XVI CONVEGNO NAZIONALE

DIVISIONE DI CHIMICA FARMACEUTICA SOCIETA' CHIMICA ITALIANA

ATTI DEL CONVEGNO

SORRENTO, 18-22 SETTEMBRE 2002 HILTON SORRENTO PALACE

Structure-Based Design and In Parallel Synthesis of Boronic Acid Inhibitors of AmpC β-Lactamase

Donatella Tondi^{1,2}, Rachel Powers², Emilia Caselli¹, M.Paola Costi¹, Brian K. Shoichet².

Dipartimento di Scienze farmaceutiche, Università degli Studi di Modena e Reggio Emilia, Via Campi 183, 41100, Modena, Italy. Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, Illinois 60611.

 β -lactamases are the most common form of resistance to the penicillin and cephalosporin family of antibiotics. To overcome these enzymes, medicinal chemists have introduced β -lactam-based molecules that inhibit (e.g., clavulanate) or are stable to their action (e.g., aztreonam). These inhibitors and " β -lactamase-stable" molecules are themselves β -lactams, making it easier for bacteria to respond by adapting previously evolved mechanisms. Many bacteria are now resistant to these anti-resistance compounds!

Recent studies have found boronic acid derivatives to potently inhibit class A and class C of β -lactamases.² Presumably because these inhibitors do not have the β -lactam core structure, they were found to evade several of the mechanisms that are involved in resistance to more classic β -lactam-based inhibitors.

Starting from the crystal structures of the 3-aminophenyl-boronic acid (1) bound to AmpC β -lactamase^{3,4}, we designed and synthesized 28 new carboxamide (2) and sulfonamide boronic acid derivatives (3). In the attempt to rapidly optimize the activity, we used in parallel synthetic techniques, including a polymer-supported base in tandem with aminomethylated polystyrene as scavenger.

$$NH_2$$
 NH_2 NH_2

Among the 28 derivatives synthesized several molecules showed sub-micromolar inhibition constants (K_i) vs AmpC β -lactamase. The most active had a K_i of 0.040 μ M, 175-fold better than the lead compound. Flexible ligand docking suggested a binding conformation for this inhibitor, in the R1-cleft of AmpC. A second focused library of twelve molecules was synthesized to improve solubility, inhibition, and to explore the SAR of the series. Subsequently, the x-ray structure of the best inhibitor in complex with AmpC was determined to 1.94 Å resolution, providing a template for further design in this new series of β -lactamases inhibitors 5 .

- 1. Fernando Baquero and Jesus Blasquez, Tree, 1997, 12, 482-487.
- 2. Strynadka. Nat Struct Biol. 1996, 3, 688-95.
- 3. Weston, G.S.et al and Shoichet, B.K. J.Med.Chem. 1998, 41, 4577-4586.
- 4. Usher K.C. et al and Remington SJ, Biochemistry. 1998, 37, 16082-92
- 5. D. Tondi et al and B.K. Shoichet. Chemistry and Biology. 8, 2001, 593-610