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Introduction

Experimental evidence shows that road racing motorcycles are often subject
to peculiar stability issues [1], which commonly arise due to the high stresses
that all mechanical parts and systems suffer in this kind of vehicles. These
events generally consist of self-excited vibrations, which involve one or more
elements of the motorcycle. Several studies can be found in the literature
on this subject, dealing with different instability phenomena, e.g. chatter,
weave, wobble, front wheel patter [1, 2, 3]. Each of them can be identified
with a mode of vibration of the motorcycle, with its own typical frequency
and modal shape, which can be reproduced by suitable multibody models.
The aim of this work is to identify the switching mechanisms of some of these
self-excited vibrations, focusing on the in—plane modes of the motorcycle. To
this purpose, novel tools for stability analysis are employed, along with root
loci and time domain simulations, which have a wider documented use in the
literature [4]. In particular, a numerical algorithm is developed for computing
stability maps descending from symbolic algebra multibody models.

In this thesis the two main instability mechanisms that affect the motor-
cycle longitudinal dynamics are studied, the so—called “chatter” of rear wheel
and “patter” of front wheel, both of them consisting of self-excited vibrations
which can arise during heavy braking in straight motion. In both kinds of
motion, the out—of-plane components are negligible, or they are not a neces-
sary condition to the onset of instability [5], hence planar multibody models
are employed, with rigid bodies. The full motorcycle multibody models em-
ployed in this work feature all the relevant moving parts of the vehicle, there-
fore they are suitable to carry on transient manoeuvres in the time domain.
The stability of these models is studied next to modal analysis of reduced
or simplified models with the lowest possible number of degrees of freedom.
These minimal models represent sub—systems of the vehicle, since they are
designed in order to capture the essential characteristics of the specific insta-



bility mechanism under study, taking into account only the elements which
are necessary to the onset of the self-excited vibrations. Taking advantage
of the simplicity of these models, the equations of motion are linearized in
steady—state conditions, and the system matrices are analyzed to highlight
the crucial parameters that can bring the actual vehicle to instability.
Experience of race engineers and riders confirms that in motorcycles all
kinds of instability are always to prevent, since they weaken the vehicle over-
all performance, due to the severe oscillations of the tyre-ground vertical
loads that can arise, causing a loss of grip and making the vehicle harder to
control [6]. The results of the present work give a comprehensive description
of the in—plane instability phenomena of a racing motorcycle, highlighting
the parameters that play a key role in the onset of chatter and patter vi-
brations. In particular, the geometry of the rear (swing-arm) and front
(telescopic fork) suspensions are demonstrated to have major role in the un-
stable phenomena, together with their damping and stiffness. The roles of
the chain transmission and of the structural compliance of the frame and the
forks are also studied. These results can be useful to prevent instability, by
careful design of the motorcycle elements, by the correct choice of stiffness
and damping parameters or by introduction of new devices on the vehicle.



Chapter 1

State of the art

1.1 Stability of single—track vehicles

The stability of single-track vehicles has been a research topic even from the
early start of the motorization era. The first works on this topic date back to
the last years of 19th century, with contribution from McGaw [7] and Whip-
ple [8]. The latter developed a mathematical model that is still the basis of
many research works. In the following decades, the research was pushed by
the need to find solutions to practical issues arising from the increasing speed
and complexity of the contemporary motorcycles. In those years, the practi-
cal implications of the unstable modes of the motorcycle have been studied
mainly by industrial publications, e.g. [9]. In the 70s and 80s the research
on the motorcycle stability saw an acceleration, with major contributions
from Sharp [10], who helped to define the approach of the modern works
on the topic developing a model for the free-control motorcycle. This work
gave a summary of the modes of the motorcycle, highlighting the ones that
can be unstable in constant speed conditions: capsize, weave, wobble, also
clarifying that the wobble is impossible to obtain if tyre sideslip is inhibited.
From this moment on, the research on the motorcycle dynamics expanded in
many different directions. Some authors developed the branch of the rider
control topic, dealing more with handling than stability ([11, 12, 13]). Those
authors that continued to focus on the stability topic, in some cases aban-
doned the idea of rigid bodies, to come to the conclusion that some forms of
frame compliance have an important role in destabilizing the vehicle, as the
torsional compliance does with the wobble mode [14, 15, 16, 17, 18].
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Chapter 1. State of the art

It was not until the last few decades, after the development of more so-
phisticated computer—aided simulation techniques [19], that authors started
dealing with the stability issues of high performance racing motorcycles [20].
The renovated interest in this kind of vehicles led to publishing of works
dealing with stability issues that were unmentioned in the literature before,
e.g. chatter [1].

The latest works on motorcycle dynamics are more focused in finding
computationally efficient ways to simulate the vehicle motion, and the com-
plexity of the models has often made it difficult to find the root cause of the
unstable phenomena of high performance motorcycles. This works focuses on
simplicity, and aims at describing the switching mechanism of instabilities,
showing that some kinds of instability are not necessarily a three dimensional
problem.

1.2 Stability of the motorcycle system

The motorcycle system has been extensively studied in the scientific litera-
ture. Several models have been developed to study the dynamics of motor-
cycle, and more in general of the single-track vehicles. The topic of stability
analysis consists in the study of the eigenvalue problem of the model, hence
in the identification of the modes of the motorcycle. Unlike four-wheeled
vehicles, the single-tracked ones exhibit several modes which can become
unstable.

For an uncontrolled motorcycle model running straight ahead on a flat
surface, the most common mode which can be unstable, especially at low
speed, is the so—called capsize mode [21]. Mathematically, this is an insta-
bility of divergent type (i.e. non-oscillatory); physically, it represents the
vehicle leaning on one side under the influence of gravity. Everyone has
experienced the feeling of this mode when learning to ride a bicycle.

All other well-known motorcycle modes are of oscillatory type; some of
these modes are substantially an in—plane motion, hence the movements of
the motorcycle parts have negligible components in the direction perpendic-
ular to the middle plane of the vehicle. One of the most common of these
modes is the pitching, which consists mainly of the rotation of the sprung
masses about an axis perpendicular to the middle plane. The second is the
bounce mode, where the sprung masses have a primarily vertical motion, and
the suspensions are compressed and extended simultaneously, as opposed to
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Chapter 1. State of the art

the pitching, where they have alternate compression and extension [4]. Fi-
nally, in—plane modes can be identified involving primarily the unsprung
masses, which are often referred to as front hop and rear hop [22]. In these
modes, either the front or rear unsprung mass oscillates vertically, while the
rest of the vehicle remains almost stationary. Not all the motorcycle modes
are in—plane, but some modes involve motions outside of the middle plane
of the vehicle. This is the case of the weave mode [2], where the vehicle has
an oscillatory roll motion and hence moves forward in a swinging movement.
One other notorious anti-symmetrical mode is the wobble [20], which consist
primarily in a steering oscillation, while the rear end of the vehicle stays still
or slightly rolls on the sides.

The described modes are generally present in all kinds of motorcycle,
and they can potentially be harmful for road riders. This work stresses the
attention on other kinds of motion, which appear mainly in high performance
racing motorcycles. Hence, the literature has started being interested in them
only at a later time in history. This work focuses on the chatter and front
wheel patter of the motorcycle, and analyses them in an in—plane approach,
trying to give a physical explanation of these dangerous phenomena.

1.3 Chatter

The academic interest in the chatter phenomenon started around year 2000,
with researches driven mainly by industrial interest in the phenomenon [23].
Various descriptions of the phenomenon were given in the literature; the
more classical ones are mainly the scientific interpretation of the comments
coming directly from the riders’ experience. People in the field of motorcycle
racing used to describe this phenomenon as an oscillation of the rear end
of the vehicle starting during braking or when entering a corner. As many
authors reported, measurements on instrumented vehicles showed that the
frequency of such oscillation usually falls in the 17-22 Hz [1]. The first publi-
cations on the topic focused more on interpretation of the experimental data
[1, 23] than on the investigation of the physical source of the phenomenon,
even though many interesting insights were given. In particular, Cossalter
was probably the first author to catch the essence of the chatter as described
by the experienced workers of the racing industry. He identified the chatter
vibration with that of an unstable mode involving primarily the powertrain
of the motorcycle, and in a following publication [24] he made an extensive
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parametric analysis to show what vehicle characteristics and driving styles
are most influential on the destabilization of this mode. However, the first
article by Cossalter tried to explain the physical source of self excitation of
chatter with an energy balance based on the detachment of the wheel by
the road surface, while later on other authors [25] demonstrated that this
is not a necessary condition for the onset of self excitation. There appears
to be several uncertainties on the definition of chatter, since the first publi-
cations stated it appears when the throttle is closed and the braking phase
has ended, i.e. in cornering, right before the throttle is reopened again. At
the same time, planar models disregarding the lateral dynamics were used
to study the phenomenon [1]. Other authors stated that chatter occurs in
corner entry phase, thus included the braking force in the model they used
to study the phenomenon [26]. At a later time, Sharp [27] allowed a three—
dimensional interpretation of the phenomenon, but disregarded the presence
of brake force applied. His conclusions led him to the discovery of a poten-
tially unstable mode that he called ”chatter”, which in fact is in the frequency
range of the experimentally highlighted phenomenon. Nonetheless, this mode
involved mainly the front frame vibrating in steer and camber, being sub-
stantially related to the torsional frame flexibility, and it affected the rear
end of the motorcycle to a minimum extent; this suggests that a more ap-
propriate name for the mode discovered by Sharp could be ”front chatter”,
whose existence had already been argued by Cossalter in [24], since it in-
volves mainly the front end of the vehicle. On the physical interpretation of
the chatter phenomenon, [28] was the first publication to deal in depth with
the tyre characteristic function, but perhaps the most complete work on the
chatter topic was published by Leonelli et al. in [6]. Here, three models of
increasing complexity were developed to study the chatter phenomenon. In
the most complex model, both the presence of roll angle and braking force
are allowed. This work gave an important contribution to the understanding
of the phenomenon, since it highlighted that its physical source could reside
in the tyre characteristic, in particular in the partial derivative of the lon-
gitudinal force w.r.t. the slip. In this work it was showed that, since the
tyre is operating near its limit adherence when chatter occurs, a negative
value of said partial derivative can be a source of instability. Later works of
the same authors focused on the investigation of this specific aspect, finally
showing that a low value, still positive, of this parameter can be sufficient
to the onset of chatter. In [5] it was pointed out that the negative value
of the partial derivative would give source to a divergent type of instability,
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while the most influential parameter in determining the oscillating instability
that can be associated to chatter is the partial derivative of the longitudinal
ground force with respect to the vertical load.

1.4 Patter of the front wheel

The scientific research on the topic of front wheel patter has produced less
publications than the chatter, even though the interest in this phenomenon
has been developed earlier in history. The patter phenomenon can be de-
scribed as a self-excited oscillation of the front wheel in the vertical and
horizontal directions, associated to oscillation of the wheel angular velocity
in a 7-10 Hz frequency range. This problem can occur especially in high
performances motorcycles during heavy breaking manoeuvres in essentially
straight line motion. The first and, to the author’s knowledge, only article
ever published specifically on front wheel patter dates back to 1983. In [3],
Sharp and Giles employed an approach derived from the previous studies
on axle tramp [29] to address the problem of front wheel patter in a two—
dimensional way. Numerical simulation on the 4 degrees of freedom model
developed led to the conclusion that the stability is improved by mismatch-
ing of the frequency of the forks pivoting on the frame compliance with the
frequency of vertical motion of the wheel on the tyre and suspension springs.
On the contrary, the tyre carcass (torsional) flexibility turned out to play a
negligible role. The research developed in this work was enhanced by the
intuition that the front wheel patter as described and studied by Sharp can
sometimes be the precursor of the locking of the front wheel, since in the rac-
ing sector it has been observed that this phenomenon is often preceded by
vibrations in the 7-10 Hz frequency range. The locking or sudden decelera-
tion of the front wheel can have harmful consequences on the manoeuvrability
of the vehicle and on the rider’s safety, and this triggered the interest in the
topic. It should also been mentioned that another phenomenon has been
described by the name of "patter” in the literature. This also appeared in
1983, in the PhD thesis by Koenen [30]. In this work, the author discovered
a mode than can become unstable in the case of free rolling during cornering
at high roll angles, that originates from the merging of wobble and front hop
due to the lateral dynamics. This phenomenon is significantly different from
the patter as described by Sharp and as studied in this work; nevertheless,
such interactions with lateral components at high roll angles are expected to
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be further modified when considering braking forces, representing a research
subject left open to future investigations.



Chapter 2

Driveline instability

Introduction

The self-excited vibration often referred to as “chatter” is a recurrent phe-
nomenon affecting the dynamics of modern road-racing motorcycles. The
chatter vibration may show up (and it has been indeed observed) on the
most diverse racing motorcycles, from two stroke lightweight machines [1] up
to four stroke production—based vehicles [27], when driven on a dry racetrack
at the limit of tyre adherence.

During the braking phase that anticipates the corner entry, the driver
applies strong front brake force at a moderate roll angle, while the engine
delivers engine brake torque due to closed throttle. In this condition, a
vertical oscillation of the rear unsprung mass may appear, usually with a
frequency between 17 and 22 Hz, and sometimes even as low as 15 Hz. This
vibration can be observed on the angular motion of the driveline as well, and
then it transfers to the front wheel. It keeps on during the latter braking
phase, when the rider is reducing the front brake force while increasing the
roll angle. From the corner apex to the subsequent acceleration, when the
rider starts applying engine torque again, the vibration quickly disappears.

The suspensions are generally not able to dampen this kind of vibra-
tion, which cause severe fluctuations of the tyre-ground vertical load. As a
consequence, when chatter occurs, the confidence of the rider drops: it be-
comes more difficult to estimate the available tyre adherence, thus preventing
from achieving the maximum possible longitudinal and lateral accelerations.
Therefore performance during braking and turning is seriously affected, lead-
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ing to poor lap times, and the risk of crashing is increased.

Several contributions about this topic have been presented in the litera-
ture, but a definitive explanation of the phenomenon has not been given yet.
In fact, a number of authors considered the problem as planar and focused on
the interaction between driveline and rear tyre during braking manoeuvres,
while others analyzed the stability of a three-dimensional motorcycle model
during steady state cornering manoeuvres.

More precisely, Tezuka et al. [23] showed how an out—of-plane mode
related to lateral and radial deformability of tyres may become unstable
when increasing the cornering effort in steering pad manoeuvres. Sharp [27]
demonstrated that the frame lateral and torsional flexibilities may give rise
to an out—of-plane unstable mode in a frequency range close to the chatter
one. On the other hand, Cossalter et al. [1, 24, 31] found that the driveline
mode can become unstable during a straight running braking manoeuvre,
due to interaction between chain and rear tyre when the latter loses contact
with the track surface. Finally, in [25, 5] it has been shown how the actual
values assumed by the rear tyre slip stiffness during a braking manoeuvre
may yield instability in the driveline mode of a simplified planar model.

Starting from these results, in this study a planar (2D) model is consid-
ered, in order to analyze the influence of the tyre characteristic parameters on
the stability of the driveline mode of a four stroke racing motorcycle. The sta-
bility is studied by means of both time domain simulations and frozen—time
eigenvalue analysis. In order to extend the validity of eigenvalue analysis to
transient, time—varying conditions, specific stationary braking manoeuvres
are considered, making it possible to obtain stability maps of the model with
respect to the tyre characteristic parameters.

The analysis of the above described phenomenon will be carried out in the
following sections as follows. Sections 2.1 and 2.2 provide an overview of the
vehicle model as long as a description of the corresponding vibration modes
and related modal shapes. In Section 2.3 a braking manoeuvre measured on
an instrumented test vehicle is simulated in the time domain, discussing the
arising self-excited vibration. Section 2.4 describes a possible explanatory
driving mechanism for the observed self-excited phenomenon. In Section
2.5 the behaviour of the time domain simulation is compared in terms of
stability with the results coming from a corresponding frozen—time eigenvalue
analysis, and a specific stationary manoeuvre is introduced. In Section 2.6,
eigenvalue analysis is applied to the time-invariant system, and stability
maps are drawn. Finally, in Section 2.7, the results of the analysis of the full
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non-linear model are compared and discussed with respect to those of the
simplified linear 2 dofs model presented in [5].

2.1 Model description

A two—dimensional multibody motorcycle model is adopted, featuring pla-
nar rigid-ring tyres with Magic Formula (MF), chain transmission for both
braking and traction phases, and full drivetrain inertia. A brief description
of the model is given in this section, while a more detailed explanation is
found in Appendix A, from Section A.1.1 to A.1.11.

The model, as sketched in Figure A.1, consists of eleven rigid bodies:
main frame (including rider), swingarm, upper front assembly, lower front
assembly, front and rear rims, front and rear tyre belts, and three bodies
modelling the rotating inertias of crankshaft, main gearbox shaft (includ-
ing clutch) and secondary gearbox shaft. The rider is considered fixed with
respect to the main frame, in a braking configuration: the center of grav-
ity (CoG) of the suspended mass and the aerodynamic coefficients are set
accordingly.

The motorcycle geometry is described by means of three fixed parameters:
the swingarm length [, the frame length [, and the front fork offset ;.
The motorcycle internal configuration can be defined by means of two time
dependent variables: the pitch angle a of the swingarm and the pitch angle
p of the frame line (correspondent to the actual caster angle), both defined
with respect to the inertial reference system. The motorcycle kinematics are
derived in a planar, {—forward, n—down reference system.

The front suspension elastic force is expressed as a function of hy (geo-
metric fork extension), by means of a tri-linear spring characteristic (mod-
elling the main spring, the bottom—out bumper and the top-out spring). A
nonlinear damping characteristic is also considered. The rear suspension is
modelled with a non-linear torsional spring—damper system, on the basis of
the relative angular displacement ( between the frame line and the swingarm
(¢ = p— ). Tri-linear spring and nonlinear damper characteristics are con-
sidered as well. The adopted characteristics for the front and rear dampers
are reported in the appendix at Section A.1.7.

A standard rigid-ring model reduced in the wheel midplane generally
presents three dofs: radial, longitudinal and torsional deformations. In the
present study only the radial deformations Sy, 3, are considered: this allows

11
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Figure 2.1: Schematic of the motorcycle model.

to obtain a more precise estimate of the tyre hop frequencies and the re-
lated modal shapes, while ensuring the correct overall tyre deformability. In
fact, the rigid—ring torsional and longitudinal deformations may be neglected,
since their associated stiffness (very high for road racing tyres) makes the con-
tribution of the related modes negligible in the frequency range of interest.
For the same reason, also the tyre relaxations have been neglected, due to
the very low value of the associated relaxation lengths.

The actual tyre slip stiffness C, = % as well as (), = % are evalu-
ated starting from the tyre force F¢, using the well-known Mangic Formula
approach [32]. In the proposed planar model, only the pure longitudinal tyre
force F¢ has to be considered. According to MF 6.2, its general expression
reads:

F¢ = Dsin(C arctan(Bk — E(Bk — arctan(Bk)))) (2.1)

where the slip coefficient x is evaluated using experimentally measured values
for the tyre rolling radius as a function of the forward speed of the vehicle (as
opposed to [24, 31] where the rolling radius is considered to be equal to the
tyre deformed radius). In particular, coefficients B, C, D take into account

12
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Figure 2.2: Schematic of the chain transmission model.

the dependency of the longitudinal force with the vertical load acting on
the contact patch. Parameter D sets the maximum grip available, while the
product BC'D expresses the slope of the characteristic curve at the origin, in
the form (considering unit scaling factors):

oF,
Kf = a_//j - BC‘D = Fn(mel _’_pKJJZAFn)epKZSAF" (22)
k=0
where
F, — F,
AF, = (Fy — Fip) (2.3)
Fno

A quadratic as well as an exponential dependency on F, is introduced by
parameters pr.o and pg.3, whose effects will be shown in Section 2.4.

The adopted chain transmission model derives from the one presented in
[25]. A schematic is presented in Figure 2.2, and a more extensive description
of the chain model is given in Appendix A.1.11.

The chain force constitutive equation is based on a spring—damper system
in parallel (Kelvin—Voigt). For this application, particular attention is needed
when assessing the structural parameters of the transmission model, since
it has been found that the associated mode may become unstable causing
the chatter phenomenon [24, 31]. As a consequence, the total stiffness of
the spring k. is evaluated taking into account the series composed by the
chain (subscript ¢) and the sprocket torsional shock absorber (subscript ws),
according to:

1 72\ !
b = [ — + Tws 2.4
tot (kc + kws) (2.4)
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Table 2.1: Degrees of freedom of the proposed motorcycle model.

’ \ Name \ DoF ‘
1 13 Pivot longitudinal displacement
2 I Frame line pitch
3 @ Swing arm pitch
4 0. Rear wheel angular displacement
5 0, Pinion angular displacement
6 0, Front wheel angular displacement
7 T Rear wheel deformed radius
8 Ty Front wheel deformed radius
9 Br Rear rim-ring displacement
10 By Front rim-ring displacement

The damping in the transmission may be assumed entirely due to the
sprocket torsional absorber (considered linear), that is disregarding the in-
ternal damping of the chain. Hence the transmission damping c;,; can be
expressed as:

Cuws
Ctot — T (25)

The degrees of freedom of the proposed model are described in Table
2.1. The equations of motion (EoMs) are obtained symbolically, by means
of an open—source multibody library developed in Maple. The kinematic
description makes it possible to evaluate the Lagrangian function L and to
write the EoMs as:

M(q)d = —f(q,q) (2.6)

where M(q) denotes the mass matrix of the system and f(q,q) a vector
containing all the terms proportional to displacements and velocities.

2.2 Model linearization

The system can be linearized considering a Taylor expansion of the EoMs for
a selected configuration {qo, o} as:

. £, . £,
M G+ 2| g4 O
dq;

.q4=0 2.
w9l t 5, a (2.7)

0,90

0,90

14
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where q = q — qp. It can be noted that the second and third terms are the
damping and stiffness matrices of the system:

of;
9q;

Of,;

; K(q())ém) =

C(q07q0) = ]
q0,40 Qi

(2.8)

0,40

The modal response is then estimated by numerically solving the associ-
ated generalized eigenvalue problem. In the Duncan state-space representa-
tion, the linearized EoMs become:

[]{[5 &g} e

A B

and the related eigenproblem reads:
(sA+B)y=0 (2.10)

where s is the Laplace variable.

In order to describe the natural modes of the planar vehicle model, a se-
ries of constant speed manoeuvres are considered. The associated eigenvalues
are shown in the root locus of Figure 2.3, where four modes can be identi-
fied: driveline, rear and front hop, bounce. Due to the suspension damping
parameters chosen, the pitch mode results over-damped. Moreover, the two
modes related to the rigid-ring radial deformations are located outside of the
frequency range of interest (namely near 60 Hz). It is also noted that out
of plane modes, such as weave and wobble, cannot be simulated with the
adopted model since it does not feature neither roll nor steering dofs. Since
all the eigenvalues of the time—invariant system have negative real part, the
system shows asymptotically stable behaviour.

The increase with speed in both the real and the imaginary parts of the
driveline eigenvalues can be explained considering the linearized expression
of the rear tyre longitudinal force, which reads:

- ~ r- Cnfr ¥ [
Fe o =Chii+ Cyy By = (T) Vieer + C v Fy (2.11)

The values of Cy_, and C,_, can be considered constant, since the tyre is
working in the linear part of its characteristic, due to the low thrust needed
to maintain constant imposed speeds. Therefore, the equivalent damping

15
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Figure 2.3: Root locus for constant speed manoeuvres.

in the tyre force model decreases with increasing speed, while all the other
parameters remain constant.

The i-th state-space (complex) eigenvector y; can be represented in the
form:

vi= [ s ] (2.12)
where 1), denotes the displacement eigenvector.

For display and comparison of the modal shapes 1);, all the degrees of free-
dom quantities are made homogeneous to linear displacements. To achieve
this, each of the rotational degrees of freedom is multiplied by an associated
length, chosen in a meaningful way with respect to the physics of the vehicle
model. The rotation angles of the driveline elements 0., 8, 8,, are converted
into longitudinal displacements of the tyres contact points according to:

0. — 0.R,
@7—+9p(7”3)Rr (2.13)

7(.‘1,US

0, — 0o Ry

where Ry and R, are the radius of the front and rear wheel respectively. The
frame pitch angle p and the swingarm angle o are converted into vertical
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Figure 2.4: Modal shapes at v = 100 km/h.
displacements at the front and rear wheel axles according to:
a — alg, cos(ap) (2.14)

= (1 + 1) cos(po) + hgo sin po

where the subscript 0 indicates the value of each variable in the equilibrium
configuration about which the linearization is performed.

The resulting transformed complex modal shapes can then be represented
by plotting the absolute values of each component, normalized with respect
to the maximum value (i.e. unit value of the maximum component of each
eigenvector). Figure 2.4 shows the modal shapes at v = 100 km/h (in clock-
wise order: bounce, front hop, rear hop, and driveline).

It can be observed that the transmission mode features driveline angular
oscillation coupled with swingarm pitch and rear tyre radial deformation.
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Figure 2.5: Controls for the braking manoeuvre. M front brake torque;
M.: engine torque.

2.3 Manoeuvre description

A typical profile for the applied controls M, (front brake torque) and M,
(engine torque) during a straight running braking manoeuvre can be inferred
from experimental data measured from an instrumented test motorcycle, as
shown in Figure 2.5. During the braking phase, the engine brake torque is
set to a constant value: this is due to both the engine idle speed (braking is
performed with closed throttle) and the torque threshold built in the slippery
clutch (also known as anti-hop clutch). The front brake torque profile can
be approximated with a tri-linear function of time, consisting of an initial
ramp, a constant torque phase and a decreasing ramp. The rear brake, in
general, is not activated during the initial, straight running braking phase,
since the available force at the rear tyre is already saturated by the engine
brake. Hence, the rear brake is not considered in the described manoeuvre,
which is entirely performed using first gear. Initial conditions for the time
domain integration consist of null controls and static equilibrium states.

The velocity and acceleration profiles resulting from time domain inte-
gration are shown in Figure 2.6. The maximum deceleration is -8.834 m/s?,
obtained at t = 2.999 s, while the velocity spans from 200 to 30 km/h.

An oscillation in the longitudinal acceleration can be observed at around
22 Hz between 4 and 5 s, fading away when the front brake torque starts
decreasing. This acceleration oscillation is due to the longitudinal force of
the rear tyre, as it can be seen in Figure 2.7, along with the vertical loads
acting on the contact points.
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Figure 2.6: Velocity and acceleration profiles during the braking manoeuvre.
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Figure 2.7: Front and rear vertical tyre forces (top) and longitudinal tyre
forces (bottom) during the braking manoeuvre.
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The severe weight transfer generated by the front brake torque loads the
front tyre with over 2000 N at the deceleration peak, which means that most
of the vehicle weight (see Appendix B.1) is supported by the front tyre. The
rear tyre is therefore lightly loaded, but nevertheless subjected to a non-
negligible engine brake torque. The minimum rear tyre load is 235.5 N,
recorded at t = 3.03 s, when a small oscillation around the minimum value
starts, and suddenly propagates to the front. The following phase relations
can be observed at the vibration onset:

counter—phase between pinion and wheel sprocket rotation (Figure 2.8);

counter—phase between swingarm pitch and rear deformed tyre radius
(Figure 2.8);

in—phase between the rear vertical load and the (absolute) rear tyre
longitudinal force;

counter—phase between front and rear vertical load;

in—phase between longitudinal acceleration and rear tyre force.

An oscillation at the same frequency is also present in the rear tyre longi-
tudinal slip and slightly in the front tyre slip as shown in Figure 2.8. The
slip variation is evident in the rear wheel angular oscillation as well which,
in turn, is balanced by the force exerted by the lower segment of the chain,
tight due to the engine brake torque. Therefore, the chain force exhibits the
same 22 Hz oscillation, in—phase with the (absolute) longitudinal slip.

2.4 Analysis of the unstable phenomenon

The same oscillation observed for the rear slip, vertical and longitudinal tyre
forces is also evident on the slip stiffness. Three points (peak—mid-minimum)
taken from an increasing oscillation quasi—periods are marked in Figure 2.9,
over their respective MF diagrams. It can be seen how the variation of
vertical load modifies the shape of the tyre characteristic function, due to
the dependence introduced by px.o and pg.3 (Eq. 2.2), giving rise to very
different slip stiffness values. The (absolute) minimum C, is related to the
minimum F,, close to the F¢ peak force. The maximum C\, on the other
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Figure 2.8: o: swingarm pitch; r,: rear deformed radius; Fi, 1: chain force;
0.: rear wheel angular acceleration; w}, wy: rear wheel and pinion angular
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velocities reduced to the crankshaft; x,, xky: rear and front longitudinal slip.
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Figure 2.9: Rear tyre slip stiffness as a function of time (left), and MF for
three conditions of minimum, mean and maximum C,, (right).

hand, is associated with the maximum F; reached during the oscillation
quasi—period, and it is close to its value in the origin (k, = 0).

The evolution of the self-excited oscillation is now studied considering
three quasi-—periods at different times, evidenced in Figure 2.10 highlighting
the phase—lags between vertical and longitudinal forces. During the first
quasi—period (solid line) the amplitude is increasing, during the second one
(dotted line) the maximum amplitude is reached, and during the third one
(dash—dotted line) the oscillation is fading away. Time spans in the ranges
3.705-3.755 s, 4.680-4.730 s, 5.015-5.065 s respectively.
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Figure 2.10: Rear tyre forces (left) and oscillation quasi-periods in the x,-F¢
plane (right).
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Figure 2.11: Phase lag among the oscillating variables.

Plotting the same oscillation quasi-periods in the x — F¢ MF plane, dif-
ferent shapes can be observed in the resulting phase diagrams Fg(x), Figure
2.10 (right), where MF curves relative to minimum, maximum and mean ver-
tical forces during each quasi—period are also displayed. Notice the dashed
segments (in Figure 2.10, right) connecting the points of maximum and mini-
mum slip for each quasi—period: they give a measure of the phase—lag between
longitudinal ground force F¢ and slip &, from almost out-of-phase (increas-
ing oscillation amplitude) towards almost in—phase (decreasing oscillation
amplitude). In Figure 2.11 oscillations of each variable (rows) are displayed,
taking the vertical force (first row) as a reference, and showing the evolution
in the time domain (columns). The points in which the vertical force reaches
its minimum, mean and maximum values are marked with a dot.
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Figure 2.12: F,, - k phase diagram for the rear tyre.

Phase-lags between rear slip x and ground forces F¢ and F,, can be no-
ticed, also evidenced in the diagrams displayed in Figure 2.11. In particular,
in the first column (increasing amplitude oscillations) x and F¢ are almost in
counter—phase, while in the third column (decreasing amplitude oscillations)
they are almost in—phase, as already observed in Figure 2.10 (left). Mean-
while, an increasing trend of C,; (mean value) can be noticed, in parallel with
a decreasing trend of C, (absolute mean value). Therefore, increasing am-
plitude oscillations and decreasing ones are associated with different working
points on the MF: higher C,, values together with lower (), values bring the
system towards stability, and vice versa. Higher C, values are reached when
reducing longitudinal slip, lower C, values are reached when reducing load
transfer, both effects due to reducing the braking effort. It can be deduced
that the characteristic function of the tyre Feo(ko, Fiyo), and more precisely
its partial derivatives (C, and C,), play a major role in the self-excited
mechanism under study.

The small variations of F; are given by the first-order Taylor expansion
already presented in Eq. 2.11 During the first, increasing amplitude, phase
the system features large variations of Cy, and this makes F¢ more sensitive
with respect to the second term of 2.11. When F,, is minimum, also C,
is minimum, and the second term has a retarding effect on the increase of
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(absolute) Fe. This turns the shape of the Fy wave away from sinusoidal,
resulting in a varying phase—lag with respect to all other quantities. In the
last, decreasing amplitude, phase, the variations of C, are reduced, because
the working point on the MF is now in the linear part of the curve, where
Cy is larger. The larger value of C, leads the model to stability. Therefore
it can be stated that the parameters C), and C), control the instability. In
general, a higher C,, or a lower (absolute) ), can reduce the oscillations. On
the contrary, an increase of (absolute) O, represents a source of instability
in the system. If C, were null, F; and F; could be seen as independent
quantities, the former varying mainly due to the load transfer, and the latter
being dependent on the equilibrium equation of the wheel:

éc(lyy—rr + ]yy—rw) + (Fch—U - Fch—L)Tws - Fgrr =0 (215)

If C,, # 0, a direct dependence of F on F}, is introduced and a fluctuation
in vertical load affects also the rotation of the wheel, which, in turn, may
produce further vertical load oscillations due to the coupling introduced by
the chain transmission. Nevertheless, it must be noted that the self-excited
instability must be given enough time to develop. This means that the rear
tyre working points may cross the unstable region of the stability map (see
Section 2.6) without showing oscillations in the time domain.

2.5 Frozen-time eigenvalue analysis

Eigenvalue analysis is a well established technique for predicting the stability.
It requires to evaluate the response of a linearized model around an equilib-
rium configuration. In this conditions, the model exhibits asymptotically
stable behaviour if and only if all the eigenvalues of the system have negative
real part.

For motorcycles, eigenvalue analysis has been extensively applied even in
non—equilibrium configurations (in this case referred to as frozen—time eigen-
value analysis) under the realistic hypothesis of slowly varying parameters
[1]. In general, however, this hypothesis may be restrictive [33], and the
bounds of validity of this technique have to be assessed [34].

Considering the linearization of the proposed model about the config-
uration assumed at t = 3.1 s (near maximum deceleration), stiffness and
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Figure 2.13: Root locus of the system at t = 3.1 s (frozen-time eigenvalues)
in braking conditions.

damping matrices assume the following form:
of; of;
C(ao, Qo) = =2
0q; | a=al (o, o) 0q; | a=a@1s)
a—

3.1s
q(3.1s) g = q(3.1s)

K (ao, &) = (2.16)

It can be seen (Figure 2.13) that the real part of the driveline eigen-
value becomes positive (unstable). Consistently, the time domain simulation
shows an instability at the frequency expressed by the driveline eigenvalue
imaginary part (near 22 Hz).

Modal shapes of the system are shown in Figure 2.14, adopting the same
normalization proposed for the constant velocity case at Section 2.2 (in clock-
wise order: bounce, front hop, rear hop and driveline modes). Main differ-
ences between the modal shapes for constant velocity and braking conditions
can be summarized as follows:

- Front wheel rotation 8, becomes the largest component in the bounce
and front hop modes;

- In the rear hop mode, the main components o and r, grow as well as
the driveline components 6. and 6,,;
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- In the driveline mode, the components 6. and 6, grow, . being the
largest.

Again, it can be seen from time domain simulations (Figure 2.8) that the
oscillating dofs during instability are mainly those related to the driveline
and the rear suspension, according to the driveline modal shape.

Therefore, in this case, frozen—time eigenvalue analysis appears to be
consistent with time domain results for the first part (¢ < 3.1 s) of the
considered braking manoeuvre. In the general case however, for a time—
variant system, frozen—time eigenvalues are not predictive of the stability. In
fact, if the rate of change of the time-dependent parameters is sufficiently
high, it is not possible to state that the system is asymptotically stable even
if all the eigenvalues have negative real part [33].

During the considered braking unstable oscillation, the governing param-
eters change quickly as shown in Figure 2.9. The variation of the driveline
eigenvalue for the three quasi—periods of Figure 2.10 is represented in Fig-
ure 2.15 (left). In the first, increasing amplitude phase, the real part of the
driveline eigenvalue is always positive, while in the last, decreasing ampli-
tude phase, it is always negative. However, in the central (maximum oscilla-
tion amplitude) phase, the eigenvalue real part oscillates around the stability
threshold (imaginary axis). This uncertainty is addressed in the next section,
where a time-invariant braking manoeuvre is analyzed.
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Figure 2.15: Driveline eigenvalue (left) and eigenvector (right) during the
unstable phenomenon.
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2.6 Stability threshold

In this section, a procedure to simulate a time—invariant braking manoeuvre
is described, opening the possibility of drawing stability maps for the driveline
mode by means of standard eigenvalue analysis. A time-invariant braking
manoeuvre implies braking without changing neither the speed nor the con-
figuration of the vehicle. Such stationary braking condition is simulated by
imposing a longitudinal external acceleration generating a longitudinal for-
ward force. In addition, an external torque is applied to the sprung mass,
making it possible to properly simulate also the longitudinal load transfer.
In this application the interest is focused on the values of C), and C), the
model is working with, i.e. on the working point on the rear tyre MF. Since
any point in the MF region of interest can be reached varying the external
actions, it is decided to drop the front brake input, so that the model brakes
only by means of the engine.

The linearized equations of motion for the time—invariant system can be
written in the form:

Ay +By =0 (2.17)

where, as opposed to Eq. 2.6, matrices A and B are now constant with
respect to time. These matrices are known symbolically, and the descending
left and right eigenproblems read:

z] MA+B)=0; (M +B)z, =0 (2.18)

where z; and z, are the left and right eigenvectors, and the superscript T
stands for transpose of a vector.

The stability maps are drawn in the plane (C,C,), for fixed values of
all the other parameters, due to the crucial role played by these two partial
derivatives in controlling the stability of the driveline mode, as discussed in
Section 2.4.

The dimension of the problem makes not advisable a direct application of
the Routh-Hurwitz criterion [35]. Nevertheless, the stability maps of interest
for the present study can be obtained recalling that a necessary and sufficient
condition for stability is that all eigenvalues have negative real part. Hence,
each point belonging to the stability threshold on the diagram (Cy,C,,) can be
found when the real part of the related diveline eigenvalue (say Ag) becomes
zZero.
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As a consequence, it is necessary to asses an estimate of Ay as a function
of € and C,, which can be achieved with an application of the Rayleigh
quotient [36] in the following form:

1 (Z?B(CK,C'”)ZT N zf*B(C’an)zjf)

A =Re(hg) = —=
eha) = =3 ZTA(Cy,C)z, | 2 A(Cy, Cy)z:

(2.19)

where the superscript * stands for the complex conjugate of a vector.

Since the matrices A and B are known symbolically, solving A(C)) = 0
for €, yields a point on the stability threshold, which can be determined
stepwise from a starting value, say (Co, Cyo). The latter can be found by
following a trial and error procedure from stationary braking manoeuvres
with proper values of external accelerations and load transfers.

The n-th point (say, (Ciy,Cyn)) of the stability threshold is obtained as
follows. Cl, is increased of a fixed quantity AC, (Cxp = Cun—1 + ACy); the
corresponding value of C,,, on the stability threshold is the one for which the
real part of the driveline eigenvalue becomes zero. At each iteration the real
part of the eigenvalue is approximated by:

1 (le;b—1B(Cman)Zm—1 X Zﬁ*—lB(Cnan)Z:n1>

5 le;z,—lA(Cfcna On)zrn—l Z?;L*—lA(Cnna Cn)zinfl

A

I

(2.20)

where z;,_1 and z,,,_1 are the left and right driveline eigenvectors computed
at the previous step (n—1), A and B are the system matrices evaluated at the
current Cy,, as a function of C;. A zero-find routine solves A(C,) = 0 for C,,,
and the resulting value is assigned to C},,. The matrices A and B obtained
from C\,, and C,,, define the new current left and right eigenproblems, yelding
the new eigenvectors z;, and z,,, and the next step begins.

A schematic of the algorithm therefore reads:

1: Trial and error calculation of the first point of the stability margin:

Cnn—l = CHO’ CYnn—l = CnO, n = 17

2: Solution of:
z (M +B) =0 and (A + B)z,, =0
with
A =A(Cip-1,Cpn-1) and B = B(Clop1, Cpm1)
yielding
Zin—1, Zrp—1
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3: Reset matrices:
A= A(Cmn—l + ACHJ CU)?
B =B(Cyn1 + AC,, Cy)

4: Solution of:

le;z—lB(C'WL?Cﬂ)ZWL*l . Zﬁ*—1B<Cnnan>Zin71 —0
Zly 1 A(Cons Cp)zrn 20, A(Cin, G2,y
yielding

Con

5: Reset matrices:
A= A(Cmm Cnn)a
B = B(C.,, Cnn)

Then repeat steps 2 to 5 forn =2,..., N.

For assessment of the results of the proposed algorithm, the same stability
threshold is evaluated numerically with a completely different procedure for
a number of (Cy,C},) couples obtained from time domain simulations. Each
stationary—braking manoeuvre is defined by a selected couple of values of
longitudinal acceleration and load transfer. A higher acceleration requires a
higher value of longitudinal force F¢ in order to keep constant the velocity,
therefore the rear slip increases while C) decreases. At the same time, a
variation of load transfer AF, modifies the vertical load on the rear tyre, thus
changing C),. The combination of longitudinal and vertical forces defines the
working point of each manoeuvre on the rear tyre MF and, consequently, the
values of Cy and C,. The possibility of controlling independently C, and
(), through external fictitious actions allows to explore the model behaviour
for the entire range of interest of the two governing parameters. At the end
of each time domain simulation, if the driveline eigenvalue has negative real
part, the working point of the rear tyre is considered stable (marked with
a star in Figure 2.16). If the driveline eigenvalue has positive real part, the
working point is considered unstable (marked with a square in Figure 2.16).

Figure 2.16 shows a comparison between the results obtained with the
two proposed methods. As expected from time domain simulations (Section
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Figure 2.16: Stability threshold for v = 100 km/h (solid line) compared to
time domain stable/unstable couples (Cy, C;)). The dashed line refers to the
simplified 2 dofs model exposed in [5]. See Section 2.7 for details.

2.4), the stable region is the part of the plane with high values of C, and low
(absolute) values of C,.

It should also be noticed that, while each stationary manoeuvre is repre-
sented by a single point on the Cy, — C;, diagram, transient braking manoeu-
vres would be represented by time-dependent trajectories. Drawing such a
trajectory for the manoeuvre described in the previous sections clarifies the
relation between the stability of the time-dependent model and the stability
threshold obtained in steady-state conditions. In Figure 2.17 two different
stability thresholds are drawn, the first (solid line) for v = 138 km/h, the
second (dotted line) for v = 80 km/h. These are the velocities at which,
in the transient manoeuvre, the stability takes places and vanishes. After
the application of engine brake, the trajectory of the transient manoeuvre
moves towards the bottom-left part of the diagram (low Cj, high |C}]), well
inside the unstable region bounded by the first threshold. With a minimal
time delay, the instability shows up as quasi—cycles of increasing amplitude.
As the velocity decreases, and the average vertical load on the rear tyre in-
creases, the quasi—cycles center slowly moves back to the upper-right part
of the diagram, crossing the second threshold at v = 80 km/h. From this
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Figure 2.17: Stability thresholds for v = 138 km/h (solid line) and v =
80 km/h (dotted line) compared with transient manoeuvre trajectory (2.5 s
<t<6s).

moment on (highlighted by changing the line style from solid to dashed),
the quasi—cycles amplitude starts to decrease, and the instability eventually
vanishes.

2.7 Comparison with a simplified model

The results of the analysis carried out with the multibody motorcycle model
are compared with those of the simplified linearized model proposed by Sor-
rentino and Leonelli [5]. The geometry of this model is displayed in Figure
2.18. This is a rear motorcycle suspension model with 2—dofs (wheel rota-
tion ¥ and vertical displacement z), travelling at constant imposed speed V}
under the action of chain transmission force F, and tyre ground forces (F
and F)); here, the ground forces names have been changed in order to match
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the nomenclature of the present work.

Figure 2.18: Geometry of the simplified 2-dofs model of a motorcycle rear
assembly employed in [5]

2.7.1 Simplified model parameters

In order to allow a consistent comparison between the full and the simplified
model, a preliminary work of parameter tuning was necessary. The primary
focus of the tuning process was on the natural frequency of the mode at
the stability threshold, since the target was to quantitatively compare the
two models in terms of stability maps (C,—C, plane). Thus, the attention
was given to getting comparable natural frequencies between the full and the
simplified model.

To this purpose, the inertial and damping properties of the 2—dofs model
were modified from their value in [5]. The equivalent translating unsprung
mass m:

. molga -+ Jsa

2.21
[2,cos?ay (221)

and the wheel moment of inertia J have been reduced, taking into account

that the 2—dofs model features infinite sprung mass as well as infinite pow-
ertrain inertia. Due to mass modification, also the damping coefficient c;

34



Chapter 2. Driveline instability

has been proportionally reduced. The adopted criterion has been keeping
constant the factor:

G = (2.22)

where k = k, + k.. With parameters in Tab. 2.2, at the stability threshold
the eigenvalues of the 2—dofs model are about:

e Real 0.0 Hz, Imaginary 22.0 Hz
e Real —7.0 Hz, Imaginary 21.0 Hz

A comprehensive list of all the 2-dofs model parameters values is reported
in Table 2.2. For the sake of clarity, the name of some parameters have been
changed in order to match the nomenclature of the present work.

2.7.2 Comparison between the two models

The full and the simplified models present relevant differences; nevertheless
the resulting unstable behaviours appear to be closely related. In fact, in both
cases, a self-excited vibration is detected when strong engine brake torque
is applied, due to a mode which becomes unstable in the frequency range
of motorcycle chatter, consisting of an angular oscillation of the driveline
coupled with a rear wheel bounce.

It was demonstrated [5] that for the 2-dofs model the key role in the
switching mechanism to driveline instability is played by the nonlinear char-
acteristic slip function of the tyre Fgo(ko, Fro), and more precisely by its
partial derivatives with respect to the stationary components of the vertical
ground force (C),) and longitudinal slip (C,). The energy balance evaluation
over one period of oscillation showed that the stability threshold is reached
for a certain value of the phase-lag (say, ¢) between the non—stationary
components of the slip x and longitudinal ground force F¢. It was also found
that C\, and €, can increase ¢ above the critical value, giving rise to a non-
conservative restoring force. In these conditions the suspension damper c;
is not able to dissipate the energy supplied by the longitudinal ground force
F¢, thus leading the system to instability.

The results of the analysis carried out with the multibody model, in par-
ticular at Sections 2.4 (Figure 2.11) and 2.6 (Figure 2.16), show full consis-
tency with those of the simplified 2-dofs model. As in the simplified model,
the phase-lag between x and F¢ has a crucial role in the evolution of the
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Table 2.2: Parameters adopted in the simplified 2—dofs linear model. In
parenthesis: nomenclature as in Sorrentino and Leonelli [5]. Values adopted
in the multibody model. Arrows indicate modified values.

Pinion radius rds(rp) = 0.040 m
Wheel sprocket radius Tws(Te) = 0.100 m
Swingarm length lsq = 0.590 m
Rear wheel unloaded radius R,(r) =0.320 m
Axle distance [, =0.080 m
Swingarm angle (stationary) ap = 0.16 rad
Angle between swingarm and [, Bo = 0.12 rad
Rear wheel mass mo = 14.5 kg
Swingarm inertia moment (pivot) Joa = 1.46 kgm?
Equivalent unsprung mass m = 18.3 kg

—m =15 kg
Rear wheel moment of inertia J = 0.83 kgm?

— J = 0.56 kgm?
Suspension ground damping ¢s = 1040 Ns/m

— ¢s = 940 Ns/m
Suspension ground stiffness ks = 4.45-10* N/m
Tyre radial stiffness k,=1.7-10° N/m
Chain stiffness ken(ke) = 1.15-10% N/m
Longitudinal slip (stationary) ko = —0.04
Rear longitudinal force (stationary) Feo(Fpo) = —200 N
Rear slip stiffness (stationary) Cro = 4000 N
Partial derivative of Feo(Fgpo) w.rt. | Cpo(—x) =-0.65
F’V]OFZO

identified unstable phenomenon, and it is primarily controlled by the char-
acteristic slip function of the tyre, and in particular by C, and C,.

The two models can be quantitatively compared in a C,, — C,, diagram
in terms of stability maps, which for the 2-dofs model were analytically
determined via Routh-Hurwitz criterion [35]. The initializing parameters
for the 2—dofs model are reported in Table 2.2, with the same numerical
values adopted for the multibody model, except for the inertial and damping
properties, as explained in the previous section.

With the adopted parameters, the 2—-dofs model becomes unstable at
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about 22 Hz. The resulting stability map is superimposed on the C, —
C,, diagram of Figure 2.16, almost overlapping the threshold given by the
stationary-braking multibody model. Phase diagrams F¢(x) of the two mod-
els at the limit of stability are displayed and compared in Figure 2.19. The
values of €, and C;, for the full multibody model have been chosen in order
to obtain oscillation amplitude comparable to that of the 2—dofs model.

As an example, in Figure 2.19 a phase diagram F¢(x) in the x — F¢ plane
obtained with the 2-dofs model (top) is compared to the corresponding one
computed during a transient braking manoeuvre (bottom): at the stability
limit, the latter develops self-excited oscillations comparable in amplitude
with those of the stationary model at a point (Cy, C;)) well into the unstable
region of the map, Figure 2.16. The diagrams in Figure 2.19 also show that
at the selected stability limit, the phase-lags between x and F given by the
two models are about the same.

It can be concluded that the relevant features and parameters controlling
the onset and development of driveline chatter instability are those included
in the 2-dofs model, all the remaining features and parameters of the multi-
body model playing a secondary role.

157 157

—C,_ =4000 N, C” =-0.69 —GC,_=4000N, C” =-0.78

—C =4000N,C =-0.72 10} —C =3800N,C =-0.83
K n K n

0.4 02 0 0.2 0.4 %4 02 0 02 04
Ak [%] A, [%]

Figure 2.19: Unstable cycles for the simplified 2 dofs model (left) and the

full model (right). Here the longitudinal force F¢_, and slip x, are displayed

as a A w.r.t. the equilibrium configuration value.
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Chapter 3

Front wheel patter instability

Introduction

Affecting especially performances of road racing motorcycles, locking of the
front wheel before reaching the maximum longitudinal ground force is a prob-
lem that can arise during heavy braking in straight motion. It shows up as a
sudden deceleration of the front wheel, since in these conditions the longitudi-
nal ground force is not able to balance the applied braking force. As revealed
by data analysis on instrumented motorcycles, this extreme circumstance is
preceded by vibrations in a frequency range between 7 and 10 Hz, involving
fluctuations of both spin velocity of the front wheel and pitch of the vehicle,
which cause oscillations of the front downforce at the same frequency.

This phenomenon, referred to as front wheel patter, was first studied by
Sharp and Giles [3] on the basis of previous work on automobile axle tramping
vibrations [29], leading to the definition of a four degrees of freedom minimal
model. In [3] only the front assembly was considered, pivotting about a
horizontal axis and spring restrained to an infinitely massive rear frame,
with additional allowed motions consisting of plunging of telescopic forks,
spinning of the wheel and spinning of the tyre tread band, restrained by
the tyre carcass elasticity. Stability was investigated by imposing constant
travelling speed to the rear frame, then integrating numerically the non—
linear constant—coefficient equations of motion in the time domain.

With realistic choices of parameter values, self-excited oscillations were
identified close to the natural frequency of the wheel-hop mode, however
with a substantial component of motion given by the forks pivoting on the
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rear frame compliance, resulting in an elliptical orbit of the wheel spindle.
High values of tyre load during backward motion of the wheel were detected,
together with low values during forward motion, providing the supply of
energy to vibration from the forward motion of the vehicle as a whole.

As a result, it was found that stability is significantly enhanced by reduc-
ing the vehicle speed, by reducing the frictional coupling between tyre and
ground, by increasing the damping amounts and by mismatching the frame
compliance by the equivalent vertical stiffness of the front assembly (or, in
other words, avoiding close matching of the natural frequency of the forks
pivoting on the frame compliance with the natural frequency of vertical mo-
tion of the wheel on the tyre and suspension springs). On the contrary, the
tyre carcass (torsional) flexibility turned out to play a negligible role, giving
a very small stabilizing contribution. Reference [3] created a basis for further
investigations on unstable oscillations leading to front wheel locking, but, to
the best of the author’s knowledge, no other published study has dealt with
it ever since.

The aim of this study is to extend the analysis developed in [3] to clearly
identify the actual switching mechanism to instability and its governing pa-
rameters, with additional highlights on analogies and differences with respect
to chatter oscillations, as investigated in [5]. First, a modified minimal model
of the front assembly is proposed, with centre of rotation of the upper forks
positioned out of the fork line, for simulating also modes involving pitch-
ing of the motorcycle’s main frame (not considered in [3]); its equations of
motion are derived in non-linear form and then linearized with respect to
equilibrium—states, by imposing stationary values of forward speed during
braking; the proposed model is then studied in terms of modal analysis and
stability maps. Second, the results are compared to numerical simulations
obtained from a full motorcycle multibody model, as described in Appendix
A. This analysis is restricted to planar motion, considering running straight
ahead braking manoeuvres not including lateral dynamics. It should at least
be mentioned that, during cornering manoeuvres, out—of-plane modes would
come into play (due to anti-symmetrical or lateral dynamics), causing pos-
sible merging effects with in—plane modes: as detected by Koenen [30], at
high roll angles a mode involving front—hop and wobble components (also
referred to as front wheel patter, but substantially different from the one
herein studied) may become unstable even in case of free rolling conditions.
Such interactions with lateral components at high roll angles are expected to
be further modified when considering braking forces, representing a research
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subject left open to future investigations.

3.1 Minimal model

A planar minimal model of a motorcycle is considered, with three degrees
of freedom. The equations of motion are derived in non-linear form and
then linearized with respect to an equilibrium-state, by imposing a station-
ary value of forward speed during braking. A linearized expression of the
longitudinal ground force with respect to the same equilibrium—state is also
provided, as a function of the state variables, playing a fundamental role in
stability analysis.

3.1.1 Description of the model

i

Figure 3.1: Schematic of the proposed minimal model

The model consists of three rigid bodies as represented in Figure 3.1: the
main frame rigidly connected to the upper steering assembly (1), the lower
steering assembly (2) and the front wheel assembly (3).
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Body 1 can pivot with an angle v (positive if counterclockwise in Figure
3.1) around a point P (fictitious, since such a fixed point in a motorcycle
clearly does not exist) connected to a rigid frame translating at imposed
constant speed V{ in forward direction £. Its centre of gravity is positioned
in P, with moment of inertia J; about P, and it is restrained to the rigid
translating frame by a torsion spring of stiffness k., parallel to a torsional
viscous damper of constant ¢, (not displayed in Figure 3.1). The upper and
lower steering assemblies, connected to each other by telescopic forks, are
restrained by a suspension spring of stiffness k., parallel to a viscous damper
of constant c,, while their relative sliding is described by a coordinate z,
as represented in Figure 3.1. The lower steering assembly 2 is connected
to the front wheel assembly 3 by a revolute joint in point O (rim centre),
assuming zero fork offset. Bodies 2 and 3 together have total mass m; the
centre of gravity of body 2 is assumed to be positioned in O (with moment
of inertia J3), as the one of body 3 (with moment of inertia .J3). The wheel
rolls on a perfectly flat surface, with angular displacement 9 (positive if
counterclockwise in Figure 3.1), unloaded radius R, loaded radius r and
radial stiffness k,.

The model has three degrees of freedom, represented by the lagrangian
coordinates v, z and . The actual distance between O and P is given
by a pair of parameters, say z; (orthogonal to the actual fork line) and z;
(dependent on z, parallel to the actual fork line), as shown in Figure 3.1.

An equilibrium-state (identified by a subscript 0) is considered at con-
stant travelling speed Vi, under the effects of a constant braking torque
Mgy > 0 applied to body 3, and of a constant pitching moment M., < 0
applied to body 1 (simulating a longitudinal load transfer due to braking).
These actions produce a ground reaction on the wheel (with longitudinal
component Fg, and vertical component F,o — mg), along with a rotation
Y% < 0 of body 1 (yielding a caster angle ¢y in the equilibrium-state), a
compression zy > 0 of the suspension spring and a compression hg > 0 of the
tyre (with k7o, k.20 and k,ho playing the role of spring preloads).

Adopting the following compact notation:

{

the actual (&, 1) and equilibrium—state (&g, 19) distances between points
O and P in the ¢ and n directions can be written as:

Va5

= cos(g9 +7) ¢o = cos(go) (3.1)

(@

= sin(gg + ) { S = sin(ep)
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{ft —¢o—LCp =asl+a4d {fo = €00 — Epo = T80+ Zodo

N =Mnp—"No = —Tfs+ zpC Mo =MNpo—1Noo = —TfS0+ ZfoCo
(3.2)
where:
]
ol (20 +2) (3.3)
Zf0 = [ — 20

and [ is the distance between O and S in the unloaded case. During a small
perturbation of the equilibrium—state, the actual radius r of the loaded wheel
depends on the actual compression h of the tyre, which in turn is a function
of coordinates v and z:

r=R—(ho+h) , "o=R—hy , h=n—mno (3.4)
Consequently, the actual vertical ground force F; can be expressed as:
F, =k.(ho+h) (3.5)

A full list of parameters describing the proposed model is reported in Ap-
pendix B.2. It presents two differences with respect to the model studied in
[3]: first, the centre of rotation of the upper forks P can be positioned out of
the fork line, for simulating also modes involving pitching of the motorcycle’s
main frame; second, the wheel assembly is considered as a single body, since
in [3] the torsional compliance of the tyre was recognized to play a negligible
role in the development of instability, which was confirmed by simulations
performed with the multibody model herein adopted, considering rigid-ring
tyres.

3.1.2 Non-linear equations of motion

The equations of motion are derived via Lagrange equations, including in the
generalized forces the braking torque My, and both the components F¢ and
F,, of the ground reaction, but not the pitching moment M., accounted for
in the dissipation function and in the potential energy. Then the system’s
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kinetic energy T, dissipation function D and potential energy U read:

1 . . . . :
T= 3 {m [(zpy + 2)? + (zf'y)z] + Jioy? + J3192}
1
D= 5 (cy¥* + ¢.2?) (3.6)

= —{k (v + %)% =] + k= [(z + 20)° = 28]} — mgh
where J1o = J; 4+ Jo, yielding the three equations of motion in the form:

m [(ZL’? + Z]2c) ’}/ + xfé — 2Zf’}/Z] + Jlg;}'/ -+ Cﬂ/’.)/ + ]{j,y (’)/ —+ ’YO) —+ mg& — Q'y
m [z + 5+ 2552 F et + ks (2 20) + mgé = Q,

Jsl = Qy
(3.7)
with generalized forces:

Qy = Fenp + F3& — Mo
Q.= —-Fs5+F,c (3.8)
Qo = rFe + My

in which, recalling Eqs. 3.1-3.5, explicit relations for &, n;, r and F,, can be

introduced in terms of coordinates v and z.

3.1.3 Linearized constitutive equation of the longitu-
dinal ground force

The linearized constitutive equation of the longitudinal ground force Fg is
derived by considering the definition of longitudinal slip coefficient x and its
equilibrium-state expression kg:

w5 (1 + pOwO) (3.9)

4 Vo

where V' is the actual translating speed of the wheel spindle (point O, in
Figure 3.1), Vs is the actual slip velocity, wy < 0 is the equilibrium-state
angular speed of the rim and py is the equilibrium—state free rolling radius of

44



Chapter 3. Front wheel patter instability

the wheel, evaluated at ko = 0 (during braking, if V' > 0 then £ < 0). Given
wp and Vj, the effective rolling radius p,, (evaluated at k # 0) is:

1%
pHO:__O:> &:14-/{/0 (310)

Wo Pr0

Hence in the case of small oscillations with respect to an equilibrium-state,
k takes the form:

(po+ p) (wo + @)
Vo+V

n:—(l @)@moﬂ%:—{u (3.11)

Vv

where p is the actual free rolling radius and the tilde symbol denotes the
non-stationary components of x, p, w and V. The last two of them can be
approximated by: _
~ ¢

3.12
~ 1o’y — S0% (312)

< &

In the first of Eqs. 3.12, only the non—stationary component of the rim angu-
lar speed has been considered, disregarding the torsional rate of deformation
of the tyre [37], or equivalently assuming a relaxation length so small to be
negligible [5, 6]. The non-stationary component of the free rolling radius
p can be expressed as a function of the tyre compression h by means of a
dimensionless parameter e, accounting for the vertical position of the centre
of rotation below the ground level:

p=—(1—e)h with 0<e<1 , h=~—(&7+cz2) (3.13)

which means that the free rolling radius changes with tyre deflection at a
rate given by the factor (1 —e) [37]. Taking into account Eqgs. 3.10-3.13, the
non-stationary component of x can then be linearized with respect to p, w

and V:

o
.

~+%
Op Oow

oy 2y
0 ov 0
! y (3.14)
= - Lo+ ) [ 2 6oy o) = o+ 0|}
0 Po

K

The linearized non-stationary component of F¢ can now be defined as a
function of both £ and the non—stationary component of the vertical ground
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(3.15)

K — - ,C = 7F ~ _kr
( afio ) Fn:FnO n (aFno ) P n (60’7 + COZ)

where C,, > 0 denotes the stationary slip stiffness of the tyre evaluated at a
longitudinal slip ko under the vertical force F,o, while C,, < 0 expresses the
local dependency of F¢y with respect to F,9. Even though C, and C, in Eq.
3.15 appear to be mathematically independent, in fact they are related to
the stationary equilibrium point on the nonlinear characteristic slip function
of the tyre Fyo (Ko, Fyo), usually described by MFs, Magic Formulas [32].
Introducing Eq. 3.14 in Eq. 3.15, and approximating the free rolling radius
po with the outer radius of the unloaded wheel R, yields:

F=A [—Rﬂ + (1 + ko) (= + goz‘)] + B (€Y + ¢o07)

with (3.16)

Cw Cy
AZVO’ B:E(l—l—/io)(l—e)—anr
where A is a damping parameter [Nsm™'| and B a stiffness parameter [Nm™],

which highlight the dependency of F¢ with respect to the state variables.

3.1.4 Linearized equations of motion

The system’s equilibrium configuration at V' = V) is determined after set-
ting the external actions and the independent parameters characterizing the
model, i.e. four geometric parameters (R, [, x¢, o), along with three stiffness
parameters (k,, k., k,) and the mass parameter (m).

Notice that R and m are the only parameters actually independent from
the equilibrium configuration, since the position of point P, assumed known,
changes according to the equilibrium state as well as the stiffness parameters,
due to non-linear behaviour.

For the sake of convenience, the external actions are expressed in terms of
ground force components (Fyg, F}) instead of braking and pitching moments
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(Mo, M,o). Hence, recalling the definitions of ¢, and $y given in Egs. 3.1,
the stationary values of the tyre compression (hg), fork compression (z) and
caster angle variation (yy) due to M., and My, are immediately found by:

ho =k 'Fp

20 =k [(Fyo —mg) o — Feobol

Yo =k H{(Fpo—mg)[zséo + (I — 20) S0] +
+ Feo [R—ho — ¢S50+ (I — 20) Col}

(3.17)

Consequently, the values of the braking and pitching moments (Myy > 0,
M,y < 0) are obtained by:

Myo = —roFeo, My = kyy0 (3.18)

The model is then linearized by Taylor expansion of Eqgs. 3.7-3.8, including
the simplifications due to the static equilibrium (Eqs. 3.17), yielding the
equations of motion in the form:

Mg+ Cq+Kq=0 with q={ 7 2 9 }" (3.19)

where the M, C and K matrices have the following expressions:

[ m(w? + ZJ%O) +Jiz mxy 0
M = m s m 0
i 0 0 Js
- ) R
¢y 0 0 ne (14 ko) —noSo (14 ko) noR
C =10 c. 0+A]| —nod0(1l+ ko) 83 (1+ko) —50R
L 0 0 O oo (1 + lﬂ?o) —§07’0 (1 + /ﬁ?o) T'oR
k'y_(krho_mg)n0+<F.§0+kT€0)€0 (krho—m9)§o+(Fgo+kr£o)@o 0
K = (krho—mg)so+(Feo+hréo ) éo k, + k¢ 0
i —Feoéo —FeoCo 0
Somo  MoCo O
—B | =&30 —50¢p O

Sro  Coro 0
(3.20)
The equilibrium-state speed V; explicitly affects only coefficient A. Matrix
K is highly non—symmetric, which can bring the system to instability.
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3.2 Stability analysis

Stability of the linearized minimal model is studied in equilibrium configura-
tions by means of sensitivity analysis with respect to the model’s governing
parameters. Stability maps are drawn on the basis of sets of parameter values
related to a straight running braking manoeuvre performed by a road racing
motorcycle. Results are compared with those found in the literature [1,3,5]
and with those obtained by a multibody planar motorcycle model, in this
case also considering transient braking manoeuvres. The source of the self—
excited vibration is investigated by means of phase—diagrams of the unstable
mode at the stability threshold, aimed at explaining its driving mechanism
and at identifying which parameters play a major role in the actual vibration
onset.

3.2.1 Stability maps

F [N] 800
tabl

600 [

400 F unstable T~

0.5 1.0 15 2.0 2.5 3.0 x10*
200 [

C.[N]
ok
=200 - - - stable
-400
-2.0
unstable
600 s s s s s s s |
04 03 02 01 0 01 02 03 04 00 05 10 15 20 25 3.0 x10¢
—2 [m/s] C.IN]

Figure 3.2: Characteristic function of the front suspension viscous damper
(left) and stability maps in the plane (Cy, C,), with parameters as in Table
A2 (right); black thresholds computed with linearized c,, gray thresholds
computed with averaged c,.
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Stability maps are obtained by applying the Routh—Hurwitz criterion
to the characterisitc equation descending from Eqs. 3.19, using the symbolic
algebra software. A set of values is adopted for the model parameters, related
to a straight running, steady—state, braking manoeuvre performed by a road
racing motorcycle, considering two very different positions of the fictitious
center of rotation P: in the first case (in the following referred to as ”case 17)
point P is positioned such as the angular displacement v were totally due to
pitch rotation of the motorcycle’s main frame (parameters reported in Table
A2); in the second case (in the following referred to as ”case 2”) point P
is positioned close to the steering axis such as v were only due to angular
compliance of the upper front assembly with respect to the main frame, as
assumed in [3] (modified parameters with respect to case 1 are reported in the
Appendix, at Table A2). In particular, in both cases the position of P and
the values of Jio and k, are inferred from multibody analysis of the planar
motorcycle model adopted in Section 3.2.2, in order to make the minimal
model as consistent as possible with the full motorcycle one. Clearly, in real
motorcycles the actual, non—stationary value of caster angle would result
from a combination of the two opposite idealizations represented by cases
1 and 2, their relative importance depending on the stiffness of the frame
assembly:.

The non-linear damping characteristic function of the front suspension,
adopted in both the minimal and multibody models, is displayed in Figure
3.2 (left): it is an almost piecewise linear function, consisting of a typical bi—
linear characteristic function modified by a very steep intermediate gap (due
to Coulomb friction effects). If linearized in the origin, it yields an extremely
high value (¢, = 7000 Ns/m, in the following referred to as ”linearized ¢,”),
much more than its average value computed without considering the inter-
mediate step (¢, = 1470 Ns/m, in the following referred to as "averaged c,”).
Coulomb friction in the forks may be included in the model by modifying the
characteristic function of the front suspension, with the effect of increasing
further the slope of the intermediate step.

As it will be clarified, a convenient representation for the stability maps is
the (C,, C,) plane, as shown in Figure 3.2 (right), drawn for case 1 (top)
and case 2 (bottom) adopting the values reported in Table A2 (with both
linearized and averaged c.). Since the stability thresholds in the C, > 0
region are not of practical interest for this study, they will not be considered.

For small absolute values of C, the system is always stable, while the

stability region (smaller in case 2), at least for medium-high values of C,, in
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Figure 3.3: Stability maps, parameters as in Table A2 (case 1, with linearized
c,); effects of: braking manoeuvre (A); travelling speed V; (B); damping
coeflicients ¢, (C) and ¢, (D).

both maps widens with increasing C. In fact, for every fixed value of travel-
ling speed V), increasing C, means increasing the damping matrix coefficient
A in Egs. 3.19. On the other hand, since (Ck,) represents the dominant
component in the stiffness coefficient B (Egs. 3.16), increasing the absolute
value of (), means increasing the highly non-symmetric B—component of the
stiffness matrix, bringing the system towards instability [38, 5].

Case 1 is considered first. The results of a sensitivity analysis involv-
ing parameters which are dependent on specific manoeuvres are displayed in
Figure 3.3 (A, B), where black curves identify the stability thresholds com-
puted with parameters as in Table A2 (linearized c,). A braking manoeuvre
is considered, consisting of a sequence of steady—state braking equilibrium
conditions, all at the same travelling speed V, (parameters which vary in
the manoeuvre are reported in Table A2; other parameters, like kg, do not
vary significantly). The effects on the stability threshold can be regarded as
negligible (plot A), which is confirmed by an analogous analysis performed
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considering separately all the involved parameters (including the longitudi-
nal slip ko, whose direct effect in Eqs. 3.19 is negligible in any case). On
the contrary, the travelling speed V; is highly influential, with a destabilizing
effect at medium-high values of C, which grows considerably with C, (plot
B, computed with V5 = 50, 100, 150, 200, 250, 300 km/h). Therefore the
only really relevant manoeuvre—dependent parameters for this stability anal-
ysis are the components of the tyre characteristic gradient (Cy, C,,) and the
travelling speed V4. This means that the manoeuvre-dependent variations
of structural parameters of the motorcycle (like the one shown in Table A2
for stiffness k,) are not really influential on stability. Hence, in this respect,
(given) structural parameters can be regarded as manoeuvre-independent.
Which explains the choice of representing stability maps on the (Cy, C,)
plane, or alternatively on the (A = Cy /Vp, C,) plane, providing a complete
picture of manoeuvre effects, each point related to a combination of input
parameters (Mo, Mo, Vo).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 x104 0.0 0.5 1.0 1.5 2.0 2.5 3.0 x10¢

Figure 3.4: Stability maps, parameters as in Table A2 (case 2, with linearized
c.); effects of damping coefficient ¢, (A) and travelling speed V; (B). Effects
of large variations of caster angle ¢: case 1 (C) and case 2 (D).
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The results of sensitivity analysis involving parameters independent from
manoeuvres, specific of the motorcycle itself, are displayed in Figure 3.3 (C,
D), where black curves identify the stability thresholds computed adopting
the parameter values reported in Table A2, with linearized ¢, and related
equivalent damping coefficient ¢, = 210 Nms/rad (inferred from the multi-
body model analysis, as discussed in Section 3.2.2). Increasing c, is always
stabilizing (plot C, variation of ¢, in the range £40%), while the opposite
effect is obtained by increasing ¢, (plot D, variation of ¢, in the range +50%).
Hence it can be concluded that an intermediate step in the damping char-
acteristic function, due to Coulomb friction, in case 1 encourages the onset
of patter vibration, with highly destabilizing effects. The separate effects of
other parameters, i.e. the unsprung mass m, the wheel moment of inertia
J3, the front suspension stiffness k. (their reduction enhances stability), the
tyre radial stiffness k,, the free rolling radius variation factor e (their increase
enhances stability) and the unloaded wheel radius R (its increase enhances
stability, but only at medium-high values of C.), if varied in a range of
+10%, were all found to be very small.

Case 2 is now considered, i.e. the effects of moving the fictitious rotation
centre P towards the steering axis, and at the same time of varying .Ji2, k£, and
¢, accordingly. The results of sensitivity analysis are shown in Figure 3.4 (A,
B), where black curves identify the stability thresholds computed adopting
the parameter values reported in Table A2, with linearized c,. Increasing the
front suspension damping coefficient ¢, has now a moderate stabilizing effect
(left, variation of ¢, in the range +50%), while increasing the travelling speed
Vh has a destabilizing effect as in case 1, even though with smaller magnitude
(right, computed with V5 = 50, 100, 150, 200, 250, 300 km/h). The separate
effects of other parameters, if varied in a range of £10%, also in this case
were all found to be very small.

Finally, the effects of large variations of caster angle are studied for both
cases 1 and 2 with linearized c,, as shown in Figure 3.4 (C, D) varying &¢ in
a range of +20%. To this purpose, the caster angle in Eqs. 3.20 is modified
without changing the external actions (F¢, F}) and all the other parameters
but 2y, which is a function of ey:

Zpo = éal(dg — T+ ZL’f§0) (3.21)

Modifications of the stability threshold are larger in case 2, with stabilizing
effect due to reducing €p. In case 1, the geometric coupling between longi-
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tudinal and normal ground force components introduced by the caster angle
plays a role of minor importance.

3.2.2 Comparison with a multibody planar motorcycle
model

Figure 3.5: Schematic of the adopted planar multibody model.

The results of the previous analysis are compared with those obtained
by a multibody planar motorcycle model. The adopted model, as sketched
in Figure 3.5, is a modification of the one described in section 2.1, without
considering rigid-ring tyres and introducing an additional degree of freedom
for taking into account an in—plane rotation of the upper steering assembly
with respect to the main frame. A deeper description of this model is given
in the Appendix at A.1.12. A list of parameters, together with numerical
values, is reported in Table A3 in the same Appendix; the non-linear damping
characteristic function of the front suspension is the same displayed in Figure
3.2 (left), while that adopted for the rear suspension is the same as reported
in Section 2.1.

A comparison between linearized models (multibody and minimal, case 1)
is presented in Figure 3.6, forcing either the linearized ¢, = 7000 Ns/m (left)
or the averaged ¢, = 1470 Ns/m (right) in both models. In the multibody
model, pitching motion is damped due to additional effects other than those
of the front suspension (due to rear suspension); hence an equivalent value
had to be selected for ¢, in the two different cases to get the minimal model
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consistent as possible with the multibody one (¢, = 210 Nms/rad, left; ¢, =
95 Nms/rad, right). In this way, the stability thresholds computed with the
two models are almost superimposed.

-3.5

T 1.5 2 25 3 35 x104 1 15 2 2.5 3 35 x104

C.IN] C(IN]

Figure 3.6: Stability maps computed with the multibody (thick lines) and
minimal (casel, thin lines) models, with ¢, = 7000 Ns/m (left; ¢, = 210
Nms/rad in the minimal model) and ¢, = 1470 Ns/m (right; ¢, = 95 Nms/rad
in the minimal model).

This suggests that all the relevant features and parameters controlling the
onset and development of patter instability can be included in the minimal
model, in spite of all the simplifying assumptions, as that regarding the
fictitious center of rotation P.

It is also clear that in case 2 the minimal model would not be able to
fit the stability thresholds computed with the multibody model, which in-
dicates that, in case of very stiff elements and assemblies, patter vibration
is mainly associated to pitch of the motorcycle’s main frame, rather than to
fork pivoting with respect to the frame itself.

Finally, a transient manoeuvre is simulated with the multibody model,
with input data as reported in Table A3. The development of oscillations
is shown in Figure 3.7 (left) in terms of wheel spindle motion with respect
to stationary position. At the end of the braking manoeuvre, stability is
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Chapter 3. Front wheel patter instability

quickly recovered due to reduction of travelling speed, and a limit cycle does
not develop.

While stationary manoeuvres on (Cy, C,) diagrams are represented by
single fixed points, transient manoeuvres are represented by time-dependent
points describing trajectories. So, plotting on the same diagram a trajec-
tory due to a transient manoeuvre, together with some selected stability
thresholds computed in stationary conditions, provides some insights into
the system’s transient behaviour.

With the multibody model, a stationary braking manoeuvre can be gen-
erated by keeping constant both the travelling speed and the vehicle’s con-
figuration. Which can be obtained simply by imposing two independent
external actions, consisting of a longitudinal acceleration and a longitudinal
load transfer. A stability threshold can then be computed for the linearized
model by means of the iterative procedure described at Section 2.6.

x10™
7
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— Transi ent manoeuvre
. . . . . . . . ' -1.62 1
0 02 04 06 08 1 12 14 16 18 24 2.6 28 3 32 34 3.6

Eo—Eop [M] C,.IN]

Figure 3.7: Wheel spindle motion with respect to stationary position (left)
and stability map computed with the multibody model during a transient
manoeuvre, showing the stationary stability thresholds at the beginning and
at the end of the manoeuvre (right).

The map displayed in the right side of Figure 3.7 shows the trajectory
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Figure 3.8: Root locus of the mode becoming unstable, varying C,, at different
fixed values of C,, (case 1). Left: Cy € [0,3.5 x 10*] N, C, € [-3,0]. Right:
Cy € (—o0,+00) N, C,, € [-3,0].

due to the transient braking manoeuvre which originates the plot in the left
side. On the same diagram, two different stability thresholds are drawn, the
first one (solid line) keeping constant Vy = 200 km/h (travelling speed at
which, during the transient manoeuvre, patter vibration arises), the second
one keeping constant V5 = 120 km/h (travelling speed at which, during the
transient manoeuvre, patter vibration vanishes). This suggests that during
transient manoeuvres, a time-lag exists between the instant in which the
trajectory crosses for the first time the stationary stability threshold on the
(Cy, Cy) diagram (at V = Vp), and the instant of actual vibration onset, at
V(t) = V. Or, in other words, that stability margins exist beyond stationary
thresholds.

3.2.3 The unstable mode

Some insights about the mode becoming unstable are reported. The minimal
model herein considered (3 dofs) always yields a mode with two real eigenval-
ues (due to the fact that the third column of the stiffness matrix in Eqs. 3.20
has zero elements): one of them is null and the other one is negative. This
mode basically corresponds to rolling of the (front) wheel, and it is always
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Figure 3.9: Natural frequency at different values of travelling speed (Vy =
50, 100, 150, 200, 250, 300 km/h), evaluated at the stability threshold as a
function of C, (case 1).

stable. Among the other two modes, under the assumption of realistic finite
values for damping parameters, the one which becomes unstable is always
underdamped, hence the loss of stability is always oscillatory. The root locus
of the model becoming unstable, drawn varying C, at different fixed values
of C,, (covering the range of interest for the present study), is displayed in
Figure 3.8 referring to the minimal model, case 1 with linearized c,. In the
left side, C,, spans the interval [0,3.5 x 10*] N while C,, varies in [—3,0]. In
the right side, to give a more complete picture of the locus (even though ex-
ceeding realistic bounds), C,; spans the whole interval (—oo, +00) N with C,
still varying in [—3,0]. Clearly, instability occurs when a complex eigenvalue
crosses the imaginary axis.

The natural frequency of the mode becoming unstable, evaluated with the
minimal model at the stability threshold as a function of C\, is reported for
different values of travelling speed V; in Figure 3.9 (case 1: left, linearized c,;
right, averaged c,) and Figure 3.10 (case 2: left, linearized c,; right, averaged
c.). In case 1 with linearized c,, in the range of interest for C,, the natural
frequency varies in an interval between 7 and 9 Hz (slightly increasing with
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C.), consistently with data recorded on instrumented motorcycles, as shown
in Figure 3.13. It can be regarded as almost independent with respect to the
parameters characterizing possible braking manoeuvres, the most influential
one being the travelling speed Vj, however producing variations that for
medium-high values of C}, are bounded in a range of about 1 Hz. In case 1
with averaged c,, the natural frequency spans a different interval, between 6
and 7.5 Hz, which is too low with respect to measured data. This suggests
that Coulomb friction effects in front dampers and/or forks, as that affecting
the characteristic function in Figure 3.2 (left), play a relevant role in patter
instability.

In case 2 (with both linearized and averaged c,), the natural frequency
varies in intervals (20-21 Hz and 12-15.5 Hz, respectively) which are neither
consistent with measured data (Figs. 3.2-3.4, 3.6 and 3.7), nor with results
of multibody simulations (Figure 3.14). This confirms that, in case of very
stiff elements and assemblies, patter vibration is mainly associated to pitch
of the motorcycle’s main frame (case 1), rather than to fork pivotting with
respect to the frame itself (case 2).

Histograms of the relative amplitudes of modal shape components at the
stability threshold are reported in Figure 3.11 for case 1 (left) and case 2
(right), with linearized c,. The modal shape (right eigenvector) of the mode
becoming unstable, evaluated at the stability threshold, is first converted
to a dimensionally homogeneous one (multiplying its y—component by dy
and its Y-component by R in both cases). Then the amplitude of each
dimensionally homogeneous component is normalized with respect to the
Euclidean norm of the modal shape itself, and reported in the diagram as a
function of C. In case 2 the mode becoming unstable is clearly dominated
by the flexural compliance of frame/fork assembly (Figure 3.11 right), while
in case 1 a pitch component prevails over fork travel z (Figure 3.11 left). In
both cases, however, there is a strong component about rim rotation, and the
relative amplitudes of the three components are almost constant with respect
to C, (i.e. the modal shape does not vary significantly along the stability
threshold).

3.2.4 Analysis of the source of instability

The switching mechanism to instability controls the energy flow in the model.
If the flow from the source to the oscillator is larger than the dissipated energy
during one cycle, the vibration amplitude increases. If it is smaller, the
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Figure 3.10: Natural frequency at different values of travelling speed (Vy =
50, 100, 150, 200, 250, 300 km/h), evaluated at the stability threshold as a
function of C, (case 2).

amplitude decreases. At the stability threshold, the energy input balances
the dissipated energy during each period [38]. In the case under study, the
rate of energy supply during oscillation at any instant is given by the product
of the non-stationary components of the longitudinal ground force F; and
slip velocity, which can also be studied by replacing the latter with the non—
stationary component of the slip x, as defined in Eqgs. 3.9, 3.14 and 3.15.
When this product is negative, energy is being fed to the oscillating system
by the external force, and conversely. Hence the key factor for understanding
the origin of the self-excited vibration under study can be recognized in the
phase-lag (say ¢) between the non-stationary components of the longitudinal
ground force F¢ and slip k.

Recalling Eq. 3.15, it is clear that if C;, = 0, then x and F¢ would be
in—phase (¢ = 0). In these conditions the model is always stable (which
answers to a question left open in [3]). Increasing C) raises ¢, and at the
stability threshold the model becomes unstable for a certain phase-lag ¢.

If C;, = 0 and ¢ = 0, then the phase-diagram representation in Figure
3.14 (left) would reduce to a segment centered in the origin of the axes
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Figure 3.11: Histograms of relative amplitudes of modal shape components,
evaluated at the stability threshold as functions of C for both case 1 (left)
and case 2 (right), with linearized c,.

and extended in the first and third quadrants (with positive slope). In the
opposite (virtual) case, x and F¢ would be in counter-phase (¢ = —m), hence
F¢ (k) would be represented by a segment centered in the origin, but extended
in the second and fourth quadrants (with negative slope). In the latter case
the driving mechanism leading to instability would be simply given by a
constitutive equation F; = ck, with ¢ < 0.

The actual case is intermediate between these two extremes with consti-
tutive equation defined by a constant coefficient, either positive or negative.
In fact, the stability threshold is reached at an intermediate phase-lag ¢,
where ¢ is a function of the equilibrium point considered. The phase lag
¢ at the stability threshold is shown in Figure 3.14 (right) as a function of
C,. It can be observed that increasing C\ leads towards the counter—phase
condition.

Then it can be stated that the key role in the switching mechanism to
instability is played by C,. It gives rise to a non-conservative restoring
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Figure 3.12: Root locus of the mode becoming unstable, as a function of
linearized c,,for the multibody full motorcycle model.

force and to an asymmetric stiffness matrix in the equations of motion 3.19,
which potentially raises the phase-lag ¢ to a critical value. Basically, it is
the same mechanism that generates motorcycle chatter at the rear wheel as
discussed in [5, 39], differences being represented by the kind of geometrical
coupling between the vertical and longitudinal oscillating forces F¢ and F,),
and by the opposite role played by longitudinal load transfer during braking,
yielding different working points on the nonlinear characteristic slip function
of the tyre.

During patter vibration, the longitudinal and vertical forces F; and F,
interact in two different ways: first, through the partial derivative of Fg
(Ko,F o) with respect to Fy (i.e. through C,, according to Eq. 3.15); second,
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Figure 3.13: Vertical load on front wheel and main frame pitch velocity
recorded as functions of time on an instrumented racing motorcycle.

as a consequence of the geometric coupling introduced by the caster angle
£o. The former makes the occurrence of self-excited vibration possible, the
latter in this case plays a secondary role.

Table 3.1: Complex eigenvalues of the full motorcycle model [Hz].

Mode Real Part | Imaginary part
Bounce —0.65 3.34
Pitch —27.52 5.46
Front hop 0.00 8.18
Rear hop —0.31 18.06
Driveline —-1.13 23.48
Flexural frame/fork assembly —1.43 33.47

For understanding whether, in a specific case, the equilibrium points in
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Figure 3.14: Phase-lag between longitudinal ground force and slip at the
stability threshold (case 1, linearized c,): diagram of normalized components
(left) and representation as a function of C, (right).

the maps of Figs. 3.2-3.4, 3.6 and 3.7 are stable or not, in Figure 3.15 the
gradient components C,, and (), as well as the braking force F, are repre-
sented as functions of the vertical load F,o (with F¢y and F,y normalized for
protecting reserved data) at two different values of longitudinal slip. The only
region of the diagram in which C, gets potentially critical values takes place
at high slip and high values of F¢y and F, (Figure 3.15, right, circled area). It
can be concluded that increasing the braking torque (which means increasing
both the absolute values of F¢y and F leads to instability, while reducing
tyre—ground friction encourages stability (since it reduces significantly C,,
and consequently also ), which is a reason for racing motorcycles suffering
patter vibration more than road motorcycles.

Other parameters can encourage/discourage the development of patter vi-
bration. The travelling speed V} is the only other highly influential manoeuvre—
dependent parameter, with strong destabilizing effects at medium—high val-
ues of Cy. On the other hand, among manoeuvre-independent parameters,
the most influential one has been recognized to be the front suspension damp-
ing. In case of very stiff elements and assemblies (patter vibration mainly
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associated to pitch of the motorcycle’s main frame), the front suspension
damping has strong destabilizing effects, enhanced primarily by the presence
of Coulomb friction, and secondary by the usual asymmetry in the damp-
ing characteristic functions (the force exerted by the damper is higher in
extension).

Feo C,.Cx104[N] Fy, C,: C,x104[N]
10 0 110
-0.1 - Fw
- C»;, |
. C

n

-0.2

-0.3

04

4 -05

-0.6

-0.7 P -0.7

-0.8 -7 -0.8

N ..........A..-.-.........‘.4...4......-4...u-....m.. -09

-1 2 -l -
0 02 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 3.15: Gradient components C,;, C, and braking force Fg, (normalized)
as functions of vertical load F,y (normalized) at two different values (low and
high) of longitudinal slip: ko = —1.2% (left) and ko = —3.5% (right).

Suspension damping in cases 1 and 2 has opposite effects towards stability,
due to the very different position of point P. In case 2, point P is (almost)
on the fork line (OS, in Figure A.1), hence oscillations in the z direction
of the unsprung mass (wheel centre O) are always damped by the suspen-
sion shock absorber. This is due to the fixed constraint represented by the
revolute joint in P, acting as a rigid frame to which the suspension damper
is connected (exactly true if P is positioned on the fork line); therefore in
this case the shock absorber acts on the mechanism basically producing an
‘external damping’ effect (stabilizing). In case 1, on the other hand, pitching
motion would allow oscillations of the unsprung mass in z direction even in
the case of locked shock absorber, which therefore acts producing an ’internal
damping’ effect (in some cases potentially destabilizing). As a consequence,
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during pitching of the frame (body 1 in Figure 3.1), suspension damping
causes a periodic lifting effect on the wheel, enhancing loss of stability.

Modal analysis of the previously described multibody full motorcycle
model (with parameters as in Table A3) yields results consistent with those
obtained with the minimal model, case 1. Figure 3.12 displays the root locus
of the mode becoming unstable, plotted varying the linearized front suspen-
sion damping (c,) from 1470 Ns/m up to 5420 Ns/m, at a constant speed of
200 km/h. Beyond the stability threshold (reached with ¢, = 3500 Ns/m),
the unstable mode oscillates in the frequency range between 8 Hz and 8.5
Hz.

The complex eigenvalues of the multibody full motorcycle model at the
stability threshold are reported in Table 3.1. It is important to notice that
both the 'pitch’ mode (highly damped) and the ’front hop” mode (becoming
unstable) exhibit a very large component associated to front wheel rotation,
together with rather large components associated to pitch of main frame as
well as vertical travel of front wheel centre, consistently with the minimal
model (Figure 3.11, left).

Finally, some experimental data on front wheel patter oscillation are dis-
played in Figure 3.13, showing vertical load on front wheel and main frame
pitch velocity, recorded as functions of time on an instrumented racing mo-
torcycle (from which the parameters reported in Table A3 and in Figure 3.2
left were taken). With a maximum braking torque of 537 N/m, a speed V' =
220 km/h at t = 0 s and a speed V' = 160 km/h at t = 1.6 s, patter oscillation
occurs at about 9 Hz.
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Conclusions

The target of this study was to analyze the stability of the in—plane modes
of a racing motorcycle, in particular referring to two of the most notorious
phenomena that affect high performance vehicles, that is chatter of the rear
wheel and patter of the front one. To this purpose, symbolic algebra mod-
els were developed and utilized, also with the aid of algebraic manipulating
software. Stability analysis of these models was carried out using classical
techniques, like time-domain simulations and eigenvalue analysis, and devel-
oping novel methods of analysis. The two unstable phenomena addressed in
this work, although different from one another in terms of frequency, bodies
involved and type of motion, have very significant common points. In fact, in
both cases the switching mechanism of the self excitation can be identified in
the reaching of a critical phase-lag between the longitudinal slip and ground
force, whether relative to the front or rear tyre. As it was highlighted in the
dedicated sections of this work (namely Sections 2.4 and 3.2), said phase—
lag can be brought to the critical value depending on the operating point
on the tyre characteristic function, in particular by the value of the partial
derivatives of the longitudinal force w.r.t. the vertical force and the slip
(Cy, and Cy). The nature of the switching mechanism of the self-excitation
is that of a non—conservative restoring force, mathematically represented
by an anti-symmetrical stiffness matrix, and practically enhanced by the
inter—dependence of the longitudinal and vertical tyre-ground forces. This
dependence is physically due to the tyre characteristic function, in particular
parameter C,, and by a geometric coupling represented in the chatter case by
the swingarm angle, and in the patter case by the fork inclination. A more
detailed description of the results obtained relatively to the two unstable
phenomena is given in the following paragraphs.
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Driveline instability

The unstable phenomenon known as chatter of the rear wheel, consisting in
an oscillation at about 17-22 Hz of the rear motorcycle assembly, has been
studied thanks to a 10-dofs full motorcycle model. The model stability has
been studied first in constant velocity conditions, then during straight-line
braking manoeuvre, with control input derived from data measured on an
instrumented motorcycle during a real manoeuvre. The time domain in-
tegration of EoMs shows an unstable oscillatory phenomenon rising. The
oscillation has the frequency of the imaginary part of the eigenvalue at the
stability limit, around 22 Hz, and it consists in a counter—phase oscillation
of pinion and wheel sprocket, associated to the oscillation of the rear suspen-
sion. It is noted that instability may arise even with the rear tyre keeping
in contact with the ground. An interpretation of the source of instability
has been given, based on the rear tyre Magic Formula parameters C} and
C},, representing the partial derivatives of the longitudinal force with respect
to the longitudinal slip and the vertical force respectively. In the transient
manoeuvre under study, it was shown how, in the first phase, the oscillation
amplitude is increased by the combination of a lower and highly variable C,
together with a high absolute value of C,. This combination enhances insta-
bility, and is associated with a counter-phase of x (slip) and F¢ (longitudinal
force). During the last phase of the manoeuvre, instead, an increased verti-
cal force brings the operating point on the tyre characteristic closer to the
linear portion, where C), varies less, while F—~ become closer to an in—phase
oscillating condition, and the vibration gradually vanishes.

The differences between the system eigenvalues and eigenvectors in the
conditions of constant velocity and straight—line braking have been analyzed,
the most relevant being the driveline eigenvalue real part becoming positive,
thus leading the system to instability. Bounds of validity of the frozen—time
eigenvalues analysis have been discussed, and it was shown that in the partic-
ular application under study, the results of this technique are consistent with
the self-excited vibration detected in the transient manoeuvre. However, an
uncertainty appeared in regards to the central phase of the instability, when
the oscillations have reached their peak amplitude and are starting to de-
crease. To address it, the analysis of a time-independent system has been
introduced, which removes the uncertainty due to the parameters varying at
a high rate.

The analysis of a time—independent system has been performed by imple-
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menting straight-line stationary braking manoeuvres; this implies applying
brake torque control input while the speed of the vehicle does not change.
This result has been obtained by means of fictional actions introduced in the
model: a longitudinal forward acceleration that works against the braking
input, and a load transfer thanks to which the typical braking configuration
of the vehicle can be reproduced. The symbolic matrices of the linearized
EoMs have been employed in order to study the behaviour of the system with
respect to the parameters that govern the instability.

A novel technique for drawing stability margins of a linearized system
has been developed. This is an iterative method based on an application of
the Rayleigh quotient, to be used if the complexity of the model makes it
difficult to directly apply the Routh-Hurwitz criterion. Consistency of this
method with the time-domain analysis has been documented. It was also
shown how the stability margin obtained with this method on the C,, — C,
plane correlates with the trajectory of the time-domain manoeuvre in the
same plane: the unstable phenomenon in the time domain originates in the
unstable region of the diagram identified by the iterative method.

The results of both time domain integration and modal analysis have been
compared to those obtained with a simplified (3 dofs) model in [5]; consistent
response of the two models was shown. Finally, the stability margin of the
two models were compared, showing consistent behaviour with respect to
the two key parameters Cy, C;, and confirming that the proposed method
for stability margin agrees with the Routh-Hurwitz criterion employed in

[5].

Front wheel patter instability

In order to analyze the unstable phenomenon known as front wheel patter, a
minimal model has been adopted and validated using the full motorcycle pla-
nar multibody model. The simplified model, representing a motorcycle front
end, i.e. front suspension and wheel, pivoted to an ideal translating frame
with infinite mass and inertia, yielded patter vibration in the frequency range
between 7 and 9 Hz, consistently with data analysis on instrumented motor-
cycles. The switching mechanism to instability of the self-excited vibration
has been identified together with its governing parameters.

Analysis of this instability gave comparable results with the driveline in-
stability analysis of the previous chapter. Even in this case, it has been found
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that the key role in the switching mechanism to instability is played by the
local dependency of the longitudinal ground force by the downforce (partial
derivative at the equilibrium point C,)), but in this case all the quantities are
relative to the front wheel of the motorcycle. Parameter C, gives rise to a
non—conservative restoring force and to an asymmetric stiffness matrix in the
equations of motion, which potentially raises to a critical value the phase—
lag between the non—stationary components of longitudinal ground force and
slip. Beyond this limit the energy flux is reversed, with the external braking
force feeding the oscillating system. As a consequence, increasing the braking
torque leads to instability, while reducing tyre—ground friction has stabilizing
effects.

Sensitivity analysis has clarified which, among other parameters, can en-
courage/discourage the development of patter vibration. The only other
highly influential manoeuvre-dependent parameter has been identified in
the travelling speed Vj, increasing which can have strong destabilizing ef-
fects. The center of rotation of the 3 dofs model about the inertial frame was
set to two different positions, to simulate in the first case a pitch-like motion
("case 17), and in the second one a bending of the front suspension forks
("case 27). Among manoeuvre-independent parameters, the most influential
one has been recognized to be the front suspension damping, which has two
opposite effects in case 1 and 2. When the vehicle has very stiff elements and
assemblies, as for racing motorcycles, patter vibration has been found to be
mainly associated to pitch of the main frame (as modeled case 1), rather than
to fork pivoting with respect to the frame itself. In these conditions, the front
suspension damping has a strong destabilizing effect, enhanced primarily by
the presence of Coulomb friction in dampers and/or forks.
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Appendix A

A.1 Full multibody model description

This Appendix gives a complete description of the full motorcycle multibody
models employed in this work.

The models represent a standard racing motorcycle, with final chain
transmission, front telescopic fork suspension and rear pivoted swingarm sus-
pension.

The models employed in chapter 2 and 3 share most of the features.
A general description of these characteristics is given in sections A.1.1 to
A.1.11, while section A.1.12 gives an explanation of the differences between
the models.

A.1.1 DMotorcycle model geometry

A two-dimensional multibody motorcycle model is adopted, featuring pla-
nar rigid-ring tyres with Magic Formula (MF), chain transmission for both
braking and traction phases, and full drivetrain inertia.

The degrees of freedom of the proposed model are described in Table
A.1. The equations of motion (EoMs) are obtained symbolically, by means
of an open—source multibody library developed in Maple. The kinematic
description makes it possible to evaluate the Lagrangian function L and to
write the EoMs as:

M(q)d = —f(q,q) (A1)

where M(q) denotes the mass matrix of the system and f(q,q) a vector
containing all the terms proportional to displacements and velocities.
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Figure A.1: Schematic of the motorcycle model.

A.1.2 Geometric parameters

The motorcycle geometry is described by means of three fixed parameters,
with the dimensions of a length:

- lsq, swingarm length: the distance between the rear wheel axle and the
swingarm pivot

- I, length of the frame line: the length of a line perpendicular to the
steering axis passing through the swingarm pivot

- lg, front fork offset: the distance between the steering axis and the
front wheel axle [40]

A.1.3 Independent coordinates

The motorcycle internal configuration can be defined by means of two time
dependent variables: the pitch angle « of the swingarm and the pitch angle p
of the frame line, both defined with respect to the inertial reference system.
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Table A.1: Degrees of freedom of the proposed motorcycle model.

’ \ Name \ DoF ‘
1 13 Pivot longitudinal displacement
2 L Frame line pitch
3 @ Swing arm pitch
4 0, Rear wheel angular displacement
5 0, Pinion angular displacement
6 0. Front wheel angular displacement
7 Ty Rear wheel deformed radius
8 Ty Front wheel deformed radius
9 By Rear rim-ring displacement
10 By Front rim-ring displacement

The motorcycle kinematics are derived in a planar, {—forward, n—down
reference system, starting from the position of the swingarm pivot, which
is reached with a translation of components (§,0, —r, — ls,sin(a)), where
¢ is the longitudinal position of the pivot and r. is the rear wheel de-
formed radius. This definition yields the position of the rear wheel axle
as: (§ — lsqcos(a),0,—r,), and the position of the steering head as (£ +
(I, + 1) cos(p), 0, =1, — lsqsin(a) — (I, +1f) sin(u)). Note that in this planar
configuration the caster angle equals the frame absolute pitch angle p.

A.1.4 Closure equation

Defining the front wheel deformed radius as an independent variable 7y,
makes it possible to obtain the closure equation in the form:
hy = rr— 1+ (I, — lp)sin(p) + I sin(a) (A.2)
cos(p)
where hy is the front suspension extension (i.e. the distance between the
steering head and the front wheel axle).

A.1.5 Rigid bodies

The model, as sketched in Figure A.1, consists of eleven rigid bodies. Each
body has constant mass and moment of inertia about an axis perpendicular
to the model plane. The eleven bodies are listed below, each one with a list
of the real bodies it represents:
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- main body: frame and all part that can be considered fixed with respect
to it, rider, engine block, fuel tank

- swingarm body: swingarm, rear brake caliper, part of the lever system
that acts on the rear suspension

- steer body: upper steering assembly, handles, fork outer tubes

- front body: lower front assembly comprising fork lower part, front brake
calipers, fender

- front wheel body: front rim, brake discs, inner part of the front tyre

- rear wheel body: rear rim, brake discs, inner part of the rear tyre, rear
wheel sprocket

- front ring body: front tyre excluding the inner part

- rear ring body: rear tyre excluding the inner part

- crankshaft body: crankshaft, flywheel, alternator and auxiliaries
- main shaft body: main gearbox shaft and clutch

- drive sprocket body: secondary gearbox shaft, pinion

The rider is considered fixed with respect to the mainframe, in a braking
configuration: the center of gravity (CoG) of the suspended mass and the
aerodynamic coefficients are set accordingly.

A.1.6 Controls

The controls applied to the model are the three torques listed below:

- Mg Front brake torque, applied to the front wheel body and reacting
on the front body

- M,,: Rear brake torque, applied to the rear wheel body and reacting on
the swingarm body

- M.: Engine torque, applied to the crankshaft body and reacting on the
main body

the front and rear brake torques (M,f, M,,) and the engine torque (M,).
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A.1.7 Internal forces and torques

The forces and torques mutually acting among the model bodies are the
following:

- Fyy: Fork force: acting on the steer body and reacting on the front body

- Mg,: Rear suspension torque: acting on the swingarm body and react-
ing on the main body

- F.,: Chain force, acting on the drive sprocket body and reacting on the
rear wheel body

1000 2500
2000 -

1500

Fii—damp [N]

-500 -

-1000

-600 - - - - - - - : : . -1500 - - - - -
-05 -04 -03 -02 -01 0 01 02 03 04 05 -0.3 -0.2 -0.1 0 0.1 0.2
hy [m/s] & [m/s]
Figure A.2: Velocity-force characteristic curves for the fork (left) and shock
(right) dampers.

The suspension characteristics are the sum of a displacement-dependent
elastic contribution and a velocity-dependent damping contribution. The
elastic component can be approximated by means of a tri-linear spring char-
acteristic, modelling the main spring, the bottom—out bumper and the top-
out spring. The damping characteristic is also non-linear, and it is modeled
as a velocity-dependent force as shown in Fig. A.2. Both the elastic and
damping contributions of the suspension forces are derived from experimen-
tal measurements performed by the manufacturer.

In the front suspension case, the variable controlling the suspension fork
is hy, i.e. the distance between the geometric steering head and the front rim
center. Hence, the front fork force can be expressed in the form:
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Fii = f(hy,hy) (A.3)

As it pertains to the rear suspension, the independent variables in the
characteristic equation are the suspension displacement (say, xs;,) and its first
derivative w.r.t. time. A further effort is needed in order to model the rear
suspension, since the actual rear suspension of the motorcycle is composed
by a lever system connected to the swingarm and the main frame, which
acts on the rear spring and damper. The inclusion of this system in the full
multibody model would require additional closure equations and bodies with
low mass, that would increase significantly the computational effort without
bringing substantial improvement in the dynamics modelling. In order to
keep a lower computational effort, the suspension system is modeled with a
torque acting between the swingarm and the main frame. The equivalence
between the rear shock force (as measured by the manufacturer) and the
torque to be applied in the model are computed thanks to the principle of
virtual work:

Msh6< = Fshéxsh (A4)

where Fy, is the rear suspension force and ( is the angle between the
frame line and the swingarm line, defined as:

(=p—a (A.5)

A.1.8 External forces and torques

The external actions acting on the model bodies are of two different natures:
aerodynamic and contact forces.

- Firag, Fligt, Maero: Forces of aerodynamic drag and lift, applied to the
main body at an intermediate point at ground level, and aerodynamic
torque

- Fe_y, Fe_,: front and rear longitudinal tyre-ground forces, applied to
the front rim at the ground contact point

- F,_5, F,,—,: front and rear vertical tyre-ground forces, applied to the
rear rim at the ground contact point
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Figure A.3: Schematic of the rigid ring model.

A.1.9 Rigid ring tyre model

The tyre are modeled with two-bodies system called ”Rigid ring”, as dis-
played in Fig. A.3: the first body (rim) has the inertial properties of the real
rim and the inner part of the tyre, supposed fixed. The second body is an
outer ring which represents the body of the tyre.

The two bodies are connected by means of a linear sping-damper parallel
system (Kelvin-Voigt type), with parameters kying, Cring. Between the ring
and the ground, a second Kelvin-Voigt model is present, with parameters k.,
Cres; both spring-damper systems are defined in the non-rotating reference
system. The forces F,, between the ring and rim are expressed in the form:

Fring = kmngﬁ(t) + CringB(t) (A6)

both for the front and rear tyres, where §(t) is the relative displacement
between the ring and rim centers.

The vertical ground forces between the ring and the inertial system are
given by an expression in the form:
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Fy = brea R = (1)) + cres (R — (1) (A7)

where R is the undeformed outer radius of the tyre and r(t) (with subscript
r or f according to the rear and front tyres) is the displacement from the
ring center to the ground.

The value of the k.., parameter is descending from the assumption that
the two Kelvin-Voigt models in series must have an equivalent stiffness equal
to the actual radial tyre stiffness (say, k..q). Hence, the value of k;..s descends
by the formula for stiffness in series, and reads:

1

1 1

krad kring

Fyes = (A.8)

A.1.10 Magic Formula

A motorcycle wheel is composed of two parts: a rim, which can be supposed
rigid, and a deformable pneumatic tyre. Say R the external undeformed
tyre radius; when the wheel moves in its middle plane with a pure rolling
motion on a flat surface, its center is a at a distance a from the ground
and moves forward with a velocity ve. It can be identified the center of
instantaneous rotation Cy of the rim, which has a distance Ry from the rim
center, intermediate between the deformed and undeformed radius: a < Ry <
R. When a torque is acting on the rim, its center of instantaneous rotation
C'is at a distance R, from the rim center; in case the torque is braking, then
R. > Ry. The velocity of point C is named ”longitudinal slip velocity” and
it descends from the fundamental equation:

Vse = QRC - QRO (Ag)

where 2 is the angular velocity of the rim. In this equation, the first term on
the right hand side represents the velocity in the inertial system of reference
of a point initially coinciding with Cjy and belonging to a non-rotating system
of reference, while the second term represents the velocity of point Cy w.r.t.
the rim center in the rotating system of reference.

When an experimental evaluation of the rolling radius of the wheel is
available, it can be defined the longitudinal slip factor (or simply slip) as:

QR
k=——=—1+ 0
&3 B3

(A.10)
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The longitudinal slip is defined as positive when the torque applied to the
rim is positive, hence accelerating the vehicle. It is generally expressed as a
percentage value.

The tyre longitudinal force Fg is derived using the well-known Magic
Formula approach. According to MF 6.2, its general expression reads:

Fe = Dsin(C arctan(Bk — E(Bk — arctan(Bk)))) (A.11)

where the slip coefficient « is evaluated using experimentally measured values
for the tyre rolling radius as a function of the forward speed of the vehicle.
In particular, coefficients B, C', D take into account the dependency of the
longitudinal force with the vertical load acting on the contact patch. Param-
eter D sets the maximum grip available, while the product BC'D expresses
the slope of the characteristic curve at the origin, in the form (considering
unit scaling factors):

OF,
Ke= 2% = BOD = Fy(prn + praalF,)e"A0 (A.12)
k=0
where P
AF, = % (A.13)
n

The actual tyre slip stiffness are defined for each operating point of the
tyre characteristic as:

OF; OF;

Co=—2 Cp=—2—=

Ok OF,

The order of magnitude of C,, for low values of slip is 10* N; it has maximum

value for when the slip is null, and decreases to zero at the peak of the MF

curve. The value of C, is close to unity for positive values of slip, and it

changes sign when the slip is negative (braking conditions).

(A.14)

A.1.11 Transmission model

The transmission is modeled by means of three rigid bodies representing the
crank shaft, the primary and secondary gearbox shafts; each of the bodies
has constant moment of inertia w.r.t. its rotation axis. The rotation of these
shafts are named respectively 0., 0,,s and 4; the only independent degree
of freedom is 6., while the remaining two are computed thanks to the actual
primary gear ratio and the selected gear.
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The multibody model receives M, as an input, i.e. the torque acting on
the crank shaft and reacting on the frame body. In the actual vehicle, this
action is exchanged by the two bodies by means of the engine, which is a
dynamic system itself and can cause an oscillatory component in the reacting
torque on the frame. In order to determine such a component, a dynamic
model of the engine would be needed, but this goes beyond the scope of this
work. Hence M, is treated as an input to the model.

Figure A.4: Schematic of the chain transmission model.

The geometry of the final chain transmission is depicted in Fig. A.4.
The pinion is fixed with the secondary gearbox shaft, and it has a radius
rgs- Lhe chain is wrapped around the pinion and it transmits the motion to
the rear wheel by means of the wheel sprocket, with radius r,s. The final
transmission ratio can be defined using these dimensions:

06 _ Tds

Pws—ds = 7~ —
Op  Tws

(A.15)

The two chain segments AC' and BD, modeled as geometric linear segments,
tangent to both the pinion and the wheel sprocket, have equal length that
can be derived as:
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AC = BD = \[ &, — (rus — 74:)? (A.16)

where in turn the distance between the pinion and wheel sprocket centers is

given by:
dia = VA2 + Az? (A.17)

The lengths Az and Az represent the coordinates of the pinion center in a
system of reference with the center in the rear wheel center and the x axis
parallel to the swingarm line. The direction of the two chain segments can
be derived by the two angles depicted in Fig. A.4:

A ws S
Ben, = arctan <A—Z) €0 = arcsin (Td—rd) (A.18)
X ia

The chain transmits a force parallel to the upper/lower chain segments,
applied in the points A, B, C' and D only when it is tight. A scheme of the
chain forces and their names is depicted in Fig. A.5. Therefore, each of the
chain segments is modeled as a spring that acts only in extension. To define
the elastic force, the free length of the upper and lower segments are defined
as given parameters lyo and ;9. Hence, the extensions of the two segments
is calculated considering the length of AC' and BD, and the wrapping of the
chain around the pinion and segment, obtaining:

ey = rwsec — AC — rdsep + lUO (Alg)
er, = —Twsec — BD + rd30p + ZL(]
A viscous damper is also considered in parallel with each of the springs

modeling the chain, therefore the chain force in the two segments in consid-
ered as proportional to ey, ey, (and respective velocities):

kenev + canér  ifey >0
Fch,U = .
0 ifey <0
(A.20)
kener +cenér, ifer, >0
Fch,L = .
0 ifer, <0

The total stiffness of the spring k., is evaluated taking into account the se-
ries composed by the chain (k;_.;) and the sprocket torsional shock absorber
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0
c A FC’ 6
6 = em

‘,D"rds

oy T
t’g FCh’L Fch,L

Figure A.5: Schematic of the forces acting on the chain transmission model.

(subscript ws), according to:

1 72 \ 7!
ken = ws A.21
" (kl—ch * kws) ( )

The damping in the transmission may be assumed entirely due to the
sprocket torsional absorber (considered linear), that is disregarding the in-
ternal damping of the chain. Hence the transmission damping c., can be
expressed as:

Con = 22 (A.22)

A.1.12 Modifications to the full multibody employed
in front patter analysis

The analysis of the front patter phenomenon required an evolution of the full
multibody model, which allowed to take into account the compliance of the
front assembly of the vehicle. This improvement of the model would increase
the overall complexity of the model to an extent that both the time-domain
simulations and the model linearization would require a high computational
effort. Therefore, it was decided to make a further modification to reduce the
complexity of the model kinematics, with the minimum effect on the overall
vehicle dynamics. It was decided to suppress the rigid ring models, since due
to their high stiffness they have a dynamic effect which is more relevant at
high frequencies, almost one order of magnitude higher than the phenomenon
under study. The compliance on the front assembly is, in reality, due to
the contribution of several flexible bodies: the main frame itself as well as
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Figure A.6: Schematic of the front assembly compliance model.

the steering head and the connection elements give the major contributions.
Consistently with the rest of the multibody model, a lumped-parameters ap-
proach was chosen to model the overall compliance. To define this additional
model feature, the scheme of Fig. A.6 was adopted. The kinematics of the
model were unvaried from the rear wheel up to the geometric steering head,
which is still defined as a point with [, distance from the pivot. Then, two
additional geometric parameters are added, [p and fp, which represent the
coordinates of the revolute joint center P, in a reference system parallel to
the frame line (angle g w.r.t. the ground line).

The additional degree of freedom pp represents the rotation of the fork
line w.r.t. its original orientation, i.e. perpendicular to the frame line. The
revolute joint in P is interposed between the main body and the steer body,
therefore no additional bodies were added. The revolute joint force is defined
as the sum of a linear elastic and a viscous contributions, as in a Kelvin-Voigt
rotational element. Both the position of the center of compliance P and the
stiffness and damping parameters resulted from static measurements of an
actual motorcycle.

The fork extension hy is now defined as the distance of the wheel center

83



Appendix A.

Table A.2: Degrees of freedom of the modified full motorcycle multibody
model.

’ ‘ Name ‘ DoF ‘
1 ¢ Pivot longitudinal displacement
2 w Frame line pitch
3 @ Swing arm pitch
4 0. Rear wheel angular displacement
5 0, Pinion angular displacement
6 0., Front wheel angular displacement
7 T Rear wheel deformed radius
8 Ty Front wheel deformed radius
9 uwp Front assembly rotation due to its compliance

from a point on the fork line at a distance fp from point P, which allows to
keep unchanged the definitions of the fork forces intensity, but it requires to
substitute the closure equation A.2 with a modified version.

Due to the suppression of the rim and ring, the variable r¢(¢) now rep-
resents the front deformed radius, from the wheel center to the ground. Ac-
cordingly, the two former ring and rim bodies are now united in a new wheel
body, with mass and moment of inertia equal to the the sum of the former
front wheel body and front ring body parameters. It should be noted that,
due to the modified model kinematics, the actual caster angle of the vehicle
does not correspond to the frame line slope; in fact, the new rotation up
must be added to this quantity to obtain the actual caster angle.

Given the described modifications, the resulting model has the degrees of
freedom expressed in table A.2, and if consists of nine rigid bodies:

main body: frame and all parts that can be considered fixed with re-
spect to it, rider, engine block, fuel tank, fuel (considered fixed with
the tank)

- swingarm body: swingarm, rear brake caliper, part of the lever system
that acts on the rear suspension

- steer body: upper steering assembly, handles, fork outer tubes

- front body: lower front assembly comprising fork lower part, front brake
calipers, fender

- front wheel body: front wheel, brake discs
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rear wheel body: rear wheel, brake discs, rear wheel sprocket
crankshaft body: crankshaft, flywheel, alternator and auxiliaries
main shaft body: main gearbox shaft and clutch

drive sprocket body: secondary gearbox shaft, pinion
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B.1 Parameters adopted for the driveline sta-
bility analysis

A complete list of the parameters adopted for the analysis of driveline insta-
bility is provided in Table A1.

Table Al: Parameters adopted in the multibody model employed for the
driveline stability analysis.

Global properties

Motorcycle and rider 258.5 kg Wheelbase 1.47 m
mass
Center of  gravity 0.648 m Longitudinal position 0.655 m
height of center of gravity
(w.r.t. the rear axle)
Caster angle 0.427 rad Trail 0.1m
Inertial properties
Rear rim mass 8.5 kg Rear rim axial inertia  0.17 kgm?
Rear ring mass 8.5 kg Rear ring axial inertia  0.68 kgm?
Swingarm mass 10.2 kg Swingarm moment of 0.59 kgm?®
inertia
Suspended mass in- 205 kg Suspended mass mo- 20.5 kgm?
cluding fuel and rider ment of inertia

87




Appendix B.

Upper steering assem- 8.5 kg Upper steering mo- 0.23 kgm?
bly mass ment of inertia
Lower steering assem- 6.8 kg Lower steering mo- 0.2 kgm?
bly mass ment of inertia
Front rim mass 5.5 kg Front rim axial inertias  0.092 kgm?
Front rigid-ring mass 5.5 kg Front ring axial iner- 0.35 kgm?
tias
Crankshaft axial iner- 0.01 kgm?® Gearbox primary shaft 0.15 kgm?
tias axial inertias
Gearbox output shaft 0.007 kgm?
axial inertias
Geometric properties
Swingarm length 0.55 m Frame line length 0.78 m
Steering offset 0.03 m Rear wheel unloaded 0.335 m
radius
Rear wheel torus ra- 0.1 m Front wheel unloaded 0.3 m
dius radius
Drive sprocket radius ~ 0.0429 m Wheel sprocket radius  0.0934 m
Rear suspension lever 2.2
ratio (static trim)
Structural properties
Rear suspension spring 4.2 x 10* || Front suspension 3.2 x 10%
stiffness N/m spring stiffness N/m
Overall rear tyre radial 1.78 x 10° || Overall front tyre 1.56 x 10°
stiffness (static trim)  N/m radial stiffness (static N/m
trim)
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B.2 Parameters adopted for the patter sta-
bility analysis

A complete list of parameters of both the minimal model and the multibody
model is provided, along with their respective values adopted for computa-
tions.

Table A2: List of parameters of the minimal model.

Parameters with same value in case 1 and case 2

Unloaded front wheel radius R =0.300 m
Caster angle g9 = 0.370 rad
Free rolling radius variation factor e=20.9
Front unsprung mass m = 17.6 kg
Front wheel moment of inertia J3 = 0.427 kg x m?
Front suspension damping coefficient (linearized) ¢, = 7000 Ns/m
Front suspension damping coefficient (averaged) ¢, = 1470 Ns/m
Front suspension stiffness k, = 23516 N/m
Tyre radial stiffness k. = 1.5x10° N/m
Frame travelling speed Vo =55 m/s
Longitudinal slip ko = -0.035
Longitudinal ground force Feog = -1857.3 N
Normal ground force Foo = 2006.1 N

Parameters with different values in case 1 and case 2

Case 1 Case 2

Distance betxyeen fork axis and vy = | 0484 m 0.028 m
center of rotation P
Distance between points O and S =077 m 0615 m
in the unloaded case
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Height of center of rotation P dyp = | 0.695 m 0.755 m
Equivalent moment of inertia with Jiy — 18.89 kg x | 2.26 kg x
respect to center of rotation P 1270 m2 m?2
Equivalent pitch damping coeffi- 1210 15
cient (linearized c,) “ 7 | Nms/rad Nms/rad
Equivalent pitch damping coeffi- 195 15
cient (averaged c,) “ = | Nms/rad Nms/rad
. . . 3.26 x 10* | 1.25 x 10°

Equivalent pitch stiffness k, = Nm /rad Nm/rad

Braking manoeuvre, case 1: sequence of steady-state brak-

ing conditions
Sequence 1 2 3 4 5)
Mgo[N x m] | 483.62 510.49 537.36 564.22 591.09
Fgo[N] -1667.0 -1762.1 —-1857.3 -1953.0 —2048.9
F0[N] 1888.3 1948.9 2006.1 2069.9 2130.3
go[rad] 0.377 0.374 0.370 0.367 0.363
k.[N/m] 23373 23449 23516 23611 23696

Table A3: Parameters adopted in the multibody model employed for the

patter stability analysis.

Global properties

Motorcycle and rider 253.0 kg

1mass

Center of gravity height 0.648 m

Caster (static

trim)

angle

0.427 rad

Wheelbase 1.47 m

Longitudinal position of 0.655 m
center of gravity (w.r.t.
the rear axle)

Trail (static trim) 0.1m

Inertial properties
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Rear wheel mass 14.7 kg Rear wheel axial inertia  0.83 kgm?
Swingarm mass 10.2 kg Swingarm moment of in-  1.46 kgm?
ertia (about pivot)
Suspended mass includ- 205 kg Suspended mass mo- 20.5 kgm?
ing fuel and rider ment of inertia
Upper steering assembly 7.9 kg Upper steering moment 0.23 kgm?
mass of inertia
Lower steering assembly 6.8 kg Lower steering moment 0.1 kgm?
mass of inertia
Front wheel mass 9.7 kg Front wheel axial iner- 0.427 kgm?
tias
Crankshaft axial inertias  0.01 kgm? Gearbox primary shaft 0.15 kgm?
axial inertias
Gearbox output shaft 0.007 kgm?
axial inertias
Geometric properties
Swingarm length 0.59 m Frame line length 0.78 m
Steering offset 0.03 m Rear suspension lever 2.2
ratio (static trim)
Rear wheel unloaded ra- 0.32 m Front wheel unloaded 0.3 m
dius radius
Distance between fork 0.028 m Distance between frame 0.112 m
axis and center of rota- line and center of rota-
tion P (lp) tion P (fp)
Drive sprocket radius 0.0429 m Wheel sprocket radius 0.0934 m
Stiffness and damping properties
Rear suspension main 4.2 x 10* || Front suspension main 2.3 x 10%
spring stiffness (static N/m spring stiffness (static N/m

trim)
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Rear sprocket torsional 2.8 x 10* || Rear sprocket torsional 260
stiffness Nm/rad damping Nms/rad
Front assembly equiva- 1.25 x 10°
lent flexural stiffness Nm/rad

Tyre properties
Overall rear tyre radial 1.7 x 10° || Overall front tyre radial 1.5 x 105
stiffness (static trim) N/m stiffness (static trim) N/m

Input parameters for the multibody transient braking manoeuvre

Starting speed 230 km/h

Maximum brake torque 590 Nm

Final speed 120 km/h

Maximum engine brake 8.5 Nm

torque
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