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Abstract 
One of the major shortcomings of traditional failure modes, effects and criticality analysis is the absence of any 
interconnection between failure ranking and a procedure for selecting the most critical 
maintenance/improvement tasks to be carried out. This limits the potential of FMECA for implementation in real 
environments. In order to bridge this gap, three different 0-1 knapsack models have been formulated. The first 
aims to select the failures in order to maximise cost savings. The second enriches the selection problem by 
also taking into account the probabilities of solving the failures with a set of maintenance tasks. The third aims 
to select the maintenance tasks to maximise the expected profit. In particular, the last two models make use of 
an evidential reasoning framework to deal with the epistemic uncertainty related to these probabilities. 
A dataset from a manufacturer of lift winches has been used to validate this proposal, as well as to comment 
on the need for group decision support systems that are capable of converting the FMECA ranking into 
maintenance tasks in real environments. 
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1 INTRODUCTION 

Failure modes, effects and critically analysis (FMECA) 
represents a well-established approach to achieving a 
ranking of the failures of products and processes, and can 
be applied both at design and at production stages. The 
core of the standard FMECA process lies in calculating risk 
priority numbers (RPNs) associated with the failures. 
These are given by the product of the occurrences (𝑂), 
severities (𝑆), and detectabilities (𝐷) of the failures, on a 1-
10 scale. The failures are thus prioritised on the basis of 
their RPNs on a scale from 1 to 1000. Despite the practical 
advantages of traditional RPN calculation, it demonstrates 
several weaknesses. For a review, the reader can refer to 
[1]. First, the three aforementioned risk factors are equally 
weighted in the standard multiplicative form, and different 
sets of risk factors may produce the same RPNs even if 
the hidden risks of failure modes are totally different. 
Moreover, the multiplicative form is questionable because 
it produces RPNs between 1 and 1000 that are not 
uniformly distributed, with only 6% of the values lying 
between 500 and 1000. Furthermore, the values given to 
the failure modes on the aforementioned risk factors are 
often affected by the subjectivity of the decision-makers 
(DMs) when assessing uncertain and vague scores for 𝑂, 
𝑆, and 𝐷 . Thereby, several contributions are devoted to 
solving these drawbacks by modelling FMECA as a multi-
criteria decision making (MCDM) problem, eventually 
coupled with approaches that are able to deal with 
uncertainty. [2] introduced multi-attribute failure mode 
analysis (MAFMA), which uses the analytic hierarchy 
process (AHP) to calculate weights for the risk factors. The 
analytic network process (ANP) has been applied by [3], 
who decomposed the risk factors into subcriteria. Several 
MCDM methods have been applied to FMECA, with a 
trend towards incorporating them with fuzzy logic [4], e.g. 
fuzzy TOPSIS (Technique for Order Preference by 
Similarity to Ideal Solution) ([5]; [6]; [7]; [8]); VIKOR 
(VIsekriterijumska optimizacija i KOmpromisno Resenje) 
with fuzzy logic [9]; fuzzy AHP ([10]; [11]); fuzzy logic with 
grey theory [12]; or simply fuzzy logic applied to the risk 
factors [13]. The adoption of subjective criteria to either 
rank or sort a set of alternatives results in a group decision 
problem arising. Early on, [14] proposed a group-based 

evidential reasoning approach for dealing with the 
epistemic uncertainty and diversity of the assessment 
information in FMECA when a group of DMs are asked to 
score the failure modes. A group-decision FMEA approach 
was also proposed by [15], where grey relational projection 
and D numbers are merged to represent the uncertain 
information used to rank the failure modes. [16] adopted 
interval type-2 fuzzy sets for dealing with both the variation 
in one expert’s understanding (intra-personal uncertainty) 
and the variations in understanding between experts (inter-
personal uncertainty). [17] proposed a Promethee-based 
group sorting approach, an extension of FlowSort [18] to 
group sorting problems, with the aim of clustering the 
failure modes into ordered classes by taking into account 
the divergent opinions of DMs. [19] adopted the Dempster-
Shafer theory of evidence to achieve an RPN ranking that 
is able to deal with the epistemic uncertainty of DMs in a 
more robust fashion, and [1] combined the Dempster-
Shafer theory of evidence with fuzzy assessment of the 
risk factors.  

A further drawback of traditional FMECA that drew the 
attention of researchers is that economic aspects are 
ignored if only 𝑂, 𝑆, and 𝐷 are adopted as risk factors. Two 
examples of cost models are described in [20] and [21], 
with the goal of determining an estimate of the failure costs 
affecting the customer. 

Despite the plethora of contributions devoted to 
overcoming the main drawbacks of standard RPN 
calculation, it may be argued that a further practical issue 
should be considered, i.e. the relationship between the 
prioritisation of failure modes and the maintenance tasks to 
be carried out in order to ensure continuous improvement. 
[22] investigated the adequacy of preventive maintenance
tasks on failure modes prioritised on the basis of RPNs.
[23] proposed a complete maintenance scheme by
integrating fuzzy FMECA and fault propagation graphs to
calculate a composite risk measure for failures. Finally, a
binary decision tree is used to determine the failure
ascertainment order.  [24] introduced a 0-1 matrix for
visualising the maintenance tasks that could potentially
solve a set of failure modes, while a clustering algorithm
aims to select the most critical ones. In the authors’
opinion, the adoption of an FMECA-based prioritisation
approach for failure modes, coupled with a robust selection
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approach for maintenance tasks, deserves to be 
investigated. Moreover, a further issue related to epistemic 
uncertainty arises. Suppose that more sources (i.e. 
datasets) contain successful completions of a maintenance 
task carried out to solve a failure. This task might be 
undertaken either alone or along with a set of other tasks. 
The epistemic uncertainty lies in the probability of solving a 
failure by means of one specific task, since the effects of 
multiple simultaneous tasks overlap. In the event that a 
dataset is unavailable, more DMs (i.e. sources) could 
provide different interval-valued probabilities for each 
failure-task couple. In both cases, the epistemic 
uncertainty about the probabilities of solving the failures by 
means of maintenance tasks (also in relation to the 
ignorance of a process-system) should be taken into 
account, and the basic concepts of the Dempster-Shafer 
theory of evidence provide valid support in dealing with this 
issue. In particular, this contribution refers to a group 
decision support system, where the DMs are the multiple 
evidence sources. This approach could nevertheless also 
be extended to more pieces of evidence, deriving from 
multiple datasets. The combination of the evidence related 
to these probabilities is used as a fourth risk factor for the 
failures, and three different 0-1 knapsack models are 
proposed for dealing with selection problems (failures 
and/or maintenance tasks). To the best of the authors’ 
knowledge, this is the first application of evidential 
reasoning to the uncertain probabilities of solving the 
failure modes through a group decision support system 
where the epistemic uncertainty of probabilities is elicited 
by the DMs. It should be noted that despite its 
aforementioned drawbacks, RPN calculation is not the 
focus of this contribution, and thus the failures are 
associated with generic RPNs without specifying how to 
calculate them.  

The remainder of the paper is organised as follows. 
Section 2 contains an overview of the basic concepts of 
the Dempster-Shafer theory of evidence applied to this 
specific case. Section 3 introduces three 0-1 knapsack 
models, while Section 4 reports a case study relating to a 
manufacturer of lift winches. Section 5 contains the 
conclusion and some suggestions for the further research 
agenda. 

 

2 BASIC CONCEPTS 

Dempster [25] and later Shafer [26] introduced the theory 
of evidence, generally named the Dempster-Shafer theory 
of evidence (DSTE). The novelty of this theory lies in the 
ability to deal with the epistemic uncertainty inherent in the 
system/process due to the lack of knowledge. Consider a 
stochastic variable 𝑋  with two states 𝑥  and  𝑥̅ . Under a 
probabilistic framework 𝑃(𝑥) + 𝑃(𝑥̅) = 1 , in DSTE a 
probability is assigned not only to each state, but also to 
each proper subset of the domain (i.e. the power set). It 
follows that  𝑚(𝑥) + 𝑚(𝑥̅) + 𝑚({𝑥, 𝑥̅}) = 1 , where 𝑚({𝑥, 𝑥̅}) 
represents the partial ignorance of 𝑋. The 𝑚 − 𝑣𝑎𝑙𝑢𝑒𝑠, also 
known as the basic probability assignment function, will be 
defined in the following. In the specific case under 
consideration in the present work, the binary variable 
subjected to epistemic uncertainty is the resolution of a 
failure mode 𝑖 = 1, … 𝐼 by means of a maintenance task 𝑗 =
1, … 𝐽. Without losses of generality, 𝑋௜,௝ = 1 and 𝑋௜,௝ = 0  if 
the failure is solved and unsolved, respectively. The Frame 
of Discernment Ω therefore contains two exhaustive and 
mutually exclusive states, which provide the power set 
2Ω = {∅, 0, 1, (0,1)} composed of the focal elements of Ω. 
The likelihood of resolution 𝑝௜,௝of a failure is not completely 
known by the experts (or sources of evidence), and thus it 
could be elicited through DSTE-based evidential reasoning 
on the continuum between 0 and 1. Each DM 𝑘 = 1, … , 𝐾 is 

asked to provide the 𝑚 − 𝑣𝑎𝑙𝑢𝑒𝑠: 𝑚௜,௝,௞(1) as the evidence 
supporting the resolution of failure 𝑖 = 1, … 𝐼  by 
maintenance task 𝑗 = 1, … 𝐽  ; 𝑚௜,௝,௞(0)  as the evidence 
supporting the non-resolution; and 𝑚௜,௝,௞({0, 1})  as the 
partial ignorance on the resolution. It may be argued that 
𝑚௜,௝,௞(1) and [𝑚௜,௝,௞(1) + 𝑚௜,௝,௞({0, 1})]  give the lower and 
the upper bounds of the resolution probability respectively, 
which are expressed as the interval-valued 𝑝௜,௝,௞ =

[𝑝௜,௝,௞ , 𝑝
௜,௝,௞

]  with 𝑝௜,௝,௞ = 𝑚௜,௝,௞(1) and  𝑝
௜,௝,௞

= [𝑚௜,௝,௞(1) +

𝑚௜,௝,௞({0, 1})].  In crisp form, 𝑝௜,௝,௞ = ቂ 𝑝
௜,௝,௞

, 𝑝
௜,௝,௞

ቃ =

ቂ𝑝௜,௝,௞ , 𝑝௜,௝,௞ቃ . These likelihoods may be intervals 

overlapping one another, nested or disjoint in case of 
conflicting evidence. Actually, ( 𝑝

௜,௝,௞
− 𝑝௜,௝,௞) represents the 

partial ignorance of DM 𝑘 on 𝑋௜,௝, i.e. 𝑚௜,௝,௞({0, 1}). 
Three basic concepts of DSTE are given in a more general 
fashion below. 

Definition 2.1: Basic Probability Assignment (BPA). 

The BPA, named 𝑚(𝐸) , is the amount of knowledge 
associated with every subset 𝐸 in the power set, providing 
the degree of the evidence supporting 𝐸, and is defined as 
follows:  

𝑚(𝐸): 2Ω → [0, 1]       (2) 

𝑚(∅) = 0       (3) 

∑ 𝑚(𝐸) = 1ா∈ଶΩ          (4) 

BPAs are analogous to probability mass functions in 
probability theory, but the focal elements of DSTE may be 
overlapped intervals.  

Given a failure 𝑖 , a maintenance task 𝑗 , and a set 𝐴  
included in Ω, two basic concepts of DSTE are introduced 
below.  

Definition 2.2: Belief  

The belief of 𝐼 is obtained from 𝑚(𝐸) as: 

𝐵𝑒𝑙(𝐴) = ∑ 𝑚(𝐸)ா⊆஺        (5) 

The belief function quantifies the sum of the probability 
masses of all the focal elements into 𝐼 , and thus the 
amount of belief supporting the fact that 𝐸 lies in 𝐴. For the 
variable 𝑋௜,௝ defined before, a belief function is defined for 
each DM 𝑘, such that 𝐵𝑒𝑙௜,௝,௞(1) = 𝑝௜,௝,௞ = 𝑚௜,௝,௞(1). 

Definition 2.3: Plausibility 

The plausibility of 𝐴 is obtained, again from 𝑚(𝐸), as: 

𝑃𝑙(𝐴) = ∑ 𝑚(𝐸)ா∩஺ஷ∅      (6) 

The plausibility function is given by the sum of the 
probability masses assigned to all the focal elements 
whose intersections with 𝐴 are not empty. This indicates 
the possibility that 𝐸 lies in 𝐼. For the variable 𝑋௜,௝ defined 
before, a plausibility function is defined for each DM 𝑘 , 
such that 𝑃𝑙௜,௝,௞(1) =  𝑝

௜,௝,௞
= [𝑚௜,௝,௞(1) + 𝑚௜,௝,௞({0, 1}). That 

is to say, each DM provides the interval-valued 𝑝௜,௝,௞ =

ቂ𝑝௜,௝,௞ , 𝑝
௜,௝,௞

ቃ = ൣ𝐵𝑒𝑙௜,௝,௞(1), 𝑃𝑙௜,௝,௞(1)൧ for all the failures and 

maintenance tasks. The underlying assumption is that 𝑝௜,௝,௞ 
is uniformly distributed between 𝑝௜,௝,௞ and  𝑝

௜,௝,௞
. 

In of the event that there are more independent sources of 
fully reliable evidence, a combination rule has to be applied 
to obtain the resulting belief and plausibility functions. The 
kernel of DSTE is Dempster’s rule of combination of 
evidence deriving from the sources. This is a non-
compensatory combination approach that, however, is not 
applicable in the event of conflicting evidence. A multitude 
of combination rules have therefore been proposed, 
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especially for addressing the limitations of the standard 
Dempster’s rule of combination. The reader can refer to 
[27]. The rule of combination of evidence adopted here is 
based on the expected value of 𝑝௜,௝ , i.e. the resulting 
probability of solving 𝑖  by 𝑗  after having established its 
probability density function (see Section 3). The 
subsequent issue addressed by DSTE is the propagation 
of epistemic uncertainty to the system/process, which is 
defined through a dependent variable whose epistemic 
uncertainty derives from the epistemic uncertainty 
propagation of its independent variables. In this paper, the 
propagation of uncertainty to the selection problems has 
not been considered, but this topic could be investigated 
as a part of the further research agenda.   

3 FRAMEWORK OF EVIDENTIAL REASONING 

The set of the 𝐼 failure modes has been already scored via 
RPN calculation, but this is not the focus of this work. Each 
failure mode 𝑖 = 1, … 𝐼 may be solved by means of multiple 
maintenance tasks 𝑗 = 1, … 𝐽 , while a maintenance task 
might solve multiple failure modes. In order to avoid any 
consideration of conditional probabilities related to the 
maintenance tasks, which would make analytical modelling 
increasingly complex, only one task must be selected per 
failure. Firstly, a tri-dimensional matrix (𝐼 × 𝐽 × 𝐾)  is 

compiled, whose elements are 𝑝௜,௝,௞ = ቂ𝑝௜,௝,௞, 𝑝
௜,௝,௞

ቃ  as

defined in Section 2. Each cell therefore contains the range 
of the probability that 𝑗  solves 𝑖  for DM 𝑘 . It should be 
noted that some tasks could be not combined with any 
failure for some DMs, and vice versa. Given a couple (𝑖, 𝑗), 
this is equal to imposing for all these DMs that 𝑝௜,௝,௞ =

[0,0]. For a single DM 𝑘, the resulting (𝐼 × 𝐽) matrix is as 
follows: 

൭

𝑝ଵ,ଵ,௞ … 𝑝ଵ,௃,௞

… … …
𝑝ூ,ଵ,௞ … 𝑝ூ,௃,௞

൱ (7) 

For the aforementioned reason, only one non-null 
𝑝௜,௝,௞ must be selected for each line, and it must be the 
same for all the DMs. This should refer to the most 
effective 𝑗 for solving 𝑖, where the effectiveness must be 
globally evaluated, because each DM provides a different 
piece of evidence on 𝑝௜,௝ . Given a failure 𝑖 , the most 
effective 𝑗 may be obtained simply by selecting the task  𝑗௜ 
between 1 and 𝐽 that maximises the expected value of 𝑝௜,௝ 
as follows: 

𝑗௜ = 𝑎𝑟𝑔𝑚𝑎𝑥௝ୀଵ,…,௃

∑ ቀ௣೔,ೕ,ೖା ௣೔,ೕ,ೖቁ ଶ⁄಼
ೖసభ

௄
,  ∀𝑖 = 1, … , 𝐼 (8) 

Equation (8) is obtained by considering equally reliable and 
credible DMs, which justifies the denominator  𝐾 , and 
uniformly distributed 𝑝௜,௝ between the lower and the upper 
bounds associated with the DMs, which justifies the 
denominator equal to 2. It follows that, ∀𝑖 = 1, … , 𝐼 , only 
one 𝑗௜ is selected. 

The first step of the proposed approach consists of 
defining the step-wise probability density function of 𝑝௜,௝೔

 as 
explained in the sequel. Given a couple (𝑖, 𝑗௜), the vector of 
all the 𝑝௜,௝೔,௞ and  𝑝

௜,௝೔ ,௞
 is ordered, which therefore contains

2𝐾 elements. For clarity of notation, this ordered vector is 

indicated as  𝒑𝒊,𝒋𝒊
= ቀ𝑝𝒊,௝೔

(ଵ)
, 𝑝𝒊,௝೔

(ଶ)
, … , 𝑝𝒊,௝೔

(ଶ௄)
ቁ , with  𝑝𝒊,௝೔

(ଵ)
≤ 𝑝𝒊,௝೔

(ଶ)
≤

⋯ ≤ 𝑝𝒊,௝೔

(ଶ௄) . Thereby, (2𝐾 − 1)  intervals between 0 and 1 

are defined at most, because some of them might be null 
in case of two coincident elements. This eventuality might 
occur in two cases:  

i) 𝑝
௜,௝,௞ଵ

= 𝑝௜,௝,௞ଶ  for some couple 𝑘1 ≠ 𝑘2 of DMs;

ii) 𝑝௜,௝,௞ =  𝑝
௜,௝,௞

 for some 𝑘.

The uniform probability density function of 𝑝௜,௝೔
 between 

two consecutive and distinct elements of 𝒑𝒊,𝒋𝒊
, named 𝑝𝒊,௝೔

(௟)

and 𝑝𝒊,௝೔

(௟ାଵ), is as follows:

𝑓(௟),(௟ାଵ) =
ଵ

௄
∑

ଵ

ቀ ௣೔,ೕ೔,ೖି௣೔,ೕ೔,ೖቁ
௞∈௄∗ (9) 

where 𝐾∗  is the set of all the DMs that provide interval-

valued ቂ𝑝௜,௝೔,௞ ,  𝑝
௜,௝೔ ,௞

ቃ including ቂ𝑝𝒊,௝೔

(௟)
, 𝑝𝒊,௝೔

(௟ାଵ)
ቃ, i.e.

ቂ𝑝௜,௝೔

(௟)
, 𝑝௜,௝೔

(௟ାଵ)
ቃ ⊆ ቂ𝑝௜,௝೔ ,௞ ,  𝑝

௜,௝೔,௞
ቃ (10) 

Through Equation (9), the cumulative probability is thus 
given by: 

 𝑃𝑟 ቄ𝑝௜,௝೔
: 𝑝௜,௝೔

≥ 𝑝௜,௝೔

(௟)
 𝑎𝑛𝑑𝑝௜,௝೔

≤ 𝑝௜,௝೔

(௟ାଵ)
ቅ = 

= 𝑓(௟),(௟ାଵ) ቀ𝑝௜,௝೔

(௟ାଵ)
− 𝑝௜,௝೔

(௟)
ቁ    (11) 

It follows that the expected value of 𝑝௜,௝೔
 is: 

𝐸൫𝑝௜,௝೔
൯ =

1

2
෍ 𝑓(௟),(௟ାଵ) ቀ𝑝௜,௝೔

(௟ାଵ)
− 𝑝௜,௝೔

(௟)
ቁ ൜ቂ𝑝௜,௝೔

(௟ାଵ)
ቃ

ଶ
− ቂ𝑝௜,௝೔

(௟)
ቃ

ଶ
ൠ

ଶ௄ିଵ

௜ୀଵ 

 

(12) 

Actually, any null-interval makes Equation (9) impossible. 
However, any null-interval due to case i) does not 

contribute to 𝐸൫𝑝௜,௝೔
൯ because 𝑝௜,௝೔

(௟)
= 𝑝௜,௝೔

(௟ାଵ), and thus it may

be neglected in Equation (12). Conversely, Equation (9) 
has to be rewritten in case ii) as 𝑓(௟),(௟ାଵ) =

ଵ

௄
, and this

contributes to Equation (12) separately from the sum. 

In this way, all the failures are associated with a risk 
priority number 𝑅𝑃𝑁௜ , and a probability 𝐸൫𝑝௜,௝೔

൯ of being 
solved by means of the most effective maintenance task 𝑗௜. 
In the following sections, three 0-1 knapsack problems, 
named P1, P2 and P3, are formulated. 

3.1 P1: Savings maximisation 

Each failure 𝑖 is associated with a saving 𝑠௜ occurring in the 
event of resolution. Given an upper bound 𝑅௠௔௫  of 
cumulative RPNs to undertake, the problem of failure 
selection might be formulated as follows: 

𝑓 = 𝑚𝑎𝑥 ∑ 𝑠௜𝑥௜
ூ
௜ୀଵ  (13) 

s.t.

∑ 𝑅𝑃𝑁௜𝑥௜
ூ
௜ୀଵ ≤ 𝑅௠௔௫ (14) 

𝑥௜ ∈ {0; 1}, ∀𝑖 = 1, … , 𝐼    (15) 

where the decision variables 𝑥௜ are: 

𝑥௜     ቄ
 1 𝑖𝑓 𝑡ℎ𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑖 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

0                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (16) 

3.2 P2: Savings maximisation with uncertainty 

Since the resolution of a failure 𝑖 is affected by 𝑝௜,௝೔
 (see 

Section 3), the problem P1 might be reformulated as 
follows: 

𝑓 = 𝑚𝑎𝑥 ∑ 𝐸൫𝑝௜,௝೔
൯𝑠௜𝑥௜

ூ
௜ୀଵ  (17) 

s.t.
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∑ 𝐸൫𝑝௜,௝೔
൯𝑅𝑃𝑁௜𝑥௜

ூ
௜ୀଵ ≤ 𝑅௠௔௫ (18) 

𝑥௜ ∈ {0; 1}, ∀𝑖 = 1, … , 𝐼 (19) 

The values of decision variables 𝑥௜  assume the same 
meaning as reported in Equation (16). In this case, the 
upper bound 𝑅௠௔௫  has a probabilistic meaning due to 
𝐸൫𝑝௜,௝೔

൯. 

3.3 P3: Profit maximisation with uncertainty 

The selection is now focused on the maintenance tasks 
with the objective of maximising the profit, calculated as 
the balance between maintenance costs and expected 
savings. The resolution uncertainty is taken into account as 
in problem P2. Moreover, a lower bound represented by 
𝑅௠௜௡, i.e. the minimum uncertain risk that should be solved 
overall, is added as a further constraint.   

Given a maintenance cost of 𝑐௝ for the task 𝑗, the model is 
formulated as follows:  

𝑓 = 𝑚𝑎𝑥ൣ∑ 𝐸൫𝑝௜,௝೔
൯𝑠௜𝑥௜ −ூ

௜ୀଵ ∑ 𝑐௝𝑧௝
௃
௝ୀଵ ൧ (20) 

s.t.

∑ 𝐸൫𝑝௜,௝೔
൯𝑅𝑃𝑁௜௜ 𝑥௜ ≥ 𝑅௠௜௡ (21) 

∑ 𝑥௜𝑚௜,௝
ூ
௜ୀଵ ≤ 𝑧௝𝑀௝, ∀𝑗 = 1, … , 𝐽 (22) 

𝑧௝ ∈ {0; 1}, ∀𝑗 = 1, … , 𝐽 (23) 

𝑥௜ ∈ {0; 1}, ∀𝑖 = 1, … , 𝐼 (24) 

The decision variables 𝑧௝  and 𝑥௜  assume these meanings 
respectively: 

𝑧௝     ቄ
 1 𝑖𝑓 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑡𝑎𝑠𝑘 𝑗 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
 0                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (25) 

𝑥௜     ቄ
 1 𝑖𝑓 𝑡ℎ𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑖 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

0                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (26) 

A maintenance task could solve more failures, but not vice 
versa (see Equation (8)), and such a selection is driven by 
the objective function. Equation (21) aims to select the 
failures in order to reach at least the lower bound 𝑅௠௜௡ . 
Equation (22) expresses the relationship between 𝑧௝  and 
𝑥௜. In particular: 

𝑚௜,௝  ቄ
 1    𝑖𝑓 𝑗 = 𝑗௜

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (27) 

Note that, from Equation (8), only one 𝑗  is selected for 
each 𝑖 and this is named 𝑗௜, i.e. ∑ 𝑚௜,௝ = 1

௃
௝ୀଵ . Given a task 

𝑗, if all the failures solvable by 𝑗 are selected, i.e. all the 
failures such that 𝑚௜,௝ = 1 , then ∑ 𝑥௜𝑚௜,௝

ூ
௜ୀଵ  reaches the 

maximum value ∑ 𝑚௜,௝
ூ
௜ୀଵ . Thereby, 𝑧௝  must be 1, i.e. 𝑗 is 

selected, and the big 𝑀௝  may be fixed to ∑ 𝑚௜,௝
ூ
௜ୀଵ . 

Nevertheless, even if only one failure is selected with 
𝑚௜,௝ = 1, 𝑧௝  is again forced to be equal to one. In other 
words, just one failure is enough to activate the 
maintenance task able to solve it. 

4 NUMERICAL EXAMPLE 

A dataset coming from a manufacturer of lift winches has 
been used to validate the proposed approach. Two years 
(2015-2016) of failures of a specific winch have been 
analysed, and a traditional FMECA ranking has been 
obtained. In particular, one hundred and sixty-two failures 
have been extrapolated and their corresponding RPNs 
have been calculated by adopting the traditional 1-10 
scoring method for the three risk factors. The first forty-
nine failures have been selected (𝐼 = 49) for problems P2 
and P3, and thirteen (𝐽 = 13)  maintenance tasks have 

been collected by three DMs (𝐾 = 3). They were asked to 

provide the interval-valued 𝑝௜,௝,௞ = ቂ𝑝௜,௝,௞, 𝑝
௜,௝,௞

ቃ =

ൣ𝐵𝑒𝑙௜,௝,௞(1), 𝑃𝑙௜,௝,௞(1)൧  for each failure-task couple. Three 
matrixes (see Equation (7)) have therefore been compiled, 
one per DM. Table 1 shows a sample of these values per 
DM, i.e. DM1, DM2 and DM3, where the rows and the 
columns refer to the failures (F) and the maintenance tasks 
(M), respectively.  

Table 1. Interval-valued probabilities provided by DMs. 

M1 ... M13 

DM1 DM2 DM3 … 
DM
1 

DM2 
DM
3 

F1 [0.5,0.7] [0.4,0.7] [0.55,0.8] ... ... ... ... 

… ... ... ... ... ... ... ... 

F49 ... ... ... ... ... ... ... 

This table might contain multiple maintenance tasks per 
failure. In order to select the most effective task per failure, 
Equation (8) is applied. In this way, Table 1 is simplified by 
eliding the interval-valued probabilities referring to the less 
effective maintenance tasks, and maintaining only those 
referring to the most effective ones. For instance, suppose 
that Table 1 contains this row (F1) with more than one M 
(M1 and M12): 

Table 2. Example of row to simplify. 

M1 M12 
DM1 DM2 DM3 DM1 DM2 DM3 

F1 [0.5,0.7] [0.4,0.7] [0.55,0.8] [0.35,0.55] [0.3,0.6] [0.4,0.6]

𝑗ଵ = 𝑎𝑟𝑔𝑚𝑎𝑥௝ୀଵ,ଵଶ

∑ ቀ௣భ,ೕ,ೖା ௣భ,ೕ,ೖቁ ଶ⁄య
ೖసభ

ଷ
= 1 

That is to say, only M1 is selected for F1  and used for the 
subsequent steps. Table 1 is simplified in this way for each 
failure, i.e. for all the rows of Table 1.  

The interval-valued probabilities provided by the DMs on 
the couple (F1, M1) are plotted in Figure 1.  

Figure 1. Interval-valued provided by the DMs. 

The ordered vector is 𝒑𝟏,𝟏 = (0.4, 0.5, 0.55, 0.7, 0.7, 0.8) , 
which provides 5 intervals overall. However, the interval 
[0.7, 0.7]  is not considered because it does not contribute 
to the expected value (see Equation (12)). The uniform 
probability density function of 𝑝ଵ,ଵ is the step-wise function 
given by (see Equations (9) and (10)): 

ଵ

ଷ

ଵ

(଴.଻ି଴.ସ)
= 1,11  𝑖𝑓 𝑝ଵ,ଵ ∈ [0.4; 0.5] 

ଵ

ଷ

ଵ

(଴.଻ି଴,ସ)
+

ଵ

ଷ

ଵ

(଴.଻ି଴.ହ)
= 2,78  𝑖𝑓 𝑝ଵ,ଵ ∈ [0.5; 0.55] 
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ଵ

ଷ

ଵ

(଴.଻ି଴,ସ)
+

ଵ

ଷ

ଵ

(଴.଻ି଴.ହ)
+

ଵ

ଷ

ଵ

(଴.଼ି଴.ହହ)
= 4.11 𝑖𝑓 𝑝ଵ,ଵ ∈ [0.55; 0.7]  

ଵ

ଷ

ଵ

(଴.଼ି଴.ହହ)
= 1,33 𝑖𝑓 𝑝ଵ,ଵ ∈ [0.7; 0.8] 

For Equations (11) and (12), the expected value of 𝑝ଵ,ଵ is: 

𝐸൫𝑝ଵ,ଵ൯ =
ଵ

ଶ
1.11(0.5ଶ − 0.4ଶ) +

ଵ

ଶ
2.78(0.55ଶ − 0.5ଶ) +

+
ଵ

ଶ
4.11(0.7ଶ − 0.55ଶ) +

ଵ

ଶ
1.33(0.8ଶ − 0.7ଶ) = 0.61 

These calculations are repeated for all the forty nine 
failures.  

4.1 Selection problems: P1, P2, and P3 

The problem P1 is applied to the whole set of one hundred 
and sixty-two failures, and requires the definition of the 
upper bound 𝑅௠௔௫, which is fixed to 3000, 4000, 5000 and 
6000, for a sum of RPNs equal to 25894. The results (i.e. 
the percentage of selected failures, the objective function, 
and the sum of the RPNs of the selected failures) are 
reported in Table 3. 

Table 3. Results of P1. 

𝑅௠௔௫ 
Selected 
failures 

Savings 
[€/Month] 

Sum of 
RPNs 

3000 6.8% 13944 2983 

4000 9.3% 14564 3963 

5000 13.6% 15078 4997 

6000 16.7% 15298 5998 

Actually, the objective function does not consider the cost 
of the actions planned for solving the selected failures. 
Nevertheless, it could be argued that 
𝑅௠௔௫ = 6000 does not allow a relevant increment of the 
savings with respect to 𝑅௠௔௫ = 5000. This is due to the low 
savings related to the failures selected for 𝑅௠௔௫ = 6000 
and not for 𝑅௠௔௫ = 5000. 

The problems P2 and P3 deal with the uncertainty related 
to the probabilities of solving the failures by means of the 
set of maintenance tasks, whose representation has been 
explained before. In both problems, the most critical forty-
nine failures are selected. 

In particular, the results achieved through P1 are reported 
in Table 4, where the upper bound 𝑅௠௔௫ is fixed again to 
3000, 4000, 5000 and 6000, for a sum of RPNs equal to 
8520.  

Table 4. Results of P2. 

𝑅௠௔௫ 
Selected 
failures 

Savings 
[€/Month] 

Sum of 
RPNs 

3000 32.7% 14760 2935 

4000 44.9% 15053 3971 

5000 57.1% 15207 4996 

6000 69.4% 15284 5993 

As is predictable, the adoption of 𝐸൫𝑝௜,௝೔
൯ as a multiplicative 

factor of the RPNs leads to the selection of more failures 
than in P1 under the 𝑅௠௔௫ constraint. Nevertheless, similar 
savings are achieved, which is due to the fact that in P1 
the selection involves one hundred and sixty-two failures. 

The problem P3 is initially launched after relaxing the 
constraint (21) on the minimum risk 𝑅௠௜௡  to be achieved 
overall. Table 5 contains the results of P3 expressed in 
terms of the percentage of failures and maintenance tasks 

selected, the profit, and the sum of the RPNs of the 
selected failures. 

Table 5. Results of P3 without the 𝑅௠௜௡ constraint. 

Selected 
failures 

Selected 
maintenance 

tasks 

Profit 

[€/Month] 
Sum of 
RPNs 

71.4% 53.8% 8561 5864 

If the 𝑅௠௜௡  constraint is restored with 𝑅௠௜௡ > 5864 , a 
suboptimal profit is achieved. In particular, four values of 
𝑅௠௜௡ are tested, i.e. 6000, 7000, 8000, and the fourth must 
be equal to 8520, i.e. the sum of all the RPNs. In fact, the 
solution corresponding to the selection of all the failures 
and maintenance tasks would be unfeasible for 𝑅௠௜௡ >
8520. The achieved results are reported in Table 6. 

Table 6. Results of P3 with the 𝑅௠௜௡ constraint. 

𝑅௠௜௡ 
Selected 
failures 

Selected 
maintenance 

task 

Profit 

[€/Month] 
Sum of 
RPNs 

6000 73.4% 61.5% 8524 6136 

7000 83.7% 69.2% 8427 7060 

8000 93.9% 92.3% 8055 8059 

9000 100% 100% 7880 8520 

5 CONCLUSIONS AND FURTHER RESEARCH 
AGENDA 

FMECA is a well-established approach for ranking the 
failures from the most to the less critical in terms of their 
risk priority numbers, which are derived in the standard 
FMECA process from their scores on three risk factors. 
One of the major shortcomings of traditional FMECA is the 
absence of a procedure for using such a raking to select 
the maintenance/improvement tasks to be carried out. In 
particular, the probability that a maintenance/improvement 
task will solve a failure is typically subject to epistemic 
uncertainty. In fact, more sources of evidence, e.g. 
decision-makers, might provide different interval-valued 
probabilities, and a combination procedure is required in 
order to obtain their expected values. In this paper, the 
basic concepts of the Dempster-Shafer theory of evidence 
are adopted to deal with the epistemic uncertainty of these 
probabilities, enriching the traditional FMECA approach by 
also taking into account the relationship between failures 
and maintenance tasks. Three 0-1 knapsack problems are 
defined with different objective functions, i.e. savings 
maximisation for failure selection with and without 
uncertainty related to the solving probabilities, and profit 
maximisation with uncertainty for the selection of the 
maintenance tasks. In synthesis, FMECA-based 
optimisation approaches that are able to deal with 
epistemic uncertainty are introduced, allowing more 
decision-makers to be involved in the decision support 
system by providing interval-valued probabilities. Finally, a 
case study is used to validate these proposals. 

Despite the novelty of addressing the epistemic uncertainty 
related to the solving probabilities, some weaknesses of 
this contribution need underlining. First, the propagation of 
the uncertainty to the solutions of the optimisation models 
deserves to be investigated further. Moreover, the 
correlation between the maintenance tasks is avoided here 
by selecting only one task per failure, but this issue could 
be addressed in a more robust fashion. Finally, the 
procedure adopted for RPN calculation is the standard 
one, since although it exhibits some weaknesses, the 
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focus of this contribution lies elsewhere. However, 
epistemic uncertainty also involves the standard risk 
factors, which might be addressed under an evidential 
reasoning framework as well.  
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