 [y2z(x+ 2y − 3z) : −z(4xyz − 3xz2 + 2y3 − 3y2z) : −y(3xz2 − 2y3 + 11y2z − 12yz2)]

[y2(xz − 6y2 + 17yz − 12z2) : y(xz2 − 4y3 + 12y2z − 9yz2) :
85.8 2xz3 − 6y4 + 19y3z − 15y2z2]

85.9 [5xy2z + 5xyz2 + 2xz3 + 6y4 : yz(xy + xz + y2) : −y(5xyz + 3xz2 + 6y3 − 2yz2)]

[7xy2z + xyz2 − 2xz3 + 3y4 : −z(4xy2 + xyz − 2xz2 − 3y3) :
85.10 z(4xy2 + 4xyz − 2xz2 + 3y2z)]

85.11 [z(5xy2 + 15xyz − 2xz2 − 12y2z) : 5y4 − 15xyz2 − 18xz3 − 8y2z2 : z(y − 2z)(xz + y2)]

85.12 [x(4x+ y)(xz + y2) : −x(4x2z − 2xy2 + xyz − y2z) : −12x3z − 18x2y2 + x2yz + y4]

85.13 [2x(x+ 2y)(xz + y2) : 2x(y2z − 6x2z − 10xyz − 9y3) : 12x3z + 21x2yz + 19xy3 + 2y4]
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85.14 [x(x− y)(xz + y2) : xz(2x+ y)(3x− y) : x2y2 − 5x3z − x2yz − y4]

85.15 [3x2y2 + 4x2yz − x3z − 3y4 : y(4x2y + 3x2z − xy2 − 3y3) : y(4x2y + 4x2z − xyz − 4y3)]

85.16 [3xy(xz + y2) : −x(x− y)(4xy + 4xz + 3yz) : 4x3y + 4x3z − 4x2y2 − x2yz + 3y4]

86.1 [y2(xy − 7xz + yz + 11z2) : −yz(5xy − 2xz − 6yz) : −z(13xy2 − 4xz2 − 14y2z − 4yz2)]

[x3y − 2x3z − 62x2y2 − 2x2yz + 6x2z2 − 52xy3 + 62xy2z + xyz2 − 6xz3 − 156y3z + 2z4 :
86.2 −y2(x− z)(x+ z) : y(6x2y + x2z + 4xy2 − 6xyz − 2xz2 + 12y2z + z3)]

86.3 [−zxy(z + y) : (z + y)(xy2 + xyz − xz2 + y2z − yz2) : y2(xy + yz − z2)]

86.4 [−y2(xy − 5xz + yz + 7z2) : yz(3xy − xz − 4yz) : z(3xy2 − xz2 − 3y2z − yz2)]

86.5 [−y2(xy − 7xz + yz + 11z2) : yz(5xy − 2xz − 6yz) : z(7xy2 − 4xz2 − 6y2z)]

86.6 [y2xz : xyz2 : −(y − z)(xy2 + xyz + xz2 + y2z + yz2)]

86.7 [−y2(2xy − 5xz + 2yz + 4z2) : zyx(y − z) : xz(y − z)(z + y)]

86.8 [y(xy2 + 4xyz + 2xz2 + y2z) : z3(y + x) : z2y(y + x)]

86.9 [x(y − z)(y + 2z)2 : xz(y + 2z)(y − z) : −z(7xy2 − 4xz2 − 6y2z)]

86.10 [xy3 + 2xy2z − 8xz3 + y3z − 8yz3 : z(xy2 + xyz + 2xz2 + 2yz2) : −y2z(x− z)]

86.11 [4x2(3xz + 2y2 − 5yz) : 4xz(3x− 2y)(x− y) : −15x3z + 19x2yz − 12xy3 + 8y3z]

86.12 [xy3 − 40xyz2 + 64xz3 + y3z : xz(y − 2z)(y − 4z) : −yz2(2x− y)]

86.13 [−zxy(z + y) : (z + y)(xy2 + xyz − xz2 + y2z − yz2) : y2(xy + 3xz + yz − z2)]

86.14 [y(xy2 − 2xyz − 4xz2 + y2z) : −z(3xy2 + 3xyz − 2xz2 − 2yz2) : yz(3xy + 4xz + yz)]

[x2(3y − 2z)(y + 4x) : 2x(192x2y − 128x2z + 3xy2 − y2z) :
86.15 −1536x3y + 1024x3z + 6xy3 − 2y3z]

86.16 [81xy2z − 10xy3 − 324xz3 − 10y3z : xz(y + 2z)(y − 3z) : z(17xy2 − 108xz2 − 10y2z)]

86.17 [xy3 + 18xz3 + y3z + 2y2z2 : xz(y − 3z)(y + 3z) : xz2(y − 3z)]

86.18 [−y(xy2 + xyz − xz2 + y2z) : z3(y + x) : y2(z + y)(z + x)]

86.19 [y3(z + x) : −xz(y + 2z)(y − 3z) : y2z(z + x)]

86.20 [x(−6z + y)(y + 2z)(y + 4z) : xz(y + 4z)(y + 2z) : z2y(2x+ y)]

86.21 [−y(xy2 − 3xz2 + y2z) : z2(xy − xz − yz) : yz(xy − xz − yz)]

[y(4xy2 + 3xyz + xz2 + 4y2z) : yz3 − 5xy3 − 4xy2z + xz3 − 5y3z :
86.22 y2(z2 − 3xy − xz − 3yz)]

[9xy3 − 40xz3 + 9y3z + 26y2z2 − 40yz3 : z(3xy2 − 8xz2 + 7y2z − 8yz2) :
86.23 z2(xy − 2xz + 2y2 − 2yz)]

86.24 [x2(y + z)(y − 2x) : xy2(x+ z) : 4x3y + 4x3z + x2y2 + y3z]

86.25 [x2(y + z)(2x− y) : x(2x2y + 2x2z − xy2 − y2z) : 4x3y + 4x3z − xy3 − y3z]

86.26 [x3y + x3z + 5x2y2 − 2xy3 − 2y3z : y(3x2y + x2z − 2xy2 − 2y2z) : xy2(2x+ z)]

86.27 [x2(xy + xz − y2 + 2yz) : −xyz(2x+ y) : x3y + x3z + 3x2yz − xy3 − y3z]

86.28 [x2(y + z)(2x+ y) : −x(3x2y + 3x2z + xyz − y2z) : 2x3y + 2x3z + xy3 + y3z]

86.29 [x2(xy + xz + yz) : x(y − x)(xy + xz + yz) : y3z − x3y − x3z − 5x2y2]

86.30 [x2(y + z)(2x+ y) : xy2(2x+ z) : 4x3y + 4x3z + 2x2y2 + xy3 + y3z]

86.31 [−3x2(xy + xz + yz) : 2x3y + 2x3z − x2y2 − 3xy3 − 6y3z : 3x(x− y)(xy + xz + yz)]

86.32 [x2(y + z)(−y + 2x) : −x(x2y + x2z − xyz + y2z) : 2x3y + 2x3z − xy3 − y3z]
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87.1 [−yz(5xy − 2xz − 3y2) : z(5xy2 + 4xz2 − 5y3 − 4y2z) : y2(xy − 10xz + y2 + 8yz)]

[−5x3z + 5x2y2 + 9x2yz − 27y4 + 18y3z : 5y3(x− 3y + 2z) :
87.2 5y(5x2z + xyz − 18y3 + 12y2z)]

87.3 [−yz(5xy + 2xz − 3y2) : z(19xy2 − 4xz2 − 11y3 + 4y2z) : y2(y − 2z)(x− y)]

87.4 [yx(z + y)(2y + z) : −z(2xy2 − xz2 + y2z) : y2(4xy + 3xz + yz)]

87.5 [xz(y + 2z)(y − z) : 3xy3 + 26xy2z − 32xz3 + 3y4 : −z(7xy2 − 4xz2 − 3y3)]

87.6 [xz(y − 2z)(y + 2z) : xz2(y + 2z) : −xy3 − 32xz3 − y4 + y3z]

87.7 [xz(y − z)(3y − 4z) : y(xy2 − 10xyz + 8xz2 + y3) : −yz(5xy − 4xz − y2])

87.8 [yx(y − z)(z + y) : z(2xy2 − xz2 + y2z) : −y3(z + x)]

87.9 [−yx(y − z)(z + y) : xy3 − xy2z + xz3 − y2z2 : −y2z(x− y)]

87.10 [y(4xy2 − 3xyz + 2xz2 − 3y2z) : 24xy3 − 7xy2z + 4xz3 − 21y3z : −y2(y − 2z)(x− y)]

87.11 [xzy(3y − 2z) : y3(x+ y − z) : xz(3y − 2z)(3y + 2z)]

87.12 [z(3xy2 + xyz − xz2 + y2z) : y3(x− y) : y2z(x− y)]

87.13 [y2x(2y + z) : −yx(2y − z)(2y + z) : −10xy3 − xz3 + y3z + y2z2]

87.14 [−x(y − z)(2y − z)(y − 2z) : −y3(x− y) : −y2z(x− y)]

87.15 [xz(y − 2z)(y + 2z) : xz2(y − 2z) : xy3 − 4xz3 − y4 + y3z]

[y(8xy2 − 3xyz − 2xz2 + 6y3) : 13xy2z − 4xz3 − 10y4 + 4y2z2 :
87.16 y2(2xy − 2xz + 4y2 − yz)]

87.17 [y(2xy2 − xyz + xz2 − 4y3) : 3xy3 − 2xy2z + xz3 − 3y4 − y2z2 : y2(xy + xz − 5y2 + yz)]

87.18 [18xy3 + 27xy2z + 12xyz2 + xz3 − y2z2 : y2(xy + xz + y2) : yz(xy + xz + y2)]

87.19 [x(y − 3x)(xz + y2) : (y2 − 9x2)(3x+ y)(xz + y2) : 12x3z + 12x2y2 − 4x2yz + y3z]

87.20 [3x(2x+ 3y)(xz + y2) : (9y2 − 4x2)(xz + y2) : 9y2z(x+ y)− 2x2(4xz + 4y2 + 9yz)]

87.21 [3x(x− 3y)(xz + y2) : y(3y − x)(xz + y2) : 3yz(2x+ y)(y − x)]

87.22 [3xy(xz + y2) : 3y2(xz + y2) : 3z(x− y)(3x− y)(y + 2x)]

87.23 [x(6x+ y)(xz + y2) : (y − 6x)(6x+ y)(xz + y2) : yz(2x+ y)(y − 3x)]

[−7866xy2z + 1155xyz2 + 3699xz3 − 2144y4 + 5156y2z2 : 1434xy2z − 936xz3 + 106y4+
88.1 1155y3z − 1759y2z2 : 8256xy2z − 4374xz3 + 2524y4 − 7561y2z2 + 1155yz3]

[−y(51xyz − 18xz2 − 20y3 − 51y2z + 38yz2) : −33xy2z + 12xz3 + 4y4 + 21y3z − 4y2z2 :
88.2 y(15xyz − 8y3 − 21y2z + 8yz2 + 6z3)]

[24xy2z + 10xyz2 + 9xz3 − 4y4 + 41y2z2 : y2z(2y − 4x− 3z) :
88.3 15yz3 − 48xy2z − 18xz3 + 8y4 − 92y2z2]

88.4 [x(6x3 − 6xy2 + 5xyz − 7y2z) : 6xy(x2 + 7xz − y2 − 5yz) : 6yz(y − 3x)(2x− y)]

88.5 [−97xy2z + 41xyz2 − 6xz3 + 6y4 − 41y3z + 97y2z2 : −yz(xy − z2) : −z2(xy − z2)]

88.6 [−y2(xz − y2) : −yz(xz − y2) : z(6xy2 − 23xyz − 2xz2 + 30y2z − 13yz2 + 2z3)]

[4x4 − 6x3y + 4x3z + 2x2y2 − 35xy2z − 25y3z : yz(2x+ 5y)(x+ y) :
88.7 12x4 − 14x3y + 12x3z + 2xy3 − 109xy2z − 85y3z]

[x(6x3 − x2y − 6xy2 − 6xyz + y3) : x(x+ y)(2xy + yz − 2x2) :
88.8 10x2y2 − 10x4 + 11x2yz + y3z]

[y(970xy2 + 53xyz − 699xz2 + 1072y3 − 1396y2z) : 11156xy3 − 7847xyz2 + 159xz3+
89.1 12024y4 − 15492y3z : −y(1188xy2 − 822xz2 + 1262y3 − 1575y2z − 53yz2)]
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[−y(172xy2 − 439xyz − 105xz2 − 172y3 + 544y2z) : 572xy3 − 1919xy2z+
89.2 315xz3 − 572y4 + 1604y3z : −y2(34xy − 88xz − 34y2 + 123yz − 35z2)]

[−y(128xy2 − 20xyz − 45xz2 − 34y3 − 29y2z) : −1028xy3 + 395xyz2 + 45xz3+
89.3 264y4 + 324y3z : y(36xy2 − 15xz2 − 8y3 − 18y2z + 5yz2)]

[y(286xy2 + 35xyz − 159xz2 + 280y3 − 280y2z) : 3572xy3 − 1943xyz2 + 105xz3+
89.4 3360y4 − 3360y3z : −y(384xy2 − 201xz2 + 350y3 − 315y2z − 35yz2)]

89.5 [z(6xy2 − 13xyz + 3xz2 + 4y2z) : −y(y − 3z)(y + 3z)(x− y) : −yz(y − 3z)(x− y)]

89.6 [−24xy3 − 92xy2z + 30xyz2 + 27xz3 + 64y3z : −y3(4x− 2y + 3z) : y2z(4x− 2y + 3z)]

[−yx(2y + z)(y − 3z) : x(−3z + 5y)(y − 3z)(2y + z) :
89.7 y2(4xy + 23xz + 14y2 − 21yz + 7z2)]

[z(10xy2 + 5xyz − 3xz2 − 12y2z) : y(4xy2 − 4xyz − 9xz2 − 4y3 + 13yz2) :
89.8 yz(5yz − 3xz − 2y2)]

89.9 [z(xy2 + 3xyz + 2xz2 − 6y3) : −y(2xy2 − 4xyz − xz2 − 2y3 + 5y2z) : yz(y − z)(x− 2y)]

[−y(116xy2 − 8xyz − 9xz2 − 64y3 + 64y2z) : −1060xy3 + 85xyz2 + 18xz3+
89.10 576y4 − 576y3z : y(36xy2 − 3xz2 − 20y3 + 18y2z + 2yz2))

[y(8xy2 + 9xyz − 9xz2 + 10y3 − 10y2z) : 14xy3 + 81xy2z − 27xz3 + 40y4 − 40y3z :
89.11 y2(y − 3z)(x− y + z)]

[y(58xy2 − 55xyz + 3xz2 + 40y3 − 40y2z) : 910xy3 − 811xy2z + 9xz3+
89.12 640y4 − 640y3z : −y2(19xy − 17xz + 13y2 − 12yz − z2)]

89.13 [x2y(z − y) : 2x2y2 − x3z + xy3 − 2y3z : 2x2y2 − x3z + xy2z − 2y3z]

89.14 [x2(x2 + xz − y2 − 2yz) : xyz(2x− y) : yz(2x− y)(2x+ y)]

89.15 [−yx(2y + z)(2y − 3z) : x(−3z + 4y)(2y − 3z)(2y + z) : −y2(y − z)(2x− 2y + z)]

89.16 [x(2y − z)(y − 3z)(z + y) : y3(x− y + z) : y2(z + y)(x− y + z)]

89.17 [−12xy3 − 10xy2z + 5xyz2 + 2xz3 + 6y4 : y2(xz + y2 + yz) : −y(y − z)(xz + y2 + yz)]

[2xy3 − 11xy2z − 53xyz2 − 6xz3 + 70y3z : y(2y + z)(xz − y2) :
89.18 y(2xy2 − 11xyz − 41xz2 + 58y2z − 6yz2)]

89.19 [xy2z − 4xz3 − 30y4 : −y(10xy2 − 4xz2 − 3y2z) : −12xz3 − 100y4 + y2z2]

[4x2(5x2 + 17xz − 5y2 + yz) : 4x(5x3 + 11x2z − 5xy2 + y2z) :
89.20 50x4 + 5x3y + 152x3z − 50x2y2 − 5xy3 + 4y3z]

89.21 [x(2x− y)(xz + y2) : (4x2 − y2)(xz + y2) : z(x2y − 2x3 − y3)− 2xy2(2x+ z)]

89.22 [x2yz + xy3 : xy2z + y4 : y3z − 6x3y − 6x3z − 7x2y2 − 7x2yz − xy2z]

89.23 [x3z + x2y2 : x2yz + xy3 : 6x3z − 5x2yz − 2xy2z + y3z]

89.24 [x3z + x2y2 : x2yz + xy3 : 6x3z − 5x2yz − xy2z + y4 + y3z]

89.25 [x3z + x2y2 : x2yz + xy3 : 12x3z − 4x2yz − 3xy2z + y3z]

[x(5xyz + 2y3 − 6x2z − 3xy2) : x(6x2z − xy2 − 9xyz + 2y2z) :
89.26 24x3z − 6x2y2 − 32x2yz + 2y3z]

[−y(586xy2 − 315xyz − 619xz2 + 884y2z − 536z3) : −548xy3 + 767xyz2 + 105xz3+
90.1 668yz3 − 992y3z : y(416xy2 − 734xz2 + 634y2z + 315yz2 − 631z3)]

[y(198xy2 − 885xyz + 103xz2 + 972y2z − 388z3) : 30xy3 + 203xy2z + 103xz3+
90.2 322yz3 − 658y3z : −y(66xy2 − 398xyz + 633y2z − 103yz2 − 198z3)]

[−2xy3 + 8xy2z − 11xyz2 + 4xz3 + y3z : −6xy3 + 25xy2z − 33xyz2 + 12xz3 + 2y2z2 :
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90.3 −18xy3 + 75xy2z − 97xyz2 + 36xz3 + 4yz3]

[y(20xy2 + 36xyz + 49xz2 − 48y2z + 48z3) : 28xy3 + 47xyz2 + 9xz3 − 48y3z + 48yz3 :
90.4 −y(4xy2 + 17xz2 − 6y2z − 9yz2 + 15z3)]

[44xy3 + 7xyz2 + 159xz3 − 68y3z − 49yz3 + 117z4 : z(44xy2 − 96xyz + 241xz2 − 4y3+
90.5 201z3 − 197yz2) : −z(4xyz + 17xz2 + 2y3 − 11y2z − 6yz2 + 15z3)]

[3xy3 − 8xy2z + 11xyz2 − 4xz3 − 3y4 + y3z : 9xy3 − 23xy2z + 33xyz2 − 12xz3+
90.6 2y2z2 − 9y4 : 27xy3 − 69xy2z + 101xyz2 − 36xz3 − 27y4 + 4yz3]

[y(6xy2 + 2xyz + 2xz2 + 13y2z + 7yz2) : 100xy2z − 318xy3 − 773y3z − 347y2z2+
90.7 +8xz3 : y(42xy2 − 12xyz + 103y2z + 53yz2 + 4z3)]

90.8 [yz(y2 − xz) : z2(y2 − xz) : 6xy3 − 35xy2z + 62xyz2 − 35xz3 + 6yz3]

[10x4 − 15x3y + 10x3z + 5x2y2 − 32x2yz + 12y3z : (x− y)(30x3 − 5x2y+
90.9 +30x2z − 5xy2 − 14xyz − 14y2z) : 5yz(x+ y)(3x− 2y)]

[2x4 − 3x3y + 2x3z + x2y2 − 4y3z : (x− y)(6x3 − x2y + 6x2z − xy2 + 6xyz + 6y2z) :
90.10 yz(x+ y)(2y − x)]

[2x2(2x2 − 3xy + 2xz + y2 − 4yz) : 2(x− y)(6x3 − x2y + 6x2z − xy2 − 6xyz − 6y2z) :
90.11 yz(x+ y)(3y − x)]

[x2(2x2 − 3xy + 2xz + y2 + 5yz) : 6x4 − 7x3y + 6x3z + 22x2yz + xy3 − 10y3z :
90.12 yz(x+ y)(2y − x)]

5.2 Quartic plane non-de Jonquières maps

In this section we compute the ordinary quadratic length of quartic plane non-de Jonquières

maps, starting from the classification of enriched weighted proximity graph of such maps

that we found in Chapter 2. Totally, we found 119 different enriched weighted proximity

graphs, listed in Table 5.3.

Theorem 5.6. Let ϕn ∈ Cr(P2) be a quartic plane non-de Jonquières map with enriched

weighted proximity graph of type n in Table 5.3. Then, the ordinary quadratic length of ϕn

is listed in the third column of Table 5.3.

Concerning the quadratic length, it is straightforward to show that quartic plane non-de

Jonquières maps have quadratic length 2.

We give two examples of quartic plane non-de Jonquières maps. The first one, that has

enriched weighted proximity graph of type 1.1 in Table 5.3, is given by

ϕ1,t([x : y : z]) := [2tx2yz − tx4 − 2tx3y − tx2y2 + xy3 + 2txy2z − ty2z2 : y4 :

2tx2yz − tx4 − 2tx3y − (t+ 1)x2y2 + 2txy2z + y3z − ty2z2]

where t ∈ C, while the second one, that has enriched weighted proximity graph of type 3.1

in Table 5.3, is given by

ϕ3,t,h([x : y : z]) := [y(x3 + x2y + ((t− 1)y2 − yz)x+ (2− 3t+ h)y3) :

y2(x2 + xy + (t− 1)y2 − yz) : (y2 + 2yz)x2 − x4 +

(2t− 2)y3x+ (t2 − 8t+ 2h+ 5)y4 − y2z2]
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where t, h ∈ C.

Table 5.3: Enriched weighted proximity graphs and ordinary quadratic lengths of quartic

plane non-de Jonquières maps

] Enriched weighted proximity graph oql

1.1 2 2 2 1 1 1 7

2.1 2 2 2 1 1 1 6

3.1 2 2 2 1 1 1 7

4.1 2 2 2 1 1 1 6

5.1 2 2 2 1 1 1 4

6.1 2 2 2 1 1 1 6

7.1 2 1 2 2 1 1 4

8.1 2 1 2 2 1 1 3

9.1 2 1 2 2 1 1 4

10.1 2 2 2 1 1 1 5

11.1 2 2 2 1 1 1 4

11.2 2 2 2 1 1 1 4

12.1 2 2 2 1 1 1 5

12.2 2 2 2 1 1 1 5

13.1 2 1 1 2 2 1 4

13.2 2 1 1 2 2 1 4

14.1 2 1 1 2 2 1 4

15.1 2 1 1 2 2 1 3

16.1 2 2 2 1 1 1 4

16.2 2 2 2 1 1 1 4

17.1 2 2 2 1 1 1 4
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17.2 2 2 2 1 1 1 5

18.1 2 2 2 1 1 1 5

19.1 2 2 2 1 1 1 5

20.1 2 2 2 1 1 1 5

21.1 2 2 2 1 1 1 5

21.2 2 2 2 1 1 1 5

22.1 2 2 2 1 1 1 5

23.1 2 2 2 1 1 1 3

23.2 2 2 2 1 1 1 3

24.1 2 1 2 1 2 1 2

25.1 2 2 1 2 1 1 3

25.2 2 2 1 2 1 1 3

26.1 2 2 1 2 1 1 3

27.1 2 2 1 2 1 1 2

28.1 2 2 2 1 1 1 4

29.1 2 2 2 1 1 1 4

30.1 2 2 2 1 1 1 3

31.1 2 2 1 2 1 1 3

31.2 2 2 1 2 1 1 3

32.1 2 2 2 1 1 1 3

32.2 2 2 2 1 1 1 3

32.3 2 2 2 1 1 1 4

33.1 2 2 2 1 1 1 3

33.2 2 2 2 1 1 1 4

123



34.1 2 2 2 1 1 1 3

34.2 2 2 2 1 1 1 3

35.1 2 2 2 1 1 1 4

35.2 2 2 2 1 1 1 5

36.1 2 2 2 1 1 1 4

36.2 2 2 2 1 1 1 5

36.3 2 2 2 1 1 1 5

36.4 2 2 2 1 1 1 4

37.1 2 2 2 1 1 1 4

37.2 2 2 2 1 1 1 4

37.3 2 2 2 1 1 1 4

38.1 2 2 2 1 1 1 3

38.2 2 2 2 1 1 1 3

38.3 2 2 2 1 1 1 3

39.1 2 2 2 1 1 1 3

39.2 2 2 2 1 1 1 3

40.1 2 2 2 1 1 1 4

40.2 2 2 2 1 1 1 3

40.3 2 2 2 1 1 1 3

41.1 2 2 2 1 1 1 3

41.2 2 2 2 1 1 1 3

41.3 2 2 2 1 1 1 3
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41.4 2 2 2 1 1 1 4

41.5 2 2 2 1 1 1 3

42.1 2 2 2 1 1 1 4

42.2 2 2 2 1 1 1 4

42.3 2 2 2 1 1 1 4

42.4 2 2 2 1 1 1 4

43.1 2 2 1 1 2 1 2

43.2 2 2 1 1 2 1 2

43.3 2 2 1 1 2 1 2

44.1 2 2 2 1 1 1 2

44.2 2 2 2 1 1 1 2

45.1 2 2 1 1 1 2 3

45.2 2 2 1 1 1 2 3

45.3 2 2 1 1 1 2 3

45.4 2 2 1 1 1 2 3

45.5 2 2 1 1 1 2 3

46.1 2 2 2 1 1 1 3

46.2 2 2 2 1 1 1 3

46.3 2 2 2 1 1 1 3

47.1 2 2 2 1 1 1 3

47.2 2 2 2 1 1 1 3

47.3 2 2 2 1 1 1 3

47.4 2 2 2 1 1 1 3
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48.1 2 2 2 1 1 1 3

48.2 2 2 2 1 1 1 4

48.3 2 2 2 1 1 1 4

48.4 2 2 2 1 1 1 3

48.5 2 2 2 1 1 1 4

48.6 2 2 2 1 1 1 4

48.7 2 2 2 1 1 1 3

49.1 2 2 2 1 1 1 4

49.2 2 2 2 1 1 1 5

49.3 2 2 2 1 1 1 4

50.1 2 2 2 1 1 1 3

50.2 2 2 2 1 1 1 3

50.3 2 2 2 1 1 1 3

50.4 2 2 2 1 1 1 3

50.5 2 2 2 1 1 1 3

51.1 2 2 2 1 1 1 2

51.2 2 2 2 1 1 1 2

51.3 2 2 2 1 1 1 2

51.4 2 2 2 1 1 1 2

51.5 2 2 2 1 1 1 2

52.1 2 2 2 1 1 1 3

52.2 2 2 2 1 1 1 3

52.3 2 2 2 1 1 1 3
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52.4 2 2 2 1 1 1 3

52.5 2 2 2 1 1 1 3

53.1 2 2 2 1 1 1 2

53.2 2 2 2 1 1 1 2

53.3 2 2 2 1 1 1 2

53.4 2 2 2 1 1 1 2
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Glossary of Notations

Aut(P2) group of automorphisms of P2

Bl0(A2) blowing-up of A2 at 0

B(P2) bubble space of P2

p � q p is infinitely near q

p �k q p is infinitely near q of order k

p 99K q p is proximate to q

p� q p is satellite to q

p 6� q p is not satellite to q

Cr(P2) plane Cremona group

oql(ϕ) ordinary quadratic length of plane Cremona map ϕ

ql(ϕ) quadratic length of plane Cremona map ϕ

lgth(ϕ) length of plane Cremona map ϕ

hϕ(p) height of a point p ∈ B(P2) w.r.t plane Cremona map ϕ

loadϕ(p) load of a proper base point p w.r.t plane Cremona map ϕ

G = (V,E) a graph where V -set of vertices and E-set of edges

〈u, v〉 or u→ v arc (oriented edge) from u to v

deg(u) degree of vertex u

outdeg(u) external degree of vertex u

indeg(u) internal degree of vertex u

AG adjacency matrix of oriented graph G

Gϕ weighted directed graph associated to plane Cremona map ϕ

multϕ(p) multiplicity of a plane Cremona map ϕ at the base point p
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