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Abstract: This review provides a detailed description of matrix metalloproteinases (MMPs), focusing
on those that are known to have critical roles in bone and periodontal disease. Periodontal disease is
an inflammatory process initiated by anaerobic bacteria, which promote the host immune response
in the form of a complex network of molecular pathways involving proinflammatory mediators such
as cytokines, growth factors, and MMPs. MMPs are a family of 23 endopeptidases, collectively capable
of degrading virtually all extracellular matrix (ECM) components. This study critically discusses
the available research concerning the involvement of the MMPs in periodontal disease development
and progression and presents possible therapeutic strategies. MMPs participate in morphogenesis,
physiological tissue turnover, and pathological tissue destruction. Alterations in the regulation of
MMP activity are implicated in the manifestation of oral diseases, and MMPs comprise the most
important pathway in tissue destruction associated with periodontal disease. MMPs can be considered
a risk factor for periodontal disease, and measurements of MMP levels may be useful markers for
early detection of periodontitis and as a tool to assess prognostic follow-ups. Detection and inhibition
of MMPs could, therefore, be useful in periodontal disease prevention or be an essential part of
periodontal disease therapy, which, considering the huge incidence of the disease, may greatly
improve oral health globally.
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1. Introduction

Periodontitis is an inflammatory disorder that causes tissue and bone loss as a consequence of
various interactions between the host immune response and pathogenic bacteria [1]. This inflammatory
process is originated by plaque biofilm that causes the loss of periodontal attachment, resulting,
in the most severe cases, in tooth loss [2–4]. Though anaerobic bacteria are considered the starting agents,
the disease progression is induced by the host response, which can be influenced by environmental
and behavioral factors [5]. The disease development involves various interacting molecular pathways
made of proinflammatory mediators such as growth factors, cytokines, matrix metalloproteinases
(MMPs), and their inhibitors and regulators [6].

Several pieces of evidence suggest that MMPs comprise the most important pathway in tissue
destruction associated with periodontal disease due to their role in the pathological breakdown of
extracellular matrix (ECM) within periodontal tissues. The MMPs and their tissue inhibitors (TIMPs)
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have a key role in the physiological tissue remodeling of the periodontal tissues. However, disruption
of the balance between MMPs and TIMPs has been observed in association with periodontal disease
and tissue breakdown [7]. Pathogens in dental plaque are able to stimulate host cells to increase their
MMP release, which is considered as one of the indirect mechanisms of tissue destruction occurring
in periodontitis [8,9].

The aim of this review is to provide a detailed description of MMPs and of their critical role in bone
and periodontal disease, discussing current knowledge regarding MMPs within the periodontal
tissues in an attempt to better understand their role, nature, and functions in the extracellular
matrix environment.

2. Matrix Metalloproteinases (MMPs)

MMPs, also called matrixins, are endogenous Zn2+- and Ca2+-dependent enzymes. These enzymes
can degrade almost all ECM components, and thus play important roles in many biological
and pathological processes. The understanding of the biochemical and structural properties of
MMPs, including their catalytic mechanisms, activation, and substrate specificity, has improved
considerably [10].

The MMP family has 23 members in humans, classified into six groups based on substrate
specificity and homology: collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs
(MT-MMPs), and other MMPs (Table 1) [10–12].

Table 1. Human matrix metalloproteinases (MMPs) [12].

MMP Other Names Group Substrates in Vitro

MMP-1 Collagenase-1, Interstitial collagenase,
Fibroblast collagenase Collagenases

Type I, II, III, VII, VIII, X, XI collagens,
gelatin, fibronectin, laminin, tenascin,
a2-macroglobulin, IL-1b, pro-TNF-a,

pro-MMP-1, -2, -9

MMP-2 Gelatinase A, 72 kDa
gelatinase/type IV collagenase Gelatinases

Type I, II, III, IV, V, VII, X, XI collagens,
gelatin, laminin, elastin, fibronectin,

a2-macroglobulin, IL-1b,
pro-TNF-a, latent TGF-b, pro-MMP-1, -2, -9,

-13

MMP-3 Stromelysin-1, Transin,
Proteoglycanase, Collagenase activating protein (CAP) Stromelysins

Type III, IV, V, VII, IX, X, XI collagens,
collagen telopeptides, gelatin, elastin,

fibronectin, laminin, aggrecan, decorin,
perlecan, versican, a2-macroglobulin, IL-1b,
pro-TNF-a, fibrinogen, pro-MMP-1, -3, -7,

-8, -9, -13

MMP-7 Matrilysin-1, Putative
Metalloprotease (PUMP-1), Matrin Matrilysins

Type I, IV collagens, gelatin, elastin,
fibronectin, laminin, aggrecan,

a2-macroglobulin, pro-TNF-a, pro-MMP-1,
-2, -7, -9

MMP-8 Collagenase-2,
Neutrophil collagenase Collagenases Type I, II, III collagens, aggrecan,

fibrinogen, a2-macroglobulin, bradykinin

MMP-9

Gelatinase B, 92 kDa
gelatinase/type IV

collagenase, type V
collagenase

Gelatinases
Type IV, V, XI, XIV collagens, gelatin,

elastin, laminin, aggrecan,
a2-macroglobulin, IL-1b, pro-TNF-a

MMP-10 Stromelysin-2, Transin-2 Stromelysins

Type III, IV, V, VII, IX, X, XI collagens,
collagen telopeptides, gelatin, elastin,

fibronectin, laminin, aggrecan, decorin,
perlecan, versican, a2-macroglobulin, IL-1b,
pro-TNF-a, fibrinogen, pro-MMP-1, -3, -7,

-8, -9, -13

MMP-11 Stromelysin-3 Stromelysins Type IV collagen, gelatin, fibronectin,
a2-proteinase inhibitor

MMP-12 Macrophage elastase,
Metalloelastase Other MMPs

Type I, IV, V collagens, elastin, gelatin,
fibronectin, laminin, aggrecan,

a2-macroglobulin, pro-TNF-a, fibrinogen

MMP-13 Collagenase-3 Collagenases

Type I, II, III, IV, VI, IX, X, XIV collagens,
collagen telopeptides, gelatin, fibronectin,

tenascin-C, aggrecan, fibrinogen,
a2-macroglobulin, pro-MMP-9
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Table 1. Cont.

MMP Other Names Group Substrates in Vitro

MMP-14 MT1-MMP MT-MMPs
Type I, II, III collagens, gelatin, fibronectin,

laminin, aggrecan, a2-macroglobulin,
pro-TNF-a, fibrinogen, pro-MMP-2, -13, -20

MMP-15 MT2-MMP MT-MMPs Fibronectin, tenascin, laminin, aggrecan,
pro-TNF-a, pro-MMP-2

MMP-16 MT3-MMP MT-MMPs Type III collagen, gelatin, fibronectin,
laminin, a2-macroglobulin, pro-MMP-2

MMP-17 MT4-MMP MT-MMPs Gelatin, fibrinogen, fibrin, pro-TNF-a

MMP-19 Matrix metalloproteinase
RASI-1 Other MMPs Type IV collagen, gelatin, laminin,

fibronectin, fibrinogen, fibrin

MMP-20 Enamelysin Other MMPs Amelogenin, type IV collagen, aggrecan,
fibronectin, laminin, tenascin-C

MMP-21 - Other MMPs a1-antitrypsin

MMP-23 Cysteine array
(CA)-MMP Other MMPs Gelatin

MMP-24 MT5-MMP MT-MMPs Fibronectin, gelatin, chondroitin sulfate
proteoglycan, pro-MMP-2

MMP-25 MT6-MMP, Leukolysin MT-MMPs Type IV collagen, gelatin, fibronectin,
fibrinogen, fibrin, pro-MMP-2

MMP-26 Matrilysin-2 Matrilysins Gelatin, fibronectin, a2-macroglobulin,
fibrinogen, pro-MMP-9

MMP-27 - Other MMPs -

MMP-28 Epilysin Other MMPs Casein

TNF = Tumor Necrosis Factor; TGF = Transforming Growth Factor.

Although this classification is practical in many cases, most MMPs can degrade several substrates
with different specificities. For example, gelatinases can degrade several collagen types, especially
type IV, and collagenases-1 and -3 (MMPs-1 and -13) also degrade gelatin, although the rate of
this degradation is much slower than that of gelatinases (MMPs-2 and -9) [11]. For this reason,
the molecular structure is often used to classify MMPs.

MMPs have prodomains and catalytic domains, as well as other domains governing factors
such as substrate specificity, recognition, and interaction [10,13]. Like other proteolytic enzymes,
MMPs are synthesized as inactive proenzymes or zymogens. The opening of the cysteine–zinc
switch by proteolytic removal of the propeptide domain or ectopic disruption of the cysteine–zinc
interaction is required for the activation of the MMP proenzymes [10,11]. The carboxyl terminus of
the prodomain contains the thiol group of an unpaired, conserved cysteine, which maintains enzyme
latency. At the active site, this cysteine serves as a fourth ligand that inactivates the catalytic zinc
atom and excludes water. Disruption of the cysteine–zinc pair by proteolysis or a conformational
change, resulting in the replacement of the thiol group by water, causes the activation process.
The activation process is completed by the “cysteine switch” mechanism, in which the enzyme
hydrolyzes the propeptide [14].

Collagenases, gelatinases, and MT-MMPs are directly involved in native fibrillar collagen
degradation. MMPs induce triple helix unwinding, at least at the local level, enabling complete
collagenolysis and the formation of 1/4- and 3/4-length fragments [15–17]. Interstitial collagens
consist of three α chains with approximately 1000 residues and repeating Gly-X-Y triplets, in which
X and Y are often proline and hydroxyproline. This triple helix composition renders interstitial
collagens resistant to most proteinases, although collagenases and cathepsin K can cleave the helical
structure [10,18]. However, before the collagenases can approach the cleavage site on the collagen
molecule, C-telopeptides need to be removed by the telopeptidases (MMPs-2 and -9). This facilitates
the unwinding of the triple helix and enables the cleavage by true collagenases [19,20]. After the collagen
molecules are cleaved into 3/4- and 1/4-length fragments, they denature at body temperature
and undergo degradation by nonspecific tissue proteinases and gelatinases [16,17].

Regulation of MMP activity can occur at multiple levels, including transcription, zymogen secretion,
degranulation of intracellular-granule enzymes, localization in or outside the cell, internalization,
extracellular inhibition, and clearance from the extracellular space [11]. TIMPs are involved
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in the local control of MMP activities in tissues. Whereas most TIMPs inhibit active MMPs, some also
prevent proMMP activation; TIMP-1, for instance, binds to proMMP-9, and TIMPs-2 and -4 bind to
proMMP-2. Besides inhibiting MMP activity, TIMPs also participate in several regulatory processes,
such as embryogenesis, regulation of cell characteristics and processes (such as growth, survival,
morphology, and apoptosis), inhibition of angiogenesis, and steroidogenesis [21–24]. Whereas TIMPs
are the primary inhibitors of MMPs in tissues,α2-macroglobulin is the primary regulator of MMP activity
in body fluids. This macroglobulin protein, abundant in plasma, is a general endopeptidase inhibitor
that acts via enzyme entrapment and steric interference in large MMP substrate interactions, resulting
in endocytosis of the α2-macroglobulin–MMP complex [10,25]. This process terminally eliminates
the complex, rendering α2-macroglobulin important in irreversible MMP clearance; in contrast,
TIMP-related MMP inhibition is reversible [11].

Numerous synthetic MMP inhibitors have been developed, and the number of these products
continues to increase. Most of these inhibitors chelate or replace the zinc ion at the active site and/or
interact with the MMP propeptide fragment; some may prevent MMP access and inhibit activity by
coating the substrate [21].

3. The Role of MMPs in Periodontal Disease

Although a number of MMPs have been described in gingival tissues (such as MMP-2, MMP-7,
and MMP-14) [26], the most widely reported MMPs in gingival crevicular fluid (GCF) are MMP-8,
MMP-9, and MMP-13 [27–30], and among the three collagenases (MMP-1, MMP-8, and MMP-13),
MMP-8 accounts for 80% of the total collagenase protein found in the GCF, with smaller relative
amounts of MMP-13 and MMP-1 in chronic periodontitis [31]. In particular, the active MMP-8 (aMMP-8,
collagenase-2) derived from neutrophils is known to be the main host-cell-derived collagenase that
leads to periodontal tissue destruction as a result of the degradation of gingival and periodontal
ligament collagen [32,33] (Figure 1, [8]).

When comparing chronic periodontitis patients with gingivitis patients and healthy control
subjects, higher levels of MMP-8 in saliva and higher MMP-9 levels in gingival crevicular fluid (GCF)
were detected [34]. GCF MMP-8 activation was found to be the highest in chronic periodontitis patients
compared with healthy subjects and gingivitis patients [35,36]. Recently, differentiating periodontitis
patients from the controls, Gursoy et al. confirmed that salivary TIMP-1 and MMP-8 and -9 are
increased in chronic periodontitis patients [37].

Apart from MMPs-8 and -9, other MMPs can also play a significant role in periodontal disease.
The concentrations of MMP-3 and MMP-7 are markedly increased in the GCF of patients with
periodontitis [36]. In cross-sectional studies, elevated GCF levels of MMP-7, TIMP-1 [38], laminin-5
gamma2-chain [39], and MMPs-25 and -26 [40] were reported in chronic periodontitis patients compared
to gingivitis patients and healthy control subjects.

GCF levels of MMPs in patients with periodontitis were also studied in terms of their diagnostic
and prognostic values. A cross-sectional study by Ramseier et al. reported that salivary concentrations
of MMPs-8, -9, and orthopantomograms combined with red complex bacteria can predict periodontal
disease [41]. GCF levels of MMPs-9 and -13 were suggested as useful biomarkers for periodontitis
progression when active sites were defined in moderate to advanced chronic periodontitis patients
followed for 2 months [42,43]. Another cross-sectional study reported that GCF MMPs-8 and -9 levels
are correlated with disease activity in chronic periodontitis patients [28]. Interesting data came from a
clinical study on 28 chronic periodontitis patients and 22 controls [44]. The authors reported higher
MMPs-3, -8, -9, and gelatinolytic activities in plasma of chronic periodontitis patients that decreased
significantly 3 months after nonsurgical periodontal treatment. Kinane et al. [45] also reported that
GCF MMP-8 levels decreased significantly 3 months after nonsurgical periodontal therapy in 20 chronic
periodontitis patients. Persistent elevation of MMP-8 in GCF samples is regarded as indicating
high risk and poor response to periodontal therapy [46]. Moreover, significant positive correlations
were detected between GCF MMPs-8 and -9 activities and periodontal disease severity, together
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with negative correlations with TIMPs-1 and -2 levels [47]. Furthermore, a chair-side MMP-8 test
was indicated to effectively differentiate clinically healthy sites and gingivitis from chronic periodontitis
and also effectively monitor the treatment of chronic periodontitis patients [48].

Figure 1. Matrix metalloproteinase (MMP) activation cascades in connective tissue catabolism during
periodontitis. Full and partial circles with their respective number represent latent and activated specific
MMPs. Brown T bars represent collagen fibers. (A) Tooth and its supporting structures: radicular cement,
periodontal ligament (PL), and alveolar bone. (B) Membrane-bounded MMP-14 activates proMMP-13
to degrade type I collagen, which constitutes the bulk component of radicular cement, periodontal
ligament (PL), and alveolar bone extracellular matrix; MMP-13 activates proMMP-9, which in turn
might activate proMMP-2 and proMMP-13. MMP-2 and MMP-9 further process the gelatin resulting
from collagenase activity. MMP-13 can undergo autoactivation by selfproteolysis. Reactive oxygen
species, such as HOCl and H2O2, from phagocytes, can also modify the proteases/antiproteases balance,
activating latent MMPs and inactivating the tissue inhibitor of MMP (TIMP)-1. MPO, myeloperoxidase.
Image is taken from Franco et al. [8]; Reproduced with permission from Marcela Hernandez.

As for bone resorption, MMP-9 is likely the most important proteinase involved in this process,
as osteoclasts express this enzyme at a tremendously high level [49,50]. However, there are contradictory
reports about the specific role of MMP-9 in bone resorption. For example, certain authors have
suggested that MMPs make, at best, a very small contribution to the bone-resorptive activity of
osteoclasts [51] and that the selective inhibitor of MMP-9, TIMP-1, did not show a significant inhibitory
effect on osteoclastic bone resorption [52], while other studies have reported that MMP-9 might play
an essential role in the bone resorption caused by osteoclasts [53] and that patients with MMP-9
genotypes, in association with their soluble protein, may have an increased risk of developing chronic
periodontitis [54].

As seen from the previous studies, various proteolytic enzymes, like MMPs and elastases, at the end
of the inflammatory cascade, can actively destroy periodontal tissues (Table 2).

Table 2. Selected studies about MMPs involved in periodontal tissue degradation.

Author (Year) MMP Involved Into Periodontal Tissues Degradation

Choi D.H. et al. (2004) [27] MMP-8, MMP-9

Beklen A. et al. (2006) [28] MMP-8, MMP-9

Soder B. et al. (2006) [29] MMP-8, MMP-9

Kumar M.S. et al. (2006) [30] MMP-8, MMP-9
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Table 2. Cont.

Author (Year) MMP Involved Into Periodontal Tissues Degradation

Marcaccini A.M. et al. (2010) [31] MMP-1, MMP-13

Kraft-Naumarker M. et al. (2012) [32] MMP-8

Rai B. et al. (2008) [34] MMP-8, MMP-9

Xu L. et al. (2008) [35] MMP-8

Schure R. et al. (2013) [36] MMP-3, MMP-7, MMP-8

Gursoy U.K. et al. (2010) [37] MMP-8

Eminigil G. et al. (2006) [39] MMP-7

Eminigil G. et al. (2006) [40] MMP-25, MMP-26

Ramseier C.A. et al. (2009) [41] MMP-8, MMP-9

Hernandez Rios M. et al. (2009) [42] MMP-9, MMP-13

Alpagot T. et al. (2001) [43] MMP-3

Marcaccini A.M. et al. (2009) [44] MMP-3, MMP-8, MMP-9

Kinane D.F. et al. (2003) [45] MMP-8

Mantyla P. et al. (2006) [46] MMP-8

Pozo P. et al. (2005) [47] MMP-8, MMP-9

Mantyla P. et al. (2003) [48] MMP-8

It is noteworthy that only the active form of these enzymes is catalytically capable of acting in a
destructive manner [32]. A specific therapy focused on the inhibition of MMP activities could be
useful as a potential therapeutic strategy towards periodontitis treatment. This, in addition to clinical
treatments such as scaling and root planing, would improve disease prognosis. Previous studies
have also shown that MMPs are present in peri-implant sulcular fluid and can play a pathologic role
in peri-implant bone loss [55,56]. MMP-8 has been reported to be present in peri-implant sulcular fluid.
The polymorphism in the promoter of the MMP-8 gene (C-799T) could be a risk factor for early implant
failure. This polymorphism could be used as a genetic marker for unsuccessful implants. In addition,
the polymorphism in the promoter region of the MMP-1 gene (guanine inserted at position -1607)
seemed to be strongly associated with early implant failure in a sample of 180 nonsmoking patients
attending two dental clinics in Brazil [57]. Perhaps the discovery of several genetic markers related with
early implant failure could be of clinical value for the precise and early identification of individuals
at high risk for implant loss. It could lead to a more strict selection of patients, and in the future,
individual therapeutics could be developed, thereby increasing implant success rates [57]. Therefore,
the presence of MMPs that could contain these genetic markers could be extremely indicative of a
patient with a high risk of implant failure.

4. MMP Inhibitors

In the late 1990s, macromolecular inhibitors (monoclonal antibodies and natural TIMPs) and small
molecules (natural and synthetic) were already considered potential treatments for diseases with an
excess of MMP activity [58].

In the last two decades, the development of MMP inhibitors that can act selectively
under pathological conditions has been pursued intensively by the pharmaceutical industry,
given the associations of MMPs with numerous diseases, such as cancer, arthritis, and conditions
related to tissue remodeling [59]. However, few drugs with these properties have been found to
effectively inhibit individual MMPs [60]. Furthermore, the toxicity of systemically delivered MMP
inhibitors that were designed to treat specific pathological conditions, and their uncontrolled actions
on target and antitarget members of the metzincin family, represent important challenges in efforts
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to develop synthetic products [61]. Clinical trials have shown that broad-spectrum MMP inhibitors
lack specificity, have poor pharmacokinetics, and inhibit closely related enzymes [62]. All MMPs
and the related enzymes share a highly homologous catalytic domain, which has increased the difficulty
of specific-antagonist drug candidate development [63] but provides an advantage in the development
of broad-spectrum inhibitors for dentin-matrix-bound and salivary MMPs.

Targeted therapy focused on MMP activity inhibition could be indicated as an ideal therapeutic
option in the treatment of periodontal diseases. In addition to periodontal therapy, such as scaling
and root planing and osseous surgery, this therapeutic strategy could be useful in improving
the prognosis of periodontal infection.

Among other molecules, MMP inhibitors adopted in periodontal disease therapy are modified
tetracyclines. Tetracyclines are antibiotics able to inhibit the breakdown of connective tissue.
Inhibitors have been obtained through chemical modification of molecules from the tetracycline
family, after the separation of antibiotic and protease inhibitory activities [58].

Minocycline provided the first evidence of MMP inhibition by tetracycline (TC) and its derivatives
in the oral environment, as it was observed to inhibit the collagenolytic activity of gingival crevicular
fluid in the absence of bacteria [64,65]. TCs are antibiotics with cationic chelating properties that
inhibit MMP activity in the extracellular environment [66] and prevent proMMP activation through
oxidation by scavenging reactive oxygen species [67]. TCs downregulate transcriptional MMP levels
at the intracellular level [68–70]. Doxycycline hyclate is a low-dose tetracycline analog deprived
of antimicrobial activity and is indicated for the treatment of periodontal diseases, acting through
the inhibition of MMP-8 and MMP-13 protease mechanisms. The therapeutic effect of this antibiotic is
due to the modulation of the host response since the low-dose formulations have lost their antimicrobial
activity [58]. Tetracyclines are found to inhibit MMP activity by cationic binding proteins. The use of
this drug in association with mechanical periodontal therapy has been widely accepted. In adults with
periodontitis, low-dose doxycycline is currently used as an adjuvant therapy to inhibit MMP activity
since it significantly reduces the severity of periodontal disease, including alveolar bone loss [58].

Chemically modified tetracyclines (CMTs) lack the 4-dimethylamino group of TCs, which exerts
antibacterial activity [65]. Several CMTs with a range of potency and specificity for MMP inhibition
have been developed [65,71–73]. CMTs-3 and -8 are the most potent inhibitors of MMPs, especially
collagenases, and CMT-3 is the only CMT with demonstrated potency against MMP-1 [66,72].

Different MMPs are also found to be inhibited by chlorhexidine (CHX). CHX is a biguanide
chemical substance that provides effective antiseptic effects and is used in the control of plaque
and reduction of gingival inflammation [74]. Several authors have shown that chlorhexidine directly
inhibits MMP-2, MMP-8, and MMP-9, probably through a chelating mechanism [75–79]. It is proven
that CHX dose-dependently inhibits the collagenolytic activity of MMP-8 released by phorbol myristate
acetate (PMA)-triggered human polymorphonuclear leukocytes [75].

Bisphosphonates (BPs), pyrophosphate analogs with high affinities for hydroxyapatite crystals,
have been used to treat conditions involving increased bone resorption, such as Paget’s disease
and osteoporosis [80]. BPs inhibit the dissolution and formation of calcium phosphate crystals,
impairing calcification, but their interference with bone resorption is mediated primarily by cellular
mechanisms [80]. The most recent generation of BPs, including zoledronate, has been shown to
effectively inhibit bone resorption without extensively affecting mineralization [80]. The results of
some studies have suggested that BPs do not affect MMP synthesis in cultured carcinoma cells [81]
and that they can chelate calcium without affecting osteoclasts or osteoblasts [82], but increasing
evidence has indicated that BPs downregulate and inhibit MMPs via chelation [83–85].

A recent review stated that adjunctive bisphosphonates in periodontal disease appear to be
effective in improving periodontal inflammatory parameters, but several factors such as dosage of
drug, frequency of application, and route of administration need to be taken into consideration [86].

Many other molecules broadly inhibit MMP activity. For example, hydroxamate-based inhibitors
with structures that mimic collagen, such as batimastat and marimastat, chelate zinc at active sites [25].
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However, most newly developed MMP inhibitors allow only selected MMP targeting; synthetic cyclic
peptide CTT (HWGFTLC), for example, appears to be gelatinase-specific [87].

Regarding bisphosphonates, due to the antiresorptive properties, there is current interest in their
possible use as an adjunctive therapeutic agent for periodontal disease. However, there is still no
evidence that bisphosphonates can modify rates and severity of periodontal disease.

5. Conclusions

Improved tooth retention, population growth trends, and risk factor modifications have increased
the socioeconomic burden of periodontal disease. It has been shown that MMPs can be considered a
risk factor for periodontal disease, and measurements of MMP levels may be useful as a biomarker for
early detection of periodontitis and as a tool to assess prognostic follow-up.

There seems to be a significant increase in MMP expression and activity in chronic periodontitis,
especially MMP-1, MMP-3, MMP-7, MMP-8, and MMP-9, with minor contributions from MMP-13
and MMP-14. Detection of MMPs could, therefore, be useful in periodontal disease prevention.
The application of targeted therapy toward MMPs should be considered as a useful addition
to periodontal nonsurgical therapy since it could permit the control of periodontal disease
and peri-implantitis through an enzymatic modulation, in addition to bacterial control, thus, finally
improving oral health globally.

Moreover, the use of certain drugs such as MMP inhibitors could represent an interesting
and innovative therapy against MMP effects on periodontal tissues.
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