
UNIVERSITY OF MODENA AND REGGIO EMILIA

DOCTORAL THESIS

Security Analytics and Machine Learning
for Cyber Detection:

Modern Issues and Novel Solutions

Author:
Ing. Giovanni APRUZZESE

Supervisor:
Prof. Michele COLAJANNI

PhD Course Coordinator:
Prof. Sonia BERGAMASCHI

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

International Doctorate in Information and Communication Technologies
Computer Engineering and Science

Cycle XXXII

http://www.unimore.it
https://weblab.ing.unimore.it/people/apruzzese/
https://weblab.ing.unimore.it/people/colajanni/
http://dbgroup.unimore.it/site/home/research/members/sonia-bergamaschi.html
http://www.ict.unimore.it/

iii

UNIVERSITY OF MODENA AND REGGIO EMILIA

Abstract
International Doctorate in Information and Communication Technologies

Computer Engineering and Science
Cycle XXXII

Department of Engineering “Enzo Ferrari”

Doctoral Thesis

Security Analytics and Machine Learning for Cyber Detection:
Modern Issues and Novel Solutions

by Giovanni APRUZZESE

Efficient detection of advanced cyber attacks is a complex problem that presents
multiple issues and challenges. Skilled attackers are constantly improving their
tools and, by adopting original strategies, are able to evade the detection of tradi-
tional rule-based approaches. As a consequence, large amounts of data breaches
remain undetected for months, causing severe damage to organizations. Humans
alone cannot efficiently deal with the increasing velocity, complexity and variety of
modern threats. To address these critical menaces, as evidenced by both scientific
literature and practical reports, cybersecurity analysts need to be supported with
forms of automatic detection mechanisms that exploit the huge volume of data gen-
erated by modern systems and networks. This thesis promotes and improves this
conviction by leveraging security analytics through machine learning models and
mathematical algorithms. We present original solutions for cyber detection of popu-
lar threats related to botnets, lateral movements, malicious periodic communications
and phishing. We also study the problems affecting these approaches in cybersecu-
rity contexts where solutions are not as straightforward as expected and the balance
between true and false detection remains an open issue. In the second part of the
thesis, we consider the problem of adversarial attacks against cyber detectors, and
we present original solutions to mitigate similar threats. The proposed methods re-
quire minimal amounts of information and few assumptions, thus enabling their
integration in real defensive frameworks of large enterprises. An important value
characterizing the entire thesis is that all the proposed ideas and approaches are im-
plemented and evaluated through experimental campaigns involving real datasets.
The presented results improve the state-of-the-art and, in some cases, solve the de-
tection problems. For these reasons, we can conclude that this thesis paves the way
to new defensive systems that can support cyber analysts in detecting advanced
forms of attacks in several scenarios.

Keywords: Cybersecurity, Intrusion detection, Security analytics, Machine learn-
ing, Adversarial attacks

HTTP://WWW.UNIMORE.IT
http://www.ict.unimore.it/
http://www.ingmo.unimore.it/

v

UNIVERSITÀ DI MODENA E REGGIO EMILIA

Abstract (italiano)
Scuola di Dottorato in Information and Communication Technologies

Dipartimento di Ingegneria “Enzo Ferrari”

Tesi di Dottorato di Ricerca

Security Analytics e Machine Learning per la Cyber Detection: Problematiche
Moderne e Soluzioni Innovative

di Giovanni APRUZZESE

La rilevazione efficace dei cyber-attacchi avanzati è un problema complesso che pre-
senta numerose problematiche e sfide. Gli attaccanti più esperti migliorano contin-
uamente i propri strumenti e, attraverso l’attuazione di strategie originali, sono in
grado di eludere la rilevazione degli approcci tradizionali basati su regole statiche.
Di conseguenza, molte data-breach richiedono mesi prima di essere identificate,
provocando ingenti danni alle organizzazioni moderne. Gli operatori umani da soli
non sono in grado di gestire il continuo aumento della complessità, varietà e veloc-
ità delle minacce recenti. Per risolvere questo problema, come evidenziato sia dalla
letteratura scientifica che da appositi report tecnici, gli analisti della sicurezza de-
vono essere supportati da meccanismi di rilevazione aumatici che possano sfruttare
le grandi quantità di dati generati dalle reti moderne. Questa tesi promuove e in-
centiva questa posizione, proponendo tecniche di security analytics che adottano
modelli di machine learning e algoritmi matematici. In particolare, vengono pre-
sentate soluzioni originali per la cyber detection di minacce diffuse quali botnet,
lateral movement, comunicazioni periodiche malevole, e phishing. Viene anche ef-
fettuato uno studio dei problemi che affliggono questi approcci nei contesti di cyber-
security, caratterizati da una – non apparente – difficoltà di applicazione di nuove
soluzioni, a causa della difficoltà di definire la linea di separazione tra azioni malev-
ole e legittime. Nella seconda parte di questa tesi, si considera il problema degli
adversarial attack contro i cyber detector, e si presentano soluzioni originali per
ridurre l’impatto di simili minacce. Tutti i metodi proposti richiedono un ridotto
quantitativo di informazioni e si basano su assunzioni essenziali, consentendone
l’integrazione nei framework di difesa adottati dalle organizzazioni reali. Un valore
importante che caratterizza l’intera tesi è che tutte le idee e tecniche proposte sono
validate attraverso numerose campagne sperimentali effettuate su dataset realistici
di grosse dimensioni. I risultati ottenuti migliorano lo stato dell’arte e, in alcuni
casi, risolvono i problemi di detection. Per queste ragioni, si può affermare che la
presente tesi costituisca un solido fondamento per la creazione di sistemi difensivi
che siano in grado di supportare gli analisti della sicurezza anche in presenza delle
forme di cyber-attacchi più all’avanguardia.

Keywords: Cybersecurity, Intrusion detection, Security analytics, Machine learn-
ing, Adversarial attacks

HTTP://WWW.UNIMORE.IT
http://www.ingmo.unimore.it/
http://www.ingmo.unimore.it/

vii

Acknowledgements
Il senso liberatorio che si prova quando si inizia a scrivere la pagina dei ringrazi-

amenti di una tesi è sempre estremamente piacevole, nonostante questa sia ormai
la terza volta (e, spero, l’ultima). Al contrario delle precedenti, che erano basate su
lavori molto più limitati (sia per durata che per complessità), questa tesi è frutto di
un percorso iniziato oltre tre anni fa. Un percorso che ha sensibilmente cambiato la
mia vita, facendomi aprire gli occhi su quello che è il mondo della ricerca scientifica.
Un mondo in continuo movimento, in cui le certezze sono poche e ogni giorno può
rivelare nuove sorprese – gradite o meno. Scadenze, articoli, progetti, conferenze,
convegni, viaggi... difficile descrivere in poche parole tutte le esperienze – comple-
tamente nuove – che ho vissuto in questi tre anni. In mezzo a tutte le incertezze che
ho avuto durante questo periodo, però, una certezza rimane solida: potessi tornare
indietro, rifarei tutto esattamente nella maniera in cui lo ho fatto.
Per questo il più grande “grazie” va al mio tutor (supervisore? advisor? mentore?
ancora non capisco quale sia il termine corretto), il Prof. Michele Colajanni, che mi
ha invitato a far parte del suo gruppo di ricerca (il WebLab) nell’ormai lontano 2016.
Grazie, perché le esperienze e le lezioni che ho vissuto in questo periodo non sareb-
bero mai state possibili senza il tuo continuo supporto.

Un enorme grazie a Fabio, mio senpai durante il mio primo anno di dottorato,
che è stata la mia figura di riferimento nella fase iniziale di questo percorso e con
cui ho prodotto alcuni dei lavori che più mi sono piaciuti. Non dimenticherò mai le
sensazioni che provavo quando mi recavo ogni giorno in laboratorio per parlarti dei
nuovi risultati ottenuti con i numerosi esperimenti fatti a notte fonda.

Grazie a Mirco, che nonostante i continui impegni a cui era quotidianamente
soggetto riusciva comunque a trovare sempre il tempo per “aggiustare ” gli articoli
in fase di submission, oltre che a fornire molte delle idee che sono poi state alla base
dei miei articoli di maggior successo.

Grazie a Luca, per avermi affiancato nel corso del progetto Asgard e per essersi
fatto carico di tutta la parte implementativa e di integrazione del mio (quasi inguard-
abile) jupyter notebook.

An important thank you goes to Prof. VS Subrahmanian, for accepting me as a
Visiting Student in his research group (DSAIL) at Dartmouth College, allowing me
to witness and experience how academic research is conducted in a “top institution”.
The 6 months that I spent in the USA have been some of the most meaningful in my
entire life, both from a professional and personal standpoint.

I also want to express my thanks to the external referees of this thesis, both for
the time spent in evaluating my research efforts, and for the valuable suggestions
that further improved the quality of this work.

Grazie anche a tutti i rimanenti membri del WebLab, per il supporto, le risate,
le cene, la compagnia, il secret santa, i volani in testa, lo sporco sulla scrivania,
l’apertura delle finestre quando fa freddo, le luci di natale a ferragosto, i furti del
mio antistress: Alessandro, Andrea, Astrid, Dario, Iro, Riccardo, Mauro, Federico...
questi 3 anni avrebbero avuto un altro sapore senza di voi.

Infine vanno gli “ovvi” grazie a mamma e papà. Perché ci siete. Sempre. E io lo
so. E voi pure.

Giovanni APRUZZESE

ix

Contents

Abstract iii

Abstract (Italian) v

Acknowledgements vii

List of Figures xi

List of Tables xiii

List of Abbreviations xv

Summary (Italian) xvii

1 Introduction 1

2 State of the Art 7
2.1 Classification of Machine Learning Algorithms for Cybersecurity . . . 8

2.1.1 Shallow Learning – supervised algorithms 9
2.1.2 Shallow Learning – unsupervised algorithms 11
2.1.3 Deep Learning – supervised algorithms 12
2.1.4 Deep Learning – unsupervised algorithms 12
2.1.5 Applications of machine learning algorithms to cyber detection 13

2.2 Issues of Machine and Deep Learning for Cyber Detection 15
2.2.1 Experimental methodology . 15
2.2.2 Evaluation results . 17

3 Novel Solutions for Cyber Detection 25
3.1 Scalable Architecture for Online Prioritization of Cyber Threats 26

3.1.1 Related work . 27
3.1.2 Proposed method . 28
3.1.3 Evaluation results . 33

3.2 Detection and Threat Prioritization of Pivoting Attacks 43
3.2.1 Related work . 44
3.2.2 Problem description . 46
3.2.3 Pivoting detection algorithm . 48
3.2.4 Computational complexity . 53
3.2.5 Threat prioritization . 56
3.2.6 Evaluation results . 59

3.3 Detection of Malicious Beaconing Activities 67
3.3.1 Related work . 68
3.3.2 Proposed method . 69
3.3.3 Experimental methodology . 74
3.3.4 Evaluation results . 76

x

4 Adversarial Attacks against Cyber Detectors 83
4.1 Categories of Adversarial Attacks in Cybersecurity 84
4.2 Effectiveness of Adversarial Attacks . 87

4.2.1 Related work . 88
4.2.2 Threat model . 90
4.2.3 Testbed . 93
4.2.4 Cyber detectors . 94
4.2.5 Generation of adversarial datasets 96
4.2.6 Evaluation results . 99

5 Countermeasures against Adversarial Attacks 109
5.1 Existing Defences against Adversarial Attacks 110

5.1.1 Defences against attacks at test-time 110
5.1.2 Defences against attacks at training-time 112
5.1.3 Evaluation results . 113

5.2 Countering Evasion Attacks on Random Forest Detectors 118
5.2.1 Related work . 119
5.2.2 Proposed method . 121
5.2.3 Experimental methodology . 124
5.2.4 Evaluation results . 126

5.3 Countering Poisoning Attacks against Cyber Detectors 135
5.3.1 Proposed method . 136
5.3.2 Experimental methodology . 138
5.3.3 Evaluation results . 139

5.4 Countering Evasion Attacks against Phishing Detectors 141
5.4.1 Related work . 143
5.4.2 Proposed method . 145
5.4.3 Experimental methodology . 147
5.4.4 Evaluation results . 152

6 Conclusions 159

Bibliography 163

xi

List of Figures

2.1 Classification of ML algorithms for cybersecurity applications. 10

3.1 Framework overview. 29
3.2 Activities of the layer modeling module. 30
3.3 Structure of a layer anomaly detection module. 32
3.4 Time series of an internal host performing horizontal and vertical scans. 36
3.5 Time series of an internal host in which two DTDs of 100MB and 1GB

are injected. 38
3.6 Comparison showing changes in Packets and Bytes layers when MITM

occurs. 39
3.7 Bipartite communications graph derived from Conns layer over 7 dif-

ferent days. 40
3.8 Example of lateral movement. 41
3.9 Online autonomous triage of internal hosts for different attack scenarios. 42
3.10 Example of pivoting activity. 46
3.11 Overview of proposed method. 48
3.12 Temporal graph representation of network flows between five hosts

(a,b,c,d,e). 49
3.13 Execution times of the pivoting detection algorithm. 67
3.14 Workflow of the proposed method. 70
3.15 Example of time series and related ACF generated by two host with a

noisy periodic behavior. 71
3.16 Time series, ACF and normalized spectrogram of two communica-

tions involving distinct malicious external hosts. 75
3.17 Average execution time of the main phases of the proposed method

for 24 hours of traffic. 79

4.1 Example of network considered in our use-case. 91
4.2 Distribution of F1-Score, Precision and Recall for all detectors and all

datasets. 101
4.3 Comparison between the distributions of the Recall metric in the non-

adversarial (baseline) and adversarial (attack) scenarios for all datasets. 102
4.4 Comparison of the distribution of Attack Severity for all the detectors

among the 4 different datasets. 103
4.5 Detection rates of the Neris instance on the adversarial datasets ob-

tained with three steps of every group of altered features. 108

5.1 Distribution of F1-Score, Precision and Recall using feature removal
for all detectors and all datasets. 115

5.2 The two phases of the cyber detector. 122
5.3 Workflow of the proposal: distillation is applied to the random forest

algorithm. 122
5.4 Architecture of the Undistilled detector. 125

xii

5.5 Comparison of the average detection rates on each malware family. . . 129
5.6 Comparison of the average detection rates for each group of altered

features. 130
5.7 Comparison of the average detection rates for each increment step. . . 131
5.8 Comparison of the detection rates on the adversarial datasets gener-

ated by all malware families. 132
5.9 Boxplot visualization of the results in Figures 5.8. 132
5.10 Comparison of the detection rates on the adversarial samples gener-

ated by specific malware families. 133
5.11 Boxplot visualization of the results in Figures 5.10. 133
5.12 Workflow of the proposed poisoning countermeasure: operations per-

formed before the (re)training. 137
5.13 Workflow of the proposed poisoning countermeasure: operations per-

formed at (re)training-time. 137
5.14 Scenario adopted for the experiments. 138
5.15 An example of the GBA-1 Attack. 151

xiii

List of Tables

2.1 Applications of ML to cybersecurity problems. 14
2.2 Training datasets for DGA Detection experiments. 16
2.3 Training datasets for Network Intrusion Detection experiments. 17
2.4 Comparison between DL and SL classifiers. 18
2.5 Classification results for attack-specific classifiers and the general clas-

sifier. 19
2.6 Detection rates of the RF classifier against different DGA before and

after hardening. Source: [45]. 19
2.7 Performance of the DGA detection classifiers when used on real data. . 21
2.8 Performance of the DGA detection classifiers when trained on out-

dated and recent datasets. 22
2.9 Performance of the intrusion detection classifier when trained with

different features. 22
2.10 Performance of the intrusion detection classifier when trained on dif-

ferent datasets. 23

3.1 Considered Layers. 31
3.2 Layers used to prioritize different types of attacker activities. 34
3.3 Reconnaissance attacks injected in the internal network from 10 hosts. 35
3.4 Percentage of times a host performing a reconnaissance is ranked within

the Top-K. 36
3.5 Percentage of times a host performing a DTD is ranked within the

Top-K. 37
3.6 Percentage of times a host victim of a MITM is ranked within the Top-K. 39
3.7 Percentage of times a host performing “watering hole” is ranked within

the Top-K. 40
3.8 Percentage of times a host performing LM is ranked within the Top-K. 41
3.9 Example of pivoting paths and corresponding flow sequences from

Figure 3.12 for εmax ≥ 27s. 50
3.10 Example of pivoting paths and corresponding flow sequences from

Figure 3.12 for εmax = 5s. 50
3.11 Symbol table. 51
3.12 Pivoting Attack Classes. 60
3.13 Performance of the threat prioritization algorithm. 61
3.14 Emulated propagation delays ε for the Attack Classes. 62
3.15 Pivoting attack detection for increasing εmax. 63
3.16 Threat prioritization: average ranking for increasing εmax. 63
3.17 Detection rate in top 5 for increasing εmax. 63
3.18 Comparison of detection algorithms. 65
3.19 Traffic information of each day of the dataset. 76
3.20 Parameter values used as input. 76
3.21 Validation of external hosts involved in periodic (gray) and aperiodic

(white) communications. 77

xiv

3.22 Comparison of the amount of external hosts. 78
3.23 Validation of the graylist and comparison with NIDS. 78

4.1 Mapping of the categories of adversarial attacks to cybersecurity prob-
lems. 87

4.2 Datasets metrics. 93
4.3 Meaningful metrics of the CTU-13 dataset. Source: [194]. 94
4.4 Features of the machine learning models. 96
4.5 Groups of altered features. 97
4.6 Increment steps of each feature for generating realistic adversarial

samples. 98
4.7 Performance in non-adversarial settings. 100
4.8 Effects of the adversarial attacks. 102
4.9 Results of the Top 5 algorithms on each individual datasets. 104
4.10 Baseline performance for each instance of the RF detector on the CTU-

13 dataset. 105
4.11 Detection rates on the adversarial datasets obtained by each instance

of the classifier. 107

5.1 Detection results for ML detectors with feature removal. 114
5.2 Results of the Top 5 algorithms on each individual dataset. 116
5.3 Baseline performance of the classifiers. 117
5.4 Effects of the evasion attack on each classifier. 118
5.5 Evaluation of the countermeasure based on adversarial retraining. . . 118
5.6 Parameters of the random forest models. 126
5.7 Baseline vs. Distilled model performance. 128
5.8 Training time of each instance of the detectors. 129
5.9 Comparison with adversarial retraining. 134
5.10 Comparison with feature removal. 135
5.11 Baseline performance of the classifiers. 140
5.12 Effects of the poisoning attack on each cyber detector. 140
5.13 Evaluation of the proposed defensive method. These results are ob-

tained by setting d = 2 and m = 5. 141
5.14 Comparison of existing static datasets for PDs. 148
5.15 List of features included the DSAIL dataset. 149
5.16 Classifiers and Dataset considered by existing PDs. 153
5.17 Impact of GBA-1 to GBA-3 on every classifier for each dataset. 153
5.18 Impact of the GBA-4 attacks on the baseline versions of each classifier

for every dataset. 154
5.19 No attack case: Baseline results for each dataset (using all available

features). 155
5.20 No attack case: Performance of POC on each dataset (using all avail-

able features). 155
5.21 Difference of the Impact of GBA-1 to GBA-3 between the Baseline and

the POC variations of every classifier for each dataset. 156
5.22 Differences between the Impact of the GBA-4 attack on the baseline

and on POC . 157

xv

List of Abbreviations

URL Universal Resource Locator
API Application Programming Interface
IDS Intrusion Detection System
NIDS Network Intrusion Detection System
ML Machine Learning
SL Shallow Learning
DL Deep Learning
NOC Network Operation Center
SOC Security Operation Center
SSH Secure SHell
IP Internet Protocol
ARP Address Resolution Protocol
COTS Cost Off The Shelf
MITM Man In The Middle
LAN Local Area Network
LR Linear Regression
RF Random Forest
DT Decision Tree
KNN K-Nearest Neighbors
DNN Deep Neural Network
CNN Convolutional (Deep) Neural Network
NN Neural Network
RNN Recurrent Neural Network
MLP Multi Layer Perceptron
SVM Support Vector Machine
PDF Portable Document Format
NB Naive Bayes
HMM Hidden Markov Model
DBN Deep Belief Network
RBM Restricted Boltzmann Machine
SAE Stacked AutoEncoder
FNN Feedforward (Deep) Neural Network
DGA Domain Generation Algorithm
DNS Domain Name System
GAN Generative Adversarial Network
ReLU Recurrent Linear Unit
DOS Denial Of Service
SIEM System Information (and) Event Management
MAC Media Access Control
DBMS DataBase Management System
CPU Central Processing Unit
GPU Graphical Processing Unit
RAM Read Only Memory
NAS Network Attached Storage
ACF AutoCorrelation Function
DFT Digital Fourier Transform
ToS Type of Service
CnC Command and Control
PCAP Packet CAPture
CSV Comma Separated Values
IANA Internet Assigned Numbers Authority
DR Detection Rate
SSD Solid State Disk

xvii

Summary (Italian)

Le organizzazioni moderne sono spesso bersaglio di molteplici minacce informatiche

effettuate da attaccanti con diversi obiettivi, elevate capacità, e forti motivazioni.

Nonostante i continui sforzi impiegati nella realizzazione di difese preventive, gli at-

tacchi continuano ad aver successo e nessuna organizzazione può defirsi realmente

al sicuro. In questo contesto, la presente tesi sposta l’attenzione dalla prevenzione

(prevention) delle minacce alla loro rilevazione (detection).

L’identificazione degli attacchi avanzati è un procedimento complesso e non es-

istono soluzioni singole che siano in grado di risolvere questo problema. I difensori

possono sfruttare i registri e gli allarmi prodotti dai dispositivi di sicurezza, ma per

trasformare l’elevata e ingestibile quantità di questi dati “grezzi” in informazioni

utili è necessario l’impiego di tecnologie di big data analytics. Non è quindi un caso

che il paradigma del machine learning stia venendo sempre più adottato anche per

compiti inerenti la sicurezza informatica, con lo scopo di supportare o anche sos-

tituire gli operatori umani. Infatti il machine learning è impiegato con successo in

molti domini a causa dei suoi vantaggi rispetto ai sistemi tradizionali basati su regole

statiche. Nonostante la totale automazione delle procedure di identificazione resti

un obiettivo molto ambizioso, bisogna tenere presente che la reale efficacia degli

approcci di machine learning in contesti di cybersecurity necessita ancora di appro-

fondite valutazioni.

Tra le molteplici problematiche che affliggono i sistemi di sicurezza basati sul

machine learning vi è la loro vulnerabilità ai cosiddetti adversarial attacks, che pun-

tano l’algoritmo di detection a produrre output favorevoli all’attaccante mediante

l’impiego di specifici samples debitamente modificati. Questo fenomeno è stato

ampiamente studiato nel settore della visione artificiale, ma in ambito della cyberse-

curity le analisi sono limitate e le soluzioni esistenti ancora immature.

Questa tesi si focalizza su questi problemi e propone soluzioni innovative per la

cyber detection. I contributi principali di questa tesi si possono riassumere in:

xviii

• analisi e miglioramento dello stato dell’arte della security analytics basata sul

machine learning;

• analisi approfondita di adversarial attack contro i cyber detector, e sviluppo di

difese originali.

In particolare, nella prima parte di questo lavoro verrà fornita una panoramica dello

stato dell’arte del machine learning per la cyber detection, e attraverso un’accurata

analisi sperimentale verrà valutata la maturità delle soluzioni basate su queste tec-

niche. Verranno altresì proposte soluzioni innovative per la cyber detection basate

sulla security analytics, con il duplice obiettivo di proteggersi contro attacchi avan-

zati, e ridurre l’impatto degli alti tassi di falsi positivi a cui queste metodologie sono

soggette. Quindi, nella seconda parte della tesi, verrà preso in considerazione il

problema degli adversarial attacks: attraverso molteplici esperimenti verrà valutato

l’impatto di tali minacce sui cyber detector; quindi verranno proposte contromisure

originali per contrastare questi pericoli, efficaci sia in contesti di attacchi nelle fasi di

training dell’algoritmo, che in fasi di test. Di seguito forniremo una descrizione più

dettagliata dei singoli contributi inclusi in questa tesi.

Presentiamo un’analisi, orientata agli specialisti di sicurezza, dell’applicazione

delle tecniche di machine learning per la rilevazione delle intrusioni di rete, dei mal-

ware, e dello spam. L’obiettivo è duplice: verificare la maturità di questi metodi, e

identificare le loro criticità in fase di produzione. Tale analisi è basata su un accurato

studio dello stato dell’arte e anche attraverso esperimenti originali in contesti di reti

di grandi dimensioni.

Gli strumenti di anomaly detection funzionano offline, o hanno l’obiettivo di seg-

nalare un host come compromesso, denotando un elevato rischio di falsi allarmi e

tempi di risposta non ideali per le reti moderne. Pertanto, in questa tesi proponiamo

un’architettura innovativa compatibile con analisi online, il cui scopo è il monitor-

aggio del comportamento di ciascun host interno da più prospettive, al fine di iden-

tificare indici di potenziali azioni sospette. Tali indici saranno poi post-correlati al

fine di produrre un elenco di host con un elevato tasso di rischio che sia facilmente

gestibile da operatori umani.

Molti attacchi avanzati utilizzano la tecnica del “pivoting”, attraverso la quale

viene creato un tunnel di propagazione di comandi che interessa due o più host, al

fine di inoltrare i comandi all’host obiettivo dell’attaccante. In questa tesi si descrive

xix

il primo algoritmo di pivoting detection basato sull’analisi dei network flows; tale

algoritmo viene affiancato da un ulteriore algoritmo il cui compito è il ranking delle

istanze di pivoting rilevate sulla base della loro pericolosità. L’utilizzo combinato di

questi approcci consentirà quindi agli analisti di sicurezza di concentrare il proprio

tempo solo sui tunnel più rischiosi.

Infine, viene proposto un metodo innovativo per l’analisi tempestiva ed auto-

matica del traffico generato da reti di grandi dimensioni, che è in grado di rilevare

host esterni malevoli anche se questi non generano alcun allarme. Il nostro focus è

negli host coinvolti in attività di “beaconing” (comunicazioni periodiche), che sono

molto frequenti in caso di host controllati da attaccanti remoti. L’output del metodo è

una graylist di poche dozzine di host, facilmente gestibile dagli analisti di sicurezza.

La qualità della proposta è misurata attraverso una adeguata valutazione sperimen-

tale in scenari di rete di migliaia di host.

Il machine learning è ampiamente utilizzato in molti contesti, ma l’applicazione

di queste tecniche in ambito della cyber security deve affrontare il grave problema

degli adversarial attacks. Pertanto, viene fornita un’analisi approfondita di tali mi-

nacce verso dispositivi orientati alla detection di intrusioni di rete, di malware, e

di spam. Inoltre, attraverso esperimenti originali, verranno anche valutate le con-

tromisure esistenti, evidenziandone le principali limitazioni, e motivando quindi la

necessità di sviluppo di strategie di difesa innovative.

Per far fronte a questa esigenza, si propongono metodi originali per contrastare

l’efficacia degli adversarial attack contro i cyber detectors, includendo sia attacchi in

fase di training del modello, che quelli in fase di testing. L’efficacia dei metodi pro-

posti è valutata attraverso esperimenti estensivi in contesti di (i) botnet e (ii) phish-

ing detection. I risultati di tali valutazioni dimostrano come gli approcci proposti

siano in grado di contrastare in maniera efficace tale minaccia, risultando allo stesso

tempo non soggetti ai problemi che influenzano i meccanismi difensivi noti.

Pertanto, questa tesi si può considerare come un valido contributo allo stato

dell’arte dell’applicazione del machine learning per scopi di cyber detection. Tutte

le soluzioni proposte sono facilmente integrabili in sistemi di difesa reali, e molte

di esse possono essere accoppiate con altri metodi di cyber detection. Eventuali es-

tensioni del presente lavoro includono la valutazione dell’efficacia di combinazioni

delle tecniche innovative proposte, e l’applicazione di tali metodi anche in contesti

di sicurezza diversi come la malware detection.

1

Chapter 1

Introduction

Modern organisations are subject to a multitude of cyber threats conceived by a wide

range of attackers with different goals, capabilities and motivations. Despite all the

efforts spent on preventive defences, the reality is that attacks occur every day and

no organisation can consider itself secure. This thesis shifts the focus from the pre-

vention to the detection phase.

Detecting advanced attacks is increasingly complex and no single solution can

work. Defenders can leverage logs and alarms produced by network and security

devices, but big data analytics solutions are necessary to transform the huge volumes

of raw data into useful information. Recently, the machine learning (ML) paradigm

is being leveraged also by defensive systems, with the goal of aiding or even sub-

stituting the first level of security analysts. Machine learning is adopted in several

domains due to its superiority over traditional rule-based methods. Although the

complete automation of detection procedures is an enticing goal, the efficacy of ma-

chine learning in cyber security must be evaluated with the due diligence.

In this thesis we consider two open issues that affect security analytics solutions

based on machine learning: the efficacy of detection in system subject to advanced

cyber attacks; the vulnerability of machine learning methods against so called ad-

versarial attacks that affect the detection capabilities of machine learning models. We

propose original contributions to address both problems. In the former area, we pro-

pose novel methods based on prioritizing the most suspicious cyber security alarms,

and the first algorithm to detect pivoting activities related to advanced threats. In the

context of adversarial attacks against cyber detectors, we improve the state of the

art by proposing robust methods that mitigate the impact of adversarial attacks at

training- and test-time, and avoid the drawbacks of existing countermeasures that

reduce the detection performance when applied in non-adversarial scenarios.

2 Chapter 1. Introduction

The research began by performing an analysis of the state of the art of machine

learning techniques for cyber detection, with the purpose of identifying both their

benefits and issues. Our goal is devising methods that supporting the human op-

erators, and not replace them. Instead of promising “guaranteed” detection, we

leverage security analytics to produce short-lists of hosts that are ranked on the ba-

sis of their suspicious behaviours, thus allowing security personnel to focus their

attention only on the most significant threats.

We integrate this prioritization approach in an original architecture devoted to the

analysis of network traffic in large enterprise networks. Since timely response is

paramount in cybersecurity contexts, we make scalability and compatibility with on-

line analyses our top priorities. The proposed architecture monitors the behavior of

each internal host from multiple perspectives, detects suspicious activities possibly

related to advanced attacks, and correlates these anomaly indicators to produce a list

of the most likely compromised hosts that is provided to human analysts. This ar-

chitecture has a flexible design, allowing its adoption to counter different advanced

threats. In this context, this thesis focuses on the identification of malicious beaconing

and pivoting activities.

The term beaconing denotes communications that occur periodically, which is a

technique employed by attackers to maintain their control in a target network. De-

tecting beaconing attacks is a difficult problem: beaconing activities may be legiti-

mate, which increases the risk of false alarms; they can occur at very different time-

intervals that are difficult to analyse in large networks. We address these issues by

devising a novel method for automatic and timely analysis of traffic generated by

large networks, which is able to detect malicious external hosts involved in beacon-

ing activities even when they do not raise any alert by existing defensive systems.

The output is a manageable graylist of external hosts characterized by a very high

likelihood of being malicious. The proposed method is evaluated in a large network

scenario, where its capable of producing short-lists of few external hosts (out of the

hundreds of thousands contacted daily) that perform beaconing activities with a

high likelihood of maliciousness.

Pivoting attacks involve the creation of command propagation tunnels through two

or more hosts in order to reach the intended target, and their identification is a com-

plex challenge: they are a rare event, facilitating elusive attempts; and their timely

Chapter 1. Introduction 3

discovery is computationally demanding. We solve both of these problems by pre-

senting the first algorithm that detects pivoting activities by means of network flows

analysis. We integrate this proposal with an original prioritization algorithm allow-

ing security analysts to investigate just the most suspicious pivoting tunnels. Exten-

sive evaluations in realistic enterprise setting show the quality of our solution: it is

able to detect all pivoting instances occurring in the monitored network, and its out-

put includes the hosts involved in pivoting attacks among the Top 5 most suspicious

threats in over 97% of the cases.

The increasing diffusion of machine and deep learning gave birth to the topic

of adversarial machine learning. This research area focuses on the performance of

these methods in settings where an attacker is actively trying to thwart the machine

learning algorithm through the production of samples that induce an incorrect out-

put. Literature on computer vision provides multiple use-cases of such adversarial

attacks; however, researches that address this issue from a cybersecurity perspective

are scarce. After analysing the state of art, we noted a gap in the context of net-

work intrusion detection. We solve this problem by presenting a large evaluation

of adversarial attacks against intrusion detectors based on multiple machine learn-

ing algorithms and spanning over different publicly available datasets. This pre-

liminary study highlights that modern adversarial attacks are effective on machine

learning classifiers for cyber detection. To aggravate this problem, our analysis also

evidences that existing countermeasures to adversarial perturbations are affected by

several issues: they induce a performance drop in the absence of adversarial attacks;

they can be used only for specific algorithms; their integration and maintenance

comes at very high costs. In this thesis, we address all of these issues. We propose

countermeasures against poisoning and evasion attacks at test-time. As a practical

application, we integrate the proposed solutions in botnet and phishing detectors

and evaluate their effectiveness. The results show the threefold value of our pro-

posals: they produce detectors that outperform the state of the art by improving the

detection rate from 50% to 250% in adversarial settings; they can be applied to mul-

tiple classification algorithms; their application preserves the detection performance

in non-adversarial scenarios, which is a critical improvement because in reality we

cannot predict when an adversarial attack occurs.

This thesis is divided into six chapters, each presenting multiple contributions

4 Chapter 1. Introduction

to the state of the art. Chapter 2 analyzes the application of machine learning algo-

rithms to cyber detection and highlights the related issues. Chapter 3 presents three

original approaches and solutions for cyber detection based on security analytics.

Chapter 4 analyzes the problem of adversarial attacks from a cybersecurity perspec-

tive, and presents the results of our focused study on network intrusion detectors in

adversarial settings. Chapter 5 describes and evaluates existing countermeasures to

adversarial attacks, and proposes novel defensive strategies. Chapter 6 concludes

the thesis with final remarks and possible extensions for future work.

5

Part 1 – Security Analytics for Cyber Detection

7

Chapter 2

State of the Art

The appeal and pervasiveness of machine learning (ML) is growing. Existing meth-

ods are being improved, and their ability to understand and answer real issues is

highly appreciated. These achievements led to the adoption of machine learning in

several domains, such as computer vision, medical analysis, gaming, and social me-

dia marketing [1], [2]. In some scenarios, machine learning techniques represent the

best choice over traditional rule-based algorithms and even human operators [3].

This trend is also affecting the cybersecurity field where some detection systems

are being upgraded with ML components [4]–[10]: indeed, the adoption of semi-

automatic defensive techniques to support security operators is an inevitable trend

because of the continuous changes and increments of both network traffic and so-

phistication of the attacks [4], [5], [11]. Although devising a completely automated

cyber defence system is yet a distant objective, first level operators in NOC and

SOC may benefit from detection and analysis tools based on machine learning. In

summary, the domain of security analytics can be greatly improved through the ap-

plication of machine learning algorithms.

This chapter aims (i) to assess the current maturity of these solutions; (ii) to iden-

tify their main limitations; and (iii) to highlight some room for improvement. Our

study is based on an extensive review of the literature and on original experiments

performed on real, large enterprises and network traffic. In the evaluation we ex-

clude the commercial products based on machine learning (or on the abused Arti-

ficial Intelligence label) because vendors do not reveal their algorithms and tend to

overlook issues and limitations. We remark that our analyses are tailored for cyber-

security personnel, who are more interested in realistic and practical applications

of these novel solutions in real scenarios, rather than on their theoretical benefits.

We highlight pros and cons of different methods especially in terms of false positive

8 Chapter 2. State of the Art

or false negative alarms. Moreover, we point out a general underestimation about

the complexity of managing ML architectures in cybersecurity, caused by the lack of

publicly available and labelled data for training, and by the time required for fine-

tuning operations in a domain characterized by continuous changes. All these issues

must be known by cybersecurity operators when considering the integration of ex-

isting defensive systems with machine learning methods. The evidenced drawbacks

pave the way to future improvements that ML components require before being

fully adopted in cyber defence platforms.

The remainder of this chapter is structured as follows. Section 2.1 provides a

thorough study of the state of the art of machine learning applied to cybersecurity,

starting from a general overview of machine learning algorithms and followed by

their successful applications to cyber detection. Then, Section 2.2 focuses on the anal-

ysis of the main limitations of these methods in the cybersecurity domain, which are

based both on a thorough review of existing literature and on original experiments.

2.1 Classification of Machine Learning Algorithms for Cy-

bersecurity

This section is based on an extensive review of existing literature on cyber detec-

tion through machine learning. We begin by presenting an original taxonomy of

machine learning approaches that is oriented to security experts rather than to ar-

tificial intelligence specialists. Then, we map the identified classes of algorithms to

three detection problems where machine learning found more applications: network

intrusion detection, malware detection, spam and phishing email detection.

Machine learning includes a large variety of paradigms in continuous evolution,

presenting weak boundaries and cross relationships. Furthermore, different views

and applications may lead to different classifications. Hence, we cannot refer to one

fully accepted taxonomy from literature, but we prefer to propose an original taxon-

omy able to capture the differences among the myriad of techniques that are being

applied to cyber detection, shown in Figure 2.1. This taxonomy is specifically ori-

ented to security operators and avoids the ambitious goal of presenting the ultimate

classification that can satisfy all AI experts and application cases. The first discrimi-

nant evidenced in Figure 2.1 is between the traditional ML algorithms, which today

can be referred to as Shallow Learning (SL), in opposition to the more recent Deep

2.1. Classification of Machine Learning Algorithms for Cybersecurity 9

Learning (DL). Shallow Learning requires a domain expert (that is, a feature engineer)

who can perform the critical task of identifying the relevant data characteristics be-

fore executing the SL algorithm. Deep Learning relies on a multi-layered represen-

tation of the input data, and can perform feature selection autonomously through

a process defined representation learning. We anticipate that all DL algorithms are

based on Deep Neural Networks (DNN), which are large neural networks organized

in many layers capable of autonomous representation learning.

SL and DL approaches can be further characterized by distinguishing between

supervised and unsupervised algorithms. The former techniques require a training

process with a large and representative set of data that have been previously clas-

sified by a human expert or through other means. The latter approaches do not

require a pre-labeled training dataset. The ML algorithms applied to cybersecurity

considered in this paper appear as the leaves of the classification tree in Figure 2.1.

2.1.1 Shallow Learning – supervised algorithms

• Naïve Bayes (NB). These algorithms are probabilistic classifiers which make the

a-priori assumption that the features of the input dataset are independent from

each other. They are scalable and do not require huge training datasets to

produce appreciable results. These algorithms represent a subset of Bayesian

Networks [12], which are graph algorithms that represent variables as nodes,

where the dependencies between variables are the edges of the graph.

• Logistic Regression (LR). They are categorical classifiers that adopt a discrimina-

tive model. Like NB algorithms, LR methods make the a-priori independency

assumption of the input features. Their performance is highly dependent on

the size of the training data.

• Support Vector Machines (SVM). They are non-probabilistic classifiers that map

data samples in a feature space with the goal of maximizing the distance be-

tween each category of samples. They do not make any assumption on the

input features, but they perform poorly in multi-class classifications. Hence,

they should be used as binary classifiers. Their limited scalability might lead

to long processing times.

• Random Forest (RF). A random forest is a set of decision trees, and considers the

output of each tree before providing a unified final response. Each decision

10 Chapter 2. State of the Art

FIGURE 2.1: Classification of ML algorithms for cybersecurity appli-
cations.

2.1. Classification of Machine Learning Algorithms for Cybersecurity 11

tree is a conditional classifier: the tree is visited from the top and, at each node,

a given condition is checked against one or more features of the analysed data.

These methods are efficient for large datasets and excel at multiclass problems,

but deeper trees might lead to overfitting.

• Hidden Markov Models (HMM). They model the system as a set of states produc-

ing outputs with different probabilities: the goal is to determine the sequence

of states that produced the observed outputs. HMM are effective for under-

standing the temporal behaviour of the observations, and for calculating the

likelihood of a given sequence of events. Although HMM can be trained on la-

belled or unlabeled datasets, in cybersecurity they have mostly been used with

labelled datasets.

• K-Nearest Neighbor (KNN). KNN are used for classification and can be used for

multi-class problems. However, both their training and test phase are compu-

tationally demanding: to classify each test sample, they compare it against all

the training samples.

• Shallow Neural Network (SNN). These algorithms are based on neural networks,

which consist in a set of processing elements (that is, neurons) organized in two

or more communicating layers. SNN include all those types of neural networks

with a limited number of neurons and layers. Despite the existence of unsu-

pervised SNN, in cybersecurity they have mostly been used for classification

tasks.

2.1.2 Shallow Learning – unsupervised algorithms

• Clustering. They group data points that present similar characteristics. Well

known approaches include k-means and hierarchical clustering. Clustering meth-

ods have a limited scalability, but they represent a flexible solution that is typ-

ically used as a preliminary phase before adopting a supervised algorithm or

for anomaly detection purposes.

• Association Rules. They aim to identify unknown patterns between data, mak-

ing them suitable for prediction purposes. However, they tend to produce an

excessive output of not necessary valid rules, hence they must be combined

12 Chapter 2. State of the Art

with accurate inspections by a human expert. This category of algorithms also

include sequential-rule mining approaches [13].

2.1.3 Deep Learning – supervised algorithms

• Fully-connected Feedforward Deep Neural Networks (FNN). They are a variant of

DNN where every neuron is connected to all the neurons in the previous layer.

FNN do not make any assumption on the input data and provide a flexible

and general-purpose solution for classification, at the expense of high compu-

tational costs.

• Convolutional Feedforward Deep Neural Networks (CNN). They are a variant of

DNN where each neuron receives its input only from a subset of neurons of the

previous layer. This characteristic makes CNN effective at analyzing spatial

data, but their performance decreases when applied to non-spatial data. CNN

have a lower computation cost than FNN.

• Recurrent Deep Neural Networks (RNN). A variant of DNN whose neurons can

send their output also to previous layers; this design makes them harder to

train than FNN. They excel as sequence generators, especially their recent vari-

ant, the long short-term memory.

2.1.4 Deep Learning – unsupervised algorithms

• Deep Belief Network (DBN). They are modelled through a composition of Re-

stricted Boltzmann Machines (RBM), a class of neural networks with no output

layer. DBN can be successfully used for pre-training tasks because they excel

in the function of feature extraction. They require a training phase but with

unlabelled datasets.

• Stacked AutoEncoders (SAE). They are composed by multiple AutoEncoders, a

class of neural networks where the number of input and output neurons are

the same. SAE excel at pre-training tasks similarly to DBN, and achieve better

results on small datasets.

We conclude this section with an important remark. Existing literature (e.g. [14]–

[16]) often refers to algorithms based on neural networks with the term Multi-Layer

Perceptron (MLP). With the advent of deep learning, this term has become outdated,

2.1. Classification of Machine Learning Algorithms for Cybersecurity 13

and most recent studies started to adopt the terminology identifying the “deep”

variants of neural networks.

2.1.5 Applications of machine learning algorithms to cyber detection

We consider the three areas where most cyber ML algorithms are finding application:

intrusion detection, malware detection, and spam detection. An outline of each field is

presented below.

Intrusion detection aims to discover illicit activities within a computer or a net-

work through Intrusion Detection Systems (IDS). Network IDS are widely deployed

in modern enterprise networks. These systems were traditionally based on patterns

of known attacks, but modern deployments include other approaches for anomaly

detection, threat detection and classification based on machine learning. Within the

broader intrusion detection area, two specific problems are relevant to our analy-

sis: the detection of botnets and of Domain Generation Algorithms (DGA). A botnet

is a network of infected machines controlled by attackers and misused to conduct

multiple illicit activities. Botnet detection aims to identify communications between

infected machines within the monitored network and the external command-and-

control servers. Despite many research proposals and commercial tools that address

this threat, several botnets still exist. DGA automatically generate domain names,

and are often used by an infected machine to communicate with external server(s)

by periodically generating new hostnames. They represent a real threat for orga-

nizations because through DGA, relying on language processing techniques, it is

possible to evade defences based on blacklists of static domain names. We consider

DGA detection techniques based on ML.

Malware detection is an extremely relevant problem because modern malware

can automatically generate novel variants with same malicious effects but appear-

ing as a completely different executable file. These polymorphic and metamorphic

features defeat traditional rule-based malware identification approaches. ML tech-

niques can be used to analyse malware variants and attributing them to the correct

malware family.

Spam and phishing email detection includes a large set of techniques aimed at

reducing the waste of time and potential hazard caused by unwanted emails. Nowa-

days, unsolicited emails, namely phishing, represent the preferred way through which

an attacker establishes a first foothold within an enterprise network. Phishing emails

14 Chapter 2. State of the Art

include malware or links to compromised websites. Spam and phishing detection is

increasingly difficult because of the advanced evasion strategies used by attackers to

bypass traditional filters. ML approaches can improve the spam detection process.

In Table 2.1 we report the main ML algorithms that have been proposed to ad-

dress the previously identified cybersecurity problems. In this table, rows report the

family of algorithms presented in Sections 2.1.1 through 2.1.4, while columns denote

cyber issues. Each cell indicates which ML algorithms are used for each problem;

cells with a cross mark denote that, to the best of our knowledge, there is no pro-

posal for that class of problems. From this table, it emerges that SL algorithms are

applied to all considered problems. Supervised DL algorithms find wide application

to malware analysis, less to intrusion detection; spam detection seems to be better

combined with unsupervised DL algorithms. Despite its relatedness to natural lan-

guage processing [3], no DL algorithm is applied to DGA detection. As expected,

the overall number of algorithms based on DL is considerably smaller than those

based on SL. Indeed, DL proposals based on huge neural networks are more recent

than SL approaches. This gap opens many research opportunities.

TABLE 2.1: Applications of ML to cybersecurity problems.

Intrusion Detection Malware Spam
Network Botnet DGA Analysis Detection

D
ee

p
le

ar
ni

ng

Supervised RNN [8]

CNN [17] RNN [8] 7

FNN [18]
CNN [19]
RNN [20]

7

Unsupervised
DBN [21]
SAE [22]

7 7
DBN [23]
SAE [24]

DBN [25]
SAE [26]

Sh
al

lo
w

le
ar

ni
ng

Supervised

RF [4]
NB [4]

SVM [4]
LR [4]

HMM [4]
KNN [4]
SNN [4]

RF [27]
NB [27]

SVM [27]
LR [28]

KNN [29]
SNN [30]

RF [31]
HMM [31]

RF [32]
NB [32]

SVM [32]
LR [32]

HMM [33]
KNN [32]
SNN [34]

RF [35]
NB [36]

SVM [36]
LR [35]

KNN [35]
SNN [35]

Unsupervised
Clustering [37]
Association [38]

Clustering [39] Clustering [40]
Clustering [32]
Association [41]

Clustering [42]
Association [43]

Finally, we highlight a significant difference among supervised and unsuper-

vised approaches: the former algorithms are used for classification purposes and can

implement complete detectors; the latter techniques perform ancillary activities [44].

Unsupervised SL algorithms are often used for grouping data with similar charac-

teristics independently of predefined classification criteria, and excel at identifying

useful features whenever the data to be analysed present high dimensionality [24].

2.2. Issues of Machine and Deep Learning for Cyber Detection 15

2.2 Issues of Machine and Deep Learning for Cyber Detec-

tion

Unlike other fields, such as computer vision, speech recognition or social media mar-

keting, where ML is mature even for autonomous products [3], the integration of

cyber detection schemes with ML methods must be evaluated with due diligence:

indeed, our analyses evidence that ML is still at an early stage for cybersecurity.

We present seven issues that must be considered before deciding whether to deploy

them in production with no human supervision. We substantiate each conclusion

with experimental results from literature or original experiments performed on large

enterprises. Our experimental campaign involves the problems of DGA Detection

and Network Intrusion Detection, and leverage two ML algorithms: Random Forest

(representative of the “Shallow Learning” category) and Feedforward Fully Con-

nected Deep Neural Network (representing Deep Learning methods). We describe

the testing environments used for our experiments and the metrics considered for

evaluation in Section 2.2.1. Then we present the issues and experimental results in

Section 2.2.2.

We anticipate that the our results evidence that machine and deep learning tech-

niques still present several shortcomings that limit their applicability in real contexts.

All approaches tend to generate too many false positives, they are vulnerable to ad-

versarial attacks, and require continuous re-training and careful parameter tuning.

Moreover, the maturity of deep learning approaches for Security Analytics is still at

an early stage and significant improvements may be expected. We can conclude that

machine and deep learning techniques can support the security operator activities

and automate some tasks, but pros and cons must be known. Overestimating the

autonomy of machine and deep learning capabilities can facilitate the possibilities

for skilled attackers to infiltrate, steal data and even sabotage an enterprise.

2.2.1 Experimental methodology

For DGA Detection we compose two labelled training datasets containing both

DGA and non-DGA domains. The former dataset contains DGA created through

16 Chapter 2. State of the Art

known techniques, while the latter contains DGA created using more recent ap-

proaches. Non-DGA domains are randomly chosen among the Cisco Umbrella top-

1 million1. We report the meaningful metrics of these training datasets in Table 2.2.

Moreover, we build a testing dataset of 10 000 domains extracted evenly from each

of the training datasets. We also rely on a real and unlabeled dataset composed

of almost 20 000 domains contacted by a large organization. The features extracted

for this dataset are: n-gram normality score [45], meaningful characters ratio [45],

number-to-character ratio, vowel-to-consonant ratio, domain length. These datasets

are used to train and test a self-developed Random Forest classifier composed of 100

decision trees leveraging the CART (classification and regression tree) algorithm.

TABLE 2.2: Training datasets for DGA Detection experiments.

Dataset DGA technique DGA count non-DGA count
1 Well-known 21 355 20 227
2 Well-known and recent 37 673 8 120

For Network Intrusion Detection, we use three labelled real training datasets

composed of benign and malicious network flows collected in a large organiza-

tion of nearly 10 000 hosts. The labels are created by flagging as malicious those

flows [46] that raised alerts by the enterprise network IDS and reviewed by a domain

expert. Meaningful metrics of these training datasets are reported in Table 2.3. We

generate also a testing dataset of 50 000 flows evenly extracted among the training

datasets. The considered features for these datasets include: source/destination IP

address, source/destination port, number of incoming/outgoing bytes and packets,

TCP flags, protocol used, duration of the flow, list of alerts raised. These datasets are

used to test and train two self-developed classifiers: one based on Random Forests

and one based on Feedforward Fully-connected Deep Neural Network. Different

topologies have been considered for each algorithm. The RF is composed by 100

decision trees leveraging the CART algorithm. For the FNN, the overall number

of neurons ranges from 128 to 16 384, distributed between 2 to 16 layers; the hidden

layers leverage the ReLU activation function, whereas the output layer uses a sigmoid

activation function.

The quality of each classifier is measured through common performance metrics,

namely Precision (Prec), Recall (or Detection Rate, DR), F1-score, which are computed

1Cisco Umbrella top-1 Million: https://umbrella.cisco.com/blog/2016/12/14/
cisco-umbrella-1-million/

https://umbrella.cisco.com/blog/2016/12/14/cisco-umbrella-1-million/
https://umbrella.cisco.com/blog/2016/12/14/cisco-umbrella-1-million/

2.2. Issues of Machine and Deep Learning for Cyber Detection 17

TABLE 2.3: Training datasets for Network Intrusion Detection exper-
iments.

Dataset Malicious flows Benign flows
1 1 000 100 000
2 2 500 250 000
3 5 000 500 000

as follows:

Prec =
TP

TP + FP
(2.1)

DR =
TP

TP + FN
(2.2)

F1-score = 2 ∗ Prec ∗ DR
Prec + DR

, (2.3)

where TP, FP and FN denote true positives, false positives and false negatives,

respectively. For completeness, we remark that we consider a true positive to be

a correct detection of a malicious sample. Precision indicates how much a given

approach is likely to provide a correct result. Recall is used to measure the detection

rate. The F1-score combines Precision and Recall into a single value. We do not

rely on Accuracy2 because, in a real organization, the amount of legitimate events is

several orders of magnitude greater than illegitimate events. Hence, all the Accuracy

values are close to 1 and these results prevent capturing the true effectiveness of a

classifier. Finally, to reduce the possibility of biased results, each evaluation metric

is computed after performing 10-fold cross validation.

2.2.2 Evaluation results

Shallow vs Deep Learning Deep Learning is known to outperform Shallow Learn-

ing in some applications, such as computer vision [3]. This is not always the case for

cybersecurity where some well configured SL algorithm may prevail, even because

the DL proposals are scarce with respect to SL techniques in this domain. Just to give

an example, we experimentally compare the performance of the two self-developed

classifiers for Network Intrusion Detection, one based on RF (Shallow Learning)

and another one based on FNN (Deep Learning). We focus on these techniques due

to their academically-proven proficiency in Intrusion Detection scenarios [27], [47]–

[51]. Both are trained with the third dataset described in Table 2.3 and tested on

2 Accuracy = FP+FN
TP+TN+FN+FP , where TN denotes true negatives.

18 Chapter 2. State of the Art

the network intrusion detection testing dataset. To obtain more refined results, we

repeat the training and test phase of these classifiers multiple times using different

topologies. In Table 2.4, we show the classification results achieved by each method;

for the FNN we report the results obtained by the best topology consisting in 1 024

neurons spread across 4 hidden layers. The RF classifier performed better than the

FNN, with an F1-score of nearly 0.8, against the 0.6 obtained by the FNN. Our take-

away is that security administrators should not be charmed by the alluring neuronal

multi-layer approach offered by Deep Learning, as some of these methods might

still be immature for cybersecurity.

TABLE 2.4: Comparison between DL and SL classifiers.

Classifier F1-score Precision Recall
Random Forest (SL) 0.7985 0.8727 0.736

Fully-connected Feedforward
Deep Neural Network (DL)

0.6085 0.7708 0.5027

General vs Specific detectors Products based on machine learning are often pro-

moted by vendors as catch-all solutions to a broad array of cyber attacks. How-

ever, unbiased experimental results show that ML algorithms may provide superior

performance when they focus on specific threats instead of trying to detect multiple

threats at once. We devise multiple intrusion detection systems based on the self-

developed RF classifiers for network intrusion detection, each focusing on a specific

type of attack, such as buffer overflows, malware infection, DoS. The training dataset

for each classifier is based on the third dataset presented in Table 2.3. We train and

test each classifier, and then compare their classification results with the classifier

described in the first row of Table 2.4 that is our baseline. Table 2.5 shows the Pre-

cision, Recall and F1-score of the six classifiers that obtained the best results, along-

side the baseline reported in the bottom row. These attack-specific classifiers obtain

promising results on real traffic data with F1-scores of over 0.95, while the “general-

purpose” classifier performs significantly poorly. We conclude that entrusting a sin-

gle ML detector to identify malicious flows is an enticing but yet unfeasible goal. On

the other hand, by having multiple detectors, each focusing on one attack type, it is

possible to produce a defensive scheme with superior detection capabilities.

Selection of a machine learning algorithm Unbiased comparison of the effective-

ness of two ML algorithms requires that they are both trained on the same training

2.2. Issues of Machine and Deep Learning for Cyber Detection 19

TABLE 2.5: Classification results for attack-specific classifiers and the
general classifier.

Attack name F1-score Precision Recall
DOS attempt 0.9953 0.9938 0.9969

Overflow attempt 0.9939 0.9933 0.9946
SSH Brute Force 0.9916 0.9941 0.9892

Suspicious DNS query 0.9753 0.9953 0.9586
Cache Poisoning attempt 0.9676 0.9872 0.9506

Possible Malware infection 0.9587 0.9939 0.9337
General approach (baseline) 0.7985 0.8727 0.7360

TABLE 2.6: Detection rates of the RF classifier against different DGA
before and after hardening. Source: [45].

DGA method Baseline Recall Hardened Recall
corebot 0.97 0.97

cryptolocker 0.87 0.88
dircrypt 0.95 0.93

kraken v2 0.72 0.76
lockyv2 0.87 0.84
pykspa 0.67 0.71
qakbot 0.94 0.94
ramdo 0.54 0.54
ramnit 0.94 0.94
simda 0.75 0.76

dataset and tested on the same dataset [4]. Even though many cybersecurity propos-

als rely on few and old public datasets, their results are not comparable due to sev-

eral causes: the two algorithms consider different features; one or both algorithms

may implement pre-filtering operations that alter the training dataset; they may use

a different split between test and training dataset. For these reasons, meaningful

comparisons between detection performance in literature are extremely difficult.

For example, papers such as [5] and [39] discuss ML methods for two cyberse-

curity problems, but they do not consider the different training and testing envi-

ronments of the analysed works. Hence, although some solutions achieve higher

accuracy than others, it is possible that results change significantly under different

training settings. Furthermore, there is no guarantee that a method performing best

on a test dataset confirms its superiority on different datasets. Security administra-

tors should be aware of this issue, and should thoroughly question the evaluation

methodology before accepting the performance results of different machine learning

algorithms.

20 Chapter 2. State of the Art

False Positives and False Negatives The implicit cost of a misclassification in the

cybersecurity domain is a serious problem. False positives in malware classification

and intrusion detection annoy security operators and hinder remediation in case

of actual infection. In phishing detection, they might cause important, legitimate

messages to not be delivered to end users. In contrast, failing to detect a malware,

a network intrusion or a phishing email can compromise an entire organization.

We explore this problem by considering the performance of ML solutions devoted

to malware analysis and phishing detection [35], while we rely on an original ex-

periment for network intrusion detection. For malware analysis, we consider the

approach in [32] that proposes an original and effective method for malware clas-

sification: this paper contains a detailed analysis and comparison of different ML

techniques which were trained and tested on the same datasets, thus satisfying the

requirements for valid comparison of different techniques; hence, we deem this pa-

per as a good representation of the state of the art of ML for determining the family

to which a malware sample belongs. The evaluation is performed on the DREBIN3

dataset: for large malware families the proposed approach, which outperforms all

other baselines, obtains an F1-score of 0.95, whereas for small malware families it

achieves an F1-score of 0.89. For phishing detection, we report the results described

in [35] that, to the best of our knowledge, is the only paper on phishing email de-

tection which compares different ML algorithms against the same comprehensive

dataset. Therefore, we consider this work as a valid overview of the efficacy of dif-

ferent ML methods. The authors created a custom dataset of nearly 3 000 phishing

emails on which several ML classifiers were tested: the best results were obtained by

RF (lowest false positives) and LR (lowest false negatives), obtaining an F1-score of

0.90 and 0.89, respectively. The scenario for intrusion detection is different, as mod-

ern solutions can achieve higher Accuracy scores [4]. Although near-perfect Accu-

racy may seem an appreciable result, the massive amounts of events generated daily

in a large enterprise account for hundreds to thousands of false positives that need

to be manually triaged by security operators. We highlight this problem through an

original experiment. We consider two DGA detectors based on the self-developed

Random Forest classifiers trained on the first and second datasets of Table 2.2, re-

spectively. We then validate them on the real domain dataset. Results are summa-

rized in Table 2.7 which presents the number of domains that are flagged as DGA by

3DREBIN dataset: https://www.sec.cs.tu-bs.de/~danarp/drebin/

https://www.sec.cs.tu-bs.de/~danarp/drebin/

2.2. Issues of Machine and Deep Learning for Cyber Detection 21

both classifiers, alongside its percentage on the total amount of domains included

in the dataset. We can observe that the two classifiers obtain comparable detection

performances on real traffic data, as they both signal about 400 domains. However,

manual inspection revealed that they were not DGA, hence all the domains flagged

as DGAs are actually false positives. As anticipated, even a false positive rate of 2%

can account to hundreds of false alarms in a real organization.

TABLE 2.7: Performance of the DGA detection classifiers when used
on real data.

Classifier Training Dataset Domains classified as DGA
1 Well-known 431(2.16%)
2 Well-known and recent 397(1.99%)

Re-training issues A well-known limitation of traditional detection approaches

based on static detection rules is the need for frequent and continuous updates (e.g.,

daily updates of antivirus definitions). A similar issue affects also advanced ML

approaches: reliance on outdated training datasets leads to poor detection perfor-

mance. This is a critical problem for all supervised learning approaches requiring

labelled training datasets: the manual creation of similar datasets is an expensive

process because they need to be sufficiently large and comprehensive to allow the

algorithm to learn the difference between the different classes. Furthermore, these

operations are error prone and may lead to incorrect classifications. Finally, the large

majority of organizations are unwilling to share their internal network data. This

scenario leads to an overall scarcity of publicly available and labelled data for cyber-

security, thus causing periodic retraining extremely difficult or impossible. To show

the detrimental effects of obsolete training sets, we perform an experiment compar-

ing the detection rate of two instances of the same self-developed RF classifier for

DGA detection. The first and second instances are trained with the first and sec-

ond datasets reported in Table 2.2, respectively. Both classifiers are tested against

the same synthetic domain dataset described at the beginning of this section. We re-

port the results in Table 2.8, which shows the Precision, Recall and F1-score obtained

by the two classifiers for DGA detection. As expected, the performance of the sec-

ond classifier is significantly better because it obtains an F1-score for DGAs of 0.89

against 0.33. These results demonstrate that classifier performances are extremely

sensitive to the freshness of the training set.

22 Chapter 2. State of the Art

TABLE 2.8: Performance of the DGA detection classifiers when
trained on outdated and recent datasets.

Classifier Training Dataset F1-score Precision Recall
1 Well-known 0.3306 0.1984 0.9913
2 Well-known and recent 0.8999 0.9126 0.8875

A potential solution to this issue may involve the application of a recent method

by [52], which could be useful in cybersecurity contexts. This paper proposes a

retraining approach that puts emphasis on the “when” a given event happens, so

that more recent events have a greater influence on the future decisions than “older”

events. This is achieved by assigning different weights to each sample, with newer

samples having higher impact. However, we stress that a similar approach presents

issues in itself, such as high computational costs required to constantly update the

weights associated to each data sample.

Deployment process Security solutions based on ML achieve valid detection rates

only if the training dataset is appropriate and the parameters of the algorithms are

finely tuned. In most scenarios, these operations are still executed empirically and

represent a resource intensive task that presents several risks. If these steps are not

performed rigorously and/or training is not based on the right datasets, the results

are underwhelming. We highlight these issues through a set of ML experiments ap-

plied to network intrusion detection. The goal is to show the considerably different

results achieved by the same ML algorithm in different environments where either

the number of features or the training dataset is changed. To this purpose, we rely on

the RF classifier for network intrusion detection. We train it using the third dataset

reported in Table 2.3 by choosing 5, 7, 10 or 12 features, selected through a feature

agglomeration process; the testing phase is performed on the test dataset. We report

the Precision, Recall and F1-score for the five sets of features in Table 2.9, where we

observe that the same classifier yields different results, especially with regards to its

Recall, with values ranging from 0.57 to 0.74.

TABLE 2.9: Performance of the intrusion detection classifier when
trained with different features.

Features F1-score Precision Recall
12 0.7985 0.8727 0.7361
10 0.7801 0.8684 0.7093
7 0.7476 0.8893 0.6448
5 0.6920 0.8724 0.5734

2.2. Issues of Machine and Deep Learning for Cyber Detection 23

Then, we keep the number of features fixed at 12 and we repeat the training

process two more times by using the first and then the second dataset reported in

Table 2.3, and then test them on the same testing dataset. Table 2.10 reports the

Precision, Recall and F1-score for the three training datasets. These results confirm

that the Recall between the best and the worst case may differ by 10% and over.

TABLE 2.10: Performance of the intrusion detection classifier when
trained on different datasets.

Dataset F1-score Precision Recall
1 0.7306 0.8753 0.6270
2 0.7757 0.8703 0.6996
3 0.7985 0.8727 0.7361

Vulnerability to adversarial attacks Competent adversaries use advanced strate-

gies to evade detectors based on machine learning algorithms [39]. These malicious

actions, namely adversarial attacks, can affect any machine learning model, and are

one of the main reasons why developing a fully autonomous cyber defence plat-

form is a daunting task. We explore the topic of adversarial attacks with greater

depth in the second part of this thesis, starting from Chapter 4.

25

Chapter 3

Novel Solutions for

Cyber Detection

Detecting advanced cyber attacks is increasingly difficult as attackers have several

ways to penetrate a network and to hide their activities. The huge volume of logs

generated by the multitude of servers, firewalls and devices are useful only when

they are integrated with security analytics systems for automatic detection and triage.

Considering the attacker ability and the difficulty of signaling an infected host with-

out causing false alarms, there is high demand of novel solutions that can be used to

protect modern enterprises.

In this chapter, we propose original approaches that leverage Security Analyt-

ics to detect even sophisticated forms of attacks while, at the same time, reducing

the human effort to manually inspect thousands of logs. We begin by presenting an

original architecture that aims to detect cyber threats through a multi-layer approach,

whose output is produced by means of a prioritization mechanism: indeed, instead

of signaling an impossible “guaranteed” detection, our system ranks the most sus-

picious hosts and leaves to the security analyst the task of inspecting only a man-

ageable number of hosts. Additional features include online processing for early

prioritization and scalability over thousands of hosts as most analyses can be car-

ried out independently for each host. Then, we propose a novel method to identify

malicious pivoting activities occurring in large networks; our method involves de-

vising an original algorithm that detects all pivoting activities within the monitored

environment, in combination with a prioritization scheme to facilitate the inspection

of the detected pivoting instances on the basis of their suspicious characteristics. Fi-

nally, we present an innovative method to identify malicious external hosts involved

in beaconing activities by combining the analysis of time series with an unsupervised

26 Chapter 3. Novel Solutions for Cyber Detection

machine learning algorithm; the output of this method is a manageable gray-list of

few dozens of hosts. We remark that all these solutions share the common goal of (i)

detecting recent threats; (ii) being easily integrated in modern enterprises; and (iii)

producing an actionable output that can be easily managed by human operators.

The remainder of this chapter has the following structure. Section 3.1 presents

the multi-layer architecture for countering advanced cyber threats. Section 3.2 de-

scribes our work on detection and prioritization of malicious pivoting activities. Fi-

nally, Section 3.3 shows our innovative approach to detect malicious external hosts

involved in periodic activities.

3.1 Scalable Architecture for Online Prioritization of Cyber

Threats

The information systems of modern organizations are subject to a multitude of cy-

ber attacks conceived by a wide range of attackers with different goals, capabilities

and motivations. Despite all efforts spent in preventive defenses, the reality is that

attacks occur every day and no organization can consider itself secure. Existing

proposals in literature perform detection of specific attacks through heuristics and

statistical analysis (e.g., [53]–[56]). Most approaches ([54], [57]) rely on offline post-

event analyses. Other online anomaly detectors assume that statistically detectable

changes involve huge numbers of hosts (e.g., worm propagation in [58], [59]) or that

compromised hosts share similar behavior (e.g., botnet detection in [60]–[63]). How-

ever, these assumptions are not true anymore in modern human-driven advanced

cyber attacks [64], hence existing proposals can be affected by many false positive

and false negative alarms.

As no security operator accepts to be annoyed by hundreds of alarms notified

at the same priority level, we take a different direction and focus on ranking suspi-

cious hosts. To this purpose, our online analysis begins by monitoring and analyzing

the behavior of individual hosts over time and by identifying suspicious events in-

volving even single or few hosts; we then post-correlate outputs to compute various

indicators corresponding to different attacker activities. These indicators are finally

aggregated to produce a ranking of the most suspicious hosts, which are then pro-

vided to the security operator in a timely fashion, thus allowing to focus only on the

most suspicious hosts and activities.

3.1. Scalable Architecture for Online Prioritization of Cyber Threats 27

Due to the amount of data to be managed online, we propose a scalable design

and implementation of our approach. All initial phases before the final aggregation

scale linearly with the number of hosts and can be parallelized. The proposed ap-

proach is general enough to be adopted with different types of data (such as internal

traffic, external traffic, alarms coming from IDS and SIEM [65]–[67]), yet our goal is

not to present a complete framework, but rather to propose the idea that the com-

bination of autonomous triage with manual inspection increases the probability of

detecting even advanced attacks. The effectiveness of our solution is shown through

experiments applied to networks of more than one thousand hosts. We consider five

main attack scenarios, representative of the activities that an attacker will likely per-

form from a compromised internal host: reconnaissance, data transfer to a dropzone,

man in the middle, watering hole through DNS spoofing, and lateral movement ac-

tivities. The appreciable results of our experiments demonstrate the feasibility and

scalability of the proposed approach for online autonomous triage of different attack

scenarios.

3.1.1 Related work

We identify three main areas of related works: offline forensics analysis, advanced

malware detection, online traffic monitoring.

The large majority of related proposals in literature concern offline analysis for

forensics purposes that differ from our online approach. Just to give some represen-

tative examples, we can cite [54] on heterogeneous logs analyses, [57] for its original

graph-based approach for forensics, BeeHive [55] that correlates logs through his-

togram analysis to identify suspicious activities and corporate policy violations, [68]

on forensics for cloud environments, and [69] on mobile forensics. Literature on

advanced malware detection focuses on specific attack sequence patterns based on

past APT campaigns (e.g., [64], [70]–[73]) instead of detecting suspicious activities in

each possible phase of an attack. Other more general solutions (e.g., [74], [75]) share

our idea of prioritizing suspicious hosts, but they are designed for offline or batch

analysis.

The proposals based on online analyses focus on detection of DDoS [76]–[78],

worm propagation and botnets, where the last two are the most related to our work.

In worm propagation detection [59], [79], the internal network is usually modeled

as a graph, where huge changes in the overall structure are identified as possible

28 Chapter 3. Novel Solutions for Cyber Detection

infection propagations. These works differ from our proposal because they focus

on a specific threat, and their analyses look for huge changes in traffic volumes and

patterns, whereas we prioritize signals of malicious activities related to behavioral

changes of individual hosts. Moreover, our solution is scalable with respect to the

number of monitored hosts, while worm propagation analyses depend on the size of

the network graph. Botnet detection proposals [60]–[63] are based on online scalable

solutions for finding hosts that are possibly compromised. However, their underly-

ing assumption is that a large number of hosts are compromised and share a similar

network behavior, which is not true in the case of advanced cyber attacks where only

few hosts may be compromised and malicious actions are often human-driven. In

summary, we can outline the major contributions that differentiate our work with

respect to the state of the art:

• ranking of suspicious activities instead of specific detection(s);

• online analysis instead of offline post-mortem analysis;

• analysis based on individual hosts behavior that guarantees parallel analyses

and scalability;

• possibility of capturing suspicious actions involving even few hosts.

3.1.2 Proposed method

We aim to detect anomalous network activities concerning each host of a corpora-

tion, and to use this information to rank the most suspicious hosts. In this section

we outline the proposed architecture and design choices for achieving scalability,

and then describe our proposal in more detail. Figure 3.1 emphasizes that the in-

put is represented by raw network data gathered by internal probes. Without loss

of generality, we consider just network flows of traffic among internal hosts, which

are feasible to collect and analyze for online contexts [80]. These logs are processed

through three main steps: analytics core, attack prioritization and autonomous triage.

The final output is a list of internal hosts ranked by a risk score representing the

likelihood that each host is involved in one or more attacks.

Starting from raw network data, the analytics core builds different layers that are

graph models in which nodes represent internal hosts and edges represent a met-

ric of interest. Each layer portrays a different perspective of the events occurring

3.1. Scalable Architecture for Online Prioritization of Cyber Threats 29

FIGURE 3.1: Framework overview.

in the monitored network. For example, if we consider three layers, then edges

may represent the number of packets, the number of bytes, and the average dura-

tion of the transmissions between two hosts, respectively. Then, the analytics core

applies anomaly detection algorithms on the activities of each internal host within

each layer. This fine-grained analysis is motivated by the observation that an attack

related to a single host within a large internal network cause very small alterations

that are not visible in an aggregated model comprising all layers and all hosts. Simi-

lar “global” approaches work well only to identify massive attacks or network-wide

anomalies [56], [81]. As a further advantage, since anomaly detection on different

layers and hosts can be performed in parallel, the analytics core scales linearly with

respect to the number of monitored hosts and layers. In such a way, we can extend

and improve an instance of the framework by adding more layers and/or nodes

without having to change the information flow and the overall architecture. The at-

tack prioritization module takes as its input the anomalies identified by the analytics

core, and correlates them with the goal of detecting different attack scenarios, each

one corresponding to activities that an attacker may perform from a compromised

internal host. It is also possible to include novel attack detection algorithms with

limited computational effort because they can leverage the common fine-grained

analyses already performed by the analytics core. The details of the attack prioriti-

zation algorithms are discussed in Section 3.1.3. The output of the attack prioritiza-

tion module is a risk score assigned to each internal host for each considered attack.

Attack specific risk scores for all hosts represent the input of the autonomous triage

module that aids security operators by visualizing the few hosts with higher ranks

and the attacks in which they are likely involved.

We now describe the algorithms used by the analytics core for layers modeling

and for anomaly detection within each layer. The objective is to identify statistical

30 Chapter 3. Novel Solutions for Cyber Detection

anomalies for each host on all the layers, which will be correlated and ranked by

the attack prioritization module. The analytics core is designed for online processing

and scalability.

Layers Modeling Raw data are collected from the probes as soon as they are pro-

duced, and temporarily stored for a time defined by the current time window of size

∆. If t denotes the current time, then the layers modeling module maintains all raw

data generated between t− ∆ and t. Since literature shows that most network activ-

ities are characterized by a daily periodicity [75], [81], it is convenient to set ∆ equal

to one day. At every sampling interval τ, all raw data in the current time window

are used to compute the current representation of all layers. Since anomalies can be

detected only after their appearance in the current representation of a layer, “early”

prioritization is influenced by the choice of the parameter τ that is conveniently cho-

sen in the order of few minutes. Lower values cause useless oversampling of data

(as an example, Netflow records [82] related to long-lived connections are refreshed

every 2 minutes), while higher values introduce detection delays. We use the nota-

tion Li(t) to identify the current representation of the layer i that is built using raw

data in the current time window.

As shown in Figure 3.2, each Li(t) is modeled as a graph, in which the nodes

represent hosts of the internal network, and the edges denote some specific features

of network activities occurring between the two hosts. As an example, a layer rep-

resenting the number of bytes exchanged between internal hosts can be defined as a

directed and weighted graph, in which edge direction denotes the direction of data

transfer (from source to destination) and the weight represents the amount of trans-

ferred bytes.

FIGURE 3.2: Activities of the layer modeling module.

3.1. Scalable Architecture for Online Prioritization of Cyber Threats 31

Table 3.1 reports the list of considered layers and their descriptions. These char-

acteristics are commonly adopted to identify anomalies in traffic [83]. For exam-

ple, time series of flows, packets, bytes and ports are used to identify reconnais-

sance activities [58] and data exfiltration [75]; graphs of internal communications

are adopted for identification of worm propagation [59]; arp messages can be useful

for detecting eavesdropping activities [84].

TABLE 3.1: Considered Layers.

Layer Description

L1 Packets Directed weighted graph. Nodes are internal hosts and edges connect two nodes that exchange pack-
ets using any protocol. Direction is from source to target, and the weight of the edge is the total
number of packets transmitted.

L2 Bytes Directed weighted graph. Nodes are internal hosts and edges connect two nodes that exchange pack-
ets using any protocol. Direction is from source to target, and the weight of the edge is the total
number of bytes transmitted.

L3 Flows Directed weighted graph. Nodes are internal hosts and edges connect two nodes that exchange pack-
ets using any protocol. Direction is from source to target, and the weight of the edge is the total
number of network flows.

L4 Ports Directed weighted graph. Nodes are internal hosts and edges connect two nodes communicating
through TCP or UDP protocols. Direction is from source node to target node, and the weight of the
edge is the number of different destination port numbers.

L5 Durations Directed weighted graph. Nodes are internal hosts and edges connect two nodes that exchange pack-
ets using any protocol. Direction is from source to target, and the weight of the edge is the average
duration of network flows.

L6 Conns Directed unweighted graph. Nodes are internal hosts and edges connect two nodes that exchange IP
datagrams. Direction is from source to target.

L7 Paths Bipartite directed graph. Both sets of nodes represent internal hosts. Edges connect each host from
the first set, to the hosts of the second set that are reachable by it through a “path” composed of at
least 3 hosts.

L8 DNS Bipartite directed graph. One set of nodes represents hostnames of internal hosts, the other set of
nodes represents IP addresses. Edges connect a hostname to the associated IP address in DNS reso-
lutions.

L9 ARP Bipartite directed graph. One set of nodes represents IP addresses of internal hosts, the other set of
nodes represents MAC addresses. Edges connect the IP address and the MAC address that are bound
as part of an arp transaction.

The representations of all layers are passed in input to the processing modules

that perform anomaly detection. We anticipate that an implementation of a possible

way to correlate all these layers is provided in Section 3.1.3.

Layer Anomaly Detection The goal is to identify hosts that exhibit anomalous be-

haviors in any of the layers. This step does not depend on the identifiable attacks

nor on the feature represented by each layer, hence all layers are subject to the same

anomaly detection algorithms, which can be executed in parallel and independently.

For each layer, we adopt two complementary detection approaches, as shown in

Figure 3.3: the former identifies quantitative anomalies and state changes; the latter

detects novel or uncommon events.

The former approach processes all current layer representations Li(t). The goal

is to extract scalar values from graphs and to build time series. For each host, the

32 Chapter 3. Novel Solutions for Cyber Detection

FIGURE 3.3: Structure of a layer anomaly detection module.

framework computes two scalar values: the weighted in-degree and the weighted

out-degree [85] representing the number of incoming and outgoing connections of

each host in the current layer, respectively. Since a new Li(t) is received by the layer

anomaly detection module (one at every sampling interval τ), scalar values for con-

secutive Li(t) are used to build two current time series representing recent values

of in-degree and out-degree for each host. If t denotes the current instant of time,

the current time series includes values between t− ∆ and t. Moreover, to perform

anomaly detection, it is necessary to build two historical time series including older

scalar values between t−W and t−∆ (excluded), where W represents the size of the

historical window. W should be large enough (in the order of few weeks) to have a

reliable baseline for the past behavior of each host [80]. Traffic among internal hosts

exhibits more stability with respect to traffic among internal and external hosts, char-

acterized by higher variability and consequent difficulties to achieve stable baseline

models [81]. Anomaly detection is performed on each current time series through

the online and adaptive detection algorithm proposed in [80] trained over the period

W. This algorithm identifies both point anomalies and state changes [53] that reflect

different kinds of relevant deviations between the current and past behaviors of an

internal host.

The latter approach (see Figure 3.3) identifies new edges that never appeared

in the historical window. For example, these edges may represent novel persistent

connections of an attacker trying to perform lateral movement. For each Li(t), the

detection algorithm computes its current adjacency matrix [85], which is a mathe-

matical representation of the edges in Li(t), whose rows and columns represent the

3.1. Scalable Architecture for Online Prioritization of Cyber Threats 33

internal hosts: the matrix element (j, k) is set to 1 if Li(t) has an edge from host j to

k, to 0 otherwise.

Older versions of the current adjacency matrix, built on previous Li(t) belonging

to the historical time window W, are used to compute the historical adjacency ma-

trix. Its values are rational numbers between 0 and 1. In particular, (j, k) denotes the

frequency of occurrence of the edge from j to k in the older instances of Li(t). For

example, the value (j, k) is set to 1 if all older instances of Li(t) layer contain an edge

from j to k; if one fifth of older Li(t) layers include an edge from j to k, then the value

(j, k) is set to 0.2. The historical time window is updated every ∆.

At every sampling interval τ, the detection algorithm subtracts the historical ad-

jacency matrix to the current adjacency matrix. The result, defined as novelty ma-

trix, allows an immediate identification of new or uncommon edges that are present

in Li(t), but never or seldom appeared in the historical time window. Uncommon

edges having a low value in the historical adjacency matrix will result in values that

are close to 1 in the novelty matrix; common edges with high values in the histori-

cal adjacency matrix will result in values close to 0 in the novelty matrix. The layer

anomaly detection algorithm can sum the values included in each row of the nov-

elty matrix to evaluate the “novelty” of all the edges starting from the corresponding

host. Similarly, the “novelty” of all edges that end in any internal host is computed

by summing the values on the corresponding column of the novelty matrix.

Anomalies, state-changes and novel edges detected by the analytics core are then

used by the algorithms that evidence malicious activities and prioritize them.

3.1.3 Evaluation results

The main goal is to prioritize signals of malicious activities that may be part of an

advanced attack. To this purpose, we correlate the anomalies, state-changes and

novel edges detected by the analytics core. We first present the experimental testbed,

and then show the results of our evaluation for each different attack scenarios.

There are several possible indicators associated with malicious activities. Here,

we consider: reconnaissance (R), data transfer to a dropzone (DTD), Man in the Mid-

dle (MITM), watering hole through DNS spoofing (WH), lateral movement through

(LM). Table 3.2 indicates which layer models are included in the analysis of each at-

tack scenario. The presence of multiple layers increases confidence that a suspicious

activity is actually occurring. The attack prioritization module evaluates a risk score

34 Chapter 3. Novel Solutions for Cyber Detection

for each internal host by combining the anomalies, state-changes and novel edges

detected by the analytics core. We refer to the following notations:

• Ain
Li

(resp. Aout
Li

) denotes the intensity of the biggest point anomaly in the in-

coming (resp. outgoing) time series related to layer Li of an internal host dur-

ing the observed window [55]. For example, a burst in the outgoing bytes.

• Cin
Li

(resp. Cout
Li

) denotes the intensity of possible state-changes in the incoming

(resp. outgoing) time series related to layer Li of an internal host. For exam-

ple, a state-change is detected if the average number of packets in the current

window doubles for a long period (hence, it is not only a point anomaly [56]).

• Nin
Li

(resp. Nout
Li

) denotes the number of new incoming (resp. outgoing) edges

of an internal host in the graph of layer Li. For example, it can be used to detect

the number of newly contacted hosts in the current time window.

All formulas and scores in this section are computed for each host.

TABLE 3.2: Layers used to prioritize different types of attacker activ-
ities.

L1 L2 L3 L4 L5 L6 L7 L8 L9

Attack Packets Bytes Flows Ports Durations Conns Paths DNS ARP
Reconnaissance 3 3 3 3

Data transfer 3 3 3 3

MITM 3 3 3 3 3

Watering hole 3 3 3

Lateral movement 3 3

In the experiments, we consider an internal network consisting of more than

1 000 hosts composed of about 800 clients and 200 servers. The client machines have

heterogeneous operating systems including several versions of Mac OS, Linux, and

Windows. The server machines host mainly websites and DBMS, but also high per-

formance computations, code versioning and NAS storage. We place monitoring

probes in the main 1Gbit switches of the network. Our algorithms are executed on

a cluster of eight blades, each having an Intel Xeon 2.6GHz CPU and 16GB of RAM.

Network flows are sampled every five minutes.

To evaluate scalability, we consider three incremental scenarios consisting of 96,

287 and 1 012 hosts, respectively. One cluster node is sufficient for computations

related to 96 and 287 hosts, while four nodes are necessary for the scenario with

1 012 hosts. This scalability is achieved because all computations of the analytics

core are performed independently for each host and for each layer. Operations of

3.1. Scalable Architecture for Online Prioritization of Cyber Threats 35

the attack prioritization module do not scale linearly, but their computational cost

is negligible with respect to the anomaly detection algorithms of the analytics core.

We present the details about prioritization of the five attack scenarios, and how risk

scores are shown to the security operators. For each scenario, we inject multiple

attacks in some hosts of the network, we apply our analytics and evaluate a risk score

for each host. Finally, we report that we made a snippet of the network data used

for these experiments publicly available1.

Reconnaissance in internal network An attacker having control of an internal host

likely scans neighbor hosts looking for (known or zero-day) vulnerabilities [58], [78].

We define the risk score R for reconnaissance as follows:

R =
Aout

Flows + Aout
Ports + Nout

Conns
1 + Aout

Durations
(3.1)

where a higher value of R denotes a higher likelihood that an internal host is per-

forming a scan. Intuitively, when an internal host performs a reconnaissance activity,

the average duration of its connections decreases (due to many volatile communica-

tions) while the numbers of flows, ports and contacted hosts increase. To evaluate

the risk score for this attack, we carry out reconnaissance activities from 10 hosts

by varying the scan intensity in terms of number of scanned hosts and ports, as

described in Table 3.3.

TABLE 3.3: Reconnaissance attacks injected in the internal network
from 10 hosts.

Attack #ports scanned #hosts scanned
horizontal scan 1 single port from 50 to 1 000 distinct hosts

vertical scan from 50 to 1 000 distinct ports 1 single host

block scan from 50 to 1 000 distinct ports from 50 to 1 000 distinct hosts

Since our approach produces a ranking, we evaluate how many times an internal

host performing the attack is prioritized within the Top-K hosts. Table 3.4 reports

the results of multiple experiments executed over several weeks, where each row

represents the percentage of times an internal host performing the attack has been

ranked within the Top-K. Each column corresponds to horizontal, vertical, or block

scan experiments as described in Table 3.3.

Table 3.4 shows that in more than 99% of the cases a host performing a recon-

naissance activity is ranked within the Top 10. Horizontal scans are easier to detect

1Data Snippet: https://weblab.ing.unimore.it/people/apruzzese/datasets/pivoting.html

https://weblab.ing.unimore.it/people/apruzzese/datasets/pivoting.html

36 Chapter 3. Novel Solutions for Cyber Detection

TABLE 3.4: Percentage of times a host performing a reconnaissance is
ranked within the Top-K.

In Top-K Horizontal scan Vertical scan Block scan
in Top 5 94.3% 92.4% 99.2%
in Top 10 99.5% 99.1% 99.7%
in Top 25 100% 99.7% 100%
in Top 50 100% 100% 100%

because they span over multiple hosts, whereas vertical scans are harder because it

is more common for clients to contact servers on multiple ports if they offer more

than one service. As expected, block scans have higher rankings, because they span

both over multiple ports and multiple hosts.

Figures 3.4 report an example of the traffic time series used to compute the risk

score R, extracted from the layers Ports, Flows, Conns, Durations. The x-axis repre-

sents time, and the y-axis reports the value of different metrics. Small arrows high-

light significant anomalies: a horizontal scan (in Figure 3.4a) around 12:48 and two

vertical scans (in Figure 3.4b) around 17:55 and 22:20.

(A) Horizontal Scan (B) Vertical Scan.

FIGURE 3.4: Time series of an internal host performing horizontal
and vertical scans.

Data transfer to dropzone Attackers often move data to be exfiltrated towards an

internal dropzone [64], [75], used as intermediate point from which the exfiltration

is easier to perform. These activities can be detected through the risk score DTD

defined as follows:

3.1. Scalable Architecture for Online Prioritization of Cyber Threats 37

DTD =
Aout

Durations + Aout
Bytes + Aout

Packets

1 + Nout
Conns

(3.2)

where a higher value of DTD suggests that an internal host is likely transferring

data to an internal dropzone. In the numerator, we consider point anomalies instead

of state changes because the higher bandwidth of internal networks – typically in

the order of Gbps – allows for short transfer times. In the denominator, we consider

Nout
Conns to rule out legitimate intensified network activity, such as p2p protocols. We

perform several experiments in which we simulate DTD attacks of increasing trans-

fer sizes from 10MB-50MB to 100MB-1GB. We use five controlled hosts as possible

attackers and we transfer data to a Web server of the organization as an emulated

dropzone. Table 3.5 reports the percentage of times a host performing a DTD is

ranked within the Top-K: for small amounts of data (10-50MB), in about 92% of the

cases the hosts are ranked within the Top 10. This is the most challenging scenario

for detection because clients may use multiple hosts/devices for backup, hence it is

tough to identify anomalous transfers unless we integrate anomaly detection with

white/black lists of internal hosts (where storage is or is not allowed), but similar

integrations are out of the scope of this work. The most compelling result is that in

99% of the cases, the 50-100MB internal transfers are ranked within the Top 10.

TABLE 3.5: Percentage of times a host performing a DTD is ranked
within the Top-K.

In Top-K 10-50MB 50-100MB 100MB-1GB
in Top 5 87.5% 95.4% 99.7%
in Top 10 91.7% 99.1% 100%
in Top 25 95.6% 99.8% 100%
in Top 50 99.5% 100% 100%

As an example, Figure 3.5 reports the time series that show the evolution of sev-

eral layers referring to an internal host used for injecting data transfers to dropzone.

The x-axis represents time, and the y-axis reports the different metrics. We highlight

peaks of about 100MB (occurring at 17:00) and 1GB (occurring at 20:00), correspond-

ing to the injected data exfiltration. We also observe an increment of the average

flow duration in correspondence of the two data transfers, whereas other statistics

(e.g., number of contacted hosts) remain stable.

MITM: Man in the Middle attack Man in the Middle (MITM) attacks are impor-

tant to perform advanced reconnaissance or to steal credentials, because an attacker

38 Chapter 3. Novel Solutions for Cyber Detection

FIGURE 3.5: Time series of an internal host in which two DTDs of
100MB and 1GB are injected.

can eavesdrop communications of hosts within the same subnet. Here, we consider

one of the most subtle forms of MITM performed through arp spoofing [86]. In this

scenario, an attacker sends fake correspondences between IP and MAC addresses

with the goal of acting as “hidden” proxy between a victim and the gateway of its

subnet. Netflows record no explicit communication between the eavesdropper and

the victim, but our experiments evidence that once a host becomes victim of MITM,

then all packets sent and received by the victim pass twice through the switch. This

attack can be captured by the state-change detection algorithm of the analytics core.

In order to prioritize possible victims of MITM we define the following risk score:

MITM =
Cin

Bytes + Cout
Bytes + Cin

Pkts + Cout
Pkts

1 + Cin
Flows + Cout

Flows + Nin
Conns + Nout

Conns
∗ Nout

ARP (3.3)

In the numerator we consider state-changes instead of point anomalies because

MITM is usually an activity that lasts for some time to get useful information. The

parameter Nout
ARP is a multiplicative factor because if Nout

ARP = 0 there is no new cor-

respondence in the ARP layer (see Section 3.1.2). In the denominator, we include

state-changes and novel edges in Flows and Conns layers, because they must remain

approximately stable with respect to a past window even if MITM is occurring. Ex-

perimental results are achieved through controlled Man in the Middle attacks of

varying durations where we use one host as the eavesdropper and other 10 hosts as

victims. From Table 3.6, we can observe that in more than 95% of the cases, even

MITM lasting for just 15-30 minutes are prioritized in the Top 10; if an attack lasts

for at least 1 hour, the victim hosts are ranked within the Top 5 in more than 98% of

3.1. Scalable Architecture for Online Prioritization of Cyber Threats 39

the cases.

TABLE 3.6: Percentage of times a host victim of a MITM is ranked
within the Top-K.

In Top-K 15-30min 1-2hr 12-24hr 24-72hr
in Top 5 89.8% 98.2% 99.4% 99.8%
in Top 10 95.4% 99.1% 99.8% 100%
in Top 25 99.0% 99.8% 100% 100%
in Top 50 99.7% 100% 100% 100%

As a motivation, in Figures 3.6 we report the time series of a host related to Pack-

ets (Figure 3.6a) and Bytes (Figure 3.6b) layers, where the y-axis denotes the different

metrics, and the x-axis reports time. The plots report two days separated by a ver-

tical dashed line. When the MITM is occurring on the second day, it is possible to

observe that the number of packets and bytes increases significantly.

(A) Time series of the Packets. (B) Time series of the Bytes.

FIGURE 3.6: Comparison showing changes in Packets and Bytes layers
when MITM occurs.

Watering hole through DNS spoofing Watering hole is a technique used by at-

tackers to increase their coverage and persistence by infecting multiple hosts of an

organization simultaneously. We consider a particular type of watering hole attack

performed through DNS spoofing [87], where the attacker spoofs DNS responses to

redirect victims to a compromised sever. To prioritize internal hosts that may corre-

spond to watering holes, we define the risk score WH as follows:

WH = (Nin
Conns + Cin

Conns + Cin
Durations) ∗ Nout

DNS (3.4)

where a high value of WH represents a higher likelihood that a host is performing a

watering hole through DNS spoofing. Intuitively, this can be prioritized when a host

has many new incoming connections, its IP corresponds to a new DNS resolution,

and has a state-change in the number and duration of incoming connections. We

40 Chapter 3. Novel Solutions for Cyber Detection

observe that Nout
DNS is a multiplicative factor, because Nout

DNS = 0 implies that no DNS

spoofing occurred.

To evaluate the risk score WH, we use five internal clients as “spoofers” of three

internal Web servers offering different services: Server 1 (small), Server 2 (medium)

and Server 3 (large) that are used by an average number of clients per hour of about

10, 50 and 250, respectively. We perform a DNS spoofing at times 10am, 2pm, 4pm,

6pm. Table 3.7 reports the percentage of times a “watering hole” host (that was

redirecting traffic to itself through DNS spoofing) has been ranked within the Top-

K hosts in the different scenarios. This table shows that for Server 1 (having small

activity) the spoofer is prioritized in the Top 10 in more than 96% of the cases, while

this percentage is even higher for servers with high number of clients where the

intensity of the redirect is more evident.

TABLE 3.7: Percentage of times a host performing “watering hole” is
ranked within the Top-K.

In Top-K Server 1 (small) Server 2 (medium) Server 3 (large)
in Top 5 94.7% 98.9% 99.9%
in Top 10 96.2% 99.8% 100%
in Top 25 99.5% 100% 100%
in Top 50 99.8% 100% 100%

As an example, Figure 3.7 reports a bipartite graph representation of the Conns

layer over different days: on day 6, the red circle highlights a host that started per-

forming a watering hole attack through DNS spoofing. We can observe an increase

in the number of the incoming communications.

FIGURE 3.7: Bipartite communications graph derived from Conns
layer over 7 different days.

3.1. Scalable Architecture for Online Prioritization of Cyber Threats 41

Lateral movement To get closer to his target, an attacker tends to compromise sev-

eral internal hosts with higher privileges or to access to the most internal parts of the

corporate network. This activity is called lateral movement [64]. Figure 3.8 reports an

example where an attacker expands his control over multiple hosts to access a LAN

that cannot be reached directly from the external.

FIGURE 3.8: Example of lateral movement.

To prioritize lateral movements, we define the risk score LM as follows:

LM = Nin
Paths + Nout

Paths + Cin
Durations + Cout

Durations (3.5)

where Nin
Paths and Nout

Paths take into account new paths in the communications graph

(see Section 3.1.2), while Cin
Duration and Cout

Duration check whether an increment in the

average duration of the flows has occurred. Indeed, we recall that the commands is-

sued by the attacker generate communications that have to last for some time [88]).

We perform several experiments involving up to 10 controlled clients as intermedi-

ate hosts in the lateral movement (see Figure 3.8). Table 3.8 reports the percentages

of times one of the controlled hosts is ranked within the Top-K risky nodes. The

different columns correspond to different lengths of the controlled host chains. For

example, Figure 3.8 presents a chain of length 2 with two intermediate hosts.

TABLE 3.8: Percentage of times a host performing LM is ranked
within the Top-K.

In Top-K 1 host 3-5 hosts 8-10 hosts
in Top 5 96.2% 99.7% 99.9%
in Top 10 97.9% 99.9% 100%
in Top 25 99.1% 100% 100%
in Top 50 99.8% 100% 100%

Autonomous triage to support security analysts We present how results can be

combined to produce an overall ranking useful for security analysts to focus on few

suspicious hosts.

42 Chapter 3. Novel Solutions for Cyber Detection

FIGURE 3.9: Online autonomous triage of internal hosts for different
attack scenarios.

Figure 3.9 reports the overall rankings, with each line corresponding to a differ-

ent attack: R for reconnaissance, DTD for data transfer to dropzone, MITM for Man

in the Middle, WH for watering hole through DNS spoofing, LM for lateral move-

ment. On the leftmost (resp. rightmost) side, there is the host with higher (resp.

lower) risk score on that line. All hosts are represented as rectangles, where the size

is proportional to the number of Top-K rankings in which a host appears. For exam-

ple, host h202 appears in two Top 5 rankings (first for WH, and third for LM), hence

its rectangle has a double size. As ranking operations are evaluated online, rectan-

gles with a dashed outline denote hosts that recently entered a Top 5 ranking. A

similar visualization supports security analysts in monitoring several cyber threats

occurring in the core of large networks. The number of Top-K hosts to show can be

chosen adaptively depending on the size of the organization and the amount of hu-

man resources. As a final remark, it is important to observe that our proposal makes

it hard for an attacker to elude ranking, because we monitor changes in activity of

each individual host with respect to its history, and we produce an overall ranking

considering all hosts of the internal network. Hence, an attacker would require a

complete view of all hosts behaviors/history to evade prioritization successfully.

3.2. Detection and Threat Prioritization of Pivoting Attacks 43

3.2 Detection and Threat Prioritization of Pivoting Attacks

Defending large enterprise systems is an increasingly challenging task. Modern at-

tacks may combine social engineering strategies with malware to exploit software

vulnerabilities, allowing attackers to find their ways into the network. Attackers

typically begin by compromising any vulnerable internal host and then try to reach

the most valuable targets by moving host-to-host laterally and deeper into the en-

terprise network. To this purpose, attackers are increasingly adopting the so called

pivoting technique [89] in which a command propagation tunnel is created through

one or more compromised internal host called pivoters. Several examples of pivoting

can be found in the Operation Aurora [90], in the Operation Night Dragon [91], in the

BlackEnergy [92] malware that in December 2015 compromised the Ukrainian power

grid, in the MEDJACK [93] attack in 2016 where attackers stole health data by using

medical devices as pivoters. Among the most recent cases at the time of writing, we

can cite the Archimedes tool [94] that leverages pivoting to reach the LAN of target

hosts, passively gathers their Web traffic, and injects forged Web pages with the goal

of compromising hosts or stealing credentials. All these examples demonstrate that

pivoting is an emerging and challenging research problem.

To address these issues, we propose the first algorithm for detection and threat

prioritization of pivoting that analyzes internal network flows and does not rely on

any a-priori knowledge about the adopted protocols and compromised hosts, which

are instead needed by related solutions making them impractical for real contexts.

For example, the algorithms in [95], [96] consider only a specific protocol (e.g., SSH

brute-forcing), while another paper [97] considers only hosts that generate some IDS

security alerts. Approaches in [59], [98] may work for detecting pivoting only if ag-

gressive scan activities are performed over hundreds of hosts. We initially propose

an original formalization of the pivoting detection problem into the temporal graph

analytics domain, and then we present a pivoting detection algorithm that identi-

fies pivoting tunnels through efficient network flow analyses that do not require any

a-priori assumption about involved protocols and hosts. As some paths may cor-

respond to benign activities (e.g. SSH tunnels created by network administrators),

we add an original threat prioritization mechanism that ranks the detected pivot-

ing activities on the basis of a maliciousness score, therefore reducing the rate of

false alarms related to benign pivoting activities. We validate the effectiveness of

44 Chapter 3. Novel Solutions for Cyber Detection

our proposal through an extensive experimental campaign, whose aim is to mea-

sure its accuracy (which is also compared to those of related algorithms [59], [95])

but also its computational cost. This evaluation is conducted on huge amounts of

network traffic data pertaining to a large organization, which consist of over 650M

communications collected over more than five months, in which we inject instances

of synthetic pivoting attacks. The appreciable results obtained by our implemen-

tation show that the proposed approach is able to effectively detect and prioritize

malicious pivoting activities even against attackers that adopt evasion techniques;

moreover, its short execution times (few minutes to analyze one day of traffic of a

large organization) make the proposal applicable to real contexts. Finally, we remark

that a modern defensive system adopts multi-layer analyses, hence it is important

to highlight that the proposed algorithm can be integrated with any other detection

schemes based on black- and white-lists of hosts, on analyses of DNS traffic and

of internal-to-external traffic. Similar extensions can further decrease the potential

damage of malicious pivoting activities to modern enterprises.

3.2.1 Related work

To the best of our knowledge, we present the first algorithms for detection and threat

prioritization of malicious pivoting activities: our proposal relies on the analysis of

network flows, does not make assumptions about involved protocols and hosts, and

is based on an original formulation of the pivoting detection problem in the temporal

graph analytics domain.

A research area broadly related to pivoting studies malware propagation, whose

two representative examples are worm detection [98] and botnet [60] discovery.

These works define statistical models of normality for communications among in-

ternal hosts, where anomalies represent possible bot/worm propagations. Other

papers in this area analyze network flows (e.g., [61], [63], [99]) as we do, but their

solutions work only under two major assumptions that are not valid for pivoting:

they require from tens to hundreds of hosts involved in malicious activities; they

assume that an aggressive propagation model is adopted by the bot/worm. Un-

like these scenarios, pivoting activities typically involve few internal hosts out of the

thousands and more of a medium-large organization. Moreover, several research

papers based on network flows analyses [100] aim to detect quite different attacks,

such as data exfiltration [75], DDoS [101], port-scanning [83]. Other works focus on

3.2. Detection and Threat Prioritization of Pivoting Attacks 45

attack detection in Wireless Sensor Networks that does not include the identification

of command propagation tunnels which is the core of our proposal. For example,

the authors in [102] propose a protocol for detecting selective forwarding attacks,

and the researchers in [103] present a framework for detecting ongoing attacks (such

as DoS and ARP replay) through usage control and chance discovery.

Research on pivoting is still at the beginning. Many articles (e.g., [90]–[93]) have

a useful descriptive approach of popular pivoting-based attacks, but they do not

propose any novel detection algorithm. Other works (e.g., [104], [105]) aim to train

security experts on pivoting-related plans and attacks but they do not consider coun-

termeasures. Some papers focus on prevention of pivoting-related activities, with-

out proposing any detection approach. For example, Chapman et al. [106] simulate

pivoting-based attacks through a game-theoretic framework and propose some best

practices based on their observations. Johnson et al. [107] present an original graph

metric that quantifies whether granting a certain privilege to an employee may in-

crease chances of pivoting in Windows domains.

Other research efforts related to pivoting detection make strong assumptions

that are not applicable to real contexts. Some papers [95], [96] are oriented to de-

tect pivoting-related activities involving the SSH protocol and brute-force password

guessing, while we do not make any assumption on host and protocol types. The

heuristics proposed in [97] are valid to detect one-step pivoting activities, but just

those related to security alerts issued by a signature-based network intrusion detec-

tion system. We can detect pivoting paths of any length and do not leverage alerts

of other defensive systems, although integrations are feasible. Some works focus

on lateral movement [64] activities where attackers move within the network to get

closer to their final target. For example, the paper in [108] proposes a game-theoretic

framework that models attackers behavior and simulates network responses aim-

ing to prevent attackers from reaching valuable hosts. The problem is that expert

attackers can easily evade similar defensive schemes by acting differently from the

expected model. The detection algorithm proposed by Fawaz et al. [109] requires

analyses of huge amounts of host-based logs, which are hard to collect in large orga-

nization and may be easily altered by attackers because we remark that they control

the hosts of the pivoting tunnel. Unlike these proposals, we consider network flows

because they are easier to collect and store; moreover, our analysis requires less pro-

cessing costs than investigations carried out on raw traffic data [83].

46 Chapter 3. Novel Solutions for Cyber Detection

3.2.2 Problem description

In pivoting, attackers use a command propagation tunnel created among three or

more internal hosts with the purpose of controlling a specific target. Past litera-

ture sometimes refers to pivoting with the term island-hopping [97], where attackers

propagate commands through hosts in multiple LANs (“islands”). Many recent cy-

berattacks [90]–[93] used pivoting in their propagation phase. It is of paramount im-

portance to find novel approaches for early detection of pivoting because it would

prevent attackers from reaching their target and damaging an organization.

FIGURE 3.10: Example of pivoting activity.

Figure 3.10 reports an example of pivoting activity, where attackers have created

a pivoting tunnel between four internal hosts belonging to three different LANs.

From the entry host, malicious commands are forwarded through intermediate hosts

(called pivoters) to the last host of the pivoting chain, called terminal host, which ex-

ecutes these commands and returns the results. This last host can be the final target

or it can be used to further extend the pivoting tunnel.

After having established a foothold within the internal network of the target or-

ganization, attackers typically perform the following steps:

1. Reconnaissance: attackers gather information about neighbor hosts through

some active (e.g., port-scan) or passive means (e.g., by looking at the arp table).

2. Compromise: attackers compromise another internal host using a known or

zero-day vulnerability; in such a way, they can increase the length of the pivot-

ing chain, and the newly compromised host will become the terminal host as

in Figure 3.10.

3. Pivoting: the commands of the attackers are propagated from the entry host

to the terminal host through the pivoting chain. Any command issued to the

terminal host is executed and the results are forwarded towards the entry host

through the pivoting chain.

3.2. Detection and Threat Prioritization of Pivoting Attacks 47

The first two actions are part of lateral movement [64] where attackers assume

control of other hosts to get closer to their final targets, and the pivoting is the ac-

tual command propagation activity through the tunnel of compromised hosts. To

perform pivoting, attackers may adopt different protocols and tools, which can be

either standard (e.g., SSH or netcat), or ad-hoc software designed to avoid easy de-

tection (e.g., meterpreter [110]). Depending on the chosen protocols, payloads may

or may not be subject to encapsulation. For example, if attackers adopt SSH, then

data is encrypted and encapsulated within protocol-specific headers; if they use net-

cat, then the original payload is forwarded without modifications.

It is important to highlight that detection techniques based on signatures [111]

cannot detect pivoting, because they only perform pattern matching against packet

headers and payloads, which is not sufficient to detect active command propagation

tunnels. Some parts of the lateral movement phase (i.e., reconnaissance and com-

promise) may be detected by signature-based systems, but only if attackers perform

active reconnaissance and uses publicly disclosed exploits [97].

We focus on the detection of pivoting involving internal hosts. Looking for

suspicious communications among the internal and external traffic is a different

and widely investigated problem by the literature on intrusion detection through

signature-based [81], [112], [113], anomaly-based [75], [114], protocol-specific [95],

[115] and attack-specific proposals [59], [98]. The approaches can be combined for a

more accurate detection, but their integration is out of the scope of this work.

There are several issues that make pivoting detection a tough problem. Com-

mand propagation is a rare event immersed in a huge amount of activities charac-

terizing the network traffic of a medium-large organization. Since some pivoting

activities are benign (e.g., for network administration), detection algorithms are af-

fected by false alarms because malicious pivoting is an even rarer event. Finally,

attackers can use a variety of tools and protocols in the attempt to evade detection.

For these reasons, we propose an innovative approach that through the analysis of

network flows identifies pivoting flow sequences and then integrates pivoting de-

tection with the threat prioritization algorithm presented in Section 3.2.5. In such a

way, we allow security analysts to inspect only few pivoting activities exhibiting the

most suspicious behavior. Figure 3.11 outlines the main steps of the proposal.

48 Chapter 3. Novel Solutions for Cyber Detection

FIGURE 3.11: Overview of proposed method.

3.2.3 Pivoting detection algorithm

The proposed pivoting detection algorithm has the purpose of identifying all active

pivoting tunnels within an internal network. This algorithm is integrated with a

novel prioritization approach presented in Section 3.2.5.

We detect pivoting activities by searching for active command propagation tun-

nels. Network flows are the input data of our algorithm. A network flow represents

a common way of summarizing traffic data [100] because it contains all information

about connections, such as start-time, duration, transmitted bytes, involved IP ad-

dresses and port numbers. Using network flows instead of raw traffic data has the

twofold benefit of simplifying data gathering and decreasing processing costs. A

network flow f can be defined as an ordered sequence:

f = (src, dst, psrc, pdst, bin, bout, d, t) (3.6)

where src and dst are the IP addresses of the source and destination hosts of the flow

f ; psrc and pdst are the source and destination ports of their communications; bin and

bout are the incoming and outgoing bytes; d is the duration (by default 120s [82]), and

t is the timestamp corresponding to the beginning of the communication. For each

network flow, src and dst represent the flow direction with respect to the node that

started the communication, even if they keep exchanging packets in both directions.

Flow direction can be reliably computed by traditional network security appliances

through the analysis of packet headers and timings [82].

From network flows it is possible to model communications among internal

hosts as a temporal graph [116] corresponding to a time window W, where nodes

correspond to internal hosts and directed temporal edges represent flows. Com-

mand propagations in pivoting tunnels are represented by network flows connecting

pivoters sequentially and separated by a low latency. For this reason, we introduce

the concept of maximum propagation delay εmax, defined as the maximum amount of

time that can pass between two consequent communications to consider them as a

3.2. Detection and Threat Prioritization of Pivoting Attacks 49

a

b 2s,11s
c 12s

d

 15s

 13s

 12s

e
 30s,42s

FIGURE 3.12: Temporal graph representation of network flows be-
tween five hosts (a,b,c,d,e).

part of the same pivoting activity.

We define a pivoting flow sequence F as an ordered set of flows (f1, f2, ..., fL),

L ∈ N, L > 1, where:

• all consecutive flows must be adjacent (dst of a flow is src for the following

flow);

• all connected nodes appear only once in the sequence;

• consecutive flows are chronologically ordered;

• consecutive flows are separated by at most εmax time units.

We define a pivoting path P as an ordered set of hosts (h1, h2, ..., hN) for which

at least one pivoting flow sequence exists. A pivoting path corresponds to one or

more pivoting flow sequences, whereas each pivoting flow sequence corresponds to

a specific pivoting path.

We illustrate some examples of flow sequences and pivoting paths by referring

to the temporal graph shown in Figure 3.12. For the sake of clarity, multi-edges are

represented by timestamp labels separated by a comma as in [117]. If we consider

any value of εmax ≥ 27s, the temporal graph contains all the paths identified in

Table 3.9. For the sake of simplicity, the represented flows only report src, dst and t.

We observe that some paths are subsets of other paths, and paths involving the

same vertices can occur at different timestamps. If we consider a maximum propa-

gation delay εmax = 5s, the pivoting paths of interest are reported in Table 3.10. This

propagation delay defines the admitted tolerance for considering two flows as part

of the same pivoting path.

Algorithm for pivoting detection In Algorithm 1 we present a novel algorithm

for pivoting detection that finds all the pivoting flow sequences within a temporal

graph representing network communications among internal hosts. We observe that

50 Chapter 3. Novel Solutions for Cyber Detection

TABLE 3.9: Example of pivoting paths and corresponding flow se-
quences from Figure 3.12 for εmax ≥ 27s.

.

Path Length Flow sequences

a,b,d 2
(a,b,2s),(b,d,15s)

(a,b,11s),(b,d,15s)

a,b,c 2
(a,b,2s),(b,c,12s)

(a,b,11s),(b,c,12s)

b,d,e 2
(b,d,15s),(d,e,30s)
(b,d,15s),(d,e,42s)

a,b,d,e 3

(a,b,11s),(b,d,15s),(d,e,30s)
(a,b,11s),(b,d,15s),(d,e,42s)
(a,b,2s),(b,d,15s),(d,e,30s)
(a,b,2s),(b,d,15s),(d,e,42s)

TABLE 3.10: Example of pivoting paths and corresponding flow se-
quences from Figure 3.12 for εmax = 5s.

Path Length Flow sequences

a,b,d 2 (a,b,11s),(b,d,15s)

a,b,c 2 (a,b,11s),(b,c,12s)

Algorithm 1: Algorithm for pivoting detection.
Input: List of m temporal edges corresponding to time window W (Flows), maximum

propagation delay εmax, minimum incoming and outgoing bytes Bin
min and Bout

min,
maximum flow duration δmin, maximum pivoting path length Lmax

Output: List of pivoting flow sequences of length ≥ 2 (corresponding to pivoting paths)
1 // Initialization
2 PivotingSequences← emptyList();
3 CandidateFlows← emptyList();
4 for flow f in Flows do
5 if (f .d ≥ δmin) and (f .bin ≥ Bin

min and f .bout ≥ Bout
min) then

6 Insert flow f in PivotingSequences;
7 Insert flow f in CandidateFlows;
8 // Look for possible pivoting flow sequences of length ≥ 2
9 for flow sequence F in PivotingSequences do

10 if length(F) ≥ Lmax then
11 break;
12 FoundSequences← ExtendPivotingSequence(F , CandidateFlows, εmax)
13 Include FoundSequences in PivotingSequences;
14 return List of elements in PivotingSequences with length ≥ 2;
15 // Function to find flow sequences of length (L + 1) given a sequence F of

length L
16 Function ExtendPivotingSequence(F ,CandidateFlows,εmax)
17 FoundSequences← emptyList();
18 hF ← last host in pivoting flow sequence F
19 tF ← lastest timestamp of F
20 FlowsWithinDelay← BinarySearch(CandidateFlows[tF : tF + εmax])
21 for flow f in FlowsWithinDelay do
22 if ((f .src equal to hF) and (f .dst not in sequence F)) then
23 NewSequence← (sequence F with flow f);
24 Insert NewSequence in FoundSequences;
25 return FoundSequences;

3.2. Detection and Threat Prioritization of Pivoting Attacks 51

once the pivoting flow sequences are found, it is immediate to enumerate the cor-

responding pivoting paths (as in Table 3.9). The pivoting detection algorithm takes

the following input parameters:

• the temporal graph of internal network communications built over the time

window W, represented as the list of its m edges. Without loss of general-

ity, we consider that the list of edges (representing network flows) is ordered

according to their timestamp;

• the maximum propagation delay εmax, which is the maximum amount of time

tolerated between two consecutive flows to be part of the same pivoting flow

sequence;

• the minimum flow duration δmin, which is the minimum duration of a network

flow to consider it part of a pivoting path;

• the minimum incoming and outgoing bytes Bin
min and Bout

min, which is the mini-

mum number of bytes transmitted in a network flow to consider it as a possible

portion of pivoting;

• the maximum pivoting sequence length Lmax, which is the maximum length of

the pivoting paths that the algorithm will search for. This parameter may be

seen as a terminating condition.

In Table 3.11, we report the most relevant symbols used in this section.

TABLE 3.11: Symbol table.

Symbol Description

F Pivoting flow sequence.
P Pivoting path.

FP
Set of pivoting flow sequences associated with
path P .

W Time window (e.g. 1 hour) analyzed by the pivot-
ing detection algorithm.

m Number of network flows within W.

Bin/out
min

Minimum number of incoming/outgoing bytes of
a network flow for building flow sequences.

δmin
Minimum network flow duration for building
flow sequences.

L Length of a pivoting flow sequence (number of
edges).

Lmax
Maximum pivoting flow sequence length toler-
ated by the pivoting detection algorithm.

ε Command propagation delay in a pivoting tunnel.

εmax
Maximum command propagation delay tolerated
by the pivoting detection algorithm.

52 Chapter 3. Novel Solutions for Cyber Detection

Algorithm 1 can be divided into two main phases: initialization, and extending

pivoting sequences.

1. Initialization: This phase takes the m edges of the temporal graph as its input

and stores them into two separate lists: PivotingSequences contains the list

of all the sequences of length L = 1 and is used to store new sequences as

the algorithm proceeds; CandidateFlows contains the flows that are evaluated

for extending the existing sequences. In line 5, an initial pruning condition is

reported as a function of the inputs: for the analysis of pivoting detection, only

flows with at least δmin duration and Bin
min and Bout

min bytes are considered for

this analysis. If Bin
min = Bout

min = δmin = 0, then the m input flows are considered

without pruning. Conditions in line 5 are considered because any pivoting

activity has to last for some time (since attackers are interacting through some

command interpreter), and has to transfer some bytes in both directions (the

propagated command, and the corresponding response).

2. Extending pivoting sequences: This is the core phase of the algorithm that

repeats a common function multiple times. In line 9 there is a cycle that iter-

ates through all the PivotingSequences found so far. Initially, it considers only

sequences of length L = 1 corresponding to the flows themselves. For each

flow sequence F of length L in the PivotingSequences, the algorithm executes

a function that searches for all possible flow sequences of length (L + 1) that

extend F . This function is called ExtendPivotingSequence (line 16), and takes

as its input a pivoting flow sequence F , a maximum propagation delay εmax

and the CandidateFlows.

The algorithm extracts the last host in the pivoting flow sequence hF and its

most recent timestamp tF . Then, it performs a binary search in line 20 on the

CandidateFlows in the time interval [tF , tF + εmax]. This binary search is admissi-

ble because the CandidateFlows are listed in sorted order of timestamp. The results

of the binary search are stored in FlowsWithinDelay, which are then iterated to check

whether a flow f ∈ FlowsWithinDelay can extend the currently analyzed pivoting

flow sequence F . There are two conditions in line 22 that must be verified for F to

be extended with f :

• the source node of f must be equal to hF (which is the last host of F);

3.2. Detection and Threat Prioritization of Pivoting Attacks 53

• the destination node of f must not be in sequence F (it must be a new host in

the sequence).

Whenever both conditions are satisfied, a new pivoting sequence is added to the

FoundSequences list, and then returned. By repeating the cycle on line 9 until a piv-

oting path of length Lmax is reached (line 11) or until no flow sequences can be further

extended, all the pivoting sequences of length at most Lmax are enumerated. We ob-

serve that in line 14 the algorithm returns only pivoting sequences of length L ≥ 2,

because those with L = 1 are the flows themselves.

Let us describe the algorithm by considering the example graph in Figure 3.12

and the function ExtendPivotingSequence with parameters εmax = 5s, flow sequence

F = ((a, b, 11s)) of length L = 1. For the sake of simplicity, we report only (src, dst, t)

of each flow. After the binary search in line 20, the flows within delay [11s, 11s + 5s]

are: (a, b, 11s), (b, c, 12s), (d, a, 13s), (d, c, 12s), (b, d, 15s). Only the flows starting with

b and not containing a can extend F = ((a, b, 11s)). Only the flows (b, c, 12s) and

(b, d, 15s) satisfy both conditions, and hence the new extended sequences found are

((a, b, 11s), (b, c, 12s)) and ((a, b, 11s), (b, d, 15s)). It is immediate to get the corre-

sponding pivoting paths (a, b, c) and (a, b, d).

3.2.4 Computational complexity

We evaluate the computational complexity of the proposed pivoting detection al-

gorithm and compare it against two alternatives: subgraph isomorphism and brute

force enumeration algorithms.

Subgraph isomorphism If we consider a pivoting path (or sequence) as a sub-

graph, then the pivoting detection problem could be seen as that of finding occur-

rences of specified subgraphs within a graph. This approach, which is known as the

subgraph isomorphism problem, is NP-complete [118] even for static graphs without

temporal edges. Hence, it is not a viable solution.

Brute force enumeration A possible approach to pivoting detection is to enumer-

ate all possible sequences that can be derived from existing flows, and then evaluate

whether these flow sequences are consistent with a maximum propagation delay

54 Chapter 3. Novel Solutions for Cyber Detection

εmax. The complexity of this brute force enumeration algorithm is:

m

∑
L=1

[(
m
L

)
· L!
]
∼ Ω(2m) (3.7)

where (m
L) represents the number of possible combinations (subsets) of length L

given m flows; L! denotes all possible permutations of such elements, and counts

the number of possible re-orderings of a length L path. The computational complex-

ity is more than exponential in the number of edges m, and is always higher than

Ω(2m). If we simplify the problem by considering only contiguous subsequences as

in [117], then the complexity diminishes (that is, L2 instead of L! as a multiplicative

factor in Eq. 3.7), but still remains more than exponential in the number of edges m.

Pivoting detection The algorithm for pivoting detection proposed in this paper

has an overall worst-case time complexity of:

O(mLmax · log2(m) · τ) (3.8)

where m is the number of network flows within the window W, Lmax is the maxi-

mum pivoting tunnel length we are looking for, and τ is the maximum number of

flows between any [t, t + εmax] interval. For small values of εmax representing the

common case, the parameter τ � m, hence the complexity may be simplified as

follows:

O(mLmax · log2(m)) (3.9)

For the demonstration, we assume that the m flows arrive in order of timestamp.

The initialization phase requires O(m) operations to initialize the list of flow se-

quences with length L = 1. The computational complexity of the initialization phase

is then:

O(m) (3.10)

The number of iterations of the core part starting on line 9 of the Algorithm 1

depends on the total number of possible flow sequences with length between 1 and

Lmax. We recall that the flow sequences are included in the PivotingSequences list in

Algorithm 1 while they are being found.

3.2. Detection and Threat Prioritization of Pivoting Attacks 55

Let ki be the number of i-length pivoting flow sequences that can be seen as

the number of permutations without repetition of m flows in ordered groups of i

elements [119]:

ki =
m!

(m− i)!
(3.11)

= m · (m− 1) · ... · (m− i + 1) (3.12)

= O(mi) (3.13)

As we have to consider the total number of flow sequences of length i = {1, 2, ..., Lmax},

we analyze ∑Lmax
i=1 (mi) sequences, which can be approximated to the following known

geometric series [120]:

Lmax

∑
i=0

mi =
1−mLmax+1

1−m
= O(mLmax) (3.14)

Then, we have to consider that for each iteration on line 9, the function ExtendPivot-

ingPath is executed.

In the ExtendPivotingPath function, we have a binary search in the sorted list of

m flows, that takes O(log2(m)) time. Then, if τ is the maximum number of flows

between any t and t + εmax timestamps, we have an overall time complexity of the

function ExtendPivotingPath equal to:

O(log2(m) · τ) (3.15)

From Eq. 3.7 and Eq. 3.13 we obtain a worst-case complexity of:

O(m + mLmax · log2(m) · τ) (3.16)

where Lmax � m and τ � m (for small values of εmax).

We conclude this section with some observations. Although the computational

complexity of the Eq. 3.8 remains high, in Section 3.2.6 we verify through a large set

of experiments that the proposed algorithm is efficient and applicable to real con-

texts. In particular, we can limit the propagation time εmax because in many real

attacks [90]–[93], [110] commands are propagated as fast as possible, thus leading

to values of ε of few milliseconds. Although advanced attackers could introduce

some delays to evade detection, values of ε higher than few seconds make pivoting

56 Chapter 3. Novel Solutions for Cyber Detection

unpractical. Moreover, post-exploitation activities, such as command execution or

data exfiltration, require flows lasting for at least few seconds, and comprising at

least some tens of bytes. These conditions allow the pruning phase of the pivoting

detection algorithm to reduce up to 90% the number of edges with respect to the

worst case. As shown in Section 3.2.6, in practice the computational cost decreases

significantly, and the execution time in a COTS machine renders the proposed algo-

rithm suitable even for large network environments.

3.2.5 Threat prioritization

Some pivoting activities may be benign, hence it is important to avoid or limit the

false alarms and let the security analysts focus on the most likely threats. For this

reason, we integrate Algorithm 1 with a threat prioritization approach that ranks the

detected paths on the basis of their suspicious factors. We define the following threat

indicators for each detected pivoting path:

• path novelty,

• reconnaissance activities,

• involved LANs,

• use of uncommon ports,

• anomalous data transfers.

We now discuss these scores individually, and then show our approach to combine

them in an overall threat score.

Path novelty The appearance of paths involving hosts that have never previously

communicated may be related to some unauthorized activities, as also highlighted

in [64]. Hence, the score of the communication path novelty should be high if all

the communications occurring among the involved hosts and their ports have never

been seen in the recent past. Taking into consideration the pivoting path P , we

consider the set FP of the flow sequences F associated with P (see Table 3.10), we

define the score N(P) as the highest percentage of novel communications between

hosts involved in the path P :

N(P) = max
F∈FP

{(
len(F)− len(SF)

len(F) + 1

)}
(3.17)

3.2. Detection and Threat Prioritization of Pivoting Attacks 57

where N(P) ∈ [0, 1], len(F) is the number of edges (flows) in F , and SF is the

longest common subsequence of F found among the flow sequences related to the

path detected in the recent past runs of Algorithm 1. We define a common subse-

quence as any subsequence of F where all flows have the same src and dst, and ei-

ther the same psrc or pdst ports but not necessarily both. This latter condition is useful

because in client-server communications it is common to have different clients ports

over time but only one server port. If N(P) = 1, all communications within the path

are novel; if N(P) = 0, all communications have occurred in the past.

Reconnaissance activities Attackers perform reconnaissance to look for neighbor

hosts that they can compromise. The paths including hosts involved in such activi-

ties should have a high risk score R(P) as defined below:

R(P) = n.hosts of P involved in recon.
len(P) (3.18)

where R(P) ∈ [0, 1], and len(P) is the number of hosts in the pivoting path P .

This score reports the percentage of hosts within a path that have been involved

in reconnaissance activities. As the reconnaissance detection problem is out of the

scope of this work, we rely on existing techniques, such as those proposed in [83].

Involved LANs Reaching internal hosts not easily accessible from the external net-

work is one of the main reasons leading attackers to adopt pivoting techniques [121].

Thus, paths including hosts of different LAN segments may be a risk signal that

should be prioritized. We define the Z(P) score as:

Z(P) = n.hosts of P in different LANs
len(P) (3.19)

where Z(P) ∈ [0, 1], and len(P) is the number of hosts in a path P . This score

denotes the percentage of different LANs included in a path, where Z(P) = 0 if

all hosts belong to the same LAN, and Z(P) = 1 if each host belongs to a different

LAN.

Use of uncommon ports Some ports, such as number 22 (SSH), 23 (Telnet), 443

(SSLH Multiplexing), 3389 (Windows remote desktop protocol) or 5938 (Team Viewer),

58 Chapter 3. Novel Solutions for Cyber Detection

are commonly used for benign tunneling activities. Others are uncommon and pos-

sibly risky. We consider an edge (flow) to be uncommon if both psrc and pdst are

uncommon ports. The related score is computed for each path as the maximum of

the following ratio:

S(P) = max
F∈FP

{
n.flows in F with uncomm. ports

len(F)

}
(3.20)

where S(P) ∈ [0, 1], FP is the set of flow sequences associated with the pivoting

path P , and len(F) is the number of flows contained in F . This score represents the

maximum percentage of uncommon ports used in any communication of a pivoting

path. For example, S(P) = 0.5 when there is at least one flow sequence of P whose

50% of the flows use uncommon ports.

Anomalous data transfers Attackers often leverage pivoting tunnels to perform

data exfiltrations. A method to prioritize such activities is to verify whether the

amount of data exchanged among the hosts of a given path, considering all its cor-

responding flow sequences, has increased with the respect to the recent past. To this

purpose, we define the E(P) score as follows:

E(P) =


1, if a data transfer anomaly is detected

0, otherwise
(3.21)

To detect whether an anomaly occurred, we apply the boxplot rule [120] to the ex-

changed traffic among hosts.

Overall threat score We compute an overall threat score T (P) of the path P as the

sum of the indicators (we omit P for readability) where higher values denote paths

that are more likely malicious:

T = (N + R + Z + S + E), T ∈ [0, 5] (3.22)

All pivoting paths identified with the proposed detection algorithm are ranked

according to their threat score. Section 3.2.6 validates the effectiveness of our threat

prioritization score in different scenarios and with respect to other baseline algo-

rithms.

3.2. Detection and Threat Prioritization of Pivoting Attacks 59

3.2.6 Evaluation results

We demonstrate the effectiveness and feasibility of the proposed pivoting detection

and threat prioritization algorithms when deployed on a real network of a large or-

ganization. Hence, we perform our experiments on a test dataset consists of real

network traffic captured by probes situated in a large enterprise, collected over a

time span of over five months (160 days). The dataset is composed by more than

half a billion (657 213 849) network flows describing the internal network commu-

nications among 8 198 hosts. This scenario can be modeled as a graph where the

number of temporal edges (flows) is significantly larger than the number of nodes

(hosts).

We organize our experiments through the following outline:

• we demonstrate that our algorithm is able to detect all existing pivoting activ-

ities.

• We inject different pivoting attacks into real network traffic, and show that our

algorithms are able to detect and prioritize all the injected threats.

• We analyze the additional challenge posed by possible evasion strategies that

may be adopted by expert attackers; we show the robustness of our proposals

even against these attempts.

• We compare our solutions against two related algorithms.

• Finally, we measure the execution times of the proposed pivoting detection

algorithm with the goal of demonstrating its applicability to real contexts.

We remark that we publicly released a snippet of the data used for these experi-

ments2.

Pivoting detection and prioritization We evaluate how the proposed algorithms

for pivoting detection and threat prioritization perform under varying attack con-

ditions. We initially execute the pivoting detection algorithm on the test dataset

once per hour (W = 60 minutes) until each of the 160 days of the dataset has been

analyzed. In typical pivoting activities the propagation delay is in the order of mil-

liseconds [90]–[93], hence we initially consider the performance with εmax = 1s and

no limit on the maximum length of the pivoting path (Lmax = ∞).

2Data Snippet: https://weblab.ing.unimore.it/people/apruzzese/datasets/pivoting.html

https://weblab.ing.unimore.it/people/apruzzese/datasets/pivoting.html

60 Chapter 3. Novel Solutions for Cyber Detection

Manual inspection of each path detected by the algorithm reveals that they are all

true and benign pivoting activities corresponding to SSH tunneling and proxying.

As the algorithm has been able to identify all tunneling activities occurring within

the network for propagation delay ε ≤ 1s, we can conclude that, in absence of attacks

with propagation delay ε > 1s, it achieves 100% Accuracy.

As no malicious pivoting activity occurs in the testbed considered for evaluation,

we emulate five classes of pivoting attacks, which are summarized in Table 3.12, and

inject them into the real traffic traces. AC1 refers to an attacker creating an SSH tun-

nel and performing port-scans to detect the next victim, which is compromised after

a brute-force SSH password guessing. In AC2, the attacker uses the SSH protocol

for exchanging 30MB of data, but no brute-forcing nor active reconnaissance is per-

formed. AC3, AC4 and AC5 are performed through the Metasploit toolset. The

Attack Classes in Table 3.12 consider also increasing length of the pivoting chain to

show that our algorithm can still detect longer chains and how this affects prioriti-

zation.

TABLE 3.12: Pivoting Attack Classes.

Attack Class Vector Len Recon LANs Data

AC1 SSH 2 3 2 10 MB
AC2 SSH 2 7 2 30 MB
AC3 Metasploit 4 3 5 100 MB
AC4 Metasploit 3 7 4 < 1 MB
AC5 Metasploit 4 7 1 5 MB

The network traffic generated by each Attack Class is collected as netflow data

and then injected into each day of the real traffic dataset. This injection process is

realized through an ad-hoc script that merges each attack flow with the dataset by

replacing the IP addresses of the virtual pivoter hosts with those of real hosts. To

avoid bias when choosing real hosts as pivoters, we identify two main sets of hosts:

ω and β. The ω set contains the hosts with a total number of communications above

the 95-th percentile, while the β set those below the 5-th percentile. In other words,

ω and β sets contain high-activity and low-activity hosts, respectively. Since it is

easier to prioritize pivoting activities in β because it contains hosts that rarely in-

teract, we can observe that ω and β represent a worst- and best-case scenarios for

prioritization, respectively. We execute the pivoting detection algorithm on the en-

tire injected dataset for εmax = 1s, no bounds on the maximum length of the pivoting

paths (Lmax = ∞), and W = 60 minutes. Our algorithm is able to correctly detect

3.2. Detection and Threat Prioritization of Pivoting Attacks 61

all the injected pivoting paths thus achieving a 100% Precision. Unfortunately, in

addition to malicious pivoting paths, the algorithm detects some benign pivoting

activities present in the dataset. This result motivates our choice of relying on the

threat prioritization algorithm presented in Section 3.2.5. The goal now is to assess

whether this algorithm is actually able to prioritize malicious pivoting activities by

placing them at the top positions in the ranking. Table 3.13 reports the results of the

threat prioritization algorithm for each Attack Class and each set of injected hosts.

Each row displays the average rank and its standard deviation obtained by each

Attack Class after considering all the pivoting paths found within each day in the

dataset. Lower values of rank correspond to higher prioritization. For example, if a

pivoting path is ranked in position 1, it implies that it has the highest likelihood of

being malicious among all pivoting paths detected in the same day. We observe that

all attacks of each class have always an average rank lower than 2 even for the worst-

case high-activity hosts belonging to the ω set. Moreover, a standard deviation that

is always below 1.4 indicates that the vast majority of malicious pivoting paths are

ranked in the top positions. These important results show that the threat prioritiza-

tion algorithm is capable of assigning a high, stable rank to all the considered Attack

Classes, thus ensuring the prioritization of the malicious pivoting activities.

TABLE 3.13: Performance of the threat prioritization algorithm.

Attack Class average rank standard deviation
AC1 (ω) 1.38 1.32
AC1 (β) 1.17 0.72
AC2 (ω) 2.01 1.18
AC2 (β) 1.55 1.04
AC3 (ω) 1.00 0.00
AC3 (β) 1.00 0.00
AC4 (ω) 1.13 0.51
AC4 (β) 1.14 0.68
AC5 (ω) 1.15 0.83
AC5 (β) 1.14 0.78

We can also observe that AC3 is always ranked first with standard deviation

equal to zero, because the attacks in this class span over five LANs and involve

about 100MB of exfiltration traffic (see Table 3.12). On the other hand, the attacks

in AC1 and AC2 exhibit slightly lower ranks. This is motivated by the fact that

these attacks are performed through SSH, which is a standard protocol often used

by system administrators for legitimate tunneling operations; as expected, the threat

scores of AC1 and AC2 are slightly lower than those performed through Metasploit

62 Chapter 3. Novel Solutions for Cyber Detection

(see Section 3.2.5). Nevertheless, the average ranks of these two classes are always

lower than 3.

Evasion techniques Our pivoting detection and prioritization algorithms are able

to detect and properly prioritize malicious pivoting tunnels occurring in internal

networks. We now further stress the algorithms by considering skilled attackers that

employ evasion techniques based on the introduction of some propagation delay in

their pivoting communications. Detecting these stealthy attacks requires that the al-

gorithm works with higher values of the parameter εmax. Increasing this parameter

has two consequences on the results of the detection algorithm: its execution times

increase; it may label as pivoting activities some flow sequences that pertain to nor-

mal traffic, that is, it may be affected by false positives. For these reasons, it is of

paramount importance to evaluate the robustness of the detection algorithm against

evasion techniques of expert attackers. To this purpose, we repeat the attacks of Ta-

ble 3.12 by adding the propagation delays reported in Table 3.14, and then inject the

delayed attacks in each day of the entire dataset. For the sake of completeness, we

also consider delays equal or longer than 10 seconds, although they are unpractical

in reality. The motivation is simple: if for example the attackers want to perform an

action in a pivoting chain of 5 hosts with a delay of ε = 25s, they should wait for

5 hosts × 25s × 2 directions, which is more than four minutes delay for each issued

command.

TABLE 3.14: Emulated propagation delays ε for the Attack Classes.

Attack Class
AC1 AC2 AC3 AC4 AC5

Delay 2s 4s 8s 10s 15s

We then execute the detection algorithm on the injected dataset for values of εmax

up to 30s and we do not set any bound on the maximum length of the pivoting path

(Lmax = ∞), while the size of the time-window is still set to W = 60 minutes. The

detection results are reported in Table 3.15. From this table we can conclude that our

detection algorithm is able to detect all the Attack Classes when it is executed with

an adequate value of εmax.

We then execute the threat prioritization algorithm and report in Table 3.16 the

daily average and standard deviation of the rank obtained by attacks belonging to

3.2. Detection and Threat Prioritization of Pivoting Attacks 63

TABLE 3.15: Pivoting attack detection for increasing εmax.

Attack Class 1s 5s 10s 15s 20s 25s 30s

AC1 7 3 3 3 3 3 3

AC2 7 3 3 3 3 3 3

AC3 7 7 3 3 3 3 3

AC4 7 7 3 3 3 3 3

AC5 7 7 7 3 3 3 3

each Attack Class over the entire injected dataset. Rows refer to the attacks belong-

ing to different Attack Classes and columns to different values of the parameter εmax.

Each cell reports the average rank and its standard deviation between parentheses.

We observe that the average rank produced by our algorithm is always lower than 3

and its standard deviation is always lower than 2.

TABLE 3.16: Threat prioritization: average ranking for increasing
εmax.

Attack Class 1s 5s 10s 15s 20s 25s 30s

AC1 (ω) 7 3 1.48 (1.67) 3 1.55 (1.84) 3 1.48 (1.58) 3 1.62 (1.91) 3 1.65 (1.93) 3 1.69 (1.98)
AC1 (β) 7 3 1.21 (1.09) 3 1.21 (1.12) 3 1.21 (1.10) 3 1.21 (0.92) 3 1.21 (0.93) 3 1.21 (0.99)
AC2 (ω) 7 3 2.11 (1.23) 3 2.24 (1.26) 3 2.27 (1.46) 3 2.52 (1.57) 3 2.65 (1.66) 3 2.80 (1.94)
AC2 (β) 7 3 1.61 (1.11) 3 1.72 (1.19) 3 1.81 (1.34) 3 2.04 (1.29) 3 2.09 (1.54) 3 2.21 (1.65)
AC3 (ω) 7 7 3 1.00 (0.00) 3 1.00 (0.00) 3 1.00 (0.00) 3 1.00 (0.00) 3 1.00 (0.00)
AC3 (β) 7 7 3 1.00 (0.00) 3 1.00 (0.00) 3 1.00 (0.00) 3 1.00 (0.00) 3 1.00 (0.00)
AC4 (ω) 7 7 3 1.26 (0.86) 3 1.26 (1.14) 3 1.21 (1.31) 3 1.21 (1.00) 3 1.21 (1.63)
AC4 (β) 7 7 3 1.21 (0.75) 3 1.21 (1.06) 3 1.17 (1.23) 3 1.17 (1.32) 3 1.17 (1.37)
AC5 (ω) 7 7 7 3 1.26 (1.16) 3 1.21 (1.44) 3 1.21 (1.56) 3 1.21 (1.86)
AC5 (β) 7 7 7 3 1.21 (1.15) 3 1.17 (1.28) 3 1.17 (1.29) 3 1.17 (1.54)

TABLE 3.17: Detection rate in top 5 for increasing εmax.

Attack Class 1s 5s 10s 15s 20s 25s 30s

AC1 (ω) 7 98.1% 97.5% 97.5% 97.0% 97.0% 97.0%
AC1 (β) 7 98.1% 98.1% 98.1% 98.1% 97.5% 97.5%
AC2 (ω) 7 94.4% 94.4% 94.4% 93.8% 93.8% 93.8%
AC2 (β) 7 97.5% 97.0% 97.0% 95.0% 95.0% 95.0%
AC3 (ω) 7 7 100.0% 100.0% 100.0% 100.0% 100.0%
AC3 (β) 7 7 100.0% 100.0% 100.0% 100.0% 100.0%
AC4 (ω) 7 7 98.1% 98.1% 98.8% 98.8% 98.8%
AC4 (β) 7 7 99.4% 99.4% 98.8% 98.8% 98.8%
AC5 (ω) 7 7 7 98.1% 98.8% 98.8% 98.8%
AC5 (β) 7 7 7 99.4% 99.4% 98.8% 98.8%

The accuracy of the prioritization algorithm is evaluated by denoting the detec-

tion rate as the percentage of days in which an injected Attack Class has been prior-

itized within the top 5 threats. Table 3.17 reports the detection rates for increasing

values of εmax. The best results are achieved on attacks of type AC3, where the al-

gorithm always prioritizes the injected attacks within the top 5. As expected, the

lowest detection rate (between 93% and 97%) is obtained for AC2 attacks because

64 Chapter 3. Novel Solutions for Cyber Detection

they represent a stealthy activity with standard SSH protocol and no reconnaissance

(see Table 3.12). We also recall that ω represents the set of high-activity internal

hosts, which are much more challenging to prioritize. Overall, we can be satisfied

by the results in Table 3.17 because our algorithm prioritizes the large majority of

Attack Classes with detection rates between 97% and 99%.

We can motivate these results by considering that the proposed approach inte-

grates a pivoting detection with a threat prioritization phase. If the value of εmax is

high enough to tolerate the propagation delay inserted by the attackers, then the

pivoting detection algorithm achieves 100% Recall, that is, all pivoting tunnels are

detected. In particular, if εmax = 1s then all the detected flow sequences belong to

actual pivoting paths, therefore achieving 100% Precision and 100% Recall. If we set

εmax = 1s and the attackers perform some evasion techniques, the algorithm may be

affected by some false negatives. In these cases, detection of evasive pivoting tun-

nels is achieved by setting εmax > 1s because any flow sequence with a propagation

delay greater than 1s is either a false positive or an evasive pivoting attack, and is

never benign because benign operations have short latencies. To overcome the limi-

tations of the pivoting detection algorithm in case of evasive attackers, we designed

the threat prioritization algorithm to rank the pivoting tunnels most likely related to

threats in top positions, despite the presence of benign tunnels and false positives.

We can conclude that the combination of the proposed pivoting detection and threat

prioritization algorithms allows effective triage of even the most evasive attackers,

as demonstrated by the results in Table 3.16.

Comparison with other detection algorithms To the best of our knowledge, this is

the first approach targeted to pivoting detection and threat prioritization that relies

solely on network flows without any assumption on protocols and hosts. Nonethe-

less, we find meaningful to compare our solution with two algorithms relying on

network flows, SSHC [95] and WHL [59], which we consider the most related to

our approach. SSHC detects SSH-based attacks involving port-scans and brute-force

password guessing; when these actions are performed through a remotely controlled

internal host, they are true pivoting attacks. WHL evaluates variations in the graph

of internal communications to detect malware propagations; in this case, rapid mal-

ware propagation through different hosts can be modeled as a pivoting attack.

3.2. Detection and Threat Prioritization of Pivoting Attacks 65

Comparative results are presented in Table 3.18, where each row refers to a spe-

cific Attack Class. For this set of experiments we assume an advanced attacker that

is trying to evade detection by applying the delays described in Table 3.14. Each

column of Table 3.18 summarizes the results achieved by a different detection al-

gorithm. The first column refers to the detection and prioritization algorithms, in

which εmax = 15 seconds, W = 60 minutes and Lmax = ∞. The last two columns re-

fer to the detection results obtained by SSHC and WHL. Detected and not detected

attacks are marked by 3 and 7 symbol, respectively. The proposed algorithm de-

tects all pivoting paths, but it is also able to prioritize those representing real threats.

For this reason, in Table 3.18 we also include the daily average rank and standard

deviation associated to the attacks belonging to the same class. Since SSHC and

WHL perform just detection with no prioritization, we report whether the injected

pivoting attack has been detected or not.

TABLE 3.18: Comparison of detection algorithms.

Attack Class Alg (εmax=15s) SSHC WHL

AC1 (ω) 3 1.48 (1.58) 3 3

AC1 (β) 3 1.21 (1.10) 3 3

AC2 (ω) 3 2.27 (1.46) 7 7

AC2 (β) 3 1.81 (1.34) 7 7

AC3 (ω) 3 1.00 (0.00) 7 3

AC3 (β) 3 1.00 (0.00) 7 3

AC4 (ω) 3 1.26 (1.14) 7 7

AC4 (β) 3 1.21 (1.06) 7 7

AC5 (ω) 3 1.26 (1.16) 7 7

AC5 (β) 3 1.21 (1.15) 7 7

From these results, we can observe that attacks in AC1 can be detected by all

three approaches. Our algorithm detects and prioritizes it within the top 5 hosts;

SSHC recognizes the attack associated with a brute-force attempt, and WHL de-

tects a sudden change in the communication structure due to the reconnaissance

performed after pivoting. AC3 is always detected by our approach and by WHL,

however it is not detected by SSHC because it does not involve brute-forcing of an

individual host, but a reconnaissance on multiple hosts. Finally, we can observe

that attacks in AC2, AC4 and AC5 cannot be detected by SSHC and WHL because

they involve more subtle pivoting activities and they include a propagation delay

between 2s and 15s introduced by the attackers to improve his chances of evasion.

66 Chapter 3. Novel Solutions for Cyber Detection

We can conclude that our algorithm is by far the most effective in detection and pri-

oritization of pivoting activities even if the attackers adopt evasive attack strategies.

Execution times The computational complexity of pivoting detection algorithms

is a fundamental challenge for evaluating if they can be applied to real contexts. As

discussed in Section 3.2.3, the worst-case computational complexity of our algorithm

is exponential with respect to the parameter Lmax (see Eq. 3.8), that is, the maximum

pivoting path length. Nevertheless, the parameter Lmax is just a theoretical worst-

case upper boundary because in real networks the large majority of pivoting paths

have length L = 2 or L = 3. Hence, we show that the time required to analyze even

large datasets has little dependence on Lmax.

We execute the algorithm multiple times on the injected dataset, each time pro-

viding different input values for εmax (1s, 10s, 20s, 30s) and Lmax (2, 3, 4, 5, 6, ∞). The

size of the time-window W is set to 1 hour and 12 hours. Analyses are performed

on a COTS server equipped with one Intel Xeon E5-2609 v2 CPU with 4 physical

cores and 128GB RAM. Figures 3.13 report the average execution times required for

each run of the algorithm. The x-axis in both figures corresponds to different input

values of Lmax; the y-axis represents the average time (in seconds) required for the

computation, and each line refers to different input values of εmax. For the sake of

completeness, we report that the maximum standard deviation σmax among all the

experiments with time window W = 1 hour and W = 12 hours are of 4.8 seconds

and 17.8 seconds, respectively. The results in these figures show that the execution

times are almost constant with respect to the parameter Lmax for Lmax > 3 thus con-

firming that the upper bound Lmax has no practical influence on the paths present in

the real dataset.

As expected, the execution times increase for increasing εmax values because this

parameter affects the research space of the detection algorithm (see Section 3.2.3).

Nevertheless, these results show that the amount of time required for analyzing

even large datasets of flows is short (the majority of execution times are below 2

minutes even when for analyses of 12 hours of traffic), therefore demonstrating the

applicability of the detection algorithm to large real networks.

3.3. Detection of Malicious Beaconing Activities 67

2 3 4 5 6
Maximum path length Lmax

0

2

4

6

8

10

E
xe

cu
ti

on
ti

m
e

[s
]

εmax=30s

εmax=20s

εmax=10s

εmax=1s

(A) Analysis of 1 hour of data (σmax = 4.8s).

2 3 4 5 6
Maximum path length Lmax

0

20

40

60

80

100

120

E
xe

cu
ti

on
ti

m
e

[s
]

εmax=30s

εmax=20s

εmax=10s

εmax=1s

(B) Analysis of 12 hours of data (σmax = 17.8s).

FIGURE 3.13: Execution times of the pivoting detection algorithm.

3.3 Detection of Malicious Beaconing Activities

The following work is focused to support automatic security analyses by identifying

malicious external hosts, even if their activities do not raise any NIDS alert. We pro-

pose a method that analyzes network flows by combining time series analysis ([122])

with clustering algorithms [123], and is able to automatically generate a graylist of

few external hosts characterized by a likelihood of being malicious that is several

orders of magnitude greater with respect to all the external hosts contacted by the

monitored network. In particular, we focus on periodic communications (also re-

ferred to as beaconing) at different time intervals [124]. The detection of malicious

beaconing activities is still an open research problem [61], [125], [126], which is fur-

ther complicated in large networks due to the difficulty of performing accurate and

timely analyses of huge volumes of network traffic [127]. Moreover, we have experi-

mentally verified that external hosts exhibiting periodic connections present a higher

rate of malicious behaviors when compared to hosts with irregular communication

patterns. As an additional benefit, our proposal is capable of identifying beaconing

activities even in the absence of communications with a strict periodic pattern, thus

68 Chapter 3. Novel Solutions for Cyber Detection

allowing the detection of possible evasion attempts.

Our solution is evaluated with a thorough set of experiments performed on a

large, real network without the creation of any synthetic traffic. The results of these

experiments are validated through external sources, and demonstrate the efficacy

of our proposal: it produces concise graylists of few dozens of hosts, containing

malicious hosts that evaded traditional NIDS detection; and the execution time is

compatible with online analyses for timely detection. As a final remark, our ap-

proach can be deployed even on very large networks and can be integrated in any

detection system, and its performance can be further improved by easily combining

with other detection algorithms.

3.3.1 Related work

We present a novel method for automatically generating a graylist of external hosts

with a higher probability of being involved in malicious beaconing activities with

respect to the entire set of external hosts contacted by the monitored organization.

Our proposal leverages clustering techniques applied to network flows. There are

two main areas of related work: NIDS alarm optimization and detection of malicious

beaconing activities.

Each NIDS generates huge amounts of alerts whose manual inspection is often

unfeasible for human operators, hence several solutions aim to improve the infor-

mation presented to security analysts by presenting shorter, comprehensive records.

The authors in [128] discuss an algorithm to reduce the volume of alarms produced

by multiple NIDSs through clustering alerts raised by similar malicious actions.

Other papers, such as [129], propose to cluster alarms to detect their root-causes.

Valeur et al. [97] transform groups of correlated alarms into intrusion reports; an

evolution of similar approaches can be found in [130]. More recent works propose

prioritization techniques for internal hosts. Authors of [66], [67], [131] focus on mul-

tistep attacks. The proposal in [132] leverages the alarms raised by the most critical

assets, whereas the one in [133] leverages detailed information of the monitored net-

work to provide more accurate rankings. All these papers share the broad goal of

supporting security analysts by allowing them to focus on the most relevant alarms

detected by a NIDS. In contrast, our proposal combines intrusion alerts together

with network flow analyses and clustering algorithms to identify the most suspi-

cious external hosts even if their actions do not raise any NIDS alert.

3.3. Detection of Malicious Beaconing Activities 69

The detection of malicious beaconing activities is a well known problem in the

field of botnet detection. Gu et al. [63] devise a framework for detecting internal

hosts belonging to botnets through clustering of network traffic, based on the as-

sumption that bots belonging to the same botnet have similar network behaviors.

Other proposals to expose bots involve monitoring specific communication proto-

cols (such as IRC- or TOR-related information [134]–[136]). Authors of [137] plan

to discover botnet infected hosts through supervised machine learning algorithms

applied to network flows by identifying the key features of Command and Control

communications. A similar solution is proposed in [61], although its main focus is

on detecting Command and Control servers instead of bots.

Our method is not limited to detecting botnet-related malware, but extends to

any possible external threat that is performing beaconing activities. Unlike botnet-

related proposals, we do not make any assumption about the characteristics dis-

played by the analyzed traffic. Related work, such as [125], inspects DNS logs to

discover malicious beaconing activities performed by internal hosts, whereas the

proposal in [126] relies on the analysis of both DNS and web-proxy logs. On the

other hand, we aim to detect malicious external hosts, which is a tougher problem

because a large organization may contact hundreds of thousands of external hosts

daily.

Moreover, our proposal is based on the analysys of network flows, which can be

easily gathered and stored [83], leverages an unsupervised machine learning algo-

rithm (unlike [61], [137]), and its execution time on a large network is compatible to

online traffic analyses.

3.3.2 Proposed method

The main objective is to provide a graylist of external hosts involved in periodic

communications with a high likelihood of being malicious. The basic assumption

is that although novel variants of attacks are likely to evade NIDS detection [32],

some features of malware network behavior persist and can be used to identify likely

malicious activities.

The proposed method works on two inputs that can be easily obtained in modern

infrastructures: network flows related to communications between internal and ex-

ternal hosts, and security alerts generated by a signature-based NIDS. These inputs

are processed by the three modules shown in Figure 3.14. The Periodicity Detector is

70 Chapter 3. Novel Solutions for Cyber Detection

responsible for identifying network communications between internal and external

hosts occurring at regular intervals. The Behavioral Aggregator clusters periodic con-

nections according to their network behavior. The Graylist Builder creates the final

graylist of suspicious external hosts.

FIGURE 3.14: Workflow of the proposed method.

As the number of connected devices in enterprise networks continues to increase,

the detection of periodic activities is becoming a challenging task, since they can

occur at different degrees of granularity spanning from few seconds to hours (to

the interested reader, we point out that similar problems are also tackled in [124]).

Instead of looking for periodicities in raw traffic, we consider network flows which

offer aggregated metadata summarizing relevant network traffic features. Each flow

record is defined as an unidirectional sequence of packets that share specific network

properties, such as source/destination IP address, transport layer protocol type, and

source/destination port. Using network flows as input source is a popular choice in

the cybersecurity domain [83], as they lower the amount of storage space required,

make analyses faster, and reduce privacy concerns due to the absence of packet-

specific payloads.

NIDSs are a valuable asset for detecting malicious activities, but they are unable

to detect novel malware variants that do not contain any known signature. How-

ever, some characteristics of malware behavior, such as beaconing, are stable across

a wide array of automatically generated malware variants, thus resulting in similar

communication patterns. Since our approach clusters network communications that

share similar periodic behaviors, different variants of the same piece of malware are

likely to be clustered together. Our approach only requires that a single malware

variant generates a NIDS alert to pinpoint as suspicious the entire cluster of periodic

communications containing that variant.

We now describe each module that composes our solution.

3.3. Detection of Malicious Beaconing Activities 71

FIGURE 3.15: Example of time series and related ACF generated by
two host with a noisy periodic behavior.

Periodicity Detector The Periodicity Detector module detects periodic communi-

cations from network flows in two phases: first, it generates time series from the net-

work flows; then, it analyzes these time series through an autocorrelation algorithm

to determine whether they are periodic or not. The adopted techniques are robust

and tolerate possible pertubations caused by noise or introduced by an attacker to

escape detection.

The sequence of network flows among two hosts represents an unevenly spaced

time series, which cannot be immediately used to detect periodic communications.

Hence, we initially compute one evenly spaced time series for each pair of internal

and external hosts exchanging packets within a time window W. Given a sampling

period P, this time series contains a total of W/P elements. Each element is built by

aggregating all the network flows between the involved hosts occurring within the

same sampling period. As beaconing activities require repeated exchanges of some

data, to capture these data transfers we compute each element of the time series by

adding together the amount of bytes exchanged between the involved hosts within

the related sampling period. This design choice allows us to better differentiate bea-

coning activities that exchange different volumes of data. After this phase, each pair

of internal and external hosts is associated to one time series.

Then, we adopt autocorrelation to detect periodicities in each time series because

this technique can signal time series exhibiting more than one period [138]. By com-

puting the autocorrelation on a time series we obtain an autocorrelation function

(ACF) containing W/P elements, each one representing the similarity of the time

72 Chapter 3. Novel Solutions for Cyber Detection

series with a delayed copy of itself. The analysis of the local maxima of the ACF de-

termines whether a time series exhibits or not periodicities. In particular, looking for

periodicities in the ACF involves determining the coordinates of local maxima, since

strictly periodic time series tend to have local maxima with high amplitude at the

beginning of the related ACF. Existing works relying on this technique for detecting

periodicities in time series (e.g., [139]) are only able to identify strictly periodic time

series. The problem is that skilled attackers may insert some perturbations to avoid

detection, either by delaying or anticipating the communications, or by changing

the volume of data exchanged during each interaction by random amounts. More-

over, network traffic may be subject to noise induced by inactivity periods, temporal

disconnections, or by the presence of packets retransmissions and other network-

related artifacts. To address these issues, we propose an innovative algorithm that is

capable of labeling as periodic even time series that do not display a strictly periodic

pattern. The main intuition is that restricting the analysis of the ACF only on the

first very high local maxima does not allow to identify noisy periodic time series:

time series with noisy periodicities are characterized by a limited amplitude of lo-

cal maxima, hence they cannot be detected by conventional approaches. However,

with respect to aperiodic time series, they present several local maxima with a sim-

ilar amplitude, as well as high amplitudes between a local maximum and its next

local minimum. To achieve a more flexible algorithm to detect noisy periodicities,

we introduce two thresholds in the ACF:

• the local maximum-location threshold τ identifies the initial set of local maxima,

splitting the ACF into two subseries: Y1, containing all the first τ elements of

the ACF and determining the initial set of local maxima; and Y2, containing all

the other elements, determining the remaining set of local maxima;

• the local maximum-amplitude threshold ρ is used to determine the amplitude re-

quired for an ACF element to be considered a local maximum: we consider

those elements whose value is greater than ρ as local maxima, and those ele-

ments whose value is lower than ρ
2 as local minima.

To illustrate the idea, we report in Figure 3.15 the time series and its related ACF

obtained from the communications between two hosts. We observe the existence of

two noisy periodic behaviors in the time series, evidenced by the exchange of about

1.1KB and 180B of data every 30 minutes. For the ACF plot, we represent τ and ρ

3.3. Detection of Malicious Beaconing Activities 73

with a vertical and horizontal dashed line, respectively. We note that the amplitude

of the local maxima in the ACF decreases irregularly, caused by the presence of noise

in the original time series; furthermore, the initial local maxima set has a similar

amplitude as the remaining set.

Our algorithm labels as periodic those time series whose ACF satisify at least one

of the following criteria:

• Y2 has at least d elements ≥ ρ and Y1 has at least 2d elements ≤ ρ
2 ;

• Y1 has at least r elements ≥ ρ and Y1 has at least r elements ≤ ρ
2 .

Where d is the period duration sensitivity and r is the periodic rate sensitivity that must

be chosen manually. Higher values of d imply that those time series that are labeled

as periodic are characterized by periods of shorter length; higher values of r result

in periodic time series whose periodicities occur for longer time-frames. We remark

that the first and second criteria are designed to detect time series with periods of

greater and shorter length, respectively. Upon the completion of this phase, all those

time series that have been labeled as periodic are forwarded to the Behavioral Ag-

gregator module.

Behavioral Aggregator The Behavioral Aggregator clusters periodic communica-

tions exhibiting similar patterns. Although clustering techniques have already been

employed in the information security field, to the best of our knowledge we are the

first to propose the leveraging of clustering algorithms to detect communications

with a similar periodic behavior. This task is performed in two phases: we com-

pute the Discrete Fourier Transform (DFT) for each periodic time series to obtain its

spectrogram; then, these spectrograms are used as input for a hierarchical clustering

algorithm.

By applying the DFT to a periodic time series it is possible to generate a spec-

trogram. This representation is useful to describe the behavior of network commu-

nications, since periodic time series that are out of phase may look very different,

while their spectrograms exhibit the same profile. The problem is that the shape of

each spectrogram also depends on the amounts of bytes exchanged between the in-

volved hosts. For example, two hosts that regularly exchange 1MB of data will have

a spectrogram with a smaller amplitude than a different pair of hosts that regularly

74 Chapter 3. Novel Solutions for Cyber Detection

exchange 10MB, although their frequency components are the same. To address this

issue we normalize the amplitudes of each spectrogram between 0 and 1.

Then, each spectrogram is used as input for a hierarchical clustering algorithm,

an unsupervised machine learning algorithm that takes as its input a matrix of dis-

tances. We create this distance matrix by means of the Pearson correlation coeffi-

cient [140], which is computed among all the normalized spectrograms. The output

of the hierarchical clustering algorithm is a dendrogram. By cutting the dendrogram

at a given height h, it is possible to create clusters of objects that are similar to each

other. We tune the parameter h as to minimize intra-cluster variance and maximize

the inter-cluster variance. At the end of this phase we obtain a variable number of

clusters of periodic communications with similar behaviors, which are used as input

for the Graylist Builder module.

Graylist Builder The final graylist of malicious external hosts is produced by the

Graylist Builder module. It initially identifies malicious clusters of periodic com-

munications by mapping NIDS alerts into clusters of similar periodic communica-

tions. More specifically, those clusters containing at least one communication that

has raised a NIDS alert are labeled as malicious; this process allows us to detect ma-

licious hosts that are not signaled by the NIDS. Then, this module extracts all the

external hosts belonging to malicious clusters and uses them to populate the final

graylist.

3.3.3 Experimental methodology

The proposed method is validated on real traffic generated by a large network of

nearly ten thousand hosts during an entire week, consisting of about half a billion

of network flows. The outgoing traffic has been monitored by a NIDS equipped

with Suricata [141], used and configured by security operators with the most recent

rulesets [142]. Table 3.19 reports the most meaningful metrics of the testbed for the

different days of the considered week. The second and third days, marked with an

asterisk, represent weekend days and are characterized by a lower activity.

All the experiments discussed in this section refer to a time window set to one

day (W = 1d), while network flows are sampled every five minutes (P = 300s). The

parameters of the autocorrelation algorithm are determined through a comprehen-

sive sensitivity analysis performed through multiple executions of the algorithm,

3.3. Detection of Malicious Beaconing Activities 75

(A) Communications involving a malicious external host with one periodic behavior.

(B) Communications involving a malicious external host with three periodic behaviors.

FIGURE 3.16: Time series, ACF and normalized spectrogram of two
communications involving distinct malicious external hosts.

76 Chapter 3. Novel Solutions for Cyber Detection

TABLE 3.19: Traffic information of each day of the dataset.

Day Distinct external hosts Distinct time series Network flows

1 296 945 1 915 186 109 302 224
2* 105 884 541 844 53 500 389
3* 89 283 393 077 47 789 977
4 298 241 1 835 351 101 314 287
5 314 313 1 935 982 110 875 503
6 249 768 1 667 168 99 359 716
7 258 439 1 789 238 106 304 916

and the resulting values are summarized in Table 3.20. The values of the parameters

ρ and τ are chosen equal to those suggested by the literature on periodicity evalua-

tion in time series [138]. The height at which the dendrogram is cut to generate the

clusters is set to h = 0.95, because sensitivity analyses show that this value mini-

mizes intra-cluster variance and maximizes inter-cluster variance for the monitored

environment.

TABLE 3.20: Parameter values used as input.

Symbol Description Value
ρ Local maximum-height threshold 0.30

τ Local maximum-location threshold W
5P

d Period duration sensitivity 6
r Periodic rate sensitivity 2

3.3.4 Evaluation results

The detection framework is executed every day. The goal is to demonstrate its ca-

pability of producing a manageable graylist of external hosts with a considerably

higher likelihood of being malicious when compared to the original set of contacted

external hosts. In addition we show that the rate of malicious external hosts per-

forming periodic communications is considerably higher with respect to those in-

volved in aperiodic communications. Finally, we demonstrate that the graylist in-

cludes even external hosts that did not raise a NIDS alert, and that the execution

time of our method is compatible with online traffic analyses.

We initially assess the amount of malicious external hosts in the entire set of ex-

ternal hosts that have been contacted by the monitored network. Then, we let the

Periodicity Detector module generate time series and determine which of them are

periodic. We remark that our analyses are executed on the unmodified network traf-

fic produced by a large organization: we did not inject synthetic attacks or malicious

traffic, but we leverage the APIs provided by VirusTotal [143] to validate malicious

3.3. Detection of Malicious Beaconing Activities 77

external hosts. More specifically, we consider an external host to be malicious if it

has been signaled by more than half of the sources queried by VirusTotal.

To demonstrate that the rate of malicious external hosts involved in periodic

communications is considerably higher than the rate of malicious hosts involved

in aperiodic communications, we present the results of the validation process per-

formed on these two sets of hosts in Table 3.21. For each column, the rows with

gray and white background report the number of external hosts involved in peri-

odic and aperiodic communications, respectively. We observe that the average ratio

of malicious external hosts exhibiting periodic communications is 2.7%, whereas the

one of hosts involved in irregular communications is 0.51%. These results show

that periodic communications display a greater rate of maliciousness with respect to

aperiodic communications, thus supporting our decision to focus on this set of hosts.

Furthermore, these results indicate that malicious external communications can be

considered as rare events in the overall traffic, and motivates our effort of building

a manageable graylist in which the likelihood of finding a malicious host is higher.

TABLE 3.21: Validation of external hosts involved in periodic (gray)
and aperiodic (white) communications.

Day External hosts Malicious external hosts

1
3 139 97 (3.09%)

293 806 1 224 (0.42%)

2*
2 284 59 (2.58%)

103 600 785 (0.76%)

3*
2 123 53 (2.49%)
87 160 603 (0.69%)

4
3 194 74 (2.31%)

295 047 1 198 (0.41%)

5
3 288 91 (2.77%)

311 025 1 153 (0.37%)

6
3 044 80 (2.63%)

246 724 1 202 (0.48%)

7
3 034 90 (2.97%)

255 405 1 283 (0.50%)

To illustrate that our method is capable of detecting periodicities, we execute the

Behavioral Aggregator module and we report in Figures 3.16 the time series, ACF

and normalized DFT pertaining to communications belonging to the same cluster

and involving two distinct malicious external hosts. The first and second plots in

each figure display the time series and related ACF, while the third plot displays the

normalized spectrogram of the DFT. We observe that both time series exhibit a peri-

odic behavior, although some noise is present. More specifically, the hosts associated

to the first time series exchange about 1KB of data every 30 minutes; whereas those

78 Chapter 3. Novel Solutions for Cyber Detection

associated to the second time series present three periodical behaviors, evidenced

by the exchange of about 3KB and 4KB of data every 30 minutes, and of about 5.5KB

of data every 4 hours. These results demonstrate that our algorithm is able to iden-

tify even periodic communications affected by some perturbations. Moreover, we

observe that the spectrograms of Figures 3.16 are very similar despite featuring dif-

ferent data exchanges, leading to their inclusion in the same cluster. This result indi-

cates that our approach based on normalized DFT provides a good representation of

the periodic behavior of a time series and is robust against alterations in exchanged

data volume.

TABLE 3.22: Comparison of the amount of external hosts.

Day All external hosts
External hosts with External hosts
periodic behavior in graylist

1 296 943 3 139 127
2* 105 884 2 284 90
3* 89 283 2 123 70
4 298 241 3 194 31
5 314 313 3 288 120
6 249 768 3 044 119
7 258 439 3 034 115

Finally, we generate the graylists by executing the Graylist Builder module for

each day of the dataset. We present in Table 3.22 the amount of hosts included in

our graylists alongside both the entire set of hosts that have been contacted and the

number of hosts displaying a periodic behavior. We appreciate that our graylists

comprise about one hundred of entries down from the initial set of hundreds of

thousands hosts, thus allowing further security inspections to focus on a restricted

amount of external threats.

TABLE 3.23: Validation of the graylist and comparison with NIDS.

Day
Malicious hosts Malicious hosts

in graylist detected by NIDS

1 19 (14.96%) 3 (2.36%)
2* 17 (18.89%) 3 (3.33%)
3* 6 (8.57%) 3 (4.29%)
4 3 (9.68%) 3 (9.68%)
5 17 (14.17%) 4 (3.33%)
6 7 (5.58%) 3 (2.52%)
7 15 (13.04%) 4 (3.48%)

3.3. Detection of Malicious Beaconing Activities 79

The evaluation of the graylist produced by our method is performed by deter-

mining the rate of malicious graylisted hosts, and by showing that the graylist con-

tains even malicious hosts that do not raise NIDS alarms. The results are reported

in Table 3.23, where the first column indicates different days while the second and

third columns show the number of malicious hosts included in the graylist and the

number of malicious hosts that raised a NIDS alarm, respectively. We manually in-

spect these results and find that all the hosts detected by the NIDS were included in

the graylist for the same day.

By correlating the values of Table 3.23 with those presented in Table 3.21, we

understand that the ratio of malicious hosts in our graylist is an order of magnitude

greater than the ratio of malicious host in the entire set of contacted hosts. Moreover,

by comparing the values of the second and third column of Table 3.23 we understand

that our method is capable of graylisting up to six times as many malicious hosts

with respect to those detected by the NIDS.

These results indicate that our method is able to produce a manageable graylist

consisting of about one hundred of entries, down from the original set of hundreds

of thousands entries, which is characterized by a ratio of malicious hosts that is an or-

der of magnitude greater and containing malicious hosts that do not raise any NIDS

alarm. Validating several dozens of IP addresses through external public APIs only

requires few minutes, whereas the validation of hundreds of thousands of addresses

requires almost one week. Finally, we remark that all these analyses are performed

on real network traffic, as we did not inject any artificial attack.

243

368

20

553

154 169

4

367

0

100

200

300

400

500

600

Time Series

generation

Autocorrelation

algorithm

Normalized DFT Hierarchical

Clustering

se
co

n
d

s

Business days Non-business days

FIGURE 3.17: Average execution time of the main phases of the pro-
posed method for 24 hours of traffic.

80 Chapter 3. Novel Solutions for Cyber Detection

Early detection of ongoing attacks is of paramount importance for modern orga-

nizations. Hence, we evaluate the execution time of the proposed method for each

day of the dataset by distinguishing business and weekend days. The results are

illustrated in Figure 3.17, where each pair of histograms represents the average exe-

cution time (in seconds) for a different phase of the proposed method, calculated for

business days (left rectangle) and non-business days (right rectangle). For the sake of

completeness, we report that these analyses have been performed on a COTS server

equipped with an Intel Xeon E5-2609 v2 CPU with 4 physical cores and 4 threads,

and 128GB RAM. It is important to observe that the execution time for the analy-

sis of 24 hours of traffic is below 20 minutes even for contexts generating hundreds

of millions of network flows daily. In particular, we note that the longest phase

(Hierarchical Clustering) requires less than 10 minutes. Hence, by pipe-lining our

algorithms, it is possible to obtain detailed reports once every ∼10 minutes. These

results prove that the proposed method is applicable to online security analyses.

81

Part 2 – Adversarial Attacks against Cyber Detectors

83

Chapter 4

Adversarial Attacks against

Cyber Detectors

In this chapter, we consider the problem presented by the inherent vulnerability

of machine learning methods to adversarial attacks, through which opponents can

thwart the system by inducing the generation of incorrect or undesirable results [144].

This issue is aggravated by the multiple variations of malicious actions that can be

performed during the training- or test-time of the machine learning algorithms [145],

[146].

Adversarial attacks against machine learning have been explored in image pro-

cessing [147], but lack adequate analyses in the cybersecurity domain. The papers

that evaluate the performance of cyber detectors in adversarial settings (e.g., [145],

[148]) consider a limited number of cybersecurity problems, few machine learning

classifiers, and a restricted subset of adversarial attacks. The main focus is on spam

and malware detection [149], [150], while we consider this issue from a network in-

trusion detection perspective, where experimental evaluations and novel solutions

are lacking [39]. In summary, the contributions of this chapter are the following: (i)

a thorough analysis of adversarial attacks against cyber detectors; (ii) original eval-

uations of realistic adversarial attacks against botnet detectors; and (iii) an original

method to generate realistic adversarial samples from labelled network data.

This chapter presents the following structure. Section 4.1 presents a thorough

study of the state of the art of adversarial attacks against cyber detectors, outlin-

ing the characteristics of these threats. Then, Section 4.2 focuses on measuring the

effectiveness of adversarial perturbations on cyber detectors through original exper-

iments. Due to their importance for the remaining parts of this thesis, we remark that

Section 4.2.3 describes the datasets adopted for the evaluation, whereas Section 4.2.5

84 Chapter 4. Adversarial Attacks against Cyber Detectors

presents the procedure to generate the adversarial samples.

4.1 Categories of Adversarial Attacks in Cybersecurity

To defend against cyber threats, security operators rely on techniques borrowed

from the machine learning domain [4], [5] because of their anomaly detection capa-

bilities, which may identify novel attacks and which are not recognizable through

signature-based approaches [6], [151]. Machine learning algorithms can be divided

into supervised and unsupervised techniques, depending on the requirement of the

training phase, with a set of labelled data. Both groups can be applied to address

cybersecurity problems [152], but supervised methods are appreciated due to their

ability to provide actionable results, such as detecting an attack [153]. On the other

hand, unsupervised techniques are employed for ancillary tasks such as data clus-

tering [37]. All these methods present several open issues that must be considered

when integrating them into security systems, as we have shown in Chapter 2. Here,

we focus on the topic of adversarial attacks.

Adversarial attacks against machine learning solutions represent a major limita-

tion to the adoption of a fully autonomous cyber defence platform. These threats are

based on the generation of specific samples that induce the model to produce an out-

put that is favourable to the attacker, and leverage the intrinsic sensitivity of machine

learning models to their internal configuration settings [4], [154], [155]. Although

adversarial perturbations affect all applications of machine learning, the cybersecu-

rity field presents several characteristics that further aggravate this menace: there is

a constantly evolving arms race between attackers and defenders; the system and

network behaviour of an organization can be subject to continuous modifications.

These unavoidable and unpredictable changes are denoted as the concept drift [156]

problem, which decreases the performance of any model based on anomaly detec-

tion. Mitigations involve periodic retraining and adjustment processes that can iden-

tify behavioural modifications and recent related threats. While performing such

operations is a challenging task in itself (see Section 2.2.2), it also facilitates the exe-

cution of adversarial attacks [157].

Many research results (e.g., [144], [146], [158]) show that machine learning algo-

rithms are unsuitable to face adversarial settings. The first examples of adversarial

attacks date back to 2004 [159], but the advent of deep learning drew the attention of

4.1. Categories of Adversarial Attacks in Cybersecurity 85

the research community to this issue [160]. Possible countermeasures have appeared

in the computer vision literature [147], with several papers proposing solutions for

improving the robustness of deep neural networks for image classification in ad-

versarial environments [161]. However, the performance of machine learning algo-

rithms depends on their application contexts, hence it is of paramount importance

to understand the effects of adversarial threats against cyber detectors. We consider

different classes of attacks by proposing a taxonomy inspired by the work of Huang

et al. [144], where threats are classified on the basis of two properties: the influence

determines whether an attack is performed at training-time or test-time; the violation

denotes the type of security violation that may affect availability or integrity of the

system.

• Influence

– Training-time: these attacks include the manipulation of the training set

used by the machine learning model through the insertion or removal of

specific samples that alter the decision boundaries of the algorithm. They

are also known as poisoning attacks.

– Test-time: These attacks assume that the detector has been deployed and

aim to subvert its behaviour through the submission of specific samples

during its operational phase.

• Violation

– Integrity: often referred to as evasion attacks, these attacks aim to increase

the false negative rate of the model by introducing malicious samples that

are classified as benign. Hence, when successful, these stealthy threats do

not cause any defensive action to be taken by the targeted organization.

– Availability: these attacks make the targeted model useless, for example

by causing overwhelming spikes of false alarms. For this reason, attacks

of this type usually induce some sort of response action by the defending

side, such as temporary shut-down and recalibration of the model.

A comprehensive classification of adversarial attacks requires a definition of the

attacker model. According to Biggio et al. [158], we should consider the following

main features.

86 Chapter 4. Adversarial Attacks against Cyber Detectors

• The goal is related to the security violation purpose of the adversarial attack.

• The knowledge denotes the information possessed by the attacker on the ma-

chine learning system that may include the adopted algorithm, its parameters,

and its training data set. Depending on the type of information, we can dis-

tinguish between black box attacks (zero knowledge), grey box attacks (partial

knowledge), and white box attacks (complete knowledge).

• The capability determines the type of actions that an attacker can perform

against the targeted environment that includes, but is not limited to, the ma-

chine learning system. As a strict requirement, it is important to specify which

kind of access the attacker has to the cyber detector: he can have full access

(that is, reading its output and modifying its internals), limited access (can

only read its output) or no access at all.

• The strategy denotes the workflow pursued by the attacker to achieve his goal

by leveraging previous knowledge and capabilities.

The attacker model distinguishes the adversarial attacks against cybersecurity

systems from offences against other domains of application of machine learning.

For example, most papers on image recognition [147], [162] assume that the attacker

has complete knowledge and capability. These assumptions are unrealistic in cy-

bersecurity applications for two reasons: cyber detectors are protected by multiple

defence layers; if an attacker overcomes these barriers and can modify the detector,

he can achieve his goals without relying on adversarial attack strategies. Thus, in

the remainder of this work, we consider attacks in which the attacker has limited or

no access to the machine learning system.

In Table 4.1, we classify the most important examples of adversarial attacks on

three cybersecurity detection problems (network intrusion, malware, spam & phish-

ing) representing scenarios where machine learning methods are achieving appre-

ciable results (e.g., [4], [5], [32]). In this table, columns indicate the cybersecurity

areas while rows denote the adversarial attack class. Each cell reports the machine

learning algorithms that have been tested against the related class of attacks. We

remark that algorithms written in bold are evaluated for the first time in this the-

sis. Existing literature focuses mainly on integrity attacks, with several algorithms

evaluated for malware and spam analysis. Few solutions exist and are tested in

4.2. Effectiveness of Adversarial Attacks 87

the network intrusion detection context, and this observation motivates this chapter.

There are few documented attacks targeting the system availability, and there are no

specific studies at test-time.

TABLE 4.1: Mapping of the categories of adversarial attacks to cyber-
security problems.

Network intrusion
detection

Malware detection
Spam & phishing

detection

Te
st

-t
im

e

Availability
violation

7 7 7

Integrity
violation

RF
FNN
KNN

NB [163]

RF [164]
SVM [145]
LR [165]

MLP [145]

SVM [166]
LR [167]
NB [168]

Tr
ai

ni
ng

-
ti

m
e

Availability
violation

7 NB [169]
NB [149]

Clustering [170]

Integrity
violation

RF
FNN
KNN

LR [171]
DNN [172]

NB [159]
DNN [172]

4.2 Effectiveness of Adversarial Attacks

In this section, we study adversarial perturbations in the context of network intru-

sion detection systems. Our objective is to provide a comprehensive evaluation of

the impact of these malicious actions against state of the art detectors of botnets, due

to their relevance in the current cybersecurity landscape [11]. Indeed, despite exten-

sive research efforts [173], botnets remain one of the most serious threats to modern

enterprises. Several research papers address this issue by devising botnet detectors

relying on machine learning [39], involving both supervised (e.g.: [174]) and unsu-

pervised (e.g.: [37]) algorithms; however, the problem still persists [11], [175].

In this study, we perform an extensive experimental campaign of realistic adver-

sarial attacks, involving different machine learning techniques and multiple large

datasets of network flows that are publicly accessible. Thus, our broad analysis cap-

tures a multitude of scenarios that represent the heterogeneous nature of modern

networked systems. To the best of our knowledge, this is the first study that presents

such a vast range of novel experiments on this subject. The results highlight the vul-

nerability of all the considered detectors to adversarial samples. The problem is fur-

ther aggravated by the fact that similar alterations can be introduced at a very low

cost for the adversary: they do not require to change the communication scheme nor

the control logic of the botnet; can be easily introduced without the need of deeper

88 Chapter 4. Adversarial Attacks against Cyber Detectors

compromise and privilege escalation on the infected bots; and the attacker does not

need advanced knowledge of the defensive scheme. Indeed, attackers can evade de-

tection with high probability just by introducing slight changes in the network flows

of the controlled bots, such as inserting small delays or adding a few bytes to the

network packets. As an example, for some malware families increasing the duration

of network communications by just 1 second causes the detection rate to drop from

over 99% to less than 20%. Moreover in many cases it is possible to easily produce

adversarial samples that cause a detection rate below 1%. These results highlight

the high effectiveness of adversarial samples against all of the considered classifiers,

evidencing a critical vulnerability of machine learning applied to cybersecurity.

4.2.1 Related work

Our study highlights and evaluates the fragility of flow-based botnet detectors built

on machine learning classifiers against adversarial attacks at test-time. Therefore, we

identify two main areas of related work: network intrusion detection focused on bot-

nets and based on machine learning; and adversarial attacks against machine learning.

The scientific literature on network intrusion detection has been applying tech-

niques and algorithms borrowed from the machine learning domain for several

years [6], and detection schemes involving machine learning have been integrated

to some extent even in many recent cyber defense platforms and commercial prod-

ucts [9], [10]. Many machine learning algorithms have been proposed to specifically

address the problem of botnet detection [39], ranging from supervised to unsuper-

vised techniques and even to deep learning. A meaningful and direct comparison

among different detection methods is difficult to achieve due to known reasons [4],

[39]. However, many research papers [27], [45], [176], [177] adopt classifiers based

on machine learning due to their appreciable results: among these, we highlight that

those built on random forest algorithms have been empirically shown to outperform

several other methods for network intrusion detection tasks [51].

The authors of [27] devised a network intrusion detection system for identifying

network traffic related to communications between infected hosts and their Com-

mand and Control infrastructure. This approach is based on the analysis of network

flows, rather than full network packets, and applies a classifier based on random

forests as suggested by related literature. We remark that inspecting network flows

4.2. Effectiveness of Adversarial Attacks 89

for network intrusion detection is a common practice (e.g.: [61]) because of the fol-

lowing advantages with respect to full packet traces including communication pay-

loads: reduced privacy concerns; smaller storage space and lower computational

requirements; the pervasive adoption of end-to-end encryption that prevents col-

lection and analysis of the content of network packets. These reasons motivated us

to focus our experiments on a flow-based botnet detector leveraging proficient ma-

chine learning classifiers as a relevant, realistic and representative example of the

best practices currently adopted by network security researchers and industry.

The increasing pervasiveness of machine learning led to question its performance

in adversarial settings. Recent research papers have mostly addressed this problem

from an image processing perspective [146], [178], [179], providing clear use-cases of

adversarial attacks. However, literature on evasion attempts against cybersecurity

detectors based on machine learning is more focused on the theoretical vulnerabili-

ties of these techniques rather than showing and evaluating the actual effectiveness

and consequences of adversarial attacks [39], [144]. Hence, the evaluation of adver-

sarial samples in the cybersecurity domain is still an open research problem [180].

This is the main motivation behind our work, since a clear understanding of the im-

pact of adversarial attacks against cyber defence systems based on machine learning

is of crucial importance for the development of modern cybersecurity technologies.

As shown in Section 4.1, related literature has mostly focused on analysing the

effects of these threats against malware and spam detectors [144], [145], [181]–[184],

but few papers address this problem from a network intrusion detection perspec-

tive [185]. The authors of [186] present an analysis of attacks against NIDS, but they

do not consider machine learning techniques. Other works raise the awareness on

this subject by proposing mechanisms to evade machine learning-based NIDS, but

they do not provide any experimental evidence to sustain their claims [39]. Previous

work also include research efforts [187], [188] based on the deprecated [189] KDD-99

dataset1, and cannot be considered as a good representation of modern large net-

work environments. Other papers only consider attack scenarios where the adver-

sary has extensive or perfect knowledge of the detector, which is an unrealistic as-

sumption in a true cybersecurity context [190]–[192].

To the best of our knowledge, this is the first study that presents an extensive

evaluation of realistic adversarial attacks performed against botnet detectors based

1KDD99 Dataset: https://www.unb.ca/cic/datasets/nsl.html

90 Chapter 4. Adversarial Attacks against Cyber Detectors

on multiple machine learning algorithms, which are deployed in different, recent and

heterogeneous network scenarios. Thus, the present analysis portrays a much needed

and representative overview of the current state of the art of machine learning botnet

detectors in adversarial settings.

4.2.2 Threat model

We now describe the realistic scenario of the threat model considered in our work.

Indeed, to conduct a meaningful evaluation of the impact of realistic adversarial

attacks, it is necessary to describe the characteristics of the considered network envi-

ronment and of the considered attacker. We begin by modeling the target network,

and then present the characteristics of the attacker.

Defensive model The defensive model is represented by a large enterprise net-

work of over a thousand of internal hosts. At its edge, the network presents a border

router connected to a network flow collector. Despite the existence of several soft-

ware products aimed at collecting network flows, each presenting diverse character-

istics and allowing to capture different pieces of data, we assume that the generated

flows only contain the following essential information:

• source and destination IP address;

• flow Start- and End-time (flow duration);

• source and destination ports;

• protocol;

• source and destination Type of Service (ToS);

• source and destination exchanged bytes;

• Total packets transmitted.

The produced network flows are then inspected by a botnet detector that relies on

a machine learning classifier to distinguish between legitimate and botnet samples.

The classifier is trained to identify the malicious flows produced by specific bot-

net variants. We assume that some machines within the network are infected by

a botnet-related malware (for example through a zero-day attack, successfull spear

4.2. Effectiveness of Adversarial Attacks 91

phishing attempts, or insider threats) that communicates with an external Command

and Control (CnC) server.

A representation of the scenario described above is provided in Figure 4.1, which

shows a large enterprise network with many internal hosts and a border router con-

nected to a network flow exporter. The generated flows are inspected by a network

intrusion detection system based on machine learning that aims to identify malicious

activities (e.g., botnet) by leveraging the random forest algorithm.

Internal
Network Internet

Border
Router

ML-based
NIDS

Flow
Exporter

FIGURE 4.1: Example of network considered in our use-case.

Attacker model We describe the model of the considered attacker by following

the guidelines proposed in related literature [180], outlining their goal, knowledge,

capabilities and strategy.

• Attacker Goal: The attacker aims to evade the botnet detector in order to main-

tain access to the network and perform additional malicious activities (such as

pivoting – see Section 5.2).

• Attacker Knowledge: The attacker has partial knowledge on the defenses

adopted by the target network. They know that network communications

might be monitored by a network intrusion detection system based on su-

pervised machine learning. However, they do not possess knowledge on the

algorithm itself (e.g.: they do not know the parameters, the weights or the

feature set); nor they have complete knowledge of the dataset used to train

the detector. Nonetheless, we assume that the attacker knows that this de-

tector is trained over a dataset containing malicious flows generated by the

very same malware variant deployed on the infected machines. Thus, the at-

tacker is aware that they need to quickly devise some countermeasure to evade

92 Chapter 4. Adversarial Attacks against Cyber Detectors

the botnet detector, since any delay may increase the chance that the infected

machine is manually inspected and cleaned due to the alerts triggered by the

detector. We remark that these are realistic assumptions for any commercial

cybersecurity appliance.

• Attacker Capabilities: We assume that the attacker does not have full control

and privileges on the infected machines. The attacker is limited to issuing com-

mands to the bots through the Command and Control infrastructure, possibly

modifying their behavior. However the attacker cannot interact with the de-

tector in any way: this includes both read and write operations. For example,

he cannot use the detector as an “oracle” [146] by submitting certain inputs

and reading the respective outputs.

• Attacker Strategy: To avoid detection, the attacker leverages their limited

knowledge and capabilities to produce a targeted exploratory integrity attack [145].

More specifically, they insert some slight modifications in the communication

sequences between bots and their Command and Control. These alterations

need to keep the internal logic of the employed piece of malware intact, as

their sole purpose is to make the (malicious) samples different from the ones

that have possibly been used to train the detector; furthermore, they need to be

stealthy enough to avoid triggering detection through other defensive mech-

anisms [74]. The purpose is inducing the botnet detector to misclassify the

network flows generated by bot communications due to their different charac-

teristics with respect to the malicious flows contained in the training dataset.

Possible alterations include slight increases of flow duration, exchanged bytes

and exchanged packets. We remark that similar modifications can be applied

without interfering with the application logic of the bots (e.g. [193]), which can

continue to operate as designed by the attacker.

We highlight that our assumptions portray a realistic scenario: models that in-

volve attackers with perfect (or near-perfect) knowledge are unrealistic, as the NIDS

is usually protected by multiple layers of defenses. Adversaries that have possess

such confidential information – or that have direct access to the detector – are also

capable of launching attacks of higher magnitude that are out of the scope of this

analysis. Also adversaries that are able to generate a brand new malware character-

ized by different communication patterns between bots and CnC will still be able to

4.2. Effectiveness of Adversarial Attacks 93

evade detection. Hence we focus on the wide majority of attackers that leverage and

customize common malware toolkits.

4.2.3 Testbed

In our evaluation we rely on 4 recent, public and labelled datasets of network traffic

that include communications generated by botnet-related pieces of malware: CTU-

132 [194], IDS20173 [189], CIC-IDS20184 [189], UNB-CA Botnet5 [195]. As these

datasets involve different types of attacks, we only consider those portions that in-

clude botnet-related traffic. Some of these datasets are readily available in netflow

format; for those that only include raw packet data, we generate the corresponding

flows through Argus6. We summarize the meaningful metrics of each dataset in Ta-

ble 4.2, which reports the total amount of packets, internal hosts, flows and number

of botnet families included. We exclude those families that present less than 100

samples, as their scarcity may lead to the creation of training sets that would gener-

ate poor detection results [195], [196]. We can observe that the considered datasets

are a valid representation of medium-to-large network scenarios.

TABLE 4.2: Datasets metrics.

Dataset Packets Devices
Botnet
Flows

Legitimate
Flows

Botnet
Families

CTU-13 855 866 143 150 443 906 19 199 170 6
IDS2017 5 776 888 111 1 966 189 067 1

CIC-IDS2018 13 486 990 450 283 429 760 824 1
UNB-CA Botnet 14 502 782 369 238 415 345 113 10

We now provide a more thorough description of the CTU-13 dataset, due to its

relevance in Network Intrusion Detection scenarios that involve machine learning

algorithms [197], [198]. The CTU-13 is a public dataset composed of multiple col-

lections of network data captured at the Czech Technical University in Prague, and

contains labelled network traffic generated by various botnet variants and mixed

with normal and background traffic. These flows are captured in a network envi-

ronment with hundreds of hosts, while the malicious traffic is generated by infecting

machines with malware related to several botnet families [194]. Overall, the CTU-

13 contains 13 distinct collections of different botnet activity, where each collection

2CTU-13 dataset: https://www.stratosphereips.org/datasets-ctu13
3IDS2017 dataset: https://www.unb.ca/cic/datasets/ids-2017.html
4CIC-IDS2018 dataset: https://www.unb.ca/cic/datasets/ids-2018.html
5UNB-CA Botnet dataset: https://www.unb.ca/cic/datasets/botnet.html
6Argus software: https://qosient.com/argus/argusnetflow.shtml

https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/botnet.html
https://qosient.com/argus/argusnetflow.shtml

94 Chapter 4. Adversarial Attacks against Cyber Detectors

refers to one botnet variant of the 6 considered families: Neris, Rbot, Virut, Menti,

Murlo, NSIS.ay. We report the meaningful metrics of each collection in Table 4.3,

which also includes the botnet-specific piece of malware and the number of infected

machines. This Table highlights the massive amount of included data, which can

easily represent the network behavior of a medium-to-large real organization. Nev-

ertheless, we remark that in our evaluation, we prefer not to consider the Sogou

botnet because of the limited amount of its malicious samples.

TABLE 4.3: Meaningful metrics of the CTU-13 dataset. Source: [194].

Dataset Duration (hrs) Size (GB) Packets Netflows Malicious Benign Malware # Bots
1 6.15 52 71 971 482 2 824 637 40 959 2 783 677 Neris 1
2 4.21 60 71 851 300 1 808 122 20 941 1 787 181 Neris 1
3 66.85 121 167 730 395 4 710 638 26 822 4 683 816 Rbot 1
4 4.21 53 62 089 135 1 121 076 1 808 1 119 268 Rbot 1
5 11.63 38 4 481 167 129 832 901 128 931 Virut 1
6 2.18 30 38 764 357 558 919 4 630 554 289 Menti 1
7 0.38 6 7 467 139 114 077 63 114 014 Sogou 1
8 19.5 123 155 207 799 2 954 230 6 126 2 948 104 Murlo 1
9 5.18 94 115 415 321 2 753 884 184 979 2 568 905 Neris 10
10 4.75 73 90 389 782 1 309 791 106 352 1 203 439 Rbot 10
11 0.26 5 6 337 202 107 251 8 164 99 087 Rbot 3
12 1.21 8 13 212 268 325 471 2 168 323 303 NSIS.ay 3
13 16.36 34 50 888 256 1 925 149 39 993 1 885 156 Virut 1

To generate each collection, the authors first capture the network data in specific

packet-capture (PCAP) files, and then convert them into network flows. This con-

version process is performed by means of Argus, a network audit system. Argus

presents a client-server architecture: the server component processes packets (either

PCAP files or live packet data) and generates detailed status reports of all the net-

flows in the packet stream, which are then provided to the dedicated clients. By

inspecting the CTU-13, we can assume that the client used by the authors to extract

the netflows from each individual PCAP file is ra. The output of this conversion

process is a CSV file. The final step is the labeling of each individual network flow:

indeed, the authors provide an additional “Label” field, which separates legitimate

from illegitimate flows. More specifically, benign flows correspond to the normal

and background labels; whereas the botnet and CnC-channel labels denote malicious

samples.

4.2.4 Cyber detectors

Our experiments involve multiple botnet detectors, each based on a different ma-

chine learning classifier among the following: Random Forest (RF), Decision Trees

4.2. Effectiveness of Adversarial Attacks 95

(DT), AdaBoost (AB), Feedforward Deep Neural Network (FNN), K-Nearest Neigh-

bor (KNN), Gradient Boosting (GB), Linear Regression (LR), Support Vector Ma-

chines (SVM), Naive Bayes (NB), ExtraTrees (ET), Bagging (Bag), Stochastic Gradient

Descent Linear Classifier (SGD). We focus on these algorithms since previous work

demonstrate their applicability to the task of identifying botnet traffic [174], [196],

[199]. As each dataset may include multiple botnet families, we build our detectors

by using a multi-instance approach: every instance is developed by training every

classifier on each individual botnet family per dataset. This is motivated by the fact

that machine learning methods tend to perform better when they address a specific

problem (that is, a specific botnet family) rather than being used as a catch-all solu-

tion [196], [199], [200]. More formally, let A be the number of considered machine

learning algorithms (i.e., A = 12), let S be the number of involved datasets (S = 4),

and let Si
f the number of botnet families included in dataset Si (0 < i ≤ S); then,

we devise a total of G = A · ∑S
i=1 Si

f (instances of) detectors – in our case, G = 216.

Such a large amount of models is necessary in order to gauge how different machine

learning classifiers, trained in different network environments, respond against ad-

versarial attacks.

Each detector is trained, validated and evaluated individually. For each bot-

net variant, we generate a dedicated training set containing both benign and mali-

cious samples belonging to that family; all instances share the same legitimate-to-

illegitimate flow ratio in the training sets. Formally, let D be the set of all the traces

of network flows considered in the testbed, and let Dl ⊂ D and Dm ⊂ D be the sets

of all legitimate and malicious samples in D, respectively (so that Dl ∪Dm = D, and

Dl ∩ Dm = ∅). Now, let Db be the set of malicious flows corresponding to the b bot-

net family, so that
⋃6

b=1 Db = Dm. We train each detector’s instance corresponding

to the b botnet family with samples randomly extracted from Dl and Db, in a 20 : 1

ratio. (The randomized extraction of samples is done to reduce the impact of selec-

tion bias.) The 20 : 1 ratio is similar to that in [27], and it is motivated by the fact

that in realistic settings the legitimate flows largely outnumber the botnet-generated

flows. Other studies use even greater ratios [201]. The instances of each detector are

trained with 80% of the botnet flows generated by each malware variant, and vali-

dated on the remaining 20%. These splits are close to those adopted in [27]. These

models adopt feature sets that are similar to those adopted in related literature [174],

[202] because they achieve appreciable detection rates. We integrate these features

96 Chapter 4. Adversarial Attacks against Cyber Detectors

with information about the IANA port type and with the IP address type (it can be

either internal or external) for both the source and destination hosts, thus obtaining

the list summarized in Table 4.4. For completeness, we remark that the code for the

experiments is implemented in Python3 and uses the scikit-learn [203], [204] toolkit.

TABLE 4.4: Features of the machine learning models.

Feature name Feature type
1,2 source/destination IP address type Boolean
3,4 source/destination port Numerical
5 flow direction Boolean
6 connection state Categorical
7 duration (seconds) Numerical
8 protocol Categorical

9,10 source/destination ToS Numerical
11,12 outgoing/incoming bytes Numerical

13 total transmitted packets Numerical
14 total transmitted bytes Numerical

15,16 source/destination port type Categorical
17 bytes per second Numerical
18 bytes per packet Numerical
19 packets per second Numerical
20 ratio of outgoing/incoming bytes Numerical

After performing multiple grid-search operations to determine its optimal con-

figuration settings, each classifier is validated through 3-fold cross validation. We

measure the performance of each detector through the Precision (see Eq. 2.1), Detec-

tion Rate (DR, or Recall – see Eq. 2.2) and F1-score (see Eq. 2.3). We anticipate that

those detectors that obtain a score lower than 0.9 for any of these metrics are not

considered in the evaluation, as such values are inadequate for NIDS deployed in

real contexts.

4.2.5 Generation of adversarial datasets

We produce multiple adversarial datasets by manipulating the botnet netflows Db

through feature modifications. Since the produced adversarial samples are used to

evaluate the proposed approach, we consider the portion of botnet netflows from Db

contained in the datasets used for the testing-phase, thus avoiding the submission

of samples contained in the training set.

4.2. Effectiveness of Adversarial Attacks 97

An attacker can evade detection by increasing the flow duration through a small

latency; and the number of bytes (or packets) by adding random junk data. All these

modifications can be introduced in the network behavior of the bots without altering

their underlying logic. To reproduce a similar adversarial attack pattern, we gener-

ate adversarial samples by manipulating combinations of up to 4 features, such as

the duration of the flows, the total number of transmitted packets, the number of

outgoing(Src) or incoming(Dst) bytes. Table 4.5 reports the 15 groups of altered fea-

tures denoted by G. As an example, adversarial samples belonging to group 1a alter

only the flow duration, while those of group 3c include modifications to the duration,

dst_bytes and tot_packets features. The feature manipulation is performed by aug-

menting each of these groups through 9 increment steps denoted by S; these steps

are fixed for all the possible combinations. Hence, for each botnet family, we pro-

duce 135 adversarial collections, thus resulting in a total of 2430 adversarial datasets

(given by 15[groups of altered features]× 9[increment steps]× 18[botnet families]).

TABLE 4.5: Groups of altered features.

Group (g) Altered features

1a Duration (in seconds)
1b Src_bytes
1c Dst_bytes
1d Tot_pkts
2a Duration, Src_bytes
2b Duration, Dst_bytes
2c Duration, Tot_pkts
2d Src_bytes, Tot_pkts
2e Src_bytes, Dst_bytes
2f Dst_bytes, Tot_pkts
3a Duration, Src_bytes, Dst_bytes
3b Duration, Src_bytes, Tot_pkts
3c Duration, Dst_bytes, Tot_pkts
3d Src_bytes, Dst_bytes, Tot_pkts
4a Duration, Src_bytes, Dst_bytes, Tot_pkts

Table 4.6 reports the relationship between each step and the corresponding fea-

ture increments where Duration is measured in seconds. As an example, the adver-

sarial datasets obtained through the VI step of the group 1b have the values of their

flow outgoing bytes increased by 128. The adversarial datasets obtained through the

II step of the group 3c have the values of their flow duration, incoming bytes and

total packets increased by 2. There is a greater focus on small increments since they

are easier to achieve and they are still able to generate samples that evade detection.

The rationale behind the choice of the values shown in Table 4.6 is the following: our

98 Chapter 4. Adversarial Attacks against Cyber Detectors

objective is to generate adversarial malicious samples that are only marginally differ-

ent from their original counterparts, as shown in [179]. Although the exact numbers

have been selected arbitrarily by adopting the powers of 2 for convenience, our goal

is to represent the effects of small, but sensible variations of these features. Fur-

thermore, introducing these small perturbations is a realistic and sensible task for

the type of attacker considered in our threat model (e.g. [193]). On the other hand,

excessive increases higher than those shown in Table 4.6 may generate anomalous

network flows that can be detected by different defensive mechanisms (e.g., [81]).

Moreover, increasing the duration of each flow above 120 seconds may exceed the

duration limits of the flow collector. The generated adversarial flows represent a re-

alistic attack pattern that is compatible with the considered threat model, and which

can be easily achieved by botmasters [185], [193].

TABLE 4.6: Increment steps of each feature for generating realistic
adversarial samples.

Step (s) Duration Src_bytes Dst_bytes Tot_pkts
I +1 +1 +1 +1

II +2 +2 +2 +2
III +5 +8 +8 +5
IV +10 +16 +16 +10
V +15 +64 +64 +15

VI +30 +128 +128 +20
VII +45 +256 +256 +30

VIII +60 +512 +512 +50
IX +120 +1024 +1024 +100

The generation of the adversarial datasets is described in Algorithm 2, where

A(·) denotes the operator indicating an adversarially manipulated input. We re-

mark the importance of the operation on line 19, because it shows that some features

are mutually dependent. For example, for consistency reasons, increasing the flow

duration requires to update also the bytes per second and the packets per second.

The obtained adversarial datasets (which include only the manipulated mali-

cious samples) are then used to test each classifier. The effectiveness of these attacks

is measured through the following Attack Severity (AS) score:

AS = 1− DR(after the attack)
DR(before the attack)

(4.1)

Higher (lower) values of AS imply attacks in which greater (lower) amounts of ad-

versarial samples have evaded detection.

4.2. Effectiveness of Adversarial Attacks 99

Algorithm 2: Algorithm for generating datasets of adversarial samples.
Input: List of datasets of malicious flows Xm divided in botnet-specific sets Xb; list of altered

features groups G; list of feature increment steps S.
Output: List of adversarial datasets A(Xm).

1 A(Xm)← emptyList();
2 foreach group g ∈ G do
3 foreach step s ∈ S do
4 foreach dataset Xb ∈ Xm do
5 Ag

s (Xb)← CreateOneDataset(s, g, Xb);
6 Insert Ag

s (Xb) in A(Xm);
7 return A(Xm)
8 // Function for creating a single adversarial dataset Ag

s (Xb) corresponding to a
botnet-specific dataset Xb, a specific altered feature group g, and a specific
increment step s.

9 Function CreateOneDataset(s, g, Xb)
10 Ag

s (Xb)← emptyList();
11 foreach sample xb ∈ Xb do
12 Ag

s (xb)← AlterSample(s, g, xb);
13 Insert Ag

s (xb) in Ag
s (Xb);

14 return Ag
s (Xb)

15 // Function for creating a single adversarial sample Ag
s (xb) corresponding to a

botnet-specific sample xb, a specific altered feature group g, and a specific increment
step s.

16 Function AlterSample(s, g, xb)
17 Ag

s (xb)← xb;
18 Increment features g of Ag

s (xb) by s;
19 Update features of Ag

s (xb) that depend on g;
20 return Ag

s (xb)

4.2.6 Evaluation results

The experimental evaluation has a twofold objective:

1. confirm that the proposed detectors exhibit appreciable performance in non-

adversarial settings;

2. evaluate the impact of our evasion attacks by testing these detectors against

the adversarial samples.

We now present the results of our large experimental campaign by addressing both

of these points. Finally, we also provide a more in-depth study on the effectiveness

of adversarial perturbations against the detectors based on Random Forests trained

on the CTU-13 dataset.

Performance in non-adversarial settings We begin by determining which detec-

tors reach a performance that complies with real-world requirements. Indeed, it

would be unfair to show that certain adversarial attacks are effective against detec-

tors that perform poorly even in non-adversarial scenarios. Thus, we train and test

100 Chapter 4. Adversarial Attacks against Cyber Detectors

TABLE 4.7: Performance in non-adversarial settings.

Dataset
F1-score

(std. dev.)
Precision
(std. dev.)

Recall
(std. dev.)

CTU-13
0.957

(0.029)
0.958

(0.031)
0.956

(0.028)

IDS2017
0.996

(0.002)
0.999

(0.001)
0.993

(0.003)

CIC-IDS2018
0.999

(< 0.001)
0.999

(< 0.001)
0.999

(< 0.001)

UNB-CA Botnet
0.991

(0.017)
0.992

(0.021)
0.991

(0.017)

Average
0.986

(0.011)
0.987

(0.012)
0.985

(0.011)

the 12 machine learning approaches considered in this work against the malware

families included in the 4 reference datasets, as described in Section 4.2.3.

To avoid a negative bias caused by ML approaches that are not suitable for the

detection of a given botnet family or that do not perform well on a given dataset,

results of Table 4.7 only consider the subset of all possible detectors that achieve

appreciable performance for the considered detection task7. By applying this inclu-

sion score we selected a total of 145 different detectors: 54 detectors for the CTU-13

dataset, 8 for IDS2017, 8 for CIC-IDS2018 and 75 for UNB-CA Botnet. We can

observe that several (≈20%) detectors do not achieve suitable performance scores.

This is motivated by the fact that some classifiers may not be appropriate for the

given network environment.

Aggregated experimental results obtained by the 145 selected detectors are out-

lined in Table 4.7.

In this table, rows indicate a specific dataset, while columns represent the value

of F1-Score, Precision and Recall metrics. Each cell contains the average value of a

given metric, together with its standard deviation enclosed in parentheses. We can

see that the selected detectors achieve good detection performance, comparable to

state of the art solutions and consistent with results achieved in related work [174],

[196].

Besides average and standard deviation, we also provide a graphical depiction

of the considered performance metrics through the boxplot diagrams shown in Fig-

ure 4.2, representing the distribution of the results for each dataset. This figure in-

cludes four different diagrams, one for each dataset. Each diagram shows three box-

plots, representing the results for F1-Score, Precision and Recall, respectively. Box-

plots show that the performance of all algorithms are comparable and consistently

7The inclusion criteria is for all performance metrics (F1-Score, Precision and Recall) to be equal or
above 0.9.

4.2. Effectiveness of Adversarial Attacks 101

F1-score Precision Recall
0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

CTU-13

F1-score Precision Recall
0.0

0.2

0.4

0.6

0.8

1.0
UNB-CA Botnet

F1-score Precision Recall
metric

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

IDS2017

F1-score Precision Recall
metric

0.0

0.2

0.4

0.6

0.8

1.0
CIC-IDS2018

FIGURE 4.2: Distribution of F1-Score, Precision and Recall for all de-
tectors and all datasets.

good across all datasets. Results are particularly promising for the CIC-IDS2018

dataset, where all the detectors achieve a F1-score that is very near to 1. We highlight

that in previous work similar results led authors to conclude that ML-based detec-

tors can be successfully applied to real network environments [174], [196], but that

these previous work did not account for adversarial attacks.

The 145 detectors included in this evaluation represent our baseline for the sub-

sequent experiments, and thus will be subject to the adversarial attacks and defenses

based on feature removal.

Adversarial Attacks evaluation We now evaluate the performance of our baseline

detectors in the considered adversarial setting. We generate the adversarial datasets

and test all the 145 detectors against adversarial attacks by following the procedure

explained in Section 4.2.5. Aggregated experimental results are outlined in Table 4.8.

This table compares, for each dataset, the average (and standard deviation) Recall of

the baseline detectors with the Recall obtained on the adversarial samples. We focus

on the Recall metric since it reflects the number of malicious samples that the detec-

tor is able to identify. The last column of Table 4.8 shows the Attack Severity (see

102 Chapter 4. Adversarial Attacks against Cyber Detectors

Equation 4.1), which expresses the effectiveness of adversarial attacks in reducing

the Recall of a detector.

TABLE 4.8: Effects of the adversarial attacks.

Dataset
Recall

baseline
(std. dev)

Recall
adversarial
(std. dev)

Attack

textittextbfSeverity
(std. dev)

CTU-13
0.956

(0.028)
0.372

(0.112)
0.609

(0.110)

IDS2017
0.993

(0.003)
0.656

(0.102)
0.327

(0.103)

CIC-IDS2018
0.999

(< 0.001)
0.564

(0.112)
0.436

(0.112)

UNB-CA Botnet
0.991

(0.017)
0.588

(0.218)
0.328

(0.212)

Average
0.985

(0.011)
0.545

(0.136)
0.425

(0.134)

From Table 4.8, it is clear that even the simple but realistic adversarial samples

considered in our experimental evaluation manage to cause a significant drop in the

Recall of ML-based cyber detectors. A more reflective comparison of the effects of

adversarial perturbations on the Recall for all classifiers of each dataset is proposed

in Figure 4.3. For each dataset, the first boxplot represents the distribution of the Re-

Recall
(base)

Recall
(attack)

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

CTU-13

Recall
(base)

Recall
(attack)

0.0

0.2

0.4

0.6

0.8

1.0
UNB-CA Botnet

Recall
(base)

Recall
(attack)

metric

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

IDS2017

Recall
(base)

Recall
(attack)

metric

0.0

0.2

0.4

0.6

0.8

1.0
CIC-IDS2018

FIGURE 4.3: Comparison between the distributions of the Recall met-
ric in the non-adversarial (baseline) and adversarial (attack) scenarios

for all datasets.

call across all detectors in non-adversarial settings, while the second boxplot shows

4.2. Effectiveness of Adversarial Attacks 103

results for the same metric in case of adversarial attacks. From these boxplots we

can see that the detrimental effects of adversarial samples change significantly for

different datasets and detectors. As an example, for the UNB-CA Botnet dataset

the Recall of the more resilient ML-detector (based on the FNN algorithm) falls from

0.932 to 0.597, while the Recall for the most impacted ML-detector (based on SVM)

for the same dataset falls from 0.914 to 0.198. The Attack Severity is even worse for

the CTU-13 dataset: in this case the Recall for the less affected ML-detection algo-

rithm (based on RF) drops from 0.967 to 0.439. The effects of adversarial attacks

against different datasets is summarized in Figure 4.4, which compares the Attack

Severities for all detectors across all datasets.

CTU-13 UNB-CA Botnet IDS2017 CIC-IDS2018

Dataset
0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

ev
er

ity

FIGURE 4.4: Comparison of the distribution of Attack Severity for all
the detectors among the 4 different datasets.

We remark that none of the tested 145 detectors that exhibited good performance

in the non-adversarial settings is able to maintain F1-Score, Precision and Recall

above 0.9 while analyzing adversarial samples. Hence despite good classification

results achieved in previous papers, it is clear that adversarial samples represent a

huge menace for real-world applications of ML-detectors to the problem of botnet

detection.

We conclude this section by presenting the results obtained by the 5 best detec-

tors for each dataset in non adversarial settings, which are provided in Tables 4.9a

through 4.9d.

The purpose of these tables, which show the average performance of each con-

sidered algorithm throughout our evaluation, is to highlight how even algorithms

104 Chapter 4. Adversarial Attacks against Cyber Detectors

TABLE 4.9: Results of the Top 5 algorithms on each individual
datasets.

Baseline Attack

Algorithm F1-score Precision Recall Recall Attack
Severity

RF 0.9694 0.9722 0.9668 0.4390 0.5461
AB 0.9722 0.9748 0.9696 0.4074 0.5803

FNN 0.9458 0.9454 0.9462 0.3141 0.7261
KNN 0.9296 0.9273 0.9320 0.2982 0.6806
Bag 0.9745 0.9799 0.9693 0.4007 0.5869

(A) CTU-13 Top 5 algorithms results.

Baseline Attack

Algorithm F1-score Precision Recall Recall Attack
Severity

AB 0.9972 1 0.9945 0.7455 0.2504
FNN 0.9959 0.9972 0.9945 0.5991 0.3975
KNN 0.9959 1 0.9918 0.5512 0.4442
ET 0.9972 1 0.9945 0.7333 0.2626
GB 0.9945 1 0.9891 0.7221 0.2699

(B) IDS2017 Top 5 algorithms results.

Baseline Attack

Algorithm F1-score Precision Recall Recall Attack
Severity

RF 0.9999 0.9999 0.9999 0.5965 0.4034
AB 0.9997 0.9999 0.9996 0.5632 0.4365

FNN 0.9997 0.9999 0.9995 0.7123 0.2873
KNN 0.9998 0.9999 0.9998 0.4866 0.5132
ET 0.9999 0.9999 0.9999 0.6023 0.3976

(C) CIC-IDS2018 Top 5 algorithms results.

Baseline Attack

Algorithm F1-score Precision Recall Recall Attack
Severity

RF 0.9974 0.9997 0.9951 0.6856 0.3110
KNN 0.9496 0.9479 0.9516 0.6167 0.3507
ET 0.9993 0.9999 0.9987 0.6831 0.3160

FNN 0.9215 0.9113 0.9321 0.5978 0.2756
AB 0.9955 0.9971 0.9939 0.6840 0.3118

(D) UNB-CA Botnet Top 5 algorithms results.

4.2. Effectiveness of Adversarial Attacks 105

that achieve near-perfect results in non-adversarial settings can be heavily affected

by such simple evasion mechanisms.

In-depth analysis of the Random Forest detectors on the CTU-13 dataset To pro-

vide a more in-depth analysis of our study, we present the results of the Random

Forest-based detector on the CTU-13 dataset. We begin by showing in Table 4.10

the baseline performance of each instance of the detector in non-adversarial settings.

These results are obtained when each botnet-specific instance of the detector is tested

against a the malicious flows generated by its specific malware variant, along with

legitimate network flows. We integrate the chosen performance metrics with the rate

of false positives (FP) and false negatives (FN).

TABLE 4.10: Baseline performance for each instance of the RF detec-
tor on the CTU-13 dataset.

Malware FP rate FN rate Precision Recall F1-score
Neris 0.0014 0.0472 0.9624 0.9528 0.9575
Rbot < 0.0001 0.0015 0.9999 0.9985 0.9992
Virut 0.0003 0.0525 0.9871 0.9475 0..9669
Menti 0 0.0015 1 0.9967 0.9983
Murlo 0 0.0162 1 0.9838 0.9918

NSIS.ay < 0.0001 0.1557 0.9872 0.8443 0.9102

These results denote that our botnet detector obtains appreciable performance

under “normal” circumstances, as each classifier exhibits low FP and FN rates, while

retaining high Precision and Recall scores.

Next, we evaluate the botnet detector with the crafted adversarial samples. We

remark that each instance of the classifier is tested only with the adversarial samples

of its corresponding malware variant. Since we are interested in determining how

many adversarial samples are classified as negatives, we base our evaluation on the

Recall (or detection rate). The results of the evaluation are presented in Tables 4.11,

where each table reports the detection rates obtained by a specific instance of the

classifier. In every table, columns designate the group of altered features (described

in Table 4.5), whereas rows represent the increment steps (described in Table 4.6).

Detection rates below 50% are denoted with a gray background, while those below

10% are written in bold. The baseline detection rate is provided in the caption of

each table.

Consider as an example Table 4.11b, which refers to the detection rate for the

Rbot botnet variant. The baseline detection rate is 0.9985, however the result of

106 Chapter 4. Adversarial Attacks against Cyber Detectors

column 1d and row I shows that the attacker only has to increase the duration of

network communications by just 1 second to cause a drop of the detection rate from

0.9985 to a clearly unacceptable 0.1922. To reduce the detection rate below 1% an

attacker only has to add 128 bytes of useless data and generate additional 20 network

packets, as shown by the value 0.0094 in column 2e and row VI.

As expected, we observe that the performance tends to decrease for higher incre-

ment steps and for groups of multiple altered features. Intuitively, higher increments

of multiple features imply larger modifications to the adversarial samples with re-

spect to the original samples, which negatively impact the performance of the botnet

detector. However, we highlight that even small perturbations cause a severe drop

to the detection rate: for example, the results in the second row of column 3b in all

Tables 4.11 show that by simply increasing the Duration, Src_Bytes and Tot_Pkts by 2

units, it is possible to evade all instances with a good confidence (~60% to ~98%).

To provide a more intuitive representation of these results, we report in Fig-

ures 4.5 the results obtained by a single instance of the classifier for three different

increment steps. In every figure, histograms represent the detection rates for each

group of altered features, and the dotted horizontal line represents the baseline de-

tection rate. Without loss of generality, we represent results of the classifier for the

Neris botnet. This choice is motivated by its higher number of malicious samples

with respect to all other bot variants, thus leading to a more representative training

dataset. We consider the I, IV and IX steps. From Figure 4.5a we notice that even

the very small perturbations of the I increment step (combinations of: one second,

one byte, one packet) reduce the detection rate of more than 20%, and up to 50% for

some feature groups. On the other hand, the greater (but still realistic) perturbations

reported in Figure 4.5b and Figure 4.5c cause almost all adversarial samples to be

classified as benign flows, with detection rates always below 60% and even below

10% in most cases.

These results demonstrate the fragility of random forest classifiers to adversarial

examples, and evidence the great problem posed by adversarial attacks against these

types of security technologies.

4.2. Effectiveness of Adversarial Attacks 107

TABLE 4.11: Detection rates on the adversarial datasets obtained by
each instance of the classifier.

Neris 1a 1b 1c 1d 2a 2b 2c 2d 2e 2f 3a 3b 3c 3d 4a

I 0.7368 0.6664 0.6471 0.5927 0.4717 0.4454 0.6504 0.6070 0.5190 0.5090 0.4091 0.4875 0.4941 0.4715 0.4617
II 0.5792 0.6220 0.6396 0.4532 0.2877 0.2612 0.2243 0.5884 0.3466 0.3558 0.2413 0.1433 0.1564 0.3220 0.1436

III 0.4864 0.5036 0.5788 0.3192 0.1733 0.1996 0.1775 0.5106 0.1348 0.1723 0.1674 0.0788 0.0989 0.1299 0.0620
IV 0.4773 0.4495 0.5739 0.2534 0.1556 0.1760 0.1281 0.4728 0.0971 0.1253 0.1550 0.0541 0.0417 0.0945 0.0415
V 0.4749 0.2251 0.5712 0.2497 0.0614 0.1743 0.1209 0.2238 0.0571 0.1475 0.0680 0.0394 0.0416 0.0506 0.0385

VI 0.4695 0.1407 0.5584 0.2447 0.0332 0.1767 0.1220 0.1312 0.0502 0.1179 0.0293 0.0364 0.0404 0.0425 0.0345
VII 0.4685 0.1009 0.5173 0.2409 0.0586 0.2002 0.1184 0.1579 0.0381 0.0993 0.0538 0.0333 0.0354 0.0363 0.0325

VIII 0.4656 0.0825 0.4057 0.2346 0.0481 0.1631 0.1142 0.0911 0.0332 0.0824 0.0239 0.0726 0.0321 0.0315 0.0309
IX 0.4650 0.0611 0.3265 0.1899 0.0199 0.1119 0.1061 0.0768 0.0272 0.0726 0.0211 0.0223 0.0261 0.0276 0.0253

(A) Detection rates of the Neris instance of the classifier (Baseline DR: 0.9528).

Rbot 1a 1b 1c 1d 2a 2b 2c 2d 2e 2f 3a 3b 3c 3d 4a

I 0.9918 0.8456 0.8457 0.1922 0.8208 0.8208 0.1867 0.8418 0.1751 0.1754 0.8197 0.0203 0.0204 0.1751 0.0202
II 0.9917 0.8410 0.8420 0.1899 0.8182 0.8191 0.1846 0.8379 0.1538 0.1546 0.8157 0.0182 0.0185 0.0253 0.0182

III 0.9846 0.8080 0.8157 0.1896 0.8033 0.8139 0.1845 0.8079 0.0188 0.0192 0.8031 0.0175 0.0175 0.0178 0.0173
IV 0.9848 0.8082 0.8131 0.1896 0.8028 0.8030 0.1840 0.8059 0.0175 0.0179 0.8026 0.0169 0.0168 0.0172 0.0056
V 0.9852 0.8049 0.8116 0.1892 0.8118 0.7898 0.1831 0.7911 0.0168 0.0166 0.2391 0.0169 0.0028 0.0160 0.0046

VI 0.9853 0.8027 0.7979 0.1892 0.8004 0.2392 0.1835 0.7902 0.0094 0.0141 0.2386 0.0054 0.0015 0.0146 0.0036
VII 0.9850 0.8024 0.7944 0.1892 0.2419 0.2388 0.1834 0.7896 0.0073 0.0139 0.2377 0.0050 0.0015 0.0121 0.0014

VIII 0.9850 0.8023 0.7904 0.1891 0.8003 0.2479 0.1834 0.7852 0.0025 0.0136 0.2373 0.0098 0.0031 0.0049 0.0013
IX 0.9847 0.8022 0.7856 0.1888 0.8003 0.2377 0.1834 0.7856 0.0017 0.0045 0.2380 0.0024 0.0013 0.0047 0.0012

(B) Detection rates of the Rbot instance of the classifier (Baseline DR: 0.9985).

Virut 1a 1b 1c 1d 2a 2b 2c 2d 2e 2f 3a 3b 3c 3d 4a

I 0.6412 0.7175 0.7433 0.7326 0.6095 0.6122 0.2400 0.7072 0.6334 0.1488 0.2556 0.0789 0.0747 0.1376 0.0740
II 0.6115 0.7000 0.7275 0.6825 0.3345 0.3321 0.5607 0.1938 0.0922 0.0874 0.0700 0.0516 0.0549 0.0740 0.0500

III 0.6048 0.1319 0.1876 0.5815 0.0600 0.0530 0.5458 0.1215 0.4844 0.0664 0.0541 0.0397 0.0401 0.0528 0.0371
IV 0.6009 0.1097 0.1824 0.5628 0.0449 0.0506 0.5410 0.1099 0.0915 0.0492 0.0463 0.0353 0.0361 0.0476 0.0353
V 0.5898 0.0696 0.1616 0.5560 0.0364 0.0430 0.5398 0.0692 0.0392 0.0421 0.0343 0.0332 0.0329 0.0367 0.0316

VI 0.5834 0.0546 0.1612 0.5519 0.0297 0.0339 0.5340 0.0552 0.0348 0.0376 0.0313 0.0295 0.0278 0.0317 0.0261
VII 0.5704 0.0498 0.1407 0.5488 0.0263 0.0269 0.5315 0.0500 0.0297 0.0347 0.0333 0.0229 0.0245 0.0283 0.0222

VIII 0.7052 0.0365 0.0772 0.5418 0.0210 0.0248 0.5285 0.0376 0.0211 0.0267 0.0204 0.0143 0.0167 0.0235 0.0178
IX 0.6999 0.0316 0.0563 0.5294 0.0155 0.0156 0.5199 0.0304 0.0128 0.0171 0.0161 0.0098 0.0101 0.0173 0.0118

(C) Detection rates of the Virut instance of the classifier (Baseline DR: 0.9475).

Menti 1a 1b 1c 1d 2a 2b 2c 2d 2e 2f 3a 3b 3c 3d 4a

I 0.5852 0.0445 0.0434 0.8903 0.0358 0.0380 0.4300 0.0434 0.8219 0.7872 0.0380 0.4235 0.4278 0.4289 0.0347
II 0.9870 0.0445 0.0434 0.7524 0.0337 0.0380 0.8284 0.0380 0.4267 0.3985 0.0315 0.4311 0.4365 0.4278 0.4311

III 0.9870 0.0380 0.0380 0.7524 0.0054 0.0293 0.7904 0.0380 0.3540 0.3985 0.0054 0.3985 0.0597 0.3540 0.0597
IV 0.9870 0.0380 0.0380 0.7524 0.0054 0.0228 0.4517 0.0271 0.3540 0.3985 0.0033 0.0597 0.0000 0.3540 0.0000
V 0.9870 0.0000 0.0380 0.7524 0.0000 0.0000 0.4517 0.0000 0.3540 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

VI 0.9870 0.0000 0.0098 0.7524 0.0000 0.0000 0.4517 0.0000 0.3540 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
VII 0.9870 0.0000 0.0000 0.7524 0.0000 0.0000 0.4517 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

VIII 0.9870 0.0000 0.0000 0.7524 0.0000 0.0000 0.4517 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
IX 0.9870 0.0000 0.0000 0.7524 0.0000 0.0000 0.4517 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(D) Detection rates of the Menti instance of the classifier (Baseline DR: 0.9967).

Murlo 1a 1b 1c 1d 2a 2b 2c 2d 2e 2f 3a 3b 3c 3d 4a

I 0.2247 0.2221 0.2204 0.9694 0.2221 0.2247 0.2119 0.2204 0.2085 0.2094 0.2213 0.1974 0.1966 0.2051 0.1957
II 0.2170 0.2221 0.2204 0.9651 0.2153 0.2153 0.2085 0.2170 0.0570 0.2068 0.2077 0.0604 0.2060 0.0502 0.0545

III 0.2034 0.2170 0.2196 0.9302 0.1787 0.1779 0.0289 0.2119 0.0340 0.1660 0.1864 0.0221 0.0306 0.0315 0.0332
IV 0.0536 0.2085 0.2136 0.9115 0.0289 0.0264 0.0196 0.2043 0.0196 0.1583 0.0315 0.0196 0.0196 0.0196 0.0196
V 0.0511 0.2017 0.2043 0.9106 0.0187 0.0196 0.0187 0.1957 0.0187 0.1685 0.0187 0.0187 0.0187 0.0187 0.0187

VI 0.0434 0.1923 0.1966 0.9106 0.0187 0.0187 0.0187 0.0340 0.0187 0.1779 0.0187 0.0187 0.0281 0.0187 0.0187
VII 0.0434 0.0357 0.0357 0.9098 0.0187 0.0187 0.0179 0.0196 0.0179 0.1702 0.0187 0.0179 0.0179 0.0179 0.0179

VIII 0.0417 0.0187 0.0298 0.9064 0.0179 0.0289 0.0128 0.0289 0.0162 0.1660 0.0289 0.0153 0.0153 0.0170 0.0170
IX 0.0409 0.0179 0.0315 0.9047 0.0128 0.0289 0.0077 0.0281 0.0128 0.0136 0.0213 0.0077 0.0077 0.0136 0.0085

(E) Detection rates of the Murlo instance of the classifier (Baseline DR: 0.9838).

NSIS.ay 1a 1b 1c 1d 2a 2b 2c 2d 2e 2f 3a 3b 3c 3d 4a

I 0.8004 0.8026 0.8333 0.5768 0.7785 0.8026 0.6228 0.8114 0.5263 0.5482 0.7873 0.5921 0.6096 0.5329 0.6031
II 0.7610 0.7632 0.8246 0.5307 0.6601 0.7171 0.4298 0.7237 0.4561 0.4934 0.5570 0.3399 0.3750 0.4605 0.3465

III 0.7061 0.5504 0.7456 0.4364 0.4561 0.6382 0.2895 0.5132 0.3377 0.4013 0.4715 0.2259 0.2544 0.3421 0.2346
IV 0.6842 0.5241 0.7149 0.3640 0.3838 0.5417 0.2303 0.4715 0.2632 0.3070 0.3904 0.2237 0.2215 0.2303 0.2281
V 0.6689 0.4342 0.6184 0.3465 0.3575 0.5088 0.2193 0.4539 0.2346 0.2346 0.3333 0.2346 0.2061 0.2039 0.2193

VI 0.6272 0.3662 0.5614 0.3311 0.2873 0.3618 0.1886 0.3947 0.2149 0.2083 0.3136 0.1908 0.1623 0.1732 0.1667
VII 0.6118 0.3289 0.4956 0.3268 0.2675 0.3816 0.1513 0.3004 0.2018 0.1864 0.3092 0.1579 0.1272 0.1535 0.1382

VIII 0.6053 0.3048 0.4232 0.2917 0.2719 0.3443 0.1228 0.2741 0.1776 0.1425 0.2325 0.1294 0.0833 0.0877 0.0614
IX 0.5724 0.2895 0.2873 0.2763 0.2610 0.1974 0.0811 0.2478 0.1557 0.1294 0.1886 0.0570 0.0373 0.0702 0.0351

(F) Detection rates of the NSIS.ay instance of the classifier (Baseline DR: 0.8443).

108 Chapter 4. Adversarial Attacks against Cyber Detectors

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1a 1b 1c 1d 2a 2b 2c 2d 2e 2f 3a 3b 3c 3d 4a

D
ET

EC
TI

O
N

 R
A

TE

GROUP OF ALTERED FEATURES

I

Neris

Baseline

(A) Results on the I increment step.

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1a 1b 1c 1d 2a 2b 2c 2d 2e 2f 3a 3b 3c 3d 4a

D
ET

EC
TI

O
N

 R
A

TE

GROUP OF ALTERED FEATURES

IV

Neris

Baseline

(B) Results on the IV increment step.

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1a 1b 1c 1d 2a 2b 2c 2d 2e 2f 3a 3b 3c 3d 4a

D
ET

EC
TI

O
N

 R
A

TE

GROUP OF ALTERED FEATURES

IX

Neris

Baseline

(C) Results on the IX increment step.

FIGURE 4.5: Detection rates of the Neris instance on the adversarial
datasets obtained with three steps of every group of altered features.

109

Chapter 5

Countermeasures against

Adversarial Attacks

After having introduced and explained the problem of adversarial attacks from a

cybersecurity perspective in the previous chapter (see Section 4.1), and after having

shown the high effectiveness of this threat (in Section 4.2), we devote this chapter to

the countermeasures against this recent menace. We begin by providing an overview

of existing countermeasures that have been proposed by the literature, which is

corroborated with novel experiments that aim to assess the maturity of these tech-

niques for protecting cyber detectors. Indeed, we will show that known defensive

approaches against adversarial attacks present several drawbacks that limit their

applicability in cybersecurity scenarios, therefore increasing the need for novel so-

lutions that can be used as stepping stone for more resilient cyber defence systems.

We address this demand in the second part of this chapter, where we propose novel

methods that are oriented at countering both attacks at training- and at test-time;

in addition, they can be adopted in a wide array of cyber security settings, such as

network intrusion detection, and phishing detection. As a prerogative of the pro-

posed solutions, the presented approaches have either negligible, zero or even posi-

tive impact on the detectors when they are not being targeted by adversarial attacks;

furthermore, their integration into existing systems is provided at little- or no-cost

(in terms of operations required). These characteristics make them suitable for re-

alistic scenarios – which is a crucial aspect when evaluating the quality of security

analytics methods. Moreover, all the proposed countermeasures are experimentally

validated by extensive experimental campaigns. From the appreciable results ob-

tained, alongside the evident room for further improvements, it is safe to assume

that these proposals represent a valid step towards more secure security analytics

110 Chapter 5. Countermeasures against Adversarial Attacks

platforms.

The remainder of this chapter is structured as follows. Section 5.1 presents the

current known defensive methods against adversarial attacks, paired with an origi-

nal evaluation of some these techniques. Then, we present several innovative solu-

tions against adversarial attacks: Section 5.2 describes a method to harden random

forest-based botnet detectors against evasion attacks; Section 5.3 proposes an ap-

proach to counter poisoning attacks; and Section 5.4 presents an original solution to

thwart evasion attempts against phishing detectors.

5.1 Existing Defences against Adversarial Attacks

Devising effective solutions against adversarial attacks is a challenging task. In this

section, we present existing methods proposed in the literature that aim to mitigate

these critical threats at both training- and test-time. Countermeasures can be di-

vided into two groups: those conforming to the security-by-design paradigm that are

effective against perfect-knowledge attacks; and security-by-obscurity methods that

are only effective against partial- or zero-knowledge attacks. As an additional con-

tribution, we perform original experiments that aim to assess the effectiveness of

these methods in cybersecurity contexts. To this purpose, we conduct a thorough

evaluation that involves adversarial attacks against machine learning-based NIDS.

The experiments involve publicly available and labelled datasets representing the

network behavior of medium- or large-sized enterprises, consisting of hundreds of

hosts. Hence, we consider our evaluation to be a valid representation of the quality

of existing and known techniques against adversarial perturbations. We anticipate

that one of the main limitations of most solutions against adversarial attacks is that

they may worsen the performance of the cyber detector in the absence of adversarial

attacks, typically causing higher false positive rates (e.g., [45], [161], [183], [205]).

5.1.1 Defences against attacks at test-time

We present existing countermeasures against attacks performed at test-time. We re-

call from Section 4.1 (see Table 4.1) that there are no known examples of availability

attacks at test-time, Hence, we focus on defences against attacks targeting the in-

tegrity of the system.

5.1. Existing Defences against Adversarial Attacks 111

These threats involve the creation of specific samples that evade the detection

mechanism. For example, an opponent can alter a malicious sample to induce its

classification as a benign sample. The security-by-design countermeasures aim to

improve the machine learning system capabilities to detect even adversarially ma-

nipulated samples.

• Adversarial training. These solutions train the model on datasets that in-

clude samples of possible adversarial attacks [206]. A recent proposal [45]

suggests the adoption of a generative adversarial network (GAN) to automat-

ically generate a similar dataset, achieving promising results. However, these

approaches are not a final solution, because it is simply unfeasible to obtain a

dataset that contains all possible variations of realistic adversarial samples.

• Robust optimisation. The authors in [207] and [208] propose techniques aimed

at smoothing the decision boundaries of the machine learning algorithm, thus

reducing the effects of adversarial samples. Similar solutions can help to miti-

gate some attacks, but expert opponents are still able to craft malicious samples

that look like licit activities.

• Feature selection. Other proposals (e.g., [39], [183]) suggest training the detec-

tion model by considering only the subset of features that cannot be manipu-

lated by an attacker. While this method can prevent certain types of evasion

attacks, feature removal reduces the detection rates in non-adversarial scenar-

ios [183].

• Game theory. These approaches represent the problem of adversarial attacks

as a zero-sum game between the attacker and the defender, and work under

several assumptions. They require a model of the attacker knowledge and ca-

pabilities that must be integrated into the machine learning algorithm. The

optimal defence course against the modelled attacker is found when the sys-

tem reaches an equilibrium. An example of application to spam detection is

described in [208]. The main limitation of these strategies is that they are only

able to counter attacks that strictly conform to the considered attacker’s model,

because even small deviations nullify their effectiveness. Since the cybersecu-

rity world is intrinsically unpredictable and fuzzy, most of these solutions are

not applicable to real contexts.

112 Chapter 5. Countermeasures against Adversarial Attacks

• Ensemble methods. The paper by Biggio et al. [209] shows that it is possible to

counter evasion attacks at test-time by devising systems composed by multiple

classifiers. However, each classifier represents a weak link in the security chain

because the misconfiguration of even one component can lead to poor results,

as shown in [166].

Most black- and gray-box evasion attacks involve a probing step, in which the

adversary aims to gather information on the detector by submitting specific inputs to

the system and observing the subsequent response. Thus, existing defences address

these malicious exploratory activities by providing misleading information to the

attacker. For example, the authors in [209] suggest mechanisms that are difficult to

reverse-engineer or propose a randomization of the detector output. The problem of

these solutions is that they tend to work against attackers with limited time or skill

that adopt automated tools. Expert opponents can detect such deception activities

and bypass them.

5.1.2 Defences against attacks at training-time

Attacks performed at training-time alter the decision process of the machine learning

algorithm by modifying the configuration of the model before the training phases,

that is, by manipulating the training dataset(s). Existing solutions focus on protect-

ing the training dataset with the objective of minimizing the effects of adversarial

perturbations. We identify the following two groups of security-by-design defences.

• Data sanitization. Poisoning attacks are countered through a data sanitization

process that aims to detect and remove poisoned samples introduced in the

training data [210]. The problem is that some assumptions of these approaches

are not always applicable to the cybersecurity field. For example, the work

in [211] assumes that each poisoning sample significantly affects the training

process. This assumption is not valid in many situations in which an attacker

introduces few samples just to avoid some specific detections of his interest.

Other solutions [212] leverage the machine unlearning concept that allows the

effects of poisoned data to be cancelled without the need to retrain the ma-

chine learning model. The main limitation of this approach is that it needs to

know which (poisoned) data to unlearn, that is, it requires the knowledge of

5.1. Existing Defences against Adversarial Attacks 113

which poisoned data samples have been introduced by the attacker. This is an

unrealistic assumption in real cybersecurity contexts.

• Ensemble methods. The adoption of multiple-classifier systems can also be ef-

fective against attacks at training-time [211]. These solutions present the same

advantages and problems characterizing their test-time version, that is, a mis-

configuration of even one component can damage the results of the entire de-

tection mechanism.

Defences against partial- or zero-knowledge attacks include the collection of

training data from randomized sources [213] with the goal of making it harder for

the attacker to devise effective adversarial samples; and the application of strategies

to prevent the attacker from controlling the actual training dataset [213].

5.1.3 Evaluation results

To further emphasize the need for novel solutions against adversarial attacks, we

present an experimental evaluation of two existing countermeasures against evasion

attacks at test-time against botnet detectors: we begin by assessing the effectiveness

of defenses based on feature removal, and then evaluate methods based on adversarial

retraining. We anticipate that these evaluations are based on the same threat model

described in Section 4.2.2, and are performed on the same testbeds described in Sec-

tion 4.2.3. Regardless, we provide a brief description of the adopted experimental

settings.

These experiments involve integrity violations performed at test-time. We con-

sider an attacker that has already established a foothold within the enterprise’s in-

ternal network by compromising one or more machines with botnet malware; these

bots communicate with an external Command and Control server. The attacker

model is based on the following three assumptions: his goal is to evade detection

in order to expand his control of the internal network [75]; he knows that the or-

ganization adopts a botnet detector based on machine learning, which is trained on

malware samples that are similar to the variant used by the bots; he can interact with

the controlled bots, but he cannot access the botnet detector. To achieve his goal, the

attacker plans to slightly modify the network communications performed by the

bots (e.g., small increments in the amount of exchanged data and in the communica-

tions duration [193]) so that these small perturbations can induce misclassifications

114 Chapter 5. Countermeasures against Adversarial Attacks

of botnet flows. We simulate this realistic attack scenario by altering the following

flow-based features: sent_bytes, received_bytes, duration, total_packets. This process is

repeated for all the samples of each botnet variants (see Section 4.2.5 for the complete

details of the generation of adversarial samples).

Effectiveness of Feature Removal strategies We begin by assessing the effective-

ness of defensive strategies based on feature removal. These approaches have the

appreciable benefit of being able to completely nullify the effectiveness of adversar-

ial attacks. However, this advantage comes with a critical issue, which is a reduced

performance of the detector in contexts that are not subject to adversarial attacks –

for example by increasing the rate of false positives or false negatives. The magni-

tude of this performance drop is usually dependant on the importance of the fea-

tures that have been excluded from the training set. To this purpose, after training

and testing the ML-detectors described in Section 4.2.4 (we remark that their appre-

ciable baseline results are presented in Table 4.7), we train them again by only con-

sidering features that are not affected by the considered evasion attacks. That is, we

exclude the following features from the training dataset: sent_bytes, received_bytes,

duration, total_packets. The “updated” detectors are then tested on the very same

testing datasets used to determine the baseline performance of the original detec-

tors. Experimental results are summarized in Table 5.1, which reports the perfor-

mance metrics of interest (F1-score, Precision, Recall – see Eq. 2.1 through 2.3) for

each considered dataset, averaged for all the chosen algorithms (after training them

with the removed features).

TABLE 5.1: Detection results for ML detectors with feature removal.

Dataset
F1-score

(std. dev.)
Precision
(std. dev.)

Recall
(std. dev.)

CTU-13
0.803

(0.092)
0.810

(0.089)
0.799

(0.101)

IDS2017
0.503

(0.304)
0.777

(0.388)
0.596

(0.306)

CIC-IDS2018
0.859

(0.164)
0.814

(0.212)
0.942

(0.128)

UNB-CA Botnet
0.691

(0.276)
0.645

(0.285)
0.808

(0.209)

Average
0.714

(0.209)
0.761

(0.2235)
0.786

(0.186)

By comparing Table 4.7 against Table 5.1 it is clear that feature removal causes a

5.1. Existing Defences against Adversarial Attacks 115

considerable reduction in the average detection performance, which is now well be-

low acceptable standards for real world cyber detectors. To also compare the distri-

bution of F1-Score, Precision and Recall of the different detectors across all datasets

we propose the boxplot diagrams of Figure 5.1, which can be directly compared with

Figure 4.2.

F1-score
(defense)

Precision
(defense)

Recall
(defense)

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

CTU-13

F1-score
(defense)

Precision
(defense)

Recall
(defense)

0.0

0.2

0.4

0.6

0.8

1.0
UNB-CA Botnet

F1-score
(defense)

Precision
(defense)

Recall
(defense)

metric

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

IDS2017

F1-score
(defense)

Precision
(defense)

Recall
(defense)

metric

0.0

0.2

0.4

0.6

0.8

1.0
CIC-IDS2018

FIGURE 5.1: Distribution of F1-Score, Precision and Recall using fea-
ture removal for all detectors and all datasets.

We can observe a significant decrease for all the considered metrics. In particular,

we highlight that the lower Precision leads to a relevant number of false positives,

which are extremely undesirable for modern cyber defence platforms. This reduc-

tion in quality is explained by the fact that the removed features have a meaningful

impact to the underlying mechanisms of the baseline detectors; thus, their exclusion

causes an important performance drop, with most detectors obtaining scores that

are well below acceptable in real contexts. However, we remark that by testing these

detectors on the adversarial datasets, the detection rates achieved did not decrease

(and the corresponding Attack Severity was 0): indeed, the main advantage of feature

removal methods is to make certain kinds of adversarial perturbations completely

ineffective. Our takeaway is that despite its ability to nullify the considered attack

116 Chapter 5. Countermeasures against Adversarial Attacks

TABLE 5.2: Results of the Top 5 algorithms on each individual dataset.

Baseline Attack Defense

Algorithm F1-score Precision Recall Recall Attack
Severity F1-score Precision Recall

RF 0.9694 0.9722 0.9668 0.4390 0.5461 0.8564 0.8498 0.8641
AB 0.9722 0.9748 0.9696 0.4074 0.5803 0.8446 0.8487 0.8410

FNN 0.9458 0.9454 0.9462 0.3141 0.7261 0.7235 0.7734 0.6886
KNN 0.9296 0.9273 0.9320 0.2982 0.6806 0.6992 0.7265 0.6767
Bag 0.9745 0.9799 0.9693 0.4007 0.5869 0.8477 0.8516 0.8442

(A) CTU-13 Top 5 algorithms results.

Baseline Attack Defense

Algorithm F1-score Precision Recall Recall Attack
Severity F1-score Precision Recall

AB 0.9972 1 0.9945 0.7455 0.2504 0.7172 0.9779 0.5663
FNN 0.9959 0.9972 0.9945 0.5991 0.3975 0.7169 0.9344 0.5816
KNN 0.9959 1 0.9918 0.5512 0.4442 0.4292 0.2764 0.9591
ET 0.9972 1 0.9945 0.7333 0.2626 0.7456 1 0.5943
GB 0.9945 1 0.9891 0.7221 0.2699 0.7476 1 0.5969

(B) IDS2017 Top 5 algorithms results.

Baseline Attack Defense

Algorithm F1-score Precision Recall Recall Attack
Severity F1-score Precision Recall

RF 0.9999 0.9999 0.9999 0.5965 0.4034 0.9822 0.9653 0.9996
AB 0.9997 0.9999 0.9996 0.5632 0.4365 0.9709 0.9969 0.9463

FNN 0.9997 0.9999 0.9995 0.7123 0.2873 0.9696 0.9939 0.9465
KNN 0.9998 0.9999 0.9998 0.4866 0.5132 0.8225 0.7564 0.9012
ET 0.9999 0.9999 0.9999 0.6023 0.3976 0.9822 0.9653 0.9996

(C) CIC-IDS2018 Top 5 algorithms results.

Baseline Attack Defense

Algorithm F1-score Precision Recall Recall Attack
Severity F1-score Precision Recall

RF 0.9974 0.9997 0.9951 0.6856 0.3110 0.8912 0.8584 0.9283
KNN 0.9496 0.9479 0.9516 0.6167 0.3507 0.8144 0.7555 0.8871
ET 0.9993 0.9999 0.9987 0.6831 0.3160 0.8897 0.8544 0.9294

FNN 0.9215 0.9113 0.9321 0.5978 0.2756 0.7393 0.6779 0.8325
AB 0.9955 0.9971 0.9939 0.6840 0.3118 0.8926 0.8595 0.9303

(D) UNB-CA Botnet Top 5 algorithms results.

scenario, similar defensive strategies are inefficient and their application is discour-

aged in actual production environments. These results further motivate the need

for novel defensive approaches that are both effective and applicable to modern net-

work scenarios.

We conclude this evaluation by presenting the results obtained by the 5 best

detection algorithms for each dataset in non adversarial settings, provided in Ta-

bles 5.2a through 5.2d, which are the natural expansion of Tables 4.9 (presented in

Section 4.2.6). All these tables show the average performance of each considered

algorithm throughout all the steps performed in our experimental evaluation (base-

line, attack and defense).

5.1. Existing Defences against Adversarial Attacks 117

The purpose of these tables is to highlight how even algorithms that achieve

near-perfect results in non-adversarial settings can be heavily affected by such sim-

ple evasion mechanisms. Moreover, after the application of feature removal, only

three algorithms (RF, AB and FNN) are able to achieve acceptable values of F1-Score,

Precision and Recall, but only when applied to the CIC-IDS2018 dataset.

Effectiveness of Adversarial Retraining strategies We now explore the efficacy

of methods based on adversarial retraining. Without loss of generality, these ex-

periments are based on detectors leveraging three popular machine learning algo-

rithms (Random Forest, Feedforward Deep Neural Network, K-Nearest Neighbor)

which are evaluated on the CTU-13 dataset. To assess the quality of adversarial

retraining countermeasures, we first train each detector and determine its baseline

performance (through measuring their Precision, Recall, F1-score), and then verify

the effectiveness of the considered evasion attacks by testing it on the generated ad-

versarial datasets and measuring its Recall and Attack Severity. Then, we harden

the detectors by inserting some of the adversarial samples that we manually crafted

into their training sets (with the appropriate malicious label), we repeat the training

process, and we test the classifiers again on the respective adversarial datasets.

The baseline results (that is, in non-adversarial settings) of each detector are pre-

sented in Table 5.11, from which we observe an appreciable performance of these

algorithms that is compatible with real world requirements.

TABLE 5.3: Baseline performance of the classifiers.

Algorithm Precision Recall F1-score
RF 0.9774 0.9684 0.9729

FNN 0.9616 0.9438 0.9526
KNN 0.9558 0.9375 0.9466

Next, we report in Table 5.4 the average results for the three detectors considered

when are subject to the evasion attacks. We highlight that all these algorithms are

severely affected by the adversarial samples: the detection rate in the second column

is about one-third of the original rate.

Finally, we present the effectiveness of the implemented adversarial retraining

strategy in Table 5.5, which compares the severity of the attacks before and after

retraining. The decreased severity of the attack after retraining shows the validity

of a similar approach. However, it should be observed that this technique does not

guarantee detection against other types of adversarial perturbations: in other words,

118 Chapter 5. Countermeasures against Adversarial Attacks

TABLE 5.4: Effects of the evasion attack on each classifier.

Algorithm
Recall

(before the attack)
Recall

(after the attack)
Attack

Severity
RF 0.9684 0.3429 0.6459

FNN 0.9438 0.3012 0.6809
KNN 0.9375 0.3121 0.6671

these kinds of approaches are only effective against the types of attacks that can be

anticipated, and for which an augmented training set can be produced; conversely,

an attacker that could manipulate the malicious samples by altering different fea-

tures (for example, the network ports) would be not affected by a similar countermea-

sure.

TABLE 5.5: Evaluation of the countermeasure based on adversarial
retraining.

Algorithm Attack Severity
Attack Severity

(after Retraining)
RF 0.6459 0.3842

FNN 0.6809 0.4089
KNN 0.6671 0.4772

We can conclude that existing defences, while providing some appreciable re-

sults in some contexts, are still immature and present critical issues that prevent

their complete adoption in real scenarios. These results highlight the importance

of developing novel countermeasures that not only improve the resiliency of ma-

chine learning cyber detectors against adversarial attacks, but that also do not cause

significant performance drops in non-adversarial settings. The following sections

will provide original contributions to mitigate the effectiveness of adversarial at-

tacks against cyber detectors based on machine learning.

5.2 Countering Evasion Attacks on Random Forest Detectors

In this section, we propose a novel approach for hardening cyber detectors based

on machine learning. We focus on the random forest algorithm due to its proven

effectiveness for intrusion detection [27], [48], [49], [51], [136]; but also because re-

cent studies (alongside this thesis) highlight its vulnerability to adversarial pertur-

bations [182], [185], [214]. Our solution is based on the observation that existing ma-

chine learning cyber detectors rely on excessively rigid classification criteria: they

5.2. Countering Evasion Attacks on Random Forest Detectors 119

are typically trained through class labels that separate samples in disjointed cate-

gories where each sample may be either malicious or benign. A similar approach

cannot work in the cyber domain where each sample may present more vague at-

tributes. For this reason, we leverage the idea of introducing some degree of flexi-

bility in the training data set by using probability labels. The intuition is that a model

that uses probability labels instead of hard class labels can be more resilient to ad-

versarial perturbations, and can achieve comparable or even superior results even

in the absence of attacks. Our methodology has several applications in all fuzzy sce-

narios characterizing cybersecurity that involve classifiers based on random forests.

As a first test case, we adopt it for devising botnet detectors based on network flows

analyzers.

We validate our approach through a large set of experiments, performed on a set

of publicly available and labelled traffic traces containing over 20 million network

flows with benign and malicious samples of different malware families. These data

sets capture the network behavior of medium-large enterprises and represent an

appropriate setting for a realistic evaluation. The results of our evaluations demon-

strate the effectiveness of the proposed method, which achieves a twofold advantage

over the state of the art: in scenarios subject to adversarially manipulated inputs, it

improves the detection rate up to 250%; in scenarios that are not subject to adver-

sarial attacks, it achieves a similar or superior accuracy than existing techniques.

This latter achievement is of particular importance because existing approaches that

aim to counter adversarial attacks are often subject to a reduced performance in non-

adversarial settings. Moreover, despite these promising results, our method presents

room for further improvements. The proposed approach represents an original con-

tribution to design robust detectors with high detection rates and strong enough

against adversarial attacks. Hence, we are confident that this contribution repre-

sents a meaningful step towards more robust cyber defensive platforms based on

machine learning against adversarial attacks.

5.2.1 Related work

Although the threats posed by adversarial inputs are clear, the few existing solutions

are not immediately applicable to real contexts. For example, [45] and [206] propose

to harden the classifier through multiple re-training steps based on adversarial sam-

ples. This is an interesting theoretic solution with practical limitations because it

120 Chapter 5. Countermeasures against Adversarial Attacks

requires the creation and continuous management of datasets with realistic adver-

sarial samples. Moreover, [39] suggests to improve the robustness against evasion

attacks by not considering the features that can be manipulated by an attacker. The

problem of this approach is that it reduces accuracy in normal scenarios as shown in

this thesis (see Section 5.1.3) but also in [150], [215]. On the other hand, our proposal

is immediately applicable to real contexts as demonstrated by multiple experimental

settings.

A more recent defensive method is the defensive distillation, which has been pro-

posed within the image processing domain. The first use of distillation has been

compression [216]: its aim was the reduction of the computational complexity of

training a (deep) neural network architecture by transferring knowledge from a

larger one to a smaller one. This allows the deployment of deep learning in low-

powered devices which cannot rely on specialized processors to perform heavy

computations. Then, the work by Papernot et al. [161] leveraged this transferabil-

ity property to harden classifiers. While defensive distillation may work in miti-

gating adversarial perturbations against image classification, this technique is built

and evaluated only on neural network algorithms [217]. Although cyber detectors

based on this algorithm exist and can be hardened through the original distillation

proposal [218], in cybersecurity scenarios detectors based on random forests out-

perform those relying on neural networks and other supervised methods [27], [48]–

[51], [185], [215]. More recently, [196] evaluates different classifiers for the specific

problem of botnet detection and confirms that random forest yields the best results.

Finally, [219] proposes a NIDS that inspects network flows through a random for-

est classifier to identify botnets and obtains outstanding results with detection rates

close to 99%. For this reason, we devise an original formulation of the distillation

technique that is specifically aimed at hardening random forest detectors, thus al-

lowing to devise robust defensive schemes for cyber detection based on machine

learning. A recent work [147] shows that it is possible to evade the defensive distil-

lation, however we observe that the considered threat model is unrealistic because

it assumes an attacker with complete control of the detector: with similar privileges,

attackers can (and most likely will) adopt measures much more invasive and dis-

ruptive than those based on adversarial perturbations. Other proposals on defenses

against adversarial samples [164], [181] consider just SVM classifiers applied to mal-

ware analysis, which is out of the scope of this work. We are not aware of other

5.2. Countering Evasion Attacks on Random Forest Detectors 121

defensive mechanisms against evasion adversarial attacks that are applicable to ran-

dom forest algorithms for network intrusion detection. Hence, we can conclude that

the topic considered in this work is a promising research theme, which we address

through a novel approach that hardens random forest-based detectors through an

original defensive distillation method.

5.2.2 Proposed method

We propose a novel method that hardens machine learning detectors based on ran-

dom forest against adversarial attacks. The idea comes from the observation that

the excessively rigid classification criteria learned by machine learning algorithms

in the training phase are vulnerable to subtle adversarial perturbations. Indeed, ex-

isting detectors are trained through class labels that separate samples in disjointed

categories where each sample may be either malicious or benign but not both. On

the other hand, the cyber domain is more fuzzy, and a sample may present charac-

teristics belonging to different categories. Any rigid classification produced by hard

class labels may represent an exploitable weakness of cyber detectors in adversarial

settings. For this reason, we aim to introduce some degree of flexibility and uncer-

tainty in the training process by using probability labels that allow the algorithm to

capture additional information between classes such as similarity. The intuition is

that a model that uses probability labels instead of hard class labels can be more re-

silient to adversarial samples, and can achieve comparable or superior results even

in the absence of attacks. The main difficulty of a similar approach is that probabil-

ity labels are not readily available in the cyber domain; hence we devise an original

solution built upon the two following phases:

1. generation of probability labels from hard class labels;

2. deployment of a supervised model trained with the generated probability la-

bels to perform the cyber detection.

Figure 5.2 shows that this approach considers as its input a dataset and its class

labels. Then, it computes the corresponding probability labels (represented in the

leftmost box), and uses them to train a supervised model that will be integrated in

the detector. We apply this method to the random forest machine learning algo-

rithm by leveraging the foundations [220] of the defensive distillation for neural

networks [161]. By using the information encoded in the probability labels in the

122 Chapter 5. Countermeasures against Adversarial Attacks

form of probability vectors, generated after training an initial model, it is possible

to develop a second “distilled” model that is more robust against adversarial at-

tacks. The entire workflow applied to the random forest algorithm is illustrated in

Figure 5.3 where each step is denoted by a circled number that is explained in the

following subsections. Unlike the original defensive distillation technique, the gen-

eration of probability labels and their use for detection is performed through random

forest-based models instead of neural networks.

Generate
probability
labels

Supervised
Model

Dataset

Class Labels Probability
Labels

Train

I II

FIGURE 5.2: The two phases of the cyber detector.

Dataset
(X)

Hard class
labels (Y)

Condenser
 (classifier)

Probability
labels (Y')

Dataset
(X)

Predictions(C) Receiver
 (regressor) (R)

Test2

3 5Train
4

Train
1

III

FIGURE 5.3: Workflow of the proposal: distillation is applied to the
random forest algorithm.

Generation of the probability labels The initial phase is performed through a ran-

dom forest classifier, the Condenser, denoted by C. We first train this classifier (step

1 in Figure 5.3). Then, we leverage the intrinsic property of the random forest algo-

rithm of being an ensemble method, that is, a composition of several decision trees

(or estimators), where the final output is generated after evaluating the response of

each individual tree. This characteristic allows us to produce the desired probability

vectors by considering the percentage of estimators that predicted a specific result

(step 2 in Figure 5.3). Formally, let X be a dataset, |X| ∈ N the number of samples

that constitute X, and xi ∈ X(0 ≤ i ≤ |X|) a sample within this dataset; let Y be the

set of hard class labels (in the form of indicator vectors) associated to dataset X, and

yi ∈ Y the label associated to xi. If C is a random forest classifier, then |C| ∈N is the

number of estimators that compose C, and tj ∈ C(0 ≤ j ≤ |C|) is a tree of classifier

C. After training C by means of X (as training dataset) and of Y (as labels), the set of

probability labels Y′ that can be obtained from X through C is:

5.2. Countering Evasion Attacks on Random Forest Detectors 123

Y′ =
{

y′i | y′i =
∑|C|j=1 ti

j

|C|

}
, (5.1)

where y′i is the probability vector corresponding to sample xi, and ti
j denotes the

output of tree tj for sample xi, which is an indicator vector. As an example, let us

consider a random forest classifier consisting of 100 estimators that are trained to

solve a binary classification problem (either 0 or 1). Now, let us assume that, for a

given sample, 31 estimators predict 0 and produce the indicator vector (1, 0), while

the remaining 69 predict 1 and produce the indicator vector (0, 1). In this case, al-

though the final output of the classifier is the indicator vector (0, 1), we generate the

binary probability vector (0.31, 0.69) which encodes the output produced by each in-

dividual tree. On the other hand, if 69 estimators predict 0 and 31 estimators predict

1, we would obtain the probability vector (0.69, 0.31).

It should be noted that the objective of the Condenser is to generate accurate

probability labels but it does not perform detection. As the focus is on the prediction

of every individual estimator, and not on the classification results of the whole ran-

dom forest classifier, the concept of “misclassification" does not strictly apply to this

phase. For example, let us consider a binary classification scenario where we train

the Condenser and then test it to generate the probability labels: it may be possible

that, for a sample associated to the label 1, 69% of the estimators of the Condenser

predict a 0. This event cannot be considered a misclassification because the output

of the Condenser is a probability (e.g., the probability vector (0.69, 0.31)). However,

such occurrences may have a detrimental effect in the next phase. To minimize simi-

lar risks, we utilize the entire available dataset to both train and test C: this approach

would yield the best results as it ensures that each sample is associated to a proba-

bility label with the highest degree of confidence.

Model deployment In the second phase, the probability vectors generated by the

Condenser (step 3 in Figure 5.3) are used as training labels for a random forest re-

gressor that uses those probabilities as its training input (step 4 in Figure 5.3). We

define this model as the Receiver denoted by R. Since this model performs the

actual detection tasks (step 5 in Figure 5.3), we evaluate it against the adversar-

ial inputs. Hence, it is important that this model is trained by following the best

practices (as in [155]) to avoid the risk of overfitting. For example, the training and

validation sets should be chosen through appropriate splits of the available dataset.

124 Chapter 5. Countermeasures against Adversarial Attacks

We remark that the Receiver can be seen as a complex multi-output regressor

with the challenging task of multi-target regression [221]. However, for the spe-

cific scenarios related to cyber detection, it is possible to devise a simpler regressor

because the main goal is to analyze network traffic and to identify illegitimate activ-

ities. Hence, we can model the case as a binary classification instead of a multi-class

problem, in which the algorithm is required to determine only whether a given sam-

ple of traffic is malicious or not. To this purpose, for each data sample, the Condenser

needs to generate a single probability value (denoting the likelihood of being a mali-

cious sample) instead of a multi-dimensional probability vector. By considering the

binary classification example described earlier, the 31 estimators of the Condenser

that predicted a 0 would give the value 0, while the remaining 69 estimators would

produce the value 1. Thus, the corresponding probability value for the analyzed

sample is 0.69. These probability values are then used as the labels for the Receiver,

whose output is another probability value that can be converted into a discrete num-

ber through a rounding operation:

P(xi) = bRxie, (5.2)

where Rxi is the output of the Receiver R for the sample xi, and P(xi) ∈ [0, 1] de-

notes the final prediction of the distilled model.

5.2.3 Experimental methodology

We now describe the details of the experimental evaluation performed in this work.

We begin by outlining the considered application scenario, and then propose the

implementation details of the considered detectors.

Application scenario for the detector A realistic scenario where the proposed de-

tector can be applied successfully is the one presented in Section 4.2.2 (see Fig-

ure 4.1). Briefly, it consists in a large enterprise network with many internal hosts,

whose network traffic is inspected by a NIDS based on machine learning that aims to

identify botnet activities by leveraging the random forest algorithm. We assume that

an attacker has already established a foothold in the internal network by compromis-

ing one or more machines and deploying botnet malware that communicate with a

Command and Control infrastructure. The main goal of the attacker is to evade de-

tection. He knows that network communications are monitored by a NIDS based

5.2. Countering Evasion Attacks on Random Forest Detectors 125

on machine learning. We assume that the attacker can issue commands to the bot

through the CnC infrastructure, but he cannot interact with the detector. Although

the attacker does not know the specific machine learning algorithm (alongside its

parameters and features) used by the NIDS, he can easily guess that the detector is

trained over a dataset containing malicious flows generated by the same or a similar

malware variant deployed on the infected machines. The strategy to avoid detection

is through a targeted exploratory integrity attack [145] that is performed by inserting

tiny modifications in the communications between the bot and its CnC server. We

stress that the considered use-case closely resembles a realistic scenario of modern

attacks [74]: machines that do not present administrative privileges are more vul-

nerable to botnet malware, and skilled attackers can easily assume control of them.

On the other hand, the NIDS is usually one of the most protected devices in an en-

terprise network, and can be accessed only through few selected secured hosts.

Characteristics of the detector We anticipate that the experimental evaluation is

conducted on the CTU-13 dataset, which is described in Section 4.2.3. Moreover,

we generate the adversarial samples by following the same procedure described in

Section 4.2.5.

The experimental campaigns considers the following detectors based on random

forest:

• The Undistilled detector, which presents characteristics similar to the random

forest classifier model proposed in [174], is used as the baseline for the experi-

ments; a graphical representation of its architecture is provided in Figure 5.4.

• The Distilled detector represents the main proposal of this work. It consists

of the Condenser for generating the probability labels, and of the Receiver to

perform the detection tasks. This detector is evaluated against the Undistilled

detector in adversarial and non-adversarial settings.

Dataset

Hard class
labels

Undistilled
 Train (Random Forest

 classifier)

FIGURE 5.4: Architecture of the Undistilled detector.

126 Chapter 5. Countermeasures against Adversarial Attacks

Each detector has 6 instances, each one focusing on recognizing a specific mal-

ware family of the dataset. The development of the detectors follows the same pro-

cedure described in Section 4.2.4. The instances of the Receiver are trained with

80% of the botnet flows generated by each malware variant included in the CTU-13

dataset, and validated on the remaining 20%. On the other hand, the instances of

the Condenser, which generate the probability labels, are trained and tested on the

same dataset containing all the malicious flows of the related botnet family. Other

details are presented in Section 5.2.2. Moreover, we report in Table 5.6 the mean-

ingful parameter settings of each model, which are chosen through extensive grid

search operations. The F parameter denotes the number of features in input, and

MSE is the Mean Squared Error.

TABLE 5.6: Parameters of the random forest models.

Parameter name Value

U
nd

is
ti

ll
ed Number of estimators 763

Quality Function Gini
Features for best split

√
F

Bootstrap Yes

C
on

de
ns

er Number of estimators 894
Quality Function Gini

Features for best split
√

F
Bootstrap Yes

R
ec

ei
ve

r Number of estimators 1352
Quality Function MSE

Features for best split F/2
Bootstrap Yes

The performance of these detectors will be measured through the typical ma-

chine learning metrics: Precision (see Eq. 2.1), Detection Rate (see Eq. 2.2), F1-score

(see Eq. 2.3).

5.2.4 Evaluation results

We present the results of a large set of experiments with the aim of demonstrating

that (i) the proposed distilled random forest detector achieves comparable or bet-

ter detection performance than state of the art algorithms in scenarios that are not

subject to adversarial inputs; and that (ii) it significantly improves the robustness of

machine learning models against adversarial attacks. Achieving both results is an

important outcome for cybersecurity contexts where we cannot anticipate when a

machine learning detector is being targeted by evasion attempts.

We evaluate and compare the performance of Distilled and Undistilled detectors

5.2. Countering Evasion Attacks on Random Forest Detectors 127

in scenarios where samples are not adversarially modified. Then, we assess the ef-

fectiveness of the distilled random forest model against adversarial perturbations.

Finally, we compare the result of the proposed method against two existing defen-

sive strategies that can be applied to any supervised machine learning algorithm.

Evaluation in normal scenarios We initially generate the probability labels for the

Distilled detector by training and testing its Condenser model. Then, we train both

the Distilled (through the Receiver) and Undistilled detectors on the same training

set (but with appropriate labels), and proceed to evaluate them on the same test set.

The results are shown in Table 5.7, where the columns report the chosen evaluation

metrics, and the rows denote the botnet-specific instances of the Undistilled and

Distilled detectors; the last row summarizes the results of each detector, which are

averaged among all instances. From this table, we observe that the Distilled detector

achieves the best results as it obtains higher Precision and F1-scores, and superior

detection rates. We stress that the performance of the Distilled is similar to that ob-

tained by state of the art random forest-based botnet detectors [174], [196]. Further-

more, we highlight that our proposal also outperforms the initial defensive distilla-

tion technique applied to neural networks in non-adversarial settings, because the

distilled neural network model presents a reduced accuracy of ~1.5% when com-

pared to a not-distilled neural network model [161]; this performance drop also

affects distilled neural networks for malware classification scenarios [218], which

exhibit an increased rate of false alarms. It is important to note that the unusual

perfect Precision scores achieved by both models for the Murlo botnet and by the

Undistilled model for the Menti botnet can be motivated as follows: the large major-

ity of the network flows generated by these botnet variants are significantly different

from benign traffic, hence the models are able to recognize their malicious samples

without generating false positives; however, some instances are still able to evade

detection as indicated by the imperfect Recall value. These experiments show that,

in the absence of adversarial attacks, our version of the distillation technique applied

to random forests yields a detector with similar or superior performance than those

that do not adopt a distillation technique. These results are crucial because they re-

fer to a large set of scenarios and demonstrate that random forest-based detectors

integrated with distillation are effective even in the absence of adversarial inputs.

128 Chapter 5. Countermeasures against Adversarial Attacks

TABLE 5.7: Baseline vs. Distilled model performance.

Botnet Detector F1-Score Precision Recall

Neris
Undistilled 0.9577 0.9615 0.9540

Distilled 0.9651 0.9671 0.9632

Virut
Undistilled 0.9682 0.9876 0.9496

Distilled 0.9753 0.9876 0.9633

Murlo
Undistilled 0.9932 1 0.9866

Distilled 0.9968 1 0.9937

Rbot
Undistilled 0.9994 0.9999 0.9999

Distilled 0.9995 0.9999 0.9990

Menti
Undistilled 0.9984 1 0.9969

Distilled 0.9979 0.9997 0.9969

NSIS.ay
Undistilled 0.9213 0.9925 0.8596

Distilled 0.9273 0.9784 0.8812

Average
Undistilled 0.9729 0.9774 0.9684

Distilled 0.9777 0.9804 0.9751

Since supervised machine learning methods for cyber defense need periodic re-

trainings (as explained in Section 2.2, it is important to evaluate the computational

cost of the proposed solution. Thus, we measure and report the training times of

the considered detectors in Table 5.8, which compares the time (in seconds) required

for training the baseline Undistilled detector (composed of a single random forest

classifier) with those required by our method; as the proposed Distilled detector in-

cludes both the Condenser and the Receiver, we report the combined training time

of these components. Computations are performed on a machine with the following

hardware: CPU Intel Core i7-7700HQ, RAM 32GB, and SSD 512GB. We observe that

training the Distilled detector requires more effort, because it is composed of two

models and, in addition, training a random forest regressor (that is, the Receiver)

is more demanding than training a classifier. However, we stress that these opera-

tions needs to be executed only periodically. Moreover, by performing the training

computations on machines with dedicated hardware it is possible to decrease the

absolute training time difference to negligible amounts.

Evaluation in adversarial settings It must be determined whether and to which

extent the proposed method is able to address issues related to adversarial attacks.

To this purpose, we test the Distilled and the Undistilled detectors against the gener-

ated adversarial datasets, and compare their performance. The detection rate is the

metric of interest for these analyses. We anticipate that this evaluation highlights a

twofold improvement of our proposal: a significant increase in the detection rate; a

more stable behavior against different adversarial samples of the same botnet family.

5.2. Countering Evasion Attacks on Random Forest Detectors 129

TABLE 5.8: Training time of each instance of the detectors.

Botnet Detector Time (s)

Neris
Undistilled 75.8

Distilled 212.5

Virut
Undistilled 16.7

Distilled 42.7

Murlo
Undistilled 19.8

Distilled 53.9

Rbot
Undistilled 77.1

Distilled 210.4

Menti
Undistilled 2.8

Distilled 8.5

NSIS.ay
Undistilled 1.6

Distilled 5.7

Average
Undistilled 32.3

Distilled 87.0

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Neris Virut Murlo Rbot Menti Nsis.ay

D
et

e
ct

io
n

 R
at

e

Botnet Family

Average Detection Rate (botnet family)

Undistilled

Distilled

FIGURE 5.5: Comparison of the average detection rates on each mal-
ware family.

Among the considered 810 adversarial datasets1, the Distilled detector clearly

outperforms the baseline Undistilled in 759 cases; for the remaining 51 datasets,

the results of the two detectors are close. A comprehensive overview of the effec-

tiveness of the two detectors is presented in Figure 5.5, where the black and gray

histograms report the detection rates of the Undistilled and Distilled detectors, re-

spectively. Each histogram denotes the average performance of the models applied

to each botnet family. There is no doubt that the Distilled is significantly superior to

the Undistilled detector, with improvements ranging from 50% to 250%.

We provide a more detailed comparison of the two detectors by considering the

impact on detection rates of different altered features. The results are reported in

1Given by 15(groups of altered features)× 9(increment steps)× 6(botnet families in the CTU-13)

130 Chapter 5. Countermeasures against Adversarial Attacks

Figure 5.6, where the x-axis denotes the group of altered features, and every his-

togram is generated by averaging the detection rates achieved by each instance of

the detectors for all increment steps. From this figure, we can observe that the Dis-

tilled achieves superior detection rates for all the groups. The improvements for

the groups 2a, 2b and 3a are the most significant, as they allow the Distilled to

retain a detection rate that is much higher than that of the Undistilled model. More-

over, the results for group 1a show that the Distilled detector is almost unaffected

by alterations of the flow duration. On the other hand, adversarial alterations in-

volving multiple features have a high impact on the performance of both detectors,

as these modifications cause the malicious test samples to be considerably different

than those used to train each model. Nevertheless, it is appreciable that, even in

these tough circumstances, the Distilled is able to correctly identify more than twice

the amount of malicious flows with respect to the Undistilled detector.

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1a 1b 1c 1d 2a 2b 2c 2d 2e 2f 3a 3b 3c 3d 4a

D
et

e
ct

io
n

 R
at

e

Group of altered Features

Average Detection Rate (altered features)

Undistilled
Distilled

FIGURE 5.6: Comparison of the average detection rates for each
group of altered features.

We also evaluate the detection rates of the two detectors for variable increment

steps. The results are presented in Figure 5.7, where the x-axis represents the incre-

ment steps and the histograms are generated by averaging the performance over all

groups of altered features.

We note that not only the Distilled outperforms the Undistilled model, but that

it is much more resilient against samples that greatly differ from their original ma-

licious version. Indeed, the detection rates for the VIII and IX steps are close to

50%; whereas the 15% detection rate of the Undistilled model is unacceptably low.

This figure also shows that the Distilled presents a more stable behavior against ad-

versarial samples that are obtained through different increment steps: its detection

5.2. Countering Evasion Attacks on Random Forest Detectors 131

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

I II III IV V VI VII VIII IX

D
et

e
ct

io
n

 R
at

e

Increment Step

Average Detection Rate (increment steps)

Undistilled

Distilled

FIGURE 5.7: Comparison of the average detection rates for each in-
crement step.

rates are between 46% and 61%, against the much broader 11% to 45% range of the

Undistilled model. From Figure 5.7 and Figure 5.6, we observe that greater per-

turbations correspond to the lowest detection rates; however, we remark that such

modifications may generate alerts from other defensive mechanisms (as explained in

Section 5.2.3). Furthermore, we highlight that adversarial attacks are more effective

and more difficult to detect when they are carried out through adversarial samples

that are as close as possible to original samples.

We investigate the increased stability of our proposal through the fine grained

comparisons in Figures 5.8, where the lines denote the detection rate (averaged for

all botnet families) of the two models for four fixed groups of altered features (re-

ported on top of each figure) and variable increment steps. The x-axis denotes the

increment steps, and the y-axis the detection rate. The black and the gray line refers

to the Undistilled and the Distilled model, respectively.

In order to appreciate the improved stability of the performance, we include in

Figures 5.9 the boxplots related to the results of Figures 5.8. These boxplots highlight

that the Distilled detector is not affected by sudden performance drops, thus indi-

cating that it is able to maintain its performance even against adversarial inputs that

are different from the scenarios considered in this work. The increased resilience of

the Distilled detector is motivated by the fact that its Receiver model adopts a more

robust set of feature importances when compared to the Undistilled model. In other

words, a random forest model makes a prediction by comparing the features of a

sample with the feature importances learned during its training phase: the proba-

bility labels used to train the Receiver produce a random forest model with a set

132 Chapter 5. Countermeasures against Adversarial Attacks

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

I II III IV V VI VII VIII IX

D
e

te
ct

io
n

 R
at

e

Increment StepUndistilled

Distilled

(A) Group 1a: Duration.

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

I II III IV V VI VII VIII IX

D
e

te
ct

io
n

 R
at

e

Increment StepUndistilled

Distilled

(B) Group 1c: Dst_Bytes.

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

I II III IV V VI VII VIII IX

D
e

te
ct

io
n

 R
at

e

Increment StepUndistilled

Distilled

(C) Group 2a: Duration & Src_Bytes.

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

I II III IV V VI VII VIII IX

D
e

te
ct

io
n

 R
at

e
Increment StepUndistilled

Distilled

(D) Group 3a: Duration & Src_Bytes & Dst_Bytes.

FIGURE 5.8: Comparison of the detection rates on the adversarial
datasets generated by all malware families.

of feature importances having a higher degree of flexibility than that of the Undis-

tilled classifier, which adopts hard class labels. As a consequence, an adversary can

significantly alter the detection results of the Undistilled model through tiny alter-

ations of the features, while the Distilled detector is capable of withstanding even

perturbations of high magnitude.

(A) Boxplot for Fig. 5.8a. (B) Boxplot for Fig. 5.8b. (C) Boxplot for Fig. 5.8c. (D) Boxplot for Fig. 5.8d.

FIGURE 5.9: Boxplot visualization of the results in Figures 5.8.

For example, let us consider two cases: in Figure 5.8b the adversary modifies

only one feature (Dst_Bytes); in Figure 5.8d the adversary changes three features

(Duration, Src_Bytes and Dst_Bytes). In the former case, the two detectors have com-

parable performance for the first increment steps because the manipulated feature

(Dst_Bytes) has high and similar importance for both models. In the latter instance,

5.2. Countering Evasion Attacks on Random Forest Detectors 133

when alterations concern even incoming bytes and flow duration, the detection rates

of the Undistilled model are unacceptably low (below 15%).

The improved resilience of our method is confirmed by comparing the detection

rates of the two detectors for fixed botnet families. The results and corresponding

boxplots are presented in Figure 5.10 and Figure 5.11, respectively. The name of the

considered botnet family is reported on top of each figure.

0,0

0,2

0,4

0,6

0,8

1,0

I II III IV V VI VII VIII IX

D
e

te
ct

io
n

 R
at

e

Increment Step

Murlo

Undistilled

Distilled

(A) Group 1a: Duration

0,0

0,2

0,4

0,6

0,8

1,0

I II III IV V VI VII VIII IX

D
e

te
ct

io
n

 R
at

e
Increment Step

Rbot

Undistilled

Distilled

(B) Group 2b: Duration & Dst_Bytes

0,0

0,2

0,4

0,6

0,8

1,0

I II III IV V VI VII VIII IX

D
e

te
ct

io
n

 R
at

e

Increment Step

Neris

Undistilled

Distilled

(C) Group 3a: Duration & Src_Bytes & Dst_Bytes

0,0

0,2

0,4

0,6

0,8

1,0

I II III IV V VI VII VIII IX

D
e

te
ct

io
n

 R
at

e

Increment Step

Virut

Undistilled

Distilled

(D) Group 4a: Duration & Src_Bytes & Dst_Bytes &
Tot_Pkts

FIGURE 5.10: Comparison of the detection rates on the adversarial
samples generated by specific malware families.

Overall, these figures confirm the superior detection capabilities and improved

stability of the Distilled model.

(A) Boxplot for Fig. 5.10a.(B) Boxplot for Fig. 5.10b.(C) Boxplot for Fig. 5.10c.(D) Boxplot for Fig. 5.10d.

FIGURE 5.11: Boxplot visualization of the results in Figures 5.10.

134 Chapter 5. Countermeasures against Adversarial Attacks

Comparison with existing defensive strategies We compare the effectiveness of

our proposal against two known countermeasures against evasion adversarial at-

tacks that have been proposed in the literature [39], [45], [183], and that can be ap-

plied to any supervised machine learning algorithm: adversarial retraining and feature

removal. To this purpose, we perform our experiments by following the same pro-

cedures described in Section 4.2, due to the common characteristics shared by the

considered adversarial scenarios and employed datasets. Hence, for the case of ad-

versarial retraining we generate a “hardened” Undistilled detector by re-training it

after introducing a small (10%) portion of the generated adversarial samples into

the corresponding training sets, and then measure its detection rate on the same

adversarial datasets used in our previous experiments for both the normal and ad-

versarial scenarios. The results of this evaluation are presented in Table 5.9 which

shows the (averaged) Recall obtained by the re-trained Undistilled detector, the pro-

posed Distilled detector, and the baseline Undistilled detector that we include for

completeness.

TABLE 5.9: Comparison with adversarial retraining.

Detector Type
Recall

(normal)
Recall

(adversarial)
Undistilled (retrained) 0.9695 0.4987
Undistilled (baseline) 0.9684 0.2573

Distilled 0.9751 0.5152

With regards to feature removal, we develop a different Undistilled detector by

training it on the same dataset used in our previous experiments but without con-

sidering the features that we modified to generate our adversarial samples (that is,

Tot_Pkts, Duration, Dst_Bytes, Src_Bytes), and then test it on the datasets used to de-

termine the baseline performance in non adversarial settings; this is motivated by

the fact that feature removal countermeasures, despite being resilient against adver-

sarial attacks targeting the removed features, are known to generate excessive false

alarms. The evaluation results are shown in Table 5.10, which compares the (aver-

age) Precision, Recall and F1-score of the Undistilled detector (after excluding the

features) with those obtained by the Distilled and the baseline Undistilled detector.

By observing Table 5.9, we note that our proposal exhibits a higher detection rate

in both scenarios. At the same time, concerning Table 5.10, we appreciate that the

Distilled detector achieves significantly better results. Indeed, we highlight that the

proposed distillation method is not affected by the issues that characterize similar

5.3. Countering Poisoning Attacks against Cyber Detectors 135

TABLE 5.10: Comparison with feature removal.

Detector Type F1-Score Precision Recall
Undistilled (feature removal) 0.8728 0.8497 0.8974

Undistilled (baseline) 0.9729 0.9774 0.9684
Distilled 0.9777 0.9804 0.9751

countermeasures: feature removal strategies generate unacceptable rates of false pos-

itives, whereas adversarial retraining requires to constantly update the training set

with all the possible variations of samples that can be modified by the attacker (as

explained in Section 5.2.1).

By taking into account all these analyses and evaluations, we conclude that the

proposed variation of the defensive distillation technique can be used to devise ran-

dom forest detectors that: achieve same or better detection performance than ex-

isting algorithms in scenarios that are not subject to adversarial inputs; exhibit im-

proved robustness and stability against adversarial attacks; are not affected by the

limitations of existing countermeasures.

5.3 Countering Poisoning Attacks against Cyber Detectors

We now focus our attention to adversarial attacks performed at training-time, and

propose an original methodology to counter this critical menace to cyber detec-

tors. In particular, we focus on poisoning attacks due to their relevance in this do-

main [172], [222]–[224]. Our method leverages the security-by-obscurity principle dis-

cussed in Section 5.1.2, and is based on the idea of computing the actual training

dataset only at the moment of training the machine learning model.

This approach provides three important benefits: (i) it can be adopted for a wide

array of applications including, but not limited to, cybersecurity; (ii) it can be applied

to harden any supervised machine learning algorithm; and (iii) it does not cause any

changes in the performance of the detectors in non-adversarial scenarios. Moreover,

our technique can be further improved by combining it with other existing defensive

strategies for countering poisoning attacks (such as those in [210]–[212]). All these

reasons make our novel method suitable for many real world scenarios, despite the

known limitations of security-by-obscurity approaches.

As a practical implementation, we experimentally validate its effectiveness to

strengthen flow-based botnet detectors using supervised algorithms. The results of

136 Chapter 5. Countermeasures against Adversarial Attacks

this experimental campaign show that the proposed approach can be successfully

adopted to increase the resilience against poisoning attacks of different machine

learning algorithms.

5.3.1 Proposed method

The proposed approach is based on the idea of generating the actual training set

only at training-time. To this purpose, we introduce data transformation procedures

on the training dataset. In this way, even if an adversary manages to poison the

stored dataset by injecting malicious samples that are labelled as benign, the data

transformation step ensures that the model is not trained on those exact poisoned

samples. The expected result is that these samples will have a significantly smaller

impact on the detector. The complete description of this solution is as follows.

We assume an organization that adopts a cyber detector relying on a supervised

algorithm, which is periodically retrained. The training is based on a dataset χ′ that

is stored on a dedicated database server. Let T be an invertible function with domain

K so that:

T−1(T(k)) = T−1(k′) = k, ∀k ∈ K (5.3)

The organization employs the transformation defined by T. More specifically,

each time a new piece of data κ is added to the dataset χ′ it is transformed as T(κ) =

κ′. When it is necessary to retrain the detector, the dataset χ′ is retrieved and is

inversely transformed through T−1, providing the original training dataset, χ.

Now, let us assume that an attacker obtains full access to the database server con-

taining χ′. The attacker attempts a poisoning attack by introducing some samples

κ in χ′ that are labelled as benign, and that represent malicious actions. (For ex-

ample, the underlying code or network behaviour of a piece of malware, or a spam

email). As the attacker is unaware of the data transformation, he does not try to

infer the existence of a similar function by analysing the dataset and does not apply

the data transformation T to the κ samples. When the detector is retrained, these

samples κ will undergo the transformation T−1, resulting in samples κ−1 with dif-

ferent characteristics than those of the malicious actions that the attacker wanted to

evade detection. This results in poisoning samples whose effect on the detector will

be different from that desired by the attacker. We report the entire workflow of the

proposed approach in Figure 5.12 and Figure 5.13.

5.3. Countering Poisoning Attacks against Cyber Detectors 137

FIGURE 5.12: Workflow of the proposed poisoning countermeasure:
operations performed before the (re)training.

FIGURE 5.13: Workflow of the proposed poisoning countermeasure:
operations performed at (re)training-time.

To facilitate the understanding of the proposed method, we present the follow-

ing example. Consider an organization adopting a classifier C that analyses network

flows [46] to distinguish between malicious and benign traffic; let χ̂ be the dataset

of network flows used to train the classifier, and let T̂ be a transformation that mod-

ifies a flow sample by multiplying the flow_duration by d ∈ R, and dividing the

flow_exchanged_bytes by b ∈ R; conversely, T̂−1 modifies a flow sample by dividing

its flow_duration by d and multiplying its flow_exchanged_bytes by b. With these as-

sumptions, the dataset χ̂ is stored in the organization database as χ̂′. That is, every

flow sample κ̂ ∈ χ̂ is modified into κ̂′ by having the values of its flow_duration mul-

tiplied by d, and the values of its flow_exchanged_bytes divided by b. Therefore, every

time the dataset χ̂′ is updated with a new set of flows, the flows are subject to the

transformation denoted by T̂. Consequently, whenever the classifier C undergoes a

retraining process, each flow κ̂′ ∈ χ̂′ will be inversely transformed by T̂−1 into its

original version, κ̂.

Now, if an unaware attacker attempts to poison the stored dataset χ̂′ by inserting

some adversarial samples κ̂ that are wrongly labelled, he will not perform the trans-

formation defined by T̂, that is, the adversarial flows will not have their flow_duration

and flow_exchanged_bytes modified. Hence, when the classifier, C is retrained, the ad-

versarial samples κ̂ will be transformed by T̂−1 into κ̂−1. As a practical example, if

b = 10 and d = 2, and if an attacker introduces in χ̂′ the adversarial sample κ̂ having

flow_duration = 2 and flow_exchanged_bytes = 240, then T̂−1 will modify it into κ̂−1

having flow_duration = 1 and flow_exchanged_bytes = 2400. Thus, this sample will

138 Chapter 5. Countermeasures against Adversarial Attacks

have different effects on the retraining process of classifier C than the ones intended

by the attacker.

We conclude this description by observing that our method does not involve

any changes to the actual training dataset. Hence, the application of our counter-

measure will not cause any modification to the baseline performance (that is, in

non-adversarial settings) of the considered cyber detector. This point is important,

because as it was explained in Section 5.1, one of the main limitations of existing

techniques to counter adversarial attacks is a reduced performance on samples that

have not been adversarially modified.

5.3.2 Experimental methodology

The experiments consider integrity attacks performed at training-time against net-

work intrusion detection systems based on three supervised machine learning al-

gorithms that achieve appreciable detection performance [4]: Random Forest (RF),

Feedforward Deep Neural Network (FNN), K-Nearest Neighbour (KNN).

We assume a typical context, shown in Figure 5.14, where the network of a large

enterprise is monitored by an NIDS based on a machine learning classifier that in-

spects the network flows of the border router [46]. The NIDS is periodically retrained

with updated data stored on a dedicated database server.

FIGURE 5.14: Scenario adopted for the experiments.

The attacker model considers an opponent who has compromised the targeted

network and plans to infect other hosts with novel malware. He is aware that the

network is monitored by a NIDS based on some supervised machine learning algo-

rithms, and he also knows that this detector is periodically retrained. His goal is to

5.3. Countering Poisoning Attacks against Cyber Detectors 139

ensure that the deployed new malware variants evade detection mechanisms. The

attacker has full access to the server that contains the training dataset, but he cannot

interact with the detector. To reach his goal, the attacker plans to poison the training

dataset through malicious samples (labeled as benign) representing the behaviour

of the deployed malware variant.

The experimental campaign is based on the CTU-13 dataset, described in 4.2.3,

which is used to both develop the considered botnet detectors (based on three dif-

ferent ML algorithms); and to generate the required adversarial samples by follow-

ing the procedure detailed in Section 4.2.5. Without loss of generality, we consider

a smaller subset of increment steps (see Table 4.6) for altering the duration and to-

tal_packets features, of +[1, 5] and +[1, 10] respectively. As is common in our ex-

periments, we split each detector into several instances, each devoted to one botnet

family. Each instance is trained on a training set containing 80% of the malicious

samples of the related botnet family, while the remaining 20% is used in the test-set.

We use a fixed 85 : 15 ratio of legitimate-to-illegitimate samples for each training-

and test-set. The quality of each detector is measured through the traditional per-

formance indicators Precision (see Eq. 2.1), Recall (or Detection Rate, DR – see Eq. 2.2),

F1-score (see Eq. 2.3), whereas we measure the effectiveness of the considered adver-

sarial attacks through the Attack Severity (AS – see Eq. 4.1) metric; we remark that

attacks with higher (respectively, lower) magnitude will obtain AS scores that are

closer to 1 (respectively, 0).

5.3.3 Evaluation results

We organize the experimental evaluation as follows. We initially assess the baseline

performance of the considered detectors, because it is important to show that the

considered attacks (and proposed countermeasure) are effective on detectors that

obtain appreciable performance in non-adversarial settings. Then, we measure the

effectiveness of the implemented poisoning attacks on these detectors. Finally, we

analyze the quality of our solution.

The values presented in Table 5.11 represent the average of the performance met-

rics obtained by each detector. We observe that these detectors achieve results that

are comparable to the state of the art [4], [174].

Next, we analyse the effects of the considered poisoning attacks that implement

140 Chapter 5. Countermeasures against Adversarial Attacks

TABLE 5.11: Baseline performance of the classifiers.

Algorithm Precision Recall F1-score
RF 0.9774 0.9684 0.9729

FNN 0.9616 0.9438 0.9526
KNN 0.9558 0.9375 0.9466

integrity violations. To this purpose, we inject some of the crafted adversarial sam-

ples into each training dataset. Then, we measure the effectiveness of similar poi-

soning attempts by comparing the performance of the detectors on the poisoned

samples before and after the poisoned retraining phase. The results, shown in Ta-

ble 5.12, highlight that, before the poisoning attempt, the classifiers were able to

identify the novel attack samples with detection rates comparable to other proposals

against zero-day malware [151]. The performance of the same algorithms suffered a

significant drop after a retraining phase with the poisoned data. The high AS score

gives a clear idea of the severity of the effect.

TABLE 5.12: Effects of the poisoning attack on each cyber detector.

Algorithm
Recall

(before the attack)
Recall

(after the attack)
Attack

Severity
RF 0.8834 0.2636 0.7016

FNN 0.8674 0.2777 0.6798
KNN 0.8611 0.2391 0.7223

Finally, we evaluate the proposed original methodology to counter poisoning

integrity attacks. Hence, we introduce a custom data transformation procedure on

the training set, and then replicate the poisoning attack. For the sake of clarity, we

consider a simple function T̂ that multiplies the flow duration by d ∈ R, and divides

the flow exchanged_bytes by b ∈ R. In this way, the poisoned samples introduced

by the attacker are (inversely) transformed into samples that are different from the

flows generated by the malware variant, because they have durations of +[1
d , 5

d] sec-

onds (instead of +[1, 5]) in which the hosts exchange +[1 ∗ b, 1024 ∗ b] bytes (instead

of +[1, 1024]). In Table 5.13, we compare the attack severity of the poisoning at-

tempt before and after the application of the countermeasure, from which we can

deduce that the proposed approach can significantly mitigate the effects of a poison-

ing attack. Furthermore, we stress that the proposed mechanism does not cause any

alteration to the detection performance in non-adversarial settings, as explained in

Section 5.3.1.

5.4. Countering Evasion Attacks against Phishing Detectors 141

TABLE 5.13: Evaluation of the proposed defensive method. These
results are obtained by setting d = 2 and m = 5.

Algorithm Attack Severity
Attack Severity

(after Retraining)
RF 0.7016 0.1587

FNN 0.6798 0.1741
KNN 0.7223 0.2830

5.4 Countering Evasion Attacks against Phishing Detectors

Machine learning algorithms are being increasingly used in a wide array of cyber-

security applications, including malware detection [225], intrusion detection [4], in-

sider threat detection [226], spam detection [227], as well as the detection of mali-

cious or phishing websites [228].

Phishing attacks are one of the most popular types of offences. For instance, in

its 2019 “State of the Phish” report, ProofPoint2 states that over 1.5 million phishing

URLs are created every month and that 76% of businesses reported being a victim of a

phishing attempt in 2017. Simply put, phishing represents one of the easiest ways for

malicious hackers to penetrate an enterprise. In order to address this problem, there

has been considerable work on the detection of phishing websites [43], [228]–[237].

In addition to blacklists maintained by corporations such as Google, there are also

publicly available resources from sites such as PhishTank3. However, these blacklists

end up becoming out of date frequently as malicious hackers move their phishing

URLs from site to site in order to evade detection. Rule-based systems were there-

fore developed by several researchers. For instance, [238] develops a set of 8 rules

to capture phishing webpages, as well as approaches that analyze the content of a

URL [239]. Other researchers examined the use of a discriminative set of features as-

sociated with phishing URLs and then checked to see whether a given URL was sim-

ilar to a known phishing URL based on associated feature vectors [240]. [241], [242]

pioneered the idea of using visual similarity between a legitimate webpage (e.g. a

bank website) and another website in order to check if the latter might be related to

phishing. Over the past decade or so, the use of machine learning for phishing de-

tection has now become commonplace. Early efforts in this direction include [243]–

[249]. Despite even more recent research efforts proposing increasingly sophisti-

cated machine learning solutions to counter this threat [43], [228]–[236], there is no

2https://www.proofpoint.com/us/resources/threat-reports/state-of-phish
3https://www.phishtank.org/

https://www.proofpoint.com/us/resources/threat-reports/state-of-phish
https://www.phishtank.org/

142 Chapter 5. Countermeasures against Adversarial Attacks

doubt that phishing websites still represent a dangerous menace [11].

One reason for this is that machine learning classifiers are trained on datasets

from which they learn a model that separates benign samples from malicious ones.

However, adversaries (i.e. the malicious hackers) are continuously adapting to phish-

ing detectors (PDs for short) and often times, thwarting the defensive mechanism is

very simple, allowing their phishing URLs to evade existing PDs with relative ease.

Most work on adversarial machine learning in cybersecurity contexts deal with two

extremes: white box attacks, in which the adversary has full knowledge of the de-

fenses used (e.g. classifier used, list of features used); or black box attacks, in which

the adversary has no knowledge. However, real world attackers are unlikely to rep-

resent one of these extremes: their knowledge is somewhere in the “gray area” be-

tween full knowledge (white box) and no knowledge (black box) of the defenses.

We use the term gray box to refer to attacks where the attacker’s knowledge can lie

between these two extremes.

Our goal in this section is to propose a more robust phishing website detector

that is capable of withstanding a large class of gray box attacks. Our notion of gray

box is powerful enough to capture both white box and black box attacks as a special

case. In particular, we make the following contributions.

• We define the notion of an operation chain or OC for short. OCs transform

the training data into a new feature space through the iterative application of

certain simple operators. Even if the adversary knew the original feature set,

it is unlikely that he guesses the new features or feature space. We propose the

Phishing Operation Chain (or POC) algorithm.

• Gray Box Attack Scenarios. We consider and devise the following 4 attack types:

– GBA-1 attacks are ones where the attacker knows that the PD uses infor-

mation about features in the source HTML of a phishing URL webpage.

– GBA-2 attacks are ones where the attacker knows that the PD uses features

related to the actual URL string itself.

– GBA-3 attacks are hybrids of the previous two attacks.

– GBA-4 attacks are ones where the attacker has knowledge of some per-

centage ∆ of the features used by the defender. When ∆ = 100%, we have

a white box attack, while when ∆ = 0%, we have a black box attack.

5.4. Countering Evasion Attacks against Phishing Detectors 143

• We show that phishing detectors based on 13 recent works [43], [166], [228],

[230]–[233], [235], [236], [250]–[253] during the 2014 to 2019 time period are

susceptible to these attacks. Specifically, we formally define the Impact of an

attack on a phishing detector and show that all 13 well known classifiers (both

shallow- and deep-learning based) experience a significant impact under these

three kinds of attacks. The impact of these gray box attacks is shown on 3

well-known datasets (DeltaPhish [254], Mendeley [255] and UCI [256]) as well

as a new (fourth) DSAIL dataset that we produced during this work. This is

important, because most past work only considers one type of attack, against

one or few classifiers, and adopts only one dataset.

• We show that POC is significantly more robust to these attacks than the 13 ex-

isting PDs that we compare against on the same 4 datasets mentioned above.

It is important to note that these past works use a wide range of classifica-

tion techniques and features — so POC is robust when used on top of many

different classification algorithms and feature sets. We verify this claim by

computing the statistical significance through both a Student’s t-test and the

Mann-Whitney U-test, obtaining p-values of less than 0.00001 (which denotes

a 99.999% chance that POC outperforms past work).

In summary, we develop an original countermeasure to evasion attacks through

the POC algorithm. Then, we propose and evaluate 4 gray box attacks on existing

phishing detectors. We formally define the Impact of an attack on a dataset and classi-

fier, and show that these attacks are highly effective against existing PDs. Finally, we

show that POC is much more robust to the considered attacks than past classifiers.

Our claims are based on experiments involving 13 classifiers on 4 datasets, including

new classifiers such as Google’s Deep & Wide that have not been used previously for

phishing detectors to the best of our knowledge. For these reasons, we are confident

that this work represents a valid and effective method to counter the effectiveness of

adversarial evasion attacks against machine learning-based phishing detectors.

5.4.1 Related work

We divide related work into 3 parts: (i) work on detection of phishing websites; (ii)

general work on vulnerability of ML algorithms to adversarial perturbations and

144 Chapter 5. Countermeasures against Adversarial Attacks

existing countermeasures; (iii) related work on adversarial attacks against phishing

detectors (PDs for short).

Detection of Phishing Websites Though rule based methods (e.g. [229]) formed

the initial corpus of work on phishing URL detection, machine learning (ML) ap-

proaches have been common of late. Some proposals [230], [232] identify phish-

ing domains by analysing hundreds of features extracted from the corresponding

URLs. Other studies [43], [232], [233], [250], [253] devise classifiers that use a reduced

number of URL-based features. Some papers combine URL- with HTML-based fea-

tures to improve performance [228], [231], [234], [236], [251]. The authors of [252]

and [235] also consider information provided by external reputation sources (such

as DNS records). More recently, [166] leverage image processing with HTML inspec-

tion to detect phishing content in compromised websites. The research in [237] de-

velop methods to predict how Twitter is used to lure victims to phishing URL sites.

Despite all these efforts, phishing websites still represent a widespread menace [11].

Adversarial Machine Learning We have already explained how small perturba-

tions to the input can lead to huge errors by ML-based classifiers. These findings

led to the development of recent important work on adversarial ML also for cy-

bersecurity [180], [257]–[260]. However, these research efforts make very strong as-

sumptions about the adversary’s knowledge on the defensive system. White box

models assume the attacker has complete knowledge of the defense including the

algorithm used and all the features used [172], [218], [261], [262]. Conversely, other

researchers assume a black box model [263]–[267] in which the adversary knows ab-

solutely nothing about the defenses used by the target. Both of these are extreme

cases — in the real-world, defenders might use custom classifiers (e.g. ensembles)

with novel features and feature selection and late fusion [268] or custom combina-

tions of supervised and unsupervised learning [32] which would be almost impos-

sible for an adversary to guess correctly. Some recent work considers more realistic

scenarios [45], [150], [185], but assume the classifier used by the PD is known which

is problematic [39], [269]. Moreover, [161], [218] propose methods to harden de-

tectors based on Neural Networks, while [206] proposes an approach to improve

the robustness of tree-based mechanisms [200], [270], [271] focus on Support Vector

Machine-based techniques.

5.4. Countering Evasion Attacks against Phishing Detectors 145

Our POC algorithm improves upon past work in the following ways: (i) we are

the first to propose mapping feature vectors into a new feature space for purposes

of increasing robustness to adversarial attacks against phishing detectors4; (ii) POC

is experimentally shown to be robust against attacks on 13 different classifiers as

opposed to just one; (iii) POC is robust to a family of gray box attacks; and (iv) we

test and validate the performance of our algorithms on 4 different datasets — not

just 1 as most past research.

Adversarial Attacks Against Phishing Detectors Most work on adversarial ML in

Cybersecurity has focused on malware detection [225], spam detection [158], [227],

[270], [271] and network intrusions [4], [185]. An important recent work by [167]

reverse engineers and subverts the phishing detector used by the Google Chrome

web browser. Another recent important paper [166] devises a phishing detector by

combining the analysis of the webpage HTML and its image data in a white box set-

ting where the attacker has complete control of the entire URL domain. Both these

works, though very important, make strong assumptions. First, [167] attacks just

one phishing detector (albeit a very important one). Second, [166] makes a white

box assumption and only considers one classifier (a linear SVM). In contrast, our

POC method can harden multiple base classifiers used by a defender and can pro-

tect against multiple types of attack models, not just white box attacks. Furthermore,

POC is robust to attacks against 13 different classifiers as opposed to just one classi-

fier as was considered in most previous works. Finally, as mentioned earlier, POC’s

performance has been tested on 4 datasets, not just one, with different features.

5.4.2 Proposed method

We introduce the concept of operation chains or OCs and the POC algorithm. The

basic idea behind POC is to randomly select a given number of features from the total

feature-set. This makes it hard for the attacker to determine exactly what features

are used in the defense. The second idea is to use OCs which consist of operators

that transform the randomly selected features into a new set of features. We assume

the features are numeric (real valued) and our framework assumes (without loss of

generality) that categorical feature values will be replaced by values from a discrete

domain.
4Note that mapping feature spaces into new feature spaces is not new in other domains — for

example, kernel tricks used in Support Vector Machines — use a similar trick.

146 Chapter 5. Countermeasures against Adversarial Attacks

A unary (resp. binary) feature mapping operator α (resp. β) is a mapping from

R (resp. R × R) to R. We assume the existence of a set Fmop of unary and bi-

nary feature mapping operators. We use Fmop = {log,sin,cos,tan, expi,+,−, ∗, /}

as our feature mapping operators in our implementation, where {log, sin, cos, tan}

are unary operators, expi is not one but a family of numeric unary operators which

take an input value x and return ix for i ∈ {−3,−2, . . . , 2, 3}. The arithmetic op-

erators +,−, ∗, / are binary feature mapping operators5. Note that our definitions

below apply to virtually any choice of unary and binary operators in Fmop — we

are not limited in any way to the specific operators chosen in our implementation

— new ones and the definition of operation chains below can be seamlessly incor-

porated into our framework. Given a set F of (original) features, we can recursively

define operation chains based on a (randomly chosen) subset F′ ⊆ F as follows:

1. Every feature f ∈ F′ is an operator chain of size 0.

2. For each unary operator α ∈ Fmop and for each operator chain oc of size s,

α(oc) is an operator chain of size s + 1.

3. For each binary operator β ∈ Fmop and for each pair of operator chains oc1, oc2

of sizes s1, s2 respectively, β(oc1, oc2) is an operator chain of size s1 + s2 + 1.

Suppose F is a list of features and suppose F′ consists of any two of these feature,

i.e. let F′ = { f1, f2}. Then examples of operation chains based on F′ include:

1. f1 and f2 are both operation chains of size 0.

2. sin(f1), cos(f2) are OCs that create new features by taking the sine and cosine,

respectively of values of features f1, f2 respectively. They each have size 1.

3. sin(f1) + cos(f2) is an OC that generates a new feature that creates feature

values by summing up the sine of the value of feature f1 and the cosine of the

value of feature f2. The size of this OC is 3.

4. expi(sin(f1) + cos(f2)) creates a new feature whose value is isin(f1)+cos(f2).

The size of this OC is 4.

Thus, in our POC framework, we develop operation chains as follows.

5The theory allows i to range over any set of integers.

5.4. Countering Evasion Attacks against Phishing Detectors 147

1. (Random Selection) First, we randomly choose a subset F′ of F. These are the

features that we will use – directly or indirectly – in our mapped feature space.

2. (MaxSize Selection) We choose MaxSize which is an integer greater than 0.

3. (Operation Chain Transformations) We replace the features in F with the set of

all new features generated by operation chains of size MaxSize or less that are

based on F′.

4. (Random Selection) We select a random subset of a given cardinality from the

set of all operation chains thus generated.

The POC (Protective Operation Chain) algorithm that formally captures the in-

formal process described above is shown in Algorithm 3.

5.4.3 Experimental methodology

We now described the adopted dataset and the considered evasion attacks that will

be launched against our phishing detectors.

The DSAIL dataset The POC method proposed in this work is tested and validated

on 4 datasets. Three are well-known datasets in the literature: Mendeley [255],

DeltaPhish [254], UCI [256]. In addition, we create a new dataset called DSAIL 6.

With over 23 000 entries, DSAIL is one of the biggest labeled datasets for phishing de-

tection. The only bigger labeled dataset we are aware of for PD is the Ebbu dataset7

— but as shown in Table 5.14, this dataset does not contain many features included

in our DSAIL dataset.

Table 5.15 describes the features used in the DSAIL dataset, which includes HTML,

URL and Reputation-based features which have been also employed by prior work [43],

[231]–[233], [250].

Proposed gray box attacks on phishing detectors We now describe four families

of gray box attacks on phishing detectors.

1. GBA-1: The attacker assumes that the PD uses features related to the HTML-

code [228], but he may not know exactly which features. Hence, he tries to

6DSAIL: short for “Dartmouth Security (and) AI Lab”, where the dataset was created
7https://github.com/ebubekirbbr/pdd

https://github.com/ebubekirbbr/pdd

148 Chapter 5. Countermeasures against Adversarial Attacks

Algorithm 3: Algorithm for generating a feature mapping.
Input: List of features F′ included in a given dataset d; φ, number of new features that will

compose the new set of mapped_ f eatures; MaxSize maximum size of an operation
chain; Fmopα set of unary feature mapping operators; Fmopβ set of binary feature
mapping operators

Output: The mapped_ f eatures that generate the new feature space Φ.
1 mapped_ f eatures← emptyList();
2 for h← 0 to φ by 1 do
3 new_ f eature← computeNewFeature(F′, MaxSize);
4 Insert new_ f eature in mapped_ f eatures;
5 return mapped_ f eatures
6 // Procedure that generates a mapped_ f eature
7 Function computeNewFeature(F′, MaxSize)
8 f eature_block← chooseFeatures(F′, MaxSize);
9 L← len(f eature_block);

10 for h← 0 to L by 1 do
11 f ′ ← unaryOperation(f eature_block[h]);
12 Replace f eature_block[h] with f ′;
13 for h← 1 to L by 1 do
14 f ′ ← binaryOperation(f eature_block[0], f eature_block[h]);
15 Replace f eature_block[0] with f ′;
16 new_ f eature← f eature_block[0];
17 return new_ f eature
18 // Procedure that determines how many and which features from F′ are considered to

generate a mapped_ f eature
19 Function chooseFeatures(F′, MaxSize)
20 f eature_block←emptyList();
21 for h← 0 to randomChoice(MaxSize) by 1 do
22 Insert randomChoice(F′) in f eature_block;
23 return f eature_block
24 // Procedure that chooses and applies an unary operation among Fmopα on a given

feature f that composes a given new_feature.
25 Function unaryOperation(f)
26 f ′ ← Apply randomChoice(Fmopα) to f ;
27 return f ′

28 // Procedure that chooses and applies a binary operation among Fmopβ on a given pair
of features (f1, f2) that composes a given new_feature.

29 Function binaryOperation(f1, f2)
30 f ′ ← Apply randomChoice(Fmopβ) to f1 and f2;
31 return f ′

TABLE 5.14: Comparison of existing static datasets for PDs.

Name Released
Phishing
samples

Legit
samples

URL
data

HTML
data

Reputation
data

Screenshot
data

Features

PhishLoad 2012 3 510 8 190 3 3 7 7 7

UCI 2015 6 050 3 950 7 7 7 7 3

DeltaPhish 2017 1 200 4 800 3 3 7 3 7

Ebbu 2017 37 175 36 400 3 7 7 7 7

Mendeley 2018 5 000 5 000 7 7 7 7 3

DSAIL 2019 7 861 15 773 3 3 3 3 3

5.4. Countering Evasion Attacks against Phishing Detectors 149

TABLE 5.15: List of features included the DSAIL dataset.

URL-features REP-features HTML-features
IP address SSL final state SFH

’@’ (at) symbol URL/DNS mismatch Anchors
’-’ (dash) symbol DNS Record Favicon

Dots number Domain Age iFrame
Fake HTTPS PageRank MailForm
URL Length PortStatus Pop-Up

Redirect Redirections RightClick
Shortener Objects
dataURI StatusBar

Meta-Scripts
CSS

alter some aspects of the underlying HTML code. For example, the attacker

might assume that some PDs consider the ratio of internal-to-external links.

Hence, in this attack, the adversary adds some fictitious “internal” links to his

webpage that might thwart classifiers that use this feature. We inserted such

internal links to a host of resources such as images, favicons, CSS snippets,

videos, audio, as well as the usual “textual” links. Figure 5.15 shows how

such an attack might be accomplished. The original HTML code is shown on

the left. The modified HTML source is shown on the right with one inserted

“fake” internal link shown inside the red box.

2. GBA-2: Here, the attacker guesses that the PD uses information about the

length of the URL to predict whether it belongs to a phishing website or not [232],

[233], [251]. Hence it is reasonable to assume that an attacker may try to cir-

cumvent such mechanisms. Often times, phishing URLs are longer than be-

nign URLs in order to confuse and trick users into clicking on the link. For this

reason, existing PDs are usually trained on malicious samples characterized by

longer URLs. Thus, an attacker may try to evade detection by adopting shorter

URLs: a possible way to accomplish this is by using a URL shortening service

such as bit.ly or tinyurl.com.

3. GBA-3: This attack is a combination of one or more instances of the GBA-1 and

GBA-2 attacks.

4. GBA-4: The most important attack we propose is the GBA-4 attack. In this at-

tack, the adversary has variable knowledge of the features used by the defender.

Suppose Fd is the set of features used by the defender and Fa is the set of fea-

tures that the attacker thinks the defender is using. In the GBA-4 attack, we

bit.ly
tinyurl.com

150 Chapter 5. Countermeasures against Adversarial Attacks

vary ∆, the percentage of features actually used by the defender that the at-

tacker guessed correctly, i.e.

∆ =
|Fd ∩ Fa|
|Fd|

.

In the GBA-4 attack, we vary ∆ and randomly select features for F. Note that

when ∆ = 0, we have a black box attack, and when ∆ = 1, we have a white

box attack.

In this work, we consider attacks on the following 13 well-known classifiers. 11

are based on shallow algorithms: Random Forest (RF), K-Nearest Neighbor (KNN),

Decision Tree (DT), Logistic Regression (LR), Naive Bayes (NB), Support Vector Ma-

chines (SVM), Extra Trees (ET), Stochastic Gradient Descent (SGD), AdaBoost (AB),

Gradient Boost (GB), Bagging (Bag); while the remaining 2 are based on deep learn-

ing techniques: Feedforward Deep Neural Network (FNN), and Google’s recent

“Deep and Wide” (DnW) method [272].

Thus, we note that our gray box attacks assume that the PD is using any one of

these 13 classifiers.

We define the Impact of an attack Attd
i of type i on dataset d and classifier Cl f j on

a performance metric µ as:

Impact(Attd
i , Cl f j, µ) =

µ(Cl f j|¬Attd
i)− µ(Cl f j|Attd

i)

µ(Cl f j|¬Attd
i)

where µ(Cl f j|Cond) denotes the value of the performance metric µ of classifier Cl f j

when condition Cond is true; in the remainder, we will typically consider two con-

ditions, namely if an attack is present or absent. In the above formulation, µ can be

any measure of classifier performance (e.g. AUC, F1-score, Accuracy, FPR, etc).

For instance, suppose the AUC of a given classifier (say Random Forest) is 80%

when no attack is performed, and 60% when an attack is launched on it. In this case,

Impact(Attd
i , RF, AUC) = 0.8−0.6

0.8 = 0.25, i.e. there is a 25% reduction in performance

as measured using AUC.

Even though GBA-1 and GBA-2 are relatively simple attacks, there is consider-

able evidence that defenders use the HTML content in phishing websites and the

structure of the URLs of phishing websites to build PDs [166], [252]. It is therefore

5.4. Countering Evasion Attacks against Phishing Detectors 151

FIGURE 5.15: An example of the GBA-1 Attack.

152 Chapter 5. Countermeasures against Adversarial Attacks

reasonable to assume that attackers will try to use attacks GBA-1 and GBA-2. Nev-

ertheless, we will show that all the gray box attacks have a significant impact on

classification algorithms used in the literature [43], [166], [231]–[233], [251]–[253].

5.4.4 Evaluation results

We implemented algorithms to extract all the features shown in Table 5.15, as well

as all the gray box attacks and the POC algorithm by leveraging the classification al-

gorithms in Scikit-Learn [203]. We use the implementation to: (i) quantify the Impact

(as defined earlier in Section 5.4.3) of the GBA-1-GBA-4 attacks on the performance

of existing phishing detectors, and (ii) to assess the efficacy of the POC algorithm in

mitigating these attacks. We address each of these below.

Efficacy of GBA-1–GBA-3 on existing PDs Past works on phishing website de-

tection tend to use shallow classifiers tested mostly on the UCI dataset or with

custom-made datasets (whose malicious samples are collected from PhishTank or

OpenPhish, and benign samples from Amazon or Google) – thus, the features these

past works use are determined by the features provided by the adopted dataset. Ta-

ble 5.16 shows what classifiers and datasets (and hence feature sets) different past

works use. As a consequence, when we compare the Impact of attacks GBA-1–GBA-4

and the efficacy of POC, we show the results for 13 different classifiers on the 3 pub-

licly available datasets considered in this evaluation (as well as on the DSAIL dataset)

— these results include those of past work as well as some combinations that have

not been tried before. For instance, Deep & Wide is a relatively new deep learning

classifier that we have not previously seen used for phishing URL prediction and so

all combinations involving this classifier are novel.

Tables 5.17 show the Impact of the GBA-1–GBA-3 attack on each of the 4 datasets

and 13 classifiers (used in existing phishing detectors). We see, for instance, that

the Impact of GBA-1 on the DSAIL dataset using RF leads to a 12.4% drop, but the

drop is 96.6% on the DeltaPhish dataset. On average (last rows of subtables in Ta-

bles 5.17), the GBA-1–GBA-3 attacks lead to significant drops on all datasets (varying

from 11.7% to 90.2%) and irrespective of the classifier used. All results are statisti-

cally significant via a Mann-Whitney U-test with p < 0.00001.

5.4. Countering Evasion Attacks against Phishing Detectors 153

TABLE 5.16: Classifiers and Dataset considered by existing PDs.

Reference Classifier Dataset
[250] FNN Custom
[230] RF, NB, FNN, LR, SVM Custom
[43] Association Rules Custom

[273] RF, SVM, NB, FNN, LR Custom
[232] RF, NB, LR Custom
[233] Association Rules Custom
[231] RF, SVM, AB UCI
[228] RF, KNN, SVM, FNN, NB UCI
[236] FNN, SVM, KNN, NB, RF UCI
[166] SVM DeltaPhish
[251] LR, SVM UCI
[252] RF Custom
[235] RF, KNN, AB Custom
[253] RF Ebbu

TABLE 5.17: Impact of GBA-1 to GBA-3 on every classifier for each
dataset.

Classifier DSAIL DeltaPhish Mendeley UCI

RF 0.124 0.966 0.305 0.750
SVM 0.107 0.784 0.397 0.730
KNN 0.066 0.436 0.017 0.189
SGD 0.121 0.422 0.341 0.730
DT 0.126 0.942 0.813 0.755
LR 0.003 0.080 0.484 0.746
NB 0.267 0.911 0.096 0.506

FNN 0.137 0.696 0.293 0.712
AB 0.114 0.994 0.252 0.748
ET 0.190 0.965 0.619 0.696
GB 0.132 0.984 0.373 0.616

DnW 0.007 0.610 0.249 0.269
Bag 0.124 0.980 0.675 0.723

average 0.117 0.751 0.378 0.628

(A) Impact of GBA-1.

Classifier DSAIL DeltaPhish Mendeley UCI

RF 0.290 0.099 0.161 0.112
SVM 0.437 0.103 0.070 0.200
KNN 0.567 0.081 0.970 0.361
SGD 0.672 0.573 0.954 0.157
DT 0.097 0.078 0.121 0.159
LR 0.022 0.270 0.280 0.200
NB 0.364 1.000 −0.056 0.502

FNN 0.048 0.134 0.123 0.272
AB 0.075 0.126 0.128 0.104
ET 0.189 0.139 0.081 0.090
GB 0.172 0.062 0.080 0.455

DnW 0.102 0.004 0.301 0.739
Bag 0.145 0.119 0.732 0.162

average 0.244 0.214 0.303 0.270

(B) Impact of GBA-2.

Classifier DSAIL DeltaPhish Mendeley UCI

RF 0.311 1.000 0.669 1.000
SVM 0.540 0.972 0.611 1.000
KNN 0.654 0.709 0.972 0.673
SGD 0.697 0.926 0.998 1.000
DT 0.287 0.942 0.823 1.000
LR 0.015 0.603 0.831 1.000
NB 0.460 1.000 0.062 1.000

FNN 0.171 0.930 0.452 0.998
AB 0.132 1.000 0.481 1.000
ET 0.198 1.000 0.628 1.000
GB 0.185 1.000 0.510 1.000

DnW 0.106 0.652 0.469 0.999
Bag 0.285 1.000 0.951 0.940

average 0.310 0.902 0.650 0.893

(C) Impact of GBA-3.

Efficacy of GBA-4 on existing PDs We recall that the GBA-4 attack proceeds under

the assumption that the attacker knows ∆% of the features used by the phishing

detector. We vary ∆ from 10 − 70% in steps of 10%. Tables 5.18 show the Impact

of this attack on existing phishing detectors on all considered datasets. Stastistical

significance of all results is computed through Mann-Whitney U-test obtaining p <

0.00001. Unsurprisingly, as ∆ increases, the attacks have a greater impact on average

(the last line in the subtables of Tables 5.18 shows steady increases from left to right).

Moreover, the attacks have a significant impact — for instance, if the attacker knows

30% of the features used by the defender, the Impact is 15.7% to 43.1% which is very

substantial.

No Attack Case: Performance of Baselines vs. POC Table 5.19 shows the result of

using 13 classifiers on the four datasets as done by past work, while Table 5.20 shows

the result of using the POC approach using all the features in the dataset. All results

are proven to be statistically significant via a Mann-Whitney U-test with p < 0.00001.

Verifying the efficacy of POC in the no attack case is crucial because the random

selection of features can lead to a drop in performance (e.g. if important features

154 Chapter 5. Countermeasures against Adversarial Attacks

TABLE 5.18: Impact of the GBA-4 attacks on the baseline versions of
each classifier for every dataset.

DSAIL Features Modified
Classifier 10% 20% 30% 40% 50% 60% 70%

RF 0.001 0.044 0.084 0.145 0.173 0.178 0.137
SVM 0.072 0.243 0.481 0.496 0.577 0.681 0.686
KNN 0.001 0.013 0.022 0.026 0.043 0.043 0.034
SGD 0.258 0.278 0.307 0.360 0.425 0.496 0.612
DT −0.002 −0.001 0.099 0.099 0.205 0.204 0.204
LR 0.082 0.089 0.239 0.325 0.368 0.387 0.441
NB 0.068 0.084 0.125 0.199 0.340 0.519 0.639

FNN 0.102 0.113 0.193 0.375 0.450 0.742 0.650
AB 0.005 0.005 0.101 −0.000 −0.000 −0.003 −0.002
ET −0.002 0.005 0.011 0.047 0.090 0.087 0.087
GB 0.045 0.049 0.153 0.344 0.369 0.478 0.530

DnW 0.012 0.010 0.009 0.056 0.009 0.089 0.264
Bag 0.003 0.008 0.219 0.271 0.277 0.277 0.337

average 0.049 0.072 0.157 0.211 0.255 0.321 0.356

(A) Impact for the DSAIL dataset.

DeltaPhish Features Modified
Classifier 10% 20% 30% 40% 50% 60% 70%

RF 0.038 0.198 0.356 0.389 0.678 0.599 0.567
SVM 0.049 0.221 0.037 0.046 −0.123 −0.082 −0.405
KNN 0.002 0.157 0.327 0.491 0.568 0.699 0.557
SGD −0.064 0.106 0.267 0.111 0.302 0.484 0.112
DT −0.001 0.080 0.110 0.191 0.189 0.270 0.269
LR 0.135 0.327 0.522 0.543 0.625 0.659 0.523
NB 0.037 0.105 0.254 0.474 0.631 0.640 0.693

FNN 0.081 0.211 0.317 0.389 0.528 0.626 0.763
AB −0.023 0.167 0.224 0.223 0.176 0.599 0.637
ET 0.010 0.096 0.235 0.254 0.503 0.583 0.687
GB 0.018 0.080 0.138 0.220 0.292 0.376 0.415

DnW 0.012 0.010 0.009 0.011 0.009 0.098 0.265
Bag 0.087 0.150 0.298 0.319 0.351 0.393 0.400

average 0.030 0.147 0.238 0.282 0.363 0.458 0.421

(B) Impact for the DeltaPhish dataset.

Mendeley Features Modified
Classifier 10% 20% 30% 40% 50% 60% 70%

RF 0.033 0.235 0.293 0.474 0.618 0.593 0.596
SVM 0.189 0.317 0.345 0.299 0.467 0.596 0.643
KNN 0.132 0.240 0.408 0.631 0.653 0.706 0.700
SGD 0.041 0.212 0.218 0.184 0.245 0.320 0.336
DT 0.095 0.247 0.371 0.461 0.517 0.585 0.522
LR 0.082 0.117 0.213 0.397 0.433 0.393 0.461
NB −0.072 −0.148 −0.233 −0.227 −0.202 −0.169 −0.105

FNN 0.118 0.141 0.148 0.221 0.239 0.300 0.374
AB 0.049 0.156 0.226 0.375 0.450 0.548 0.453
ET 0.196 0.345 0.564 0.659 0.758 0.672 0.783
GB 0.034 0.116 0.261 0.323 0.406 0.431 0.614

DnW 0.037 0.081 0.185 0.271 0.456 0.568 0.631
Bag 0.129 0.444 0.570 0.580 0.746 0.805 0.886

average 0.083 0.193 0.275 0.358 0.445 0.488 0.531

(C) Impact for the Mendeley dataset.

UCI Features Modified
Classifier 10% 20% 30% 40% 50% 60% 70%

RF 0.022 0.304 0.554 0.481 0.553 0.329 0.038
SVM 0.135 0.337 0.501 0.577 0.537 0.352 0.338
KNN 0.163 0.374 0.481 0.557 0.800 0.864 0.814
SGD 0.201 0.298 0.371 0.532 0.657 0.601 0.400
DT 0.300 0.390 0.403 0.389 0.435 0.480 1.000
LR 0.199 0.429 0.435 0.604 0.445 0.316 0.220
NB 0.400 0.350 0.237 0.085 −0.221 −0.422 −0.735

FNN 0.254 0.467 0.715 0.639 0.695 0.331 0.261
AB 0.200 0.310 0.401 0.389 0.454 0.312 0.334
ET 0.110 0.212 0.348 0.607 0.110 0.085 0.086
GB 0.123 0.270 0.364 0.612 0.730 0.565 0.464

DnW 0.205 0.250 0.384 0.491 0.472 0.586 0.627
Bag 0.056 0.192 0.409 0.517 0.616 0.666 0.695

average 0.182 0.322 0.431 0.498 0.483 0.390 0.350

(D) Impact for the UCI dataset.

5.4. Countering Evasion Attacks against Phishing Detectors 155

TABLE 5.19: No attack case: Baseline results for each dataset (using
all available features).

DSAIL DeltaPhish Mendeley UCI
Classifier F1-score ROCAUC TPR Acc F1-score ROCAUC TPR Acc F1-score ROCAUC TPR Acc F1-score ROCAUC TPR Acc

RF 0.973 0.980 0.972 0.982 0.959 0.963 0.926 0.989 0.978 0.974 0.989 0.975 0.973 0.973 0.975 0.973
SVM 0.983 0.985 0.974 0.989 0.450 0.650 0.319 0.876 0.927 0.928 0.943 0.928 0.943 0.934 0.958 0.936
KNN 0.996 0.997 0.997 0.998 0.971 0.983 0.971 0.991 0.974 0.975 0.984 0.975 0.984 0.981 0.997 0.983
SGD 0.985 0.987 0.977 0.990 0.458 0.655 0.333 0.874 0.931 0.933 0.943 0.932 0.939 0.930 0.951 0.932
DT 0.986 0.989 0.985 0.991 0.988 0.992 0.985 0.996 0.946 0.948 0.948 0.948 0.990 0.989 0.991 0.989
LR 0.985 0.987 0.977 0.990 0.521 0.771 0.765 0.776 0.937 0.939 0.946 0.938 0.942 0.933 0.957 0.935
NB 0.955 0.961 0.932 0.971 0.714 0.814 0.667 0.915 0.802 0.828 0.700 0.832 0.651 0.740 0.485 0.715

FNN 0.990 0.991 0.983 0.994 0.929 0.943 0.892 0.978 0.976 0.976 0.975 0.976 0.984 0.982 0.985 0.983
AB 0.986 0.987 0.977 0.991 0.872 0.909 0.833 0.961 0.949 0.951 0.952 0.951 0.947 0.939 0.962 0.941
ET 0.999 0.999 0.999 0.999 0.988 0.990 0.980 0.996 0.991 0.991 0.988 0.991 0.991 0.990 0.992 0.990
GB 0.999 0.999 0.999 0.999 0.995 0.995 0.990 0.998 0.990 0.990 0.989 0.991 0.990 0.988 0.993 0.988

DnW 0.988 0.989 0.980 0.992 0.929 0.941 0.886 0.980 0.969 0.970 0.965 0.970 0.974 0.969 0.981 0.970
Bag 0.987 0.989 0.980 0.992 0.983 0.989 0.980 0.995 0.986 0.987 0.984 0.987 0.989 0.987 0.991 0.988
best 0.999 0.999 0.999 0.999 0.995 0.995 0.990 0.998 0.991 0.991 0.989 0.991 0.991 0.990 0.997 0.990

TABLE 5.20: No attack case: Performance of POC on each dataset
(using all available features).

DSAIL DeltaPhish Mendeley UCI
Classifier F1-score ROCAUC TPR Acc F1-score ROCAUC TPR Acc F1-score ROCAUC TPR Acc F1-score ROCAUC TPR Acc

RF 0.997 0.998 0.997 0.998 0.990 0.990 0.980 0.997 0.965 0.963 0.963 0.963 0.988 0.987 0.994 0.987
SVM 0.957 0.963 0.935 0.972 0.306 0.590 0.195 0.866 0.682 0.642 0.715 0.646 0.898 0.886 0.913 0.888
KNN 0.997 0.998 0.997 0.998 0.985 0.991 0.985 0.995 0.933 0.922 0.983 0.925 0.986 0.984 0.993 0.985
SGD 0.842 0.892 0.904 0.888 0.409 0.645 0.365 0.841 0.815 0.798 0.831 0.800 0.902 0.891 0.915 0.892
DT 0.989 0.991 0.986 0.993 0.990 0.990 0.980 0.997 0.881 0.875 0.869 0.875 0.987 0.985 0.991 0.986
LR 0.942 0.948 0.904 0.963 0.382 0.667 0.635 0.689 0.781 0.789 0.723 0.785 0.895 0.882 0.909 0.884
NB 0.882 0.916 0.901 0.921 0.723 0.880 0.850 0.902 0.734 0.623 0.927 0.642 0.891 0.876 0.913 0.879

FNN 0.990 0.990 0.982 0.993 0.940 0.963 0.935 0.982 0.883 0.864 0.933 0.868 0.980 0.978 0.989 0.979
AB 0.987 0.990 0.984 0.991 0.921 0.945 0.900 0.977 0.870 0.865 0.853 0.864 0.923 0.913 0.940 0.915
ET 0.998 0.998 0.997 0.998 0.987 0.988 0.975 0.996 0.962 0.960 0.954 0.960 0.988 0.987 0.994 0.987
GB 0.998 0.998 0.998 0.998 0.985 0.987 0.975 0.995 0.961 0.958 0.962 0.958 0.991 0.990 0.996 0.990

DnW 0.987 0.989 0.983 0.992 0.901 0.918 0.841 0.970 0.901 0.897 0.913 0.912 0.968 0.963 0.985 0.964
Bag 0.988 0.990 0.983 0.992 0.990 0.990 0.980 0.997 0.956 0.954 0.956 0.954 0.987 0.986 0.993 0.986
best 0.998 0.998 0.998 0.998 0.990 0.991 0.980 0.997 0.962 0.960 0.983 0.963 0.991 0.990 0.996 0.990

are left out). We observe that the notion of operation chains used by POC does lead

to a small reduction in performance of the best classifier in each case (shown in

the last row of Tables 5.19 and 5.20), however we note that this drop is very small.

Moreover, as we will show in the next few experiments, POC performs much better

than current work when the adversary carries out any of the attacks GBA-1–GBA-4

and hence this almost-negligible reduction in performance is ably compensated by

POC’s robustness against attacks GBA-1–GBA-4.

Comparison of Baseline and POC Algorithms under Attacks GBA-1-GBA-3 We

now turn to the value of POC in protecting against the GBA-1–GBA-3 attacks. Ta-

bles 5.21 show the difference between the Impact of each these three attacks using

an off the shelf classifier and when using POC. A positive difference (shown in

bold) means that POC was more resilient to the attack than the baselines, while a

negative number means POC was less resilient; higher values are highlighted with

a darker background. We verify the statistical significance of these results with a

Mann-Whitney U-test with p < 0.00001. Tables 5.21 consist mostly of bold entries,

showing that POC is more resilient than past work for almost all combinations of

156 Chapter 5. Countermeasures against Adversarial Attacks

dataset and classifier used. Additionally, we can see from the last rows that on aver-

age POC exhibited superior performance for each of the datasets considered — the

Impact of the GBA-1–GBA-3 attacks on the baselines are 1% to 53.5% higher than for

POC(last row of the subtables in Tables 5.21).

TABLE 5.21: Difference of the Impact of GBA-1 to GBA-3 between the
Baseline and the POC variations of every classifier for each dataset.

Classifier DSAIL DeltaPhish Mendeley UCI

RF 0.102 0.061 0.284 0.075
SVM 0.115 0.791 0.372 0.080
KNN 0.044 0.157 −0.030 0.013
SGD 0.179 0.001 0.349 0.027
DT 0.130 0.110 0.807 0.030
LR 0.028 0.076 0.477 0.025
NB 0.133 0.348 0.096 −0.152

FNN 0.124 0.273 0.284 −0.073
AB 0.089 0.068 0.252 0.235
ET 0.171 0.115 0.544 0.086
GB 0.115 0.084 0.342 0.106

DnW −0.001 −0.015 0.050 0.030
Bag 0.120 0.083 0.633 0.225

average 0.103 0.166 0.344 0.055

(A) Impact difference for GBA-1.

Classifier DSAIL DeltaPhish Mendeley UCI

RF 0.082 −0.365 0.058 0.057
SVM 0.426 2.026 0.377 0.191
KNN 0.048 −0.876 0.903 0.256
SGD 0.763 −0.223 0.682 0.137
DT −0.001 −0.210 0.032 0.009
LR 0.101 0.274 0.290 0.197
NB 0.270 1.077 −0.125 0.540

FNN −0.106 0.054 0.058 0.079
AB −0.019 −0.408 0.067 0.116
ET −0.011 −0.215 −0.061 0.034
GB −0.002 −0.398 −0.023 0.223

DnW −0.03 −0.219 0.288 0.130
Bag −0.059 −0.386 0.591 0.058

average 0.112 0.010 0.241 0.156

(B) Impact difference for GBA-2.

Classifier DSAIL DeltaPhish Mendeley UCI

RF −0.005 0.108 0.348 0.242
SVM 0.590 4.080 0.415 0.845
KNN 0.040 0.538 0.905 0.420
SGD 0.809 0.511 1.038 0.806
DT 0.152 0.223 0.569 0.484
LR 0.132 0.859 0.958 0.831
NB 0.038 0.067 0.127 0.987

FNN −0.059 1.198 0.092 0.508
AB 0.025 0.046 0.248 0.550
ET −0.081 0.185 0.284 0.450
GB 0.021 0.075 0.161 0.237

DnW −0.011 −0.019 0.155 0.356
Bag −0.036 0.116 0.625 0.233

average 0.124 0.614 0.456 0.535

(C) Impact difference for GBA-3.

Comparison of Baseline and POC Algorithms under Attack GBA-4 We now turn

to the quality of POC in protecting against the GBA-4 attacks. Tables 5.22 show the

difference between the Impact obtained by these three attacks using an off the shelf

classifier and when using POC. A positive difference (denoted in bold) means that

POC is more resilient to the attack than the baselines, while a negative number means

POC is less resilient; higher values are highlighted with a darker background. We

can see that most entries in the table are in boldface, suggesting that POC is more

resilient to attack GBA-4 irrespective of the dataset and classifier used. As usual, all

values are statistically significant due to a Mann-Whitney U-test with p < 0.00001.

As can be seen from the last rows (“average”), POC exhibits superior performance

for 27 out of 28 combinations of dataset and classifier (the one exception is the UCI

dataset with ∆ = 60% where the performance of the baseline is very slightly better

than that of POC).

5.4. Countering Evasion Attacks against Phishing Detectors 157

TABLE 5.22: Differences between the Impact of the GBA-4 attack on
the baseline and on POC

.
DSAIL Features Modified

Classifier 10% 20% 30% 40% 50% 60% 70%

RF 0.003 0.004 −0.003 −0.111 −0.197 −0.315 −0.408
SVM 0.048 0.107 0.196 0.210 0.150 0.146 0.084
KNN 0.004 0.004 0.005 0.003 0.005 0.008 0.002
SGD 0.183 0.179 0.209 0.161 0.144 0.104 0.070
DT 0.000 0.001 0.006 −0.029 −0.034 −0.237 −0.133
LR 0.054 0.017 0.091 0.118 0.096 0.062 0.069
NB 0.067 0.076 0.098 0.116 0.115 0.056 0.063

FNN 0.001 0.105 0.093 0.090 0.247 0.499 0.559
AB 0.008 0.008 −0.027 −0.136 −0.166 −0.370 −0.368
ET 0.002 −0.001 −0.000 0.005 0.006 −0.075 −0.188
GB 0.013 0.013 0.011 0.107 0.053 0.171 0.189

DnW −0.015 −0.004 −0.012 0.03 −0.004 0.005 0.025
Bag 0.003 0.003 0.014 0.104 0.209 0.209 0.305

average 0.029 0.039 0.053 0.049 0.048 0.021 0.0210

(A) Impact differences for the DSAIL dataset.

DeltaPhish Features Modified
Classifier 10% 20% 30% 40% 50% 60% 70%

RF −0.032 0.072 0.161 0.127 0.260 0.157 0.054
SVM 0.311 0.283 0.425 0.532 1.053 1.964 2.508
KNN 0.239 0.169 0.197 0.369 0.391 0.696 0.614
SGD 2.188 1.064 4.088 2.633 3.741 5.915 8.476
DT −0.084 −0.141 −0.238 −0.211 −0.220 −0.231 −0.219
LR 0.041 0.070 0.191 0.086 0.173 0.127 0.243
NB −0.058 −0.067 −0.027 0.114 0.131 0.154 −0.051

FNN −0.130 −0.174 −0.188 −0.140 0.022 0.219 0.602
AB −0.023 −0.022 −0.080 −0.216 −0.405 −0.093 −0.027
ET −0.051 −0.045 −0.044 −0.094 0.011 −0.037 0.033
GB −0.014 −0.019 −0.077 −0.074 −0.039 −0.042 −0.026

DnW −0.058 −0.003 0.0310 0.037 −0.010 0.032 0.037
Bag 0.050 0.050 0.104 0.096 0.136 0.157 0.090

average 0.183 0.095 0.348 0.252 0.403 0.694 0.949

(B) Impact differences for the DeltaPhish dataset.

Mendeley Features Modified
Classifier 10% 20% 30% 40% 50% 60% 70%

RF −0.034 −0.003 0.011 0.099 0.113 −0.002 −0.052
SVM 0.282 0.258 0.142 0.464 −0.158 0.040 0.200
KNN 0.078 0.112 0.150 0.292 0.264 0.288 −0.037
SGD 0.052 0.175 0.114 0.089 0.075 0.128 0.265
DT −0.063 0.027 −0.086 −0.016 0.084 0.129 0.174
LR 0.097 0.126 0.127 0.234 0.232 0.125 −0.106
NB −0.073 −0.135 −0.196 −0.183 −0.143 −0.106 −0.037

FNN −0.008 −0.028 −0.114 −0.182 −0.003 0.116 −0.056
AB 0.023 0.049 0.114 0.067 0.066 0.319 0.162
ET 0.159 0.073 0.158 0.245 0.242 0.194 0.138
GB −0.044 0.059 0.007 0.037 0.058 −0.060 0.076

DnW 0.068 0.073 0.055 0.001 0.124 0.111 0.049
Bag −0.034 0.173 0.155 0.062 0.115 0.096 0.242

average 0.039 0.074 0.049 0.093 0.083 0.106 0.079

(C) Impact differences for the Mendeley dataset.

UCI Features Modified
Classifier 10% 20% 30% 40% 50% 60% 70%

RF −0.034 0.002 0.140 −0.199 0.102 −0.019 −0.067
SVM −0.070 0.040 0.068 −0.016 0.113 0.009 0.105
KNN 0.072 0.134 0.096 0.018 0.062 0.133 0.308
SGD −0.161 −0.176 −0.027 0.221 0.430 0.327 0.305
DT 0.060 −0.007 −0.078 −0.172 −0.063 0.100 0.795
LR 0.116 0.093 −0.021 0.015 −0.115 0.001 0.174
NB 0.122 −0.141 −0.220 −0.264 −0.586 −0.343 −0.652

FNN 0.010 −0.032 −0.039 −0.189 −0.235 −0.568 −0.097
AB −0.007 0.113 0.028 0.004 0.137 −0.035 0.158
ET 0.026 0.008 0.173 0.553 0.045 0.048 −0.136
GB −0.017 0.016 0.006 0.010 0.174 0.115 0.401

DnW 0.015 0.052 −0.014 0.048 0.016 0.043 0.020
Bag −0.017 −0.015 −0.035 0.004 −0.009 0.101 0.294

average 0.010 0.007 0.007 0.003 0.006 −0.005 0.124

(D) Impact differences for the UCI dataset.

159

Chapter 6

Conclusions

The defense of large information systems is characterized by two major problems.

On one hand, attackers are capable of performing attacks spanning over long peri-

ods of time and employing advanced techniques, allowing them to avoid detection;

on the other hand, security analysts are overwhelmed by the huge volume of logs

generated daily by network traffic. This situation increases the demand for novel

solutions that automate the manual triaging process of thousands of alarms and that

are capable of detecting even advanced threats. Modern proposals based on security

analytics are increasingly starting to leverage algorithms from the machine learning

domain, which are becoming pervasive in multiple fields. However, the application

of these techniques to cyber security must still be evaluated with the due diligence.

The first contribution of this thesis is the development of innovative detection

approaches based on security analytics. We propose novel methods that aim to pro-

vide actionable insights to the human operators through prioritized lists of few sus-

picious hosts. Moreover, we also devise the first algorithm to detect instances of piv-

oting activities through the analysis of network flows. The second contribution is de-

voted to adversarial attacks against cyber detectors. We devise original approaches

to mitigate these threats. These solutions improve the state of the art because they

not only allow to mitigate the impact of adversarial attacks at both training- and test-

time, but also do not suffer the drawbacks of existing countermeasures proposed in

the literature, such as reduced detection performance in non-adversarial scenarios.

We initially study the maturity of machine and deep learning algorithms to three

relevant detection problems: intrusion, malware and spam. We propose a taxonomy

of the most used algorithms for cybersecurity, and evaluate them. Our results evi-

dence that these techniques still present several shortcomings that must be known.

160 Chapter 6. Conclusions

To address the problem of manually triaging thousands of alarms in large orga-

nizations, we propose a novel architecture based on ranking and prioritization. We

consider an innovative perspective in which we start by analyzing individual host be-

haviors, and then post-correlate outputs to compute various indicators correspond-

ing to different attacker activities. A prioritized list of likely compromised hosts is

passed to human analysts, who can focus their attention only on the most suspicious

hosts and activities. Experimental evaluations and use-case examples in real-world

enterprise networks demonstrate the feasibility and scalability of the proposed ap-

proach for online autonomous triage of different attack scenarios.

Then, we devise a novel approach that integrates detection and threat prioritization

of pivoting attacks. We formalize pivoting as a temporal graph problem, and then

devise the first algorithm for detecting all pivoting paths occurring within the net-

work by analyzing the internal network flows. The reduction of false alarms related

to benign pivoting paths is achieved through a novel threat prioritization algorithm

that considers different threat indicators typical of malicious pivoting activities. Ex-

tensive experimental evaluations on a real and large dataset show that the proposed

approach is able to effectively detect and prioritize malicious pivoting activities even

against stealthy attackers.

Finally, we propose an innovative method for automatically identifying malicious

periodic communications with external hosts. The output is a manageable graylist

of external hosts characterized by a considerably higher likelihood of being mali-

cious compared to the entire set of contacted hosts, allowing security analysts to

focus only on a limited amount of targets. Extensive evaluation on real traffic data

of a large organization validated through external sources demonstrates the efficacy

of our proposal, which is capable of timely identification of even malicious hosts

that do not raise any NIDS alarm.

In the second part of this thesis we focus on the problems caused by adversar-

ial attacks against cyber detectors. One of the main limitations of machine learning

algorithms is their inherent susceptibility to adversarial samples, which are used

by attackers to avoid detection by introducing tiny modifications in their malicious

data. We perform an extensive analysis of adversarial perturbations against cyber

detectors; moreover, we study the effects of existing defensive strategies based on

feature removal and on adversarial retraining when applied to harden the considered

Chapter 6. Conclusions 161

detectors. Our evaluations show that attackers can easily thwart state of the art de-

tection schemes by simply applying slight modification to malicious samples. To

further aggravate this problem, the results also highlight some critical limitations

of existing countermeasures. All these findings emphasize a critical vulnerability of

machine learning applications in cybersecurity scenarios.

To address this issue, we propose innovative countermeasures against attacks per-

formed at both training- and test-time. We present an original approach that aims to

mitigate poisoning integrity attacks through transformations of the training dataset.

Furthermore, we also devise a novel countermeasure against evasion attempts against

botnet detectors by means of the defensive distillation technique. Finally, we consider

evasion attacks against phishing detectors. We propose and evaluate innovative

evasion attacks on existing ML-based classifiers for phishing detection. Then we de-

velop an original countermeasure to these attacks through an algorithm that uses a

mix of randomization and feature mapping. All these solutions are experimentally

validated in realistic settings and are shown to outperform state of the art meth-

ods: the approaches increase the robustness of the detector against the considered

adversarial attacks, while retaining its accuracy in non-adversarial settings.

We highlight that most experiments conducted in this thesis are performed on

known and publicly available datasets, and are hence reproducible by following

the methodologies explained in the experimental sections of this thesis, as we have

provided the implementation details to replicate the evaluations performed. More-

over, we have released part of the data (which has been anonymized for privacy

reasons) used for the evaluations performed on the network traffic collected in the

major department of our institution, so as to induce other researchers to experiment

on this data. Finally, we are currently planning to also release the custom dataset

that we created for evaluating the countermeasure against adversarial attacks on

phishing detectors, which we believe will greatly benefit the scientific community in

developing more advanced defensive techniques against the critical threat posed by

phishing webpages.

As a concluding remark, the research efforts discussed in this work resulted in

the publications of several papers in Conference Proceedings or International Jour-

nals: [274]–[279].

Possible extensions of this thesis includes the development of cyber detection

162 Chapter 6. Conclusions

schemes that integrate all our original security analytics solutions. This requires de-

vising methods to correlate the output of our proposals into more high-level reports

for the security analysts. Furthermore, with regards to our innovative countermea-

sures against adversarial attacks, future work involves the evaluation of combina-

tions of the proposed approaches to further increase the resilience of ML-based cyber

detectors against adversarial attacks.

163

Bibliography

[1] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and
prospects”, Science, vol. 349, no. 6245, pp. 255–260, 2015.

[2] R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim,
“Machine learning in materials informatics: Recent applications and prospects”,
NPJ Computational Materials, vol. 3, no. 1, p. 54, 2017.

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, Nature, vol. 521, no. 7553,
p. 436, 2015.

[4] A. L. Buczak and E. Guven, “A survey of data mining and machine learning
methods for cyber security intrusion detection”, IEEE Commun. Surveys Tuts.,
vol. 18, no. 2, pp. 1153–1176, 2016.

[5] E. Blanzieri and A. Bryl, “A survey of learning-based techniques of email
spam filtering”, Artif. Intell. Review, vol. 29, no. 1, pp. 63–92, 2008.

[6] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection”, in Proc. IEEE Symp. Secur. Privacy,
2010, pp. 305–316.

[7] P. Torres, C. Catania, S. Garcia, and C. G. Garino, “An analysis of recurrent
neural networks for botnet detection behavior”, in Proc. IEEE Biennal Congress
of Argentina, Jun. 2016, pp. 1–6.

[8] J. Kim, J. Kim, H. L. T. Thu, and H. Kim, “Long short term memory recur-
rent neural network classifier for intrusion detection”, in Proc. IEEE Int. Conf.
Platform Techn. Service, 2016, pp. 1–5.

[9] Darktrace Industrial Uses Machine Learning to Identify Cyber Campaigns Targeting
Critical Infrastructure, https://www.darktrace.com/en/press/2017/204/,
Aug. 2019.

[10] Pluribus one - Attack Prophecy, https://www.pluribus-one.it/products/
attack-prophecy, Dec. 2019.

[11] H. Kettani and P. Wainwright, “On the top threats to cyber systems”, in Proc.
IEEE Int. Conf. Inf. Comp. Tech., Mar. 2019, pp. 175–179.

[12] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers”,
Machine learning, vol. 29, no. 2-3, pp. 131–163, 1997.

[13] S. K. Harms and J. S. Deogun, “Sequential association rule mining with time
lags”, Journal of Intelligent Information Systems, vol. 22, no. 1, pp. 7–22, 2004.

[14] A. O. Ali, A. Saleh, and T. Ramdan, “Multilayer perceptrons networks for an
intelligent adaptive intrusion detection system”, International Journal of Com-
puter Science and Network Security, vol. 10, no. 2, p. 275, 2010.

[15] J. Esmaily, R. Moradinezhad, and J. Ghasemi, “Intrusion detection system
based on multi-layer perceptron neural networks and decision tree”, in Proc.
IEEE Conf. Inf. Knowledge Tech., 2015, pp. 1–5.

https://www.darktrace.com/en/press/2017/204/
https://www.pluribus-one.it/products/attack-prophecy
https://www.pluribus-one.it/products/attack-prophecy

164 Bibliography

[16] Z. Zhang, J. Li, C. Manikopoulos, J. Jorgenson, and J. Ucles, “Hide: A hierar-
chical network intrusion detection system using statistical preprocessing and
neural network classification”, in Proc. IEEE Workshop Inf. Assurance Secur.,
2001, pp. 85–90.

[17] A. Chawla, B. Lee, S. Fallon, and P. Jacob, “Host based intrusion detection
system with combined cnn/rnn model”, in Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases, Springer, 2018, pp. 149–
158.

[18] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, “Large-scale malware classifica-
tion using random projections and neural networks”, in Proc. IEEE Int. Conf.
Acoustics, Speech and Signal Processing, IEEE, 2013, pp. 3422–3426.

[19] G. D. Hill and X. J. Bellekens, “Deep learning based cryptographic primitive
classification”, arXiv:1709.08385, 2017.

[20] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas, “Mal-
ware classification with recurrent networks”, in Proc. IEEE Int. Conf. Acoustics,
Speech and Signal Processing, IEEE, 2015, pp. 1916–1920.

[21] M. Z. Alom, V. Bontupalli, and T. M. Taha, “Intrusion detection using deep
belief networks”, in Proc. IEEE National Conf. Aerospace Electr., IEEE, 2015,
pp. 339–344.

[22] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning approach for net-
work intrusion detection system”, in Proc. ICST EAI Int. Conf. Bio-inspired Inf.
Commun. Techn., ICST (Institute for Computer Sciences, Social-Informatics
and . . ., 2016, pp. 21–26.

[23] Y. Li, R. Ma, and R. Jiao, “A hybrid malicious code detection method based
on deep learning”, International Journal of Security and Its Applications, vol. 9,
no. 5, pp. 205–216, 2015.

[24] W. Hardy, L. Chen, S. Hou, Y. Ye, and X. Li, “Dl4md: A deep learning frame-
work for intelligent malware detection”, in Proc. Int. Conf. Data Mining, The
Steering Committee of The World Congress in Computer Science, Computer,
2016, p. 61.

[25] G. Tzortzis and A. Likas, “Deep belief networks for spam filtering”, in Proc.
IEEE Int. Conf. Tools Artif. Int., IEEE, vol. 2, 2007, pp. 306–309.

[26] G. Mi, Y. Gao, and Y. Tan, “Apply stacked auto-encoder to spam detection”,
in Proc. Springer Int. Conf. Swarm Intell., Springer, 2015, pp. 3–15.

[27] M. Stevanovic and J. M. Pedersen, “An efficient flow-based botnet detection
using supervised machine learning”, in Proc. IEEE Int. Conf. Comput., Netw.
and Commun., Feb. 2014, pp. 797–801.

[28] S. Ranjan, Machine learning based botnet detection using real-time extracted traffic
features, US Patent 8,682,812, 2014.

[29] B. Rahbarinia, R. Perdisci, A. Lanzi, and K. Li, “Peerrush: Mining for un-
wanted p2p traffic”, in Proc. Springer Int. Conf. Detection of Intrusions and Mal-
ware and Vuln. Assessment, Springer, 2013, pp. 62–82.

[30] A. Feizollah, N. B. Anuar, R. Salleh, F. Amalina, S. Shamshirband, et al., “A
study of machine learning classifiers for anomaly-based mobile botnet detec-
tion”, Malaysian Journal of Computer Science, vol. 26, no. 4, pp. 251–265, 2013.

Bibliography 165

[31] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh, W. Lee,
and D. Dagon, “From throw-away traffic to bots: Detecting the rise of dga-
based malware”, in USENIX Secur. Symp., 2012, pp. 491–506.

[32] T. Chakraborty, F. Pierazzi, and V. Subrahmanian, “Ec2: Ensemble cluster-
ing and classification for predicting android malware families”, IEEE Trans.
Depend. Sec. Comput., 2017.

[33] C. Annachhatre, T. H. Austin, and M. Stamp, “Hidden markov models for
malware classification”, Springer Journal of Computer Virology and Hacking Tech-
niques, vol. 11, no. 2, pp. 59–73, 2015.

[34] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethumadha-
van, and S. Stolfo, “On the feasibility of online malware detection with per-
formance counters”, ACM Comput. Arch. News, vol. 41, no. 3, pp. 559–570,
2013.

[35] S. Abu-Nimeh, D. Nappa, X. Wang, and S. Nair, “A comparison of machine
learning techniques for phishing detection”, in Proc. anti-phishing working groups:
2nd annual eCrime researchers summit, ACM, 2007, pp. 60–69.

[36] G. Xiang, J. Hong, C. P. Rose, and L. Cranor, “Cantina+: A feature-rich ma-
chine learning framework for detecting phishing web sites”, ACM T. Inf. Syst.
Secur., vol. 14, no. 2, p. 21, 2011.

[37] S. Roshan, Y. Miche, A. Akusok, and A. Lendasse, “Adaptive and online net-
work intrusion detection system using clustering and extreme learning ma-
chines”, Journal of the Franklin Institute, vol. 355, no. 4, pp. 1752–1779, 2018.

[38] F. S. Tsai, “Network intrusion detection using association rules”, International
Journal of Recent Trends in Engineering, vol. 2, no. 2, p. 202, 2009.

[39] J. Gardiner and S. Nagaraja, “On the security of machine learning in malware
c&c detection: A survey”, ACM Comput. Surv., vol. 49, no. 3, p. 59, 2016.

[40] F. Bisio, S. Saeli, P. Lombardo, D. Bernardi, A. Perotti, and D. Massa, “Real-
time behavioral dga detection through machine learning”, in Proc. IEEE Int.
Conf. Secur. Techn., IEEE, 2017, pp. 1–6.

[41] Y. Ye, D. Wang, T. Li, D. Ye, and Q. Jiang, “An intelligent pe-malware detec-
tion system based on association mining”, Journal in computer virology, vol. 4,
no. 4, pp. 323–334, 2008.

[42] W.-F. Hsiao and T.-M. Chang, “An incremental cluster-based approach to
spam filtering”, Elsevier Expert Syst. Appl., vol. 34, no. 3, pp. 1599–1608, 2008.

[43] N. Abdelhamid, A. Ayesh, and F. Thabtah, “Phishing detection based asso-
ciative classification data mining”, Elsevier Expert Syst. Appl., vol. 41, no. 13,
pp. 5948–5959, 2014.

[44] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis of malware
behavior using machine learning”, Journal of Computer Security, vol. 19, no. 4,
pp. 639–668, 2011.

[45] H. S. Anderson, J. Woodbridge, and B. Filar, “Deepdga: Adversarially-tuned
domain generation and detection”, in Proc. ACM Workshop Artif. Intell. Secur.,
Oct. 2016, pp. 13–21.

[46] Cisco IOS NetFlow. https://www.cisco.com/c/en/us/products/ios-nx-os-
software/ios-netflow/, Aug. 2019.

https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/

166 Bibliography

[47] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach to
network intrusion detection”, IEEE Transactions on Emerging Topics in Compu-
tational Intelligence, vol. 2, no. 1, pp. 41–50, 2018.

[48] P. A. A. Resende and A. C. Drummond, “A survey of random forest based
methods for intrusion detection systems”, ACM Comput. Surv., vol. 51, no. 3,
p. 48, 2018.

[49] R. A. R. Ashfaq, X.-Z. Wang, J. Z. Huang, H. Abbas, and Y.-L. He, “Fuzziness
based semi-supervised learning approach for intrusion detection system”, El-
sevier Inf. Sci., vol. 378, pp. 484–497, 2017.

[50] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware traffic classifica-
tion using convolutional neural network for representation learning”, in Proc.
IEEE Int. Conf. Inf. Netw., IEEE, 2017, pp. 712–717.

[51] S. Choudhury and A. Bhowal, “Comparative analysis of machine learning
algorithms along with classifiers for network intrusion detection”, in Proc.
IEEE Int. Conf. Smart Tech. and Manag. Comp., Commun., Controls, Energy and
Materials, May 2015, pp. 89–95.

[52] B. Hentschel, P. J. Haas, and Y. Tian, “Temporally-biased sampling schemes
for online model management”, arXiv preprint 1906.05677, 2019.

[53] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey”,
ACM Comput. Surv., vol. 41, no. 3, p. 15, 2009.

[54] E. S. Pilli, R. C. Joshi, and R. Niyogi, “Network forensic frameworks: Survey
and research challenges”, Elsevier Digit. Invest., vol. 7, no. 1-2, pp. 14–27, 2010.

[55] T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robertson, A. Juels, and E.
Kirda, “Beehive: Large-scale log analysis for detecting suspicious activity in
enterprise networks”, in Proc. ACM Annual Comput. Secur. Appl. Conf., ACM,
Dec. 2013, pp. 199–208.

[56] M. Andreolini, M. Colajanni, and M. Marchetti, “A collaborative framework
for intrusion detection in mobile networks”, Elsevier Inform. Sciences, vol. 321,
pp. 179–192, 2015.

[57] W. Wang and T. E. Daniels, “A graph based approach toward network foren-
sics analysis”, ACM T. Inform. Syst. Secur., vol. 12, no. 1, p. 4, 2008.

[58] S. J. Stolfo, “Worm and attack early warning: Piercing stealthy reconnais-
sance”, IEEE Secur. Privacy, vol. 2, no. 3, pp. 73–75, 2004.

[59] M. P. Collins and M. K. Reiter, “Hit-list worm detection and bot identifica-
tion in large networks using protocol graphs”, in Proc. Springer Int. Workshop
Recent Advances Intrusion Detection, Springer, Sep. 2007, pp. 276–295.

[60] M. Feily, A. Shahrestani, and S. Ramadass, “A survey of botnet and botnet
detection”, in Proc. IEEE Int. Conf. Emerging Secur. Inform., Syst., Techn., IEEE,
Jun. 2009, pp. 268–273.

[61] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel, “Disclosure:
Detecting botnet command and control servers through large-scale netflow
analysis”, in Proc. ACM Annual Conf. Comput. Secur. Appl., Dec. 2012, pp. 129–
138.

[62] G. Gu, P. A. Porras, V. Yegneswaran, M. W. Fong, and W. Lee, “Bothunter: De-
tecting malware infection through ids-driven dialog correlation.”, in USENIX
Secur. Symp., 2007.

Bibliography 167

[63] G. Gu, R. Perdisci, J. Zhang, W. Lee, et al., “Botminer: Clustering analysis of
network traffic for protocol-and structure-independent botnet detection.”, in
USENIX Secur. Symp., 2008.

[64] R. Brewer, “Advanced persistent threats: Minimising the damage”, Elsevier
Netw. Secur., vol. 2014, no. 4, pp. 5–9, 2014.

[65] M. Colajanni, D. Gozzi, and M. Marchetti, “Enhancing interoperability and
stateful analysis of cooperative network intrusion detection systems”, in Proc.
ACM/IEEE Symp. Arch. Netw. Commun. Syst., ACM, Dec. 2007, pp. 165–174.

[66] M. Marchetti, M. Colajanni, and F. Manganiello, “Framework and models
for multistep attack detection”, International Journal of Security and Its Applica-
tions, vol. 5, no. 4, pp. 73–90, Oct. 2011.

[67] S. J. Yang, A. Stotz, J. Holsopple, M. Sudit, and M. Kuhl, “High level infor-
mation fusion for tracking and projection of multistage cyber attacks”, Infor-
mation Fusion, vol. 10, no. 1, pp. 107–121, 2009.

[68] K. Ruan, J. Carthy, and T. Kechadi, “Survey on cloud forensics and critical
criteria for cloud forensic capability: A preliminary analysis”, in Proc. Conf.
Digit. Forensics, Secur., Law, Association of Digital Forensics, Security and
Law, 2011, p. 55.

[69] J. Grover, “Android forensics: Automated data collection and reporting from
a mobile device”, Elsevier Digit. Invest., vol. 10, S12–S20, 2013.

[70] P. Bhatt, E. Toshiro Yano, and P. M. Gustavsson, “Towards a framework to de-
tect multi-stage advanced persistent threats attacks”, in Proc. IEEE Int. Symp.
Servic. Oriented Syst. Eng., IEEE, 2014, pp. 390–395.

[71] E. M. Hutchins, M. J. Cloppert, and R. M. Amin, “Intelligence-driven com-
puter network defense informed by analysis of adversary campaigns and in-
trusion kill chains”, Leading Issues in Information Warfare & Security Research,
vol. 1, no. 1, p. 80, 2011.

[72] I. Jeun, Y. Lee, and D. Won, “A practical study on advanced persistent threats”,
in Springer Comput. Appl. Secur., Control, Syst. Eng. Springer, 2012, pp. 144–
152.

[73] N. Virvilis and D. Gritzalis, “The big four-what we did wrong in advanced
persistent threat detection?”, in Proc. IEEE Int. Conf. Availability, Reliability,
Secur., IEEE, 2013, pp. 248–254.

[74] M. Marchetti, F. Pierazzi, A. Guido, and M. Colajanni, “Countering advanced
persistent threats through security intelligence and big data analytics”, in
Proc. IEEE Int. Conf. Cyber Conflict, May 2016, pp. 243–261.

[75] M. Marchetti, F. Pierazzi, M. Colajanni, and A. Guido, “Analysis of high vol-
umes of network traffic for advanced persistent threat detection”, Elsevier
Comput. Netw., vol. 109, pp. 127–141, 2016.

[76] J. McPherson, K.-L. Ma, P. Krystosk, T. Bartoletti, and M. Christensen, “Portvis:
A tool for port-based detection of security events”, in Proc. ACM Workshop Vi-
sual. Data Mining Comput. Secur., ACM, Oct. 2004, pp. 73–81.

[77] V. Sekar, N. G. Duffield, O. Spatscheck, J. E. van der Merwe, and H. Zhang,
“Lads: Large-scale automated ddos detection system.”, in USENIX Annual
Tech. Conf., 2006, pp. 171–184.

168 Bibliography

[78] M. H. Bhuyan, D. Bhattacharyya, and J. Kalita, “Surveying port scans and
their detection methodologies”, The Computer Journal, vol. 54, no. 10, pp. 1565–
1581, 2011.

[79] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland,
K. Levitt, C. Wee, R. Yip, and D. Zerkle, “Grids-a graph based intrusion de-
tection system for large networks”, in Proc. Baltimore National Conf. Inf. Syst.
Secur., Baltimore, vol. 1, 1996, pp. 361–370.

[80] S. Casolari, S. Tosi, and F. L. Presti, “An adaptive model for online detection of
relevant state changes in internet-based systems”, Elsevier Perf. Eval., vol. 69,
no. 5, pp. 206–226, 2012.

[81] F. Pierazzi, S. Casolari, M. Colajanni, and M. Marchetti, “Exploratory security
analytics for anomaly detection”, Elsevier Comput. Secur., vol. 56, pp. 28–49,
2016.

[82] nProbe: An Extensible NetFlow v5/v9/IPFIX Probe for IPv4/v6. http : / / www .
ntop.org/products/netflow/nprobe/, Aug. 2015.

[83] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller, “An
overview of ip flow-based intrusion detection”, IEEE Commun. Surveys Tuts.,
vol. 12, no. 3, pp. 343–356, 2010.

[84] P. Goyal, S. Batra, and A. Singh, “A literature review of security attack in
mobile ad-hoc networks”, Citeseer Int. J. Comput. Appl., vol. 9, no. 12, pp. 11–
15, 2010.

[85] M. Newman, Networks. Oxford university press, 2018.

[86] V. Ramachandran and S. Nandi, “Detecting arp spoofing: An active tech-
nique”, in Proc. Springer Int. Conf. Inform. Syst. Secur., Springer, Dec. 2005,
pp. 239–250.

[87] U Steinhoff, A Wiesmaier, and R Araújo, “The state of the art in dns spoof-
ing”, in Proc. Intl. Conf. Applied Cryptography and Netw. Secur., 2006.

[88] Pivoting. https : / / offensive - security . com / metasploit - unleashed /
pivoting/, Aug. 2019.

[89] Cisco Annual Security Report (2014). http://www.cisco.com/web/offer/
gist_ty2_asset/Cisco_2014_ASR.pdf, Jun. 2017.

[90] C. Tankard, “Advanced persistent threats and how to monitor and deter
them”, Elsevier Netw. Secur., vol. 2011, no. 8, pp. 16–19, 2011.

[91] McAfee Technical Report on Night Dragon Operation. https://www.mcafee.com/
hk/resources/white-papers/wp-global-energy-cyberattacks-night-
dragon.pdf, Jun. 2017.

[92] Analysis of the Cyber Attack on the Ukrainian Power Grid. http://www.nerc.
com/pa/CI/ESISAC/Documents/E-ISAC_SANS_Ukraine_DUC_18Mar2016.pdf,
Jun. 2017.

[93] L. Ayala, “Active Medical Device Cyber-Attacks”, in Cybersecurity for Hospi-
tals and Healthcare Facilities, Springer, 2016, pp. 19–37.

[94] Wikileaks vault7: Archimedes documentation. https://wikileaks.org/vault7,
Jun. 2017.

[95] L. Hellemons, L. Hendriks, R. Hofstede, A. Sperotto, R. Sadre, and A. Pras,
“Sshcure: A flow-based ssh intrusion detection system”, in Proc. Springer Int.
Conf. Autonomous Infrastructure, Manag., Secur, Springer, 2012, pp. 86–97.

http://www.ntop.org/products/netflow/nprobe/
http://www.ntop.org/products/netflow/nprobe/
https://offensive-security.com/metasploit-unleashed/pivoting/
https://offensive-security.com/metasploit-unleashed/pivoting/
http://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf
http://www.cisco.com/web/offer/gist_ty2_asset/Cisco_2014_ASR.pdf
https://www.mcafee.com/hk/resources/white-papers/wp-global-energy-cyberattacks-night-dragon.pdf
https://www.mcafee.com/hk/resources/white-papers/wp-global-energy-cyberattacks-night-dragon.pdf
https://www.mcafee.com/hk/resources/white-papers/wp-global-energy-cyberattacks-night-dragon.pdf
http://www.nerc.com/pa/CI/ESISAC/Documents/E-ISAC_SANS_Ukraine_DUC_18Mar2016.pdf
http://www.nerc.com/pa/CI/ESISAC/Documents/E-ISAC_SANS_Ukraine_DUC_18Mar2016.pdf
https://wikileaks.org/vault7

Bibliography 169

[96] A. Sperotto, R. Sadre, P.-T. de Boer, and A. Pras, “Hidden markov model
modeling of ssh brute-force attacks”, in Proc. Springer Int. Workshop Distrib.
Syst. Operat. Manag., Springer, 2009, pp. 164–176.

[97] F. Valeur, G. Vigna, C. Kruegel, and R. A. Kemmerer, “Comprehensive ap-
proach to intrusion detection alert correlation”, IEEE Trans. Depend. Sec. Com-
put., vol. 1, no. 3, pp. 146–169, 2004.

[98] P. Li, M. Salour, and X. Su, “A survey of internet worm detection and con-
tainment”, IEEE Commun. Surveys Tuts., vol. 10, no. 1, 2008.

[99] D. R. Ellis, J. G. Aiken, K. S. Attwood, and S. D. Tenaglia, “A behavioral
approach to worm detection”, in Proc. ACM Workshop Rapid Malcode, ACM,
2004, pp. 43–53.

[100] B. Li, J. Springer, G. Bebis, and M. H. Gunes, “A survey of network flow
applications”, Elsevier J. Netw. Comput. Appl., vol. 36, no. 2, pp. 567–581, 2013.

[101] S. T. Zargar, J. Joshi, and D. Tipper, “A survey of defense mechanisms against
distributed denial of service (ddos) flooding attacks”, IEEE Commun. Surveys
Tuts., vol. 15, no. 4, pp. 2046–2069, 2013.

[102] A. Liu, M. Dong, K. Ota, and J. Long, “Phack: An efficient scheme for selec-
tive forwarding attack detection in wsns”, Sensors, vol. 15, no. 12, pp. 30 942–
30 963, 2015.

[103] J. Wu, K. Ota, M. Dong, and C. Li, “A hierarchical security framework for
defending against sophisticated attacks on wireless sensor networks in smart
cities”, IEEE Access, vol. 4, pp. 416–424, 2016.

[104] A. Furtună, V.-V. Patriciu, and I. Bica, “A structured approach for implement-
ing cyber security exercises”, in Proc. IEEE Int. Conf. Commun., IEEE, 2010,
pp. 415–418.

[105] J. L. Obes, C. Sarraute, and G. Richarte, “Attack planning in the real world”,
in Working Notes AAAI Workshop Intel. Secur., 2010, p. 10.

[106] M. Chapman, G. Tyson, P. McBurney, M. Luck, and S. Parsons, “Playing hide-
and-seek: An abstract game for cyber security”, in Proc. ACM Int. Workshop
Agents Cybersecur., ACM, 2014, p. 3.

[107] J. R. Johnson, E. Hogan, et al., “A graph analytic metric for mitigating ad-
vanced persistent threat”, in Proc. IEEE Int. Conf. Intel. Secur. Inform., IEEE,
2013, pp. 129–133.

[108] M. A. Noureddine, A. Fawaz, W. H. Sanders, and T. Başar, “A game-theoretic
approach to respond to attacker lateral movement”, in Proc. Springer Int. Conf.
Decision Game Theory Secur., Springer, 2016, pp. 294–313.

[109] A. Fawaz, A. Bohara, C. Cheh, and W. H. Sanders, “Lateral movement detec-
tion using distributed data fusion”, in Proc. IEEE Symp. Reliable Distrib. Syst.,
IEEE, 2016, pp. 21–30.

[110] Penetration Testing Software. http://https://www.metasploit.com/, Aug.
2017.

[111] D. E. Denning, “An intrusion-detection model”, IEEE T. Soft. Eng., no. 2,
pp. 222–232, 1987.

[112] Snort users manual, http://manual.snort.org/, Aug. 2017.

http://https://www.metasploit.com/
http://manual.snort.org/

170 Bibliography

[113] C. Kruegel, W. Robertson, and G. Vigna, Using alert verification to identify suc-
cessful intrusion attempts, 4. Walter de Gruyter GmbH & Co. KG, 2004, vol. 27,
pp. 219–227.

[114] C. Kruegel and G. Vigna, “Anomaly detection of web-based attacks”, in Proc.
ACM Conf. Comput. Commun. Secur., ACM, 2003, pp. 251–261.

[115] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi, “Exposure: Finding malicious
domains using passive dns analysis.”, in Proc. Netw. Distrib. Syst. Symp., 2011.

[116] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu, “Path problems in tempo-
ral graphs”, Proc. VLDB Endowment, vol. 7, no. 9, pp. 721–732, 2014.

[117] A. Paranjape, A. R. Benson, and J. Leskovec, “Motifs in temporal networks”,
in Proc. ACM Int. Conf. Web Search Data Mining, ACM, 2017, pp. 601–610.

[118] A. Gupta and N. Nishimura, “Characterizing the complexity of subgraph iso-
morphism for graphs of bounded path-width”, STACS 96, pp. 453–464, 1996.

[119] D. B. West et al., Introduction to graph theory. Prentice hall Upper Saddle River,
2001, vol. 2.

[120] T. T. Soong, Fundamentals of probability and statistics for engineers. John Wiley
& Sons, 2004.

[121] A. Arora and V. Dutt, “Cyber security: Evaluating the effects of attack strat-
egy and base rate through instance based learning”, in Int. Conf. Cognitive
Model., 2013, pp. 1–10.

[122] G. Werner, S. Yang, and K. McConky, “Time series forecasting of cyber attack
intensity”, in Proc. ACM Conf. Cyber Inf. Secur. Research, ACM, 2017, p. 18.

[123] L. Khan, M. Awad, and B. Thuraisingham, “A new intrusion detection system
using support vector machines and hierarchical clustering”, The VLDB Jour-
nal—The International Journal on Very Large Data Bases, vol. 16, no. 4, pp. 507–
521, 2007.

[124] G. Werner, A. Okutan, S. Yang, and K. McConky, “Forecasting cyberattacks
as time series with different aggregation granularity”, in Proc. IEEE Int. Symp.
Techn. Homeland Secur., IEEE, 2018, pp. 1–7.

[125] A. Shalaginov, K. Franke, and X. Huang, “Malware beaconing detection by
mining large-scale dns logs for targeted attack identification”, in Int. Conf.
Comput. Intell. Secur. Inf. Syst., Apr. 2016.

[126] X. Hu, J. Jang, M. P. Stoecklin, T. Wang, D. L. Schales, D. Kirat, and J. R. Rao,
“Baywatch: Robust beaconing detection to identify infected hosts in large-
scale enterprise networks”, in IEEE DSN, 2016.

[127] N. Ben-Asher, S. Hutchinson, and A. Oltramari, “Characterizing network be-
havior features using a cyber-security ontology”, in Military Communications
Conference, MILCOM 2016-2016 IEEE, IEEE, 2016, pp. 758–763.

[128] R. Perdisci, G. Giacinto, and F. Roli, “Alarm clustering for intrusion detection
systems in computer networks”, Elsevier Eng. Appl. Artif. Intell., vol. 19, no. 4,
pp. 429–438, 2006.

[129] K. Julisch, “Clustering intrusion detection alarms to support root cause anal-
ysis”, ACM T. Inf. Syst. Secur., vol. 6, no. 4, pp. 443–471, 2003.

[130] S. Moskal, S. J. Yang, and M. E. Kuhl, “Extracting and evaluating similar and
unique cyber attack strategies from intrusion alerts”, in Proc. IEEE Int. Conf.
Intel. Secur. Inf., IEEE, 2018, pp. 49–54.

Bibliography 171

[131] F. Manganiello, M. Marchetti, and M. Colajanni, “Multistep attack detection
and alert correlation in intrusion detection systems”, Information Security and
Assurance, pp. 101–110, 2011.

[132] S. Noel and S. Jajodia, “Optimal ids sensor placement and alert prioritization
using attack graphs”, J. Netw. Syst. Manag., vol. 16, no. 3, pp. 259–275, 2008.

[133] K. Alsubhi, E. Al-Shaer, and R. Boutaba, “Alert prioritization in intrusion
detection systems”, in IEEE NOMS, 2008.

[134] J. Goebel and T. Holz, “Rishi: Identify bot contaminated hosts by irc nickname
evaluation.”, HotBots, vol. 7, pp. 8–8, 2007.

[135] W. T. Strayer, R. Walsh, C. Livadas, and D. Lapsley, “Detecting botnets with
tight command and control”, in Local Computer Networks, Proceedings 2006
31st IEEE Conference on, IEEE, 2006, pp. 195–202.

[136] O. Fajana, G. Owenson, and M. Cocea, “Torbot stalker: Detecting tor botnets
through intelligent circuit data analysis”, in Proc. IEEE Int. Symp. Netw. Com-
put. Appl., Oct. 2018, pp. 1–8.

[137] F. Tegeler, X. Fu, G. Vigna, and C. Kruegel, “Botfinder: Finding bots in net-
work traffic without deep packet inspection”, in Proc. ACM Int. Conf. Emerg-
ing Netw. Exp. Techn., ACM, Dec. 2012, pp. 349–360.

[138] P. J. Brockwell and R. A. Davis, Introduction to time series and forecasting. Taylor
& Francis, 2002, vol. 1.

[139] G. Gu, J. Zhang, and W. Lee, “Botsniffer: Detecting botnet command and con-
trol channels in network traffic.”, in Proc. Netw. Distrib. Syst. Secur. Symp.,
2008.

[140] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation coefficient”,
in Noise reduction in speech processing, Springer, 2009, pp. 1–4.

[141] Suricata IDS, http://suricata-ids.org/, Aug. 2017.

[142] Emerging Threats.net Open rulesets. https://rules.emergingthreats.net/,
Aug. 2017.

[143] VirusTotal, http://https://www.virustotal.com, Aug. 2017.

[144] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar, “Adversarial
machine learning”, in Proc. ACM Workshop Secur. and Artif. Intell., Oct. 2011,
pp. 43–58.

[145] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giac-
into, and F. Roli, “Evasion attacks against machine learning at test time”,
in Springer Joint Europ. Conf. Mach. Learn. and Knowl. Discov. Databases, Sept.
2013, pp. 387–402.

[146] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Sok: Security and pri-
vacy in machine learning”, in Proc. IEEE Europ. Symp. Secur. Privacy, Apr.
2018, pp. 399–414.

[147] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural net-
works”, in Proc. IEEE Symp. Secur. Privacy, 2017, pp. 39–57.

[148] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support vector
machines”, in Proc. Int. Conf. Machin. Learning, Omnipress, 2012, pp. 1467–
1474.

http://suricata-ids.org/
https://rules.emergingthreats.net/
http://https://www.virustotal.com

172 Bibliography

[149] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. Rubinstein, U. Saini, C. A.
Sutton, J. D. Tygar, and K. Xia, “Exploiting machine learning to subvert your
spam filter”, Proc. of the LEET, vol. 8, pp. 1–9, 2008.

[150] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck, I. Corona, G.
Giacinto, and F. Roli, “Yes, machine learning can be more secure! a case study
on android malware detection”, IEEE Trans. Depend. Sec. Comput., 2017.

[151] M. Alazab, S. Venkatraman, P. Watters, and M. Alazab, “Zero-day malware
detection based on supervised learning algorithms of api call signatures”, in
Proc. Australasian Conf. Data Mining, vol. 121, 2011, pp. 171–182.

[152] S. Dua and X. Du, Data mining and machine learning in cybersecurity. Auerbach
Publications, 2016.

[153] M. Stevanovic and J. M. Pedersen, “On the use of machine learning for iden-
tifying botnet network traffic”, Journal of Cyber Security and Mobility, vol. 4,
no. 2, pp. 1–32, 2016.

[154] M. Mannino, Y. Yang, and Y. Ryu, “Classification algorithm sensitivity to
training data with non representative attribute noise”, Elsevier Decis. Support
Syst., vol. 46, no. 3, pp. 743–751, 2009.

[155] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2016.

[156] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A survey
on concept drift adaptation”, ACM Comput. Surv., vol. 46, no. 4, p. 44, 2014.

[157] A. Kantchelian, S. Afroz, L. Huang, A. C. Islam, B. Miller, M. C. Tschantz, R.
Greenstadt, A. D. Joseph, and J. Tygar, “Approaches to adversarial drift”, in
Proc. ACM Workshop Artif. Int. Secur., ACM, 2013, pp. 99–110.

[158] B. Biggio, I. Corona, B. Nelson, B. I. Rubinstein, D. Maiorca, G. Fumera, G.
Giacinto, and F. Roli, “Security evaluation of support vector machines in ad-
versarial environments”, in Springer Support Vector Machines Appl. Springer,
2014, pp. 105–153.

[159] N. Dalvi, P. Domingos, S. Sanghai, D. Verma, et al., “Adversarial classifica-
tion”, in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, Aug. 2004,
pp. 99–108.

[160] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit
confidence information and basic countermeasures”, in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., ACM, 2015, pp. 1322–1333.

[161] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a
defense to adversarial perturbations against deep neural networks”, in Proc.
IEEE Symp. Secur. Privacy, San Jose, CA, May 2016, pp. 582–597.

[162] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel, “Adversarial
attacks on neural network policies”, arXiv:1702.02284, 2017.

[163] C. V. Wright, S. E. Coull, and F. Monrose, “Traffic morphing: An efficient
defense against statistical traffic analysis”, in Proc. Netw. Distrib. Syst. Symp.,
Citeseer, 2009.

[164] P. Laskov et al., “Practical evasion of a learning-based classifier: A case study”,
in Proc. IEEE Symp. Secur. Privacy, 2014, pp. 197–211.

[165] H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli, “Is feature
selection secure against training data poisoning?”, in Proc. Int. Conf. Machin.
Learning, Jun. 2015, pp. 1689–1698.

Bibliography 173

[166] I. Corona, B. Biggio, M. Contini, L. Piras, R. Corda, M. Mereu, G. Mureddu,
D. Ariu, and F. Roli, “Deltaphish: Detecting phishing webpages in compro-
mised websites”, in Proc. Springer Europ. Symp. Res. Comput. Secur., Sep. 2017,
pp. 370–388.

[167] B. Liang, M. Su, W. You, W. Shi, and G. Yang, “Cracking classifiers for evasion:
A case study on the google’s phishing pages filter”, in Proc. Int. Conf. World
Wide Web, Apr. 2016, pp. 345–356.

[168] D. Lowd and C. Meek, “Good word attacks on statistical spam filters.”, in
CEAS, vol. 2005, 2005.

[169] J. Newsome, B. Karp, and D. Song, “Paragraph: Thwarting signature learn-
ing by training maliciously”, in Proc. Springer Int. Workshop Recent Advances
Intrusion Detection, Springer, 2006, pp. 81–105.

[170] B. Biggio, I. Pillai, S. Rota Bulò, D. Ariu, M. Pelillo, and F. Roli, “Is data clus-
tering in adversarial settings secure?”, in Proc. ACM Workshop Artif. Intell.
Secur., ACM, 2013, pp. 87–98.

[171] C. Liu, B. Li, Y. Vorobeychik, and A. Oprea, “Robust linear regression against
training data poisoning”, in Proc. ACM Workshop Artif. Intell. Secur., ACM,
2017, pp. 91–102.

[172] L. Muñoz-González, B. Biggio, A. Demontis, A. Paudice, V. Wongrassamee,
E. C. Lupu, and F. Roli, “Towards poisoning of deep learning algorithms with
back-gradient optimization”, in Proc. ACM Workshop Artif. Intel. Secur., ACM,
Nov. 2017, pp. 27–38.

[173] S. S. Silva, R. M. Silva, R. C. Pinto, and R. M. Salles, “Botnets: A survey”,
Elsevier Comp. Netw., 2013.

[174] M. Stevanovic and J. M. Pedersen, “An analysis of network traffic classifi-
cation for botnet detection”, in Proc. IEEE Int. Conf. Cyber Situat. Awar., Data
Analyt., Assessment, Jun. 2015, pp. 1–8.

[175] Internet Security Threat Report 2018. https://www.symantec.com/security-
center/threat-report, Jun. 2018.

[176] R. Perdisci, I. Corona, and G. Giacinto, “Early detection of malicious flux net-
works via large-scale passive dns traffic analysis”, IEEE Trans. Depend. Sec.
Comput., 2012.

[177] M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou, and D. Dagon, “Detect-
ing malware domains at the upper dns hierarchy.”, in USENIX Secur. Symp.,
vol. 11, 2011, pp. 1–16.

[178] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami,
“The limitations of deep learning in adversarial settings”, in Proc. IEEE Europ.
Symp. Secur. Privacy, Mar. 2016, pp. 372–387.

[179] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep neural
networks”, IEEE Trans. Evol. Comput., 2019.

[180] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of adversarial
machine learning”, Elsevier Pattern Recogn., vol. 84, pp. 317–331, 2018.

[181] B. Biggio, G. Fumera, and F. Roli, “Pattern recognition systems under at-
tack: Design issues and research challenges”, Int. J. Pattern Recogn. Artif. Intel.,
vol. 28, no. 07, p. 1 460 002, 2014.

https://www.symantec.com/security-center/threat-report
https://www.symantec.com/security-center/threat-report

174 Bibliography

[182] Z. Abaid, M. A. Kaafar, and S. Jha, “Quantifying the impact of adversarial
evasion attacks on machine learning based android malware classifiers”, in
Proc. IEEE Int. Symp. Netw. Comput. Appl., Oct. 2017, pp. 1–10.

[183] F. Zhang, P. P. Chan, B. Biggio, D. S. Yeung, and F. Roli, “Adversarial feature
selection against evasion attacks”, IEEE Trans. Cybern., vol. 46, no. 3, pp. 766–
777, 2016.

[184] A. Demontis, P. Russu, B. Biggio, G. Fumera, and F. Roli, “On security and
sparsity of linear classifiers for adversarial settings”, in Proc. Springer Joint.
Int. Workshops Statist. Tech. Pattern Recognit. and Struct. Syntactic Pattern Recog-
nit., Nov. 2016, pp. 322–332.

[185] D. Wu, B. Fang, J. Wang, Q. Liu, and X. Cui, “Evading machine learning bot-
net detection models via deep reinforcement learning”, in Proc. IEEE Int. Conf.
Commun., 2019, pp. 1–6.

[186] I. Corona, G. Giacinto, and F. Roli, “Adversarial attacks against intrusion de-
tection systems: Taxonomy, solutions and open issues”, Elsevier Inform. Sci-
ences, vol. 239, pp. 201–225, 2013.

[187] Z. Lin, Y. Shi, and Z. Xue, “Idsgan: Generative adversarial networks for attack
generation against intrusion detection”, arXiv 1809.02077, 2018.

[188] T. S. Sethi and M. Kantardzic, “Data driven exploratory attacks on black box
classifiers in adversarial domains”, Elsevier Neurocomputing, vol. 289, pp. 129–
143, 2018.

[189] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new
intrusion detection dataset and intrusion traffic characterization”, in Proc.
Springer Int. Conf. Inf. Syst. Secur. Privacy, Jan. 2018, pp. 108–116.

[190] F. Kreuk, A. Barak, S. Aviv-Reuven, M. Baruch, B. Pinkas, and J. Keshet, “De-
ceiving end-to-end deep learning malware detectors using adversarial exam-
ples”, arXiv:1802.04528, 2018.

[191] J. Clements, Y. Yang, A. Sharma, H. Hu, and Y. Lao, “Rallying adversar-
ial techniques against deep learning for network security”, arXiv:1903.11688,
2019.

[192] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto, C. Eckert, and
F. Roli, “Adversarial malware binaries: Evading deep learning for malware
detection in executables”, in Proc. IEEE Europ. Conf. Sign. Proc., Sep. 2018,
pp. 533–537.

[193] C. Xiang, F. Binxing, Y. Lihua, L. Xiaoyi, and Z. Tianning, “Andbot: Towards
advanced mobile botnets”, in Proc. USENIX Conf. Large-scale Exploits and Emer-
gent Threats, 2011, pp. 11–11.

[194] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical comparison of
botnet detection methods”, Elsevier Comput. Secur., vol. 45, pp. 100–123, 2014.

[195] E. B. Beigi, H. H. Jazi, N. Stakhanova, and A. A. Ghorbani, “Towards effective
feature selection in machine learning-based botnet detection approaches”, in
Proc. IEEE Conf. Comm. Netw. Secur., Oct. 2014.

[196] B. Abraham, A. Mandya, R. Bapat, F. Alali, D. E. Brown, and M. Veeraragha-
van, “A comparison of machine learning approaches to detect botnet traffic”,
in Proc. IEEE Int. Joint Conf. Neur. Netw., Jul. 2018, pp. 1–8.

Bibliography 175

[197] R. A. Bridges, T. R. Glass-Vanderlan, M. D. Iannacone, M. S. Vincent, and
Q. G. Chen, “A survey of intrusion detection systems leveraging host data”,
ACM Computing Surveys, vol. 52, no. 6, p. 128, 2019.

[198] D. S. Berman, A. L. Buczak, J. S. Chavis, and C. L. Corbett, “A survey of deep
learning methods for cyber security”, Information, vol. 10, no. 4, p. 122, 2019.

[199] F. V. Alejandre, N. C. Cortés, and E. A. Anaya, “Feature selection to detect
botnets using machine learning algorithms”, in Proc. IEEE Int. Conf. Elect.
Commun. Comp., Feb. 2017, pp. 1–7.

[200] B. Biggio, I. Corona, Z.-M. He, P. P. Chan, G. Giacinto, D. S. Yeung, and F. Roli,
“One-and-a-half-class multiple classifier systems for secure learning against
evasion attacks at test time”, in Proc. Springer Int. Workshop Multiple Classifier
Syst., Jun. 2015, pp. 168–180.

[201] G Kirubavathi and R Anitha, “Botnet detection via mining of traffic flow char-
acteristics”, Comput. Elect. Eng., vol. 50, pp. 91–101, 2016.

[202] A. Pektaş and T. Acarman, “Deep learning to detect botnet via network flow
summaries”, Springer Neural Comput. Appl., pp. 1–13, 2018.

[203] scikit-learn: Machine Learning in Python, Available: https://scikit-learn.
org/, Aug. 2019.

[204] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python”, Journal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

[205] B. Biggio, B. Nelson, and P. Laskov, “Support vector machines under adver-
sarial label noise”, in Proc. Asian Conf. Machin. Learning, 2011, pp. 97–112.

[206] A. Kantchelian, J. D. Tygar, and A. Joseph, “Evasion and hardening of tree
ensemble classifiers”, in Int. Conf. Machin. Learning, 2016, pp. 2387–2396.

[207] H. Xu, C. Caramanis, and S. Mannor, “Robustness and regularization of sup-
port vector machines”, Journal of Machine Learning Research, vol. 10, no. Jul,
pp. 1485–1510, 2009.

[208] M. Brückner and T. Scheffer, “Stackelberg games for adversarial prediction
problems”, in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2011,
pp. 547–555.

[209] B. Biggio, G. Fumera, and F. Roli, “Adversarial pattern classification using
multiple classifiers and randomisation”, in Proc. Springer Joint Int. Workshops
Statist. Techn. Pattern Recogn. and Structural and Syntactic Pattern Recogn., Springer,
2008, pp. 500–509.

[210] G. F. Cretu, A. Stavrou, M. E. Locasto, S. J. Stolfo, and A. D. Keromytis, “Cast-
ing out demons: Sanitizing training data for anomaly sensors”, in Proc. IEEE
Symp. Secur. Privacy, IEEE, 2008, pp. 81–95.

[211] B. Biggio, I. Corona, G. Fumera, G. Giacinto, and F. Roli, “Bagging classi-
fiers for fighting poisoning attacks in adversarial classification tasks”, in Proc.
Springer Int. Workshop Multiple Classifier Syst., Springer, 2011, pp. 350–359.

[212] Y. Cao and J. Yang, “Towards making systems forget with machine unlearn-
ing”, in Proc. IEEE Symp. Secur. Privacy, IEEE, 2015, pp. 463–480.

https://scikit-learn.org/
https://scikit-learn.org/

176 Bibliography

[213] A. D. Joseph, P. Laskov, F. Roli, J. D. Tygar, and B. Nelson, “Machine learning
methods for computer security”, in Dagstuhl Manifestos, Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, vol. 3, 2013.

[214] W. Hu and Y. Tan, “Generating adversarial malware examples for black-box
attacks based on gan”, arXiv:1702.05983, 2017.

[215] S. Calzavara, C. Lucchese, and G. Tolomei, “Adversarial training of gradient-
boosted decision trees”, in Proc. ACM Int. Conf. Inf. Knowledge Manag, 2019,
pp. 2429–2432.

[216] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network”, in Int. Conf. Neural Inf. Proces. Syst. Workshop, Montreal, CAN, Dec.
2014.

[217] A. S. Ross and F. Doshi-Velez, “Improving the adversarial robustness and in-
terpretability of deep neural networks by regularizing their input gradients”,
in AAAI Conf. Artif. Intell., Apr. 2018.

[218] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel, “Ad-
versarial perturbations against deep neural networks for malware classifica-
tion”, arXiv:1606.04435, 2016.

[219] M. Stevanovic and J. M. Pedersen, “Detecting bots using multi-level traffic
analysis”, Int. J. Cyber Situational Awareness, vol. 1, no. 1, 2016.

[220] S. J. Pan, Q. Yang, et al., “A survey on transfer learning”, IEEE Trans. Knowl.
Data Eng., vol. 22, no. 10, pp. 1345–1359, 2010.

[221] H. Borchani, G. Varando, C. Bielza, and P. Larrañaga, “A survey on multi-
output regression”, Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 5, no. 5, pp. 216–233, 2015.

[222] A. Demontis, M. Melis, M. Pintor, M. Jagielski, B. Biggio, A. Oprea, C. Nita-
Rotaru, and F. Roli, “Why do adversarial attacks transfer? explaining trans-
ferability of evasion and poisoning attacks”, in Proc. USENIX Secur. Symp.,
2019, pp. 321–338.

[223] B. Biggio, K. Rieck, D. Ariu, C. Wressnegger, I. Corona, G. Giacinto, and F.
Roli, “Poisoning behavioral malware clustering”, in Proc. ACM Workshop Ar-
tif. Intell. Secur., ACM, 2014, pp. 27–36.

[224] B. Biggio, S. R. Bulò, I. Pillai, M. Mura, E. Z. Mequanint, M. Pelillo, and F.
Roli, “Poisoning complete-linkage hierarchical clustering”, in Proc. Springer
Joint IAPR Int. Workshops Stat. Tech. Pattern Recogn. and Struct. Syntactic Pattern
Recogn., Springer, 2014, pp. 42–52.

[225] D. Maiorca, B. Biggio, and G. Giacinto, “Towards robust detection of adver-
sarial infection vectors: Lessons learned in pdf malware”, arXiv:1811.00830,
2018.

[226] M. Mayhew, M. Atighetchi, A. Adler, and R. Greenstadt, “Use of machine
learning in big data analytics for insider threat detection”, in Proc. IEEE Conf.
Military Comm., Oct. 2015, pp. 915–922.

[227] M. Zhao, B. An, W. Gao, and T. Zhang, “Efficient label contamination attacks
against black-box learning models”, in Int. Joint Conf. Artif. Intell., Aug. 2017,
pp. 3945–3951.

[228] A. Subasi, E. Molah, F. Almkallawi, and T. J. Chaudhery, “Intelligent phishing
website detection using random forest classifier”, in Proc. IEEE Int. Conf. Elec.
Comput. Tech. Appl., Nov. 2017, pp. 1–5.

Bibliography 177

[229] T. W. Moore and R. Clayton, “The impact of public information on phishing
attack and defense”, Communications and Strategies, no. 81, pp. 45–68, 2011.

[230] R. Basnet, “Learning to detect phishing urls”, International Journal of Research
in Engineering and Technology, vol. 03, pp. 11–24, 2014.

[231] N. Abdelhamid, F. Thabtah, and H. Abdel-jaber, “Phishing detection: A re-
cent intelligent machine learning comparison based on models content and
features”, in Proc. IEEE Int. Conf. Intel. Secur. Inform., Jul. 2017, pp. 72–77.

[232] R. Verma and K. Dyer, “On the character of phishing urls: Accurate and ro-
bust statistical learning classifiers”, in Proc. ACM Conf. Data Appl. Secur. Pri-
vacy, Mar. 2015, pp. 111–122.

[233] S. C. Jeeva and E. B. Rajsingh, “Intelligent phishing url detection using as-
sociation rule mining”, Springer Hum-Cent. Comput. Info., vol. 6, no. 1, p. 10,
2016.

[234] C. L. Tan, K. L. Chiew, K. Wong, et al., “Phishwho: Phishing webpage de-
tection via identity keywords extraction and target domain name finder”,
Elsevier Decis. Support Syst., vol. 88, pp. 18–27, 2016.

[235] A. Niakanlahiji, B.-T. Chu, and E. Al-Shaer, “Phishmon: A machine learning
framework for detecting phishing webpages”, in Proc. IEEE Int. Conf. Intel.
Secur. Inf., Nov. 2018, pp. 220–225.

[236] W. Ali, “Phishing website detection based on supervised machine learning
with wrapper features selection”, International Journal of Advanced Computer
Science and Applications, vol. 8, no. 9, pp. 72–78, 2017.

[237] E. Lancaster, T. Chakraborty, and V. Subrahmanian, “Maltp: Parallel predic-
tion of malicious tweets”, IEEE T. Computational Social Systems, vol. 5, no. 4,
pp. 1096–1108, 2018.

[238] D. L. Cook, V. K. Gurbani, and M. Daniluk, “Phishwish: A stateless phish-
ing filter using minimal rules”, in Proc. Springer Int. Conf. Financ. Crypt. Data
Secur., Jan. 2008, pp. 182–186.

[239] Y. Zhang, J. I. Hong, and L. F. Cranor, “Cantina: A content-based approach to
detecting phishing web sites”, in Proc. ACM Int. Conf. World Wide Web, May
2007, pp. 639–648.

[240] K.-T. Chen, J.-Y. Chen, C.-R. Huang, and C.-S. Chen, “Fighting phishing with
discriminative keypoint features”, IEEE Internet Comput., vol. 13, no. 3, pp. 56–
63, 2009.

[241] E. Medvet, E. Kirda, and C. Kruegel, “Visual-similarity-based phishing detec-
tion”, in Proc. ACM Int. Conf. Secur. Privacy Commun. Netw., Sep. 2008, p. 22.

[242] M. Hara, A. Yamada, and Y. Miyake, “Visual similarity-based phishing detec-
tion without victim site information”, in Proc. IEEE Symp. Comput. Intel. Cyber
Secur., Mar. 2009, pp. 30–36.

[243] H Kim and J. Huh, “Detecting dns-poisoning-based phishing attacks from
their network performance characteristics”, IET Electron. Lett., vol. 47, no. 11,
pp. 656–658, 2011.

[244] G. Liu, B. Qiu, and L. Wenyin, “Automatic detection of phishing target from
phishing webpage”, in Proc. IEEE Int. Conf. Pattern Recogn., Aug. 2010, pp. 4153–
4156.

178 Bibliography

[245] H. Zhang, G. Liu, T. W. Chow, and W. Liu, “Textual and visual content-based
anti-phishing: A bayesian approach”, IEEE Trans. Neural Netw., vol. 22, no. 10,
pp. 1532–1546, Aug. 2011.

[246] C. Whittaker, B. Ryner, and M. Nazif, “Large-scale automatic classification of
phishing pages”, Google AI Research, 2010.

[247] L Cranor, S Egelman, J Hong, and Z. P. Phish, “An evaluation of anti-phishing
toolbars”, Technical Report CMU-CyLab-06–018, Carnegie Mellon University Cy-
Lab, vol. 13, 2006.

[248] A. Bergholz, J. De Beer, S. Glahn, M.-F. Moens, G. Paaß, and S. Strobel, “New
filtering approaches for phishing email”, Journal of computer security, vol. 18,
no. 1, pp. 7–35, 2010.

[249] F. Toolan and J. Carthy, “Phishing detection using classifier ensembles”, in
IEEE eCrime Researchers Summit, 2009, pp. 1–9.

[250] R. M. Mohammad, F. Thabtah, and L. McCluskey, “Predicting phishing web-
sites based on self-structuring neural network”, Springer Neural Comput. Appl.,
vol. 25, no. 2, pp. 443–458, 2014.

[251] M. Babagoli, M. P. Aghababa, and V. Solouk, “Heuristic nonlinear regres-
sion strategy for detecting phishing websites”, Soft Comput., vol. 23, no. 12,
pp. 4315–4327, 2019.

[252] A. K. Jain and B. B. Gupta, “Towards detection of phishing websites on client-
side using machine learning based approach”, Springer Telecom. Syst., vol. 68,
no. 4, pp. 687–700, 2018.

[253] O. K. Sahingoz, E. Buber, O. Demir, and B. Diri, “Machine learning based
phishing detection from urls”, Elsevier Expert Syst. Appl., vol. 117, pp. 345–
357, 2019.

[254] Deltaphish dataset, https://www.pluribus-one.it/research/cybersecurity/
deltaphish, Accessed: Sept. 2019.

[255] Mendeley phishing dataset, https://data.mendeley.com/datasets/h3cgnj8hft/
1, Accessed: Sept. 2019.

[256] Uci phishing websites dataset, https://archive.ics.uci.edu/ml/datasets/
phishing+websites, Accessed: Sept. 2019.

[257] Z. Katzir and Y. Elovici, “Quantifying the resilience of machine learning clas-
sifiers used for cyber security”, Elsevier Expert Syst. Appl., vol. 92, pp. 419–429,
2018.

[258] M. Kantarcioglu and B. Xi, “Adversarial data mining: Big data meets cyber
security”, in Proc. ACM Conf. Comput. Comm. Secur., Oct. 2016, pp. 1866–1867.

[259] Y. Shi and Y. E. Sagduyu, “Evasion and causative attacks with adversarial
deep learning”, in Proc. IEEE Conf. Military Comm., Oct. 2017, pp. 243–248.

[260] Y. Vorobeychik and M. Kantarcioglu, “Adversarial machine learning”, Syn-
thesis Lectures on Artificial Intelligence and Machine Learning, vol. 12, no. 3,
pp. 1–169, 2018.

[261] A. Warzyński and G. Kołaczek, “Intrusion detection systems vulnerability
on adversarial examples”, in Proc. IEEE Conf. Innovations Intell. Syst. Appl.,
Jul. 2018, pp. 1–4.

https://www.pluribus-one.it/research/cybersecurity/deltaphish
https://www.pluribus-one.it/research/cybersecurity/deltaphish
https://data.mendeley.com/datasets/h3cgnj8hft/1
https://data.mendeley.com/datasets/h3cgnj8hft/1
https://archive.ics.uci.edu/ml/datasets/phishing+websites
https://archive.ics.uci.edu/ml/datasets/phishing+websites

Bibliography 179

[262] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and B. Li, “Automated poi-
soning attacks and defenses in malware detection systems: An adversarial
machine learning approach”, Elsevier Comp. Secur., vol. 73, pp. 326–344, 2018.

[263] I. Rosenberg, A. Shabtai, L. Rokach, and Y. Elovici, “Generic black-box end-
to-end attack against state of the art api call based malware classifiers”, in
Proc. Springer Int. Symp. Res. Attacks, Intrusions and Defenses, Sep. 2018, pp. 490–
510.

[264] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami,
“Practical black-box attacks against machine learning”, in Proc. ACM Asia
Conf. Comput. Commun. Secur., Apr. 2017, pp. 506–519.

[265] H. Dang, Y. Huang, and E.-C. Chang, “Evading classifiers by morphing in the
dark”, in Proc. ACM Conf. Comp. Commun. Secur., Oct. 2017, pp. 119–133.

[266] W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers”, in Proc. Symp.
Netw. Distrib. Syst., Feb. 2016, pp. 21–24.

[267] B. Li and Y. Vorobeychik, “Feature cross-substitution in adversarial classifi-
cation”, in Proc. Advances Neur. Inf. Process. Syst. Conf., 2014, pp. 2087–2095.

[268] C. Bai, Q. Han, G. Mezzour, F. Pierazzi, and V. Subrahmanian, “Dbank: Pre-
dictive behavioral analysis of recent android banking trojans”, IEEE T. De-
pend. Secur., 2019.

[269] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro, “Enabling
fair ml evaluations for security”, in Proc. ACM Conf. Comput. Commun. Secur.,
Oct. 2018, pp. 2264–2266.

[270] P. Russu, A. Demontis, B. Biggio, G. Fumera, and F. Roli, “Secure kernel ma-
chines against evasion attacks”, in Proc. ACM Workshop Artific. Intell. Secur.,
ACM, 2016, pp. 59–69.

[271] Z. He, J. Su, M. Hu, G. Wen, S. Xu, and F. Zhang, “Robust support vector
machines against evasion attacks by random generated malicious samples”,
in Proc. IEEE Int. Conf. Wavelet Anal. Pattern Recogn., Jul. 2017, pp. 243–247.

[272] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. An-
derson, G. Corrado, W. Chai, M. Ispir, et al., “Wide & deep learning for rec-
ommender systems”, in Proc. ACM Workshop on Deep Learn. for Recommender
Syst., Sep. 2016, pp. 7–10.

[273] R. B. Basnet and T. Doleck, “Towards developing a tool to detect phishing
urls: A machine learning approach”, in Proc. IEEE Int. Conf. Comput. Intel.
Commun. Techn., Feb. 2015, pp. 220–223.

[274] G. Apruzzese, M. Marchetti, M. Colajanni, G. G. Zoccoli, and A. Guido, “Iden-
tifying malicious hosts involved in periodic communications”, in Proc. IEEE
Int. Symp. Netw. Comput. Appl., Oct. 2017, pp. 1–8.

[275] G. Apruzzese and M. Colajanni, “Evading botnet detectors based on flows
and random forest with adversarial samples”, in Proc. IEEE Int. Symp. Netw.
Comput. Appl., Oct. 2018, pp. 1–8.

[276] G. Apruzzese, M. Colajanni, L. Ferretti, A. Guido, and M. Marchetti, “On the
effectiveness of machine and deep learning for cybersecurity”, in Proc. IEEE
Int. Conf. Cyber Conflicts, May 2018, pp. 371–390.

[277] G. Apruzzese, M. Colajanni, L. Ferretti, and M. Marchetti, “Addressing ad-
versarial attacks against security systems based on machine learning”, in
Proc. IEEE Int. Conf. Cyber Conflicts, May 2019, pp. 1–18.

180 Bibliography

[278] G. Apruzzese, F. Pierazzi, M. Colajanni, and M. Marchetti, “Detection and
threat prioritization of pivoting attacks in large networks”, IEEE Trans. Emerg.
Topics Comput., 2017.

[279] F. Pierazzi, G. Apruzzese, M. Colajanni, A. Guido, and M. Marchetti, “Scal-
able architecture for online prioritisation of cyber threats”, in Proc. IEEE Int.
Conf. Cyber Conflicts, May 2017, pp. 1–18.

	Abstract
	Abstract (Italian)
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Summary (Italian)
	Introduction
	State of the Art
	Classification of Machine Learning Algorithms for Cybersecurity
	Shallow Learning – supervised algorithms
	Shallow Learning – unsupervised algorithms
	Deep Learning – supervised algorithms
	Deep Learning – unsupervised algorithms
	Applications of machine learning algorithms to cyber detection

	Issues of Machine and Deep Learning for Cyber Detection
	Experimental methodology
	Evaluation results

	Novel Solutions for Cyber Detection
	Scalable Architecture for Online Prioritization of Cyber Threats
	Related work
	Proposed method
	Evaluation results

	Detection and Threat Prioritization of Pivoting Attacks
	Related work
	Problem description
	Pivoting detection algorithm
	Computational complexity
	Threat prioritization
	Evaluation results

	Detection of Malicious Beaconing Activities
	Related work
	Proposed method
	Experimental methodology
	Evaluation results

	Adversarial Attacks against Cyber Detectors
	Categories of Adversarial Attacks in Cybersecurity
	Effectiveness of Adversarial Attacks
	Related work
	Threat model
	Testbed
	Cyber detectors
	Generation of adversarial datasets
	Evaluation results

	Countermeasures against Adversarial Attacks
	Existing Defences against Adversarial Attacks
	Defences against attacks at test-time
	Defences against attacks at training-time
	Evaluation results

	Countering Evasion Attacks on Random Forest Detectors
	Related work
	Proposed method
	Experimental methodology
	Evaluation results

	Countering Poisoning Attacks against Cyber Detectors
	Proposed method
	Experimental methodology
	Evaluation results

	Countering Evasion Attacks against Phishing Detectors
	Related work
	Proposed method
	Experimental methodology
	Evaluation results

	Conclusions
	Bibliography

