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Abstract 
The main goal of research on reciprocating internal combustion engines (ICEs) consists in increasing 

the power output while reducing pollutant emission and fuel consumption. Cycle-to-cycle variability 

(CCV) is closely coupled with the intrinsic turbulent nature of in-cylinder flow and is detrimental in 

terms of combustion efficiency, fuel consumption, and tailpipe emissions. Due to fluctuations in flame 

propagation, heat release, and burnt product formation, CCV is now seen as one of the major limiting 

factors for higher power output and lower fuel consumption in ICEs. Therefore, it is essential to 

understand and control CCV to improve the overall engine efficiency and performance. Experimental 

techniques like particle image velocimetry (PIV) provide a powerful technical support for the analysis 

of the spatial and temporal evolution of the flow field in ICEs. Proper orthogonal decomposition (POD) 

has been largely used in conjunction with PIV to analyze flow field characteristics. Several methods 

involving POD have been proposed in the recent years to analyze engine CCV. In this work, phase-

dependent POD analysis, conditional averaging, triple and quadruple POD decomposition methods are 

introduced and applied to a large database of PIV data from the optically accessible TCC-III research 

engine. Results are discussed with particular emphasis on the capability of the methods to perform both 

quantitative and qualitative evaluations on CCV. A new quadruple POD decomposition methodology is 

proposed and compared to those available in the literature. Besides experimental techniques, 

Computational Fluid Dynamics (CFD) has become a fundamental tool for understanding the complex 

aero-thermochemical processes that take place in the cylinder and for driving the development of new 

technological solutions. Large-eddy simulation (LES) is the most practical simulation tool to understand 

the nature of CCV. This work investigates LES capabilities to simulate CCV. The accuracy and the 

reliability of CFD simulations stands in the models used for the discretization of the fluid domain and 

for the numerical computation of the governing equations. Three subgrid-scale models are assessed on 

50 LES cycles datasets on the TCC-III engine under motored conditions by means of comparison with 

the experimental results and phase dependent POD analysis on a portion of the intake and compression 

stroke. The findings of this analysis are used to furtherly improve the LES results focusing on the 

meshing strategy. This last plays a central role in the computational efficiency, in the management of 

the moving components of the engine, and in the accuracy of results. The overset mesh approach, usually 

referred to as Chimera grid or Composite grid, was rarely applied to the simulation of ICEs, mainly 

because of the difficulty in adapting the technique to the specific complexities of ICE flows. This work 

demonstrates the feasibility and the effectiveness of the overset mesh technique application to ICEs 

thanks to a purposely designed meshing approach. 50 LES cycles were performed on the TCC-III engine 

under motored conditions. The proposed POD quadruple decomposition methodology is extensively 

applied to assess both the accuracy of the simulated results and the potential of the method itself for 

understanding CCV.  



 

 

 

Il principale obbiettivo della ricerca sui motori a combustione interna (internal combustion engines, 

ICEs) consiste nell’incremento della potenza erogata a fronte di una contemporanea riduzione di 

consumi ed emissioni inquinanti. La variabilità ciclica (Cycle-to-cycle variability, CCV) è fortemente 

legata alla natura intrinsecamente turbolenta della fluidodinamica dei motori a combustione interna, ed 

i suoi effetti sono nocivi sull’efficienza di combustione, sul consumo di carburante e sulle emissioni 

inquinanti. A causa delle fluttuazioni nella propagazione del fronte di fiamma, nel rilascio di calore e 

nella formazione dei prodotti di combustione, la CCV è individuata tra i fattori più limitanti per il 

raggiungimento di sempre più alte potenze specifiche a fronte di minori consumi. È dunque 

fondamentale capire e controllare la CCV per migliorare l’efficienza e le prestazioni dei motori. 

Tecniche sperimentali come la Particle Image Velocimetry (PIV) forniscono un importante supporto 

tecnico per l’analisi dell’evoluzione spaziale e temporale dei flussi nei motori. La Proper Orthogonal 

Decomposition (POD) è stata largamente usata insieme alla PIV per analizzare le caratteristiche del 

campo di moto dei motori. Negli ultimi anni, diversi metodi basati sulla POD sono stati proposti per 

analizzare la CCV sui motori. In questo lavoro vengono illustrati la phase-dependent POD, la media 

condizionale, e la decomposizione tripla e quadrupla della POD. Questi metodi sono applicati ad un 

vasto database di dati PIV sul motore di ricerca ad accesso ottico TCC-III. I risultati sono discussi dando 

particolare risalto alle capacità di ciascun metodo di dare una stima sia qualitativa che quantitativa della 

CCV. Un nuovo metodo di decomposizione quadrupla della POD viene proposto e comparato ai metodi 

presenti in letteratura. Oltre alle tecniche sperimentali, la fluidodinamica computazionale 

(Computational Fluid Dynamics, CFD) è ormai diventata uno strumento imprescindibile per la 

comprensione dei complessi fenomeni aero-termochimici che hanno luogo nel cilindro e per guidare lo 

sviluppo di nuove soluzioni tecniche. Le simulazioni LES (large-eddy simulations) sono lo strumento 

più indicato per simulare la CCV. In questo lavoro è stato valutato il potenziale della LES nella 

simulazione della CCV. Tre modelli di subgrid sono stati valutati tramite dataset da 50 cicli LES sul 

motore TCC-III in trascinato attraverso la comparazione con i risultati sperimentali ed una phase-

dependent POD su una porzione della corsa di aspirazione e compressione. Le evidenze riscontrate in 

questa analisi vengono usate per migliorare ulteriormente i risultati lavorando sulla strategia di 

discretizzazione (meshing). Quest’ultima assume un ruolo centrale nell’efficienza computazionale, nella 

gestione dei componenti in movimento nel motore e nell’accuratezza dei risultati. L’approccio Overset 

mesh, chiamato anche Chimera o Composite grid, è stato raramente applicato ai motori, soprattutto a 

causa delle difficoltà nell’adattamento di questa tecnica alle complessità specifiche della fluidodinamica 

dei motori. In questo lavoro viene dimostrata l’applicabilità della tecnica overset mesh ai motori a 

combustione interna, attraverso un approccio di discretizzazione sviluppato appositamente, e ne viene 

mostrata l’efficacia. 50 cicli LES sono stati calcolati sul motore TCC-III in trascinato. La tecnica di 

decomposizione quadrupla della POD sviluppata è stata ampiamente applicata per valutare sia 

l’accuratezza dei risultati simulati, sia l’efficacia del metodo stesso nella comprensione della CCV.  
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Introduction 
 

1.1 Background and motivation 

The topic of CO₂ and fuel consumption reductions from vehicles is a very broad and complex issue, 

encompassing vehicle regulations, biofuel mandates, and a vast assortment of engine and vehicle 

technologies. From 2020 the regulation (EC) No 443/2009 of the European Parliament and of the 

Council establishes CO₂ emission performance requirements for new passenger cars to achieve the target 

of 95 g CO₂/km for the average emissions of the new car fleet as measured in accordance with Regulation 

(EC) No 715/2007. The reduction of GreenHouse Gas (GHG) emission has become a mandatory target 

in engine research to fight the climate change. According to a study [1] by the U.S. National Research 

Council, there are four potential technology pathways that can reduce fuel consumption and GHG 

emissions by 80% from the LDV fleet by 2050: highly efficient conventional vehicles, biofuels, plug-

in hybrid and electric vehicles, and hydrogen fuel cell vehicles. In the current market, light-duty vehicles 

run mostly using internal combustion engines (ICEs) with fuels such as gasoline, diesel, compressed 

natural gas, liquefied petroleum gas, and flex-fuel. Despite the spread of Battery Electric Vehicles, the 

projections on the sales, shown in Figure 1, highlights how the role of ICEs will continue to be 

predominant in the transport sector.  

 

 

Figure 1 Number of the projections on light-duty vehicle demand [2] 
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The report from the Global Fuel Economy Initiative [3] projects that even with the cost reduction in the 

non-conventional technology (fuel cells and batteries) based vehicles, global sales of ICE based vehicles 

will have a larger market share until about 2040, and will remain significant well after 2040. This leads 

us to the conclusion that improvements in the fuel economy and GHG emissions of ICEs is of utmost 

importance. The fuel efficiency and the pollutant emissions in ICEs are closely coupled with the 

complex aero-thermo-chemical processes that take place inside the cylinder. One way to increase the 

overall fuel efficiency of ICEs is the reduction/elimination of cycle to cycle variability. 

 

1.2 Cycle-to-cycle Variability 

Cycle-to-cycle variability (CCV) is nowadays seen as one of the most limiting factors in increasing the 

specific power in Internal Combustion Engines (ICEs). Even though the components in a spark ignited 

piston engine follow a repeatable law of motion, the time evolution of the cylinder pressure shows a 

scatter of the individual cylinder pressure curves around the phase averaged mean. As a result, the work 

provided by each single cycle is different from the mean work, which is the design target for the engine. 

CCV may jeopardize combustion efficiency, drivability, fuel consumption, and tailpipe emissions. In 

extreme cases misfire or partial burns may occur, causing the increase in pollutant emissions. In 1994, 

Ozdor estimated that the complete or partial elimination of CCV could provide up to a 10% increase in 

power output for the same fuel consumption[4]. Nowadays, the main objective of research on ICEs is 

the increase in the power output with the contemporary reduction of the emission of the green-house gas 

CO2. Among the technologies introduced to fulfill this target, the increased dilution rates of fresh charge 

by exhaust gas recirculation and the aim of a lean combustion tend to decrease the laminar flame speed. 

This could lead to a further amplification of the cyclic variations [5]. Therefore, it is essential to 

understand and control the mechanisms that lead to CCV to improve the overall engine efficiency and 

performance. CCV is closely coupled with the intrinsic turbulent nature of in-cylinder flow. The local 

flow pattern around the spark plug at the early stage of the flame kernel development can convect the 

spark kernel away from or towards the electrodes. This could either reduce or emphasize local quenching 

phenomena and the early flame propagation. Since the early phases of combustion play a fundamental 

role on the history of flame propagation, turbulence-related flow perturbations will certainly increase 

CCV. Other factors impacting on CCV exist, such as large-scale gas-dynamics, injection and ignition 

repeatability. A significant contribution to CCV comes in fact from combustion related factors, such as 

mixture composition, ignition, and flame propagation. In the last decades, several studies on Cycle-to-

cycle variations[4-6]  have identified some leading factors, such as: 

- Variations of the spark discharge characteristics 

- Variation of in-cylinder mixture 



3 

 

 

 

- Spatial mixture inhomogeneity at the spark plug 

- Variations of turbulence intensity 

- Variations of the mean flow speed and direction in the spark plug vicinity 

- Variations of the overall in-cylinder flow pattern 

All these phenomena are closely coupled and it’s hard to determine their relative importance in the 

occurrence of cyclic variations. Besides, since an ICE works under different loads and environmental 

conditions during the normal usage, the leading factors for CCV may not always be the same[6]. 

However, the literature agrees on the intake turbulence being the leading actor in changing flame 

propagation and related combustion pathway[7]. 

 

1.3 Methods of analysis for CCV 

It is extremely difficult to analyze and understand engine CCV, due to the complex superimposition of 

many different mechanisms. The cylinder pressure has been used to measure the fluctuations. This has 

led to the use of pressure related parameters to quantify the fluctuation intensity. The maximum pressure 

and its crank angle location are frequently used parameters, together with the indicated mean effective 

pressure (IMEP) produced per engine cycle. The standard deviation is usually normalized with the 

average value to give a coefficient of variation, COVimep. These parameters have the benefit of 

requiring no modeling and the COVimep shows how much torque fluctuation that the transmission etc. 

must tolerate, and it is therefore used as an indicator for the component design. The major drawback 

with the parameters derived from the pressure is the lack of knowledge on the ongoing process. The 

importance of those mechanisms and their interactions can hardly be studied using only standard engine 

experiments based on cylinder pressure analysis[6].  

To address the effects of flow variability without the hurdle of other CCV-promoting factors, extensive 

analyses on engines in motored condition can help isolating flow-effects on cyclic variability.  

The rapid development of optical diagnostic techniques such as Particle Image Velocimetry provided a 

powerful technical support to the study of CCV[8, 9]. PIV has been used to measure in-cylinder flow 

velocities in reciprocating ICEs since 1989[10]. Since then, the adoption of high-speed lasers and digital 

cameras made possible to make PIV measurements through the entire engine cycle for multiple 

contiguous cycles[11]. These flow measurements are essential for resolving cycle-to-cycle flow 

variations, as well as the cause-and-effect relationships between flow, mixing, and combustion. PIV 

measurements also gave a fundamental contribution in the validation and the development of 

computational techniques such as large eddy simulation (LES) [12].  
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1.4 Large Eddy Simulations 

In conjunction with the experimental techniques, computational fluid dynamics (CFD) simulations have 

become a fundamental tool in ICE design and development, thanks to its ability of giving an insight on 

the complex aero-thermochemical processes that take place in the cylinder. CFD has been applied to a 

wide variety of phenomena related to the ICE, such as heat transfer[13-15], combustion [16-18], 

pollutant formation[19], knock events [20-22], and Cycle-to-Cycle variability[23-25]. To improve the 

computational efficiency and the accuracy of results, extensive research has been done on methods of 

the CFD, such as numerical schemes, turbulence models, wall-functions, and mesh motion strategies. In 

an ICE, the strategy adopted to handle the motion of the valves and the piston plays a fundamental role. 

The gaps are extremely thin and high pressure and temperature are involved. Therefore, the mesh motion 

strategy must guarantee reliability, stability and the conservation of turbulent quantities. The approach 

implemented in many commercial software, such as STAR-CD, licensed by SIEMENS PLM, is the so-

called “dynamic cell layering”, consisting in adding or removing layers of cells in accordance with the 

motion of a translating boundary (i.e. the valves and the piston), while the majority of the grid remains 

fixed. A set of control vertices is used to define the initial movement imposed to the mesh by the 

morpher. Another widely used method is the morphing motion formulation. A displacement vector is 

associated with each control vertex and is used to move nearby vertices. These displacements are used 

to generate an interpolation field using multiquadric interpolation theory [26]. This approach was as 

well implemented in many CFD commercial packages, like VECTIS, licensed by RICARDO, and FIRE, 

licensed by AVL. The overset grids approach was first introduced in 1983[27]. The computational 

domain is composed by several different meshes. Each moving component is surrounded by a dedicated 

mesh, which interacts with the background mesh and the other moving components meshes through 

interpolation in the overlapping zones. More details on this technique will be illustrated later on. 

Problems involving multiple bodies relative motion are easily handled thanks to the flexibility of this 

approach in matching each different grid component. A wide use of overset grids has been done in 

industrial applications, specifically in aerospace. However, the complexity of ICEs simulation makes 

the implementation of this methodology challenging. Only few applications are available in the 

literature[28], but the level of flexibility guaranteed by the overset approach makes its application to 

ICEs desirable and promising. Turbulence models are an essential part of CFD simulations. Even though 

Unsteady Reynolds Averaged Navier Stokes (URANS) analysis is still the most-established method to 

design and develop ICEs, RANS models are designed to capture the ensemble averages. Therefore, only 

little information can be obtained on CCV, because a higher turbulent viscosity tends to dampen or 

remove the variations in in-cylinder flows and combustion, that coincide with cycle-to-cycle variability. 

A RANS approach can still be used to predict deeply stochastic phenomena, as for example knock [20], 

and URANS can predict variability under different degrees of dilution of the air-fuel mixture with 
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exhaust gas recirculation [29]. However, the literature agrees on the necessity of relying on Scale 

Resolving Simulations (SRS), e.g. Large Eddy Simulations (LES), to simulate and understand CCV. 

Thanks to a lower dissipation in LES turbulence models compared to a RANS model, a higher level of 

kinetic energy usually characterizes LES flows and more flow structures, eddies, and vortices are 

represented on the computational grid. LES models are designed to filter the smallest scales and retain 

the less dissipative largest scales, responding to the non-linearities inherent to the Navier-Stokes 

equations. Therefore, LES simulations have the intrinsic potential to simulate many aspects of the cyclic 

fluctuations[30]. Extended reviews on the state of the art of LES application for internal combustion 

engines can be found in [31-33]. Since many engine cycles must be simulated while performing an LES 

analysis on CCV, a compromise between accuracy and LES quality must be found to optimize the 

necessary computing resources. In order to assess the quality of the simulation and to provide the 

necessary localized mesh resolution, severe research efforts were made to develop LES quality 

indices[34-36]. 

Haworth et al.[33, 37] were among the first to study cycle-to-cycle variability in a motored engine, 

simulating several motored cycle and studying instantaneous flow structures. More recently, an 

increasing number of studies were dedicated to cycle-to-cycle velocity fluctuations by means of LES 

simulations, considering their impact on spray, mixing process, and ignition [38-42]. Despite a 

considerable number of investigations though, the relevant underlying physics of cycle-to-cycle 

variability is not yet fully understood. Many attempts have been made to divide the velocity field in 

three parts including the mean part, a low-frequency part and a high frequency part by means of Fast 

Fourier Transform [43, 44], but the difficulties in determining cutoff and the consequent differences in 

results made non-definitive conclusions. LES capabilities in making both quantitative and qualitative 

analysis on cycle-to-cycle variability are well established. It’s harder to evaluate LES capabilities to 

understand the origin of cycle-to-cycle variability and to use it as a tool to reduce it.  

 

1.5 Proper Orthogonal Decomposition 

Many analysis methods rely on Proper Orthogonal Decomposition (POD). POD was first introduced 

into the turbulence field by Lumley in 1967[45]. POD has been widely presented as a powerful and 

elegant method of data analysis aimed at obtaining low-dimensional approximate descriptions of high-

dimensional processes[46]. In recent years it has been proposed as a promising tool to objectively extract 

and identify coherent structures in turbulent flows. POD has been applied to in-cylinder velocity data of 

reciprocating engines by a number of groups[47-52]. Graftieaux et al. [53] suggested using POD to 

separate pseudo-fluctuations attributed to the unsteady nature of the large-scale vortices from 

fluctuations due to small-scale turbulence. Chen et al. [54] proposed a practical guide to apply POD in 
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ICE research. Several methods of analysis can be found in literature based on the so-called phase 

dependent POD, performed with the “method of snapshots" introduced by Sirovich[55]. Buhl et al [30] 

proposed the conditional averaging method. Roudnitzky et al [56] proposed the POD triple 

decomposition and Qin et al. [57] proposed the quadruple decomposition.  

 

1.6 Objectives of the work 

This work focuses on CCV on two main aspects: on one side the capability of POD in understanding 

cyclic variations. Several methods of analysis involving POD were tested on an experimental PIV 

dataset publicly available for the TCC-III engine in motored conditions [58]. A new quadruple POD 

decomposition is proposed with the intent of improving the drawbacks highlighted in the previously 

mentioned methods. On the other side, first an assessment over three subgrid-scale models is performed. 

From the findings of this research, the Overset mesh methodology is investigated to improve the 

accuracy of the CFD simulation of CCV. Thanks to a purposefully designed mesh approach, the Overset 

Mesh methodology was firstly applied to an ICE for CCV investigation. Results are shown to assess the 

accuracy of the simulation. The new quadruple POD decomposition methodology is applied to this 

dataset.  

The thesis is structured as follows:  

- In chapter 1 the experimental setup of the TCC-III engine is recalled.  

- In chapter 2 a brief introduction on turbulence and CFD theory is given.  

- In chapter 3 first, a theoretical introduction on POD is given. Each analyzed method is briefly 

recalled to highlight the underlying principles and assumptions. Then, the developed method 

for an alternative quadruple POD decomposition is proposed and its potential in describing 

flow-originated CCV is highlighted.  

- In chapter 4 the analysis of three subgrid scale models is given on three 50 LES cycles dataset 

on the TCC-III engine. Results are analyzed in terms of ensemble average comparison, 

alignment parameter, and POD analysis on both simulated and experimental results 

- In chapter 5, first an introduction on the overset mesh methodology is given. Then, the 

computational setup for 50 LES cycles on the TCC-III engine is described and results are shown. 

Finally, the POD quadruple decomposition is extensively applied and results are discussed.  

- Finally, conclusions are summarized and a perspective on future research is discussed. 
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Chapter 1 

TCC-III engine 
 

The first version of the TCC engine (TCC-0) was designed and built by General Motors in 1990. The 

engine was designed to provide benchmark data at the next logical level beyond the Imperial College 

data on ICEs, where laser-doppler anemometry was used to quantify the mean velocity and turbulence 

characteristics of the isothermal and incompressible flow within a piston-cylinder arrangement motored 

without compression at 200rpm[59]. Several publications have been made on the first version of the 

TCC [9, 60-62]. Then, in 2010 the TCC-II version was created to renew the fundamental investigation 

of CCV using experiments in conjunction with the evaluation of three different LES approaches[12]. As 

for the original design, the geometry was purposefully chosen to be simple for ease of computational 

gridding, and optimized for optical access to the entire combustion chamber. The TCC-II configuration 

had the same engine geometry but a different intake system, exhaust system, and valve seat (two angles) 

compared to the TCC-0. The experimental results from the TCC-II configuration were useful for 

establishing the LES-to experimental data-comparison protocols, to identify desired improvements in 

the hardware and operating procedures, and to assess the impact of engine and system imperfections on 

the in-cylinder flow. Based on the TCC-II studies, new results are reported here from a third 

configuration, TCC-III, which has refurbished valve hardware and the intake/exhaust systems upgraded 

for fired testing. Also, the TCC-III data are significantly more repeatable and with expanded operating 

conditions. 

The TCC-III optical engine, illustrated in Figure 2. It is a spark-ignition 2-valve, 4-stroke, pancake-

shaped combustion chamber engine with a geometrical compression ratio of 10:1. It is equipped with a 

full quartz cylinder and a 70 mm-diameter flat quartz piston window. The intake air, intake port and 

plenum, exhaust port, and coolant are heated to maintain an engine temperature of 318 K to minimize 

thermal gradients in air flow during motored operation. Each intake and exhaust port is connected to a 

plenum. Detailed engine specifications are listed in Table 1. 
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Figure 2 Schematic of TCC Engine and high-speed pressure measurement locations[58] 

 

Parameter Specification 

Engine TCC-III engine 

Displacement Volume 570 cc 

Bore 92 mm 

Stroke 86 mm 

Compression Ratio 10.0 

Engine Speed 1300 RPM 

Intake Pressure 0.4 bar 

 

Table 1 TCC-III engine specifications 

 

A full quartz liner and quartz piston-top window allow maximum optical access to the pancake-shaped 

combustion chamber. Sicone-oil droplets are added to the intake air and illuminated with a high-

repetition-rate frequency doubled Nd:YLF laser (Darwin Duo, Quantronix). Images of the Mie 

scattering signal are recorded using a monochrome high-speed CMOS camera (Phantom v1610, Vision 

Research) with a 1280x800 pixel sensor. All velocity fields are calculated with a commercial particle-

image velocimetry (PIV) code (DaVis v8.x, LaVision GmbH) employing a decreasing interrogation 

window with a final window size of 32x32 pixel with 50% overlap. This leads to spatial velocity 

resolution of approximately 2.6 mm and a vector separation of 1.3 mm. Velocity data are acquired 

successively in the four planes shown in Figure 3, at an interval of 2.5 Crank Angles (CA). The field of 

view in horizontal planes (z = -5 mm and z= -30 mm) is limited by the piston window to approximately 

70 mm in diameter, and in vertical planes (x = 0 mm and y = 0 mm) to approximate 70 mm in width.  
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Figure 3 PIV planes for the TCC-III engine[58] 

 

The PIV measurement of each section plane were recorded successively every 5 CA for at least 235 

cycles. Even though the PIV measurements were carried out on the four section planes at different times, 

full similarity between different PIV measurements in terms of pressure traces and flow motion was 

achieved. A detailed description of the experimental setup can be found in [58]. On Y=0 and X=0 planes, 

PIV data are recorded on a 52x82 grid with a base size of 1.15 mm. On the Z= -5 and Z= -30 planes, 

PIV data are recorded on a 49x50 grid, with a base size of 1.38 mm. Due to the limitations in optical 

access on the Z plane, the flow field is available on 75% of the bore dimension. The TCC-III engine is 

well known in the literature for the reliability and the accuracy of the experimental data provided. For 

this reason, it is chosen as reference dataset for the following analysis. 

In this work, the dataset identified as S_2013_10_24_01 is used. This dataset has been generated from 

240 consecutive cycles. The analysis focuses on the XZ plane, considered as the most representative of 

the in-cylinder flow. 
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Chapter 2 

Physical models and numerical methods for motored flow 

The flow inside an ICE is always turbulent in nature. An essential feature of turbulent flows is that the 

fluid velocity field significantly and irregularly varies in both position and time. Due to the high velocity 

of the motion of piston and valves, the turbulent structures continuously vary during the cycle, and the 

flow structures at a particular phase/CA can vary from a cycle to another. In this chapter, turbulence is 

introduced, and the numerical models used to simulate it are described. The turbulence theory is 

synthetized from [63]. Specific attention is given to the Kolmogorov hypothesis that will be mentioned 

in Section 3.6. 

2.1 Turbulence 

Turbulence consists of fluid motions over a wide range of length and time scales. In engineering 

applications turbulent flows are prevalent, thanks to the ability of turbulence of transporting and mixing 

fluids much more effectively than a comparable laminar flow. Turbulence is also effective at mixing the 

momentum of the fluid, resulting, for example, in an increase in the drag and the wall shear stress on an 

aircraft’s wing. Similarly, compared to laminar flows, rates of heat and mass transfer at solid-fluid and 

liquid-gas interfaces are much enhanced in turbulent flows. For high Reynolds number there is a 

separation of scales. The large-scale motions are strongly influenced by the geometry of the flow (i.e. 

by the boundary conditions), and they control the transport and mixing. The behavior of the small-scale 

motions, on the other hand, is determined almost entirely by the rate at which they receive energy from 

the large scales and by the viscosity. Therefore, the small-scale motions have a universal character, 

independent of the flow geometry. The idea of the energy cascade, introduced by Richardson in 1922, 

is that kinetic energy enters the turbulence (through the production mechanism) at the largest scales of 

motion. The first concept in Richardson’s view of the energy cascade is that the turbulence can be 

considered to be composed of eddies of different sizes. These eddies have energy of the order of 𝑢0
2 and 

a timescale of 𝜏0 =
𝑙0

𝑢0
⁄ , where 𝑢0, 𝑙0 and 𝜏0 are the characteristic velocity, length and time scales of 

the largest eddies, respectively. Hence, the rate of energy transfer/dissipation will scale as 𝑢0
2/𝜏0 =

𝑢0
3/𝑙0,  independent of the viscosity.  

The energy is transferred (by inviscid processes) to smaller and smaller scales until, at the smallest 

scales, the energy is dissipated by viscous action. Kolmogorov in 1941 added and quantified this picture. 

In particular, he identified the smallest scales of turbulence to be those that now bring his name. His 

theory is based on three hypotheses. The first hypothesis concerns the isotropy of the small-scale 
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motions: while the large eddies are anisotropic and largely affected by the boundary conditions, the 

directional bias of the large scales are lost in the chaotic scale-reduction process. Therefore: 

Kolmogorov’s hypothesis of local isotropy: at sufficiently high Reynolds number, the small-scale 

turbulent motions (𝑙 ≪  𝑙0) are statistically isotropic. 

A demarcation to define the length scale where the vortices are anisotropic is identified with 𝑙𝐸𝐼 ≈

1
6⁄ 𝑙0. All the information about the geometry of the large eddies, determined by the boundary 

conditions, is also lost when the energy passes down the cascade. As a consequence, the statistics of the 

small-scale motions are similar for every high-Reynolds number turbulent flow. In the energy cascade 

(for 𝑙 <  𝑙𝐸𝐼), the two dominant processes are the transfer of energy to successively smaller scales, and 

viscous dissipation. A plausible hypothesis, then, is that the important parameters are the rate at which 

the small scales receive energy from the large scales (called Τ𝐸𝐼 ) and the kinematic viscosity 𝜈. The 

dissipation rate 𝜀 is determined by the energy transfer rate Τ𝐸𝐼, so that these two rates are nearly equal. 

Consequently: 

Kolmogorov’s first similarity hypothesis: In every turbulent flow at sufficiently high Reynolds 

number, the statistics of the small-scale motions ( 𝑙 <  𝑙𝐸𝐼 ) have a universal form that is uniquely 

determined by 𝜈 and 𝜀. 

Given the two parameters 𝜀 and 𝜈, there are unique length, velocity, and time scales that can be formed. 

These Kolmogorov scales are:  

𝜂 ≡ (𝜈
3

𝜀⁄ )
1

4⁄

    [2.1] 

𝑢𝜂 ≡ (𝜈𝜖)
1

4⁄        [2.2] 

 𝜏𝜂 ≡ (𝜈 𝜀⁄ )
1

2⁄      [2.3] 

 

Kolmogorov scales characterize the very smallest, dissipative eddies. On the small scales, all high-

Reynolds number turbulent velocity fields are statistically similar and they are statistically identical by 

the Kolmogorov scales. However, at sufficiently high Reynolds number, there is a range of scales l that 

are very small compared with 𝑙0, and yet very large compared with 𝜂, i.e. 𝑙0 ≫ 𝑙 ≫ 𝜂. In this range 

eddies are much bigger than dissipative eddies, and it can be supposed that their motion is little affected 

by the effect of viscosity. Consequently: 
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Kolmogorov’s second similarity hypothesis: In every turbulent flow at sufficiently high Reynolds 

number, the statistics of the motions of scale l in the range 𝑙0 ≫ 𝑙 ≫ 𝜂 have a universal form that is 

uniquely determined by 𝜀, independent of 𝜈.  

A lengthscale 𝑙𝐷𝐼 (with 𝑙𝐷𝐼 = 60𝜂) is introduced, so that the range in the above hypothesis can be written 

 𝑙𝐸𝐼 ≫ 𝑙 ≫ 𝑙𝐷𝐼. This lenghtscale splits the universal equilibrium range into two subranges: the inertial 

subrange  𝑙𝐸𝐼 > 𝑙 > 𝑙𝐷𝐼 and the dissipation range 𝑙 < 𝑙𝐷𝐼. In the energy cascade, a quantity of central 

importance, denoted as 𝑇(𝑙), is the rate at which energy is transferred from eddies larger than l to those 

smaller than l. If this transfer process is accomplished primarily by eddies of size comparable to l, then 

𝑇(𝑙) can be expected to be in the order of 𝑢(𝑙)2/𝜏(𝑙). 

The energy contained in different length scales can be represented by the energy spectrum function 

𝐸(𝑘), where 𝑘 =
2𝜋

𝑙
 is the wavenumber which is inversely proportional to the length scale 𝑙. 𝐸(𝑘) is the 

turbulent energy contribution per unit mass per unit wavenumber from the eddies corresponding to 

wavenumber 𝑘. The energy spectrum for an isotropic turbulence in the log-log format is shown in Figure 

4. To summarize, the spectrum is divided in three parts over the wavenumber/length scale range: 

1) The energy containing range with the large-scale eddies 

2) The dissipation range with the small-scale eddies 

3) The inertial subrange with all the scales in between 

The area under the energy-spectrum function gives the total turbulent kinetic energy. 
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Figure 4 Energy spectrum for isotropic turbulence 

There are three general ways to simulate turbulent flows: 

- Direct Numerical Simulation (DNS) 

- Reynolds Averaged Navier Stokes (RANS) 

- Large Eddy Simulation (LES) 

 

2.2 DNS 

Navier-Stokes equations describe the three dimensional flow field of a generic fluid; they are a system 

of 5 differential equations along with two equations of state. The most straightforward method for the 

numerical solution of a fluid-dynamic field, is the one based on the direct discretization of the Navier-

Stokes equations and it is called Direct Numerical Simulation (DNS). The obtained solutions are exact, 

that is they retain the fluctuation contributions typical of turbulent phenomena: a time average of the 

obtained solutions will then be needed to get a solution describing the mean flow motion of the fluid.  

Nevertheless, the direct solution of the Navier-Stokes equations leads to relevant problems: they mostly 

come from the computational cost: only using extremely fast and massively-parallel super computers 

with huge memory amounts, together with very refined numerical techniques, it is possible to get 

solutions within acceptable times. In fact, in order to have a correct solution, the computational grid 

must be so fine that it is able to capture all the temporal and spatial scales of the fluid-dynamic field. 
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This leads to extremely fine grids and very small computational/integration time steps. Up to the present 

times, hardware evolution is still far away from allowing the researchers to apply DNS for practical 

problems except for very “simple” cases. Nevertheless, DNS is extremely useful to provide a forecast 

of the flow field in standard geometries which require “acceptable” computational demands. These 

simplified geometries can then become test-cases for the validation of the other subsequent approaches. 

 

2.3 RANS 

The Reynolds-Averaged Navier-Stokes equations (RANS) are derived from the time-averaging 

operation performed on the Navier-Stokes original set of equations. Time-averaging is based on the 

decomposition of a generic fluctuating variable into a mean part and a fluctuation around the mean 

value. The resulting set of equations expresses the time-averaged behaviour, or in case of quasi-periodic 

flows such as those in internal combustion engines, phase-averaged flow realizations. 

RANS equations need closure terms to model the Reynolds Stresses, i.e. the product terms between 

velocity fluctuations. 

In this context the 2-equations k-ε turbulence model is developed and it is still nowadays the most 

widespread and used model for turbulent flows in commercial CFD software. The idea is introducing 

two transport equation for k and ε. These have the form of: 

𝜕(𝜌̅𝑘)

𝜕𝑡
+ ∇ ∙ (𝜌̅𝑘𝑢̅) = ∇ ∙ (

𝜇𝑡

𝜎𝑘
∇𝑘) + 2𝜇𝑡𝑆̃𝑖𝑗𝑆̃𝑖𝑗 − 𝜌̅𝜀                        [2.4]   

𝜕(𝜌̅𝜀)

𝜕𝑡
+ ∇ ∙ (𝜌̅𝜀𝑢̅) = ∇ ∙ (

𝜇𝑡

𝜎𝜀
∇𝜀) + 𝐶1𝜀

𝜀

𝑘
2𝜇𝑡𝑆̃𝑖𝑗𝑆̃𝑖𝑗 − 𝐶2𝜀

𝜀

𝑘
𝜌̅𝜀      [2.5] 

The modeled equations give a relation for the energy transfer represented by the energy-cascade process, 

which is determined by the problem-dependent large-scale motions. The equations above, represent the 

turbulent kinetic energy and its dissipation rate process at a small scale. 

The origin of the model comes from experimental observations: at high Reynolds numbers, the energy 

dissipation rate and the turbulent kinetic energy undergo variations in time which are more or less 

proportional. An increase of k corresponds to an increase of ε of equal intensity, and vice versa; the 

same happens for decreasing rates. From a mathematical perspective, this is converted into a direct 

proportionality between the productive and dissipative terms of k and ε: this assumption is called 

“turbulent equilibrium hypothesis”. The mentioned time correlation which stands between k (defined in 
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m2/s2) and the dissipation rate ε (m2/s3) represents the inverse of the time-scale of the large scale eddies, 

i.e. it indicates the turn-over frequency of the large-scale eddies, measured in s-1. 

One major advantage of k-ε model is that it is based on the Boussinesq assumption, typical of eddy 

viscosity turbulence models. It allows to simplify the evaluation of the turbulent stresses, reducing 

computational times and explaining why such models are the most used from an industrial point of view 

for the analysis of turbulent flows. Another advantage is their considerable robustness: from a 

computational point of view they are highly stable and efficient. On the contrary, some inner 

simplifications in the transport equations can lead to poor accuracy in the representation. Major error 

sources in two-equation models are the turbulent equilibrium assumption and the Boussinesq hypothesis. 

As for the turbulent equilibrium assumption, this is sufficiently true only for free-flows at high Reynolds 

numbers. Boussinesq hypothesis introduces the concept of eddy viscosity in perfect analogy with the 

molecular one; the definition as a scalar, implicitly, imposes an isotropy condition to the eddy viscosity. 

This assumption leads to a linearity between the strain rate and the Reynolds stresses, which is never 

verified, except for very simple flows, far from solid walls; for complex fields, highly distorted, where 

geometry effects are relevant (bended pipes, etc.), a linear relation is wrong.  

 

2.4 LES 

In large-eddy simulation (LES), the large three-dimensional unsteady turbulent motions are directly 

represented, while the effects of the smaller-scale motions are modelled. LES’ computational cost lies 

between Reynolds-stress models and DNS. Since the large-scale motions are represented explicitly, LES 

is expected to be more accurate and reliable than Reynolds-stress models for flows in which large-scale 

unsteadiness is significant. There are four conceptual steps in LES. 

1) A filtering operation is defined to decompose the velocity 𝑼(𝒙, 𝑡) into the sum of a filtered (or 

resolved) component 𝑼̅(𝒙, 𝑡), which represents the motion of large eddies, and a residual (or 

subgrid-scale, SGS) component 𝒖′(𝒙, 𝑡). 

2) The equations for the evolution of the filtered velocity field are derived from the Navier-Stokes 

equations. 

3) Closure is obtained by modelling the residual-stress tensor, most simply by an eddy-viscosity 

model. 

4) The model filtered equations are solved numerically for 𝑼̅(𝒙, 𝑡), which provides an 

approximation to the large-scale motions in one realization of the turbulent flow. 
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As mentioned in 1), the governing equations for LES are obtained by spatially filtering the instantaneous 

continuity and Navier-Stokes equations. Each quantity can be decomposed as the sum of the spatially 

filtered contribution and the fluctuations about the spatially filtered value. For example: 

𝑢𝑖 = 𝑢̅𝑖 + 𝑢𝑖
′     [2.8] 

Here, 𝑢𝑖 is the velocity component in the i-direction, (. )̅̅ ̅̅  denotes a spatially filtered quantity, and (. )′ is 

the associated fluctuations about the spatially filtered quantity. The filter velocity is defined by: 

𝑢̅𝑖(𝑥, 𝑡) = ∫𝐺(𝑥, 𝑥′)𝑢𝑖(𝑥
′, 𝑡)𝑑𝑥′    [2.9] 

Where 𝐺(𝑥, 𝑥′), the filter kernel, is a localized function. Filter kernels, which have been applied in LES 

include a Gaussian, a box filter (a simple local average) and a cutoff (a filter which eliminates all Fourier 

coefficients belonging to wavenumber above a cutoff). Every filter has a length scale associated with it, 

Δ. Roughly, eddies of size larger than Δ are large eddies while those smaller than Δ are small eddies, the 

ones that need to be modeled. When the Navier-Stokes equations with constant density (incompressible 

flow) are filtered, a set of equations similar to the RANS equations is obtained: 

𝜕(𝜌𝑢𝑖̅)𝑦

𝜕𝑡
+

𝜕(𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅)𝑦

𝜕𝑥𝑗
= −

𝜕𝑝̅

𝜕𝑥𝑗
+

𝜕

𝜕𝑥𝑗
[𝜇 (

𝜕𝑢𝑖̅

𝜕𝑥𝑗
+

𝜕𝑢𝑗̅

𝜕𝑥𝑖
)]    [2.10] 

Since the continuity equation is linear, filtering does not change it: 

𝜕(𝜌𝑢𝑖̅)

𝜕𝑥𝑗
= 0     [2.11] 

It is important to note that, since  

𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ ≠ 𝑢𝑖̅𝑢𝑗̅      [2.12] 

And the quantity on the left side of this inequality is not easily computed, a modeling approximation for 

the difference between the two sides of this inequality must be introduced: 

𝜏𝑖𝑗
𝑠 = −𝜌(𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ − 𝑢𝑖̅𝑢𝑗̅)     [2.13] 

In the context of LES, 𝜏𝑖𝑗
𝑠  is called the subgrid-scale Reynolds stress. The width of the filter Δ is not 

necessarily linked to the grid size h, however Δ > ℎ.  
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2.4.1 Smagorinsky subgrid-scale model 

The earliest and most commonly used subgrid scale model is the one proposed by Smagorinsky in 1963. 

It is based on a Boussinesq hypothesis, it is therefore an eddy viscosity model. All such models are 

based on the notion that the principal effects on SGS Reynolds stress are increased transport and 

dissipation. The model can be viewed in two parts. First, the linear eddy-viscosity model 

𝜏𝑖𝑗
𝑟 = −2𝜈𝑟𝑆𝑖̅𝑗     [2.14] 

Is used to relate the residual stress to the filtered rate of strain. The coefficient 𝜈𝑟(𝒙, 𝑡) is the eddy 

viscosity of the residual motion. Second, using Prandtl’s mixing-length hypothesis, the eddy viscosity 

is modelled as: 

𝜈𝑟 = 𝑙𝑠
2𝑆̅ = (𝐶𝑠Δ)2𝑆̅     [2.15] 

Where 𝑆̅ is the characteristic filtered rate of strain, 𝑙𝑠 is the Smagorinsky lengthscale (analogous to the 

mixing length) which, through the Smagorinsky coefficient 𝐶𝑠, is proportional to the filter width Δ. 

According to the eddy-viscosity model, the rate of transfer of energy to the residual motion is 

𝑃𝑟 ≡ −𝜏𝑖𝑗
𝑟 𝑆𝑖̅𝑗 = 2𝜈𝑟𝑆𝑖̅𝑗𝑆𝑖̅𝑗 = 𝜐𝑟𝑆̅2    [2.16] 

For the Smagorinsky model (and for every eddy-viscosity model with 𝜈𝑟 > 0), the energy is always 

transferred from the filtered motions to the residual motions, without any backscatter. Most of the 

methods apply to isotropic turbulence and they all agree that 𝐶𝑠 ≈ 0.2. Unfortunately, 𝐶𝑠 is not constant: 

it is zero in laminar flow and it is attenuated near walls compared with its value in high-Reynolds-

number free turbulent flows. Therefore, it may be a function of Reynolds number and/or other non-

dimensional parameters and may take different values in different flows. It can be calculated using the 

van Driest damping that has long been used to reduce the near-wall eddy viscosity in RANS models: 

𝐶𝑠 = 𝐶𝑠0 (1 − 𝑒−𝑛+

𝐴+⁄
)
2

  [2.17] 

Where 𝑛+ is the distance from the wall in viscous wall units and 𝐴+ is a constant.  

The dynamic model provides a methodology for determining an appropriate local value of the 

Smagorinsky coefficient. The dynamic model is based on the scale similarity assumption. The idea, 

introduced by Bardina et al.[64], is that the smallest scales that are resolved in a simulation are similar 

in many ways to the still smaller scales that are treated via the model. The model was proposed by 

Germano et al. [65]. The velocity 𝑢̅𝑖 can be filtered using a filter broader than the one used in the LES 
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itself to obtain a very large scale field 𝑢̿𝑖. An effective subgrid-scale field can be obtained by subtraction 

of the two fields. By multiplying and filtering, the subgrid-scale Reynolds stress tensor produced by that 

field can be computed. From the large-scale field, the Reynolds stress produced by the model can be 

estimated.  

𝜏𝑖𝑗
𝑅 ≡ 𝑈𝑖𝑈𝑗

̅̅ ̅̅ ̅̅ − 𝑈𝑖̅𝑈𝑗̅   [2.18]    

𝑇𝑖𝑗 ≡ 𝑈𝑖𝑈𝑗
̅̅ ̅̅ ̅̃̅ − 𝑈𝑖̅

̃ 𝑈𝑗̅
̃    [2.19]    

 

An identity due to Germano is obtained by applying the test filter to Eq. 2.18 and subtracting the results 

from Eq. 2.19: 

𝐿𝑖𝑗 ≡ 𝑇𝑖𝑗 − 𝜏𝑖𝑗
𝑅̃ = 𝑈𝑖̅𝑈𝑗̅

̃ − 𝑈𝑖̅
̃ 𝑈𝑗̅

̃     [2.20] 

 

The term 𝐿𝑖𝑗, which is called resolved stress, is known in terms of 𝑼̃, whereas 𝑇𝑖𝑗 and 𝜏𝑖𝑗
𝑅  are not. 𝐿𝑖𝑗 

can be interpreted as the contribution to the residual stress from the largest unresolved motions.  

This can be done at every spatial point at every timestep. For this model it is fundamental to assume that 

the same model with the same value of the parameter 𝐶𝑠 can be applied to both the actual LES and LES 

done on a coarser scale. A secondary assumption that is made more for convenience than necessity is 

that the parameter is independent of location.  

 

2.4.2 Dynamic Structure Model (DSM) 

The eddy-viscosity-based model, like the Smagorinsky one, are purely dissipative and there is no 

backscattering. This is not always true as energy can also flow in the reverse direction. Also, equal 

amounts of energy are dissipated from every scale in the Smagorinsky model. To overcome this 

limitation, in the dynamic structure model the subgrid stresses are modeled as: 

𝑇𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑟    [2.21] 

𝑘𝑟 =
1

2
(𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ − 𝑢𝑖̅𝑢𝑗̅)    [2.22] 
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Where 𝑐𝑖𝑗 is a symmetric tensor and 𝑘𝑟 is the subgrid turbulent kinetic energy. The tensor 𝑐𝑖𝑗 has 

components with negative values, that introduce backscattering. Since the components are not equal in 

every location, the energy dissipation will not be equal, i.e. lower energy will be dissipated from the 

larger scales and higher energy will be dissipated from smaller scales. To define the tensor 𝑐𝑖𝑗, a test 

level model is defined: 

𝑇𝑖𝑗 = 𝑐𝑖𝑗𝐾    [2.23] 

𝐾 =
1

2
(𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̃ − 𝑢𝑖̃̅𝑢𝑗̃̅) = 𝑘̂ +

1

2
𝐿𝑖𝑗    [2.24] 

Using the test level kinetic energy, K, can be written as a function of the sub-grid kinetic energy and the 

trace of the 𝐿𝑖𝑗 tensor. Then, the Germano identity is used to formulate an equation for the tensor 

coefficient 𝑐𝑖𝑗: 

𝐿𝑖𝑗 = 𝐾𝑐𝑖𝑗 − 𝑘𝑐𝑖𝑗
̂     [2.25] 

By solving this integral equation for the coefficient tensor, or by assuming that the coefficient tensor 

can be brought outside the integral, the dynamic structure model becomes: 

𝜏𝑖𝑗 = (
𝐿𝑖𝑗

𝐿𝑘𝑘
⁄ )2𝑘    [2.26] 

Therefore, the dynamic structure model is a one-equation, non-turbulent viscosity model [66]. 

In Section 4 an evaluation of the abovementioned SGS models is shown on three 50 LES cycles datasets 

on the TCC-III engine.  
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Chapter 3 

Proper Orthogonal Decomposition 
 

3.1 Introduction 

POD has been described as an elegant method of data analysis aimed at obtaining low-dimensional 

approximate description of high-dimensional processes [46]. 

In recent years, the Proper Orthogonal Decomposition (POD) has been extensively used as an analysis 

tool for evaluating the turbulence of in-cylinder reciprocating engine flows thanks to its potential for 

resolving the discourse between turbulence and cyclic variability [67]. POD was first introduced in 1967 

by Lumley [45] for application to atmospheric turbulence to separate eddies with scales on the order of 

the average flow by the turbulent motion, whose scale is substantially smaller. Grafitieux et al. [53] 

suggested using POD to separate pseudo-fluctuations attributed to the unsteady nature of the large-scale 

vortices fluctuations due to small-scale turbulence. Many applications on in-cylinder flows were 

presented. Baby et al. [7]used POD to demonstrate its capability to separate small scale turbulent 

fluctuations from cycle-to-cycle variations. Bizon et al. used POD to reconstruct missing data from an 

optically accessible engine in order to obtain pseudo-cycle-resolved sequences [68] and demonstrates 

that the use of POD has allowed the analysis of cyclic variations of two-dimensional scalar combustion 

images [69]. Buhl et al. [30]used POD as an objective method to identify subsets to perform a 

conditional average for the analysis of CCV. Roudnitzky et al. [56] proposed an energy-based filtering 

procedure based on the POD that recognizes the mean part, the coherent and the incoherent part of the 

turbulence, while Qin et al. [57]proposed a further decomposition with the recognition of a transition 

part. These last methods will be furtherly analyzed later on. Liu and Haworth [50] described the main 

POD approach for the analysis of ICEs and extend the phase invariant approach, firstly introduced by 

Fogleman [47]. Chen et al. produced a practical guide for the use and the interpretation of POD in 

internal combustion engines analysis [67, 70]. 

POD technique decomposes any original vector or scalar field into a sum of weighted linear basis 

functions, usually called modes 𝜙𝑖. The modes can be computed from two-component 2D velocity 

distributions, but also from 3D distributions and from one component scalar distributions. In the so-

called phase-dependent POD, also referred to as method of snapshots, the modes are generated from a 

sample of snapshots, in our case, the PIV/LES velocity fields. In practice, the snapshots are samples of 

the velocity field obtained at a discrete spatial location and at discrete instants in time. The number of 

modes is equal to the considered number of snapshots. In addition, the modes are orthogonal to each 

other and normalized so that the magnitude of each mode is unity. The energy of each mode in each 
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snapshot is given by the so-called POD coefficients. Their value depends on the projection of each mode 

onto the single snapshot. The contribution of each mode to the single snapshot determines the weight of 

that single mode in the snapshot. Consequently, each snapshot can be reconstructed by summing all 

modes multiplied by their respective coefficients for that snapshot [30]. 

The method of snapshots can be applied only to velocity fields that are obtained from multiple engine 

cycles at a given CA position, that’s why this analysis is also called “phase dependent” POD. The intent 

is to extract the dominant energy-containing structures for a defined phase. The objective of the “phase 

invariant” POD is to provide a single set of POD modes that is representative of the flow dynamics over 

the full engine cycle [50]. For this purpose, snapshots obtained at multiple piston positions must be used. 

To deal with the change of the geometry due to the piston position, three modifications were proposed 

in [47]: a linear spatial transformation was applied so that the velocity components are defined at the 

same spatial locations (a baseline grid) for all snapshots. Second, a linear velocity transformation was 

applied to retain the one-dimensional global dilatation from each snapshot during the spatial 

transformation. And third, the velocities were rescaled so that each snapshot has the same kinetic energy 

prior to performing the POD analysis.  

In this work, “phase dependent” POD was used. In particular, several methods involving POD were 

applied to the experimental dataset of the TCC-III engine in motored condition to assess their potential 

and limitations in analyzing CCV. Then, a new quadruple POD decomposition methodology is proposed 

and compared to those available in the literature. This section is structured as follows: first the 

mathematical procedures of POD are given. Then, phase dependent POD, triple, and quadruple 

decomposition are introduced and applied to the TCC-III engine. Results are discussed with particular 

emphasis on the capability of the methods to perform both quantitative and qualitative evaluations on 

CCV. Then, a new quadruple POD decomposition methodology is proposed and compared to those 

available in the literature[71]. 

 

3.2 Mathematical procedures 

A brief theoretical introduction on phase-dependent POD follows. For a given CA position, the input 

data for the POD consists of N two-dimensional velocity fields 𝑉𝐶𝐴
(𝑁)

= (𝑢𝑖,𝑗, 𝑤𝑖,𝑗)
(𝑁), where i,j are the 

indices of the grid points of the PIV measurements, and N is the index of the velocity field. 

Consequently, for each snapshot a number of M points, with 𝑀 = 𝑖 × 𝑗 is used for the POD analysis. A 

𝑀 × 𝑁 matrix A is created at each CA position,  
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𝐴𝑛
𝑚 =

[
 
 
 
𝑎1

1 𝑎1
2

𝑎2
1 𝑎2

2

…
…

𝑎1
𝑁

𝑎2
𝑁

⋮ ⋮ ⋱ ⋮
𝑎𝑀

1 𝑎𝑀
2 ⋯ 𝑎𝑀

𝑁 ]
 
 
 

    [3.1] 

There are no general rules on how rows and columns of the A matrix must be organized. Since the 

considered flow field is a vector field, we chose to set the A matrix as below: 

𝐴𝑛
𝑚 = [𝑢1 𝑢2 ⋯ 𝑢𝑁] =

[
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2

⋮
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⋯
⋯
⋯
⋱
⋯

𝑢𝑀
𝑁

𝑤𝑀
1

𝑤𝑀
2

⋮
𝑤𝑀
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    [3.2] 

The covariance 𝑁 × 𝑁 matrix R is calculated as: 

𝑅 = 𝐴𝑇𝐴    [3.3] 

The eigenvalue problem is given by Eq. 3.4 

𝑅𝑣𝑖 = 𝜆𝑖𝑣𝑖    [3.4] 

A set of eigenvalues in decreasing order is obtained by solving the eigenvalue problem. A set of 

eigenvectors corresponding to each eigenvalue is also calculated.  

Then, POD modes are calculated as: 

𝜙𝑖 =
∑ 𝑣𝑛

𝑖 𝑢𝑛𝑁
𝑛=1

‖∑ 𝑣𝑛
𝑖 𝑢𝑛𝑁

𝑛=1 ‖
    [3.5] 

With 𝑖 = 1,2,… ,𝑁 

POD coefficients for snapshot n are obtained by Eq. 3.6 

𝑎𝑖 = 𝜙𝑖𝑢𝑛    [3.6] 

Finally, the snapshot reconstruction is carried out as: 

𝑢𝑛 = ∑𝑎𝑖
𝑛𝜙𝑖

𝑁

𝑖=1

    [3.7] 

The energy content of each mode is represented by its corresponding eigenvalue. Consequently, the 

energy fraction of each mode is obtained as from Eq. 3.8: 
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𝑒𝑖 =
𝜆𝑖

∑ 𝜆𝑛
𝑁
𝑛=1

    [3.8] 

 

3.3 Phase-dependent POD analysis 

Several methods of analysis are based on POD. In POD decomposition, POD modes are processed to 

perform a flow reconstruction of the main turbulent structures. POD can also be used as a standalone 

analysis method. Many examples can be found in the literature [50, 70, 72]. To understand the 

information given by this method, it is worth to focus on the physical meaning of the POD modes. POD 

is a purely mathematical method and a physical interpretation is not necessarily allowed. However, the 

literature agrees on the interpretation of, at least, the first mode. The first POD mode is generally 

associated with the average flow field. Observed confirmation can be found in Figure 5, where the first 

three POD modes and the average flow field are shown for four significant crank angle positions, 

namely:  

- 240CA, exhaust stroke 

- 475CA, intake stroke 

- 540 CA, BDC of expansion stroke 

- 630CA, compression stroke 

The tumble flow structure generation during the intake stroke, as well as its decay during the 

compression stroke, are visible. The first mode is very similar to the average flow for all the snapshots. 

The energy spectrum related to the second and the third modes provides some information about their 

weight in reconstructing the original flow field.  
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Figure 5 POD Modes: 1) Mode 1, 2) Mode 2, 3) Mode 3, 4) Average Flow Field for CA position a) 240CA, b) 475 CA, c) 

540CA, d) 630 CA 

POD mode intensity [-] POD mode intensity [-] POD mode intensity [-] Velocity magnitude [m/s] 

POD mode intensity [-] POD mode intensity [-] POD mode intensity [-] Velocity magnitude [m/s] 

POD mode intensity [-] POD mode intensity [-] POD mode intensity [-] Velocity magnitude [m/s] 

POD mode intensity [-] POD mode intensity [-] POD mode intensity [-] Velocity magnitude [m/s] 
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Figure 6 Energy spectrum for the first 10 POD modes for 475 CA position 

 

Focusing on the 475CA position, i.e. mid intake stroke, the POD energy spectrum is reported in Figure 

6. A predominance of the first mode can be observed: in this case, most of the energy (64.6%) is 

associated to the average flow. The second mode has only the 3.37% of the total energy, while the third 

mode has less than half the energy of the second (1.51%). The energy associated with the remaining 

modes progressively decreases. While a visual representation of the first POD mode allows to resemble 

the average flow, no recognizable turbulent structures can be observed in the representation of the 

second and third mode. However, their importance is highlighted by the Root Mean Square deviation 

(RMS), shown in Figure 7. The RMS is calculated as: 

𝑢𝑅𝑀𝑆(𝐶𝐴) = √∑ (𝑉𝐶𝐴
𝑖 − 𝑉̅𝐶𝐴 )

2𝑁
𝑖=1

𝑁
     [3.9] 
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Figure 7 RMS of the flow field at CA position 475 

 

The highest deviations are in the zones identified by modes 2 and 3. This means that the most energetic 

secondary flow structures are mainly responsible for the deviation around the mean flow field. 

Therefore, they can be looked as potential candidates for CCV promotion. The contribution to CCV of 

the remaining modes is certainly not negligible. However, since the energy associated with each mode 

is progressively lower, it becomes harder to understand each mode’s macroscopic effect on CCV. As 

described in Section 2.2, POD decomposition may be used to group low energy POD modes and to 

reconstruct coherent and incoherent parts of the flow field turbulence. 

Having a set of 240 engine cycles, therefore 240 snapshots, phase invariant POD provides a full set of 

240 coefficients for each sample. POD coefficients are directly linked to POD modes and they give 

useful information on each snapshot. Assuming that the first modes are always the most relevant for 

general considerations, Figure 8 shows the evolution of the coefficients of the first three modes along 

the whole engine cycle.  

RMS of the velocity magnitude [m/s] 
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Figure 8 Energy spectrum of the first 3 POD modes along the whole intake phase 

 

The first mode is always the most energetic, its energy fraction ranging from 20% to 90% of the total 

energy. A high energy associated with the first mode is an indicator of the presence of a dominant 

turbulent structure. In the specific case of the TCC-III engine, this structure is identified as the tumble 

motion. Conversely, low values of the first POD mode along the cycle could be associated with the lack 

of dominant structures. Although this is reasonable and generally true, this purely mathematical results 

must always be critically analyzed. For example, the lowest peaks in the cycle correspond to TDC 

positions. Considering the compression TDC, the organized tumble motion is progressively destroyed 

by the flat shape of the piston and the relatively low flow velocity, thus explaining the low value of the 

first mode. Nevertheless, looking at the ensemble average flow field, in Figure 9, the cause of the 

anomaly could be concurrently found in the lack of data in the Field Of View (FOV).  



28 

 

 

 

 

Figure 9 Average flow field for the CA position 360 

 

This affects both the interpretation of the POD outcomes and a possible comparison with CFD data. 

 

3.4 Conditional averaging methodology 

The conditional averaging method proposed by Buhl et al. [30] uses POD as a tool to objectively identify 

cyclic variation in macroscale vortices. As for most comparisons between experimental and calculated 

values, the calculation of mean values is performed on equal crank angle position, so that the 

instantaneous flow fields are consistent in terms of geometry and boundaries. The ensemble average is 

calculated as: 

𝒖̅(𝒙, 𝜙) =
1

𝑁
∑ 𝒖(𝒙, 𝜙, 𝑛)

𝑁

𝑛=1

    [3.10] 

based on 𝑁 available flow realizations for the velocity field 𝒖(𝒙, 𝜙, 𝑛) at a specific crank angle 𝜑 for 

each individual cycle 𝑛. Even though the ensemble average gives a clear idea on the macroscopic 

behavior of the flow field, only little information can be extracted by this analysis in terms of large-scale 

fluctuations, which can be linked to CCV. Instead of calculating the ensemble average on the full set of 

data, Buhl et al. propose calculating the average on reduced sets of instantaneous flow fields, which are 

Velocity magnitude [m/s] 
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identical in terms of a conditioning vector 𝜙. The conditioning vector must be able to detect the cycle-

dependent dynamics of the large-scale structures. This method of conditional averaging is defined 

according to: 

𝒖̂(Φ) =
1

𝑀(Φ)
∑ (𝒖(𝑛, 𝜙)|𝜙 = Φ)

𝑀(Φ)

𝑛=1

    [3.11] 

Eq. 3.10 and Eq. 3.11 are very similar, while the value 𝑀(Φ) denotes the number of instantaneous flow 

fields for which 𝜙 = Φ is valid. Since the high energetic POD modes are generally associated with 

large-scale structures, as recalled in Section 1.2, the cycle-dependent coefficients indicate the 

contribution of each POD mode to that cycle. Consequently, they can be used as a criterion to find the 

conditioning vector 𝜙. It is possible to reduce the conditioning vector to a single conditioning variable, 

which can be represented by a set of four combinations of POD coefficients. Buhl et al. call these 

combinations subsets. They are denoted by the simple variable 𝑠(𝑛), whereby the dependency of the 

individual cycle 𝑛 is not explicitly shown in the following for notational convenience. Furthermore, the 

conditioning variable s can take the discrete values 1, 2, 3 or 4. Accordingly, the subset-dependent 

averaged flow field is denoted as 𝒖̂(s). Subsets are defined using the well-established capability of POD 

to identify the coherent flow structures. Cyclic variations of these flow structures are reflected in a 

variation of the high-energetic POD coefficients, which become the discriminating factor to cluster 

cycles into subsets. Figure 10 shows the schematic procedure of Buhl’s methodology. 

 

Figure 10 Scheme of the procedure of conditional averaging developed by Buhl et al.[30] 

For the analysis of the intake stroke of an engine, Buhl et al. propose the criterion reported in Table 2. 
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Subset M2 coefficient M3 coefficient 

1 ≥0 ≥0 

2 ≥0 <0 

3 <0 ≥0 

4 <0 <0 
 

Table 2 Criterion for the subset selection table by Buh et al. [30] 

Buhl’s criterion is hereafter applied for the generation of the subsets. The intake phase is at first 

analyzed. As stated in Section 2.1, a coefficient for each POD mode is associated with every single 

sample. In Phase Dependent POD, the samples are the flow fields at a given CA position for each cycle. 

The POD coefficients define the weight of the flow structure described by each mode in every single 

sample. As shown in Figure 11 for modes 1, 2 and 3, these POD coefficients are highly variable within 

the set of available cycles. The POD coefficients related to the first mode show a slight variation around 

a positive value. POD coefficients of the modes higher than 1 oscillate around zero. The deviation of 

peaks and troughs decreases for increasing mode number. The higher is the magnitude of the POD 

coefficient, the higher is the energy associated with the respective POD mode. POD coefficients with 

negative values are included. This can be deduced from Equation 3.7: the velocity flow field 

reconstruction is given from the contribution of the POD mode multiplied by the POD coefficient. The 

energy is given by the square of velocity, therefore it is proportional to the square of POD coefficients. 

A pictorial view of the different subsets for the 475CA position can be found in Figure 12. 

 

Figure 11 POD coefficients for the modes 1,2 and 3 over the 240 cycles for 475 CA position 
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Figure 12 Conditional averaging method: 1) Subset 1, 2) Subset 2, 3) Subset 3, 4) Subset 4 for CA position a) 240CA, b) 475 

CA, c) 540CA, d) 630 CA 

Velocity magnitude [m/s] Velocity magnitude [m/s] Velocity magnitude [m/s] Velocity magnitude [m/s] 

Velocity magnitude [m/s] Velocity magnitude [m/s] Velocity magnitude [m/s] Velocity magnitude [m/s] 

Velocity magnitude [m/s] Velocity magnitude [m/s] Velocity magnitude [m/s] Velocity magnitude [m/s] 

Velocity magnitude [m/s] Velocity magnitude [m/s] Velocity magnitude [m/s] Velocity magnitude [m/s] 
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Subsets 1 and 2 show a higher intake jet penetration, while subsets 3 and 4 show a more tumble-prone 

jet orientation. Since mode 2 coefficients of subsets 1 and 2 are higher than 0, a higher energy is expected 

for the pertaining cycles. Such expectation is confirmed by the higher jet penetration.  

It is harder to highlight the effects of mode 3 on each subset.  

A further step in the subset selection is then performed focusing on one mode at a time, for example 

Mode 2. Two subsets are now selected, picking up the highest and the lowest coefficients rather than 

choosing positive and negative ones. The average value of the positive and the negative coefficients are 

then calculated. Finally, all samples lying on the top 20% and bottom 20% values are included in the 

two new subsets.  

 

Figure 13 Subsets selected according to the second POD mode criterion. (a) 2 POD mode peaks (b) 2 POD mode troughs. The 

contribution of the second POD mode is highlighted 

Results are reported in Figure 13. As expected, the aforementioned difference between subsets 1 and 2 

becomes now even more evident.  

This method is useful to emphasize the contribution of the third mode as well.  

Velocity magnitude [m/s] Velocity magnitude [m/s] 
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Figure 14 Subsets selected according to the third POD mode criterion. (a) 3 POD mode peaks (b) 3 POD mode troughs. 

Figure 14 shows that it is harder to identify a clear correlation between the third mode structure and the 

variation in the flow fields of the two subsets. However, differences in the jet tendency to generate a 

recirculation motion are now visible.  

 

Figure 15 Detail of the energy contribution of the POD modes 2 and 3 at CA position 475 

Velocity magnitude [m/s] Velocity magnitude [m/s] 
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Again, the lower energy content of mode 3 structures, highlighted in Figure 15, is the main reason why 

it is more difficult to correlate variations in subsets with the third mode structures themselves.  

For the sake of completeness, the same method is also applied to the first POD mode. Results are shown 

in Figure 16.  

 

 

Figure 16 Subsets selected according to the first POD mode criterion. (a) 1 POD mode peaks (b) 1 POD mode troughs. The 

contribution of the first POD mode is highlighted 

As expected by looking at the POD coefficients in Figure 11, no differences in the flow field can be 

highlighted. There is, however, a difference in the local maximum velocities in the flow field: the peak 

subset shows higher velocities than the trough one. This result represents a visual representation of the 

mathematical nature of POD coefficients: high POD coefficients are associated with high energy 

content.  

Selecting just the peaks and troughs is useful for a better understanding and for emphasizing the 

macroscopic variations between subsets. However, the drawback is that each subset is populated by a 

lower number of samples. The population of each subset with both the original and the new criterion are 

Velocity magnitude [m/s] Velocity magnitude [m/s] 
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reported in Table 3. If the number of available cycles is high enough, as in the case of PIV measurements 

on the TCC-III engine under consideration, the statistical value of each subset may not be relevantly 

affected. One may object that the reduction of the subset population may become critical when applying 

the method to a reduced number of samples, which may be the case of multi-cycle LES simulations. 

 

SUBSET 245 CA 475 CA 540 CA 630 CA 

1 59 67 70 57 

2 60 66 54 69 

3 66 50 51 59 

4 55 57 65 55 

          

High M2 28 29 30 31 

Low M2 34 31 34 38 

High M3 29 31 33 32 

Low M3 36 33 36 32 

 

Table 3 Number of cycles associated with each subset using Buhl criterion and highest/lowest criterion 

Considering, for example, a dataset of 50 LES cycles, subsets could consist of less than 10/20 samples. 

Consequently, the statistical value of each subset could be compromised and the resulting interpretation 

of the results misleading. Nevertheless, useful information can be obtained even when applying the 

method to low-populated subsets. As a demonstration, Figure 17 compares the four different subsets 

generated with the whole 240 cycles to those resulting from a selection of 50 experimental cycles. 

Differences between the two groups of subsets appear negligible.  
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Figure 17 Comparison between conditional averaging method applied to 1) a set of 50 (1th to 50th) cycles among the whole 

240 and 2) the whole 240 cycles. a) Subset 1, b) Subset 2, c) Subset 3 and d) Subset 4 

Although the method shows the most substantial and meaningful results during the intake phase, its 

application to other crank angles along the whole cycle confirms its capability to qualitatively describe 

the CCV, as shown in Figure 12.  

 

3.5 POD Triple Decomposition 

Unsteady turbulent flows involve many degrees of freedom and a wide range of time and space scales. 

Usually, the ensemble average method is applied to separate a mean field part from a fluctuating 

contribution. Statistical information about the in-cylinder flow field can be obtained from the mean field, 

while the fluctuating part can provide overall information about CCV. To obtain more information, the 

fluctuating part can be furtherly decomposed. POD decomposition uses the ability of POD to provide a 

low-dimensional approximate description of high-dimensional processes to perform a deeper analysis 

of the fluctuating part. POD triple decomposition, proposed by Roudnitzky et al. [56], aims at 

decomposing the turbulent flow into three parts: the time-averaged mean part, the coherent part, and the 

incoherent part. The coherent part is described as a low-frequency contribution around the mean one, 

while the incoherent part is responsible for turbulent high-frequency perturbations. 
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The formulation of the POD filtering methodology is recalled.  

The instantaneous flow field 𝑢𝑖(𝑋, 𝑡) (𝑋 and 𝑡 are the space and time variables, respectively), is defined 

as: 

𝑢𝑖(𝑋, 𝑡) = 〈𝑈𝑖(𝑋)〉 + 𝑢𝑖̃(𝑋, 𝑡)      [3.12] 

With 

𝑢𝑖̃(𝑋, 𝑡) = 𝑢𝑖̂(𝑋, 𝑡) + 𝑢𝑖
′(𝑋, 𝑡)     [3.13] 

Where 〈𝑈𝑖〉 is the mean cycle average part, 𝑢𝑖̃ is the fluctuating velocity part, which is decomposed into 

a coherent part, 𝑢𝑖̂, and an incoherent part, 𝑢𝑖
′. 

After performing a POD on the full 𝑁𝑡𝑜𝑡 available data, 𝑁𝑡𝑜𝑡 modes are obtained. The first step consists 

in separating the mean flow and the fluctuating velocity field. 

〈𝑈𝑖(𝑋, 𝑡)〉 = ∑ 𝑎(𝑛)(𝑡)𝜙𝑖
(𝑛)

(𝑋)

𝑀

𝑛=1

    [3.14] 

𝑢𝑖̃(𝑋, 𝑡) = ∑ 𝑎(𝑛)(𝑡)𝜙𝑖
(𝑛)

(𝑋)

𝑁𝑡𝑜𝑡

𝑛=𝑀+1

     [3.15] 

where M is the number of the POD mode separating the mean flow from the fluctuating part. 

The second step is the determination of the POD number N separating the contribution of both coherent 

and incoherent turbulent velocity fields. Each part of the instantaneous velocity field can then be 

reconstructed from Eq. 3.16 and Eq. 3.17 respectively: 

𝑢𝑖̂(𝑋, 𝑡) = ∑ 𝑎(𝑛)(𝑡)𝜙𝑖
(𝑛)

(𝑋)

𝑁

𝑛=𝑀+1

     [3.16] 

𝑢𝑖
′(𝑋, 𝑡) = ∑ 𝑎(𝑛)(𝑡)𝜙𝑖

(𝑛)
(𝑋)

𝑁𝑡𝑜𝑡

𝑛=𝑁+1

     [3.17] 

The main difficulty relies on the determination of the cutoff numbers, especially the number N. 
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To determine the cutoff number N, Roudnitzky et al. suggest in [56] to analyze the POD coefficients 

associated with the most energetic modes along the cycle. In particular, they find a high repeatability in 

the POD coefficients of the first 3 POD modes, as shown in Figure 18. 

 

Figure 18 POD coefficient for the first 6 modes on the intake and compression stroke from Roudnitzky [56] 
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Figure 19 POD coefficient for the first 4 modes for CA position 475 on the intake and compression stroke 

Given such evidence, they fix the M value to 3, despite the general agreement in the literature that the 

first POD mode is sufficient to represent the mean flow field. Since the repeatability of the coefficients 

is an objective and effective method to determine the POD modes associated with the average flow, this 

criterion is here applied to the TCC-III dataset. Results are shown in Figure 19. In agreement with the 

literature, just the first POD mode seems to be sufficient to represent the average flow field.  

For a better understanding of the physical meaning of the flow field’s mean part, calculated as in Eq. 

3.14, it is important to note that the mean part is different from the average flow field, despite looking 

very similar. The mean part reconstructed from each cycle is time dependent, therefore the POD 

coefficient is relative to a specific time (in our case, the specific cycle). The POD coefficients of the 

mean part of the turbulence show repeatability in terms of pattern. However, the intensity of the 

coefficient relative to each cycle is an indicator of the energy associated with the mean flow motion for 

the corresponding cycle. 

Roudnitzky et al. state that it is difficult to define an objective criterion to identify the cutoff number 

between coherent and incoherent turbulence. The method proposed by Roudnitzky et al. is based on the 

assumption that homogeneous isotropic turbulent flows follow Gaussian properties. The individuation 

of the cutoff number is then performed, analyzing the skewness S and flatness T coefficients on the 

velocity fluctuation 𝑢𝑖
′, defined as: 
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𝑆𝑢𝑖
′(𝑡𝑘𝑑) =

〈𝑢𝑖
′3〉

〈𝑢𝑖
′2〉

3
2

     [3.18] 

𝑇𝑢𝑖
′(𝑡𝑘𝑑) =

〈𝑢𝑖
′2〉

〈𝑢𝑖
′2〉2

     [3.19] 

The flatness coefficient T is known as the kurtosis coefficient. Although these coefficients are well 

known quantities, a brief review of their physical meaning is given here. The skewness is the third 

standardized central moment of a distribution. If the value of skewness is positive, then the distribution 

is skewed to the right, and the tails of the distribution are heavier on the right [73]. In this application, a 

value equal to 0 is expected while approaching the incoherent turbulence, since the distribution of 

fluctuations is symmetrical around a mean value. The flatness T, called kurtosis, is a measure of the 

tailedness of the probability distribution of a real-valued random variable [74]. It is a descriptor of the 

shape of a probability distribution. The kurtosis of a normal distribution is 3. Kurtosis values other than 

3 are indicators for a distribution different from the standard one. For example, if the value is higher 

than 3 the distribution is called leptokurtic. In Figure 20, some examples of leptokurtic distributions are 

reported. 

 

Figure 20 Examples of leptokurtic distributions 

 

On the assumption of Gaussian distribution, the expected Kurtosis number is 3.  

These coefficients are spatially averaged: 
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𝑆𝑢𝑖
′̅̅ ̅̅ =  ∑ ∑𝑆𝑢𝑖

′(𝑥𝑘,

𝑛𝑦

𝑗=1

𝑦𝑗)/(𝑛𝑥  × 𝑛𝑦)

𝑛𝑥

𝑘=1

     [3.20] 

𝑇𝑢𝑖
′̅̅ ̅̅ =  ∑ ∑𝑇𝑢𝑖

′(𝑥𝑘,

𝑛𝑦

𝑗=1

𝑦𝑗)/(𝑛𝑥  × 𝑛𝑦)

𝑛𝑥

𝑘=1

     [3.21] 

The method proposed by Roudnitzky et al. is applied to the analyzed dataset. Resulting skewness and 

flatness coefficients for the 475CA in two consecutive snapshots are shown in Figure 21 (a) and (b), 

while RMS values for skewness and flatness are shown in Figure 21 (c) and (d).  

While the skewness coefficient quickly approaches zero, meaning that the distribution of velocities is 

symmetrical around a mean value, the flatness coefficient does not stabilize around a value of 3.  

 

Figure 21 For CA positions 475 on two consecutive snapshots for all the 240 POD modes (a) Skewness coefficients (b) Flatness 

coefficients (Kurtosis) (c) RMS of Skewness coefficients (d) RMS of Flatness coefficients  

 

For a better understanding of the meaning of the coefficients, the velocity distributions are shown in 

Figure 22. In Figure 22 (a) the distribution of the cutoff number 1 is shown. As expected, being 

representative of the mean flow, the distribution is not centered around any mean value. Figure 22 (b) 



42 

 

 

 

reports the velocity distribution of 475CA for cutoff number 160, with skewness around 0 and flatness 

around 4. The distribution is averaged around 0, but slightly leptokurtic. 

 

Figure 22Velocity distributions for reconstructed flow from (a) POD mode 1 and (b) POD mode 160 

 

Roudnitzky suggests, as a method to select the cutoff number, the convergence of skewness and flatness 

coefficients to 0 and 3, respectively. Results for 245 CA, 475CA, 540CA and 630CA are reported in 

Figure 23.  
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Figure 23 POD triple decomposition for CA position (a) 245, (b) 475, (c) 540, (d) 630, (1) Instantaneous flow field, (2) Mean 

flow field, (3) Coherent flow field, (4) Incoherent flow field 

Velocity magnitude [m/s] Velocity magnitude [m/s] Velocity magnitude [m/s] Velocity magnitude [m/s] 

Velocity magnitude [m/s] Velocity magnitude [m/s] Velocity magnitude [m/s] Velocity magnitude [m/s] 

Velocity magnitude [m/s] Velocity magnitude [m/s] Velocity magnitude [m/s] Velocity magnitude [m/s] 

Velocity magnitude [m/s] Velocity magnitude [m/s] Velocity magnitude [m/s] Velocity magnitude [m/s] 
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As visible in Figure 21 (a) and (c), a convergence for the skewness coefficient can be detected. It is 

harder to objectively define a convergence for the flatness coefficient, as shown in Figure 21 (b) and 

(d). Figure 24 shows two different choices for the 475 CA cutoff numbers. The difference is on the 

convergence criterion applied to both skewness and flatness. The difficulty in determining an objective 

cutoff number has an impact on the analysis. The differences in incoherent turbulent fields in Figure 24 

(b) and (d) are not negligible. The incoherent field in Figure 24 (d) seems to better represent the 

incoherent background turbulence, but no objective method can be identified to demonstrate it. 

 

Figure 24 Coherent and Incoherent reconstructed flow fields from two different criterions of convergence 

In the opinion of the author, such lack of objectiveness is the most critical aspect of this method. 

Roudnitzky et al. suggest calculating RMS of the coefficients on the coherent and incoherent part for 



45 

 

 

 

the analysis of the cyclic variations along the whole cycle. However, the RMS calculated on the two 

different incoherent fields leads to different results. To perform the analysis, arbitrary assumptions on 

the convergence criterion of the flatness coefficient must then be introduced. 

 

3.6 POD Quadruple Decomposition 

Similarly to the triple POD decomposition, the quadruple one proposed by Qin et al. is based on the idea 

that the turbulent flow field can be decomposed in separated classes. The number of such classes is now 

four: 

𝑢(𝑥, 𝑡) = 𝑢𝑚𝑒𝑎𝑛(𝑥, 𝑡) + 𝑢𝑓𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛(𝑥, 𝑡)

=  𝑢𝑚𝑒𝑎𝑛(𝑥, 𝑡) + 𝑢𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡(𝑥, 𝑡) + 𝑢𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑥, 𝑡) + 𝑢𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡(𝑥, 𝑡)     [3.22] 

where, as already reported in Section 3.2, 𝑢𝑚𝑒𝑎𝑛 represents the mean flow motion and contains most of 

the kinetic energy of the flow field. As shown in Eq. 3.23-3.26, the definition of each part of the 

decomposed flow field is analogous to the triple decomposition. Therefore, the same considerations 

made in Section 3.6 apply for the mean flow field. 

 

𝑢𝑚𝑒𝑎𝑛(𝑋, 𝑡) = ∑ 𝑎(𝑛)(𝑡)𝜙𝑖
(𝑛)

(𝑋)

𝑀

𝑛=1

    [3.23] 

𝑢𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡(𝑋, 𝑡) = ∑ 𝑎(𝑛)(𝑡)𝜙𝑖
(𝑛)

(𝑋)

𝐶

𝑛=𝑀+1

     [3.24] 

𝑢𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑋, 𝑡) = ∑ 𝑎(𝑛)(𝑡)𝜙𝑖
(𝑛)

(𝑋)

𝑇𝑟

𝑛=𝐶+1

     [3.25] 

𝑢𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡(𝑋, 𝑡) = ∑ 𝑎(𝑛)(𝑡)𝜙𝑖
(𝑛)

(𝑋)

𝑁

𝑛=𝑇𝑟+1

     [3.26] 

 

The coherent part 𝑢𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡 contains the large-scale vortices and plays a critical role in the cycle-to-

cycle variations. The transition part is identified as a passage in the energy cascade between the large-
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scale vortices in the coherent turbulence and the smallest ones in the incoherent background turbulence. 

𝑢𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 represents the small-scale structures in the flow field, which are homogeneous and isotropic. 

As in the triple decomposition, the difficulty is to detect the cutoff modes to objectively identify each 

part of the turbulent flow field. The method proposed by Qin et al. is based on the definition of 

correlation coefficients among the reconstructed flow fields. 

 

𝑅 = 𝑅(𝑢(𝑘1, 𝑘2, 𝑐𝑦𝑐𝑙𝑒𝑖), 𝑢(𝑘3, 𝑘4, 𝑐𝑦𝑐𝑙𝑒𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

            = (
𝑢(𝑘1,𝑘2)(𝑥, 𝑡, 𝑐𝑦𝑐𝑙𝑒𝑖) ∙ 𝑢(𝑘3,𝑘4)(𝑥, 𝑡, 𝑐𝑦𝑐𝑙𝑒𝑗)

|𝑢(𝑘1,𝑘2)(𝑥, 𝑡, 𝑐𝑦𝑐𝑙𝑒𝑖)| ∙ |𝑢(𝑘3,𝑘4)(𝑥, 𝑡, 𝑐𝑦𝑐𝑙𝑒𝑗)|
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
     [3.27] 

where 𝑢(𝑘1,𝑘2)(𝑥, 𝑡, 𝑐𝑦𝑐𝑙𝑒𝑖) denotes the reconstructed velocity field of the ith cycle using POD modes 

from number 𝑘1 to number 𝑘2: 

 

𝑢(𝑘1,𝑘2)(𝑥, 𝑡) = ∑ 𝑎(𝑛)(𝑡)𝜙𝑖
(𝑛)

(𝑋)

𝑘2

𝑛=𝑘1

     [3.28] 

To recognize the mean part, Qin et al. calculate the correlation coefficient among different cycles. A 

value of the correlation coefficient close to 1 represents a close relationship between two different 

modes.  

𝑅1 = 𝑅((𝑘1, 𝑁, 𝑐𝑦𝑐𝑙𝑒𝑖), (𝑘1, 𝑁, 𝑐𝑦𝑐𝑙𝑒𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅      [3.29] 

𝑘1 coefficient is maintained constant between the two cycles and it changes from 1 to N. Neglecting the 

first mode in the flow reconstruction implies a drop in the correlation coefficient, meaning that the first 

POD mode, as expected, is again a reasonable representation of the mean flow. This is shown in Figure 

21. 
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Figure 25 Correlation coefficient  𝑅1  for the definition of the mean part 

 

For the coherent and the turbulent parts, the reconstruction process is performed separately moving both 

in the forward and backward direction. The forward direction starts from M+1, while the backward 

direction starts from N-1. 

 

𝑅2 = 𝑅((𝑀 + 1, 𝑘2, 𝑐𝑦𝑐𝑙𝑒𝑖), (𝑀 + 1, 𝑘2 + 1, 𝑐𝑦𝑐𝑙𝑒𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅     [3.30] 

𝑅3 = 𝑅((𝑘1, 𝑁, 𝑐𝑦𝑐𝑙𝑒𝑖), (𝑘1 − 1,𝑁, 𝑐𝑦𝑐𝑙𝑒𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅     [3.31] 

The average of the correlation coefficients for 475CA is reported in Figure 26.  
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Figure 26 Correlation coefficients 𝑅2 (a) and 𝑅3 (b) for CA position 475 

Qin et al. consider 95% as the threshold to define the cutoff number. Wang uses a slope of the relevance 

index lower than 0.1 [75]. If the addition of a POD mode to the flow reconstruction does not modify 

significantly the resulting field, i.e. until the correlation coefficient is close to 1, the energetic 

contribution of that POD mode is negligible. Therefore, the cutoff number can be identified for the 

coherent part of the turbulence. The same considerations cannot be used for the backward direction. A 

threshold equal to 95% is never reached, regardless the choice of the starting mode.  

 

Figure 27 Correlation coefficient 𝑅3 obtained backward from mode 240 and from mode 150 

Figure 27 shows the evolution of the correlation coefficients for two starting modes, namely mode 240 

and mode 150. The trends are very similar in shape and both do not reach the threshold of 95%. This 
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seems to suggest that the choice of 95% as a threshold is not an a priori indicator for the identification 

of the homogeneous incoherent flow field and the use of correlation coefficients can be misleading. 

Results of the application of the method are shown in Figure 28. 

 

Figure 28 Qin’s POD quadruple decomposition for CA position (1) 245, (2) 475, (3) 540, (4) 630, (a) Instantaneous flow field, 

(b) Mean flow field, (c) Coherent flow field, (d) Transition part, (e) Incoherent flow field 

 [m/s]  [m/s]  [m/s]  [m/s]  Velocity magnitude[m/s] 

 [m/s]  [m/s]  [m/s]  [m/s]  Velocity magnitude[m/s] 

 [m/s]  [m/s]  [m/s]  [m/s]  Velocity magnitude[m/s] 

 [m/s]  [m/s]  [m/s]  [m/s]  Velocity magnitude[m/s] 
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The decomposition introduced by Qin et al., based on correlation coefficients, reduces the selection of 

the cutoff length to energy-based considerations. This method gives a different definition of the coherent 

flow field compared to Roudnitzky’s triple decomposition. While Roudnitzky’s coherent part is reaching 

the anisotropy of the flow field, Qin’s coherent part just considers the most energetic modes, regardless 

of the isotropy. The less energetic anisotropic modes are included in the transition part of the turbulence, 

while it is the opinion of the author that any anisotropic mode should be included in the coherent part of 

the turbulence, since it is responsible for the variations. Once applied to the available experimental 

dataset of the TCC-III engine, only few modes are identified in the incoherent part of the turbulence. 

Most of the less energetic modes, even those where the isotropy is well recognizable, are associated with 

the transition part. It is then difficult to state what is the contribution to the CCV of the transition part. 

3.7 Alternative POD Decomposition  

The coherent part of the turbulence is composed of high energetic anisotropic vortices. By applying any 

of the previous decomposition methods, as visible in Figure 23 and Figure 28, it is possible to 

recognize that incoherent turbulence is composed of homogeneously distributed vortices with 

decreasing dimension. Consequently, the energy associated with each reconstructed flow field is 

progressively decreasing. 

To overcome the difficulties in defining the cutoff number for the coherent part of the turbulence, a 

technique is developed and proposed that is based on the Kolmogorov’s hypothesis for homogeneous 

turbulence. As already mentioned in Section 2.1, Pope in [63] gave a formulation of Kolmogorov’s 

hypothesis on a N-point distribution in physical space (x) at a fixed time t, which is analogous to the 

reconstructed velocity field that we are considering. On a simple domain G within the turbulent flow, 

and let 𝑥(0), 𝑥(1),…, 𝑥(𝑛) be a specified set of points within G, new coordinates and velocity differences 

are defined by: 

𝑦 ≡ 𝑥 − 𝑥(0)     [3.32] 

𝑣(𝑦) ≡ 𝑈(𝑥, 𝑡) − 𝑈(𝑥(0), 𝑡)    [3.33] 

And the joint PDF of 𝑣 at the N points 𝑦(0), 𝑦(1),…, 𝑦(𝑛) is denoted by 𝑓𝑁. Kolmogorov’s definition of 

local homogeneity states that the turbulence is locally homogeneous in the domain G if, for every fixed 

N and 𝑦(𝑛)(𝑛 = 1,2, … ,𝑁), the N-point PDF 𝑓𝑁 is independent of 𝑥(0) and 𝑈(𝑥(0), 𝑡). Analyzing the 

reconstructed flow field on the modes, the author believes that the key to objectively recognize the cutoff 

mode for the separation between the coherent turbulence and the background turbulence is the 
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homogeneity on the FOV domain. To quantify the homogeneity on the dominion recognized by the 

FOV, an analysis on the velocity distribution along all the FOV is performed.  

At least 30 control points are individuated all over the non-zero values of the FOV. In accordance with 

Kolmogorov’s hypothesis, the PDF of the velocity components on 100 grid values around each control 

point is evaluated in terms of mean velocity and standard deviation. A value is obtained for each control 

point on every POD mode. The variance of the values among all the subsections is analyzed for each 

mode. Results are shown in Figure 29. 

 

Figure 29 Variance of Mean velocity (a) and standard deviation (b) on the grid for CA position 540 

The minimum number of points is 30 for every CA position to preserve the same level of accuracy and 

statistical significance independently of the piston position. The number of points for the analysis (30) 

and the number of the grid points (100) around them for the statistical evaluation of the flow conditions 

are chosen as a trade-off to work properly for every analyzed CA position. In the chosen dataset, the CA 

position highly affects the number of points of the flow field. At TDC, just 4% of the total FOV has 
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non-zero values. Consequently, the 100 velocity values around every of the 30 selected points may 

overlap, but Kolmogorov’s hypothesis is not contradicted. At BDC, the number of 100 values could be 

increased without overlapping, but this number is sufficient to guarantee the statistical significance of 

each sample. The distribution of the control points on the FOV for different CA positions is shown in 

Figure 30. In the opinion of the author, the chosen values should even fit on grids with different 

resolutions, but further analyses should be performed to confirm it. 

 

Figure 30 Representation of the distribution of the control point on the grid on different CA position (a) TDC, (b) 70 CA ATDC, 

(c) 475 CA position, (d) BDC 

The variance of both mean velocity and skewness on the subsections has high values in the first 50 

modes and rapidly decreases in the last modes. Combining these results, it is possible to define a cutoff 

mode for the coherent turbulence. The cutoff mode for the coherent turbulence is identified as the point 
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where the slope of the function interpolating the variance of both mean and standard deviation converge 

around zero.  

As for the transition part of the turbulence, it must be considered as a tool to better identify the energy 

cascade in the analyzed modes. As already discussed in Session 3.6, Qin’s method is based on a purely 

energetic approach, which might be insufficient to completely identify the coherent part of the 

turbulence. The coherent part should indeed take into account the anisotropy in the flow field, even if it 

arises from less energetic modes. For this reason, the author deliberately avoids proposing a method to 

objectively define the cutoff mode for the transition mode. Conversely, objective information about the 

incoherent part of the flow field is given, implementing a method to evaluate the size of the main 

turbulent structures in the reconstructed flow field. Such method uses 2D Fast Fourier transform (FFT) 

to perform a low-pass filtering on the space-frequency domain of the FOV. This technique allows 

recognition of the dimension of the dominant flow structures in each reconstructed POD mode. The 

obtained quantitative result can be used as a tool to objectively identify the turbulent structures 

themselves. The space-frequency domain is identified as the FOV of the PIV grid. Considering each 

component of the velocity flow field as a function: 

𝑢(𝑘1, 𝑘2)    [3.34] 

where 0 < 𝑘1 < 𝑁1 − 1 and 0 < 𝑘2 < 𝑁2 − 1. It is possible to define its two-dimensional discrete 

Fourier transform as a complex function 𝑈(𝑘1, 𝑘2): 

 

𝑈(𝑛1, 𝑛2) = ∑ ∑ exp
2𝜋𝑖𝑘2𝑛2

𝑁2

𝑁1−1
𝑘1=0

𝑁2−1
𝑘2=0 exp (

(2𝜋𝑖𝑘1𝑛1)

𝑁1
) ℎ(𝑘1, 𝑘2)     [3.35]  

 

From Eq. 3.35, it can be noted that the 2D FFT can be computed by performing 1D FFT sequentially on 

each index of the original function, symbolically: 

 

𝑈(𝑛1, 𝑛2) = 𝐹𝐹𝑇_𝑜𝑛_𝑖𝑛𝑑𝑒𝑥_1(𝐹𝐹𝑇_𝑜𝑛_𝑖𝑛𝑑𝑒𝑥_2[𝑢(𝑘1, 𝑘2)]) 

= 𝐹𝐹𝑇_𝑜𝑛_𝑖𝑛𝑑𝑒𝑥_2(𝐹𝐹𝑇_𝑜𝑛_𝑖𝑛𝑑𝑒𝑥_1[𝑢(𝑘1, 𝑘2)])     [3.36]     

 

A spatial filtering procedure is performed recursively for each mode. An accurate description of the 

spatial filtering procedure can be found in [10]. First, the 2D FFT is performed on the spatial-frequency 
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domain, treating each velocity component separately. In each dimension, the spatial-frequency domain 

extends to the Nyquist limit: 

𝑘𝑁𝑦𝑞 =
1

2Δ𝑙
= 1𝑚𝑚−1     [3.37] 

Where Δ𝑙 is the PIV grid spacing. 

 

Figure 31 Fourier coefficient for the FOV space-frequency domain. On X and Y axis the length filter, on Z the module of the 

Fourier coefficient 

Figure 31 shows Fourier coefficients associated with the correspondent spatial cutoff frequency. Then, 

a low pass filtering is performed by setting to zero all the Fourier coefficients above the desired spatial 

frequency cutoff. The characteristic length scale 𝐿𝑐𝑜 corresponding to the spatial-frequency cutoff 𝑘𝑐𝑜 

is: 

𝐿𝑐𝑜 =
1

𝑘𝑐𝑜
     [3.38] 
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The inverse Fourier transform to real space domain is performed on the modified Fourier coefficients 

and a filtered flow field is reconstructed for each component of the velocity field. A computation of the 

total kinetic energy of the flow field is performed to define the cutoff frequency corresponding to the 

most energetic flow structure. Since the kinetic energy is proportional to the squared velocity, the total 

kinetic energy for the reconstructed flow is computed as follows: 

𝑘𝑖 ≈ ∑ ∑ 𝑢(𝑘1, 𝑘2)
2 + 𝑣(𝑘1, 𝑘2)

2

𝑁1

𝑘1=0

𝑁2

𝑘2=0

     [3.39] 

The same method is used for the computation of the reconstructed flow field from the inverse Fourier 

transform. The cutoff frequency is defined at the point where the total kinetic energy of the filtered flow 

field is equal to 10%. 

𝑘𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑘𝑐𝑜) = 0.1 ∙ 𝑘𝑖     [3.40] 

where 𝑘𝑐𝑜 is the cutoff length filter. The 10 % value is obtained through a quantitative evaluation. Figure 

32 shows the reconstructed flow for the second POD mode at 475 CA and the low-filtered reconstructed 

flow field for the cutoff length selected.  

Velocity magnitude [m/s] Velocity magnitude [m/s] 
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Figure 32 Flow reconstruction of the second POD mode (a) and the low-pass filtered reconstructed flow (b) for the flow 

frequency 25 mm on CA position 475 

The kinetic energy is deeply correlated to the mass. Considering similar velocity values, the increase in 

density during the compression stroke implies a higher kinetic energy if compared to the expansion 

stroke. In our method, though, the kinetic energy is applied to the same CA position for each mode. 

Therefore, the mass involved is constant, and it is not necessary to consider it in the computation.  

A distribution of the cutoff length dimension is shown in Figure 33. The characteristic length reaches 

the value of 3 mm in the less energetic modes. A comparison with a reconstructed flow field of the last 

mode, shown in Figure 34, confirms the coherence of the model. 
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Figure 33 Cutoff length defined with FFT filtering procedure on CA position 540 

The characteristic length for each reconstructed flow field from POD modes represents an objective 

datum for the analysis of the turbulent flow field. It is still difficult to select a cutoff mode to separate 

the transition turbulence from the incoherent background turbulence. The length of the main turbulent 

structures can be used to separate the different contributions. This technique is connected to the size of 

the grid. In our case the smallest vortices are identified with a characteristic length of 3 mm. This value 

agrees with the PIV grid size, which is 1.15 mm. This means that the chosen cutoff size is nearly three 

times the grid spacing, and this has been taken as a criterion to define the incoherent turbulence.  

 

Figure 34 Flow reconstruction of the last POD mode 

Velocity magnitude [m/s] 
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Figure 35 shows the distribution of the energy among each defined part of the turbulent flow for four 

CA positions using the two quadruple methods. Since the mean part is the same, the distribution differs 

only for the fluctuating part of the turbulence. Despite trends are similar, the newly proposed 

decomposition shows some substantial difference. At the 245 CA position, for example, a higher energy 

is associated with the coherent part. This part of the turbulence is associated with CCV because of its 

relatively high energetic content. The RMS calculated for the CA position, in Figure 36, shows diffused 

variations all over the FOV. On the contrary, the RMS calculated on the CA position 630 shows a lower 

module, in accordance with the lower energetic level associated with the coherent part defined by the 

new decomposition method. The results of the new POD quadruple decomposition are shown in Figure 

37. 

 

Figure 35 Spectrum of the energy for each part of the turbulent field for (a) Qin’s quadruple decomposition, (b) newly proposed 

quadruple decomposition 
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Figure 36 RMS calculated for CA position (a) 245, (b) 475, (c) 540, (d) 630 
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Figure 37 Proposed POD decomposition method for CA position (1) 245, (2) 475, (3) 540, (4) 630, (a) Instantaneous flow 

field, (b) Mean flow field, (c) Coherent flow field, (d) Transition part, (e) Incoherent flow field. The analyzed cycles and the 

scale are the same of Figure 28 Qin’s POD quadruple decomposition for CA position (1) 245, (2) 475, (3) 540, (4) 630, (a) 

Instant flow field, (b) Mean flow field, (c) Coherent flow field, (d) Transition part, (e) Incoherent flow field to make the results 

comparable. 

 [m/s]  [m/s]  [m/s]  [m/s]  Velocity magnitude[m/s] 

 [m/s]  [m/s]  [m/s]  [m/s]  Velocity magnitude[m/s] 

 [m/s]  [m/s]  [m/s]  [m/s]  Velocity magnitude[m/s] 

 [m/s]  [m/s]  [m/s]  [m/s]  Velocity magnitude[m/s] 
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The application of the new quadruple method to the CA closest to TDC, as for example in Figure 38, 

gives a null or negligible contribution of the transition part to the total energy.  

 

Figure 38 For CA position 360 CA, Instantaneous Flow field (a), Mean part (b), Coherent part (c) and incoherent part (d) of 

the turbulence 

This happens because the vortices of the incoherent turbulent part are below the chosen threshold of 3 

times the cell dimension, since they are very low energetic turbulent structures. The reason can be found 

both in the limited room available for the fluid at TDC and in the energetic distribution among all the 

modes. As reported in Section 3.1 and shown in Figure 38, 360 CA position is critical to analyze because 

of the distribution of the velocity on a limited portion of the FOV. Very little information can be 

extracted. It can be concluded that a transition part of the turbulence, defined as the most energetic part 

of the incoherent part of turbulence, might not always be recognized. Furthermore, the author believes 

that combining the transition part with the incoherent part of turbulence does not affect the level of 

accuracy that can be reached with the proposed analysis. The spatial filtering method gives objective 
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results to make considerations on the incoherent part of the flow field. To allow a fair comparison, 

results for the same cycle are shown for all the methods. Figure 39 shows the potential of the method in 

understanding CCV. Figure 39 (a) shows two different yet apparently similar cycles. The coherent parts 

resulting from the proposed decomposition method, shown in Figure 39 (b), are extremely different, 

especially in terms of penetration of the tumble motion.  

 

Figure 39 a) Instantaneous flow field and b) Coherent part of the turbulence for cycles 1) 114 and 2) 144 

For a quantitative analysis of the contribution of every part of turbulence relative to the two considered 

cycles, a normalization of the energy content of every single part of turbulence is performed. The energy 

spectrum resulting from the POD analysis is associated with the POD modes. The flow reconstruction 

is deeply correlated with the value of the POD coefficients. To account for this contribution, the author 

adopts the same considerations on the kinetic energy as those for the FFT analysis. The kinetic energy 
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associated with each flow field reconstructed from POD modes is computed as in Eq. 3.39. The energy 

fraction associated with each reconstructed flow is estimated as:  

𝑒𝑖 =
𝑘𝑖

∑ 𝑘𝑗
𝑁𝑡𝑜𝑡
𝑗=1

      [3.41] 

where 𝑁𝑡𝑜𝑡 is the total number of modes and 𝑘𝑖 is the kinetic energy associated with the 𝑖𝑡ℎ mode. 

Considering the contribution of every reconstructed flow field to each part of turbulence coming from 

the POD decomposition, an energy spectrum is obtained, and it is reported in Figure 40. 

 

 

Figure 40 Energy spectrum for CA position 475 for (1) cycle 114 and (2) cycle 140 

 

The energy associated with the coherent part for cycle 114 is consistently higher than the one in cycle 

144, confirming the visual representation shown in Figure 39. The energy associated with the mean 

part, i.e. the tumble motion, is higher in cycle 144. Consequently, less variability is found in this 

cycle. This technique will be applied in Section 5.3.2 to an LES dataset.  
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3.8 Discussion 

The purpose of the work presented in this Section was a critical investigation on methods of analysis 

based on POD, focusing on their potential and limitations for the analysis of CCV in ICEs.  

POD is a well-established and powerful mathematical technique, whose effectiveness in understanding 

engine CCV has been long debated. As a purely mathematical method, a physical interpretation is not 

always straightforward. The application of the phase-dependent POD analysis, described in Section 3.3, 

allows a quantitative evaluation of the energy distribution among the turbulent structures by means of 

the POD coefficients. From a visual standpoint, a graphical representation of POD modes can give an 

idea of the most energetic turbulent structures, but little information can be derived. The analysis can 

even produce misleading results if it is not critically evaluated, as shown in Figure 8. 

The conditional averaging method, described in Section 3.3, uses POD as an objective tool to obtain a 

qualitative representation of CCV. The method is easy to set up and its application to the TCC-III dataset 

is useful for analyzing CCV onset during the intake phase. Despite the general effectiveness of the 

method, it should be adopted with care, especially for low populated datasets, where the statistical 

significance of the obtained subsets might be poor. This is, for example, the typical case of LES CFD 

analyses, for which each subset might be composed by an insufficient number of samples, which would 

affect the statistical significance of the analysis. In the specific case of the PIV dataset of the TCC-III 

engine, the method provides its most useful information during the intake phase. Qualitative information 

on CCV can be obtained also at other CA positions, as shown in Figure 5, but it is harder to identify the 

origin of the variance form the POD modes. 

The POD triple decomposition, described in Section 3.4, pioneers the concept of decomposing the 

turbulent field in separate parts based on the POD modes. In the opinion of the author, the method to 

identify the mean part of the turbulent flow field is objective and effective. The assumptions about the 

velocity distribution made for the identification of the coherent part of the turbulence are again correct, 

while an objective criterion for the choice of the cutoff number between the coherent and incoherent 

turbulence is not identified. 

The POD quadruple decomposition proposed by Qin et al., described in Section 3.5, extends the triple 

one by including a transition part in the decomposition of the turbulent field. From a physical standpoint, 

such extension should improve the understanding of the energy cascade from coherent turbulence to 

background incoherent turbulence. A different method for the selection of the cutoff modes is also 

proposed, based on correlation coefficients. In the application to the TCC-III dataset, the author found 

that this technique is purely energy-based and does not take into account the anisotropy of the flow field. 
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As a result, a relevant part of the energy of the anisotropic flow field is associated with the transition 

part. Results of the application of the correlation coefficient for the individuation of the cutoff number 

between the transition and the incoherent part of the turbulence is again hard to objectify. 

From the considerations above, it appears evident that all the analyzed methods are useful tools for 

researchers to perform qualitative and quantitative descriptions of CCV. Yet, they are characterized by 

a certain lack of objectiveness in their application, as highlighted in the manuscript. 

A new POD decomposition method is proposed by the author. This method is based in part on 

Kolmogorov’s hypothesis, for the identification of the transition part of turbulence, and on FFT filtering, 

for the incoherent part of turbulence. The purpose of the method is to reach a higher level of 

objectiveness, thus overcoming the limitations described earlier. Attention is paid to the recognition of 

the anisotropy of the flow field. Since the coherent part of the turbulence is associated with CCV, the 

author believes that any anisotropy should be associated with the coherent part of the turbulence. To 

allow comparisons with the previously described quadruple decomposition, a transition part of the 

turbulence is identified as the most energetic part of the incoherent turbulence. Considering the 

information given by the FFT spatial filtering on the incoherent part of the turbulence, it is possible to 

neglect a so-called “transition” part of turbulence, without affecting the level of accuracy that can be 

reached with the proposed method.  

The proposed POD quadruple decomposition will be applied later on a LES dataset to assess its potential 

in evaluating the quality of the simulated data in comparison with the experimental ones. 
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Chapter 4 

LES investigation: subgrid models and quality criteria 
 

In recent years, LES has been strongly spotlighted as a powerful tool for ICEs, in particular for the 

analysis of CCV. When targeting CCV, many consecutive cycles must be simulated and then statistically 

analyzed. Therefore, high performance computing systems are required to conduct LES analyses for 

CCV [76] of complex geometries such as ICEs. Thus, it is fundamental to find the best trade-off between 

accuracy and LES computing cost. It is well known that calculation accuracy and efficiency are, to some 

extent, competing instances [77, 78]. Therefore, a study of LES quality indices and their impact of 

simulation accuracy provides a reference for the relationship between calculation efficiency and its 

predictability. Severe research efforts for LES quality indices in relatively simple geometries and/or 

flow conditions such as channel flows have been carried out for a long time. Further studies [34, 79, 80] 

were conducted to investigate the effect of numerical schemes and grid density on modeling and 

numerical errors. Many researches have also been carried out to develop LES quality indices [35, 78, 

80, 81]. Davidson [82] investigated a two-point correlation method on channel flow, stating that two-

point correlation method is one of the best measurement techniques to estimate LES quality. However, 

its drawback is that it is hardly applicable to ICEs. In recent years, Di Mare et al. [36] carried out an 

extensive application of LES quality indices on ICEs. In this study, Di Mare et al. investigated the 

possibility of using 5 types of single-grid estimators and a two-grid estimator on different grid densities. 

However, a limitation of this study is that it was performed without any validation versus experimental 

data. A further study was carried out by Ko et al. [83], who compared the LES quality with PIV data. In 

this section, three subgrid-scale models are tested on the TCC-III engine, namely the static Smagorinsky, 

the dynamic Smagorinsky and the dynamic structure model. LES quality indicators are applied to the 

three datasets[48].  

The section is structured as follows: first the numerical setup is described. Then results from LES quality 

indicators are briefly introduced. Finally, results for the three models are shown and discussed. 

4.1 Numerical setup 

The LES investigation of the TCC-III engine is performed using the STAR-CD v4.22 finite volume 

method (FVM) code licensed by Siemens PLM. The computational domain is shown in Figure 41. The 

entire domain is meshed using cells of mainly hexahedral shape. The grid size of the intake and exhaust 

plenums is 6 mm and that of the ports is 1.5 mm. The in-cylinder grid size is 1mm. The near valve 

regions are refined to 0.4 mm and the grid size around the spark plug is 0.6 mm. The near-wall region 

is covered by a single layer of prismatic cells aligned to the walls, whose height is purposely chosen to 
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rely on wall functions. Such choice is considered as a trade-off between simulation accuracy and 

computational cost of the simulations. The number of cells in the cylinder is approximately 1.15 million 

at bottom dead center (BDC) and 0.2 million cells at top dead center (TDC). The number of cells in each 

of the intake and exhaust plenums is 0.5 million cells. The Arbitrary Lagrangian-Eulerian (ALE) 

formulation and Arbitrary Sliding Interface (ASI) are employed to deal with moving-boundary problems 

and mesh motion. Pressure Implicit with Splitting of Operator (PISO) algorithm and second-order 

accurate differencing schemes, namely a monotone advection and reconstruction scheme (MARS), are 

used for temporal and spatial discretization schemes. Since the experiments were performed on four 

different section planes at different testing days, it is unreasonable to directly adopt the boundary 

conditions from the experimental data. Therefore, the 1D code GT-Power is used to obtain unified 

boundary conditions. 

 

 

Figure 41 Details of the computational domain for the three datasets 

 

LES simulations are initialized from a preliminary RANS simulation. Then, fifty-one LES cycles are 

carried out for each of the three subgrid models. The first LES cycle for each dataset is then discarded 

to avoid any residual impact of the initial conditions. 
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4.2 LES Quality Indices 

In LES, only a fraction of the total amount of turbulent kinetic energy is resolved. In engine simulations, 

according to the meshing strategy, the mesh size and topology may be not only space, but also time-

dependent. In such simulations, the ratio of the resolved turbulent kinetic energy to the total one is also 

affected by this dependency. In case of implicit filtering, where the cell width is proportional to the filter 

width, the numerical errors cannot be separated from the modeling errors: the cell width describes the 

smallest resolvable turbulent scales, and this is directly linked to the subgrid-scale model. In fact, as 

already mentioned in Eq [2.15] in Section 2.4.1, in Smagorinsky’s model the turbulent viscosity is 

calculated by: 

𝜈𝑟 = 𝑙𝑠
2𝑆̅ = (𝐶𝑠Δ)2𝑆̅     [4.1] 

As stated in the literature, a progressive refinement of the computational mesh would make the LES 

approach the limit of the DNS. In this sense, an LES cannot be considered grid-independent as long as 

it does not resolve the Kolmogorov scales.  

In this context, to separate the contribution of the discretization of the computational domain from the 

modeling error of the subgrid-scale model, the same computational domain has been used and for each 

dataset. 

Among the many possible LES quality indices available in the literature, two relatively simple single-

grid estimators were employed. One is the ratio of resolved turbulent kinetic energy to total turbulent 

kinetic energy, which is the most well-known LES quality index proposed by Pope [78] as follows: 

𝐼𝑄𝑘(𝑥, 𝑡) =
𝑘𝑟𝑒𝑠(𝑥, 𝑡)

𝑘𝑟𝑒𝑠(𝑥, 𝑡) + 𝑘𝑆𝐺𝑆(𝑥, 𝑡)
     [4.2] 

This quality index should be at least 0.8 to consider the quality of the LES calculation good: this would 

mean that the mesh resolution is high enough to resolve structures that contain at least 80% of the 

turbulent kinetic energy. Since the simulation is not stationary, this quality index should be considered 

as phase-averaged quantity. This indicator will be hereafter referred to as estimator 1. 

The other index [34] is based on the fraction of the SGS viscosity and total viscosity as follows. 

𝐼𝑄𝜈 =
𝜈𝑡

𝜈 + 𝜈𝑡
     [4.3] 

This index basically quantifies the “degree of modeling” in LES. This indicator will be hereafter referred 

to as estimator 2. 
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 4.3 Results 

In order to get the best possible comparison among the simulated datasets and the PIV experimental 

results, the results from the simulations are interpolated on the same PIV grid. 

Comparing the averaged fields of experimental velocity PIV and the three sets of 50 LES cycles, a good 

agreement is generally visible regardless the choice of the sub-grid model.  

 

Figure 42 Velocity field comparison on the XZ section plane for the three subgrid scale models and for the PIV experimental 

results 

In order to validate the LES results, the ensemble average of the 50 cycles for each dataset and the 240 

cycle from the PIV experimental data is shown in Figure 42Figure 42 Velocity field comparison on the 
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XZ section plane for the three subgrid scale models and for the PIV experimental results. Three CA 

position are considered significant for the analysis, i.e. 475 CA (nearly mid-intake stroke), 540 CA 

(intake BDC position) and 630 CA (mid-compression stroke). The three CA position show the evolution 

of the opposite rotation of the generated tumble vortex (clockwise rotation in Figure 42) with respect to 

the conventional direction for tumble flow in SI engines (counter-clockwise in Figure 42 convention): 

this is motivated by the non-canted intake valves/ports in conjunction with reduced flow velocities. A 

slightly better agreement is shown between the Dynamic Smagorinsky model and the experimental data. 

All the three models capture the main turbulent structures, but both DSM and Static Smagorinsky models 

show a deeper penetration of the inflow jet and a lower circulation motion. Conversely, the Dynamic 

Smagorinsky model, although again slightly overestimating the air jet penetration, shows a bending 

motion close to the experimental one. Comparing the other analyzed Crank Angle positions, no relevant 

differences among the cases are highlighted: a general good agreement is shown by all the three models, 

even though Dynamic Smagorinsky seems to be the most aligned with experimental data. A 

confirmation of the slightly better behavior of the Dynamic Smagorinsky model comes from the analysis 

of the so-called “alignment parameter”, defined as: 

𝐴 ∙ 𝐵⃗⃗

‖𝐴‖‖𝐵⃗⃗‖
=

‖𝐴‖‖𝐵⃗⃗‖ cos(𝛼)

‖𝐴‖‖𝐵⃗⃗‖
= cos(𝛼)  ∈ [−1,1]    [4.4] 

This parameter quantifies the local deviation of the simulated vector field compared to the experimental 

one, assumed as a reference. If the alignment parameter is equal to 1, PIV and experimental data have 

the same direction; otherwise, if the alignment parameter is equal to -1, the directions are opposite. 

Observing the mean values of the alignment parameters in Table 4 and its distribution in the cylinder in 

Figure 43, the slightly better behavior of the Dynamic Smagorinsky model is evident. 

 

 Static 

Smagorinsky 

Dynamic 

Smagorinsky 

DSM 

245 CA 0.611 0.831 0.808 

475 CA 0.869 0.876 0.839 

540 CA 0.956 0.962 0.939 

630 CA 0.948 0.982 0.967 

 

Table 4 Averaged Alignment parameter for the three SGS models in the XZ section. 
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Figure 43 Alignment parameter representation on XZ plane at 475, 540 and 630 CA 

Figure 44 and Figure 45 show the comparison among the LES quality estimators. Referring to the 

definition of the chosen quality estimators, a high level of energy resolution means that a high fraction 

of the turbulence is directly resolved instead of being modeled by the subgrid scale model. This makes 

the simulation conceptually comparable to a DNS approach. Conversely, the second estimator shows 

the relation between the effective viscosity and the one introduced by the subgrid scale: a low value of 

the estimator indicates a low influence of the viscosity introduced by the SGS model, therefore a higher 

rate of resolved turbulence and a better correspondence between the effective and the molecular 

viscosity. All the three models show lower values for the estimator 1 in the zone between the exhaust 

Alignment 

parameter [-] 
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valve and the spark plug, where the flow is characterized by the highest velocity gradients. A comparison 

between the LES quality estimators of Static and Dynamic Smagorinsky models confirms the better 

quality of this latter, showing both higher levels of energy resolution and lower levels of SGS viscosity 

over all the cylinder. 

The Dynamic Smagorinsky SGS model shows the best alignment with the experimental results, and this 

is reflected by the analysis of the estimators, which highlights the Dynamic Smagorinsky as the most 

accurate closure model, as the averaged values reported in Table 5 indicate. 

 

Figure 44Estimator 1 of Static Smagorinsky, Dynamic Smagorinsky and DSM models at four different CA positions on section 

plane XZ. Please note that the scale for the Static Smagorinsky case is different. 

𝐼𝑄𝑘 [-] 𝐼𝑄𝑘 [-] 𝐼𝑄𝑘 [-] 
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Figure 45Estimator 2 of Static Smagorinsky, Dynamic Smagorinsky and DSM models at four different CA positions on section 

plane XZ. 

Even though a higher level of estimator 1 generally corresponds to a lower level of estimator 2, the anti-

correlation that could be expected is not recognizable. This becomes more evident by looking at the 

values of the estimators over the entire domain, reported in Figure 46, where no trend is identified. Such 

evidence primarily indicates that, despite the estimators in the cylinder are well within the suggested 

range, the LES quality all over the domain is not necessarily as high: Figure 47 shows that a critical 

zone for the LES quality is represented, for example, by the intake port, as it will be commented later. 

𝐼𝑄𝜈 [-] 𝐼𝑄𝜈 [-] 𝐼𝑄𝜈 [-] 
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Another warning suggested by this analysis is that the two investigated quality estimators cannot be 

independently considered. Finally, estimators cannot be used as a standalone parameter to define the 

overall quality of a LES simulation and comparison with available experimental measurements should 

always be performed. A clear example comes from the simulated cycles using the DSM model: despite 

showing very high LES quality indices, agreement with PIV data is slightly worse than that of the 

Dynamic Smagorinsky model. 

 

 Static Smagorinsky Dynamic Smagorinsky DSM 

Estimator 1 Estimator 2 Estimator 1 Estimator 2 Estimator 1 Estimator 2 

245 CA  0.53 0.72 0.94 0.50 0.94 0.53 

475 CA 0.50 0.74 0.93 0.56 0.91 0.59 

540 CA 0.57 0.63 0.93 0.49 0.95 0.52 

630 CA 0.61 0.57 0.95 0.42 0.95 0.50 

Table 5 Estimators value averaged on 50 cycle for analyzed Crank Angles: highlighted in green the best and in red the worst 

values. 

 

 

 

Figure 46 Scatter plot of estimator values on the whole domain for each SGS model 
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Figure 47 Estimator 1 on XZ plane for DSM model at 475 CA: values in the intake port area are lower than the in-cylinder 

ones. 

 

The POD analysis confirms the findings of the previous analysis. The representation of the energy 

fraction for the first and the second POD modes, shown in Figure 48, gives an idea of the quality of the 

simulations over the intake and compression strokes. As mentioned in Section 3.3, the first POD mode 

represents the average flow field, while the second POD mode is the most intense contributor to the 

coherent structure responsible for the deviation from the average. Once again, the three SGS models 

seem to be equivalent, but the Dynamic Smagorinsky is slightly more accurate on both the first and the 

second POD modes. However, a lower variability for the less energetic modes can be noticed for all the 

SGS models during the intake stroke (from 440 to 480 CA). This confirms the higher penetration seen 

for all the SGS models in the 475 CA snapshot in Figure 42.  

 

𝐼𝑄𝑘 [-] 
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Figure 48 Energy fraction for the first and the second POD modes over the intake and compression stroke 

 

The findings of the work presented in this section are summarized. 

A ranking can be established among the SGS models in terms of mean LES quality indices, whose 

averaged values are reported in Table 3. According to the simulated cycles, both Dynamic Smagorinsky 
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and DSM models show high performance, while the lowest values are obtained for the static 

Smagorinsky model. 

Despite a ranking in LES quality indices can be clearly established, all the SGS models seem to 

adequately represent the average flow field evolution. Similarly, all the models show an underestimation 

of the variability during the intake stroke. Since the LES estimators shows that the quality inside the 

cylinder is good enough, at least for Dynamic Smagorinsky and DSM, the main reason could be an 

under-resolution in the intake port. This is confirmed by the same LES estimator shown in Figure 47. 

To some extent, this observation seems to suggest that SGS closure plays a secondary role with reference 

to spatial resolution and near wall discretization. The synergistic use of LES quality indices, similarity 

indices with available experiments, average field observations and POD provides a deep insight into the 

CFD simulation outcomes and allow the researchers to find the best trade-off between computational 

cost and predictive capabilities of the LES simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



78 

 

 

 

Chapter 5 

LES Analysis using the Overset Mesh technique 
 

The analysis presented in Section 4 shows that improvement could be made on the mesh, especially in 

the valve curtain zone and in the intake port. The meshing strategy plays a central role in the 

computational efficiency, in the management of the moving components of the engine and in the 

accuracy of results. In this section, the aim of improving the computational quality of the simulation 

was pursued in two ways: on one side, a computational scheme with a higher order was used; on the 

other side, the mesh quality has been enhanced with the adoption of the Overset mesh approach. The 

overset mesh approach, usually referred to also as Chimera grid or Composite grid, was rarely applied 

to the simulation of ICEs, mainly because of the difficulty in adapting the technique to the specific 

complexities of ICE flows. The work in this section demonstrates the feasibility and the effectiveness 

of the overset mesh technique application to ICEs thanks to a purposely designed meshing approach. 50 

LES cycles were performed on the TCC-III engine in motored condition. Results are analyzed in terms 

of tumble center trajectory and using POD to objectively characterize the spatial and temporal evolution 

of turbulent flow field in ICEs. Furthermore, the POD quadruple decomposition introduced in Section 

3.7 was extensively applied [84]. 

 

5.1 Overset Mesh 

In the overset grid technique, the computational domain is covered by several grids (sub-domains) which 

overlap with each other in an arbitrary manner. Moving components (i.e. piston and valves in an ICE) 

are usually associated to individual sub-domains and they have dedicated grids. The combination of a 

background grid and each overlapping subdomain composes the computational domain, assembled by 

removing redundant cells. In the specific ICE application, it seems reasonable to assign the cylinder and 

the ports (together with the plenums in the specific case of the TCC-III engine) to the background static 

mesh. The valves and the piston, which are the moving components, are handled by dedicated grids 

[85]. Figure 49 shows the mesh topology of each component, i.e. background, valves, and piston on the 

TCC-III. 
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Figure 49 TCC assembled mesh: in transparency the background mesh of cylinder and ports; the valves mesh and the piston 

mesh for the overset technique 

 

Two major steps are used to establish inter-grid communication: 

• Hole cutting, that involves the identification of the cells outside of the computational domain 

• Identification of interpolation stencils used to construct the interpolation formulas for grid coupling 

 

Figure 50 Detailed view of an overlapping zone for the overset technique, as reported in [85] 
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Figure 50 shows a detailed view of the overlapping zone for the overset mesh technique. 

The cells in the overlapping zone can assume different roles: inactive, active, acceptor, donor. Active 

cells are part of the computational domain. All the boundary cells are identified as Active (e.g. the wall 

boundary identifying the valve surface). The cells lying along the outer boundary of the sub-domain 

region, identified as overlap boundary, are recognized as interpolation cells. Among these, the Donor 

cells are active cells whose values are used for the interpolation of the fluid dynamic variables with the 

Acceptor cells, which, conversely, are inactive. Finally, Inactive cells are not part of the computational 

domain, therefore no equations are solved for these last. For the specific ICE meshing strategy here 

adopted, in the closed valve position the mesh at the valve curtain is deactivated by means of the so-

called “zero gap” submodel. Whenever the number of overlapping cells between the background mesh 

and any sub-domain mesh is less than an arbitrary value (in our case equal to 2), the cells become 

inactive. Figure 51 shows the cell sets of the background, the valve and the piston mesh. 

 

 

Figure 51 A multi-section view of the computational domain, with the identification of the Active, Inactive and Acceptor cells. 

Donor cells are not identified, they belong to the Active cells 

 

For each acceptor cell, donor cells are found according to the chosen interpolation option. In this work 

a linear interpolation was used. Shape functions spanning a tetrahedron defined by centroids of the donor 
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cells are used in the interpolation of the fluid-dynamic quantities. Inactive cells are excluded from the 

computational domain. The solution is calculated on each grid in the overlapping zone. For each 

interpolation point in the grid, donor cells are selected and an interpolation stencil is established. After 

all donors are determined, an interpolation formula for each interpolation point can be constructed 

which, regardless of the shape function used, has the following form: 

𝜙𝑃𝑖
= ∑ 𝛼𝑤𝑘

𝜙𝐷𝑘

𝑁𝐷

𝑘=1

     [5.1] 

expressing the interpolated function value at node 𝑃𝑖, 𝜙𝑃𝑖
, in terms of the function values at donor points 

𝐷𝑘, 𝜙𝐷𝑘
, with 𝛼𝑤𝑘

 being the interpolation weights. Unfortunately, this process of interpolation is not 

conservative, and a strategy must be adopted to enforce mass conservation. Therefore, source term 

correction and flux correction are introduced in the pressure correction equation. Further information 

can be found in [85]. 

 

5.2 Numerical setup 

5.2.1 Mesh 

As stated earlier, the mesh was carefully designed to optimize the computational stability and speed of 

both the overset interpolation and the CFD solver. Following a trial and error process during which 

different grid topologies were analyzed (namely predominantly hexahedral, polyhedral and mixed 

grids), the best computational stability was found with structured meshes at the overlapping regions, 

where cell faces at the interfaces share the same orientation. Hybrid structured/hexahedral meshes for 

each of the overset sub-domains were therefore created and assembled: most of the background grid was 

generated using a flow-oriented so-called “butterfly” mesh, visible in Figure 49, obtained through the 

extrusion of a manually built 2D patch. The remaining sections of the ports were meshed with a 

predominantly hexahedral grid. The valves and the piston required a dedicated mesh: the same butterfly 

mesh topology of the cylinder was used for the piston, while an axisymmetric structured mesh was built 

for both the valves and the valve seats.  
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Figure 52 TCC-III computational domain with a particular focus on the average mesh characteristic dimension for each zone 

 

The final overall number of cells is approximately 1.8 million, but the active cells at BDC are nearly 1.2 

million. The average cell size in the cylinder is 1 mm, varying from a minimum of 0.1 mm near the liner 

to a maximum of 1.15 mm in the bulk volume. The mean value of the in-cylinder cell dimension is 

comparable to the mesh analyzed in Section 4. However, the mesh in the cylinder was refined in the 

region close to the TDC to reduce numerical diffusivity and minimize possible mass conservation errors, 

typical of the overset approach. The in-cylinder number of cells is approximately 0.8 million at BDC 

and 0.3 million at TDC. The use of a butterfly mesh reduced the number of cells in the plenums. The 

number of cells in each of the intake and exhaust plenums is 0.4 million. Compared to the mesh shown 

in Section 4, both intake and exhaust ports were refined in the proximity of the valves. The remaining 

sections of the ports were slightly coarsened to limit the computational cost, but the structured butterfly 

mesh is expected to optimize the quality of the volume discretization. Figure 52 shows the whole 

computational domain and the characteristic mesh size of each zone. As stated before, the mesh was 

purposely built to reduce the computational time while increasing stability of the solution in the 

extremely small gaps at valve opening and closing events. The required level of accuracy imposed the 

adoption of a highly refined mesh in the valve curtain zone. This also fulfilled the necessity of a finer 
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mesh in this zone highlighted in Section 4. Figure 53 shows a detailed view of the mesh topology in the 

cylinder and in the valve curtain zones. 

 

Figure 53 Detailed view of the in-cylinder mesh. The zero gap is active in a) and in the intake valve in b) and the cells at the 

valve curtain are deactivated. The exhaust valve in b) is open and the mesh topology of the valve curtain is shown. 

 

5.2.2 Boundary layer mesh approach 

 

The main advantage of the overset mesh technique is the strict control of the mesh at the boundaries, 

which is not subject to morphing or remeshing. One of the most critical events are the opening and 

closing of the valves, where high velocity and pressure gradients arise in presence of small gaps. To 

ensure sufficient cell quality and stability of the simulations, a minimum gap at the valve opening is 

imposed below which the cylinder domain is disconnected from the ports. In the present analysis, such 

gap is kept equal to 0.1 mm. Local refinements at the valve curtains are introduced in order to provide 

sufficient resolution at the early opening at late closing stages. The literature agrees on the link between 

the accuracy of the results and the level of the refinement of the mesh in the valve curtain zone. For 

example, in [86] Buhl et al. investigate different port modeling strategies, highlighting the importance 

of an accurate mesh to properly match cycle-to-cycle variations. Furthermore, Barbato et al. [87] showed 

how using a low-Reynolds approach, resulting in a better and more structured mesh in the valve curtain 

zone, substantially improved the quality of the CFD representation of the in-cylinder tumble formation. 

In Figure 54 three different configurations of the mesh during the valve opening are shown. 
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Figure 54 Detailed view of the mesh at the valve curtain during the opening phase 

 

5.2.3 Computational Setup 

 

In this study, 50 perturbed LES cycles were run using the 3D-CFD code STAR-CCM+ v13.02, licensed 

by SIEMENS PLM. Three RANS cycles with the same mesh setup used for LES were run to initialize 

the flow field. 5 LES cycles were then run using the RANS fields as initial conditions. 5 batteries of 11 

cycles each were finally generated perturbing the initial conditions via the addition of a synthetic 

turbulent spectrum. The first LES full cycle of each sequence was discarded and 10 consecutive cycles 

from each perturbation constitute therefore the database presented in the following paragraphs. The 

discretization in time is performed using an implicit unsteady model (2nd order). The timestep was 

defined according to the Courant constraints and refined to improve the convergence of the overset mesh 

approach around the valve openings, which are critical phases of the cycle for the overset simulation 

due to the management of the zero-gap zones. Starting from the findings of Section 4, the chosen subgrid 

model is the Dynamic Smagorinsky one. The spatial differencing scheme is a hybrid 3rd order/central-

differencing scheme called MUSCL. It uses a Normalized-Variable Diagram (NVD) value 𝜁 to ensure 

the boundedness of the scheme by switching to a first-order scheme in regions of non-smooth flows. 

When smooth local flow conditions are detected, the scheme is constructed as a blend between a 

MUSCL 3rd-order upwind and the 2nd-order central-differencing reconstruction schemes. 
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The Ideal Gas equation of state is employed to compute density and its derivatives as a function of 

temperature and pressure. Sutherland’s law is used for the Dynamic Viscosity. A calibrated 1D model 

of the TCC-III engine using GT-Power was used for time-dependent periodic boundary conditions. The 

use of cycle-independent boundary conditions is deemed to have a negligible impact on the ability to 

simulate cycle variability in the cylinder because of the presence of the two big plenums in the intake 

and exhaust line. 

 

5.3 Results 

 

The same three CA positions are shown, i.e. 475, 540 and 630 CA. The simulation correctly reproduces 

the flow field topology, both qualitatively and quantitatively. The intake jet in in Figure 55 a), has a 

slightly higher penetration, but the intake jet bending is accurately captured, as well as the vortex center. 

The same can be observed for the tumble center in Figure 55 b). In Figure 55 c) LES shows a higher 

recirculation. By analyzing the alignment parameter, in Figure 56, a high level of alignment can be 

observed over the whole FOV in all the considered CAs. The only misalignments are located in the 

vortex centers, where velocities are almost null. Figure 57 shows an analysis of the LES quality 

estimators, described in Section 4.2. Comparing these results to the dynamic Smagorinsky ones in Figure 

44 and Figure 45, a better quality of the LES can be denoted. In particular, the energy resolution reaches 

very high values over the whole domain. A similar result was obtained in Section 4 with the DSM SGS 

model. This is concurrently due to a higher order of the spatial differencing scheme and an improved 

quality of the overall spatial discretization. The viscosity ratio still shows relatively high values in 

presence of high gradients (475 CA), but, in this case too, the overall values are better than the ones 

obtained in the previous analysis.  
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Figure 55 Ensemble average of the velocity field over the XZ plane at CA position (a) 475, (b) 540 and (c)630 for experimental 

PIV and calculated LES 

Velocity magnitude 

[m/s] 
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Figure 56 Alignment parameter for CA position (a) 475, (b) 540 and (c) 630 

 

Figure 57 Estimators 1 and 2 on the analyzed CA position 475, 540 and 630 

𝐼𝑄𝑘 [-] 

𝐼𝑄𝜈 [-] 
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Figure 58 shows the comparison of the root mean square deviation (RMSd) of the velocity fields. Even 

though the distribution of the deviation is not perfectly equal (see the left zone of the FOV), the 

quantitative estimation is analogous. To justify the high variability in the curtain zone of the PIV a look 

has to be taken to the experimental snapshots. For example, Figure 59 shows two snapshots for cycles 

with superimposable traces of in cylinder pressure and intake port, visible in Figure 60. The velocity 

values in the proximity of the valve are extremely different. It is reasonable to think that the velocity at 

the valve curtain in the immediate proximity of the valve during the mid-intake stroke should be very 

high in each cycle. In cycle 178, in Figure 59 a), in the valve curtain zone the expected high velocities 

are visible. In cycle 240, however, in Figure 59 b), the velocity in that area is extremely low while a 

sudden recover is visible above. On one side, this could suggest the presence of strong recirculation 

vortices that split the intake flow over the section plane. On the other side, a highly swirling motion 

could be present in the intake port, causing a bending in the intake jet flow, which does not strike the 

section plane. However, as it will be shown later on, both these phenomena are simulated. The effects 

on the intake jet are visible only at the early stages of the intake stroke, and they do not affect the valve 

curtain velocity at the peak of the mass flow rate. The CFD data extrapolated on the PIV grid show 

repeatability of the velocity in the proximity of the valve curtain, therefore the RMSd value is low, 

because low variability is detected. The reason of such discrepancy is still to be clarified. The difficulty 

in capturing the experimental data in the valve curtain zone must not be underestimated, and it is possible 

that the few cycles responsible for the high variability in the RMSd value could be affected by local 

uncertainties.  

Despite the underestimation in the valve curtain zone, the RMSd value of the intake jet bending and 

penetration is both quantitatively and qualitatively accurate. Such similarity between experimental and 

simulated data demonstrates LES capability of capturing the CCV. 
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Figure 58 RMSd of the velocity on the XZ plane at the CA positions (a) 475, (b) 540, (c) 630 for experimental PIV and LES 
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Figure 59 Snapshots at 475 CA for PIV cycle (a) 178 and (b) 240 

 

 

Figure 60 In cylinder and intake port pressure traces from PIV cycles 178 and 240 

 

The mass conservation error was verified a posteriori. The most critical phase of the cycle for the mass 

conservation is the compression phase, where the cylinder is a closed volume with pressure rising. The 

maximum oscillation of the in-cylinder mass during the compression phase, is equivalent to 0.2%. The 

maximum amplitude of the oscillation takes place exactly at the TDC. Despite the oscillation during the 
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compression phase, the in-cylinder mass per simulated cycle is conserved. Figure 61 shows the 

conservation error over one cycle. 

 

Figure 61 Mass and pressure of one LES cycle, with a detailed view of the mass conservation error at TDC 

 

5.3.1 Tumble Center 

A quantitative evaluation of the accuracy of the analysis over the whole intake stroke can be obtained 

by the analysis of the tumble center position. An algorithm to identify the center of recirculation vortices 

in a flow was developed by Graftieaux et al. [53] and applied to ICEs by Stansfield et al. [88]. For each 

grid point, Eq. 5.2 is applied. The algorithm calculates the sine of the angle between the positional vector 

of each of the surrounding eight grid points, 𝑀, and the corresponding velocity vector, 𝑈, as shown in 

Figure 62. The vortex center identification is performed where the value of 𝑅 reaches unity. 

 

𝑉𝑜𝑟𝑡𝑒𝑥 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 𝑅(𝑛) =
1

 𝑁 
∑

 (𝑀 ∧ 𝑈) ∙ 𝑧̂ 

‖𝑀‖ ‖𝑈‖
𝑆

=
1

 𝑁 
∑sin(𝜃)

𝑆

     [5.2] 

Where: 

• 𝑅 dimensionless scalar 

• 𝑛 grid point 

• 𝑆 2D area surrounding n 
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• 𝑁 number of points inside 𝑆 

• ∧ cross product 

• 𝑀 radius vector 

• 𝑈 velocity vector 

• 𝑧̂ unit vector normal to the measurement plane 

• 𝜃 angle between 𝑈 and 𝑀 

 

 

Figure 62 Visual explanation of the method for the vortex center identification 

 

The author chose to perform a two-level comparison: first, to highlight the trend of the evolution of the 

tumble center, the position of the tumble center of the average flow field is shown. Secondly, the 

standard deviation of the position on 50 cycles is shown for the tumble center corresponding to each CA 

position.  

The results of the method application are shown in Figure 63. Each pointer identifies the mean position 

of the tumble center for the CA position corresponding to the associated color, with 5 CA resolution as 

from PIV dataset. The ellipse surrounding each pointer represents the standard deviation of the X and Z 

position of the tumble center over all the cycles, as shown in Figure 64. 
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Figure 63 Tumble center and X and Z standard deviation representations 

 

 

Figure 64 Tumble center identification for PIV and LES from 450 CA to 540 CA 

The evolution of the tumble center over the whole intake stroke allows a better understanding of the 

evolution of the flow topology. The main tumble vortex in LES simulation shows a misalignment with 

the PIV in the very early stages, recovering around 470CA. In the proximity of the BDC the tumble 

center is slightly lower than the experimental counterpart, varying more along the X dimension. With 

these exceptions, the flow field evolution is well captured both in terms of pattern and variability of the 

X and Z position.  
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5.3.2 POD results 

The POD analysis was conducted over both the full 240 experimental cycles and the 50 simulated cycles. 

Theoretically, the energy associated with each snapshot is split among all the modes, from the most to 

the least energetic. Dividing the energy in 240 cycles or in 50 cycles may affect the comparison between 

experimental and calculated results. However, negligible differences between the energy spectra can be 

spotted in the most energetic modes, as shown in Figure 65.  

 

 

Figure 65 Energy spectrum comparison for POD modes 1,2 and 3 between 240 and 50 PIV cycles 

 

The main differences can be found in the less energetic modes, where energy is more fractionized. 

Performing the POD analysis on just 50 experimental cycles would have introduced a degree of 

arbitrariness. For such reason, all 240 measured cycles were used. A phase independent POD analysis 

was applied. Figure 66 shows the comparison among the most energetic modes of both PIV and 

calculated cycles. Both trends and individual magnitudes show a good agreement. The comparison with 

the same analysis performed on the Dynamic Smagorinsky dataset from Section 4, in Figure 67, shows 

an improvement, especially in the first part of the stroke for both Mode 1 and 2. This is mainly due to 

the valve curtain refinement, whose effects are particularly effective in the first part of the intake stroke. 
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Figure 66 POD energy fraction comparison between LES and PIV for mode 1, 2 and 3 

 

Figure 67 POD energy fraction comparison between LES Dynamic Smagorinsky from Section 4 and PIV 

The quantitative result shown in Figure 66 can be qualitatively confirmed by comparing the POD modes, 

as shown in Figure 68. Even though the energy seems to be differently distributed among modes 2 and 

3, the topology of the turbulent structure described by the modes is very similar. Mode 2, in Figure 68 

(2), is the one showing the greatest differences, especially in the lower left zone of the FOV. The second 

mode is a representation of the second highest energetic turbulent structure, and it can be noticed that 

this difference is strictly related to the one noticed in the RMSd in Figure 58 (b).  
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Figure 68 Most energetic POD modes (1, 2 and 3) comparison between PIV and LES 

 

5.3.3 POD quadruple decomposition results 

 

The POD decomposition introduced in Section 3.7 is here applied to both the LES and the PIV datasets. 

As already mentioned in Section 3, this tool can be used to perform a deeper analysis on the nature of 

the turbulent structures that cause the deviation from the mean flow field. Figure 69 shows the energy 

associated with mean, coherent, transition and incoherent parts, calculated as in Eq. 3.41, for all the 50 

LES cycles in the CA position 475. The variability can be noticed mainly in the energy associated with 

the mean part and with the coherent part. The level of energy associated with the mean part is always 

high because of the predominant turbulent structure in the chosen 475 CA position, i.e. the intake jet 

flow. A high deviation from the average can be noted: the highest peaks represent the least deviating 

cycles, while the lowest ones represent the cycles that deviate the most from the average. In these last, 

the energy associated with the coherent part is higher, meaning that a high level of energy is dissipated 

in highly energetic turbulent structures different from the intake jet flow.  

POD mode intensity [-] 
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Figure 69 Energy associated with mean part, coherent part, transition part and incoherent part for the 50 LES cycles for the 

475 CA position 

Using the same methodology on the first 50 cycles in the PIV dataset, a comparison between the LES 

and PIV cycles that are the least and most deviating from the average field was performed. The energy 

spectra associated with the selected cycles are shown in Figure 70. 

 

Figure 70 Energy spectra showing the contribution of each part of the turbulent field for the least (cycle 5 for LES and cycle 

29 for PIV) and the most (cycle 18 for LES and cycle 14 for PIV) deviating cycles for LES and PIV 
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A visual representation of the selected cycles is shown in Figure 71. 

 

Figure 71 Comparison between the least deviating cycles (cycle 5 for LES and cycle 29 for PIV) and the most deviating cycles 

(cycle 18 for LES and cycle 14 for PIV) 

 

Even though the instantaneous flow fields of all the considered cycles do not show significant 

differences, the quadruple analysis allows a deep insight of the dominant turbulent structures, especially 
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the ones responsible for the highest deviation from the average flow field. These are shown in Figure 71 

3 c) and 4 c). The transition and the incoherent parts show a different distribution of energy. As stated 

in Section 3.7, the author believes that the combination of these two parts would not affect the accuracy 

of the analysis. The different distribution can be addressed to the different size of the available datasets 

for LES and PIV (50 LES cycles and on 240 PIV cycles). As stated before, Figure 65 demonstrated that 

the energy fraction of the most energetic POD modes doesn’t show significant differences on the 

analysis made over 50 and 240 cycles. The effect of the analysis on a wider dataset is that the energy is 

fractionized in the lowest modes. The quadruple analysis performs a deep insight on the main vortex 

dimension on these very lowest modes, therefore a higher discretization leads to a finer analysis. This 

can be noticed by looking at the incoherent parts of LES and PIV in Figure 71 e): the PIV main vortex 

dimension is lower than the LES one. However, the amount of energy associated with the combination 

of transition and incoherent parts are quantitatively comparable, meaning that the lower discretization 

deriving from the less extensive LES dataset does not affect the recognition of the high energetic 

turbulent structures, responsible for the CCV. Figure 71 1 c) and 2 c) show the comparison of the 

coherent part of the turbulence in the less variable LES and PIV cycles. The energy associated with 

these structures is low, yet not negligible. Theoretically, a reduction of the CCV should lead to a 

reduction of the energy associated with these turbulent structures.  

The analysis of the POD quadruple decomposition can be furtherly deepened: an analysis of the intake 

stroke relative to the most deviating cycles is proposed. The purpose of this analysis is not to reach 

definitive conclusions, but to propose a methodology to understand the origin of the turbulent structures 

responsible for both the “positive” and the “negative” deviations. The aim to reduce the CCV, should in 

fact lead to the maximization of the amount of energy associated with the mean part. For this reason, it 

is interesting to analyze also the least deviating cycles. 

Among all the cycles, whose decomposition is visible in Figure 69, 6 cycles are selected: cycle 4, 5 and 

35 are selected as the least deviating thanks to the high energy associated with the mean part and the 

low energy associated with the coherent part. On the contrary, cycles 18, 31 and 45 are selected as the 

most deviating ones. 

Figure 72 shows the application of the POD quadruple decomposition to the intake stroke for the selected 

cycles. For clarity, only the evolution of the energy associated with the mean and the coherent parts is 

shown. A clear trend cannot be recognized between the least and the most deviating cycles. In particular, 

until 425 CA all cycles show a similar behavior. After this CA position, the evolution of the coherent 

energy is different: a progressive decrease is shown in the least deviating cycles. For the most deviating 

cycles, two different behaviors are detected: in cycles 31 and 45 the coherent energy decreases until 450 

CA and then rises again, while in cycle shows 18 a progressive increase since the beginning of the intake 
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stroke. The 425 CA position seems to be a turning point in the cycle. To investigate the reason, Figure 

73 shows the instantaneous flow field and the coherent part for these cycles at the 425 CA position.  

 

 

Figure 72 Energy associated with the mean part (in blue) and with the coherent part (in orange) during the intake stroke for 

least deviating cycles (4, 5 and 35, in green) and most deviating cycles (18, 31 and 45 in red) 
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Figure 73 Instantaneous flow field (a) and coherent part of the turbulence (b) for the least (green) and the most (red) deviating 

cycles at the 425CA position 

While the least deviating cycles are very similar, with a slightly more energetic coherent part in cycle 4, 

the two different behaviors in the least deviating cycles are now clear. In both cycle 31 and cycle 45 a 

strong recirculation vortex generates a disturbance onto the intake jet: the coherent part shows the 

recirculation vortex flowing in opposite direction compared to the intake flow. Cycle 18, on the other 

Velocity magnitude [m/s] 
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side, is deviating from the average because of a higher penetration. The coherent structures are in fact 

“supporting” the main jet, resulting in a higher intake flow rate. As a matter of fact, cycle 18 is the best 

cycle in terms of volumetric efficiency. 

A detailed view of the recirculation vortex visible for cycle 45 at the 420 CA position is visible in Figure 

74 and Figure 75. 

 

Figure 74 Line integral convolution of the velocity magnitude on the Y=0 plane at the 420 CA position for cycle 45 

 

Figure 75 Vector field of velocity showing the detailed view of the recirculation vortex at the 420 CA position for cycle 45 
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The next logical step is trying to understand the origin of the recirculation vortices responsible for the 

deviation of cycles 31 and 45, which affects both intake jet bending and penetration. Due to the flat 

piston of the TCC-III engine, very low residual turbulence is expected after the TDC. Therefore, it is 

reasonable to suppose that any turbulent structure in the intake stroke is formed as a consequence of the 

intake flow rate. For this reason, the flow is analyzed in several section planes of the intake port. Figure 

76 shows the three section planes analyzed.  

 

Figure 76 Section planes of the intake port analyzed 

 

In Figure 77 the velocity field relative to section plane 1 is shown at the 470 CA position. Please note 

that the contour field is relative to the axial velocity magnitude, while the vector field is plotted for the 

radial velocity relative to the section plane. As expected, the axial velocity is higher in the lower part of 

the images, corresponding to the intrados, and a recirculation zone is noticeable at the extrados. The 

least deviating cycles and cycle 18 show a sort of simmetry in the velocity magnitude for the left and 

the right sides of the valve. On the contrary, cycles 31 and 45 show a clear asymmetry, with a zone of 

lower velocity caused probably by the higher pressure due to a recirculation vortex. Focusing on cycle 

45, the evolution of the velocity field from 420 to 470 CA is shown in Figure 79. Looking at Section 1, 

the high pressure/low velocity zone denoted in Figure 77 is not present at the preceeding CA, and an 

opposite swirling motion can be spotted from the 420 CA position.  
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Figure 77 Velocity on the section 1 from Figure 76 at the 470 CA position for the selected cycles.. The contour is relative to 

the axial velocity, while the vector field comes from the radial components 

 

As shown in Figure 74, the recirculation vortex in the proximity of the valve causes a local increase in 

pressure that intensificates the effect of the detachment of the velocity flow field from the valve curtain 

the turbulent structure visible at 420 CA. For a comparison, a different section plane from the same CA 

is shown in Figure 78, where no recirculation vortex affects the intake jet flow. This perturbation affects 

the intake jet flow, and it is reasonable to assume that it is related with its evolution. A more detailed 

analysis would be necessary to investigate the connection between the perturbation and the swirling 

motion within the intake port, and the interaction of the flow field with the pressure dynamics, whose 

effects in the velocity field are noticeable, especially in section plane 2 in Figure 79. 

Velocity magnitude [m/s] 
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Figure 78 Vector field of the velocity magnitude at the 420CA position for cycle 45 where no recirculation vortex affects the 

intake jet flow 

 

However, it is possible to assume that avoiding the swirling motion in the intake port could reduce the 

deviation of the intake stroke. This seems to be confirmed by the comparison of the flow field in section 

plane 1 with one of the least deviating cycles, for example Cycle 5, shown in Figure 80, where such 

swirlilng motion is not recognizable.  

The objective of this analysis was not to reach definitive conclusions, but rather to propose a method of 

analysis based on the POD quadruple decomposition. Defining the most and the least deviating cycles 

from the 475 CA position is an arbitrary choice, with the idea of reducing the cyclic variability in a 

specific portion of the cycle. This could be a key factor in the development of an engine. For example, 

the repeatability of the turbulent flow field near the spark could help reducing the variability associated 

with the ignition. Also, a repeatable turbulent structure could improve the interaction with the spray in 

direct-injection engines, enhancing the distribution of the air-fuel mixture. POD quadruple 

decomposition proved to be a suitable tool for this purpose. Nevertheless, further analysis will be 

necessary to confirm or disprove the hypothesis that the reduction of the swirling motion inside the 

intake port could reduce the variability during the intake stroke. 
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Figure 79 Evolution of the velocity flow field for Cycle 45 in the section 1, 2 and 3 referring to Figure 76 from 420 to 470 CA 

Velocity magnitude [m/s] 
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Figure 80 Comparison of the velocity flow field in Section 1 for the high deviating cycle 45 and the low deviating cycle 5 

Velocity magnitude [m/s] 
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5.4 Conclusions 

Overset mesh was demonstrated to be suitable for the CFD simulation of ICE flows, though only few 

applications are available in the literature. Such lack of contributions is probably due to the complexity 

of the grid generation process, which must be carefully addressed to handle the small gaps between the 

valves and valve seats at the valve opening events. Furthermore, the lack of conservativeness of the 

overset interpolation in closed domains discourages the adoption of the technique. The work shown in 

this section demonstrates that, by carefully designing the mesh, the application of the overset mesh 

technique is not only possible but also effective. The overset mesh technique, coupled with the adopted 

mesh structure, provided enough stability to allow the use of a high-order numerical scheme (MUSCL 

3rd order/central-differencing scheme). The application of the overset mesh was eased by the specific 

geometry of the TCC engine, which allowed the author to design a purposely built grid. However, the 

technique would be suitable also for 4-valve pentroof configurations typical of modern GDI units. A 

careful post-processing of a population of 50 LES cycles was performed to discuss the agreement 

between LES predictions and experimental evidences. The ensemble average fields reveal that the flow 

topology is reasonably simulated over the whole cycle. This is quantitatively confirmed by the alignment 

parameter, and POD analysis is performed to confirm the agreement of the most energetic modes over 

the intake stroke, both in terms of values and trend. Finally, the original quadruple decomposition, 

applied to the LES results for the first time, gives a further insight on LES capability of simulating the 

turbulent structures responsible for CCV and, possibly, a tool to identify their origin. 
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Conclusions and future research 
 

Cycle-to-cycle variability is one of the most limiting factors for the extraction of the full efficiency and 

emission potential of advanced ICEs. Among the mechanisms that lead to CCV, turbulence is dominant. 

The TCC-III engine has provided the researchers of a set of reliable and accurate experimental PIV data, 

allowing the refinement of the calculation techniques by means of an insight on the in-cylinder 

turbulence.  

In this work, the TCC-III engine dataset in motored condition was analyzed for two main purposes: 

- Testing post-processing techniques involving Proper Orthogonal Decomposition 

- Improving the simulation techniques 

Several POD-based flow analysis methods have been critically analyzed. In an attempt to overcome 

some limitations of these methods, a new method has been proposed. The application of these methods 

to the TCC-III engine revealed that: 

- Much information can be obtained with phase dependent POD, but results must be critically 

analyzed to avoid misleading interpretations. 

- The Conditional Averaging technique is a simple and effective technique, which can provide a 

reliable qualitative description of CCV. Its major drawback is that it should be limited to large 

datasets composed of a relevant number of cycles. 

- POD triple decomposition is affected by the lack of objectiveness for the definition of the 

incoherent turbulent part of the flow field.  

- POD quadruple decomposition introduces a transition turbulent part of the flow field which 

should improve the understanding of the energy cascade. Nevertheless, anisotropy is not used 

as a criterion to individuate the coherent part of turbulence, and the definition of the cutoff 

number for the incoherent field is not objective. 

- The proposed decomposition method introduces a higher degree of objectiveness in the 

decomposition. Results show a better description of physical phenomena.  

All the analyzed techniques are powerful tools for the analysis of turbulent flows, but very little practical 

information on how to limit CCV can be derived from a standalone application and a methodology of 

investigation is proposed. 

To deepen the analysis, three SGS models were tested to assess the LES capabilities of simulating the 

CCV. Three datasets of 50 LES cycles were run using the SGS model Static Smagorinsky, Dynamic 
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Smagorinsky and Dynamic Structure Model. The correlation between field similarity and LES quality 

was then investigated using two different LES quality indices. The importance of the use of multiple 

LES quality estimators was discussed. The chosen estimators proved to be able to highlight criticalities 

in the adopted discretization strategy at the valve curtain region during the early induction phase. 

Nevertheless, the in-cylinder discretization was found adequate enough to properly resolve the 

investigated flow. A curtain under-resolution was detected, but it did not prevent reaching a high level 

of similarity with the PIV measurements. 

Phase-dependent POD analysis was then carried out for the PIV data and for each of the adopted SGS 

models. Comparisons were carried out in terms of mode fraction evolution during a portion of the intake 

and compression strokes. The main findings of this research are summarized:  

- According to the simulated cycles, both Dynamic Smagorinsky and DNS models show high 

performance, while the lowest values are obtained for the static Smagorinsky model. The best 

correlation with the PIV data was obtained with the Dynamic Smagorinsky model. 

- Despite a ranking in LES quality indices can be clearly established, all the SGS models seem to 

adequately represent the average flow field evolution. Similarly, none of the models is able to 

properly estimate the amplitude of flow field variance around the mean. To some extent, this 

observation seems to suggest that SGS closure plays a secondary role with reference to spatial 

resolution and near wall discretization. 

These findings put the bases for reaching better LES results using the Overset mesh technique. Despite 

only few applications are available in the literature, Overset mesh was demonstrated to be suitable for 

the CFD simulation of ICE flows. The overset mesh technique, coupled with the adopted mesh structure, 

provided enough stability to allow the use of a high-order numerical scheme (MUSCL 3rd order/central-

differencing scheme). The application of the Overset mesh was eased by the specific geometry of the 

TCC engine, which allowed the design a purposely built grid. However, the technique would be suitable 

also for 4-valve pentroof configurations typical of modern GDI units. A careful post-processing of a 

population of 50 LES cycles was performed to show the agreement between LES predictions and 

experimental evidences. The proposed quadruple POD decomposition was applied to assess both the 

level of accuracy of the results and to understand the origin of the variability. Even though non-definitive 

conclusions were reached on the origins of CCV, the methodology involving POD quadruple 

decomposition proved to be suitable for the purpose. 

Future work could be addressed in this direction. The added value of a CFD investigation is the 

accessibility to all the simulated computational domain for every time-step. The interaction between the 

turbulent motion of the intake port and the cylinder, for example, could only be supposed by observing 
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the experimental data, while an accurate LES simulation allows a deep analysis of such phenomena. The 

proposed method of analysis involving the POD quadruple decomposition could be extended to the 

three-dimensional domains of the cylinder and the intake port. Further methods of analysis for the 

coherent structures could be performed, such as the lambda2 method, for example. Additionally, more 

calculation could be performed in order to test hardware modification, such as septa or vortex generator, 

to induce the formation of desired turbulent structures or to reduce the undesired ones. 
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Definitions / Acronyms 
 

ICE  Internal Combustion Engine 

GHG  GreenHouse Gas 

CCV   Cycle-to-cycle variability 

COV   Coefficient of variation 

IMEP  Indicated Mean Effective Pressure 

PIV  Particle Image Velocimetry 

CFD  Computational fluid dynamics 

RANS   Reynolds averaged Navier Stokes 

LES   Large Eddy Simulation 

DNS   Direct Numerical Simulation 

POD  Proper Orthogonal Decoposition 

TCC  Transparent Combustion Chamber  

CA  Crank Angle 

FOV  Field of view 

TDC   Top Dead Center 

BDC  Bottom Dead Center 

FFT  Fast Fourier Transform 

𝑢0  Characteristic velocity of large eddies 

𝑙0  Characteristic length scale of large eddies 

𝜏0  Characteristic time scale of large eddies 

𝑙𝐸𝐼  Length scale defining the energy-containing range of eddies 

Τ𝐸𝐼  Rate of transfer of energy from large eddies to small eddies 

𝜈  Kinematic viscosity 

𝜀  Specific dissipation rate  

𝜂  Kolmogorov lengthscale 

𝑢𝜂  Kolmogorov velocity 

𝜏𝜂  Kolmogorov timescale 

𝑙𝐷𝐼  Lenght scale defining inertial subrange 
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𝑇(𝑙)  Rate of transfer of energy from large eddies to small eddies 

𝑘  Turbulent kinetic energy 

𝜌  Density 

𝑆𝑖𝑗  Strain rate 

𝜇  Molecular viscosity 

𝜇𝑡  Turbulent viscosity 

𝜎𝑘  Turbulent Prandtl number for kinetic energy  

𝜎𝜀  Turbulent Prandtl number for dissipation   

𝐶1𝜀, 𝐶2𝜀  Constants from the 𝑘- 𝜀 model 

𝑼(𝒙, 𝑡)  Velocity field 

𝑼̅(𝒙, 𝑡)  Filtered component of the velocity field 

𝒖′(𝒙, 𝑡)  Residual component of the velocity field 

SGS   Sub-grid scale 

𝐺(𝑥, 𝑥′) Filter kernel  

𝜏𝑖𝑗
𝑠   Subgrid-Scale Reynolds stress 

𝜏𝑖𝑗
𝑟   deviatoric residual (SGS) stress tensor 

𝜈𝑟  residual (SGS) eddy viscosity 

𝑆̅  Filtered rate of strain 

𝐶𝑠  Smagorinsky coefficient 

𝑃𝑟  Rate of production of residual kinetic energy 

𝑛+  Distance from the wall in viscous wall units 

𝐴+  Constant in van Driest damping model 

𝜏𝑖𝑗
𝑅   residual (SGS) stress tensor 

𝑇𝑖𝑗  modeled Reynolds stress 

𝐿𝑖𝑗  resolved stress 

𝑘𝑟  residual kinetic energy 

𝑐𝑖𝑗  symmetric tensor for backscattering in DSM model 

𝐴𝑛
𝑚  vector field matrix for POD mathematical procedure 

𝑅  covariance matrix 

𝑣𝑖  eigenvectors 
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𝜆𝑖  eigenvalues 

𝜙𝑖  POD modes 

𝑎𝑖  POD coefficients 

𝑢𝑛  snapshot velocity field 

𝑒𝑖  energy fraction 

𝑢𝑅𝑀𝑆  Root mean square deviation for the velocity  

𝒖̅(𝒙, 𝜙)  ensemble average 

𝒖̂(Φ)  conditional average 

𝑀(Φ)  number of cases for which the conditional averaging condition is valid 

〈𝑈𝑖(𝑋, 𝑡)〉 mean cycle average part of the instantaneous flow field 

𝑢𝑖̃(𝑋, 𝑡)  fluctuating part of the instantaneous flow field 

𝑆𝑢𝑖
′  Skewness coefficient 

𝑇𝑢𝑖
′  Flatness / kurtosis coefficient 

𝑅  correlation coefficient 

𝑘𝑁𝑦𝑞  Nyquist limit for the spatial-frequency domain 

𝑘𝑐𝑜  cut-off spatial frequency 

𝐿𝑐𝑜  characteristic length scale for the cut-off frequency 

𝐼𝑄𝑘  Energy resolved LES quality estimator  

𝐼𝑄𝜈  Viscosity based LES quality estimator 
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