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1. Introduction

The present work focuses on the delamination issue that can occur in fiber composite

materials.  Delamination  of  composite  material  is  a  type  of  damage  that  highly

compromises the stiffness and strength of  components made by composite materials.

Since these particular materials are being used on structural applications, the possibility

to have available a practical tool that could help foresee the occurrence of delamination

during the design phase has been extensively investigated. In this study, an analytical

post processing model for the calculation of the Interlaminar Tensile Stress (ILTS) has

been implemented to be coupled with 2D Finite Elements (FE) models. The ILTS can be

used as an indicator of the state of the interface between two layers of a fiber composite

component, alongside  the Interlaminar Shear Stress (ILSS). During the design process

of  every structural  component,  the  evaluation  of  its  strength  is  usually  investigated

using a  Finite Element Model (FEM),  i.e. a numerical discretization of the component.

In general, due to their construction and large surfaces with relatively thin thicknesses,

fiber composite components are relatively easy to be discretized with 2D shells FE. In

comparison to the 3D Solid FE models, 2D shells have a great advantage in terms of

computational  cost,  providing  at  the  same  time  accurate  results.  During  the  design

process of fiber composite components, a required  low computational effort represents

an  important  gain  especially  in  some  contexts  as  The  Formula  One.  Indeed,  the

possibility  to  spare  computational  time  for  a  technical  department  influences  the

development of competitive projects. The advanced shells and plates theories for 2D FE

can add the ILSS to the results obtained with 2D Shell FE models, but they are unable to

predict ILTS. This study investigates the development of a low computational effort tool

to  calculate  ILTS.  The  ILTS  can  be  calculated  with:  analytical  methods,  numerical

methods  and  obviously  with  experimental  tests.  The  analytical  methods  exist  for

composite  laminates  with  simple  geometries,  loading  and  boundary  conditions.

Nevertheless,  analytical  methods  are  usually   used  as  post  processing  methods  by

integrating equilibrium equations of 3D elasticity instead of using constitutive relations.

Numerical methods  are capable to calculate the ILTS, but through complex models.

Indeed, the 2D and 3D FE models can be integrated with  techniques involving failure
5



criteria as the virtual crack closure technique (VCCT) and cohesive zone method (CZM)

but the computational effort becomes too high. Some advanced shell Finite Elements

called “X-FEM” and “enriched shells” are computationally more efficient but remain

still very complicated when compared to the traditional 2D shell FE models. 

The implemented model  combines the 2D shell  FE model computing agility with a

simple post processing analytical model that can be applied on a doubly curve laminate.

The analytical model is based on  the solution given  by Huang [1]  and utilized by Roos

in  [2].The post processing analytical model bases the ILTS calculation on the strain

results of the 2D shell FE model and the geometric curvature radii estimation of the

geometry.  In  this  study,  two  alternative  methods  for  the  geometric  curvature  radii

calculation exposed by Roos  [3] are presented.  Both the methods rely on an auxiliary

eight noded quadrilateral mesh, which may be easily produced by commonly available

FE  preprocessors,  thus  being  applicable  to  each  single  element  regardless  of  the

topology  of  its  neighborhood. Moreover,  the  ILTS  calculation  uses  the  principal

geometric  curvature  system  as   reference  system,  instead  of  the  principal  strain

coordinate system. Before testing it on a complex component as a Ferrari Formula One

front wing, it was tested  on  single geometric curvature and simple double geometric

curvatures models. The tests on the single geometric curvature were performed using

various geometric curvature radius / laminate thickness ratio (C/LT) and  angled plies

laminates. The test with angled highly anisotropic laminates highlighted a deficiency of

the analytical model regarding the exclusion of the in plane shear term from the stiffness

matrix. Indeed it does not directly  participate to the ILTS equilibrium equation but its

relevance  is  emphasized  in  angled  plies  stiffness  matrices.  The  enhanced  model  is

consistent in the results for various C/LT ratios, stacking sequences, and various kinds

of geometries.  Finally the model is tested on a portion of a Ferrari Formula One Front

Wing and compared to the direct 3D solid model. Thus, in order to investigate the lack

of precision  of the analytical model in defining the through-the-thickness ILTS trend

for the Front wing complex model, a specific loading case is tested. This loading case

produces a particular deformation curvature and a double curvature in the through-the-

thickness  ILTS trend.  Finally  an  alternative  3D postprocessing  solution  is  proposed

initially  to  check  the  analytical  model  performance,  then  as  an  alternative  to  the

analytical model itself.
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2. Composites materials

Composite  materials  have  been extensively used  in  engineering  design  due  to  their

remarkable performance / weight ratio, and possibility to tailor their structural behavior.

As stated  in  [4] a composite material consist of “a strong and stiff component, … ,

embedded in a softer and more compliant constituent”. 

Figure 1. Debonds in a fibe

Figure 2.1. Example of fiber reinforced composite materials

Thus, composite materials can have highly anisotropic structural properties when the

reinforcement is made of fibers. With no doubt, all the isotropic materials used in the

industry  show a  certain  degree  of  anisotropicity  due  to  the  crystallographic  texture

which is not a constant during production. But composite materials exploit this feature

that can be used to make high performance components [5]. The anisotropy is, on one

hand, the strength of the composite materials because during the design process it can

be used to optimize certain features of a component while, on the other hand, it exposes

the  component  to  issues  (  as  for  example  manufacturing  complexity)  and  type  of

damage  that  isotropic  materials  do  not  have.  In  this  study,  the  principal  composite

material consists of resin matrix plus Carbon fiber reinforcement.
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In general the pros of composite material can be summarized as:

• Anisotropic properties

• High strenght-to-weigth ratio (depending on Type of fiber)

• High stiffness-to-weight ratio (depending on Type of fiber)

• Low thermal expansion

• Low density

• Low thermal conductivity

While the cons are:

• Anisotrpic properties

• Generally expensive

• Manufacturing complexity

 

Figure 2.2. Example of fiber reinforced composite materials
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3. Damage in composite materials

During the design process of every sort of structural component, a special focus is given

to the strength of the structure. Strength is intended as the capacity of the structure to

handle the loads at which is designed and also some unpredictable extra.

The  complexity  of  the  composite  components  in  terms  of  heterogeneity  of  micro

structure and  large difference between constituent parts, which induces the anisotropy

of structural properties, is, on one hand, their big advantage and on the other hand, can

cause many strength difficulties.  The composite materials are affected not only by the

“conventional” type of damage and failures, usually present in isotropic materials, but

also  have  some  peculiarities  due  to  their  micromechanics  structure.  Reporting  this

feature to the design process has as a consequence that a stress analysis is not as simple

as for the isotropic materials. Moreover, the behavior of a composite component under

loading can change after damage incurred during service in  less predictable way respect

to isotropic materials. The  main damage mechanisms that can happen on a composite

component can be summarized as:

• Interfacial debonding

• Intralaminar cracking

• Interfacial sliding

• Interlaminar cracking

• Fiber breakage and fiber microbuckling

3.1 Interfacial debonding:

In fiber composite materials, the interfaces are present between fiber and matrix. The

stress/ load transfer happens through all these interfaces. The general properties of the

composite materials are highly influenced by the interface properties between fiber and

matrix resin. Indeed a micromechanical aspect as the adhesion at the inter-facial surface

between the constituents of the composite material affects the macroscopic mechanical
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properties in terms of stiffness and strength. Moreover, if the fibers are not well bonded

to the matrix, the composite can start to form a crack at relatively low stresses. As the

load  is  applied,  the  fiber  and  the  matrix  deform differently,  when  the  shear  stress

developed  at  the  interface  exceeds  the  shear  strength,  a  debonding  along  the  fiber

direction occurs.  

Figure 3.1 . Debonds in a fiber- reinforced composite. From Compos Sci Technol, Vol 59, E.K. Gamsted
and B.A. Sjorgren, Micromechanisms in tension-compression fatigue of composite laminates containing

transverse plies, pp. 167-78, copyright Elsevier (1999). 

3.2 Matrix microcracking /  Intralaminar cracking

The  composite  materials,  when  fiber  reinforced,  present  high  stiffness  and  strength

properties along the fiber direction. Because the fiber can hold the major part of the

load. On the contrary, their properties are lower in the transverse direction and so is

easier to develop a crack onto that direction. The cracks can form starting from defects

like voids and inclusions or even interfacial debonding and run parallel to the fiber of a

ply through the matrix. The matrix cracking does not cause an irreversible structural

failure by itself, but it can result in an important stiffness penalty and can induce more

severe damages as delamination and fiber breakage, plus it becames an easy path for

fluids to enter into the laminate.
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3.3 Interfacial sliding

The interfacial sliding happens between the constituents of a composite material when

there's a differential displacement of them. When the matrix and the fibers are not well

bonded together but by a shrink-fit mechanism, the interfacial sliding could be easier to

be activated. Instead, when the matrix is bonded  to the fibers, the interfacial sliding can

occur when there's the presence of an interface debonding. Than interfacial sliding can

couple  with  the  matrix  cracking  causing  interactive  effects  on  the  composite

delamination.

3.4 Delamination / Interlaminar Cracking

The interlaminar cracking is represented by a crack in the interfacial plane between two

adjacent plies in a laminate. It can cause the separation of the plies and that is why is

also  called  delamination.  The  development  of  an  interlaminar  crack  leads  to  a

deterioration of the mechanical properties because it can reduce the role of strong fibers

and make the matrix properties govern the structural strength and stiffness. The critical

property  in  initiating  a  delamination  is  the  interlaminar  strength  that  is  mostly

determined by the matrix. In Fig. 2 are represented the three most common loading

conditions with respect to two adjacent plies that can trigger a  delamination. These are

the  Interlaminar tension, and the interlaminar shear along the two principal directions:

sliding shear and scissoring shear. The combination of these three interlaminar loading

conditions is not always linearly an amplification factor for the interlaminar cracking.

Indeed, a  study conducted by Wisnom et al. [6] showed that an onset can resist more to

the delamination when both tensile and shear interlaminar loads are applied, this feature

is caused by a size effect that influences the volume affected by tensile interlaminar

stress.
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Figure 3.2. Interlaminar modes. On the Left the interlaminar mode I: Tension Mode. In the middle the

Interlaminar mode II: Siding shear Mode. On the right the interlaminar mode III: Scissoring shear Mode.

3.5 Fiber breakage

The ultimate failure of a fiber composite component comes from the breakage of the

fibers. The interface between fiber and matrix transfers the load along the component.

When the load exceeds the strength of the fibers, they break and the load is redistributed

along all the rest of the fibers that were less loaded, with the possibility to start the

breaking process on all the fibers. The fiber breakage process has a statistic behavior

because of the non uniformity of fibers strength among all the fibers,  within the fiber

itself, and also because of the stress redistribution. 

3.6 Void growth and manufacturing defects

In composite materials, more than metals, it is likely to have manufacturing induced

defects.  These  defects  could  be  in  the  fiber  architecture,  for  example,  a  fiber

misalignment or an irregular distribution in the cross section, or fibers that are already

broken; could be in the matrix, for example, voids or excess or  lack of  resin; could be

at the interface between fiber and matrix or plies, such as debonding or delaminations.

Also,  a  manufacturing  defect  could  be  induced  by  machining  the  components  for
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fasteners holes or design cutouts. The voids are virtually found in all types of composite

materials. The formation of a void is induced by manufacturing parameters as vacuum

pressure, cure temperature and cure pressure and also depends on resin viscosity. The

presence of voids has as a consequence a decreasing effect on all material properties.

The bending, transverse and shear properties are the most affected ones. 

4. Delamination and Interlaminar 

Stresses 

The  delaminations  are  one  of  the  most  common  damage  type  for  composite

components.  Delamination  happens  when  the  separating  stress  between  plies

(interlaminar tensile stress ILTS) is larger than its bonding strength (typically the Resin

bonding strength ).  Moreover, the bonding strength between plies is usually one order

smaller than the in-plane strength.

The  principal  effect  of   delamination  is  the  stiffness  and strength  loss,  local  stress

concentrations, local instability under compressive loads.  Under tensile loading, the

presence of  delamination promotes a drop of strength but its size does not significantly

influence the value of the tensile strength  [7]. The  bending properties  are impacted by

delaminations [8]  mainly due to alterations in shear stress profiles  [9]. 

Typical delamination triggers are:

• Free edges

• Holes and exposed surfaces through the thickness 

• Low velocity impacts

• Matrix cracks

• Out of plane joints

• Stress concentrations due to ply drop-off or thick laminate with high geometric

curvatures
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4.1 Free edges

The composite components are designed to face in plane loads, due to their anisotropic

material properties. But even as a consequence of in plane load, a through-the-thickness

normal and shear stress can be particularly concentrated at the traction-free surface in a

composite laminate. These concentrations of stresses occur because of the mismatch of

mechanical properties such as Poisson's ratio between the composite layers [10] . 

Indeed, considering two layers of a lamina with different fiber orientation, under axial

tension, if they are not bonded together, there would be different axial deformation due

to different Poisson ratios. But if these layers are tied together, into the laminate, under

axial  tension,  they  must  have  the  same  axial  strain.  Such  stress  and  strain  state  is

achieved by the interlaminar shear stress  component. In Fig. 4.1 are represented the

stress components acting on two layers (A and B) of a laminate at a free edge. The

layers  have  different  fiber  angle.  The  axial  stress  is  indicated  with  σy  and  the

interlaminar shear stress with τyz  while the interlaminar tensile stress with σz .

Analyzing the layer A near a free edge, it follows that interlaminar shear component τyz

is balanced with axial stress σy. But, in order to satisfy the equilibrium of moments in

the  "YZ"  plane,  the  distribution  of  normal  stress  σz must  be  such  that  there  is  no

resultant force in the z direction [11].

Figure 4.1. Particle of laminate, layer A and B have different fiber orientation
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Herakovic  [12] found that  laminates  with angled  plies  (±θ)   adjacent  to  each other

develop  higher  interlaminar  shear  stresses  at  free  edges.  Moreover,  he  showed  that

interspersing  ±45 degree layers reduces the interlaminar tensile stress at the free edges.

Even  if  there  are  two  adjacent  plies  with  the  same  orientation  is  not  certain  that

delamination will not happen. Indeed,  if there are some plies in a different direction in

the neighborhood of the ones taken into account,  there will be an interface moment

caused by the neighborhood plies anyway [13]. Another parameter that influences the

interlaminar stresses is  the ply thickness,  indeed the thicker  plies tend to encourage

higer interlaminar stresses at free edges.

 

4.2 Holes and exposed surfaces through-the-thickness

Most of the structures made by composite material contain holes for design reasons, 

such as bolted or riveted joints for fastening the composite structure with other 

components, or also manufacturing reasons. The holes are usually machined after 

lamination and cure processes. The occurrence of delamination during machining 

depends on the condition of the tool, the fiber cutting angle on the top laminate layers 

[14], the critical tangential cutting force at which peel-up and the critical thrust force at 

which push-out occurs. The drilling-induced delamination damage usually occurs at the 

hole entry and hole exit [15].

Figure 4.2. Mechanism of drilling induced delamination. (a) peel-up delamination. (b) push-out
delamination [15]
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The holes  not  only  act  as  principal  stress  concentration  but  acting  on  shear  stress

distribution plays an important role on delamination initiation  [16]. Moreover,  holes

contain free edges themselves because of the way they are made.

4.3 Low velocity impacts

Under an impact loading condition, there is a very localized area affected by a high

deformation  gradient.  This  causes  shear  and  normal  stresses  that  can  cause

delamination.  Moreover,  the high compressive load on the front surface means high

tensile stresses on the back surface that can cause damages at the first weak point of the

laminate. The laminate could develop high interlaminar shear stresses and  delamination

or  bending failure (Fig. 4.3) depending on its constraint, if it can be represented by a

short  beam or a long beam respectively.   To be mentioned the behavior  under high

velocity impacts, the laminate acts as rigid and the result is a shear out of the projectile

[17].

Figure 4.3. Impact damage mode of composite material
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4.4 Matrix cracks

The matrix  microcraking,  as  already said,  can  grow through the  ply ending on the

interface between plies and became a crack that separates them causing delamination

(see Fig 4.4). There usually  is a critical crack density that is a function of the composite

structure  and  the  material  properties  after  that  the  laminate  starts  to  develop

delaminations [18]. Furthermore, these cracks  act as stress concentrators  because they

are weak points in the load paths.  Wang and Karihaloo  [19] showed that the stress

concentration is higher when there is a different angle ply of 90 degrees between plies

and minimum with different angle ply of 40 degrees. 

Figure 4.4. Delamination at the layers interface due to matrix crack
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4.5 Out of plane joints

The components made by fiber reinforced plastic usually by design and production 

constraint have the necessity to have a certain number of joints of two different 

typologies: in-plane joints and out-of-plane joints. Typical out-of-plane joints are the tee

ones (see Fig 4.5). The function of an out-of-plane joint is to transmit flexural, shear and

tensile load between two orthogonal sets of panels. The regions that are most 

susceptible to delamination damages are the curved regions of the joint's root [20] [21]. 

Also, due to their particular mechanism of load transfer, theses joints are prone to cause 

interlaminar tensile stresses on the main laminate where they are bonded/ fixed/ jointed.

Figure 4.5. Different typology of out of plane joint in fiber composite component. From Delamination

damage analysis of curved composites subjected to compressive load using cohesive zone modelling,

Raju Raju (2014). Conference: First world Conference on Fracture and Damage Mechanics

(FRACTURE-2014) At: Kottayam, India

. 
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5. State of the art

The delamination issue has been studied since the composite components have been part

of the avant-garde of  engineering design. The capacity to predict or at least provide a

warning about a delamination issue has been the center of multiple tests and studies that

develops in different branches of support for the design process. 

The most direct criteria to check if a delamination is developing is expressed by [22]

σ zz ⩾ T Eq 5.1

Defining x and y as the plane of the lamina, z represents its thickness direction; thus,

σ zz   is the ILTS and T the tensile strength between the layers. While a more complete

secondary  stress  criteria  have  been  developed  by   [23]  and  is  expressed  by  the

equations:

σ zz

T
+
τ xz

2

S 2 +
τyz

2

S 2 ≥1   For ILTS   > 0
Eq. 5.2

τ xz
2

S 2 +
τ yz

2

S 2 ≥1  For ILTS  < 0
Eq. 5.3

Where  τxz  and  τ yz  are the Interlaminar shear stresses (ILSS) and S is the in-plane

shear strength .

Here is an overview of what has been developed to help the design and dimensioning of

fiber composite components.

The principal branches are:

• analytical methods

• numerical methods

• experimental test
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5.1 Analytical methods

A simple technique to analyze symmetric laminates under tension or compression based

on assumed stress distributions using the principle of minimum complementary energy

and the force balance method was presented by Kassapogolou and Lagace  [24] . Later

Kassapogolou  [25] generalized this approach for general unsymmetric laminates under

combined  in-plane  and  out-of-plane  (moment  and  shear)  loads.  The  formulation,

although accurate for  homogeneously anisotropic plates, does not adequately model the

mismatches  in  Poisson's  ratios  and  the  coefficients  of  mutual  influence  that  exist

between different plies in the through thickness direction.

Lu and Liu  [26] developed an  Interlaminar Shear Stress Continuity Theory (ISSCT).

Using this theory it could be possible to determine Interlaminar shear stress directly

from the constitutive equations. The only weakness is that the interlaminar normal stress

could not be determined due to the fact that this theory neglects the deformation through

the thickness. They developed in continuation of ISSCT a so-called Interlayer Shear

Slip Theory. In this theory, they used Hermite cubic shape functions as the interpolation

function for composite layer assembly in the thickness direction. From the results it was

assessed that  this  theory could satisfy the continuity of  both interlaminar  shear  and

normal stress at the composite interfaces. 

Wang  and  Li  [27] used  3D  anisotropic  elasticity  and  the  method  of  separation  of

variables  to  derive  the  equilibrium equations  with  unknown displacements  for  each

cylindrical  lamina  of  a  multilayered  shell  subjected  to  axisymmetrically  distributed

mechanical and thermal load with various end boundary conditions. Then making the

displacements and stress expressions satisfy the boundary conditions at the interfaces of

the plies, they were able to determine the interlaminar stresses exactly.

Connolly  [28] obtained  simplified  equations  for  the  determination  of  interlaminar

normal  stress  based  on the  simplification  of  the  more  general  solution  provided by

Kassapoglou  [25]. The equation takes into account the influence of material properties

and  geometry  on  the  maximum  values  of  normal  interlaminar  stresses  at  layer

interfaces. He  [29] proposed a refined shear deformation laminated shell theory.  In this

theory, the assumption is that the transverse shear strain across two different layers are
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linearly dependent on each other.  However,  this  theory can be applied only to shell

which thickness  is small compared to principal geometric curvature radius. 

 In “Calculating 3D stresses in layered composite plates and shells” Rohwer and Rolfes

[30] used equilibrium conditions to calculate the transverse stresses a posteriori but not

on curved shells.  The main issue with these analytical methods is that they cannot be

easily applied to curved shells.   Matsunaga  [31]  based a method on the arch theory

introducing a global higher order arch theory  and using 3D equations of equilibrium to

predict ILTS in circular arches.  Because of the complexities, analytical solutions for the

prediction of transverse/interlaminar stresses exist for composite laminates with simple

geometry, loading and boundary conditions.

Anyway  in  the  evaluation  of  transverse/interlaminar  stresses,  the  stresses  are  most

commonly  obtained  using  post  processing  technique  by  integrating  the  equilibrium

equations  of  3D  elasticity  rather  than  using  the  constitutive  relations,  as  the  latter

method leads to discontinuities of stresses at the interface of two adjacent layers of a

laminate and thus violates the equilibrium equations.

5.2 Numerical methods 

The  disadvantage  of  the   analytical  methods  consists  of  an  inadequate  local  stress

concentrations evaluation, indeed they are used mostly for simplified geometric cases.

Also, these procedures become less practical when a multilayered laminate is involved

in the evaluation. On the contrary numerical methods can have the possibility to refine

the  mesh  near  relevant  regions  and  can  evaluate  with  dequate  accuracy  complex

geometries  of  multilayered  composite  components.   Numerical  methods  require  the

discretization of  a  component  usually through finite  elements.   The main numerical

approaches are :

1. 2D shell and plates

2. 3D elements

3. enriched shells

4. Virtual Crack Closure Technique (VCCT) and Cohesive Zone Method (CZM)

21



5.2.1  2D shell and plates

The Finite Elements models of composite components usually consist of 2D elements as

plates  and  shells  elements  or  can  be  discretized  with  3D  elements.  Because  of

complexities  involved  in  the  solution  of  three-dimensional  equations  of  elasticity

various  technical  theories  have  been  developed  by  making  suitable  assumptions

concerning the kinematics of deformation or stress state throughout the thickness of the

laminate. These assumptions allow the reduction of a three-dimensional problem to a

two-dimensional problem.

The 2D elements can be modeled as an Equivalent Single Layer ( ESL) as  the classical

laminate theory (CLT), or a first order shear deformation theory (FSDT), but also with

layerwise models (LWM) and individual layer plate theory (ILP). In the CLT there are

many simplifications/ assumptions as the plane stress used to simplify the stress-strain

relations, or the normal of the middle plane of the laminate assumed to remain straight

when the element is deformed. The consequence of this assumption is that the plate or

shell  normal  is  not  deformed  and  no  transverse  shear  strain  is  taken  into  account.

Consequentially the shear stiffness of the element is overestimated with respect to the

actual  component.  This  error  is  called  shear  locking  and  tends  to  give  bending

displacements results that are smaller than they should be. These features of the CLT are

representing the Kirchoff hypothesis for plates and also the Kirchoff-Love hypothesis

for shells  [32]. Furthermore, many theories including the shear effects are developed,

indeed  Whitney  and  Pagano  [33] studied  a  First-order  Shear  Deformation  Theory

(FSDT) for multi-layered anisotropic plates. 

The  FSDT  can  avoid  shear  locking  effect  by  using  reduced  integration,  and  can

calculate in very good agreement with 3D models the Interlaminar shear stresses but it

is  not  able  to  predict  interlaminar  normal  stresses  because  it  still  cannot  take  into

account the warping of the cross section. 

The exact analyses performed by Pagano [33] on the composite plates have indicated 

that the in-plane distortion of the deformed normal depends not only on the laminate 

thickness, but also on the orientation and the degree of orthotropy of the individual 

layers. Therefore, the hypothesis of non-deformable normals, while acceptable for 

isotropic plates and shells, is often quite unacceptable for multi-layered anisotropic 
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plates and shells that have a large ratio of Young's modulus to shear modulus, even if 

they are relatively thin. 

Moreover,  Whitney  [34] showed  that  the shear  deformation  can  significantly affect

gross plate response for highly anisotropic laminates.  Reddy [35] developed a higher-

order shear deformation theory of laminated composite. The theory contains the same

dependent  unknowns  as  in  the  first-order  shear  deformation  theory of  Whitney and

Pagano  [33], but accounts for a parabolic distribution of the transverse shear strains

through the thickness of the plate. This theory predicts the deflections and stresses more

accurately when compared to the first-order theory. 

While  according to  Auricchio and Sacco  [36] the shear  stress profile  is  represented

either by  independent piece-wise quadratic functions in the thickness or by satisfying

the three-dimensional equilibrium equations written in terms of midplane strains and

curvatures. Another theory that is based on FSDT is presented by  Rolfes and Rohwer

and Ballerstaedt  [37] In this study  the  magnitude of the  transverse shear stresses is

determined from the transverse shear forces which are calculated from the material law.

Also Nosier and  Bahrami  [38] presented an analysis  based on the first-order shear

deformation theory (FSDT) and then Robbins and Reddy layerwise theory (LWT) [39]

is  used to  investigate  the edge-effect  interlaminar  stresses.  The CLT and First-order

shear deformation theory (FOST) generally provide an acceptable compromise between

accuracy and economy in predicting the global responses of thin and also relatively thin

composite laminates. But these theories fail to give accurate results for the through-the-

thickness  stress  response  in  regions  of  discontinuity  such  as  cut-outs,  holes,  and

boundaries. 

Moreover,  these  theories  require  shear  correction  coefficients  to  rectify  unrealistic

variations  of  the  shear  strain/stress  through  the  thickness.  Hossain  and   Sinha  and

Sheikh   [40] adopted the  Mixed  Interpolation  of  Tensorial  Components  (MITC)

approach  to  overcome the  effects  of  shear  and  membrane  locking  on the  predicted

structural  response  composite  shell  problems.  The  least-square  weighted  residual

method is applied for the solution of out-of-plane differential  equilibrium equations.

The LWM  and ILP differ from ESLs models by making displacement assumptions for

every  layer.  Obviously,  they  can  provide  more  accurate  results  in  terms  of

displacements and strain fields but are extremely more complicated to implement. The

difference between LWM and ILP consists  in an a  priori  enforced continuity of the
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interlaminar  shear  and  normal  stresses.   Williams  [41] proposed  a  mixed  approach

where ESL and LWM coexist in the same framework.  A review of earlier shell finite

elements which as been developed is given by [42] . 

An eight-noded quadrilateral plate element with five Degrees of freedom (DoF) at each

of the midside and corner nodes was formulated by Hamdallah and Engblom [43] . The

plate  element  developed  includes  shear  effects.  To  analyze  3D  structures,  they

introduced a sixth DoF to represent rotations normal to the plane of the element. They

used the equilibrium equations for calculating the transverse stresses. An interlaminar

stress mixed finite element method based on the local higher-order lamination theory

was presented by Wu and Kuo  [44] to analyze thick symmetric laminated composite

plates.  In their  theory,  the displacement continuity at  the interface between layers is

introduced  into  the  potential  energy  functional  of  the  considered  laminates  using

Lagrange multipliers and these Lagrange multipliers are defined to be the interlaminar

stresses ( shear and normal ones) at the interface between layers. Later Wu and Yen [45]

extended the same formulation to analyze unsymmetrically laminated composite plates.

While Tanov and Tabiei [46] presented an approach to account for the transverse normal

stress distribution through a layered shell thickness. Tornabene  [42] [47] adopted the

First-order Shear Deformation Theory. The generalized strains and stress resultants are

evaluated by applying the Differential Quadrature rule to the generalized displacements

themselves.  The  transverse  shear  and  normal  stress  profiles  through  the  laminate

thickness  are  reconstructed  a  posteriori  by  simply  using  local  three-dimensional

equilibrium  equations.  No  preliminary  recovery  or  regularization  procedure  on  the

extensional  and  flexural  strain  fields  is  needed  when  the  Differential  Quadrature

technique is used. 

5.2.2  3D elements

3D theories,  in  which  each layer  is  treated  as  a  homogeneous  anisotropic  material,

predicts the 3D stress state at the boundaries more accurately than CLT and FOST, but

their storage requirements due to a large number of variables and computer costs make

them impracticable.
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Kim and Hong  [48] used a 16 noded curved isoparametric element without a midside

node in the thickness direction and 48 Degrees of freedom (DoF). Davila and Johnson

[49] studied the  high interlaminar stress at dropped plies in laminates 3D FE models.

Than Schiffer and Tagarielli  [50]  modeled the non-uniformity of the ILT strength by

introducing  discrete  random  fields  of  material  parameters  in  the  simulation.  They

showed there's a statistical toughening effect due to random material properties because

of difficult crack patterns.

5.2.3   Shell/3D elements

For many applications, a full 3D finite element analysis is not cost effective as it needs

large computer core storage and running times in comparison with 2D finite element

analysis. Thus, a 2D/3D global/local finite element method can drastically improve the

efficiency of computerized analysis and provide sizable savings by circumventing the

need to perform expensive analyses near critical regions.

Krueger and O'Brien [51] developed a  shell/3D modeling technique for which a local

three-dimensional solid finite element model is used only in the immediate vicinity of

the  delamination  front.  The  shell/3D  modeling  technique  offers  great  potential  for

reducing the model size because only a relatively small section in the vicinity of the

delamination front needs to be modeled with solid elements. Then Krueger and Minguet

[52] combined a shell/3D modeling technique with the virtual crack closure technique

(VCCT). 

5.3  Failure Criteria: VCCT and CZM

There are some methods used to predict with a certain accuracy composite laminate

failure  due  to  interlaminar  tension  and  shear  stresses  at  discontinuities.  The  failure

criteria are based on  interlaminar fracture mechanics and the calculation of the total
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strain energy release rate, GT, the mode I component due to interlaminar tension, GI, the

mode II component due to interlaminar sliding shear, GII, and the mode III component,

GIII, due to interlaminar scissoring shear. These calculated G components are compared

to interlaminar fracture toughness properties measured over a range from pure mode I

loading to pure mode II loading. 

The  virtual  crack  closure  technique  (VCCT) is  widely used  for  computing  energy

release  rates  based  on  results  from  continuum  (2D)  and  solid  (3D)  finite  element

analyses to supply the mode separation required when using the mixed-mode fracture

criterion. To apply VCCT to a finite element model, a crack or delamination has to be

included in the model as a discrete discontinuity “when a crack extends for a small

amount, the energy it takes to open the crack equals the energy it takes to close the

crack” Krueger [53].

Krueger [53] gives  an overview of the virtual crack closure technique and provides an

Figure 5.1. VCCT working principle

insight into its application. Later he [54] presented necessary modifications for the use

of  the  method  with geometrically  nonlinear  finite  element  analysis  and  corrections

required  for  elements  at  the  crack  tip  with  different  lengths  and  widths.  The  only

negative feature of the VCCT is that it cannot predict the crack initiation, but it can be

used with some stress-based criteria to predict it . Pietropaoli and Riccio [55] proposed

a methodology, implemented in ANSYS © as post-processing routines,  combined with

a finite element model, using both shell and solid elements. 

Tay et al  [56] made a comparison between 2D and 3D FE analyses of  delaminiation

growth in post buckling, the virtual crack closure technique (VCCT) and crack closure

technique (CCT) have been used in the paper.  A  method based on Virtual crack closure

technique and on an extended layerwise method is proposed by Li  [57] to predict the
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delamination and transverse crack growth of laminated composite plates and shells. 

The cohesive zone method (CZM) introduces a fracture mechanism in the analysis by

relying on softening relationships  between traction and separation. The interfaces of the

different  materials  can  be  represented  by  special  elements  (  interface  elements  or

contact elements).  The formulation of a cohesive element for shell analysis  can be used

to simulate the initiation and growth of delaminations. There are basically two types of

cohesive law: 

• An intrinsic cohesive law: Need to know “a priori” the extension of the cohesive

zone

• An extrinsic cohesive law: No need to know anything “a priori” but has a too

high computational effort

 Dàvila  [58] proposed cohesive element for shells that can be used to represent the

propagation of  a  pre-existing delamination,  as  well  as the onset  and propagation of

delamination  in  components  that  do  not  contain  pre-existing  cracks.  While  Li  [59]

proposed a 8-node interface element made by 8 rigid bars plus 8 zero thickness cohesive

elements. Another application of the CZM was investigated by Soroush  [60] using the

commercial  finite  element  code  ABAQUS  on  a  structure  subjected  to  low-velocity

impact.  The  procedure  is  based  on  cohesive  zone  elements  and  surfaces  plus  a

progressive  damage  model.  The  procedure  that  is  proposed  could  be  used  as  a

benchmark method in damage modeling of composite structures under high velocity

impact. Mikulik [61] showed a comparison on FE model made by  shells and cohesive

elements  between  the  VCTT and  the  crack  tip  element  methodology  proposed  by

Davidson [62] . Ye et al [63] proposed a micromechanical model to predict the cohesive

strength of many laminates at various fiber cross-angles.  They aimed to use predicted

cohesive  strength  instead  of  interlaminar  strength.  And  Camanho  [64] proposed  a

mixed-mode decohesion element used at  the interface between solid finite elements.

Wisnom [65] applied cohesive zone interface elements with 3D FE models studying the

effect of dropped plies in composite laminates. 

Gliszczynski  [66] presented a comparison between VCCT and CZM  highlighting the

main features of the CZM that can overcome the VCCT as : the possibility of applying

the method for coarse meshes; convergence of results achieved for both two- and three-

dimensional models;  significantly shorter CPU time; no need of the initial delamination

front assumption.
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5.4  X-FEM and enriched shells

The finite element method (FEM) has been widely used for the linear elastic fracture

analysis of layered structures. However, accurate solutions by the conventional FEM is

computationally expensive since the mesh must conform to the geometry of the crack

and a refinement in the area of the crack tip is generally required.

Shell element models are computationally efficient, and due to a simplified mesh when

compared  to  a  high-fidelity  solid  element  approach,  the  models  are  inherently  less

expensive for an analyst to create and use.  Layer-wise stacking is a common technique

for  using  shell  elements  for  laminate  damage  simulation.  In  such  an  approach,

independent layers of shell elements are defined and connected across ply interfaces in a

laminate. If delamination is placed  at a specific ply interface of interest, a mesh may

consist of two layers of shell elements, one on either side of the ply interface location.

The two layers can be connected by rigid links and delamination growth can be simulated

using the Virtual Crack Closure Technique. 

An inherent disadvantage of the two-layer stacked shell  models is that the delamination

interface must be predefined, thereby limiting the model’s utility as a general predictive

tool. Furthermore, by restricting the delamination to a single ply interface location, multiple

delaminations, or delamination and matrix crack interaction, is not possible. The eXtended

Finite  Element  Method  (XFEM)  [67], introduces  extra  degrees  of  freedom (DoF)  and

enrichment functions to represent the displacement field in the neighborhood of a crack.

The element interpolation functions are enriched to explicitly represent the displacement

fields in the presence of discontinuities, each element is changed to a different formulation

when a crack propagates within its domain.

The advantage of X-FEM is that the finite element mesh can be completely independent of

the morphology of these entities.
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Figure 5.2 .Discretizations of a grain boundary problem for an XFEM/GFEM model with a structured  mesh

and  a FEM model. 

Furthermore, when certain aspects of the solution of the field are known, as for example

the near tip displacement fields for cracks, enrichment functions based on these fields

can be added to the approximation space. An accurate review of X-FEM methods has

been proposed by Belytschko, Gracie and Ventura [68].

McElroy  [69] [70] used an enriched shell  element model to simulate delamination-

migration in a composite laminate. The element enrichment allows for adaptive mesh

fidelity through the thickness where a single element splits into two elements only as

required locally to characterize an evolving delamination process  [71]. At any location

in  the  model  where  the  damage  does  not  occur,  the  original  discretization  remains

unaffected and a single shell element is used to represent the entire laminate thickness

as defined in the beginning of the analysis. Another approach is used by Medikonda and

Tabiei [72] where thickness-stretch shell elements, which utilize a 3-D material model

sub-routine, are used in conjunction with a stress-based approach. These elements are

able  to  predict  quite  realistic  delamination  results  along  with  the  proposed  micro-

mechanical model  for impact simulations considered.  While Cardoso and Yoon  [73]

showed a shell element with an incorporated additional degree of freedom in order to

obtain a linear variation of strain field along thickness direction. 

Hansbo and Hansbo [74] proposed a phantom node method, the main feature is that the

material domain with a potential internal discontinuity can be modeled by one element

with two pairs of nodes, namely real nodes and ghost nodes. And if the stresses on the

element reach the material allowable strength, a discontinuity is automatically modeled

creating two duplicated elements with the help of  the phantom nodes. Each of the two
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elements contains only part of the material domain.

Figure 5.3. PNM work flow 

Chen [75] proposed a Floating node method where the main difference with respect to

the phantom node is that sub elements nodes could be anywhere in the element space,

indeed nodes coordinates are directly the crack boundaries.

De Cicco and Taheri  [76] presented x-Fem enriched element, and they also combined

these elements with cohesive elements. The  results are good when combined, they can

predict also a change of delamination path. They stated that only x-FEM is not enough

accurate, because it overestimates the energy rate. One of the most limiting feature is

the big computational effort.

Demasi et al  [77] presented the Generalized Unified Formulation extended to the case

of Variable Angle Tow composite structures. This formulation gives the  possibility of

tailoring  the  theory/order  to  increase  the  accuracy in  desired  directions/  zones  of  a

component. 
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5.6  Experimental tests

In order to predict the structural behavior of composite components the analyses have to

be supplemented by experimental programs studying failure mechanisms  and stress

patterns. It is necessary that a correct assessment of delamination fracture toughness is

made using some test methods. 

The  short  beam shear  test  method  is  one  of  the  main  common tests  employed  for

interlaminar composites material characterization. It is able to cause Interlaminar shear

failures but not interlaminar tensile failure caused by peel stresses as stated by Davies et

al. [78]. Wilkins et al. [79] proposed  a double cantilever beam specimen to test mode I

delamination.  ASTM D 6415  [80] uses  a  curved-beam configuration  for  measuring

interlaminar  tensile  strength.  While  ASTM D7291 /  D7291M – 07  [71]  sets tensile

forces applied normal to the plane of the composite laminate using adhesively bonded

thick metal end-tabs.  

Then Charrier  et  al.  [82] proposed a  complete  protocol  to  identify the  out-of-plane

tensile strength of specimens composed of unidirectional plies. The protocol is based on

a  four-point  L-shape  specimen  bending  test.  Another  interesting  statement  is  that

Interlaminar  tensile  strength  is  not  dependent  on  the  laminate  sequence  but  highly

dependent  by  laminate  quality,  indeed  thick  specimen  with  less  quality  because  of

manufacturing  difficulties  have  less  interlminar  tensile  strength  respect  to  a  thin

specimen.  On the contrary Makeev et  al.  [83] suggested that  ASTM D 6415 is  not

adequate  to  measure  interlaminar  tensile  strength  because  manufacturing  process  to

produce curved-beam uniform coupons could be challenging and the results may be

coupon related. They tried to couple short beam specimen with digital image correlation

to measure ILTS. 

Jackson and Martin [84] proposed a technique to determine interlaminar tensile strength

still based on a curved specimen (Fig.5.4), but  with a different loading mechanism.

Wisnom et al.  [6] showed a special specimen for combined stress,  the study showed

that the size effect produced by the interlaminar shear stress has a positive effect on the

interlaminar tensile stress due to the smaller volume where the load is applied. Size

effect were also studied by Wisnom and Atkinson [85] developing a tapered tensile test
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specimen to produce failure away from the grips. The size effect was observed by the

decrease in terms of strength of the failure strain with increasing specimen size. Bosia et

al.  [86] compared  experimental  tests  and  numerical  analyses.  They  showed  that

experimental results agree with 3D numerical simulations and don't agree with 2D ESL

shell elements. 

Figure 5.4. curved specimen subjected to tensile loading to induce ILT stress into the laminate. From

Jackson and Martin [84]
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6. Post processing analytical model 

implementation 

The present chapter describes the necessary steps for deriving the interlaminar normal

stresses from the results of a customary FE analysis based on four noded quadrilateral

shell elements; a forced migration to different element technologies has in fact been

evaluated as not viable, especially in the case of complex assemblies.

Paragraph 6.1 describes the retrieval of the shell local curvatures at each element; in

order to avoid the analysis of the element neighborhood topology - a single, isolated

four  noded  element  lacks  in  fact  of  proper  curvature  representation  -  a  method  is

proposed based on the provision of eight-noded counterparts for the element subjected

to  ILTS  analysis;  such  a  second  order  mesh  may  be  straightforwardly  derived  by

modern geometry-aware preprocessors.

Paragraph 6.2 describes  the  radial  equilibrium of  a  doubly curved laminate  angular

section,  which is satisfied only in the presence of normal stress distribution (named

ILTS where tensile), which is usually neglected in the flat laminate model employed in

formulating the four-noded quadrilateral element. 

Paragraph 6.3 casts such an equilibrium relation in a second order differential equation,

and it describes a finite-difference solution method which allows the evaluation of the

ILTS as a function of the element geometric and load-induced curvatures. 

Paragraph  6.4  completes  the  picture  with  a  brief  digression  which  quantifies  the

inconsistency  between  the  curvature-unaware  laminate  theory,  based  on  which  the

global structure response is predicted, and the curvature-aware formulation introduced

in Paragraph 6.2 and employed in deriving the ILTS.

Paragraph 6.5 explores the main variables that influence the ILTS magnitude in curved

laminate members, consisting in particular in the geometric (initial) curvature, and the

level of orthotropy.

Paragraph  6.6  details  the  actual  implementation  of  the  postprocessing  method,

describing the quantities employed in the Matlab code, and some relevant technicalities.
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6.1   Geometric curvature radii estimation techniques 

The geometric curvature radius is calculated on the undeformed shape of the model.

There are many ways to obtain data about the geometry geometric curvature; the easiest

ones are: by extracting data about the curvature from a quadratic 6 or 8 nodes shell

element, or, by evaluating the curvature radius considering linear shell elements and

their  adjacent  neighborhoods.  The  quadratic  shell  element  has  the  vantage  to  map

curved surfaces  in  a  better  way than the  linear  element  and also,  for  isoparametric

elements, the shape functions can describe the element geometry. Their use is usually

limited by the high computational effort. The linear shell elements, instead, have not the

possibility to evaluate the radii of a curved surface because there are only 2 nodes for

each edge, consequentially the element's edges are always straight. Therefore, in case of

linear  shell  elements,  there’s  the  need  to  involve  also  the  elements  adjacent  to  the

reference one. Usually the adjacent elements share an edge with the reference element,

the edge is represented by two consecutive nodes (which are the corner nodes of the

element). In this postprocessing analytical model, quadratic shell elements are used to

evaluate geometric curvature radii. This solution is more robust with respect to the use

of adjacent linear elements  because a too coarse mesh will  end up in a misleading

evaluation of the real geometric curvature radius. Indeed a peak of a parabolic surface

could not be represented with good accuracy by linear elements because could happen

that none of the element nodes are placed near the peak, so during the approximation it

will be skipped. An 8node shell element instead can follow the geometry curvature in a

better way. 

The geometric curvature radii, both principal and secondary, and also the angle between

the  principal  geometric  curvature  and  the  principal  direction  of  the  element  are

calculated for each quadratic element of the model to be analyzed. 

The principal geometric curvature radius will be signed as R1 and the secondary with

R2, and they are placed in the midsection of the 2D shell  element.  The sign of the

geometric curvature Radii depends on the shell FE normal direction that is defined by

the first three nodes with the right-hand rule. In general, the geometric curvature radius
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R is defined positive if the curvature radius vector  R⃗  and element normal vector  n⃗

have the same direction.

R>0   ,    i f   R⃗   ∙   n⃗    >0

R<0   ,   i n   ot h e r   ca s e s

Eq. 6.1

The  subsequent  considerations  are  done  on  4  nodes  shell  elements  for  clarity  of

description, moreover the 3 nodes shell elements are considered as degenerated 4 nodes

shell elements with  one of the 4 nodes collapsed.

 The quadratic shell element nodes are organized as represented in the scheme in Fig.

6.1. The first 4 nodes ( indicated in Fig. 6.1 with G1 to G4) are the ones defining also

the  linear  version  of  the  same element,  so  they are  placed at  the  4  corners  of  the

element. The supplementary nodes ( indicated in fig. 6.1 with G5 to G8) are the mid

side ones created during the conversion from the linear elements ( they are placed onto

the geometry surface). The estimation of the geometric curvature Radii has an important

role in the estimation of the ILTS with this post processing method and has to be as

much precise as possible. 

Figure 6.1. 8 nodes shell element definition

In [87] Kress proposes the geometric curvature radius as defined by
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R=
(1+g ' 2

)
1.5

g ' '

Eq. 6.2

Where g is the representation of a surface and ' denotes the derivative of the function g,

plus the assumption is that the reference surface follows a parabolic function.

In this  study,   two different   methods were  implemented  to  evaluate  the  geometric

curvature radii. One method recalls the Barlow points and the projection of vectors on

the principal planes. The other one follows the differential geometry of surfaces [88].

6.1.1   Geometric curvature Radii estimation: Projection on principal 

planes method

 

For each element the local Cartesian axis system ξ, η, ζ ( see Fig. 6.2) is calculated. The

ζ  axis  is  oriented  along  the  element  normal  while  the  ξ  axis  is  oriented  along  the

bisector to the diagonals d13 (diagonal between G1-G3) and d42 (diagonal betweenG2-

G4).

Figure 6.2. Local axis system

From nodes  coordinate  x,  y,  z,  are  calculated  the  two  vectors  associated  with  the

diagonals, indicated with d13 and d42. The local element ζ vector is perpendicular to

the plane defined by the two diagonals and calculated with eq. 6.3
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ζ=d 13×d 42 Eq. 6.3

Where the two diagonals are defined as:

d 13=G3−G1

d 42=G4−G2

Eq 6.4

The  local  vectors  ξ  and  η  are  defined  by the  bisectors  of  the  diagonals.  The  two

geometric curvature radii are calculated with respect to this local system evaluating the

normal at the 4 Gauss integration points of the 2 X 2 integration scheme.

The  centroid  coordinates  are  evaluated  with  the  quadratic  elements  shell  shape

functions. Furthermore, are defined the Barlow points coordinates. 

ξi : [ - 1

√3
 , 1

√3
 , 1

√3
 , - 1

√3
 ]

ηi : [ - 1

√3
 , - 1

√3
 , 1

√3
 ,  1

√3
 ]

These are the isoparametric coordinates at the 4 Gauss points of the integrated quadratic

element that give the best estimates of stress for an element. For triangle shell elements

these are the full Gauss integration points while for quadrilateral shell elements are the

reduced Gauss points.

 Furthermore,  the  8  parametric  shape  functions  Ni (eq  6.5)  of  the  quadratic

isoparametric shell element and their derivatives respect to ξ and η are defined. 

N 1=  
1
4
(1−ξ )(1−η ) (−ξ−η−1)

N 2=  
1
4
(1+ξ ) (1−η ) (ξ−η−1)

N 3=  
1
4
(1+ξ )(1+η ) (ξ+η−1)

N 4= 
1
4
(1−ξ ) (1+η) (−ξ+η−1)

N 5=  
1
2
(1−ξ2) (1−η)

Eq 6.5
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N 6=  
1
2
(1+ξ )(1−η2 )

N 7= 
1
2
(1−ξ 2) (1+η )   

N 8=  
1
2
(1−ξ )(1−η2)

These shape functions are used to calculate integration points coordinates respect to the

element centroid coordinates. They are multiplied by the distance of each Barlow point

from the element centroid expressed in the global coordinate system of the FE model.

Then these distances are projected on the local system axes to find the coordinates of

the Barlow points. The shape function derivatives are used to calculate the directions, at

each Barlow point, locally tangent to the element surface. The local normal ζi, which is

the most relevant one, at each Barlow point is then calculated as vector product of the

locally tangent vectors ξi, ηi  (Fig. 6.3).

Figure 6.3. Local axis at Barlow point

The rotation angles are calculated between the local normal ζi  of each Barlow point and

the ζ axis of the element. The local normal vector ζ i   is projected on the ζ-η plane by

removing its  component along ξ axis creating an auxiliary vector ζi-projected .  Then is

calculated the rotation angle Rxi for each Barlow point along ξ respect to ζ using the

relationship between sin and the magnitude of the cross product  eq 6.6. 

R x i=sin−1
((ζ×ζ i− pr o j e ct ed )∙ ξ ) Eq. 6.6
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The same procedure is used to calculate the rotation angle Ryi for each Barlow point

projecting the local normal vector ηi on the plane ζ-ξ and using eq 6.6. 

Finally is defined the curvature Cx as the first derivative of the function Rx(ξ,η) along η,

and Cy as the first derivative of the function Ry(ξ,η) along ξ, and the mixed curvature

Cxy as in eq 6.7

C x=  
∂R y ( ξ , η)

∂ ξ

C y= −
∂R x (ξ , η)

∂η

C x y=  
∂ R y (ξ , η)

∂η
−
∂R x ( ξ ,η)

∂ ξ
 

Eq. 6.7

Where the function Rx(ξ,η) is a linear interpolation of the function angle Rx along ξ and

η ( eq 6.8). Same for function Ry(ξ,η)

R x (ξ , η)=  α1 x+α2 y+α3

R y (ξ , η)=   β1 x+ β2 y+ β3

Eq. 6.8

Where α and β are the coefficient vectors to be calculated, x and y are the Barlow points

coordinates  in  the  local  system  ξ,  η,  ζ  .  the  coefficient  vectors  are  calculated  by

resolving the system below:

(A )  ×  (α )=[R x ]

Where matrix A is filled with vector x, y and a vector of ones

(A )=( x y 1)  

The coefficient vectors α and β are calculated by resolving the system with a Moore-

Penrose pseudoinverse matrix of the matrix A according to eq 6.9

α= p se u d i n v (A )×[ R x ]

β=p s eu d i nv ( A)×[R y ]
Eq. 6.9

Finally eq 6.10 could be resolved 

C x=   β1

C y= −   α2

Eq.

6.10
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C x y=   β2−   α1

The curvatures Cx, Cy and Cxy are then used to calculate the principal curvatures C1

and C2 ( where C1>C2) and γ is the angle between the principal curvature direction

with respect to the principal direction of the element. Where C1, C2 and γ are expressed

by eq 6.11

C 1= 
1
2
(  (C x+C y)+√C x2

+C y2
−2C x C y+4 C x y 2

)

C 2=  
1
2
(   (C x+C y )−√C x2

+C y2
−2 C xC y+4 C x y2 )

γ=    
1
2

a t a n2( 2C x y , (C x−C y ))

Eq.

6.11

From the principal curvatures, the geometric curvature radii R1 and R2 are calculated

through the eq. 6.12. Where zoffset  is the offset of the 2D shell element.

R1 =  1/C1+ zoffset

R2 =   1/C2+z offset

Eq.

6.12

6.1.2   Geometric  curvature  Radii  estimation:  differential  geometry

surfaces method

The second method is based on differential geometry.  Taking into account a generic

point P on a surface (constituted by one element in this case as in Fig. 6.4), the vectors 

ξ, η, ζ, are defined as:

ξ =∂P /∂ x

η =∂P /∂ y

ζ =
ξ×η

∥ξ×η∥

Eq.

6.13
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Where x and y define the plane perpendicular to  ζ. 

Figure 6.4. Local axis on generic point P on a surface

Then the shape of the surface is characterized by two structures: the first and the second

fundamental forms. The first fundamental form is called also Metric form. It is possible

to take measurements of the surface  with this form as lengths or area or even angles

between two curves laying on the surface. The first fundamental form I is defined as eq

6.14 and represents the arc element of a regular curve on the surface.

I =g11dx2
+2g12dx dy+g22 dy2 Eq.

6.14

Where gij=P i⋅P j  ( i,j = 1,2) and the subscript represent the derivatives.

Therefore the first fundamental form is defined as the dot product of the infinitesimal

displacement of a curve on the surface. While the second fundamental form II is defined

as the dot product of dP and infinitesimal variation dζ on the surface unit normal ζ. It

can be expressed by eq. 6.15: 

II =−dP⋅dζ=h11dx2
+2h12 dx dy+h22 dy2 Eq.

6.15

 Where hij=P ij⋅ζ  (i,j = 1,2). 

there's a family of planes containing the surface normal ζ at a generic point P, these
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planes cut the surface generating a family of normal section curves C passing through

the point P ( in Fig. 6.5 a representation of one plane cutting the surface X)

Figure 6.5. Surface cut by plane in P point

Assuming t to be the tangent vector of the normal section curve C at P. the curvature K

of  the  surface  is  defined  as  the  curvature  of  the  normal  section  curve  and  can  be

calculated with differential equation ζ ṫ=0  along C ( eq 6.16)

K =−
II
I
=
−(h11+2h12λ+h22λ

2
)

g 11+2g12λ+g22λ
2

Eq.

6.16

Where λ = dy/dx specifies the direction of the curve.

The general rule is that at each point of the surface the curvature K varies together with

each direction  λ. The solution of this problem of eigenvalues and eigenvectors produces

values  of  curvatures  K and directions  λ .The extreme values K1 and K2 are called

principal curvature, they are linked to the roots  λ1 and  λ2. 

det ∣
λ

2
λ 1

g11 g 12 g22

h11 h12 h22
∣= 0

Eq.

6.17

Therefore K1 represent the maximum curvature and K2 the minimum, the directions  λ1

and  λ2 are always orthogonal. The only exception happen at umbilical points, where
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K1=K2 and the principal directions are undefined. Finally can be calculated the angle

between the maximum principal direction and the x direction of the element.

6.2.3    Geometric curvature Radii estimation:  methods comparison

One of the first features to test about the model is the capability to catch the correct

geometric  curvature  radius.  It  has  to  be  able  to  calculate  the  radius  in  favorable

conditions as a fine mesh aligned with the radius  but also non favorable condition as

coarse mesh not aligned with the geometric curvature radii.

The two methods to calculate the principal geometric curvature radii are tested firstly on

a single geometric curvature then on a double geometric curvature FE model. One of the

simplest  tests  is  a  single  geometric  curvature  model  composed by an  arc  of  5  mm

Radius extruded by 10 mm. The geometry is meshed with different mesh sizes. In fig

6.6  the  geometry is  composed  by a  mean   mesh  size  of  0.4  mm aligned  with  the

geometric curvature radii.

Figure 6.6. FE model, representation of a fine mesh

The model should be able to calculate the same geometric curvature radius on a more

coarse mesh as in Fig. 6.7. Where the model as same radius of 5 mm but a mean mesh

size of 1 m aligned with the geometric curvature radii.
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Figure 6.7. FE model, representation of a Coarse mesh 

Here  below in  Fig.  6.8  is  represented  the  comparison  of  the  trending  error  in  the

calculation of the Radius for different mesh sizes with both developed methods. The

results showed good results even with a coarse mesh of the geometry and showed  little

more precision by the projection method. 

Figure 6.8. Error % on radius vs mesh size/Radius Ratio

Thus both methods give good results with a single geometric curvature geometry and an

aligned mesh. The mesh sensitivity performed showed a maximum error of -2,5% in the

calculation of the Radius with a 0.8 ratio between mesh size and radius, which is on the

limit to be called proper mesh.  The second test aims to look at the possibility to  face a

mesh not aligned with the radius as in Fig. 6.9 where is represented an arc of 180° of

radius 5 mm with a random mesh of 1.0  mm mean size and the elements on top of the

surface rotated by 45° (worst case) with respect to the principal curvature radius.
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Figure 6.9. Non aligned mesh model

The difference between the two methods is quite highlighted in this case. Indeed, the

projection method calculates the two geometric curvatures of the highlighted element in

their  local axis configuration even if with good precision,  while the differential  one

catches the real global geometric curvature of the element Fig 6.10.

(a)                                                            (b)

Figure 6.10. Principal  curvature direction comparison. (a): Projection method. (b): Differential method

Since was chosen to perform the analysis in the principal geometric curvature system,

the projection method for the calculation of the geometric curvature radii is abandoned.
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6.2   Radial Equilibrium equation

A description of the doubly curved laminate panel and its equilibrium equation is given

by  Huang   [1] and  utilized  by  Ross  in  [2]. An  infinitesimal  fraction  of  laminate

subdivided into angular segments dθ and dφ  is represented in Fig 6.11, where R1 and

R2 are the principal geometric curvature radii taken to be constant, while θ and φ and R

are the main coordinates. 

Figure 6.11. Infinitesimal fraction of a doubly curved laminate. From Compos Structures, Vol 81,

R.Roos.,G.Kress ,P.Ermanni , A post-processing method for interlaminar normal stresses in doubly curved

laminates, Pages 463-470 , copyright Elsevier (1999). 

The equilibrium equations in the radial direction are [89]:

∂σ r

∂ r
+

1
r

∂ σφ r

∂φ
+

1
r+D

∂ σθ r

∂θ
+

  σ r−σφ

r
+

  σ r−σ θ

r+D
=0  

∂σ φr

∂ r
+

2
r

σφ r+
1

r+D
σ φr+

1
r

∂ σφ

∂φ
+

1
r+D

∂ σφ θ

∂θ
=0

∂σθ r

∂ r
+

1
r

σ θ r+
2

r+D
σ θ r+

1
r

∂ σφ θ

∂φ
+

1
r+D

∂ σθ

∂θ
=   0  

Eq.

6.18
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Where r=R 1+z  and D=R 2−R 1  with z=  (−t
2

,
t
2)  and t is the element thickness. 

To simplify the model maintaining a good accuracy the shear terms are neglected as 

proposed by Kress [87]with the first order theory.  Then the equilibrium equation 6.18 is

reduced to :

∂σ r

∂ r
+

  σ r−σφ

r
+

  σ r−σ θ

r+D
=0    Eq. 6.19

The model gives good results in singly curved laminates [87]  and also quite good 

results in a doubly curved laminates [2]. The flat plate model based on Kirckhoff [32] 

assumptions shows a linear strain distribution:

ε ( z )=ε 0
+z ∙ k   Eq. 6.20

where ε is the strain and z=  (−t
2

,
t
2)  is the through the thickness coordinate. But the

curvature Radii causes a non-linear distribution of the strain through the thickness. The

coordinate z is replaced by the radial coordinate r and the geometric curvature Radii R1

and R2.  Then the  general  deformations  in-plane  of  the  element,  u  and v,  could  be

expressed as

d u=R 1∙ d φ( εφ
0
+(r−R1) k φ)

d v=R 2∙ d θ ( εθ
0
+( r−R 2+D ) k θ)

Eq. 6.21

While the strain is expressed as 

ε φ=
1
r (w+

∂ u
∂φ)

εθ=
1

r+D (w+
∂ v
∂θ )

ε r=
∂w
∂ r

Eq. 6.22

The material law, neglecting the shear terms, becames:
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(
σ φ

σ θ

σ r
)=(

C11 C12 C 13

C21 C 22 C 23

C31 C32 C 33
)(

ε φ

ε θ

εr
)    Eq.

6.23

By replacing eq 6.22 into eq 6.23, the material law can be expressed

σ φ=
C 11

r
 (w+

∂u
∂φ)+

C 12

r+D
 (w+

∂ v
∂ θ )+C13  

∂w
∂ r

σθ=
C 21

r
 (w+

∂u
∂φ)+

C22

r+D
 (w+

∂ v
∂θ )+C23  

∂w
∂ r

σ r=
C13

r
 (w+

∂ u
∂φ)+

C 23

r+D
 (w+

∂ v
∂θ )+C33  

∂w
∂r

Eq. 6.24

Combining the material law eq.6.24 with the equilibrium equation 6.19 is obtained a 

second order differential equation problem as already stated by Ross [2].  

0=C33  
∂w
∂r 2+

∂w
∂r

 C 33  (1
r
+

1
r+D )

+w[−(C11

r 2 )−( C22

(r+D)
2)+(C32+C31)

r (r+D)
−2C12]

+uφ[−(C11

r 2 )+(C31+C21)

r (r+D) ]+vθ[−( C 22

(r+D)
2)+(C 32+C11)

r (r+D) ]
+∂ uφ

∂ r
C31+

∂ vθ
∂(r+D)

C32

Eq. 6.25

Where  the  derivatives  of  the  displacements  along  the  principal  curvatures  can  be

expressed as:

uφ=R1(ε̊φ+(r−R1)k φ)

∂uφ

∂ r
= R1 k φ

vθ=R2 (ε̊θ+(r−R2+D)kθ)

∂vθ

∂ r
= R2 k θ

Eq. 6.26

48



6.3   Numerical resolution of radial equilibrium

The second order differential equation obtained from radial equilibrium equation can be

generally written as

ẅ + α(r) ẇ + β(r )w = P (r )  Eq. 6.27

Where P(r) represents the constant terms.

The solution of this differential equation is found through the finite difference explicit 

method [90]The thickness of the laminate is discretized into a certain number of points 

and   the derivatives of the displacement w are expressed as eq. 6.28. 

ẇ =
w n+1−wn−1

2d

ẅ =
wn+1−2wn+wn−1

d 2

 Eq. 6.28

Where  wn  represent  the  displacement  through-the-thickness  of  each  through-the-

thickness point of the system of equation and  d is the distance between two of the

supporting points. The boundary conditions are represented by the ILTS equal to zero at

the top and the bottom surfaces of the laminate [91].Moreover, if the laminate consists

of  several  plies,  there  are  other  two boundary conditions  at  each  interface  between

different  plies  that  have  to  be  satisfied.  These  additional  boundary  conditions  are

described by the continuity of  the displacement and the stress through all the thickness.

As a consequence, other 2 supporting points  are necessary for each interface between

layers. The additional equations at the interfaces can be expressed by: 

wn=wn+3 Eq. 6.29

σ n(r n)=σn+3(r n+3) Eq. 6.30

The supplementary points are placed outside the ply borders. Considering n the point of

a the layer A, placed on its border with the layer B. There are 2 supplementary points at

this interface, supporting the additional equations, indicated with n+1 and n+2. These
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points are not placed on the border, indeed the point  n+1 is still part of the layer A but

exceed the layer border into the layer B. While the point n+2 is part of the layer B but

exceeds the layer border into the layer A. As shown in Fig 6.11 the point n and n+3  are

placed on the layer interface. The points  n-1 and  n+2 are placed into the layer A, but

one is part of the layer A and the other is part of the layer B. and the points  n+1 and

n+4 are placed into the layer B, but again the point n+1 is part of the layer A while the

point  n+4 is  part  of the layer B. Here below a representation of the layer interface

scheme for the differential system solution:

Figure 6.12. layer interface scheme for finite difference calculation

Then the eq 6.27 can be expressed in terms of displacements wn   of the eq 6.28:

wn−1(−C 33

2d )+w nαn+w n+1(C33

2d )+wn+3(−αn+3)+wn+4(−C33

2d )=βn+3−βn

Eq. 6.31

The through the thickness distribution of the ILTS can be calculated with the eq 6.24.

Moreover,  the  precision  of  the  calculation  will  be  affected  by  the  numbers  of

integration point used. 
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6.4   A comparison of curvature aware and curvature 

unaware laminate theories 

 The Kirckhoff [28] hypotesis of linear strain distribution through-the-thickness for flat

plates  can be expressed by the eq 6.32

ε(z ) = ε
0
+ z⋅k Eq. 6.32

Where z is the coordinate along the thickness t of the shell and is defined as  z=[
−t
2,

t
2
]

and ε0  are the in-plane strains and k the deformative curvatures. In the case of a single

geometric  curvature  plate,  the  geometric  curvature  radius  R  causes  a  non  linear

distribution of the strain through-the-thickness. Indeed the neutral axis, as a result of

deformation, is no more placed in the middle of the thickness but is shifted toward the

intrados face. This condition of the neutral axis causes higher strain around the minor

radius face of the plate. To help describing this particular strain distribution a rational

function Z(z) is introduced in eq 6.33

Z ( z) =
R

(R− z )
Eq. 6.33

Then the strain distribution expressed in eq 6.32 can be combined with eq 6.33

ε(z ) = Z⋅ε0
+ Z⋅z⋅k Eq. 6.34

In the case of R = ∞, the rational function Z(z) = 1 and the eq 6.34 becomes equal to eq 

6.32, a linear distribution of strain.

The  in-  plane  strains  through-the-thickness  in  a  polar  coordinates  system  can  be

expressed as:
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{
εφ
εϑ
γφϑ
} = {

Z⋅εφ
0

Z⋅εϑ
0

Z⋅γφϑ

0 }+ z{
Z⋅κφ

Z⋅κϑ

Z⋅κφϑ
}=[

Z 0 0
0 Z 0
0 0 Z ]({ εφ

0

εϑ
0

γφϑ

0 }+ z{
κφ
κϑ
κφϑ
}) Eq. 6.35

Where  φ and  ϑ  are  the  tangential  directions,  corresponding  to  x,  y  of  a  cartesian

coordinate system. Thus,  following the CLT  [32] assumption which states  that each

layer  of  the  laminate  is  subjected  only  to   planar  stress,  the  material  law  can  be

expressed as:

 
σ=Q̄⋅ε Eq. 6.36

Where the stiffness matrix Q is expressed as:

Q̄=[
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33
] Eq. 6.37

The integration through-the-thickness follows the CLT combining eq 6.36 with eq 6.34 

and the result is the ABD matrix ( I.e stiffness matrix) for a curved laminate.

{N
M }=∑k=1

N

∫
z k−1

zk

σ{1z}dz=∑
k=1

N

Q̄k∫
zk−1

z k

[1 z
z z2]dx{ε

0

k }
Eq. 6.38

Where N is the number of total layers, k is the pointer indicating the current layer, while

z(k) and z(k-1) represent the coordinate along the z axis ( through-the-thickness of the

laminate) the end and the beginning of a layer. Q(k) is the stiffness matrix of the k layer

and it depends on the orientation of the lamina. Thus, the eq 6.38 could be written in its

short form as :

{N
M }=[ Ā B̄

B̄ D̄]⋅{ε
0

κ
}

Eq. 6.39

And A, B and D are 3X3 matrices that for a flat plate are defined as:
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[A , B , D ]=∑
k=1

N

Q̄k [(zk−z k−1) ,
1
2
(zk

2−z k−1
2 ) ,

1
3
( zk

3−zk−1
3 )]

Eq. 6.40

While in case of the curved laminate the A,B,D matrices are updated introducing the

diagonal Z matrix of eq 6.33

[ Āz B̄ z

B̄ z D̄ z]=∑k=1

N

Q̄ k∫
z k−1

zk

[1 z
z z2] Z̄ ( z)dz Eq. 6.41

In  components  made  by fiber  composite  materials,  the  aim  is  usually  to  not  have

flexural-membrane couplings, and it is possible when all the terms of B-matrix are equal

to 0. Besides, the case of the curved laminate, both in symmetric and quasi-isotropic

laminate, there is a flexural-membrane coupling. This coupling is emphasized when the

geometric curvature radius/ laminate thickness (C/LT) ratio tends to 0.5 ( case of a solid

cylinder). While, in the case the  C/Lt ratio tends to ∞, the flexo - membrane   coupling

is equal to 0 ( flat plate case). 

The  stiffness  difference  between  flat  and  curved  laminate  is  investigated  with  an

eigenvalues analysis.

K p⋅V =K c⋅V⋅λ  Eq. 6.42

Where Kp and Kc are the stiffness matrices of the Flat and Curved laminate, V is a

matrix of eigenvectors and λ is the diagonal matrix of eigenvalues. The eigenvectors

that can be found with this equation represent the strain states which make the vectors

of forces and moments of the two stiffness matrices comparable. The eigenvectors point

out the difference between the two stiffness  matrices, the difference is then represented

in  the  eigenvalues  diagonal  matrix.  To  asses  the  difference  between  the  stiffness

matrices of a flat and a curved laminate, a couple of tests are performed with the C/LT

ratio varying between 0.5 and 100. For each test is plotted the maximum and minimum

eigenvalue.

The performed tests are:

• Cloths laminate, all plies at 0°

• Cloths laminate, all plies at 45°
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• Cloths laminate, mixed angle ( 0°/45°/45°/0°)

• Cloths laminate, mixed angle ( 45°/0°/0°/45°)

• Mixed  laminate, mixed angles (45° Cl/0° UD/0° CL/0° UD/45° CL)

Figure 6.13. Stiffness comparison for a 0° cloth laminate. The blue line represents the maximum

eigenvalue and the red ine indicates the minimum eigenvalue for different C/LT ratios.

Figure 6.14. Stiffness comparison for a 45° cloth laminate. The blue line represents the maximum

eigenvalue and the red ine indicates the minimum eigenvalue for different C/LT ratios.
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Figure 6.15. Stiffness comparison for a (0°/45°/45°/0°) cloth laminate. The blue line represents the

maximum eigenvalue and the red ine indicates the minimum eigenvalue for different C/LT ratios.

Figure 6.16. Stiffness comparison for a (45°/0°/0°/45°) cloth laminate. The blue line represents the

maximum eigenvalue and the red ine indicates the minimum eigenvalue for different C/LT ratios.
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Figure 6.17. Stiffness comparison for mixed UD & cloths laminate. The blue line represents the

maximum eigenvalue and the red ine indicates the minimum eigenvalue for different C/LT ratios.

The stiffness difference between the flat and curved laminate stiffness matrices vanishes

when the radius tends to  ∞ as can bee seen in figures above, and is not depending on

laminate stacking sequence. Indeed, several performed tests highlighted this behavior.

While, the difference in stiffness matrix between flat and curve laminate  increases with

a non linear trend with a maximum at the C/LT ratio of 0.5, which is not a physical

limit, indeed, this C/LT ratio is only representing a Cylinder, while a curved geometry

could have even higher thicknesses. The point is that over a certain C/LT ratio  a 2D

shell FE model is no more representative of the component behavior with respect to a

3D model.
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6.5   Laminate features influencing ILTS

 The two main parameters influencing the ILTS magnitude are the geometry curvature /

laminate thickness (C/LT) ratio and the orthotropic level  [92]. The orthotropic level is

defined  as  E1/E3  where  E1  is  the  in-plane  Young's  modulus  along  the  principal

geometric curvature direction; E3 is the out of plane Young's modulus. To investigate

the  behavior  of  the  ILTS varying  the  C/LT ratio  and  the  E1/E3  ratio,  a  numerical

analysis  (  with FEM) is  performed. The laminate considered for the several  tests  is

orthotropic and homogeneous for simplicity. The FE model used to perform the analysis

is  axial  symmetric  for  computational  cost  reasons.  The  model  represents  a  circular

section, thus, only the axial symmetric rectangular portion of it is meshed. The thickness

of the rectangular section is 1mm and the average curvature radius of the geometry is

1mm. The  total width is 10 mm but just half geometry is represented, exploiting the

symmetry plane normal to the cylinder axis. Fig 6.18 illustrates the mesh in white and

the symmetry plane constraints in red.

Figure 6.18. FE axis symmetric model
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The mesh consists of shell 8 nodes elements, and the mesh size is decreased from the

middle of the section to the edges. The model is loaded with a unitary bending moment,

the  application  axis  correspond to  the  revolution  axis,  the  moment  is  applied  by a

thermal gradient. The thermal expansion coefficient in radial and axial direction (X and

Y in Fig. 6.18) are equal to 0, while the one in tangent direction is equal to 1, the aim is

to impose the circular section to expand only in a tangential direction. The imposed

thermal gradient ΔT is unitary. 

The tests are divided into two types:

• E1/E3 ratio variation

• C/LT & E1/E3 ratio variation 

6.5.1 Results: E1/E3 variation

The first group of tests keeps the model geometry constant ( Radius and laminate 

thickness) and the E1/E3 ratio is changed. Fig. 6.19 represents the reference model's 

ILTS distribution through-the-thickness. The results are obtained with software Marc 

[93]

 

Figure 6.19. FE Results:  ILTS through-the-thickness
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The ILTS trend through-the-thickness is equal to 0 at the top and the bottom of the

laminate. The maximum ILTS value is reached near the inner surface of the circular

section. In the subsequent tests the C/LT ratio is fixed and the E1/E3 ratio is varied by

decreasing  the  E3  modulus.   Fig  6.20  reports  the  main  results.  The  ILTS  is  less

influenced by the E1/E3 ratio in a range between 1 and 10, then from 10 to 100 there is

a decrease.  The ILTS with a E1/E3 ratio of 100 is  is around 20% smaller than that

corresponding to an E1/E3 ratio of 10.

Figure 6.20.  Results:  ILTS through-the-thickness

6.5.2 Results: C/LT variation

The group of tests concerning the variation of the geometric curvature/ laminate 

thickness ratio (C/LT) is performed with a Matlab [94] code. The variation range of 

C/LT is between 0.5 and 4, while the E1/E3 ratio is varied too between 1 and 100. In  

Fig. 6.21 are illustrated the results in terms of Maximum ILTS of the analysis 

performed, the full lines refer to the numerical results while the dashed lines refer to the 
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Kedward formulation [92]. For every C/LT ratio tested is represented the ILTS trend 

varying the E1/E3 ratio. The ILTS is less influenced by the E1/E3 ratio with high C/LT 

ratios. The C/LT ratios are indicated with Rt.

Figure 6.21.  Results: Maximum ILTS 
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6.6   Model Implementation

The post processing method for  calculating the ILTS in doubly curved laminates  is

implemented  in  a  self-developed  code  for   MATLAB  [94] ans  also   OCTAVE

[95]software. The code is built to interface with the pre-processing, analysis and post-

processing software which belong to the Hyperworks pack [96]. 

Looking at it as a black box, it collects in input data from the FE model under analysis

and generates as output a file suitable for Hyperview (Altair pack) which includes the

ILTS results of each analyzed element. 

More in particular, once cllected all the relevant information, the in-made code starts a

FOR loop, and, for every element to be analyzed, it calculates the element curvature and

the element's stiffness matrix. Than, before starting the numerical resolution of radial

equilibrium, it projects the strain and stiffness matrices onto the geometric curvature

system. Finally, once calculated the radial displacements, the in-made code generates

the through-the-thickness ILTS trend. The output file could contain the maximum ILTS

value or the complete trend for each analyzed element. The following paragraphs focus

on the required information, the out of plane material properties involved in the stiffness

matrix building and a more detailed elucidation of the reference system employed.

6.6.1 Required information 

The required information are read from the input FE model file and the results file, then

are stored in Map Data Structures, which are a fast key lookup data structures. 

The in-made code collects from the input FE model the following information:

• nodes Ids and coordinates

• elements IDs and nodes

• element material principal orientation

• element properties

• element  normal direction 
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• element offset

• material properties 

• laminate number of plies and staking sequence

• plies extensions

• plies orientations

• plies' materials

 While from the result file, the in-made code collects data about :

• Top and bottom elements strain  matrix

• strain angle

• element laminate thickness

6.6.2 Out of plane materials' properties

The in-made code collects, from the input FE model file, the data about  plies material

properties.  These  properties  are  usually   expressed   specifically  for  shell  elements,

indeed the only terms that  are  used for  the 2D FE model  analysis  are  the in-plane

Young's modulus (E1, E2), Shear modulus (G12), Poisson coefficient (ν12). Where 1 and 2

represent the in-plane main directions and 3 the out of plane direction.

Whereas,  for  the  numerical  resolution  of  the  radial  equilibrium  is  required  a  3D

expression of such material properties, which means, the definition of the out of plane

Young's modulus (E3),  Shear modules (G13, G23),  Poisson coefficients (ν13,  ν23).  Thus,

depending on the availability of these information, the code allows to read (from the FE

model input file) or manually set (a priori)  the out of plane material properties. 

6.6.3 Systems of References

All the evaluations are referred to the principal geometric curvatures  system, so that all

the strain matrix and material stiffness matrix are rotated along that system.

In Fig. 6.22 are represented the main direction that are influencing the calculation:
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• x is the element direction (usually defined by the first two nodes G1 and G2), the

strain are written along this direction

• m is the principal material direction, the reference upon which the orientation of

a ply of a composite laminate is defined

• a is the principal geometric curvature direction and is the reference for the ILTS

evaluation of the analytical model 

• 1 is the ply direction

Furthermore, there are three principal angles among these directions: 

• αmx  the angle of the material respect to the element direction

• α1m  the angle between the ply direction and the material reference direction

• αxa  the  angle  between  the  element  reference  direction  and  the  principal

geometric curvature direction

these angles are used to let the strain matrix and the stiffness matrix rotate toward the

principal geometric curvature direction.

Figure 6.22. Linear 4nodes shell element main directions
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7.   Single geometric curvature FE Test

The post  processing  analytical  method is  tested  on geometries  with  gradually more

complex features and the test mainly consists of a comparison between the results of the

post processing analytical  model ( that is based on the 2D shell FE model results) and a

3D Solid FE model. 

The first  test  is  performed on a single geometric curvature geometry which is  quite

simple, indeed a portion of a cylinder is used as reference .  Once the  geometry is

defined, some features can be modified to perform several test, these are:

• overall Thickness

• ply thicknesses

• ply Stack Sequence

 One of the FE models is described with details shared by all tested models . In this first

case,  a  portion  of  180°  of  a  cylinder  is  generated  by extruding  an  arc.  The  arc  is

centered on [0,0,0] and has a Radius of 5mm placed on the x-y plane,  the extension of

the semicylinder is 10 mm along x. The mesh size is around 0.8 mm and is aligned with

the geometric curvature radius. Since the geometric curvature radius/ mesh size ratio is

0.16, as consequence the radius calculated by the model has a maximum error <0.02%

as previously illustrated.  The mesh consists  of  4nodes  shell  elements  (CQUAD4 in

Optistruct [96]). 

One end of the semi-cylinder  is linked with a rigid link (RBE2) and fixed in all its DoF

while on the other end is applied a Linear Force of  100N along Y+. The model consists

of  260 elements and 294 nodes +2 nodes for the RBE 2. The 4 node shell elements are

used to calculate the elements strain. While the model with 8nodes shells ( CQUAD8 in

Optistruct)  is  used   just  for  the  Radius  calculation with the post  processing model,

indeed this auxiliary model is saved apart. The element's normal is assigned in order to

simulate  a  laminate  growing  toward  the  inside  (  decreasing  Radius)  or  the  outside

(increasing radius) of the structure depending on test case. The laminate stack is created

in Hypermesh and assigned through a composite property to the elements ( PCOMPP in
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Optistruct).  The main direction of the material is assigned to be along X for all the

elements of both the FE models. 

 Here below in Fig. 7.1 the representation of the shell  2D model with its  boundary

conditions and a representation of a 1.5 mm thickness laminate developing toward the

inside. 

Figure 7.1. 2D shell element and its 3D representation

Two  carbon  fiber  reinforced  plastic  composite  material  (CFRP)  are  used  for  the

numerical  tests.  Here  below in  table  1  and table  2  are   shown the  main  structural

properties  for  the  composite  cloth  and  UD  used  for  the  numerical  and  analytical

calculations:

Composite Cloth
E1 50000 MPa ν13 0.3

E2 50000 MPa G12 6000 MPa

E3 6000 MPa G23 4000 MPa

ν12 0.05 G13 4000 MPa

ν23 0.3

Table 1. Composite cloth material properties
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Composite UDs
E1 105000 MPa ν13 0.3

E2 6000 MPa G12 6000 MPa

E3 5000 MPa G23 4000 MPa

ν12 0.05 G13 4000 MPa

ν23 0.3

Table 2. Composite UD material properties

The  3D FE model  is created directly from the 2D 4node shell model. The 2D elements

are extruded along their normal to create 8nodes solid elements (CHEXA in Optistruct),

the height of each element is the layer thickness they represent.

Figure 7.2. 3D solid model elements

 In Fig. 7.2 is shown a rendering of a 1.5 mm overall thickness laminate, where each ply

is 0.3 mm thick so that the 3D model has 5 solid elements of 0.3mm height through the

thickness. The laminate grow inward with respect to the 2D shell elements.

The elements share a solid composite property (PCOMPLS in Optistruct)  where are

indicated  thickness,  material   and  direction  of  each  ply  assembling  the  laminate.

Besides, the material principal direction is assigned to be along X as for the 2D shell

model. 
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7.1  Single  geometric curvature FE Test: Results

The first  result  showed is  a comparison among FE models with different  geometric

curvature Radius/ overall laminate thickness ratio. The models share the same geometric

curvature radius ( R= 5mm) but differ in overall thickness and number of plies. The

laminates are kept simple and as first test three configurations are analyzed:

1. All Cloths at 0°

2. All Cloths at 45°

3. All cloths with alternated orientation 0°/45°

each ply has a  thickness of 0.3mm and laminates  with a geometric curvature radius /

laminate thickness ratio inside the range [10.0 – 0.5] are tested.

7.1.1   Single  geometric curvature FE Test: maximum ILTS Value

Results  show  that  the  postprocessing  analytical  model  tends  to  underestimate  the

maximum value of ILTS of the laminate for each type of simple laminate ( 0° and 45°

cloths).  There is  a  range between 10.0 and 2.0 (of  geometric  curvature  C/LT ratio)

where the error on the maximum ILTS is between 8% and 20% as can be seen in Fig.

7.3. as the ratio become smaller and the laminate has relevant thickness respect to the

geometric curvature radius the underestimation become quite high, but also the concept

of shell become uncomfortable with laminate thicknesses that are so big, indeed the

results in strain and stresses start to have a significant distance from the 3D FE solid

model.
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Figure 7.3. Error % on maximum ILTS value vs radius/thickness ratio

7.1.2    Single  geometric curvature FE Test: maximum ILTS region

Qualitatively, the post processing model  is able to pick the extension of the area with

important amount of ILTS. Indeed as can be seen in Fig. 26 the laminate 1 (with all

cloths at 0°) presents the maximum ILTS at around 90° of the 180° of the arc, and the

area with high ILTS extends for all the length of the semi cylinder. While the laminate 2

(all cloths at 45°), even presenting the maximum at around 90° of the circumference,

shows a more circumscribed area with remarkable ILTS.

In fig 7.4 are shown the ILTS results of the 2 tested laminates for a 2.1 mm thick model

composed by 7 plies of 0.3mm thickness. The 3D model results are ISO cut   to let the

most stressed elements be better visible, because of their position inside the laminate.
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Figure 7.4. ILTS results comparison for a 0° and 45° cloths laminate

7.1.3   Single  geometric curvature FE Test:  ILTS distribution through-

the-thickness  

A comparison between the FE 3D solid model and the post processing analytical model

is  done  to  check  the  precision  to  calculate  the  maximum  ILTS  along  the  overall

thickness of the laminate. The comparison is done on FE models sorted by thickness.

In Fig. 7.5 are shown the results of a 0.9mm thick laminate composed by 3 cloth ply

(0°/0°/0°). The analytical model shows the expected parabolic curve of ILTS along the

laminate  thickness,  with  values  equal  to  0  at  the  borders  and  the  maximum ILTS

reached in the middle of the laminate,  the curve is not symmetric in both analytical and

3D  solid  models,  but  the  inner  ply  (which  is  in  tension)  is  a  bit  more  stressed.
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(a)

                    

(b)

Figure 75. (a): comparison of ILTS trend along thickness. (b): ILTS result for the 3plies 3D solid model 

In Fig 7.6 is represented the comparison between ILTS calculated with a 3D solid model

and  the  one  calculated  with  the  analytical  model.  The  model  has  a  1.5  mm thick

laminate and consists of 5 cloths plies at 0°, with 0.3mm thickness each. The analytical

model underestimates the maximum ILTS of about 15% but the shape of the distribution

agrees  with  the  3D solid  FE  model.  The  parabolic  trend  of  the  ILTS  presents  the

maximum not exactly in the middle but shifted to the inner plies ( 3rd and 4th layer).
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(a)

(b)

Figure 7.6.  (a): comparison of ILTS trend along thickness. (b): ILTS result for the 5plies 3D solid model 

In Fig 7.7 is represented the contour plot of the ILTS calculated by the 3D solid model,

the section is a cut through the middle of the semi cylinder. The FE model representing

a  7  plies  laminate  with  a  total  thickness  of  2.1mm (  2.4  Radius/thickness  ratio)  is

composed by 0.3mm thick cloths plies oriented at 45°. the maximum ILTS lies among

the 4th, 5th and 6th plies as can be seen in Fig 7.7. the analytical model follows the 3D

solid FE model trend with a maximum error of 12% of underestimation.
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(a)

(b)

Figure 7.7.  (a): comparison of ILTS trend along thickness. (b): ILTS result for the 7plies 3D solid model

In the case of a  thick laminate with a  1.7 geometric  curvature /  thickness  ratio  the

maximum error on ILTS increases till around 26% of underestimation. In Fig. 7.8 is

shown the  comparison for  the  ILTS calculation  for  a  10  plies  FE model.  The total

thickness is 3 mm and the laminate is composed by 0.3mm thick plies of cloths at 45° .

the parabolic trend of the ILTS is not symmetric and the maximum value can be found

around the 7th and the ply.
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(a)

(b)

Figure 7.8.  (a): comparison of ILTS trend along thickness. (b): ILTS result for the 10plies 3D solid model

In the end, the most severe FE model that has been tested has as main feature a 0.5

geometric curvature/thickness ratio. The semi cylinder has a radius of 5mm while the

laminate has an overall thickness of 9.3 mm, it consists of 31 ply of 0.3mm thickness

each. The plies are cloth all oriented at 0°. The laminate grows on the outside of the

semi cylinder. This represents the worst case in term of ILTS estimation error, indeed

the analytical model suffers a 38% error with respect to the 3D FE solid model. The

parabolic  trend of  the  ILTS calculated  by the  analytical  model,  despite  the  lack  of
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precision  in  terms  of  magnitude,  agrees  with  the  3D  solid  model.  In  Fig.  7.9  are

represented the two trends of ILTS. The maximum is located among the 7 th , 8th and 9th

plies for both models. 

(a)

(b)

Figure 7.9.  (a): comparison of ILTS trend along thickness. (b) : ILTS result for the 31plies 3D solid

model
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7.1.4   Single  geometric curvature FE Test:  Minimum integration points

One of the features of the analytical model that is customizable is the choice of the

number of integration point for the finite difference calculation. Here are shown the

results of a test with the aim to assess the minimum number of integration points to gain

an acceptable level  of  precision.  The test  was done on a  wide range of  FE models

calculation (around 100 FE models, between single and double geometric curvature),

from ones with a small  radius/ Laminate thickness ratio to the ones also far from reality

. The result can be observed in Fig. 7.10 where the average of all results is plotted. After

a number of around 10 points of integration for each layer there is no more gain in

precision even in laminates with a big amount of layers.

Figure 7.10.  trend of the error of ILTS calculation respect to the number of integration ponts
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7.1.5  Single  geometric curvature FE Test:  Non-aligned mesh

The models presented untill now have in common a mesh aligned with the principal 

geometric curvature radius. The analytical model is tested on a random mesh. The 

baseline geometry is the semi cylinder of 5mm radius previously used. The laminate is 

made of 5 layers mixed [45°/0°] cloth plies of 0.2 mm thickness each, the total thickness

is 1.0 mm and the radius/thickness ratio is 5. The maximum of the ILTS lies around the 

middle of the laminate as can be seen by the 3D solid FE model in Fig. 7.11. The 

maximum ILTS is underestimated by 16 % as for the aligned mesh. The maximum ILTS

area is less similar to the 3D solid model in the non aligned mesh.

                         (a)                                                                                        (b)

Figure 7.11.  Results comparison of ILTS on a non-aligned mesh. (a): the 3D solid model results, (b): the

2D model with the analytical model results.
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7.1.6  Single  geometric curvature FE Test:  Angled anisotropic plies

The post processing method is tested with highly anisotropic laminates. The aim is to

check  the  precision  of  the  analytical  model  in  calculating  the  ILTS  with  extreme

stiffness  matrix.  The  Geometry  is  a  semi  cylinder  of  5  mm  Radius.  The  laminate

thickness is 2.1 mm in total,  and consist of 7 plies of UDs of 0.3 mm thickness each.

Several  tests  are  performed with  all  the UDs angled  by the same angle.  The range

extends from 0° laminate, aligned along X to 90° laminate aligned along Y. Te applied

load is 100 N along Y direction, the principal geometric curvature is along Y too. The

same configuration (  geometry,  overall  thickness,  load,  boundary conditions)  with a

cloth laminate instead,  showed a maximum error on the ILTS calculation of around

-15% with all the cloths plies at 0°. The results of a highly anisotropic laminate with all

UD plies aligned at 0° shows an error of -20% on maximum ILTS calculated by the

analytical model respect to the 3D solid model, and an error of -23% with UD plies at

90°. Moreover, the error becomes bigger as the plies have different angles and are not

perpendicular to the load direction. In Fig 7.12 are shown as results the maximum error

on the ILTS calculation for a wide range of angled UD plies. 

Figure 7.12.  Trend curve of error on maximum ILTS value vs laminate orientation

77

0 10 20 30 40 50 60 70 80 90

-40

-20

0

20

40

60

80

100

120

140

ILTS error % vs ply angle

ply angle [deg]

m
ax

im
u

m
 e

rr
o

r 
%



The test highlights a relevant error when plies are angled, when the plies are angled with

respect to the reference material direction the error on calculating the maximum ILTS 

goes from an underestimation as for the cloths laminate one, to a large overestimation. 

The maximum error is obtained with a 45° angled UD plies,  and it became smaller as 

the plies became to be oriented at 90°, the perpendicular direction to the curvature. 

There are at least three  features of the analytical model that could lead to this 

miscalculation of the ILTS for 45° angled UD plies. One is the absence of the shear 

stress τ12  is the equilibrium equation 17, but as was demonstrated by L. Marchignoli in

“Valutazione numerica della componente normale di tensione in un laminato a doppia 

curvatura”[97] this type of stress does not have a direct influence on the overall ILTS of 

a component. The second feature is the absence of the interlaminar shear terms n the 

equilibrium equation, but as demonstrated by Kress et all [87] these stresses have a 

negligible effect on the overall ILTS calculation. Another feature of the analytical model

is the exclusion of the shear terms from the stiffness matrix in the material law eq 22. 

The point is that in the case of angled plies the stiffness matrix is rotated and the terms 

that connect shear deformation to the principal normal stresses are not equal to 0. So 

that the shear in-plane deformation γ12  plays a role in the finite difference calculation 

and also directly in the calculation of the ILTS. The analytical model is then updated 

with the introduction of the in plane shear deformations.
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8. Enhancing model: introducing in - 
plane deformations

The post processing analytical model is updated with the introduction of the in plane

shear deformation into the calculation for the out of plane displacement through finite

difference and also in the calculation of the ILTS. The eq 6.23 of the material law is

expressed in its full orthotropic material form as in eq 8.1

(
σ φ

σ θ

σr
τφr
τθr
τφθ

)=(
C11 C12 C 13 0 0 C16

C21 C 22 C 23 0 0 C 26

C31 C32 C 33 0 0 C 36

0 0 0 C44 0 0
0 0 0 0 C 55 0

C61 C62 C 63 0 0 C66

)(
εφ

εθ

ε r
γφr
γθr
γφθ

)    Eq. 8.1

When the ply principal direction of orthotropy is   angled the stiffness matrix is rotated

and the terms relating the normal stresses to the in plane shear deformation are not equal

to 0 anymore. The eq 8.1 could be written in a short form as in eq 8.2.

(
σ φ

σ θ

σ r
)=(

C11 C12 C 13 C16

C21 C 22 C 23 C26

C31 C32 C 33 C36
)(

εφ

εθ

ε r
γφθ
)    Eq. 8.2

As consequence the eq 6.18 can be updated into eq 8.3

σ φ=
C 11

r
 (w+

∂u
∂φ)+

C 12

r+D
 (w+

∂ v
∂ θ )+C13  

∂w
∂ r

+C16   γφθ

σθ=
C 21

r
 (w+

∂u
∂φ)+

C22

r+D
 (w+

∂ v
∂θ )+C23  

∂w
∂ r

+C 26  γφθ

Eq. 8.3
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σ r=
C 13

r
 (w+

∂ u
∂φ)+

C 23

r+D
 (w+

∂ v
∂θ )+C33  

∂w
∂r

+C36  γφθ

Where γφθ  can be expressed as in eq 8.4.

γφθ=
1
2r (

1
cosφ

∂ u
∂θ

+vtgφ+
∂v
∂φ)=

1
2r (

∂u
∂θ

+
∂ v
∂φ)=

R1
r
(γ

0
+(r−R1)k γ)

Eq. 8.4

Where the term tangent of φ becames equal to zero

Combining the updated material law (eq 8.2) and the equilibrium equation 8.3 is 

obtained a second order differential equation expressed by eq 8.5

0=C33  
∂w
∂r 2+

∂w
∂r

 C 33  (1
r
+

1
r+D )

+w[−(C11

r 2 )−( C22

(r+D)
2)+(C32+C31)

r (r+D)
−2C12]

+uφ[−(C11

r 2 )+(C31+C21)

r (r+D) ]+vθ[−( C 22

(r+D)
2)+(C 32+C11)

r (r+D) ]
+∂ uφ

∂ r
C31+

∂vθ

∂(r+D)
C32−

C 36

r 2 γφθ

+(C36−C 26)

(r+D)
γφθ+

(C36−C16)

(r )
γφθ+

∂γφθ

∂ r
C36

Eq. 8.5

The second order differential equation now takes into account an the effect of in plane 

shear deformation. The differential equation can be solved through the finite difference 

method with the same features previously illustrated in chapter 6.4.
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9. Enhanced analytical model: test results

The post processing analytical model, with the update regarding the in plane shear terms

is then tested  again on a single geometric curvature geometry and compared to the

previous analytical model and the 3D solid FE model. The range of angled plies goes

from 0° to 90°. In Fig 9.1 are shown the main results in terms of error on maximum

ILTS calculated with the analytical postprocessing model respect to the corresponding

3D FE solid model. Removing the exclusion of the shear terms from the stiffness matrix

has the result of a better behavior of the analytical model. It presents now a consistent

error of maximum ILTS placed in the range -20% / - 13% which is acceptable also

compared  to the big amount of error of the previous version.

Figure 9.1.  Comparison of  error on maximum ILTS value trend vs laminate orientation between the

simple

In  Fig  9.2  are  represented  the  ILTS  distribution  of  three  examples  of  angled  ply

laminate: a 15°, 45° and 70 ° laminate. On the right there are the results obtained from
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the postprocessing analytical model calculated from the 2D FE model results. On the

left there are the results of the 3D FE solid model, these are iso cut to better show the

distribution of the ILTS which is maximum in the inside of the laminate. While the 2D

results show directly the maximum values for each element.

Figure 9.2.  Comparison of  ILTS distribution among three different ply orientation laminate: 15°, 45° and

70°

The distribution of ILTS calculated by the analytical model agrees with the 3D solid

model, indeed the maximum ILTS area is rotated by a certain amount respect to the

principal axes X and Y, it is placed perpendicular to the plies angle. 
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10.  Double geometric curvature FE Test

The post processing analytical model  exhibited the tendency to underestimate the value

of the maximum ILTS but with consistency. It is worth to test it on a double curved

geometry.  The  test  consist  (as  per  the  single  geometric  curvature  geometry)  in  a

comparison  between  the  2D  shell  results  and  the  3D  solid  FE  model  results.  The

ultimate purpose is to test it on a Formula 1 FE model of a Front wing, so the process is

to test the analytical model on geometries with increasing difficult features.

10.1  Double geometric curvature FE Test: Spherical 

Cap 

The first test is performed on a simple double geometric curvature geometry. A spherical

cap where both principal geometric curvature radii R1 and R2 measure 54mm is meshed

with 2D linear shell 4nodes elements. The average mesh size is around 1.5mm and the

mesh is aligned with the two principal geometric curvature radii. The cap chords are not

equal, indeed one measures 31mm along Y and the other 54 mm along X. the edge

nodes of the short side are linked together with two rigid links (RBE2 in Optistruct) as

in Fig. 10.1.

Figure 10.1.  2D FE model representation of the spherical cap.
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The elements have their normal inward and the material reference direction is along the

X axis for all the elements. One rigid link is constrained in all its DoF while on the other

is applied a Force of 100N along x+. the laminate has an overall thickness of 5 mm and

is made by 5 plies of 1mm thickness each. Consequentially the 3D solid model has 5

elements through-the-thickness with the same thickness. The material used to represent

cloths plies was already shown in table 1 as for the material used to represent UD plies

has its material properties shown in table 2. Two types of stacking sequence are tested:

• All 0° cloths

• All 45° cloths

The single geometry curvature FE model was tested also with a combined laminate

[0/45°  cloths].  Since  the  results  obtained by this  kind of  laminate  layup are  in  the

middle between the results of the all 0° cloths and all 45° cloths laminates, it has been

dismissed. The results ( in Fig. 10.2) indicate that the model suffers from edge effects,

but excluding the elements on the edge,  a couple of conclusions can be extracted. The

post processing analytical model is able to catch the ILTS distribution on the geometry

exhibited by the 3D solid FE model.

Figure 10.2.  Comparison of ILTS distribution and values between 3D solid model and 2D FE model with

analytical ILTS calculation

The error on the maximum ILTS is around +10% for a laminate with 0° cloth and -16%

for  a  laminate  of  45°  cloths.  In  fig  10.3  is  shown the  ILTS distribution  along  the
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laminate thickness with the help of the 3D solid model and the comparison with the

analytical model results. The maximum peak is for both models in the middle of the

laminate but  the 3D solid model  presents a  larger  area of high ILTS respect  to  the

analytical model which let the ILTS decrease early.

(a)                                                                                        (b)

Figure 10.3.  (a): ILTS results of 3D model through-the-thickness. (b): comparison between 3D model and

analytical model ILTS results through-the-thickness

10.2  Double geometric curvature FE Test: Double 

elbow tube

The second model presents a more complex geometry, the aim of this test is to challenge

the analytical model with a geometry where ILTS is far from free edges and where it

could also be negative. The geometry is composed of 2 straight tubes plus two curved

90° connections, which resemble a double elbow connection. The radius of all the tubes

is  35mm, and the two straight  portions  of  the geometry are  100mm in  length.  The

straight parts of the geometry extend along X, while the curved part are a rotation of 90°

around Y axis. The geometry is meshed with 2S shell 4nodes elements with an average

size of 5mm for the straight part and 3mm for the curved parts. The mesh in the curved

parts  is  not  aligned  with  the  principal  geometric  curvature  radii.  Both  ends  of  the

geometry are constrained with rigid links (RBE2 in Optistruct), one end is fixed in all
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its DoF and in the other end is applied on the master node of the rigid link a force of

1000N along Z-. The 2D elements have their normal pointed inward the geometry and

the material reference direction is imposed to be in cylindrical coordinates along the

tangent of the tube. The laminate is made by 10 plies of 0.5 mm thickness each, so that

the laminate thickness is 5mm in total. Here below in Fig. 10.4 in shown the 3D FE

solid model generated from the 2D shell model. The shell elements are extruded along

their normal to create the 10  layer laminate, the height of each solid element is 0.5mm,

the material reference direction is imposed to be the same as the 2D shell model. 

                                 (a)                                                                                        (b)

Figure 10.4.  (a): 2D shell FE model representation. (b): 3D layered solid model generated from 2D shell

model.

Two test with a simple laminate are done

• 10 cloth plies at 0°

• 10 cloth plies at 45°

The results of the post processing model are compared to the 3D solid model. The error

on the maximum ILTS value is around 0% for the 0° laminate and -5% for the 45°

laminate. Moreover, the post processing model was able to calculate also negative ILTS

of some area. 
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   (a)                                                                                        (b)

Figure 10.5.  (a): 3D solid FE model results, on top a section cut to highlight the ILTS through-the-

thickness, on bottom the overall ILTS distribution visible only on the external layer. (b): 2D shell model

with ILTS results from analytical model. 

In Fig 10.5 are illustrated on leftside the 3D solid model results of the 45° laminate , on

bottom there is the overall contour of ILTS while on top the section cut detail of the

maximum ILTS area, on right side the results calculated with the post processing model.

The analytical models results  in terms of ILTS distribution agree with the 3D solid

model.

                                (a)                                                                                        (b)

Figure 10.6.  (a): ILTS through-the-thickness of the maximum value. (b): ILTS through-the-thickness of

the minimum value.

In Fig 10.6 is shown a comparison in case of positive completely ILTS and completely

negative ILTS. The maximum value is reached between the 6 th and 7th ply in the 3D

solid model and is in the middle of the laminate for the analytical model.
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10.3  Double geometric curvature FE Test: Change of 

curvature

 

The post processing model showed good results in comparison with the 3D solid FE

model  in  terms of  distribution over  an area,  maximum value and distribution along

thickness of the ILTS for the two simple tested models. It is now verified on a geometry

which main feature is a change of curvature. The geometry is a sweep between two

curves, one is a 40mm radius arc of 150°on the ZY plane, the other is composed by 2

arcs on XZ plane. One has a radius of 92.5mm and the other has a radius of 70mm, the

two radii have opposed verse and between them there's a fillet that guarantees tangent

continuity. This geometry represents a feature that can easily be found in the regular

design of composite components. Because of the improvement in technology, it is easier

to make molds for composite components with very complicated geometries, this has

the effect to push the design to optimal solutions in terms of geometry efficiency.

Figure 10.7.  Double Geometry curvature: construction of the surface
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In Fig. 10.7 are illustrated the 3 base arcs constituting the main geometry on the left. In

blue the R 40mm arc that has been used for the sweep along the intersection of the red R

92.5 arc and the green R 70 mm arc.  On the left  is represented the resultant of the

sweep.

 The mesh is not completely aligned with the principal geometric curvature radii, indeed

one of the short edges has an average mesh size of 2.5mm, the other one of 3.5 mm,

while one of the long edges has a mesh size of 2 mm and the opposite of 3mm in order

to generate a slightly distorted mesh as often happens in components with a certain

complexity.  The  mesh  is  composed  of  linear  shell  elements  (  CQUAD/  CTRIA of

Optistruct).  The long edges are constrained with rigid links (RBE2). One has all its

DoF fixed,  while on the other one is applied a displacement of 5mm along Y+, the

displacements in X and Z are fixed. This geometry is not exempt from free edges effect

but  the  main  point  is  to  test  the  behavior  of  the  analytical  model  on  a  change  of

geometric curvature in a double geometric curvature surface. The elements have the

normal imposed to be in Z-, and the material reference direction is set along Y for all of

them.

Figure 10.8.  2D FE model representation

The 3D solid  model  is  created  extruding the  2D shell  elements  along their  normal
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direction. The material reference direction for the 3D model is set along Y, while the Z

direction  of  each  element  is  along  the  extrusion  direction.  Moreover  are  generated

several  models  with  different  thickness  in  order  to  test  a  wide  range  of  geometric

curvature/ laminate thickness ratio (C/LT ratio). The solid elements are linear CHEXA

in Optistruct, to define the laminate is assigned a PCOMPLS property to all the solid

elements. 

In Fig.  10.9 are  shown 4 different  geometric  curvature/  Laminate Thickness  (C/LT)

models. The ratio is calculated respect to the smallest Radius of the surface, in this care

R = 40mm. 

They represent.

• 33 C/LT ratio, 1.2 mm laminate made by 6x 0.2 mm plies

• 10 C/LT ratio, 4.0 mm laminate made by 10 x 0.4 mm plies

• 5 C/LT ratio, 8.0 mm laminate made by 20 x 0.4 mm plies

• 2 C/LT ratio, 20.0 mm laminate made by 20 x 1 mm plies

Figure 10.9.  Different C/LT ratio illustrated with 3D layered solid model

The first screening test is done on a wide range on C/LT ratio with two simple 

orthotropic laminates:
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• All plies as cloths at 0°

• All plies as cloths at 45°

The cloth material properties are indicated in table 1.

The results obtained with the postprocessing model are compared to the respective 3D

solid FE model in terms of distribution of the ILTS on surface, along the thickness and

the maximum value. Extreme values on free edges are excluded from the comparison as

they are depending on multiple factors.
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Figure 10.10.  Error % on maximum ILTS value calculated by analytical model respect to 3D solid model

results

The  comparison  of  the  maximum  ILTS  value  shows  a  good  agreement  between

analytical and 3D solid model (Fig. 10.10), indeed the analytical postproc model tends

to underestimate the maximum ILTS for a wide range between 5 and 33 radius/laminate

thickness ratio. The underestimation respect to the 3D solid model floats between -10%

and -15%. The opposite for very thick laminates in the range 5-2 geometric curvature

radius/  thickness,  where,  however  the  error  is  around  a  maximum  of  20%  of
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overestimation which could be acceptable.

The ILTS distribution on the component is compared between the models. The  Fig.

10.11 illustrates the ILTS results of a 4 mm laminate with 10 cloths of 0.4mm each of

thickness oriented at 0°. The analytical model (on the right) has quite a good prediction

on the area of interest. The change of geometric curvature seems to not be an issue for

the post processing ILTS calculation. The 3D model ILTS results are cut with an ISO to

better show the most stressed area which is in the middle of the laminate, while the

analytical  model  shows  only the  maximum value  of  each  element  representing  the

surface.

                                (a)                                                                                        (b)

Figure 10.11. 4mm laminate thickness. (a): ILTS results of 3D solid model. (b): 2D Fem model with ILTS

calculated with analytical model.

The biggest error on the maximum ILTS value has been obtained at 2 radius/laminate 

thickness ratio, with a 20mm thickness laminate on the R 40 mm radius. However the 

distribution of ILTS calculated with the post processing model agrees with the 3D solid 

model one as in Fig. 10.12.
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                                (a)                                                                                        (b)

Figure 10.12.  48 mm laminate thickness. (a): ILTS results of 3D solid model. (b): 2D Fem model with

ILTS calculated with analytical model.

Besides, has been done a comparison between the 3D solid model and the analytical 

model for the ability to catch the distribution along the laminate thickness of the ILTS. 

The best agreement of the analytical model respect to the 3D solid model is achieved 

with a C/LT ratio of 10 while the worst correlation has been observed with big 

thicknesses and a C/LT ratio of 2. Indeed in Fig. 10.13 is represented the comparison for

a C/LT ratio of 10, on the left is shown the ILTS distribution of the 3D solid model, on 

the right is illustrated the comparison with the post processing model. The maximum 

ILTS is not centered in the middle of the laminate but is slightly moved toward the top 

of the laminate for both the models.

                                (a)                                                                                        (b)
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Figure 10.13.  4 mm laminate thickness. (a): ILTS results of 3D solid model. (b): through-the-thickness

ILTS comparison

On the contrary there is no such good agreement between the model for a C/LT ratio of 

2 , as shown in Fig. 10.14, and this is also a consequence of a worse correlation in terms

of magnitude. The maximum ILTS should be placed between the 7th and 8th ply as for 

the 3D solid model, while the post processing model calculates it almost in the middle 

of the 20 plies laminate.

       (a)                                                                                        (b)

Figure 10.14.  20 mm laminate thickness. (a): ILTS results of 3D solid model. (b): through-the-thickness

ILTS comparison

The results  obtained with  the  post  processing analytical  model  with  the  orthotropic

material are in good agreement with the 3D solid FE model. The test continues with an

analysis  of  a  more  anisotropic  material.  The  baseline  model  is  the  4mm  laminate

thickness made by 10 plies. The material properties of the UD used to compose the

laminate are shown in table 2, the UDs are all oriented with the same angle to keep the

laminate highly anisotropic.  Moreover, a range of orientation between 0° and 90° is

tested. The error on the maximum ILTS value does not exceed 15%, indeed it floats

between -5% and +15% as displayed in Fig. 10.15.
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Figure 10.15.  error % on maximum ILTS value calculated with analytical model respect to 3D solid

model. Trend of error with different angled laminates.

In Fig. 10.16 can be compared the ILTS result on the 2D FE model calculated with the

postprocessing method against the 3D solid model.  The analytical model is in good

agreement with the 3D solid model regarding the ILTS distribution on the geometry

apart from some isolated elements.

                                (a)                                                                                        (b)

Figure 10.16.  ILTS results: distribution.. (a): ILTS results of 3D solid model. (b): analytical model.
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11. Single geometric curvature FE Test: 
deformative curvature purposely not aligned 
with the principal directions of geometric 
curvature

The ILTS post processing analytical model revealed able to predict the most critical

areas of actual components, with respect to the 3D FE solid model results. Moreover the

maximum ILTS values calculated by the analytical model show a consistent discrepancy

between -20% and -10% for a wide range of radius/ laminate thickness ratios for the

single and double curvature areas of the examined cases. The ILTS through-thickness

distribution is in line with 3D results in models with simple geometries and loading

condition, in which the possible misalignment of the principal directions of strain with

the principal direction of geometric curvature happens to be usually small, or even null

in the ETH [3] test cases. 

A simple test has been developed to investigate such an issue. The aim is to generate a

deformative curvature whose principal directions are 45° inclined with respect to the

geometric  curvature,  in  order  to  maximize  the  angular  discrepancy  between  those

direction. Such a condition is found to be typical of an open, thin-walled (or moderately

thick)  circular cross section (“C” shaped) profile subject to torsion. Also, the lamination

has  been  chosen  in  order  to  maximize  its  unsymmetric  nature  with  respect  to  the

midsurface, and the fiber orientation is choses in order to be highly unsymmetrical with

respect to the principal directions of curvature. 

The following test consists hence in a single curvature geometry derived as the angular

portion of an hollow cylinder with axis along Z direction, whose inner and outer radii

are 0.5 mm and 1.5 mm, respectively - thus obtaining a unit thickness to mean radius

ratio; an axial extension of 3mm and an angular extension of 350° have been employed

in order to let the (limited) boundary layer perturbation to decay before reaching the

central gauge area of the model.

The geometry is meshed along the midsurface with 2D quadrilateral elements whose
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average size is 0.1mm; the mesh is structured and the element edges are aligned with the

principal curvature directions, namely the axial and the circumferential direction. 

The two axial extremities of the profile segment are pointwisely kinematically linked in

order to force a periodic displacement and rotation field, apart from an nonzero imposed

twist;  in  this  way the  warping motion  predicted  by the  De Saint  Venant  torsion  is

allowed, along with any other assessment induced by the absence of symmetry of the

material with respect to the cross sectional plane. Also, the modeled portion is expected

to be representative of an infinitely long profile subject to twist.

The actual implementation consists  in a rigid body RBE2 link,  which kinematically

defines the differential twist rotation of the two ends of the modeled profile portion, and

a set of multi-point constraints (MPC) which impose to each node of the first end of the

profile portion (the highest in the Z axial coordinate) a motion equating the sum of the

motions of the correspondent nodes on the second profile end, and on the rotating rigid

body, i.e. eq 11.1

d=r + e Eq. 11.1

The condition is the following: the displacement and rotations (d) of the Z+ end of

portion nodes is equal to the sum of the RBE (r) plus the   Z- end of portion nodes (e)

displacement and rotations.

The RBE2 is placed next to the mesh, 1 mm shifted in Z+ with respect to the profile

first  end,  and  it  affects  as  many  otherwise  free  (i.e.  not  connected  to  elements)

dependent  nodes  as  the  ones  along  the  cylinder  ends.  The  RBE2  master  node  is

centroidally placed along the beam axis. The actual positioning of the RBE2 within the

model is however unimportant.

Fig 12.1 represents the meshed model with the RBE2, and a representative MPC whose

imposed kinematic relation may be graphically recognized as follows: displacement and

rotations of the green node along the first profile end set equal to the sum of motion of

the blue node along the rotating rigid body and of motion of the red node along the

second profile end. 
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Figure 11.1. 2D shell FE model representation

The master  node of  the  RBE2 is  fixed  in  displacement,  the  X and Y rotations  are

constrained to 0, whereas a unit (1 rad) rotation in Z is locally imposed. The actual twist

rate is 1 radiant over an axial length of 3 mm, but the structural response is linear and all

the quantities may be accordingly scaled.  The elements’ normals are inward oriented,

with a inner shell top surface, and an outer shell bottom surface; material orientation is

defined with respect to the axial Z direction, so that a 0° oriented unidirectional ply is

characterized by axially oriented fibers. 

The laminate is composed by 10 plies with a thickness of 0.1 mm each, the offset is null

so that the shell elements and the associated nodes are positioned along the midsurface. 

The material for all the plies is a UD CFRP composite whose properties are reported in

table 2. The first - innermost - five plies are oriented at +45° and remaining - outermost

-  five  plies  are  oriented  at  -45°.  As  told  before,  the  laminate  is  deliberately  non

symmetric, non balanced, and designed to exhibit the most general membrane/curvature

elastic coupling.  

By radially extruding the quadrilateral elements of the shell model a 3d brick model is

derived, for comparison. To increase the stress prediction capabilities of this  control

model,  triquadratic 20 nodes hexahedral elements have been employed.  A single 3d

brick layer has been employed for each lamina. The RBE2 and the MPC links have been
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adapted to include the newly generated nodes.

A suitable set of positioning constraints have been added to both the models in order to

uniquely position the elastic body, thus inhibiting its residual rigid body motions.

In Fig. 11.2 below the deformed shapes are reported for both the 3D brick and the shell

models. This particular test  loading condition  generates a deforming curvature which is

not aligned with the principal curvature of the geometry. Furthermore the ILTS is in

compression for a half of the laminate and in tension for the other half.

                                (a)                                                                                        (b)

Figure 11.2.  Comparison of  deformation: (a) the 3D solid FE model, (b):  the 2D shell FE model. The

countour plot represents the displacement in Z referenced to the global coordinates.

For the single geometric curvature model tested in Cap. 7.1.1 the error on the maximum

ILTS calculated by the analytical model was previously illustrated to be around -35%/-

38% for a geometry whose geometric curvature radius/ laminate thickness ratio was

unity as in the case under scrutiny. 

In  Fig.  11.3  is  represented  the  ILTS distribution  along  the  laminate  thickness.  The

analytical models ( both the basic model and the enhanced one) are able to predict the

area of the laminate with the maximum peak of ILTS. But are not capable to catch the

ILTS go under the value of 0.0 and become negative.
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        (a)                                                                                        (b)

Figure 11.3.  (a): 3D model ILTS result along thickness, (b): comparison of  ILTS trend through-the-

thickness

The ILTS trend through-the-thickness calculated by the 3D solid model presents half of

the laminate section in compression and half in traction. The basic analytical model,

without  in-plane  shear  deformations  included,  is  not  representing  the  right  trend of

ILTS, thus the curve presents the usual parabolic shape instead of a double curvature.

Moreover,  also the enhanced model is incorrect, the ILTS curve has two peaks, which

are in agreement with the 3D model about the position through the laminate, but both

are positive The  3D solid model, instead, has one peak ( representing the maximum

ILTS) positive and one negative peak, the ILTS curve crosses the 0 at around half of the

laminate thickness. The enhanced analytical model presents a change of curvature at

around  half of the laminate thickness and there is no jump of ILTS, which means the

interface conditions are not violated, but the whole curve is in the positive dominion of

ILTS.  Besides, the basic analytical model overestimates the maximum ILTS by 40%

respect to the 3D solid model while the enhanced analytical model overestimates it by

11%, which is in contrast to the simple tests done previously.
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12.  Postprocessing 3D FE model: an alternative 

to the analytical postprocessing model

The post processing analytical model manifested a relevant issue, the inability to always

catch the ILTS trend through-the-thickness. The problem location could be: inside the

finite difference implementation or also in the definition of the in plane shear stress

γφθ , indeed the basic analytical model is far away from the 3D solid model trend curve

of ILTS while the enhanced model calculates a double curvature, even if all in positive

sign. The finite difference implemented method receives in input the strain from 2D FE

model and provides a through-the-thickness displacement. A simple model, combining

2D results and 3D post processing elements, has been implemented to check the quality

of the finite difference results. The model is here illustrated  on only one element. The

objective of this model is basically to create a FE representation of the finite difference

model, the  difference is the way to submit the input. Thus the combined 2D/3D model

has displacement and rotations ( which are related to strain) as input. 

Starting from the 2D shell FE model,  at the element of interest, a shell 4 node in this

case, a structure representing an angular section of the laminate is created. Four rigid

bars, aligned with the local normal direction, are spawned at the undeformed element

vertices. The extension of the rigid bars is equal to the laminate thickness. RBE2 rigid

links are employed below to embody those rigid bars. Since in this case there is a non

zero curvature, the Bars are not mutually parallel, so they delimit an angular section of

the laminate represented by the shell. Then a column of 8 node brick elements is created

along such angular section as a morphed extrusion of the underlying shell quadrilateral

element. In general,  each layer of the laminate could be represented by one or more

brick element in the column, in this case there is one brick for every layer. The laminate

consists of 10 plies, 5 at -45° and 5 at +45°. The material direction and the material

properties are assigned at  each brick based on the ply it  represents.   In Fig. 12.1 is

illustrated the 3D brick element construction based on the 2D shell finite elements, in
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green are represented the bricks extruded from the quadrilateral shell, which is in gray. 

  

Figure 12.1.  2D/3D model. Original model: In gray 2D shell and RBE2. In green Postprocessing 3D FE

solid elements .

  The assumption at the base of the analytical model is that the angular section of  the

curved laminate maintains straight edges during the deformation. The angular section is

bounded by straight walls and all the deformations depend only on the displacement

along the radius coordinate. Every  node of the brick elements is strung to the rigid bars

and so is guided in its motion. Indeed the brick  nodes on the four edges of the angular

section  are  the  slave  nodes  of  the  four  rigid  links,  while  the  four  nodes  of  the

quadrilateral  element  are  the  masters.  Thus  the  nodes  of  the  bricks  element  have

imposed  rotations  and  imposed  displacements  except  the  displacement  through-the-

thickness.  Furthermore,  not  mandatory,  the  normal  displacements  of  the  four  nodes

pertaining to the same layer boundary may be linked to a common normal displacement

value. Such a constraint reduces the number of actual unknowns matching that of the

finite  difference  procedures.  In  Fig.  12.2  are  highlighted  in  red  the  rigid  links

connecting  the  bricks  nodal  displacements  and  rotation  (  for  the  exception  of  the

through-the-thickness displacement) to the 2D shell ones, indeed the links are keeping

the brick edges straight in line as required by the thick-walled kinematic relations [98].
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Figure 12.2.  FE model. 2D shell and RBE2 in grey. 3D solid elements in green

 A standard finite element solver is called to derive the radial equilibrium configuration

of the brick elements, and hence the ILTS distribution, as function of the imposed rigid

bar roto-translation. There is no rigid body motion as the rigid bars are not mutually

parallel, so the radial motion is elastically constrained. 

Figure 12.3.  ILTS through-the-thickness comparison
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The ILTS through-the-thickness trend of the most stressed element is illustrated in Fig.

12.3. The ILTS results calculated with the 2D/3D global/local model have the same

trend as the 3D solid FE model, indeed the first half of laminate angular section is in

compression while the other half is in traction. The error on maximum ILTS value is

+20% for the 2D/3D global/local model, +40% for the basic analytical model and +11%

for the enhanced analytical model respect to the 3D solid model. Moreover, the error on

the compressive ILTS peak predicted by the 2D/3D global/local model is around 20%

too. This method created to check the analytical model differential equilibrium could

actually be implemented as a post processing method, with all the computational cost

benefits deriving by this type of methods.The present method for retrieving the ILTS at

post-processing  belongs  to  the  wider  family  of  global-local  approaches.  From  the

computational point of view it benefits of the assumed decoupling of the local scale

response (i.e. the radial equilibrium assessment of the hexahedral element row) from the

global  scale  response  (the  shell  element  assembly  which  embodies  the  loaded

component). In particular, since the procedure employs an unmodified shell model as a

starting point, no further numerical cost is added at the global solution stage.The ILTS

calculation procedure involves - for each element subject to this further scrutiny - the

solution of a very frugal FE submodel, which in the representative case of Fig. [XXX il

sigaro] involves only 44 nodes (ten element layers involve eleven layers of nodes, each

of which consists in four nodes; the four Rigid Links control nodes are fully constrained

and hence not counted), whose only active d.o.f. is the radial displacement. Due to the

massive presence of MPCs (MultiPoint Constraint) the system matrix is dense, but still

very tiny. In the proposed example, the matrix solution step at the single element local

stage required 0.04s on a single 2.5GHz Sandy Bridge class CPU core; it is however

expected  that  such a  performance  may be  greatly  increased  with  a  dedicated  small

matrix solver, and some basic optimization. Moreover, the evaluation of ILTS for a set

of elements may be performed in parallel.
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13.  Design application: Ferrari Formula

One Front Wing

The  enhanced  post  processing  analytical  model  is  in  the  end  tested  on  an  actual

component  designed under  strict  constraints  of  stiffness  and strength.  The model  in

question is a Ferrari F1 Front Wing. Because of industrial secrecy, the model is also

tested on a less “attractive” project.  The model is  a Ferrari  F138 properly morphed

Front Wing, the laminates are simplified and the material used are those presented in

table 1 and 2  for all the previous tests. the Leading edge is oriented along X-, while the

width of the wing is along Y direction. In Fig 13.1 is shown the complete model of the

Front wing.

Figure 13.1.  Front Wing Model

The  mesh  consists  of  3D  tetra  elements  (CTETRA in  Optistruct)  for  all  the  solid

components parts as Inserts, hooks, stays,  Cores, glue, and 2D linear shell  elements

( CQUAD and CTRIA in Optistruct) for the carbon fiber composite shells. The average

mesh size is around 1.5 mm in the critical areas and 2.5 mm for the rest of the surfaces.
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The 2D element normal is set inward and the material reference direction is set along Y

direction. The laminate is simplified with respect to the original which is classified, it is

divided in big areas and every area consists of a symmetric laminate made by cloths and

UDs with a ratio UDs/cloths in the range between 0.15 and 3.5 . The cloths plies are set

with a thickness of 0.3mm, while the UDS of 0.15mm. The Main shell has also 2 ribs

running along the width into the second element, these are modeled with T- junctions

between the shell and themselves. The model consists of 1609797 elements and 481828

nodes. The typical loadcase for a front wing is represented by the aerodynamic force at

the  maximum  speed  and  the  stiffness  test  done  to  check  the  legality.  The  most

challenging test involves the aeroloads at maximum speed plus the inertia along Z, in

this case are considered 30G so the total load is around 15 kN. Due to the big amount of

results and the complexity of the FE model, in view of the 3D solid model construction,

is chosen to shrink the area of interest to the root of the second element.  The area

highlighted in red , illustrated in Fig. 13.2, is made by a set of 2D shell elements where

the analysis will be focused, it consists of top and bottom laminate, no ribs, of the area

around Y = 250 mm. this area is particularly interested by a high level of inplane stress,

has  a  double  geometric  curvature with  important  changes  of  Radius  and has  2 ribs

causing stress concentration, that’s why is the perfect candidate to check the ILTS along

the laminate.

Figure 13.2.  In red, the area of interest for ILTS calculation

The results   of the 2D FE model calculated are the stresses for both composite and

solids, strain of the composites, displacements and forces. They are calculated for all the

elements, but the strain required for the post processing analytical model are written in a

file  apart.  The  interested  area  is  converted  into  a  3D  solid  FE  elements.  The  3D
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elements ( CHEXA in Optistruct) are made by extruding the shell elements along their

normal, each layer of the laminate is represented by one brick, and along the laminate

thickness there are as many bricks as the total number of plies. In Fig. 13.3 is shown a

section of the Top extruded laminate. The original 2D shell elements are kept with a

dummy non structural property just to transfer the aerodynamic load that was applied to

them. The 3D solid elements have their normal inward, as the 2D shells elements, and

the material reference direction is set to be along Y. 

Figure 13.3.  3D solid multilayered model section

The 3D solid elements have been created only in the area of interest around Y= 250

mm, which means that the rest of the front wing is still modeled as 2D shell elements.

The interface between 3D solid elements and 2D shell elements consist of a flange, as in

Fig. 13.4 represented in Bordeaux, of a remarkable thickness. It is made directly from

the faces of the 3Dsolid elements located at  the interface. In this way, the 3D solid

elements at the interface are supported in all their DoFs.
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Figure 13.4.  Connection Flange between 2D shell and  3D solid model

The same work around has been done for the Ribs interface, indeed a 2D shell flange

connects the ribs to the 3D solid elements. At least three elements are covered by the

flange to spread the shear load. In Fig. 13.5 the rib’s flange is displayed in blue and is

attached to the 3D solid elements ( in red).

Figure 13.5.  In blue the connection flange  between main laminate and 2D shell ribs

 The 3D solid model is made by 186371 elements and 726574 nodes. Both models are

run with the same number of processors and the run time of the 3D solid model, even if

only a little part of it is really 3D modeled, is 14 times longer than the 2D shell model.

Since the amount of overtime needed by the detailed 3D model respect to the 2D model

is enormous, has been tested a simplified 3D solid FE model.

All the bricks of the along the laminate of the 3d solid model have been shrunk into a

single  solid  8  noded  element  (  CHEXA  in  Optistruct)  with  the  same  property
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( PCOMPLS in optistruct), element normal and material reference direction as the 2d

model. The single solid 3D element model is made by 1638350 elements and 509189

nodes, and the running time respect to the 2D shell model is “only” 3 times longer. In

Fig. 13.6 are compared the 3 FE models in the area of interest, from the left the 2D

linear shell model, in the middle the 3D solid model with an accurate representation of

the laminate along the thickness ( 1 brick for each layer) and on the right the 3D solid

model simplified . 

Figure 13.6.  Area of interest: on the left 2D shell model, in the middle 3D solid multilayered model, on

the right 3D single layer model

13.1  Front Wing FE Test: Results

The first comparison between the three models concerns the stiffness, indeed a 3D brick

model has the intrinsic feature to be more compliant than a shell. The table 3 shows how

significant is the loss of stiffness of the 3D solid model compared to the 2D shell model

with the same applied load ( aerodynamic + 30G of gravity). Even if only a portion of

the front wing is converted to 3D, a big amount of stiffness loss passing from 2D to 3D

is quite justifiable because the area of interest is the “root” of the wing. The 3D solid

single brick model is slightly stiffer than the layered 3D solid model, its compliance is

18% against 22% respect to the 2D shell model.
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Table 3.  Compliance comparison

About what concerns the ILTS calculation of a complex carbon fiber component as a

front wing, the Fig 13.7 illustrates the distribution in the area of interest. On the left

there are the 3d solid models, on top the layered 3D model and on bottom the single

brick model. On the right the 2D shell mesh with the ILTS results calculated with the

post processing analytical model. The results that are shown are normalized. The ILTS

results are divided by the maximum, significant, value, and the thicknesses are divided

by their maximum. 

Figure 13.7.  ILTS result comparison: leftside, top, multilayered 3D model. Left, bottom, single layer 3D

model. Right, 2D shell model with analitycal postprocessing results.

As can be seen, the difference between the two solid models is negligible, although the

most  stressed  area  appears  to  be  more  circumscribed  in  the  single  layer  model.

Moreover the multi layer solid model seems to suffer the checkerboard effect in the area

of the insert where there are RBE2 connecting node to node the laminate and the insert

bonding. The maximum ILTS is present in the top part of the laminate, indeed in Fig 62

the multilayered model is represented without an ISO cut of the results, because the

stresses are high already in the first layer of the laminate. The analytical model is able to

highlight the most stressed area that is the change of geometric curvature between the

Middle  straight  section  and the  curl  of  the  wing.  The  other  stressed  region  that  is
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slightly more outboard seems to be over afflicted by the presence of the ribs respect to

the 3D solid models, indeed there’s a stripe of elements with high ILTS right at the T

connection with the ribs as illustrated in Fig. 11.8.

Figure 13.8.  analytical model ILTS results on2D shell model, distribution of stress and rib influence

Moreover, speaking of through-the-thickness ILTS results, in Fig. 11.9 are represented

the trend curves along the thickness of the most stressed element. The 3D model has a

particular  trend of ILTS, indeed the maximum value is  among the first  plies of the

laminate,  moreover  it  does  not  have  a  parabolic  shape,  but  near  the  bottom of  the

laminate there’s another peak of ILTS. This can be explained in the light of the presence

of the rib right under the considered element, as can be seen in Fig 11.9 on bottom

picture where is  represented the ILTS contour  of the multilayered solid  model.  The

analytical model calculates the ILTS with the usual parabolic trend, the maximum value

is  shifted  toward  the  top  of  the  laminate  but  not  as  the  3D  model  is  suggesting,

additionally  it  is  not  able  to  detect  the  second  peak  of  ILTS  next  to  the  rib.  The

maximum value of ILTS calculated by the analytical model is underestimated by 20%.
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Figure 13.9.  ILTS trend along thickness. Top: comparison between 3D solid model and analytical model.

Bottom: 3D solid model results section cut in maximum stressed area.

The ILTS Results are normalized with its maximum value.

The thickness is normalized with its maximum value 

The enhanced analytical postprocessing method exhibits some difficulties in predicting

the  ILTS distribution,  being  unable  to  observe  the  camel’s  back shape  of  the  ILTS

through-thickness curve. Further work  
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14.  Conclusions

The postprocessing analytical model presented in this study has been developed with the

aim to enrich the results obtainable from a 2D shell FE model, which naturally lacks

the ILTS stress component, since it is based on a plane stress hypothesis. The alternative

option involving a full 3d representation of the laminate is computationally inefficient.

The following results have been developed or revised within the thesis.

• An analysis of an unavoidable source of error in the postprocessing approach to

the ILTS

In deriving the ILTS distribution at a postprocessing stage, based on FE results obtained

through a customary curvature-unaware four noded, quadrilateral shell element model,

some error is expected due to the innate inconsistency of the laminate stiffness matrices

(i.e.  constitutive relations)  between the curvature-aware and curvature-unaware shell

formulations.  Such  an  inconsistency  has  been  quantified  for  some  commonwise

laminates  as  a  function  of  the  curvature  radius  to  thickness  ratio,  and  it  has  been

observed  that  the  curvature-aware  formulation  is  neither  consistently  stiffer,  nor

consistently more compliant than its curvature-unaware counterpart, depending such a

behaviour  on the specific  deformation  mode.  An original  analysis  tool  based on an

eigenvalue analysis has been proposed to quantify the issue.

• Geometric curvature radii estimation techniques:

Two distinct methods have been implemented and compared, and one of them has been

chosen for further development due to the more reliable results it returned for arbitrarily

oriented elements and non structured meshes. Both the method rely on an auxiliary eight
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noded quadrilateral mesh, which may be easily produced by commonly available FE

preprocessors, thus being applicable to each single element regardless of the topology of

its neighborhood.

• Assessment of the ILTS results in single geometric curvature test cases:

A postprocessing procedure proposed in literature (here named basic analytical model)

has been tested under various single geometry curvature test cases, and it was found to

underestimate the maximum ILTS value of about 10÷20% in a wide 2÷10 interval of the

ratio between the  geometric curvature radius and the laminate thickness; the prediction

capabilities  of  such  method  have  been  observed  to  significantly  decrease  for  the

relatively thicker laminates, whereas for moderately thick laminates (with respect to the

curvature radius) the ILTS distribution agrees with the 3D solid model results both in

the  through-thickness  distribution,  and  along  the  component  midsurface.  Such  a

procedure  consistently  underestimates  the  actual  maximum ILTS value  if  compared

with a reference 3d brick model; slightly worse accuracy has been observed in the case

of  unstructured  meshes,  where  the  element  edges  were  not  aligned  with  the  local

principal directions of geometric curvature. It has been however observed that most of

the  test  cases  from the  literature  exhibit  material  and  applied  load  symmetry  with

respect to principal directions of geometric curvature; at this point, the basic analytical

model has been tested on more general cases, thus evidencing further loss in its ILTS

prediction capabilities. An amended version of such a postprocessing procedure, which

also  includes  the  contribution  of  in-plane  shear  deformation  components,  has  been

proposed,  which  appeared  promising.  After  the  consequent  update  of  the  finite

difference implementation, the obtained enhanced analytical model performs acceptably

(less that 20% underestimation of the peak ILTS) even in the case of arbitrarily oriented,

highly anisotropic materials (UD plies).
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• Assessment of the ILTS results in double geometric curvature test cases:

Three  different  double  curvature  test  cases  were  analyzed.  The  enhanced  ILTS

postprocessing procedure returned results comparable with the control 3d brick model.

The ILTS through-thickness peak values are consistently underestimated by 10÷15% in

the 5÷33 geom. curvature radius / laminate thickness ratio interval. In the case of thicker

(or more curved) laminates, where the aforementioned ratio falls below approximately

4, some overestimation is of the peak ILTS value is observed, even though the through-

thickness and the along the surface distributions are similar to their counterpart in the

the 3D control solid models. A specific test has been designed to verify the response of

the postprocessing procedure to bodies showing varying geometric curvature values;

such a test is of particular interest since a constant double curvature condition is not

obtainable on a finite specimen area, but in a few trivial cases. We observed no further

issues  in  ILTS prediction  in  the  presence  of  mild  geometric  curvature  variation.  In

general, double curvature test cases showed an error growing with the angular mismatch

between the principal directions of orthotropy of the material (highly anisotropic UD

plies), and the principal directions of curvature; being the observed error bounded in the

20%  range,  it  was  considered  acceptable  based  on  the  curvature-awareness  model

discrepancies.

• A further test case to verify the postprocessing analytical method with respect to

angular misalignment between principal directions of curvature, and principal

directions of strain.

The test  has  been  developed,  which  was  not  previously considered  in  literature,  to

further investigate the limits of the proposed postprocessing analytical method, both in

the  basic  and in  the  shear  strain  enriched versions.  A single  curvature  geometry is
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employed, with 45° inclined principal directions of material orthotropy and of strain; an

S-shaped ILTS through-thickness distribution, spanning both the compressive and the

tensile  ranges  has  been  obtained  in  the  3d  brick  control  model,  which  was  not

previously analyzed in literature. A substantial failure of the postprocessing analytical

methods was sadly observed in predicting such a behavior; the basic analytical model

returned in fact a single ILTS tractive peak, whereas two peaks were correctly predicted

by the enhanced model, but both again in the tractive range. 

Such a novel test case urged for a redefinition of the ILTS retrieval procedure.

• An alternative to  the analytical  postprocessing model  based on the local  3d

brick representation of an element extracted from the global 2d shell model.

A further technique for retrieving ILTS distribution at the postprocessing stage of a 2D

shell model calculation has been defined from scratch, that returns acceptable results

even in the last test case described above; the plate element nodal displacements and

rotations are sampled in place of the strains, and a dedicated finite element 3D brick

local model is employed, whose radial equilibrium in stretched condition is calculated

by a standard FE solver (vs. a dedicated finite difference procedure). Such a technique

correctly predicts the S-shaped, through-thickness evolution of the ILTS, and it predicts

both the tractive and the compressive peak values with a 20% overestimation error,

which  is  in  line  with  that  induced by the  curvature-awareness  inconsistency of  the

laminate constitutive law for the specific curvature radius to thickness ratio of 1. 

Such  a  local  3D  FE  approach  is  suggested  for  application  in  the  general  case  of

principal directions of strains not aligned with the principal directions of curvature.
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• Application to a Formula One Front wing

The  proposed  enhanced  analytical  method  has  been  benchmarked  on  an  actual

component whose complexity emphasizes the computational cost advantages of a 2D

shell FE model calculation, combined with the proposed post processing analysis. The

maximum ILTS value calculated by the postprocessing procedure underestimates  by

20% the value returned by the control 3D solid model, thus returning a result which is in

line with respect to the previous tests performed on simpler geometries, with the notable

exceptions of the component areas in the proximity of T connections with stiffening or

attachment ribs,  which perturb too sharply the geometry of the shell  midsurface.  In

particular,  the  complex  FE  model  emphasizes  the  inability  of  the  postprocessing

procedure to reliably predict  a through-thickness ILTS camel’s back variation in the

vicinity of the connection to the rib.
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