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Quantitative structure-property relationship (QSPR) models were derived for predicting boiling point (at
760 mmHg), density (at 25°C), viscosity (at 25°C), static dielectric constant (at 25°C), and refractive
index (at 20°C) of a series of pure organic solvents of structural formula X-CH2CH2-Y. A very large
number of calculated molecular descriptors were derived by quantum chemical methods, molecular topology,
and molecular geometry by using the CODESSA software package. A comparative analysis of the multiple
linear regression techniques (heuristic and best multilinear regression) implemented in CODESSA, with the
multivariate PLS/GOLPE method, has been carried out. The performance of the different regression models
has been evaluated by the standard deviation of prediction errors, calculated for the compounds of both the
training set (internal validation) and the test set (external validation). Satisfactory QSPR models, from both
predictive and interpretative point of views, have been obtained for all the studied properties.

INTRODUCTION

The correlation and prediction of physicochemical proper-
ties of pure liquids and of mixtures, such as boiling point,
density, viscosity, static dielectric constant, and refractive
index, is of practical (process design and control) and
theoretical (role of the molecular structure in determining
the macroscopic properties of the solvent) relevance to both
chemists and engineers. Traditionally, procedures for esti-
mating these properties have been based either on theoretical
relationships often making use of empirical parameters that
have to be fitted or on empirical relationships derived from
additive-constitutive schemes based on atomic groups or
bonds contribution within the molecule.1-5 More recently,
the quantitative structure-property relationships (QSPR)
approach6,7 based on calculated molecular descriptors has
been applied especially to predict boiling points,8,9 partition
coefficients,10,11chromatographic retention indexes,12-14 sur-
face tension, and critical temperatures,15,16while only a few
studies have dealt with viscosity,1,17,18refractive index,19 and
static dielectric constant.1,20 The use of calculated molecular
descriptors in QSPR analysis has two main advantages: (a)
the descriptors can be univocally defined for any molecular
structure or fragment; (b) thanks to the high and well-defined
physical information content encoded in many theoretical
descriptors (for example, those derived from quantum
chemical theory), they can clarify the mechanism relating
the studied property with the chemical structure. Moreover,
QSPR models based on calculated descriptors help under-
standing of the inter- and intramolecular interactions that are
mainly responsible for the behavior of complex chemical
systems and processes.

In the present study, we derive QSPR models capable of
giving account for the following properties: boiling point

(at 760 mmHg), density (at 25°C), viscosity (at 25°C), static
dielectric constant (at 25°C), and refractive index (at 20
°C) of a series of pure organic solvents. This constitutes a
preliminary step toward the modeling of the thermophysical
properties of mixtures, which have been experimentally fully
characterized by our research group.21 The compounds
considered have structural formula X-CH2CH2-Y, where
the X and Y fragments, including alkyls, aromatics, halogens,
electron acceptors and donors, and hydrogen-bonding groups,
were chosen to span over different stereoelectronic features
and constitute a structural heterogeneous data set. The
property data were collected from the literature; depending
on the available data for each property, the number of
compounds in the training set varies from 23 to 67 and that
in the test set (used for external validation of the QSPR
models) varies from 9 to 29. Despite the fact that the number
of compounds is limited compared to similar comprehensive
studies, the variation range of the various properties is quite
acceptable.

A very large number of calculated molecular descriptors
was derived by quantum chemical methods, molecular
topology, and molecular geometry, by using the CODESSA
software package.6,22

A significant aspect in QSPR is whether and how to select,
from a very large number of calculated indexes, a limited
set of descriptors that represents the best choice for predicting
and accounting for the property data; several approaches to
this task have recently been reported in the literature.23-27

Despite the fact that multivariate data analysis techniques
can handle many collinear variables, there are two main
reasons for operating a variables selection procedure when
using theoretical indexes: (a) collinearity among descriptors
indicates that their physicochemical meaning and information
content may be the same, i.e., collinear descriptors are
interchangeable; (b) the interpretation of the derived QSPR
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Table 1. Properties Data Values for the List of Training Set Compounds: Their Refractive Index, Density, Boiling Point, and Permittivity
Data and References (Numbers in Parentheses)

no. compound formula nD
a Fb bpc εd

1 1,4-dioxane
OCH2CH2OCH2CH2

1.42241 (49) 1.028112 (57) 101.320 (49) 3.208 (48)

2 ethanol HOCH2CH2H 1.36139 (49) 0.78506 (49) 78.325 (49) 24.30 (49)
3 ethane-1,2-diol HOCH2CH2OH 1.4318 (49) 1.109913 (58) 197.85 (49) 40.97 (50)
4 2-methoxyethanol HOCH2CH2OCH3 1.4017 (49) 0.960288 (59) 124.4 (49) 16.93 (51)
5 1,2-dimethoxyethane CH3OCH2CH2OCH3 1.3796 (51) 0.861506 (58) 83.5 (54) 7.55 (52)
6 2-chloroethanol HOCH2CH2Cl 1.44380 (49)g 1.2019 (49)e 128.6 (49) 25.07 (53)
7 1,2-dichloroethane ClCH2CH2Cl 1.44759 (49)g 1.245518 (60) 83.483 (49) 10.69 (53)
8 bromoethane HCH2CH2Br 1.42481 (49) 1.44030 (49)l 38.386 (49) 9.39 (49)e

9 1,2-dibromoethane BrCH2CH2Br 1.54160 (49)g 2.1701 (49) 131.7 (49) 4.78 (49)
10 iodoethane HCH2CH2I 1.51369 (49) 1.9358 (49)e 72.30 (49) 7.82 (49)e

11 phenylethane HCH2CH2C6H5 1.49594 (49) 0.86264 (49) 136.187 (49) 2.412 (49)e

12 nitroethane HCH2CH2NO2 1.3920 (49) 1.03819 (49) 114.0 (49) 28.06 (49)l

13 chloropropane CH3CH2CH2Cl 1.38800 (49) 0.87994 (49)l 46.60 (49) 7.7 (49)e

14 bromopropane CH3CH2CH2Br 1.43695 (49)g 1.34305 (49) 71.03 (49) 8.09 (49)
15 1-propanol CH3CH2CH2OH 1.38556 (49) 0.79950 (49) 97.15 (49) 20.1 (49)
16 1,2-diaminoethane NH2CH2CH2NH2 1.45677 (49) 0.8977 (49)e 117.0 (49) 14.2 (49)
17 butan-2-one CH3COCH2CH2H 1.37891 (54) 0.799876 (54) 79.50 (49) 17.64 (54)
18 propanenitrile HCH2CH2CN 1.36812 (49)g 0.77682 (49) 97.20 (49) 27.2 (49)e

19 1-iodopropane CH3CH2CH2I 1.5041 (49) 1.72997 (49)l 102.45 (49) 7 (49)e

20 1-nitropropane CH3CH2CH2NO2 1.4016 (49) 0.99546 (49) 131.4 (49) 23.24 (49)l

21 butanenitrile CH3CH2CH2CN 1.38600 (49)g 0.78183 (49)l 117.9 (49) 20.3 (49)i

22 1-phenylpropane CH3CH2CH2C6H5 1.49202 (55) 0.85780 (55) 159.217 (55) 2.226 (55)e

23 valeronitrile CNCH2CH2CH2CH3 1.3975 (51) 0.7952 (51) 141.56 (51) 20.04 (51)e

24 1-fluoro-2-chloroethane FCH2CH2Cl 1.3775 (54) 1.1683 (51) 52.8 (51)
25 2-bromoethanol BrCH2CH2OH 1.4915 (54) 1.7629 (54)e 149.5 (54)m

26 1,2-difluoroethane FCH2CH2F 1.3014 (51) 1.024 (51) 30.7 (54)
27 2-fluoroethanol FCH2CH2OH 1.3647 (54)h 1.0020 (51) 103.5 (54)
28 1-methoxypropane CH3CH2CH2OCH3 1.3590 (51) 0.723 (51)e 38.5 (54)
29 2-aminoethanol NH2CH2CH2OH 1.4539 (49) 1.01170 (51) 171.1 (49)
30 3-methoxypropionitrile CNCH2CH2OCH3 1.40317 (51) 0.9398 (51)e 164 (54)
31 1-aminopropane CH3CH2CH2NH2 1.38815 (49) 0.7110 (51) 48.5 (49)
32 2,2-dimethylbutane (CH3)3CCH2CH2H 1.36876 (49) 0.64446 (49) 49.741 (49)
33 1-chloro-2-methoxyethane ClCH2CH2OCH3 1.4111 (54) 1.0461 (51) 92.5 (54)
34 1-chloro-2-bromoethane ClCH2CH2Br 1.4908 (54) 1.7392 (54)e 107 (54)
35 1-bromo-2-fluoroethane BrCH2CH2F 1.4236 (54) 1.7044 (54) 71.5 (54)
36 1-bromo-2-methoxyethane BrCH2CH2OCH3 1.44753 (54) 1.4369 (51) 110.3 (54)
37 2-iodoethanol ICH2CH2OH 1.5713 (54) 2.1968 (54)e 176.5 (54)
38 2-phenylethanol HOCH2CH2C6H5 1.5325 (54) 1.0202 (54)e 218.2 (54)
39 2-nitroethanol NO2CH2CH2OH 1.4447 (51) 1.296 (51)e 195 (51)
40 1-chloro-3,3-dimethylbutane ClCH2CH2C(CH3)3 1.4161 (54) 0.8670 (54)e 117.5 (51)
41 1-bromo-3,3-dimethylbutane BrCH2CH2C(CH3)3 1.4440 (51) 1.1556 (51)e 138 (51)
42 1-hydroxy-3,3-dimethylbutane HOCH2CH2C(CH3)3 1.4115 (51)f 0.8097 (51) 143 (54)
43 propan-2-one CH3CH2CH2COCH3 1.3908 (51) 0.7994 (51) 102.4 (51)
44 1-phenylbutan-2-one CH3COCH2CH2C6H5 1.5108 (51) 0.9849 (54)j 233.5 (54)
45 3-phenylpropanenitrile CNCH2CH2C6H5 1.5266 (54) 1.0016 (54)e 261 (54)
46 3-chloropropanenitrile ClCH2CH2CN 1.4370 (51) 1.1573 (54)e 175.5 (54)
47 1-chlorobutan-3-one ClCH2CH2COCH3 1.4284 (54)k 1.0680 (54)k 120.5 (54)
48 1-chloro-2-nitroethane ClCH2CH2NO2 1.4500 (51) 1.343 (51) 173 (51)
49 1-amino-2-phenylethane NH2CH2CH2C6H5 1.5315 (51)f 0.9640 (56) 194.5 (56)
50 1-nitro-3,3,3-trifluoropropane NO2CH2CH2CF3 1.3525 (51) 1.4259 (51)e 135.5 (51)
51 methyl 3-cyanopropanoate CNCH2CH2COOCH3 1.4243 (51) 1.0792 (51)e 215.8 (51)n

52 1-nitrobutane NO2CH2CH2CH2CH3 1.41019 (51) 0.9673 (51) 152.77 (51)
53 butanedial OCHCH2CH2CHO 1.4260 (51) 1.0659 (51)e 169.5 (54)
54 hexane-2,5-dione CH3COCH2CH2COCH3 1.423 (51) 0.9740 (51)e 191.4 (49)
55 3-bromopropanenitrile BrCH2CH2CN 1.4800 (54) 1.6234 (51)
56 1-nitro-2-phenylethane NO2CH2CH2C6H5 1.5270 (51) 1.119 (61)
57 methyl 3-nitropropanoate NO2CH2CH2COOCH3 1.4350 (51) 1.2486 (51)e

58 1-nitro-3,3,3-trichloropropane NO2CH2CH2CCl3 1.4899 (51) 1.5320 (61)e

59 1-nitro-4-methylbutane NO2CH2CH2CH(CH3)2 1.4171 (51) 0.9458 (51)
60 3,3,3-trichloropentane CH3CH2CH2CH2CCl3 1.4540 (51) 1.1843 (51)
61 methyl 4-oxobutanoate OCHCH2CH2COOCH3 1.4210 (51) 1.087 (51)e

62 1-chloro-2-iodoethane ClCH2CH2I 1.5615 (51)f 140 (54)
63 3-hydroxypropanenitrile CNCH2CH2OH 1.4240 (54) 230 (54)
64 3-aminopropanenitrile CNCH2CH2NH2 1.4396 (56) 185 (56)
65 methyl pentanoate CH3CH2CH2CH2COOCH3 1.3969 (51) 127.9 (51)
66 3,3,3-trifluorobutanal CF3CH2CH2CHO 1.3387 (51)f 95.5 (51)
67 1-nitrobutan-3-one NO2CH2CH2COCH3 1.4392 (51)

a Measured at 20°C when not otherwise specified.b F/(g cm-3), measured at 25°C when not otherwise specified.c bp/°C, measured at 760
mmHg when not otherwise specified.d Measured at 25°C when not otherwise specified.e Measured at 20°C. f Measured at 25°C. g Measured at
15 °C. h Measured at 18°C. i Measured at 21°C. j Measured at 22°C. k Measured at 23°C. l Measured at 30°C. m Measured at 750 mmHg.
n Measured at 753.5 mmHg.
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model is far simpler when few significant theoretical indexes
are involved.

In the present study, we compare the multiple linear
regression models obtained by using the heuristic and best
multilinear variables selection procedures, implemented in
the CODESSA software package, which are basically step-
wise regression procedures aimed to improve the goodness
of fit, with the PLS regression,28,29models generated by using
the GOLPE variables selection procedure,24 which is based
on statistical design and is aimed to improve the predictive
ability of the models. The performance of the different
regression models has been evaluated by the standard
deviation of prediction errors (SDEP) parameter30 calculated
for the compounds of both the training set (internal valida-
tion) and the test set (external validation). The internal SDEP
has been calculated by cross-validation using both the “leave
one out” (LOO) and the random group approaches.30

MATERIALS AND METHODS

Property Data. The experimental values of refractive
index,nD (at 20°C), density,F (at 25°C), boiling point, bp
(at 760 mmHg), static dielectric constant,ε (at 25°C), and
dynamic viscosity,η (at 25°C), have been taken from the
literature and are listed in Tables 1 and 2 (training set) and
in Table 3 (test set) together with the relevant references.

If the values of the properties (ε, nD, F, η) for some
compounds were not available at the chosen temperature,
we referred to measures taken within a(5 °C range;
analogously, boiling temperatures of four compounds have
been taken at different pressures ranging from 750 to 756
mmHg, as specified in Tables 1-3.

Calculations. Molecular geometry data (bond distances,
bond angles, dihedral angles) have been taken from literature
experimental data31 when available. Otherwise, we referred
to standard geometries taken from ab initio compilation.32

Molecular structures have been considered in the anti
conformation with regard to the-CH2-CH2- bond, unless
otherwise specified in the literature.

Full geometry optimization of the molecular structures has
been made at a semiempirical level (AM1 Hamiltonian) using
the MOPAC (version 6.0)33,34 software package.

Molecular Descriptors. The calculated molecular descrip-
tors employed in this study, not given here but available on
request to the authors, have been calculated by the CODES-
SA (version 2.14) software package.22 They can be divided
into five groups7: (1) constitutional descriptors; (2) topologi-
cal descriptors; (3) geometric descriptors; (4) quantum-
chemical descriptors; (5) “mixed” descriptors. “Mixed”
descriptors reflect electronic, geometric, and topological
features of the molecule; in particular, we considered the

Table 2. List of Training Set Compounds: Their Log(dynamic viscosity) Data and References (Numbers in Parentheses)

no. compound formula log (ηa)

1 1,4-dioxane
OCH2CH2OCH2CH2

0.081 (63)

2 ethanol HOCH2CH2H 0.033 (49)
3 ethane-1,2-diol HOCH2CH2OH 1.234 (62)
4 2-methoxyethanol HOCH2CH2OCH3 0.189 (62)
5 1,2-dimethoxyethane CH3OCH2CH2OCH3 -0.378 (63)
6 2-chloroethanol HOCH2CH2Cl 0.429 (49)b

7 1,2-dichloroethane ClCH2CH2Cl -0.102 (63)
8 1-fluoro-1-chloroethane FCH2CH2Cl -0.251 (51)b

9 bromoethane HCH2CH2Br -0.421 (49)
10 1,2-dibromoethane BrCH2CH2Br 0.173 (49)b

11 iodoethane HCH2CH2I -0.268 (49)b

12 phenylethane HCH2CH2C6H5 -0.196 (49)
13 nitroethane HCH2CH2NO2 -0.180 (49)
14 chloropropane CH3CH2CH2Cl -0.498 (49)b

15 bromopropane CH3CH2CH2Br -0.338 (49)b

16 1-propanol CH3CH2CH2OH 0.302 (49)
17 2-aminoethanol NH2CH2CH2OH 1.159 (51)b

18 1,2-diaminoethane NH2CH2CH2NH2 0.188 (49)
19 butan-2-one CH3COCH2CH2H -0.415 (63)
20 propanenitrile HCH2CH2CN -0.410 (49)b

21 1-iodopropane CH3CH2CH2I -0.174 (49)b

22 1-nitropropane CH3CH2CH2NO2 -0.098 (49)
23 butanenitrile CH3CH2CH2CN -0.288 (49)b

24 1-chloro-2-methoxyethane ClCH2CH2OCH3 -0.228 (51)
25 propan-2-one CH3CH2CH2COCH3 -0.338 (51)
26 valeronitrile CNCH2CH2CH2CH3 -0.152 (51)
27 2-methyl-1-butanol HOCH2CH(CH3)CH2CH2H 0.740 (18)c

28 3-ethyl-3-pentanol HCH2CH2C(OH)(CH2CH3)2 0.829 (18)c

29 methyl cyanoacetate CNCH2COOCH2H 0.446 (18)c

30 2-methylbutyric acid (CH3)2CHCH2COOH 0.382 (18)c

31 heptanoic acid CH3(CH2)2CH2CH2CH2COOH 0.639 (18)c

32 isopropyl acetate CH3COOCH(CH3)CH2H -0.245 (18)c

33 isopropylamine HCH2CH(CH3)NH2 -0.419 (18)c

34 propyl butyrate CH3(CH2)2COOCH2CH2CH3 -0.080 (18)c

35 1-pentanol CH3CH2CH2CH2CH2OH 0.525 (49)
36 2-methyl-2,4-pentanediol (CH3)2COHCH2CHOHCH3 1.536 (18)c

37 2-ethoxyethanol HOCH2CH2OCH2CH3 0.312 (18)c

a η/cP, measured at 25°C when not otherwise specified.b Calculated on values ofη/cP measured at 30°C. c Calculated on values ofη/cP
measured at 20°C.
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charged partial surface area (CPSA) descriptors defined by
Stanton and Jurs,35,36which are derived from the net atomic
charge distribution on the solvent-accessible surface.

The procedures for the calculation of a variety of
constitutional, topological, geometric, and electrostatic de-
scriptors are implemented in CODESSA. Within the class
of constitutional descriptors, we used only the molecular and
relative molecular weight, the gravitation indexes, and the
total number of atoms and bonds of the molecule, thus
avoiding considering the count of atom types, which may
be present only for a small subset of compounds. The
quantum chemical descriptors extracted from the output of
the molecular orbital (MOPAC) calculations include among
others, the following ones: Mulliken net atomic charges, the
total dipole moment of the molecule and its components,
the frontier molecular orbital energies and the relevant
reactivity indexes, molecular polarizability terms, bond
orders, and energy partitioning terms.7 The quantum chemi-
cally calculated atomic net charges were used to calculate
the CPSA descriptors.

The complete set of descriptors has been calculated by
considering both the whole molecule and a molecular
fragment (this is highlighted in boldface characters in the
molecular formulas shown in Tables 1-3) constituting the
variable portion of the considered molecular series. The
studied compounds can all be represented by the general
formula X-CH2CH2-Y; we considered the group composed
by the X plus Y substituents as the variable fragment. Six
of the test set compounds (2,4-dimethylpentane, isopropyl-
benzene, isopropylamine, 2-methylbutyric acid, isopropyl
acetate, 2-methyl-2,4-pentanediol), in which one of the two

ethyl carbons is disubstituted, have general formula X-CH2-
CH ) YZ; in this case we considered the X, Y, and Z
substituents as the variable fragment. The descriptors related
to the variable fragments have been characterized by the
prefix f.

After discarding all the descriptors bearing missing values
and those with zero variance, 354 descriptors were left.

Multilinear Regressions. Multilinear regressions have
been calculated using the CODESSA software package6,22

that furnishes different tools to select the most promising
QSPRs; in particular, we employed the heuristic (HEUR)
and the best multilinear regression (BMLR) procedures,
which are described in detail in the literatures.8 Briefly, both
procedures are based on the stepwise regression technique
to obtain the best multiregression models and start from a
collinearity control of the descriptors. The HEUR procedure
is aimed at obtaining the best 1-to-n-parameter correlations
(wheren is a user-specified value): in this study we setn to
3. For a few properties, we have also consideredn ) 4 in
order to have the same number of parameters for the HEUR
regressions as for the regression models derived by the other
procedures. The starting number of descriptors is reduced
on the basis of the statistical significance (R2, F, and t
parameters are considered) of the 1-parameter correlations
and of the descriptors’ intercorrelations; finally, an iterative
procedure is used to choose the bestn-parameter correlations.
However, this procedure only gives the best relationships
derived from the best 2-parameter correlations (the default
option in CODESSA is to consider the three best 2-parameter
correlations: we use instead the 10 best ones) and not, for
a given set of descriptors, the best relationships “altogether”.

Table 3. List of Test Set Compounds: Their Property Data and References (Numbers in Parentheses)

no. compound formula nD
a Fb bpc εd log (ηe)

1 2-ethyl-1-hexanol HOCH2CH(CH2CH3)CH2CH2CH2CH3 0.991 (18)
2 1-butanol CH3CH2CH2CH2OH 1.3992 (49) 0.8021 (49)m 117.726 (49) 17.1 (49) 0.356 (49)m

3 1-chlorobutane ClCH2CH2CH2CH3 1.4021 (49) 0.8864 (49)g 78.44 (49) 7.39 (49) -0.393 (49)m

4 2,4-dimethylpentane (CH3)2CHCH2CH(CH3)2 1.3815 (49) 0.6683 (49) 80.5 (49) 1.914 (49)g -0.443 (49)g

5 2-butanol CH3CHOHCH2CH2H 1.3978 (49) 0.8027 (49) 99.529 (49) 15.8 (49) 0.624 (49)g

6 3-methyl-1-butanol HOCH2CH2CH(CH3)2 1.4085 (49)f 0.8018 (49)m 132 (49) 14.7 (49) 0.471 (49)m

7 ethyl cyanoacetate CNCH2COOCH2CH2H 1.4175 (49) 1.0564 (49) 206 (49) 26.9 (49)g 0.398 (49)
8 diethyl ether CH3CH2OCH2CH2H 1.3527 (49) 0.7078 (49) 34.481 (49) 4.335 (49)g -0.616 (49)g

9 isopropylbenzene C6H5CHCH3CH2H 1.4915 (49) 0.8575 (49) 152.393 (49) 2.38 (49)g -0.131 (49)
10 1,3-propanediol HOCH2CH2CH2OH 1.4396 (49) 1.053 (49)g 214.22 (49) 35 (49)g

11 1-pentene CH2dCH2CH2CH2CH3 1.3714 (49) 0.6359 (49) 29.97 (49) 2.1 (49)g

12 butyraldehyde CH3CH2CH2CHO 1.3791 (49) 0.8016 (49)g 74.78 (49) 13.4 (49)k

13 n-butylamine CH3CH2CH2CH2NH2 1.4009 (49) 0.7341 (49)l 76.2 (49)n 5.3 (49)h

14 2-ethoxyethanol CH3CH2OCH2CH2OH 1.4080 (54) 0.9297 (54) 135 (54) 13.38 (54)
15 2-methyl-1-butanol HOCH2CH(CH3)CH2CH2H 1.4092 (54) 0.815 (54) 128 (54) 15.63 (54)
16 3-ethyl-3-pentanol HCH2CH2C(OH)(CH2CH3)2 1.4294 (54) 0.8407 (54) 142 (54) 3.158 (54)g

17 isopropylamine HCH2CH(CH3)NH2 1.3742 (54) 0.6889 (54) 32.4 (54) 5.6268 (54)g

18 methyl cyanoacetate CNCH2COOCH2H 1.4176 (54) 1.1225 (54) 200.5 (54) 28.8 (54)g

19 propyl butyrate CH3(CH2)2COOCH2CH2CH3 1.4001 (54) 0.8730 (54) 143 (54) 4.3 (54)g

20 1-pentanol CH3CH2CH2CH2CH2OH 1.4101 (54) 0.8144 (54) 137.9 (54) 15.13 (54)
21 2-methylbutyric acid (CH3)2CHCH2COOH 1.4051 (54) 0.9682 (55) 177 (54)
22 heptanoic acid CH3(CH2)2CH2CH2CH2COOH 1.4170 (54) 0.9181 (54) 222.2 (54)
23 isopropyl acetate CH3COOCH(CH3)CH2H 1.3773 (54) 0.8718 (54) 88.6 (54)
24 1,4-dibromobutane BrCH 2CH2CH2CH2Br 1.5190 (54) 1.789 (54)g 197 (54)
25 1,4-dichlorobutane ClCH2CH2CH2CH2Cl 1.4542 (54) 1.1408 (54)g 153.9 (54)
26 2-bromoethylacetate CH3COOCH2CH2Br 1.4570 (54)j 1.514 (54)g 162.5 (54)
27 (2-bromo-1-hydroxyethyl)benzeneC6H5CH(OH)CH2Br 1.5800 (54)f 1.4994 (54)g

28 1,4-diiodobutane ICH 2CH2CH2CH2I 1.619 (540j 2.349 (54)k

29 2-methyl-2,4-pentanediol (CH3)2COHCH2CHOHCH3 1.4276 (54) 197.1 (54)
30 4-methylpentanenitrile (CH3)2CHCH2CH2CN 0.8027 (49) 153.5 (49)o 15.5 (49)i

a Measured at 20°C when not otherwise specified.b F/g cm-3, measured at 25°C when not otherwise specified.c bp/°C, measured at 760 mmHg
when not otherwise specified.d Measured at 25°C when not otherwise specified.e η/cP, measured at 25°C when not otherwise specified.f Measured
at 15°C. g Measured at 20°C. h Measured at 21°C. i Measured at 22°C. j Measured at 25°C. k Measured at 26°C. l Measured at 27.9°C. m Measured
at 30°C. n Measured at 752 mmHg.o Measured at 756 mmHg.
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In other words, a hypotheticaln-parameter good correlation
could not be retrieved if the whole of the 2-parameter
equations obtained using 2 of then parameters does not lead
to satisfactoryR2 (or F) values. On the other hand, the BMLR
procedure allows one to find the bestn-parameter multilinear

regressions altogether; iteratively, all the bestNc (e400) n
- 1 parameter correlations are considered as candidates to
performn-parameter correlations until no further improve-
ment (estimated by theF parameter) is achieved. Anyway,
since this procedure is computationally intensive, it is not

Table 4. Statistical Parameters of Multilinear Regression and PLS Models with Selected Variables for the Refractive Index (nD) Data Set
(Tables 1 and 3)a

training set
(67 compounds) (SDEV) 0.0559)

test set
(SDEV ) 0.0593)

variables
selection
procedure

no. of
variables selected variables

no. of
PLS

components
(GOLPE) R2 SDEC

R2
CV

(LOO) SDEPi

R2
CV

(10 groups,
30 cycles) SDEPi

SDEPe
(28

compds)b

SDEPe
(29

compds)

heuristic, BMLR 2 HOMO-1 energy,
relative molecular weight

0.6739 0.0332 0.6432 0.0335 0.6401 0.0335 0.0219 0.0253

heuristic 3 HOMO-1 energy,
av valency of a H atom,
f-FNSA-3 (PNSA-3/TFSA)

0.7953 0.0265 0.7609 0.0273 0.7604 0.0273 0.0232 0.0314

BMLR 3 final heat of formation,
molecular weight,
HACA-1/TMSA

0.7893 0.0265 0.7560 0.0276 0.7552 0.0277 0.0209 0.0247

heuristic, BMLR 4 final heat of formation,
molecular weight,
HOMO energy,
av valency of a H atom

0.8828 0.0192 0.8486 0.0218 0.8465 0.0219 0.0253 0.0250

GOLPE 20 4 0.9501 0.0125 0.9197 0.0159 0.9195 0.0159 0.0152 0.0180

a The limit of chance correlation is given by SDEV) (SSY/N)1/2. b Omitted 1,4-diiodobutane (compound 28, Table 3).

Table 5. Statistical Parameters of Multilinear Regression and PLS Models with Selected Variables for the Density (F) Data Set (Tables 1 and
3)a

training set
(61 compounds) (SDEV) 0.3479) test set

(SDEV ) 0.3712)variables
selection
procedure

no. of
variables selected variables

no. of PLS
components
(GOLPE) R2 SDEC

R2
CV

(LOO) SDEPi

R2
CV

(10 groups,
30 cycles) SDEPi

SDEPe
(28 compds)

heuristic 1 relative molecular weight 0.9290 0.0943 0.9229 0.0966 0.9225 0.0972 0.0899
heuristic 2 relative molecular weight,

f-Min net atomic charge
0.9599 0.0714 0.9539 0.0747 0.9533 0.0759 0.0716

GOLPE 4 relative molecular weight,
molecular weight,
Kier and Hall index (order 1),
Tot Mol 1-center 3-n attr/
no. of atoms

3 0.9481 0.0793 0.9370 0.0873 0.9361 0.0879 0.0926

a The limit of chance correlation is given by SDEV) (SSY/N)1/2.

Table 6. Statistical Parameters of Multilinear Regression and PLS Models with Selected Variables for the Boiling Point Data Set (Tables 1
and 3)a

training set
(59 compounds) (SDEV) 53.24) test set

(SDEV ) 55.45)variables
selection
procedure

no. of
variables selected variables

no. of PLS
components
(GOLPE) R2 SDEC

R2
CV

(LOO) SDEPi

R2
CV

(10 groups,
30 cycles) SDEPi

SDEPe
(27 compds)

heuristic 2 SQRC (gravitation index all bonds)
HA-dependent
HDCA-2/SQRT(TMSA)

0.7811 25.57 0.7561 26.29 0.7548 26.36 26.27

heuristic 3 SQRC (gravitation index all bonds),
HA-dependent
HDCA-2/TMSA, final heat of formation

0.8670 20.17 0.8408 21.24 0.8387 21.38 23.66

heuristic 4 HA-dependent HDCA-2/TMSA, SQRT
(gravitation Index all bonds), final
heat of formation, HOMO energy

0.9131 16.40 0.8863 18.02 0.8818 18.30 16.23

BMLR 2 HA-dependent HDCA-2, SQRC
(gravitation index all bonds)

0.7791 25.69 0.7539 26.41 0.7524 26.49 28.83

BMLR 3 bonding information content (order 0),
f-FHDCA fractional HDCA
(HDCA/TMSA), final heat of
formation

0.8663 20.16 0.8461 20.88 0.8451 20.95 28.82

BMLR 4 HA-dependent HDCA-2, SQRT
(gravitation index all bonds), final heat
of formation, HOMO energy

0.9074 16.94 0.8794 18.48 0.8796 18.47 19.46

GOLPE 20 4 0.9315 13.93 0.8947 17.27 0.8949 17.26 18.89

a The limit of chance correlation is given by SDEV) (SSY/N)1/2.

1194 J. Chem. Inf. Comput. Sci., Vol. 39, No. 6, 1999 COCCHI ET AL.



possible to use large sets of descriptors (g100), so we
employed in the BMLR only the descriptors previously
selected, for each experimental property, by the HEUR and
the GOLPE (see next paragraph) procedures.

GOLPE Multivariate Analysis. The PLS regression
models with the highest predictive capability have been
derived by using the GOLPE variable selection procedure.
As to the computational aspect of GOLPE, we refer to the
original articles.23,24 Briefly, GOLPE selects the best com-
bination of variables through the following steps: (a) The
combinations of variables are established according to a
fractional factorial design (FFD),37 where each one of the
two levels (1, -1) corresponds to the presence and the
absence of the variable, respectively. A design matrix is
obtained with as many columns as variables and as many
rows as combination of variables to be tested. (b) For each
combination of variables, the prediction ability of the
corresponding PLS model (where only the “plus” variables
are included and regressed against the Y property) is
evaluated by means of standard deviation of error of
predictions (SDEP)30 values. (c) The calculated SDEP values
for each combination of variables are collected in a response
vector and used as Y variable in another PLS model where
the X-block is constituted by the design matrix. (d) The
optimal model can thus be derived using only those variables

proved to be significant for lowering the SDEP values. To
prevent the risk of selecting as significant a variable that is
actually not, a number of dummy variables can be introduced
anywhere in the design matrix. The introduction of these
dummy variables allows the comparison between the effect
of a true variable and the average effect of the dummies. (e)
On the basis of the effect on SDEP, the variables are
classified as dummies, as variables with surely positive
(which will be fixed) or negative effect (which will be
excluded) on model predictivity, and as variables with
uncertain effect. The procedure is repeated iteratively until
variables are neither fixed nor excluded. According to the
authors’ suggestions,23,38the design matrix was formed with
a 2:1 ratio of combinations/variables number and a 2:1 ratio
of true/dummy variables, respectively. The calculation of
SDEP during the selection steps was performed by the LOO
procedure.

Before carrying out the statistical analysis, the distribution
of the X variables was checked and two-level variables or
variables showing strong clustering of objects were not
included in the analysis. All variables were autoscaled to
unit variance. Before running the FFD selection procedure,
we employed a fast preselection technique based on D-
OPTIMAL design39 (also implemented in the GOLPE
package) to obtain a reduction to about 30% of the number

Table 7. Statistical Parameters of Multilinear Regression and PLS Models with Selected Variables for the Dielectric Constant (ε) Data Set
(Tables 1 and 3)a

training set
(23 compounds) (SDEV) 9.840)

test set
(SDEV ) 9.253)variables

selection
procedure

no. of
variables selected variables

no. of PLS
components
(GOLPE) R2 SDEC

R2
CV

(LOO) SDEPi

R2
CV

(5 groups,
30 cycles) SDEPi

SDEPe
(20 compds)

heuristic 2 f-HASA-1/TFSA, max net atomic charge 0.9120 3.130 0.8721 3.521 0.8713 3.531 5.107
heuristic 3 f-HASA-1/TFSA, RPCG relative positive

charge, f-av bond inf cont (ord 0)
0.9505 2.409 0.9239 2.714 0.9190 2.800 3.999

BMLR 3 HOMO energy, f-HASA-2-/TFSA
max net atomic charge

0.9564 2.262 0.9162 2.848 0.9160 2.852 4.650

GOLPE 15 3 0.9744 1.576 0.9329 2.550 0.9245 2.704 3.213

a The limit of chance correlation is given by SDEV) (SSY/N)1/2.

Table 8. Statistical Parameters of Multilinear Regression and PLS Models with Selected Variables for the Log(dynamic viscosity), Log (η),
Data Set (Tables 2 and 3)a

training set
(37 compounds) (SDEV) 0.504) test set

(SDEV ) 0.522)variables
selection
procedure

no. of
variables selected variables

no. of PLS
components
(GOLPE) R2 SDEC

R2
CV

(LOO) SDEPi

R2
CV

(7 groups,
30 cycles) SDEPi

SDEPe
(9 compds)

heuristic, BMLR 2 f-HA-dependent HDCA-2/SQRT(TMSA),
SQRC (grav ind all pairs)

0.8086 0.2206 0.7675 0.2433 0.7610 0.2465 0.1995

heuristic 3 f-HA-dependent HDCA-2/SQRT(TMSA),
SQRC (grav ind all pairs), (1/2)X BETA
polarizability (DIP)

0.8491 0.1959 0.8145 0.2173 0.8079 0.2210 0.1895

heuristic 4 f-HA-dependent HDCA-2/SQRT(TMSA),
SQRC (grav ind all pairs), f-information
content (order 0), HOMO-LUMO
energy gap

0.8993 0.1601 0.8420 0.2004 0.8407 0.2012 0.2328

BMLR 3 f-HA-dependent HDCA-2/SQRT(TMSA),
SQRC (grav ind all pairs), max e-e
repulsion for a C-H bond

0.8595 0.1889 0.8212 0.2134 0.8162 0.2162 0.2210

BMLR 4 f-HA-dependent HDCA-2/SQRT(TMSA),
SQRC (grav ind all pairs), max e-e
repulsion for a C-H bond, min
valency of a C atom

0.8865 0.1698 0.8425 0.2004 0.8366 0.2038 0.2302

GOLPE 16 4 0.9497 0.1131 0.9031 0.1570 0.8948 0.1635 0.2911

a The limit of chance correlation is given by SDEV) (SSY/N)1/2.
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of initial variables (descriptors) in three subsequent steps.
The D-OPTIMAL design variables preselection was done
on the PLS partial weights space by using the number of
PLS components corresponding to the minimum SDEP value.

Predictive Capability Evaluation of the Regression
Models. The predictive capability of the selected QSPR
models (reported in Tables 4-8) for each property, derived
either by CODESSA or by GOLPE, has been evaluated using
cross-validation techniques.29,40 For each model, the cross-
validated or the prediction correlation coefficient (R2

CV) has
been calculated both with the leave one out and with the
random groups procedures30 (the number of groups, reported
in Tables 4-8, depending on the number of compounds
contained in the training set for each model). The SDEP is
defined by eq 1, in analogy to the standard deviation of error

of calculations (SDEC) (eq 2).

For each model we calculated two “internal” SDEP with
the LOO and the random groups procedures, named SDE-
Pi,LOO and SDEPi,Groups, respectively, which are related to the
internal stability of the correlation, and an “external” one,
named SDEPe, related to the capability to predict the values
of the examined properties for the compounds belonging to
the test set.

Chart 1

SDEP) x∑(yPRED- y)2

n
(1)

SDEC) x∑(yCALC - y)2

n
(2)
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In order to use the facilities implemented in the GOLPE
package38 for the calculation of SDEPi,LOO and SDEPi,Groups,
the QSPR models derived by the HEUR and BMLR
procedures, implemented in CODESSA, have been recalcu-
lated inside the GOLPE software package, deriving as many
PLS components as the number of descriptors in each
multilinear regression equation (in this case, the PLS model
coincides with the multilinear regression).

RESULTS AND DISCUSSION

The selected best (see below) QSPR equations obtained
by the different regression procedures for each physico-
chemical property are shown in Tables 4-8. In each table
(in column order) the following are reported: (a) the
procedure employed for the variable selection; (b) the number
of selected descriptors and, for the heuristic and the BMLR
procedures, the name of the selected descriptors (the meaning
of the variable names is given in Chart 1); (c) the number
of significant principal components for the correlations
obtained using the GOLPE procedure; (d) the squared
correlation coefficient (R2) and the SDEC; (e) the squared
cross-validated correlation coefficients (R2

CV) and the “in-
ternal” (i.e., calculated on the training set’s compounds)
SDEPi,LOO and SDEPi,Groups (the number of groups and the
number of cycles of SDEP calculation being specified); (f)
the SDEPe, calculated on the test set’s compounds (the
number of compounds in the test set being specified).

The evaluation of the prediction ability of the QSPR
models is determined on comparing SDEP with the standard
deviation of they variable (SDEV) (SSY/N)1/2, where SSY
are they sum of squares andN is the number of compounds).

The QSPR regression equations obtained by the HEUR
procedure, reported in Tables 4-8, were not always the very
best QSPR equations among the 10 selected by HEUR, but
the best ones chosen after checking, by visual inspection of
the descriptor vs property plot, the absence of strong object
clustering. Actually, we have reported the following: (a) for
nD (Table 4), the second best and the sixth best HEUR
regression equations for the 2- and 3-parameter models,
respectively; (b) for bp (Table 5), the ninth best HEUR
regression equation for the 3-parameter model; (c) for log
(η) (Table 6), the eighth best HEUR regression equation for
the 3-parameter model. As far as the QSPR models derived
by the GOLPE procedure are concerned, the automatic
preliminary control procedure forn-level variables imple-
mented in this package allows one to avoid most of these
problems. However, the GOLPE selected descriptors were
also checked by us: fornD we removed 3 of the 23 selected
descriptors, forε we removed 3 of the 18 selected descriptors,
and for log (η) we removed 9 of the 25 selected descriptors.
In all cases, the values of the correlation coefficients and
SDEP did not vary significantly. The discarded descriptors
are in general descriptors defined on a single atom or bond.

Refractive Index. The best correlation for the refractive
index has been obtained using the GOLPE procedure (R2 )
0.9501, SDEPi,LOO ) 0.0159, and SDEPe ) 0.0180) as shown
in Table 4 and Figure 1, where the calculated vs predicted
property values are plotted for both the training and the test
set compounds. There is a general improvement in the SDEPe

values when the 1,4-diiodobutane (compound 28, Table 3)
is omitted: in particular, the SDEPe value of the GOLPE

model lowers to 0.0152. In Figure 2 the PLS pseudoregres-
sion coefficients (The PLS loadings and partial weights can
be used to reformulate the dependent variable,y, as in a MLR
regression equation,y ) BX. These pseudoregression coef-
ficients are identical to the MLR regression coefficients if
the number of PLS components equals the number of
variables inX. Otherwise, they are not independent of one
another and are used only for interpretative purpose, i.e., to
establish which are the most significant variables in the PLS
model.) of the 20 selected descriptors for the 4-component
PLS model are shown. The heterogeneity of these 20
descriptors, which belong to the topological, constitutional,
geometric, and quantochemical families of descriptors,
demonstrates the need of considering a high number of
structural features in order to adequately describe a complex
experimental property such as the refractive index: the
multiplicity of underlying factors highlights how this phe-
nomenon is based on complex interactions between matter
and electromagnetic radiation.

In agreement with what has been stated above, the
multilinear regression procedures (HEUR and BMLR) failed
to give correlations as satisfactory as that obtained by using
the GOLPE procedure: it is noteworthy that, passing from
2 to 4 parameters, while theR2 and SDEPi,LOO values
improve, the SDEPe value does not.

In a recent paper19 Katritzky et al. reported a QSPR model
also derived by the CODESSA software package for thenD

of a set of 125 diverse organic compounds.R2 ) 0.945 and
SDEC) 0.0155 values were computed which are similar to
those of our best QSPR model.

Density. An excellent 1-parameter correlation between
density and the relative molecular weight (R2 ) 0.9290,
SDEPi,LOO ) 0.0966, SDEPe ) 0.0899, Table 5 and Figure
3) has been found. Although it is well known that molecular
weight and density are correlated with each other within an
homologous series of compounds, taking into account the
structural heterogeneity of the training set’s structures (Table
1), the regression model obtained appears less trivial.

Introducing a further parameter, i.e., the minimum value
of the net atomic charge for the variable molecular fragment
(f-Min net atomic charge), both the squared correlation
coefficient (R2 ) 0.9599) and the predictive capability of

Figure 1. Plot of predicted versus experimental refractive index
(nD) values for the training set ([) and test set compounds (4).
The 1,4-diiodobutane, omitted from the correlation, is indicated by
the X with vertical line. The predictednD values have been
calculated by the GOLPE regression model,R2 ) 0.9501 in Table
4.
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the regression model (SDEPi ) 0.0747 and SDEPe ) 0.0716)
increase. This descriptor codifies to some extent the intensity
of the polar interactions: the increase of its value can be
reasonably related to an increase in density.

The GOLPE procedure also leads to satisfactory results;
considering that just one parameter is enough to correctly
predict the density values, the correlation of this experimental
property represents a borderline case for the application of
multivariate analysis. Therefore, it should be stressed that
the GOLPE procedure, even if furnishing a redundant model,
provides a really satisfactory “external” predictive capability
(SDEPe ) 0.0553). Furthermore, the PLS pseudoregression
coefficient of the relative molecular weight presents the
highest value among those of the four selected descriptors
(Figure 4), confirming the convergence between this ap-
proach and the multilinear regression methods.

Boiling Temperature. The best QSPR model for this

property has been obtained by the GOLPE procedure (R2 )
0.9315, SDEPi,LOO ) 17.27, and SDEPe ) 18.89, Table 6
and Figure 5). The PLS pseudoregression coefficients for
the 20 selected variables are reported in Figure 6; the
involved descriptors are topological indexes that quantify
both size and shape (degree of branching) of the molecule,41-43

quantum chemical descriptors derived from the total molec-
ular energy (final heat of formation, total molecular elec-
trostatic interaction/number of atoms, and total 1-center
electron-electron repulsion and electron-nucleus attraction)
which depend on the molecular size, the molecular weight,
and descriptors that quantify the hydrogen-bonding effects
(HASA-1, f-HDSA, etc.).8,36 These descriptors, though not
comprising, except for the final heat of formation, those
selected by the HEUR and by the BMLR procedures, have
similar physical meaning. Furthermore, they have similar
physical meaning with respect to those previously employed
in the literature8 for predicting the boiling temperatures of
different sets of organic compounds.

Figure 2. PLS pseudoregression coefficients of the selected variables for the refractive index,nD (GOLPE regression model,R2 ) 0.9501
in Table 4).

Figure 3. Plot of predicted versus experimental density (F (g
cm-3)) values for the training set ([) and test set compounds (4).
The predictedF values have been calculated by the heuristic
regression model,R2 ) 0.9290 in Table 5.

Figure 4. PLS pseudoregression coefficients of the selected
variables for the density,F (g cm-3), (GOLPE regression model,
R2 ) 0.9481 in Table 5).
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It is worth noting that the BMLR regression models have
higher SDEPe values compared to the heuristic regressions
with the same number of parameters. Unexpectedly, the
HEUR 4-parameter model works better than the correspond-
ing BMLR 4-parameter model. Furthermore, it shows a better
external predictive ability (SDEPe ) 16.23) with respect to
the GOLPE model: however, the SDEPe value from GOLPE
is strongly affected by the deviation of 1-pentene (compound
11, Table 3); by excluding this compound in the analysis,
the SDEPe value lowers from 18.89 to 15.86. Analogously,
the SDEPe value of the BMLR 3-parameter model by
excluding the 1-pentene lowers from 28.82 to 24.98, which
is more similar to the SDEPi,Groups value; a poor estimation
for 1-pentene has to be expected since compounds containing
a double carbon-carbon bond are not present in the training
set of this property.

Our results are also consistent with a recent study of
Karelson, Katritzky, et al.,8 where CODESSA has been

employed to derive QSPR models for the boiling tempera-
tures of 298 diverse organic compounds. Their best 2-pa-
rameter regression (R2 ) 0.9544, SDEC) 16.15) was
obtained with the SQRC (Grav Ind all bonds) and the HA-
dependent HDCA-2/TMSA descriptors36 (see Chart 1 for the
definition of descriptors) which, consistently, are both present
in our multilinear regressions. When this 2-parameter regres-
sion equation was used to predict the boiling temperature of
our 59 training set compounds, we obtained a SDEPe value
of 29.45, which is similar to the SDEPi,LOO value of our
2-parameter HEUR regression (Table 6) and is higher than
the SDEPi,LOO and SDEPe values of the other QSPR
regressions reported in Table 6.

Recently, Katritzky et al.9 extended their QSPR approach
to a set of 584 diverse organic compounds representative of
all major classes of organic compounds containing C, H, O,
N, S, F, Cl, Br, and I. The best correlations were obtained
by a 6- and an 8-parameter model, withR2 ) 0.946, SDEC
) 18.9 for the former andR2 ) 0.9645, SDEC) 15.5,
SDEPi ) 14.6, and SDEPe ) 9.68 for the latter model,
respectively. The descriptors employed in the 4-parameter
regression equation are two hydrogen-bonding indexes, two
size-dependent descriptors, and two variables accounting for
the number of F atoms and CN groups, respectively; for the
6-parameter regression equation, two CPSA descriptors
taking into account only H or Cl atoms were added. Many,
though not all, of our training and test set compounds are
also included in the broad calibration set reported in ref 9;
however, the use of the same 6-parameter model to correlate
the boiling temperature of our training set does not give
improved results with respect to the models reported in Table
6.

Dielectric Constant. As it can be seen in Table 7 and
Figure 7, the best regression model for the dielectric constant
was obtained using the GOLPE procedure (R2 ) 0.9744).

Figure 5. Plot of predicted versus experimental normal boiling
point (bp (°C)) values for the training set ([) and test set
compounds (4). The predicted bp values have been calculated by
the GOLPE regression model,R2 ) 0.9315 in Table 6.

Figure 6. PLS pseudoregression coefficients of the selected variables for normal boiling point, bp (°C) (GOLPE regression model,R2 )
0.9315 in Table 6).
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Although the SDEPi,LOO values for the 3-parameter multi-
linear regressions are similar to those of the GOLPE model,
the latter procedure leads to a significantly better value of
SDEPe.

The worst GOLPE predictions are for butyraldehyde and
propyl butyrate (compounds 12 and 19 in Table 3, respec-
tively), which has to be expected since neither aldehydes
nor esters are represented in the training set of this property.
Accordingly, by excluding these two compounds from the
test set, the SDEPe value for the regression model calculated
with the GOLPE procedure lowers from 3.213 to 2.621.

The PLS pseudoregression coefficients for the 15 descrip-
tors selected by the GOLPE procedure are shown in Figure
8. These are descriptors related to the tendency of the
molecules to act as hydrogen-bonding donors or acceptors
(e.g., f-FHDCA (HDCA/TMSA) and f-HASA-2/TFSA),
descriptors related to the dipole moment, topological descrip-
tors (information content indexes43), charge-related descrip-

tors (e.g., maximum net atomic charge and f-RPCS), and
the HOMO energy (related to the charge-transfer tendency).
The presence of molecular descriptors related to the molec-
ular charge distribution is in agreement with a single
parameter correlation (R) 0.88) between a charge separation
index (derived from the molecular electrostatic potential) and
the dielectric constant recently reported by Brink et al.44

In a recent study,20 a QSPR model for the dielectric
constant of a series of organic compounds has been computed
using neural networks. The best QSPR relationship (the root-
mean-square errors for the training set of 350 compounds
and for the test set of 50 compounds are 3.77 and 2.33,
respectivelysthe correlation coefficient is not given) selected
by the authors to fit the dielectric constants uses 10
theoretical molecular descriptors, namely, the number of O
and N atoms, an indicator variable for hydrogen-bonding
capability, three CPSA descriptors, and three topological
descriptors. CPSA and topological descriptors are also used
in our QSPR models. The predictive ability of this model is
comparable with our best QSPR model reported in Table 7.

Log(dynamic viscosity).The best QSPR model for this
property has been obtained by the GOLPE procedure (R2 )
0.9497, SDEPi,LOO ) 0.1570, and SDEPe ) 0.2911), as
shown in Table 8 and Figure 9. The relevant descriptors, as
can be seen in Figure 10, are hydrogen-bonding descriptors,
topological descriptors, components of the molecular polar-
izability, and quantum mechanical energy terms for the C-C
and C-H bonds which may be related to the conformational
changes of the molecule.45 The HEUR 2- and 3-parameter
models show the lowest SDEPe values, but inspection of the
errors distribution for the test set compounds reveals a
tendency for the errors to increase with log (η); analogously,
the BMLR 3-parameter model gives the highest errors for
the test set compounds 2-ethyl-1-hexanol and 2-butanol
(compounds 1 and 5, Table 3), which show the highest log
(η) values. Furthermore, the SDEPe values for the BMLR

Figure 7. Plot of predicted versus experimental dielectric constant
(ε) values for the training set ([) and test set compounds (4). The
predictedε values have been calculated by the GOLPE regression
model,R2 ) 0.9744 in Table 7.

Figure 8. PLS pseudoregression coefficients of the selected variables for the dielectric constant,ε (GOLPE regression model,R2 ) 0.9744
in Table 7).
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4-parameter model and for the GOLPE model improve
significantly by omitting the 2,4-dimethylpentane and iso-
propylbenzene (compounds 4 and 9, Table 3), lowering to
0.1708 and 0.1705, respectively. The HEUR 4-parameter
model gives the best SDEPe value of 0.1183 when the 2,4-
dimethylpentane is omitted. A large deviation for branched
compounds could be expected since they are not adequately
represented in the calibration set.

Our results are consistent with a recent QSPR study of
Ivanciuc et al.,17 where CODESSA was as well employed
to model the liquid viscosity of 337 diverse organic
compounds. The best correlation equation reported (R2 )
0.8464, SDEC) 0.371) contains five parameters: the
hydrogen-bonding donor charged surface area (HDCA-2);
the molecular weight; the Randic connectivity index of order
3; the maximum electrophilic reactivity index for a carbon
atom; the maximum electronic population. Significantly,

these descriptors are either the same or have the same
meaning of those selected by our GOLPE model (Figure 10).

Another QSPR study modeling the log (η) of 237 diverse
organic compounds (plus a test set of 124 additional
compounds) using nine descriptors, namely, four experi-
mental descriptors (molar refraction, critical temperature,
molar magnetic susceptibility, vaporization energy) and five
indicator variables (presence of alcohols/phenols, nitriles,
amines, amides, and aliphatic rings including heteroatoms)
and both multilinear regression and neural networks has been
reported.18 The best reported MLR and neural networks
models give different degree of fit, theR2 values being 0.916
and 0.958, respectively, but exhibit similar predictive
capability, the SDEPe values being 0.168 and 0.161, respec-
tively. The highest calculation errors were found for com-
pounds containing several OH groups, thus indicating a poor
parameterization for the hydrogen bond effect. The perfor-
mance of our best QSPR model is quite similar with respect
to the model fit; the predictive capability is lower but it
becomes comparable when 2,4-dimethylpentane and isopro-
pylbenzene are taken out from the set. Interestingly enough,
four out of nine of our test set compounds contain an OH
group. Among the compounds of our training set bearing
more than one hydrogen-bonding group, only the 1,2-
diaminoethane (compound 18, Table 2) is strongly under-
estimated [∆log (η)(calc - exp) ) -0.27], indicating that
the theoretical descriptors employed by us adequately take
into account hydrogen bond effects.

CONCLUSIONS

Good QSPR models have been obtained for all the studied
properties, confirming that theoretical molecular descriptors
computed on the isolated molecule are also suitable to both
fit and predict physicochemical properties of molecular series
in the condensed phases. Noteworthy, we did not use any

Figure 9. Plot of predicted versus experimental log(dynamic
viscosity), log (η), values for the training set ([) and test set
compounds (4). The predicted log (η) values have been calculated
by the GOLPE regression model,R2 ) 0.9497 in Table 8.

Figure 10. PLS pseudoregression coefficients of the selected variables for the log (dynamic viscosity), log (η) (GOLPE regression model,
R2 ) 0.9497 in Table 8).
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indicator variables or descriptors based on atom or atomic
group count.

The comparative analysis of the HEUR and BMLR
multilinear regression techniques with the multivariate
GOLPE/PLS methods has shown the following: (a) the
results from the GOLPE regression models are generally
better; (b) the selected descriptors are often the same or have
at least similar meaning; (c) at variance with expectation,
the BMLR procedure does not always furnish better regres-
sions than the HEUR procedure (see Tables 6 and 8); and
(d) the difference between the SDEPi,LOO and the SDEPi,Groups

values for the most part of the presented models is small,
indicating a satisfactory internal stability. Furthermore, the
SDEPi values are often close to the SDEPe ones, indicating
the validity of this index as a validation criterion, at least
when the calibration set includes the structural variability
of the test set.
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