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Quantitative structureproperty relationship (QSPR) models were derived for predicting boiling point (at
760 mmHg), density (at 28C), viscosity (at 25°C), static dielectric constant (at 2&), and refractive

index (at 20°C) of a series of pure organic solvents of structural formutaCkH,CH,—Y. A very large

number of calculated molecular descriptors were derived by quantum chemical methods, molecular topology,
and molecular geometry by using the CODESSA software package. A comparative analysis of the multiple
linear regression techniques (heuristic and best multilinear regression) implemented in CODESSA, with the
multivariate PLS/GOLPE method, has been carried out. The performance of the different regression models
has been evaluated by the standard deviation of prediction errors, calculated for the compounds of both the
training set (internal validation) and the test set (external validation). Satisfactory QSPR models, from both
predictive and interpretative point of views, have been obtained for all the studied properties.

INTRODUCTION (at 760 mmHg), density (at %), viscosity (at 25C), static

The correlation and prediction of physicochemical proper- di€lectric constant (at 25C), and refractive index (at 20
ties of pure liquids and of mixtures, such as boiling point, C) 'of'a series of pure organic sqlvents. This constltutgs a
density, viscosity, static dielectric constant, and refractive Preliminary step toward the modeling of the thermophysical
index, is of practical (process design and control) and propertles_ of mixtures, which have been experimentally fully
theoretical (role of the molecular structure in determining characterized by our research grééipThe compounds
the macroscopic properties of the solvent) relevance to bothconsidered have structural formula-XCH,CH,—Y, where
chemists and engineers. Traditionally, procedures for esti-the X and Y fragments, including alkyls, aromatics, halogens,
mating these properties have been based either on theoretica€ctron acceptors and donors, and hydrogen-bonding groups,
relationships often making use of empirical parameters that Were chosgn to span over different stereoelectronic features
have to be fitted or on empirical relationships derived from @nd constitute a structural heterogeneous data set. The
additive-constitutive schemes based on atomic groups or Property data were collected from the literature; depending
bonds contribution within the molecule® More recently, ~ On the available data for each property, the number of
the quantitative structureproperty relationships (QSPR) pompounds in the training set varies from_23 to 67 and that
approach’” based on calculated molecular descriptors has in the test set (used for external validation of the QSPR
been applied especially to predict boiling poifgartition models) varles.fro.m _9 to 29. Despite thg fact that the numper
coefficientsl1 chromatographic retention index@s sur- of compounds is limited compared to similar comprehensive
face tension, and critical temperatut&&Swhile only a few studies, the variation range of the various properties is quite
studies have dealt with viscosity? 18refractive index? and acceptable.
static dielectric constaitz’ The use of calculated molecular A very large number of calculated molecular descriptors
descriptors in QSPR analysis has two main advantages: (awas derived by quantum chemical methods, molecular
the descriptors can be univocally defined for any molecular topology, and molecular geometry, by using the CODESSA
structure or fragment; (b) thanks to the high and well-defined software packag&??

physical information content encoded in many theoretical A significant aspect in QSPR is whether and how to select,
descriptors (for example, those derived from quantum from a very large number of calculated indexes, a limited
chemical theory), they can clarify the mechanism relating set of descriptors that represents the best choice for predicting
the studied property with the chemical structure. Moreover, gnd accounting for the property data; several approaches to
QSPR models based on calculated descriptors help underthjs task have recently been reported in the literade&.
standing of the inter- and intramolecular interactions that are Despite the fact that multivariate data analysis techniques
mainly responsible for the behavior of complex chemical can handle many collinear variables, there are two main
systems and processes. ) reasons for operating a variables selection procedure when
_In the present study, we derive QSPR models capable ofysjng theoretical indexes: (a) collinearity among descriptors
giving account for the following properties: boiling point  indicates that their physicochemical meaning and information

* Corresponding author: (fax)+39) 059/373543; (e-mail) cocchi@ _Content may be the Samev e, ‘_:O”inear deS(_:riptors are
unimo.it. interchangeable; (b) the interpretation of the derived QSPR
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Table 1. Properties Data Values for the List of Training Set Compounds: Their Refractive Index, Density, Boiling Point, and Permittivity
Data and References (Numbers in Parentheses)

no. compound formula np? o° bp* e
-di 1

1 1,4-dioxane OCH,CH,O0CH.CHs 1.42241 (49) 1.028112 (57) 101.320 (49) 3.208 (48)

2 ethanol HOCH,CH,H 1.36139 (49) 0.78506 (49) 78.325 (49) 24.30 (49)

3 ethane-1,2-diol HOCH,CH,OH 1.4318 (49) 1.109913 (58) 197.85 (49) 40.97 (50)

4 2-methoxyethanol HOCH,CH,OCH3; 1.4017 (49) 0.960288 (59) 124.4 (49) 16.93 (51)

5 1,2-dimethoxyethane CH30CH,CH,OCH3 1.3796 (51) 0.861506 (58) 83.5 (54) 7.55 (52)

6 2-chloroethanol HOCH,CH.CI 1.44380 (49 1.2019 (49 128.6 (49) 25.07 (53)

7 1,2-dichloroethane CICH,CH.CI 1.44759 (49 1.245518 (60) 83.483 (49) 10.69 (53)

8 bromoethane HCH,CH,Br 1.42481 (49) 1.44030 (49) 38.386 (49) 9.39 (49)

9 1,2-dibromoethane BrCH,CH:Br 1.54160 (49  2.1701 (49) 131.7 (49) 4.78 (49)
10 iodoethane HCH,CH;l 1.51369 (49) 1.9358 (49) 72.30 (49) 7.82 (49)
11 phenylethane HCH,CH,C¢H5s 1.49594 (49) 0.86264 (49) 136.187 (49) 2.412 £49)
12 nitroethane HCH,CH;NO, 1.3920 (49) 1.03819 (49) 114.0 (49) 28.06 (49)
13 chloropropane CH3CH,CH,CI 1.38800 (49) 0.87994 (49) 46.60 (49) 7.7 (49)

14 bromopropane CH3CH,CH,Br 1.43695 (49 1.34305 (49) 71.03 (49) 8.09 (49)
15  1-propanol CH3CH,CH,OH 1.38556 (49) 0.79950 (49) 97.15 (49) 20.1 (49)
16  1,2-diaminoethane NH,CH,CH:NH; 1.45677 (49) 0.8977 (49)  117.0 (49) 14.2 (49)
17 butan-2-one CH3COCH,CH,H 1.37891 (54) 0.799876 (54) 79.50 (49) 17.64 (54)
18 propanenitrile HCH,CH,CN 1.36812 (49  0.77682 (49) 97.20 (49) 27.2 (49)
19 l-iodopropane CH3CH,CH,l 1.5041 (49) 1.72997 (49)  102.45 (49) 7 (49

20 1-nitropropane CH3CH,CH,NO, 1.4016 (49) 0.99546 (49) 131.4 (49) 23.24 (49)
21 butanenitrile CH3CH,CH,CN 1.38600 (49  0.78183 (49) 117.9 (49) 20.3 (49)
22 1-phenylpropane CH3CH,CH,C¢Hs 1.49202 (55) 0.85780 (55) 159.217 (55) 2.226 §55)
23 valeronitrile CNCH,CH,CH,CH3 1.3975 (51) 0.7952 (51) 141.56 (51) 20.04 (61)
24 1-fluoro-2-chloroethane FCH,CH:CI 1.3775 (54) 1.1683 (51) 52.8 (51)

25 2-bromoethanol Br CH,CH,OH 1.4915 (54) 1.7629 (54) 149.5 (54

26 1,2-difluoroethane FCH,CH,F 1.3014 (51) 1.024 (51) 30.7 (54)

27 2-fluoroethanol FCH,CH,OH 1.3647 (54) 1.0020 (51) 103.5 (54)

28 1-methoxypropane CH3CH,CH,OCH3; 1.3590 (51) 0.723 (5%) 38.5 (54)

29 2-aminoethanol NH>CH,CH,OH 1.4539 (49) 1.01170 (51) 171.1 (49)

30 3-methoxypropionitrile CNCH,CH,OCH3 1.40317 (51) 0.9398 (51) 164 (54)

31 1l-aminopropane CH3CH,CH;NH; 1.38815 (49) 0.7110 (51) 48.5 (49)

32  2,2-dimethylbutane (CH3)3sCCH,CH,H 1.36876 (49) 0.64446 (49) 49.741 (49)

33 1-chloro-2-methoxyethane CICH,CH;OCH3 1.4111 (54) 1.0461 (51) 92.5 (54)

34 1-chloro-2-bromoethane CICH,CH.Br 1.4908 (54) 1.7392 (58) 107 (54)

35 1-bromo-2-fluoroethane BrCH,CH,F 1.4236 (54) 1.7044 (54) 71.5 (54)

36 1-bromo-2-methoxyethane BrCH,CH,OCH3; 1.44753 (54) 1.4369 (51) 110.3 (54)

37 2-iodoethanol | CH,CH,OH 1.5713 (54) 2.1968 (548) 176.5 (54)

38  2-phenylethanol HOCH,CH,Ce¢Hs 1.5325 (54) 1.0202 (58)  218.2 (54)

39 2-nitroethanol NO,CH,CH,OH 1.4447 (51) 1.296 (5%) 195 (51)

40 1-chloro-3,3-dimethylbutane ~ CICH,CH,C(CH3)3 1.4161 (54) 0.8670 (58) 117.5 (51)

41 1-bromo-3,3-dimethylbutane  BrCH,CH,C(CH3)3 1.4440 (51) 1.1556 (5%) 138 (51)

42 1-hydroxy-3,3-dimethylbutane  HOCH,CH,C(CH3)3 1.4115 (51) 0.8097 (51) 143 (54)

43 propan-2-one CH3CH,CH,COCHj; 1.3908 (51) 0.7994 (51) 102.4 (51)

44 1-phenylbutan-2-one CH3;COCH,CH,C¢Hs 1.5108 (51) 0.9849 (54) 233.5 (54)

45 3-phenylpropanenitrile CNCHCH;CgHs 1.5266 (54) 1.0016 (58) 261 (54)

46 3-chloropropanenitrile CICH,CH.CN 1.4370 (51) 1.1573 (58) 175.5 (54)

47 1-chlorobutan-3-one CICH,CH,COCH3 1.4284 (54 1.0680 (54) 120.5 (54)

48  1-chloro-2-nitroethane CICH,CH;NO, 1.4500 (51) 1.343 (51) 173 (51)

49 1-amino-2-phenylethane NH2CH,CH,C¢Hs 1.5315 (51) 0.9640 (56) 194.5 (56)

50 1-nitro-3,3,3-trifluoropropane  NO,CH,CH,CF3 1.3525 (51) 1.4259 (5%) 135.5 (51)

51 methyl 3-cyanopropanoate CNCH,CH,COOCH;3; 1.4243 (51) 1.0792 (5%) 215.8 (51)

52  1-nitrobutane NO,CH,CH,CH,CH3 1.41019 (51) 0.9673 (51) 152.77 (51)

53 butanedial OCHCH,CH,CHO 1.4260 (51) 1.0659 (51) 169.5 (54)

54 hexane-2,5-dione CH3;COCH,CH,COCH3; 1.423 (51) 0.9740 (5%) 191.4 (49)

55 3-bromopropanenitrile BrCH,CH.CN 1.4800 (54) 1.6234 (51)

56 1-nitro-2-phenylethane NO,CH,CH,CgH5s 1.5270 (51) 1.119 (61)

57 methyl 3-nitropropanoate NO,CH,CH,COOCH3 1.4350 (51) 1.2486 (51)

58 1-nitro-3,3,3-trichloropropane  NO,CH,CH,CCl3 1.4899 (51) 1.5320 (61)

59 1-nitro-4-methylbutane NO,CH,CH,CH(CH3), 1.4171 (51) 0.9458 (51)

60 3,3,3-trichloropentane CH3CH,CH,CH,CCl; 1.4540 (51) 1.1843 (51)

61 methyl 4-oxobutanoate OCHCHCH,COOCH3 1.4210 (51) 1.087 (5%)

62 1-chloro-2-iodoethane CICH,CHal 1.5615 (51) 140 (54)

63 3-hydroxypropanenitrile CNCH,CH,OH 1.4240 (54) 230 (54)

64 3-aminopropanenitrile CNCHCH;NH; 1.4396 (56) 185 (56)

65 methyl pentanoate CH3CH,CH,CH,COOCH3; 1.3969 (51) 127.9 (51)

66 3,3,3-trifluorobutanal CF3CH,CH,CHO 1.3387 (51) 95.5 (51)

67 1-nitrobutan-3-one NO,CH,CH,COCH3 1.4392 (51)

aMeasured at 20C when not otherwise specifieblp/(g cn3), measured at 258C when not otherwise specifielbp/C, measured at 760
mmHg when not otherwise specifieiMeasured at 28C when not otherwise specifielMeasured at 20C. f Measured at 25C. 9 Measured at
15 °C. "Measured at 18C. " Measured at 2EC.1 Measured at 22C. kMeasured at 23C.' Measured at 30C. ™ Measured at 750 mmHg.
"Measured at 753.5 mmHg.
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Table 2. List of Training Set Compounds: Their Log(dynamic viscosity) Data and References (Numbers in Parentheses)

no. compound formula logyf)
-di 1
1 1,4-dioxane OCH,CH,0CH,CH2 0.081 (63)
2 ethanol HOCH,CH.H 0.033 (49)
3 ethane-1,2-diol HOCH,CH,OH 1.234 (62)
4 2-methoxyethanol HOCH,CH,OCH3 0.189 (62)
5 1,2-dimethoxyethane CH3;0OCH,CH,OCH3 —0.378 (63)
6 2-chloroethanol HOCH,CH,CI 0.429 (49)
7 1,2-dichloroethane CICH,CHCI —0.102 (63)
8 1-fluoro-1-chloroethane FCH,CH,CI —0.251 (51Y
9 bromoethane HCH,CH,Br —0.421 (49)
10 1,2-dibromoethane BrCH,CH_Br 0.173 (49)
11 iodoethane HCH,CH.l —0.268 (49)
12 phenylethane HCH,CH,CsHs —0.196 (49)
13 nitroethane HCH,CH:NO, —0.180 (49)
14 chloropropane CH3CH,CH,CI —0.498 (49)
15 bromopropane CH3CH,CH,Br —0.338 (49)
16 1-propanol CH3CH,CH;OH 0.302 (49)
17 2-aminoethanol NH,>CH,CH,OH 1.159 (51%
18 1,2-diaminoethane NH2CH,CH;NH 0.188 (49)
19 butan-2-one CH3COCH,CH:H —0.415 (63)
20 propanenitrile HCH,CH,CN —0.410 (49)
21 1-iodopropane CH3CHCH;l —0.174 (49)
22 1-nitropropane CH3CH,CH;NO; —0.098 (49)
23 butanenitrile CH3CH,CHCN —0.288 (49)
24 1-chloro-2-methoxyethane CICH,CH,OCH3; —0.228 (51)
25 propan-2-one CH3CH,CH,COCH3 —0.338 (51)
26 valeronitrile CNCH,CH,CH>CH3 —0.152 (51)
27 2-methyl-1-butanol HOCH ,CH(CH 3)CH,CH,H 0.740 (18)
28 3-ethyl-3-pentanol HCH,CH,C(OH)(CH »CH3) 0.829 (18)
29 methyl cyanoacetate CNCH,COOCHH 0.446 (18
30 2-methylbutyric acid (CH3).,CHCH,COOH 0.382 (18y
31 heptanoic acid CH3(CH),CH,CH,CH,COOH 0.639 (18)
32 isopropyl acetate CH3;COOCH(CH3)CHH —0.245 (18)
33 isopropylamine HCH,CH(CH3)NH; —0.419 (18§
34 propyl butyrate CH3(CH3),COOCH,CH,CH5 —0.080 (185
35 1-pentanol CH3CH2CH,CH,CH,0OH 0.525 (49)
36 2-methyl-2,4-pentanediol (CH3),COHCH,CHOHCH 3 1.536 (18)
37 2-ethoxyethanol HOCH,CH,OCH,CH3; 0.312 (185

aylcP, measured at 25C when not otherwise specifiellCalculated on values of/cP measured at 3€C. ¢ Calculated on values of/cP
measured at 20C.

model is far simpler when few significant theoretical indexes  If the values of the properties,(np, p, 7) for some
are involved. compounds were not available at the chosen temperature,
In the present study, we compare the multiple linear we referred to measures taken withindeb °C range;
regression models obtained by using the heuristic and bestanalogously, boiling temperatures of four compounds have
multilinear variables selection procedures, implemented in been taken at different pressures ranging from 750 to 756
the CODESSA software package, which are basically step-mmHg, as specified in Tables-B.
wise regression procedures aimed to improve the goodness Calculations. Molecular geometry data (bond distances,
of fit, with the PLS regressioff,*?models generated by using  bond angles, dihedral angles) have been taken from literature
the GOLPE variables selection procedéfteshich is based  experimental dafd when available. Otherwise, we referred
on statistical design and is aimed to improve the predictive to standard geometries taken from ab initio compilatn.
ability of the models. The performance of the different  \olecular structures have been considered in the anti
regression models has been evaluated by the standargonformation with regard to the CH,—CH,— bond, unless
deviation of prediction errors (SDEP) paraméterlculated otherwise specified in the literature.

for the compounds of both the training set (internal valida- £ geometry optimization of the molecular structures has
tion) and the test set (external val_ldat_|on). 'I_'he internal SDEP poan made at a semiempirical level (AM1 Hamiltonian) using
has been calculated by cross-validation using both the “leavey,o mopaAC (version 6.6} software package.

one out” (LOO) and the random group approaches. Molecular Descriptors. The calculated molecular descrip-

tors employed in this study, not given here but available on
MATERIALS AND METHODS request to the authors, have been calculated by the CODES-
Property Data. The experimental values of refractive SA (version 2.14) software packageThey can be divided
index, np (at 20°C), density,p (at 25°C), boiling point, bp into five groupg: (1) constitutional descriptors; (2) topologi-
(at 760 mmHg), static dielectric constaat(at 25°C), and cal descriptors; (3) geometric descriptors; (4) quantum-
dynamic viscosityy (at 25°C), have been taken from the chemical descriptors; (5) “mixed” descriptors. “Mixed”
literature and are listed in Tables 1 and 2 (training set) and descriptors reflect electronic, geometric, and topological
in Table 3 (test set) together with the relevant references.features of the molecule; in particular, we considered the
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Table 3. List of Test Set Compounds: Their Property Data and References (Numbers in Parentheses)

no. compound formula np? oP bpe €d log (°)
1 2-ethy|-1-hexan0| HOCH2CH(CH2CH3)CH2CH2CH2CH3 0.991 (18)
2 1-butanol CH3CH2CH,CH,OH 1.3992 (49) 0.8021 (49) 117.726 (49) 17.1 (49) 0.356 (49)
3 1-chlorobutane CICH,CH,CH,CH3 1.4021 (49) 0.8864 (49) 78.44(49) 7.39(49) —0.393 (49
4 2,4-dimethylpentane (CH3),CHCH,CH(CH3)2 1.3815 (49) 0.6683 (49) 80.5(49) 1.914 (#9)—0.443 (499
5 2-butanol CH3CHOH CH,CHzH 1.3978 (49) 0.8027 (49) 99.529 (49) 15.8 (49) 0.624449)
6 3-methyl-1-butanol HOCH,CH,CH(CH )2 1.4085 (49) 0.8018 (49) 132 (49) 14.7 (49) 0.471 (49)
7 ethyl cyanoacetate CNCH,COOCH,CHxH 1.4175 (49) 1.0564 (49) 206 (49) 26.9 (49) 0.398 (49)
8 diethyl ether CH3CH20CH,CHzH 1.3527 (49) 0.7078 (49) 34.481(49) 4.335@9)—0.616 (49
9 isopropylbenzene CgHsCHCH3CHyH 1.4915 (49) 0.8575(49) 152.393(49) 2.38 @9) —0.131 (49)

10 1,3-propanediol HOCH,CH,CH,0OH 1.4396 (49) 1.053(49) 214.22(49) 35 (49)

11 1-pentene CH,=CH2CH,CH,CH3 1.3714 (49) 0.6359 (49) 29.97(49) 2.1(49)

12 butyraldehyde CH3CH,CH,CHO 1.3791 (49) 0.8016 (49) 74.78 (49) 13.4 (49)

13 n-butylamine CH3CH2CH,CH,NH,, 1.4009 (49) 0.7341(49) 76.2 (49) 5.3 (49)

14 2-ethoxyethanol CH3CH,0CH,CH,OH 1.4080 (54) 0.9297 (54) 135 (54) 13.38 (54)

15 2-methyl-1-butanol HOCH 2,CH(CH 3)CH,CHzH 1.4092 (54) 0.815(54) 128(54) 15.63 (54)

16 3-ethyl-3-pentanol HCH,CH,C(OH)(CH 2CH3), 1.4294 (54) 0.8407 (54) 142 (54) 3.158 (%4)

17 isopropylamine HCH ;CH(CH3)NH 1.3742 (54) 0.6889 (54) 32.4(54) 5.6268 (54)

18 methyl cyanoacetate CNCH,COOCHH 1.4176 (54) 1.1225(54) 200.5(54) 28.8 (54)

19 propyl butyrate CH3(CH32)2COOCH,CH,CH3 1.4001 (54) 0.8730 (54) 143 (54) 4.3 (84)

20 1-pentanol CH3CH3CH,CH,CH,0H 1.4101 (54) 0.8144 (54) 137.9(54) 15.13(54)

21 2-methylbutyric acid (CH3)2CHCH,COOH 1.4051 (54) 0.9682 (55) 177 (54)

22 heptanoic acid CH3(CH3)2,CH,CH,CH,COOH 1.4170 (54) 0.9181 (54) 222.2(54)

23 isopropyl acetate CH3COOCH(CH3)CHzH 1.3773(54) 0.8718 (54) 88.6 (54)

24 1,4-dibromobutane BrCH ,CH,CH,CHBr 1.5190 (54) 1.789 (58) 197 (54)

25 1,4-dichlorobutane CICH 2CH2CH,CHCI 1.4542 (54) 1.1408 (54) 153.9 (54)

26 2-bromoethylacetate CH3COOCH,CH.Br 1.4570 (54) 1.514 (54y 162.5(54)

27 (2-bromo-1-hydroxyethyl)benzen€¢HsCH(OH)CH,Br 1.5800 (54) 1.4994 (549

28 1,4-diiodobutane ICH 2CH,CH2CHal 1.619 (540 2.349 (54)

29 2-methyl-2,4-pentanediol (CH3)2,COHCH,CHOHCH 3 1.4276 (54) 197.1 (54)

30 4-methylpentanenitrile (CH3),CHCH,CH,CN 0.8027 (49) 153.5(49) 15.5(49)

aMeasured at 20C when not otherwise specifietlp/g cn3, measured at 25C when not otherwise specifietlbp/C, measured at 760 mmHg
when not otherwise specifiel Measured at 28C when not otherwise specifietl;y/cP, measured at Z& when not otherwise specifietMeasured
at 15°C. 9 Measured at 20C. "Measured at 21C. | Measured at 22C. I Measured at 25C. ¥ Measured at 26C. ' Measured at 27.9C. ™ Measured
at 30°C. "Measured at 752 mmHg.Measured at 756 mmHg.

charged partial surface area (CPSA) descriptors defined byethyl carbons is disubstituted, have general formuteCkl,—
Stanton and Ju®;*¢which are derived from the net atomic CH = YZ; in this case we considered the X, Y, and Z
charge distribution on the solvent-accessible surface. substituents as the variable fragment. The descriptors related
The procedures for the calculation of a variety of to the variable fragments have been characterized by the
constitutional, topological, geometric, and electrostatic de- prefix f.
scriptors are implemented in CODESSA. Within the class  After discarding all the descriptors bearing missing values
of constitutional descriptors, we used only the molecular and and those with zero variance, 354 descriptors were left.
relative molecular weight, the gravitation indexes, and the  Multilinear Regressions. Multilinear regressions have
total number of atoms and bonds of the molecule, thus been calculated using the CODESSA software pad&ge
avoiding considering the count of atom types, which may that furnishes different tools to select the most promising
be present only for a small subset of compounds. The QSPRs; in particular, we employed the heuristic (HEUR)
quantum chemical descriptors extracted from the output of and the best multilinear regression (BMLR) procedures,
the molecular orbital (MOPAC) calculations include among which are described in detail in the literatufeBriefly, both
others, the following ones: Mulliken net atomic charges, the procedures are based on the stepwise regression technique
total dipole moment of the molecule and its components, to obtain the best multiregression models and start from a
the frontier molecular orbital energies and the relevant collinearity control of the descriptors. The HEUR procedure
reactivity indexes, molecular polarizability terms, bond is aimed at obtaining the best 1-4teparameter correlations
orders, and energy partitioning terfi§he quantum chemi-  (wheren is a user-specified value): in this study we sé¢d
cally calculated atomic net charges were used to calculate3. For a few properties, we have also considared 4 in
the CPSA descriptors. order to have the same number of parameters for the HEUR
The complete set of descriptors has been calculated byregressions as for the regression models derived by the other
considering both the whole molecule and a molecular procedures. The starting number of descriptors is reduced
fragment (this is highlighted in boldface characters in the on the basis of the statistical significance?,(F, andt
molecular formulas shown in Tables-B) constituting the parameters are considered) of the 1-parameter correlations
variable portion of the considered molecular series. The and of the descriptors’ intercorrelations; finally, an iterative
studied compounds can all be represented by the generaprocedure is used to choose the lreparameter correlations.
formula X—CH,CH,—Y; we considered the group composed However, this procedure only gives the best relationships
by the X plus Y substituents as the variable fragment. Six derived from the best 2-parameter correlations (the default
of the test set compounds (2,4-dimethylpentane, isopropyl- option in CODESSA is to consider the three best 2-parameter
benzene, isopropylamine, 2-methylbutyric acid, isopropyl correlations: we use instead the 10 best ones) and not, for
acetate, 2-methyl-2,4-pentanediol), in which one of the two a given set of descriptors, the best relationships “altogether”.
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Table 4. Statistical Parameters of Multilinear Regression and PLS Models with Selected Variables for the Refractivedh@atg Set
(Tables 1 and 3)

training set test set
no. of (67 compounds) (SDEW 0.0559) (SDEV = 0.0593)
variables PLS Ry SDER  SDER
selection no. of components R2cy (10 groups, (28 (29
procedure  variables selected variables (GOLPE) R2 SDEC (LOO) SDER 30cycles) SDEP compds) compds)
heuristic, BMLR 2 HOMO-1 energy, 0.6739 0.0332 0.6432 0.0335 0.6401 0.0335 0.0219 0.0253
relative molecular weight
heuristic 3 HOMO-1 energy, 0.7953 0.0265 0.7609 0.0273 0.7604  0.0273 0.0232 0.0314

av valency 6a H atom,
f-FNSA-3 (PNSA-3/TFSA)
BMLR 3 final heat of formation, 0.7893 0.0265 0.7560 0.0276  0.7552  0.0277 0.0209  0.0247
molecular weight,
HACA-1/TMSA

heuristic, BMLR 4 final heat of formation, 0.8828 0.0192 0.8486 0.0218 0.8465 0.0219 0.0253  0.0250
molecular weight,
HOMO energy,
av valency éa H atom

GOLPE 20 4 0.9501 0.0125 0.9197 0.0159 0.9195 0.0159 0.0152  0.0180

aThe limit of chance correlation is given by SDEY (SSY/N)“2. ® Omitted 1,4-diiodobutane (compound 28, Table 3).

Table 5. Statistical Parameters of Multilinear Regression and PLS Models with Selected Variables for the Dgri3aja(Set (Tables 1 and
3k

training set
(61 compounds) (SDEW 0.3479) test set
variables no. of PLS Recy (SDEV=0.3712)
selection  no. of components R2cy (10 groups, SDER
procedure variables selected variables (GOLPE) R2 SDEC (LOO) SDER 30 cycles) SDEP (28 compds)
heuristic 1 relative molecular weight 0.9290 0.0943 0.9229 0.0966 0.9225 0.0972 0.0899
heuristic 2 relative molecular weight, 0.9599 0.0714 0.9539 0.0747 0.9533 0.0759 0.0716
f-Min net atomic charge
GOLPE 4 relative molecular weight, 3 0.9481 0.0793 0.9370 0.0873 0.9361 0.0879 0.0926

molecular weight,

Kier and Hall index (order 1),
Tot Mol 1-center 3-n attr/

no. of atoms

aThe limit of chance correlation is given by SDEY (SSY/N)/2,

Table 6. Statistical Parameters of Multilinear Regression and PLS Models with Selected Variables for the Boiling Point Data Set (Tables 1
and 3}

training set
(59 compounds) (SDEW 53.24) test set
variables no. of PLS R2cy (SDEV = 55.45)
selection  no. of components R2cy (10 groups, SDER
procedure variables selected variables (GOLPE) R?> SDEC (LOO) SDER 30cycles) SDEP (27 compds)
heuristic 2 SQRC (gravitation index all bonds) 0.7811 25.57 0.7561 26.29 0.7548 26.36 26.27

HA-dependent
HDCA-2/SQRT(TMSA)

heuristic 3 SQRC (gravitation index all bonds), 0.8670 20.17 0.8408 21.24 0.8387 21.38 23.66
HA-dependent
HDCA-2/TMSA, final heat of formation

heuristic 4 HA-dependent HDCA-2/TMSA, SQRT 0.9131 16.40 0.8863 18.02 0.8818 18.30 16.23
(gravitation Index all bonds), final
heat of formation, HOMO energy

BMLR 2 HA-dependent HDCA-2, SQRC 0.7791 25.69 0.7539 26.41 0.7524 26.49 28.83
(gravitation index all bonds)
BMLR 3 bonding information content (order 0), 0.8663 20.16 0.8461 20.88 0.8451 20.95 28.82

f-FHDCA fractional HDCA
(HDCA/TMSA), final heat of
formation
BMLR 4 HA-dependent HDCA-2, SQRT 0.9074 16.94 0.8794 18.48 0.8796 18.47 19.46
(gravitation index all bonds), final heat
of formation, HOMO energy
GOLPE 20 4 0.9315 13.93 0.8947 17.27 0.8949 17.26 18.89

aThe limit of chance correlation is given by SDEY (SSYN)Y2,

In other words, a hypotheticalparameter good correlation regressions altogether; iteratively, all the bEsi(<400)n
could not be retrieved if the whole of the 2-parameter — 1 parameter correlations are considered as candidates to
equations obtained using 2 of thgparameters does not lead performn-parameter correlations until no further improve-

to satisfactonyR? (or F) values. On the other hand, the BMLR ment (estimated by thE parameter) is achieved. Anyway,
procedure allows one to find the besparameter multilinear  since this procedure is computationally intensive, it is not
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Table 7. Statistical Parameters of Multilinear Regression and PLS Models with Selected Variables for the Dielectric CenBiatat Set
(Tables 1 and 3)

training set
2 DEW 9.84
(23 compounds) (S 9.840) test set
variables no. of PLS R%cv (SDEV=9.253)
selection  no. of components Recy (5 groups, SDER
procedure variables selected variables (GOLPE) RZ  SDEC (LOO) SDER 30cycles) SDEP (20 compds)
heuristic 2 f-HASA-1/TFSA, max net atomic charge 0.9120 3.130 0.8721 3.521 0.8713 3.531 5.107
heuristic 3 f-HASA-1/TFSA, RPCG relative positive 0.9505 2.409 0.9239 2.714 0.9190 2.800 3.999
charge, f-av bond inf cont (ord 0)
BMLR 3 HOMO energy, f-HASA-2-/TFSA 0.9564 2.262 0.9162 2.848 0.9160 2.852 4.650
max net atomic charge
GOLPE 15 3 0.9744 1576 09329 2550 0.9245 2.704 3.213

2The limit of chance correlation is given by SDEY (SSYN)Y2.

Table 8. Statistical Parameters of Multilinear Regression and PLS Models with Selected Variables for the Log(dynamic viscosity)), Log (
Data Set (Tables 2 and®3)

training set
(37 compounds) (SDEW 0.504) test set
variables no. of PLS Recv (SDEV=0.522)
selection no. of components Recy (7 groups, SDER
procedure variables selected variables (GOLPE) R? SDEC (LOO) SDER 30cycles) SDEP (9 compds)
heuristic, BMLR 2 f-HA-dependent HDCA-2/SQRT(TMSA), 0.8086 0.2206 0.7675 0.2433 0.7610 0.2465 0.1995
SQRC (grav ind all pairs)
heuristic 3 f-HA-dependent HDCA-2/SQRT(TMSA), 0.8491 0.1959 0.8145 0.2173 0.8079 0.2210 0.1895

SQRC (grav ind all pairs), (1/2)X BETA
polarizability (DIP)
heuristic 4 f-HA-dependent HDCA-2/SQRT(TMSA), 0.8993 0.1601 0.8420 0.2004 0.8407 0.2012 0.2328
SQRC (grav ind all pairs), f-information
content (order 0), HOMGLUMO
energy gap
BMLR 3 f-HA-dependent HDCA-2/SQRT(TMSA), 0.8595 0.1889 0.8212 0.2134 0.8162 0.2162 0.2210
SQRC (grav ind all pairs), maxee
repulsion for a G-H bond
BMLR 4 f-HA-dependent HDCA-2/SQRT(TMSA), 0.8865 0.1698 0.8425 0.2004 0.8366 0.2038 0.2302
SQRC (grav ind all pairs), max-e
repulsion for a G-H bond, min
valency d a C atom
GOLPE 16 4 0.9497 0.1131 0.9031 0.1570 0.8948 0.1635 0.2911

aThe limit of chance correlation is given by SDEY (SSYN)Y2,

possible to use large sets of descriptorsl@0), so we proved to be significant for lowering the SDEP values. To
employed in the BMLR only the descriptors previously prevent the risk of selecting as significant a variable that is
selected, for each experimental property, by the HEUR and actually not, a number of dummy variables can be introduced
the GOLPE (see next paragraph) procedures. anywhere in the design matrix. The introduction of these
GOLPE Multivariate Analysis. The PLS regression dummy variables allows the comparison between the effect
models with the highest predictive capability have been Of & true variable and the average effect of the dummies. (e)
derived by using the GOLPE variable selection procedure. On the basis of the effect on SDEP, the variables are
As to the computational aspect of GOLPE, we refer to the classified as dummies, as variables with surely positive
original articles®?* Briefly, GOLPE selects the best com- (Which will be fixed) or negative effect (which will be
bination of variables through the following steps: (a) The €xcluded) on model predictivity, and as variables with
combinations of variables are established according to auncertain effect. The procedure is repeated iteratively until
fractional factorial design (FFI¥, where each one of the Variables are neither fixed nor excluded. According to the
two levels (1,—1) corresponds to the presence and the authors’ suggestiori$;**the design matrix was formed with
absence of the variable, respectively. A design matrix is & 2:1 ratio of combinations/variables number and a 2:1 ratio
obtained with as many columns as variables and as manyf true/dummy variables, respectively. The calculation of
rows as combination of variables to be tested. (b) For eachSDEP during the selection steps was performed by the LOO
combination of variables, the prediction ability of the Procedure.
corresponding PLS model (where only the “plus” variables  Before carrying out the statistical analysis, the distribution
are included and regressed against the Y property) isof the X variables was checked and two-level variables or
evaluated by means of standard deviation of error of variables showing strong clustering of objects were not
predictions (SDEPY values. (c) The calculated SDEP values included in the analysis. All variables were autoscaled to
for each combination of variables are collected in a responseunit variance. Before running the FFD selection procedure,
vector and used as Y variable in another PLS model wherewe employed a fast preselection technique based on D-
the X-block is constituted by the design matrix. (d) The OPTIMAL desigr#® (also implemented in the GOLPE
optimal model can thus be derived using only those variables package) to obtain a reduction to about 30% of the number
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Chart 1
NAME | DEFINITION REF. | NAME DEFINITION REF.
Relative molecular weight TMoIecuIar weight divided by the number of atoms. Kier shape index (order 1-3)} The shape of molecule depends on the number of
ical descriptors skeletal atoms, the molecular branching and the special
Inertia A (B, C) Principal moments of inertia of a molecule I, Is and Ig, parameter a which is calculated as the ratio of the
calculated by MOPAC atomic radius (r,)_and the radius of the carbon atom in
YZ Shadow When the molecule is oriented in the space along the the sp3 hybridisation state (ro):
XY Shadow / XY Rectangle axes of inertia (X coordinate is along the main axis of = (Ngy +o Ny e — 1) (' Pro )2 42
inertia and so on) XY, YZ and XZ Shad. are the areas of N N )
the shadows of the molecule as projected on the XY, YZ | 46 e ={Ng, +a -1fNg, +a —2) (2P +m)
and XZ planes. 3 2 (3 2 .
XY Shag /XY Rect is the normalised shadow area = (Nyy v - gy #0 =3F CPra) i Nsais oo
calculated as the ratios XY Shad. /(XmaxYmax), Where S ={Ngy o -3 Ny, +ot - 2)3(‘}: . )2 if Nga is even
Xonax, Yimax @1€ the maximum dimensions of the molecule where "P is the number of paths of the length n in the
—— along the corresponding axes. molecular skeleton, and « is the sum of the &
SQRC (Grav!tat!on !ndex all bopds} Square (SQRT) and cube (sQRC) roots off thﬁ parameters for all skeletal atoms minus 1.
SQRC (Gravitation index all pairs) gravitation md?xt(G) for all pairs of atoms or for a Av. Information content (order k) The average information content is defined as’
SQRT (Gravitation index all bonds) bonded pairs of atoms: . Information content (order k) MG = 5 Mg ™
SQRT (Gravitation index all pairs) G=Y il :"J Av. Struct. Information content (order k) meT Z Jlog =
T Av. Bond Information content (order k) | where p, is the number of atoms in the i-th class and n is
where m; and m; are the atomic weights of atoms i and j, Struct. Information content {order k) the total number of atoms in the molecule. The division
1y is the interatomic distance and N is equal to the Bond Information content (order k) of atoms into different classes depends upon the
number of atoms if the gravitation index is calculated coordination sphere taken into account. This leads to
over all pairs, or it is equal to the number of bonds if the the indices of different order k. 43
gravitation index is calculated over all bonded pairs of The information content (IC) is equal to the average
atoms. information content multiplied by the total number of
atoms.
- The structural (SIC) and bonding (BIC) information
CPSA descriptors contents are defined as follows:
RPCG, RNCG Relative positive and relative negative, charge, defined . “iC . 3%
as the ratio between the most positively (negatively) 35 SIC= —= BIC =
charged atom and the sum of the total positive log,n log,q
(negative) charges where q is the number of edges in the structural graph
of the molecule.
RPCS, RNCS Relative positive and relative negative charged surface
area, defined by the product of the solvent accessible 35 o b armical d. ip
surface area of the most positive (negative) atom by HOMO, HOMO-1 and LUMO energy Energy of the highest, the second highest occupied and
RPCG (RNCG) lowest unoccupied molecular orbitals, respectively.
TFSA Total solvent-accessible surface area of the molecular 35 | Final heat of formation AHy;, energy of the-molecule in the thermodynamic
variable fragment. standard scale (elements in ideal gas state at 298.15 K
TMSA Total solvent-accessible molecular surface area. 35 and 101.325 Pa)
PNSA-3 Atomic charge weighted partial negative surface area : 35 |Tot. Mol. 1-center e-e rep. Total molecular one-centre electron-electron repulsion
PNSA-3 = X (-SA) (a) energy . a5
where —SA, is the contribution of the i-th atom, having a Egg(tot) = Y Eg g
negative partial atomic charge equal to gy, to the total =
molecuiar solvent-accessible surface area where the sum is over all the n atoms in the molecule.
HASAA Fiydrogen acceptors surface area: Tot. Mol. 1-center e-n attr. ;’géarl r.nolecular one-centre electron-nuclear attraction
ol ay:
HASA-1= 3 SA, N 45
, % Ee o) =Y Eey,
where SA is the contribution of the i-th atom, being a gt N
hydrogen bonding acceptor atom, to the total molecular where the sum is over all the n atoms in the molecule
solvent-accessible surface area. Tot Mol. electr. int. Total intramolecular electrostatic interaction energy:
HASA-2 Ecton) = 1/23°E
HASA-2 = 3(sA,)"* c(tot) Z = 45
. . . . 36 where the sum is over all the n atoms in the molecule.
where SA, is the contribution of the I-th atom, being a Max (Min) net atomic charge Maximum (minimum) value of the Mulliken net atomic
hydrogen bonding acceptor atom, to the total molecular charge of one of the atoms in the molecule
solvent-accessible surface area. Avg (Min, Max)} valency of a “X” atom | Average (minimum, maximum) vaiue of the free valence
of the “X" atomic species in the molecule.
Free valence is defined as follows: Via = Vinax - Pa
HACAA Hydrogen acceptors charged surface area where Vi, is the maximum valency of the given atomic| 47
HACA = £ SA, a w species and Py is given by: Py = BxZA Pas
where the sum is over all the atoms (with charge q,) that P,s representing the maximum bond order for a given
are hydrogen bonding acceptors. - N . N
HDSA pair of atomic species A anq B !A # B) in the molecule.
HDSA = X SA; 35 |Max (Min) e-e rep. “X”-“Y” bond, Max Extreme values of the contributions to the energy of the
where the sum is over all the atoms that are bonded to (Min} e-n attr. “X”-“Y” bond molecule due to electron-electron repuision and to 45
an oxygen atom of an OH group. nucleus-electron attraction, respectively, for a generic
HDCA X-Y bond.
HDCA = % SA g, - - — -
: " 36 |Max {Min) exchange en. for a *X"-Y" Maximum (minimum) electronic exchange energy
::;e,;irt‘zee: l:;“ aI: g;/;gr :ril ;‘;ﬁ tgf"; (\gghg‘ﬁgsgqe a) that bond :)hetweeln gi\llen two atomic species (atoms X and Y} in 45
HA dependent HDCA-2 HA dependent hydrogen donors charged surface area: e molecyle. -
v Max o-o bond order Maximum sigma-sigma bond order for a given pair of 47
HA dependent HDCA=2 = 374, (SA )" 26 atomic species in the molecule
! Tot dipole Total dipole moment of the molecule calculated by
where the sum is over all the atoms bonded to an MOPAC
?;dee&‘ tin:cay:#i[ffi?:gTbgL;fgargua;pha carbon with Tot. hyb. comp. mol. dip. Total hybridisation component of the molecular dipole. It
Tor n T ;epresenfts thethcomponent tcf (r':el;?zliecntjlar ;iu:rc:]lefr "
Randic and Kier & Hall indices (order n} { Calculated by the general formula: Meg;l;\\%)vrom @ monocentric hybridisation term (fro
Ty = Z(B w8 ,,M)‘ ? Tot. Point-chrg mol. dip. Total point-charge component of the molecular dipole. It
i(n) ) 4 represents the component of the malecular dipole
where § and §, (i » j) correspond to the coordination deriving from the point-charge term (from MOPAC).
numbers of atoms (Randic index) or to the values of the 1X beta polarizability and (1/2)X beta Terms of the second-order polarizability (from MOPAC)
atomic connectivity (Kier & Hail) polarizability

of initial variables (descriptors) in three subsequent steps. of calculations (SDEC) (eq 2).
The D-OPTIMAL design variables preselection was done
on the PLS partial weights space by using the number of
PLS components corresponding to the minimum SDEP value.

Predictive Capability Evaluation of the Regression
Models. The predictive capability of the selected QSPR
models (reported in Tables8) for each property, derived
either by CODESSA or by GOLPE, has been evaluated using
cross-validation techniquéd#® For each model, the cross- For each model we calculated two “internal” SDEP with
validated or the prediction correlation coefficieRe£y) has the LOO and the random groups procedures, named SDE-
been calculated both with the leave one out and with the P, 0o and SDERsoups respectively, which are related to the
random groups proceduf@g¢the number of groups, reported internal stability of the correlation, and an “external” one,
in Tables 4-8, depending on the number of compounds named SDER related to the capability to predict the values
contained in the training set for each model). The SDEP is of the examined properties for the compounds belonging to
defined by eq 1, in analogy to the standard deviation of error the test set.

(YprED — Y)2
n

SDEP= (1)

Yearc — y)2

SDEC= o (2)
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In order to use the facilities implemented in the GOLPE
packageé® for the calculation of SDERoo and SDERsroups
the QSPR models derived by the HEUR and BMLR
procedures, implemented in CODESSA, have been recalcu-
lated inside the GOLPE software package, deriving as many
PLS components as the number of descriptors in each
multilinear regression equation (in this case, the PLS model
coincides with the multilinear regression).

Predicted np

RESULTS AND DISCUSSION

The selected best (see below) QSPR equations obtained
by the different regression procedures for each physico-
chemical property are shown in Tables&. In each table
(in column order) the following are reported: (a) the Figure 1. Plot of predicted versus experimental refractive index
procedure employed for the variable selection; (b) the number (np) values for the training se®) and test set compounds.),
of selected descriptors and, for the heuristic and the BMLR The )1('4_qti|i10dvc()at;ﬁglle|} r?emit}?% frg:géif;?e?rr%l;t&%? iﬁ;f\?/gicgézi by
procedures, the name of the selected descriptors (the meanin§!¢ A Wi : . b Ve ;
of the variable names is given in Chart 1); (c) the number glalculated by the GOLPE regression mod®&l= 0.9501 in Table
of significant principal components for the correlations
obtained using the GOLPE procedure; (d) the squared
correlation coefficient?) and the SDEC; (e) the squared
cross-validated correlation coefficient®¢y) and the “in-
ternal” (i.e., calculated on the training set's compounds)
SDER 00 and SDERsoups (the number of groups and the
number of cycles of SDEP calculation being specified); (f)
the SDER, calculated on the test set's compounds (the

number of compounds in the test set being specified). — another and are used only for interpretative purpose, i.e., to
The evaluation of the prediction ability of the QSPR  establish which are the most significant variables in the PLS
models is determined on comparing SDEP with the standardmodel.) of the 20 selected descriptors for the 4-component
deviation of they variable (SDEV= (SSYN)¥? where SSY  pLS model are shown. The heterogeneity of these 20
are they sum of squares aridis the number of compounds).  descriptors, which belong to the topological, constitutional,
The QSPR regression equations obtained by the HEURgeometric, and quantochemical families of descriptors,
procedure, reported in Tables-8, were not always the very  demonstrates the need of considering a high number of
best QSPR equations among the 10 selected by HEUR, butstructural features in order to adequately describe a complex
the best ones chosen after checking, by visual inspection ofexperimental property such as the refractive index: the
the descriptor vs property plot, the absence of strong objectmuiltiplicity of underlying factors highlights how this phe-
clustering. Actually, we have reported the following: (a) for nomenon is based on complex interactions between matter
np (Table 4), the second best and the sixth best HEUR and electromagnetic radiation.
regression equations for the 2- and 3-parameter models, |n agreement with what has been stated above, the
respectively; (b) for bp (Table 5), the ninth best HEUR multilinear regression procedures (HEUR and BMLR) failed
regression equation for the 3-parameter model; (c) for log to give correlations as satisfactory as that obtained by using
(1) (Table 6), the eighth best HEUR regression equation for the GOLPE procedure: it is noteworthy that, passing from
the 3-parameter model. As far as the QSPR models derived2 to 4 parameters, while th& and SDER o values
by the GOLPE procedure are concerned, the automaticimprove, the SDEPvalue does not.
preliminary control procedure fan-level variables imple- In a recent papétKatritzky et al. reported a QSPR model
mented in this package allows one to avoid most of these also derived by the CODESSA software package fomhe
problems. However, the GOLPE selected descriptors wereof a set of 125 diverse organic compounB3= 0.945 and
also checked by us: fan, we removed 3 of the 23 selected SDEC= 0.0155 values were computed which are similar to
descriptors, foe we removed 3 of the 18 selected descriptors, those of our best QSPR model.
and for log §) we removed 9 of the 25 selected descriptors.  Density. An excellent 1-parameter correlation between
In all cases, the values of the correlation coefficients and density and the relative molecular weigh®?(= 0.9290,
SDEP did not vary significantly. The discarded descriptors SDER, oo = 0.0966, SDEP= 0.0899, Table 5 and Figure
are in general descriptors defined on a single atom or bond.3) has been found. Although it is well known that molecular
Refractive Index. The best correlation for the refractive  weight and density are correlated with each other within an

1.6

1.5

Experimental np

model lowers to 0.0152. In Figure 2 the PLS pseudoregres-
sion coefficients (The PLS loadings and partial weights can
be used to reformulate the dependent varighlas in a MLR
regression equatioly,= BX. These pseudoregression coef-
ficients are identical to the MLR regression coefficients if
the number of PLS components equals the number of
variables inX. Otherwise, they are not independent of one

index has been obtained using the GOLPE procedgire=(
0.9501, SDERoo = 0.0159, and SDEP= 0.0180) as shown

in Table 4 and Figure 1, where the calculated vs predicted
property values are plotted for both the training and the test

homologous series of compounds, taking into account the

structural heterogeneity of the training set'’s structures (Table

1), the regression model obtained appears less trivial.
Introducing a further parameter, i.e., the minimum value

set compounds. There is a general improvement in the SDEP of the net atomic charge for the variable molecular fragment
values when the 1,4-diiodobutane (compound 28, Table 3) (f-Min net atomic charge), both the squared correlation
is omitted: in particular, the SDER/alue of the GOLPE  coefficient f = 0.9599) and the predictive capability of
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Figure 2. PLS pseudoregression coefficients of the selected variables for the refractivenpd®QLPE regression modek2 = 0.9501
in Table 4).
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Figure 3. Plot of predicted versus experimental density (¢ \S;rftgfegs‘lfsolr m%—g&gsg? (g cnr), (GOLPE regression model,

cm~3)) values for the training se®) and test set compoundsl;

The predictedp values have been calculated by the heuristic )
regression modeR? = 0.9290 in Table 5. property has been obtained by the GOLPE procedete=(

0.9315, SDERoo = 17.27, and SDEP= 18.89, Table 6
the regression model (SDER 0.0747 and SDER= 0.0716) and Figure 5). The PLS pseudoregression coefficients for
increase. This descriptor codifies to some extent the intensitythe 20 selected variables are reported in Figure 6; the
of the polar interactions: the increase of its value can be involved descriptors are topological indexes that quantify
reasonably related to an increase in density. both size and shape (degree of branching) of the molétufe,

The GOLPE procedure also leads to satisfactory results; quantum chemical descriptors derived from the total molec-
considering that just one parameter is enough to correctly ular energy (final heat of formation, total molecular elec-
predict the density values, the correlation of this experimental trostatic interaction/number of atoms, and total 1-center
property represents a borderline case for the application ofelectror-electron repulsion and electrenucleus attraction)
multivariate analysis. Therefore, it should be stressed thatwhich depend on the molecular size, the molecular weight,
the GOLPE procedure, even if furnishing a redundant model, and descriptors that quantify the hydrogen-bonding effects
provides a really satisfactory “external” predictive capability (HASA-1, f-HDSA, etc.)?3¢ These descriptors, though not
(SDER = 0.0553). Furthermore, the PLS pseudoregression comprising, except for the final heat of formation, those
coefficient of the relative molecular weight presents the selected by the HEUR and by the BMLR procedures, have
highest value among those of the four selected descriptorssimilar physical meaning. Furthermore, they have similar
(Figure 4), confirming the convergence between this ap- physical meaning with respect to those previously employed
proach and the multilinear regression methods. in the literaturé for predicting the boiling temperatures of

Boiling Temperature. The best QSPR model for this different sets of organic compounds.
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Figure 5. Plot of predicted versus experimental normal boiling
point (bp €C)) values for the training set®) and test set
compounds 4). The predicted bp values have been calculated by
the GOLPE regression modé¥? = 0.9315 in Table 6.

It is worth noting that the BMLR regression models have
higher SDER values compared to the heuristic regressions

with the same number of parameters. Unexpectedly, the
HEUR 4-parameter model works better than the correspond-

ing BMLR 4-parameter model. Furthermore, it shows a better
external predictive ability (SDER= 16.23) with respect to
the GOLPE model: however, the SDERIue from GOLPE

is strongly affected by the deviation of 1-pentene (compound
11, Table 3); by excluding this compound in the analysis,
the SDER value lowers from 18.89 to 15.86. Analogously,
the SDER value of the BMLR 3-parameter model by
excluding the 1-pentene lowers from 28.82 to 24.98, which
is more similar to the SDERoups Value; a poor estimation
for 1-pentene has to be expected since compounds containin
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employed to derive QSPR models for the boiling tempera-
tures of 298 diverse organic compounds. Their best 2-pa-
rameter regressionRf = 0.9544, SDEC= 16.15) was
obtained with the SQRC (Grav Ind all bonds) and the HA-
dependent HDCA-2/TMSA descriptéfgsee Chart 1 for the
definition of descriptors) which, consistently, are both present
in our multilinear regressions. When this 2-parameter regres-
sion equation was used to predict the boiling temperature of
our 59 training set compounds, we obtained a SPERIe

of 29.45, which is similar to the SDERo value of our
2-parameter HEUR regression (Table 6) and is higher than
the SDER o and SDER values of the other QSPR
regressions reported in Table 6.

Recently, Katritzky et al.extended their QSPR approach
to a set of 584 diverse organic compounds representative of
all major classes of organic compounds containing C, H, O,
N, S, F, Cl, Br, and I. The best correlations were obtained
by a 6- and an 8-parameter model, wiRh= 0.946, SDEC
= 18.9 for the former and?> = 0.9645, SDEC= 15.5,
SDER = 14.6, and SDEP= 9.68 for the latter model,
respectively. The descriptors employed in the 4-parameter
regression equation are two hydrogen-bonding indexes, two
size-dependent descriptors, and two variables accounting for
the number of F atoms and CN groups, respectively; for the
6-parameter regression equation, two CPSA descriptors
taking into account only H or Cl atoms were added. Many,
though not all, of our training and test set compounds are
also included in the broad calibration set reported in ref 9;
however, the use of the same 6-parameter model to correlate
the boiling temperature of our training set does not give
improved results with respect to the models reported in Table

a double carboncarbon bond are not present in the training °:

set of this property.
Our results are also consistent with a recent study of
Karelson, Katritzky, et af,where CODESSA has been
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Dielectric Constant. As it can be seen in Table 7 and
Figure 7, the best regression model for the dielectric constant

was obtained using the GOLPE procedulRé £ 0.9744).
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Figure 6. PLS pseudoregression coefficients of the selected variables for normal boiling poif€)GOLPE regression moddk? =

0.9315 in Table 6).
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50 tors (e.g., maximum net atomic charge and f-RPCS), and
the HOMO energy (related to the charge-transfer tendency).
The presence of molecular descriptors related to the molec-
ular charge distribution is in agreement with a single
parameter correlatiofR(= 0.88) between a charge separation
index (derived from the molecular electrostatic potential) and
the dielectric constant recently reported by Brink et*al.

In a recent stud§® a QSPR model for the dielectric
constant of a series of organic compounds has been computed
using neural networks. The best QSPR relationship (the root-
mean-square errors for the training set of 350 compounds
‘ ‘ ‘ and for the test set of 50 compounds are 3.77 and 2.33,

0 10 20 30 40 50 respectively-the correlation coefficient is not given) selected
Experimental & by the authors to fit the dielectric constants uses 10
Figure 7. Plot of predicted versus experimental dielectric constant theoretical molecular descriptors, namely, the number of O
(¢) values for the training se#() and test set compounds). The ~ ang N atoms, an indicator variable for hydrogen-bonding
ngggclt%gfz\'%uge;ﬂﬁ;e;;%?g (7:alculated by the GOLPE regression capability, three CPSA descriptors, and three topological
' ' ' descriptors. CPSA and topological descriptors are also used
Although the SDERoo values for the 3-parameter multi- in our QSPR models. The predictive ability of this model is
linear regressions are similar to those of the GOLPE model, comparable with our best QSPR model reported in Table 7.
the latter procedure leads to a significantly better value of Log(dynamic viscosity). The best QSPR model for this
SDER. property has been obtained by the GOLPE procedgfte=(

The worst GOLPE predictions are for butyraldehyde and 0.9497, SDERoo = 0.1570, and SDEP= 0.2911), as
propyl butyrate (compounds 12 and 19 in Table 3, respec-shown in Table 8 and Figure 9. The relevant descriptors, as
tively), which has to be expected since neither aldehydescan be seen in Figure 10, are hydrogen-bonding descriptors,
nor esters are represented in the training set of this property.topological descriptors, components of the molecular polar-
Accordingly, by excluding these two compounds from the izability, and quantum mechanical energy terms for thedC
test set, the SDERalue for the regression model calculated and C-H bonds which may be related to the conformational
with the GOLPE procedure lowers from 3.213 to 2.621.  changes of the molecufé.The HEUR 2- and 3-parameter

The PLS pseudoregression coefficients for the 15 descrip-models show the lowest SDERPalues, but inspection of the
tors selected by the GOLPE procedure are shown in Figureerrors distribution for the test set compounds reveals a
8. These are descriptors related to the tendency of thetendency for the errors to increase with lag; @nalogously,
molecules to act as hydrogen-bonding donors or acceptorsthe BMLR 3-parameter model gives the highest errors for
(e.g., -FHDCA (HDCA/TMSA) and f-HASA-2/TFSA), the test set compounds 2-ethyl-1-hexanol and 2-butanol
descriptors related to the dipole moment, topological descrip- (compounds 1 and 5, Table 3), which show the highest log
tors (information content index®&}, charge-related descrip- () values. Furthermore, the SDERalues for the BMLR
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Figure 8. PLS pseudoregression coefficients of the selected variables for the dielectric conf&DL,PE regression modek? = 0.9744
in Table 7).
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2 these descriptors are either the same or have the same
-x meaning of those selected by our GOLPE model (Figure 10).
154 Another QSPR study modeling the log) (of 237 diverse
c organic compounds (plus a test set of 124 additional
compounds) using nine descriptors, namely, four experi-
. . mental descriptors (molar refraction, critical temperature,
s molar magnetic susceptibility, vaporization energy) and five
. s 7 indicator variables (presence of alcohols/phenols, nitriles,
o S ‘ ‘ ‘ amines, amides, and aliphatic rings including heteroatoms)
s ' and both multilinear regression and neural networks has been
05 reported® The best reported MLR and neural networks
| models give different degree of fit, tH& values being 0.916
a- and 0.958, respectively, but exhibit similar predictive
Experimental Log (n), [<P] capability, the SDEPvalues being 0.168 and 0.161, respec-
Figure 9. Plot of predicted versus experimental log(dynamic tively. The highest calculation errors were found for com-

viscosity), log §), values for the training set®) and test set  nounds containing several OH groups, thus indicating a poor
compounds4). The predicted logif) values have been calculated

h vy . parameterization for the hydrogen bond effect. The perfor-
by the GOLPE regression mod@; = 0.9497 in Table 8. mance of our best QSPR model is quite similar with respect
4-parameter model and for the GOLPE model improve to the model fit; the predictive capability is lower but it
significantly by omitting the 2,4-dimethylpentane and iso- becomes comparable when 2,4-d|methylpenta|je and isopro-
propylbenzene (compounds 4 and 9, Table 3), lowering to pylbenzene are taken out from the set. Interestingly enough,
0.1708 and 0.1705, respectively Tr;e HEUR ’4-parameterf°”r out of nine of our test set compounds contain an OH
model gives the best SDERalue of 0.1183 when the 2,4- 9roup. Among the compounds of our training set bearing
dimethylpentane is omitted. A large deviation for branched more the}[ﬂ one hydroger&-ti%nqllngl grzou.p, tonly Ithe 3’2_
compounds could be expected since they are not adequatel)gl'a_rnlnoe ane (compoun , Table 2) IS strongly under-
represented in the calibration set. estimated Alog (r7)(calc — exp) = —0.27], indicating that

, i the theoretical descriptors employed by us adequately take

Our results are consistent with a recent QSPR study of;\+5 account hydrogen bond effects.

Ivanciuc et all’ where CODESSA was as well employed
to model the liquid viscosity of 337 diverse organic
compounds. The best correlation equation reporid= CONCLUSIONS
0.8464, SDEC= 0.371) contains five parameters: the Good QSPR models have been obtained for all the studied
hydrogen-bonding donor charged surface area (HDCA-2); properties, confirming that theoretical molecular descriptors
the molecular weight; the Randic connectivity index of order computed on the isolated molecule are also suitable to both
3; the maximum electrophilic reactivity index for a carbon fit and predict physicochemical properties of molecular series
atom; the maximum electronic population. Significantly, in the condensed phases. Noteworthy, we did not use any
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Figure 10. PLS pseudoregression coefficients of the selected variables for the log (dynamic viscosity),(B@LPE regression model,
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indicator variables or descriptors based on atom or atomic (14) Osmialowski, K.; Halkiewicz, J.; Radecki, A.; Kaliszan, R. Quantum
group count Chemical Parameters in Correlation Analysis of Gas-Liquid Chro-

: ) ] matographic Retention Indexes of AmindsChromatogr1986 361,
The comparative analysis of the HEUR and BMLR 63-81.

ili i i i ivAari (15) Grigoras, S. A Structural Approach to Calculate Physical Properties
multilinear regression techniques with the multivariate of Pure Organic Substances: The Critical Temperature, Critical

GOLPE/PLS methods has ShOW_n the following: (a) the Volume and Related Properties. Comput. Chem199Q 11, 493
results from the GOLPE regression models are generally ~ 510.

better; (b) the selected descriptors are often the same or havél6) Egolf, L. M.; Wessel, M. D.; Jurs, P. C. Prediction of Boiling Points
and Critical Temperatures of Industrially Important Organic Com-

at least similar meaning; (c) at variance V_Vith expectation, pounds from Molecular Structurd. Chem. Inf. Comput. Sc1994
the BMLR procedure does not always furnish better regres- 34, 947-956.

sions than the HEUR procedure (see Tables 6 and 8)' and(17) Ivanciuc, O.; Ivanciuc, T.; Filip, P. A.; Cabrol-Bass, D. Estimation of
! Liquid Viscosity of Organic Compounds with a Quantitative Structure

(d) the difference between the SDE® and the SDER oups Property ModelJ. Chem. Inf. Comput. Sc1999 39, 515-524.
values for the most part of the presented models is small, (18) Suzuki, T.; Ebert, R. U.; S¢kitmann, G. Development of Both Linear
indicating a satisfactory internal stability. Furthermore, the and Nonlinear Methods To Predict the Liquid Viscosity at*Z0of
S Organic Compounds]. Chem. Inf. Comput. Sci997, 37, 1122~
SDER values are often close to the SDEes, indicating 1128
the validity of this index as a validation criterion, at least (19) Katritzky, A. R.; Sild, S.; Karelson, M. General Quantitative Structure
when the calibration set includes the structural variabilit Property Relationship Treatment of the Refractive Index of Organic
f the test set y CompoundsJ. Chem. Inf. Comput. Sc1998 38, 840-844.
0 € test set. (20) Schweitzer, R. C.; Morris, J. B. The Development of a Quantitative
Structure Property Relationship (QSPR) for the Prediction of Dielectric
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