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Introduction

The advent of 5G networks is not only a technological revolution, it will
also encompass new business models, whom service providers and network
operators should be ready to adapt to. Differently from 4G, which enhanced
the performance of the existing 3G systems, 5G will enable new communica-
tion paradigms such as device-to-device, inter- and intra- vehicular commu-
nications, as well as new services like remote healthcare and smart homes,
just to name a few. 5G will dedicate different portions of the network to
ad-hoc services with specific speed/latency requirements, taking advantage
of the so-called “network slicing” approach that allows to deploy several
multi-service, logically distinct networks over the same physical infrastruc-
ture. End-users and their expectations will be the focus of any provider.
As such, the key asset of 5G will no longer be Quality of Service (QoS),
rather, Quality of Experience (QoE). To anticipate market needs, the defini-
tion of a trustable monitoring approach to QoE is an action for Empirix, the
company where I worked during my PhD years, as this company offers trou-
bleshooting and diagnostics solutions to service providers and enterprises.
This dissertation focuses on the exploration of 5G and QoE topics and in its
final part, it proposes a novel technique to assess the quality that end-users
will experience. Firstly, I followed 5G standardization with a special empha-
sis on investigating aspects related to Empirix core business. I transferred
my knowledge to the whole company through trainings and lessons. After
this phase of study, Empirix and I recognized the delivery of voice as one
of the well-established and key feature that must be maintained in 5G ap-
plications, worthy of an in-depth study. Recently, Forbes stated: “with 5G
every object could soon have a voice”, and, according to Ericsson forecast-
ing: “voice is the king of communication and in a 5G world it will be more
important than ever [...]. The network infrastructure used for Voice over
LTE (VoLTE) today will also be used to enable 5G voice calls”. Thus, by
exploiting passive network measurements, I performed a comparative study
of the end-to-end quality degradation that several millions of real VoLTE
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calls underwent, when two popular codecs were employed, namely, Adaptive
MultiRate (AMR) and Adaptive MultiRate WideBand (AMR-WB). This
study revealed to what extent AMR-WB based calls are more robust against
network impairments of voice services (e.g., jitter and packet loss rate) than
their narrowband counterpart. In parallel, I also came to the conclusion
that relying on empirical models to evaluate QoE leads to several limita-
tions, most notably, the lack of actual feedback from end-users. I addressed
this shortcoming adopting a customer-driven approach, although in a much
more confined environment. To this regards, I leveraged a pool of research
participants that listened and scored AMR-WB calls generated by Hammer,
an Empirix platform that emulates Voice over IP communications, therefore
providing truly subjective evaluation scores. By comparing different state-
of-the-art algorithms my goal was to exploit statistical approaches based on
supervised Machine Learning to understand how QoE was related to net-
work metrics and human-based features like age, gender and type of headset.
The major findings were: i) Ordinal Logit Regression is the algorithm that
best captures the aforementioned relation. ii) Users usually agree to rate
call quality as either “excellent” or “bad”. iii) Conversely, when they are
asked to rate call quality on the conventional five score scale, the statistical
prediction of QoE becomes a difficult task: the perception of “intermediate”
quality is deeply related to subjective personal traits and it may significantly
vary from person to person.
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Introduzione

L’imminente avvento del 5G non rappresenta solo una rivoluzione tecno-
logica, ma definisce anche nuovi modelli di business, a cui i service providers
e gli operatori di rete dovranno adattarsi. A differenza del 4G, che ha miglio-
rato in termini di performance il preesistente 3G, il 5G promette di abilitare
nuovi paradigmi di comunicazione come le comunicazioni device-to-device,
intra e inter-veicolari, cośı come di diffondere nuovi servizi, la tele-medicina
e le case intelligenti, per citarne alcuni. Coadiuvata dal network slicing,
che consentirá lo sviluppo di multiple reti logiche sulla stessa infrastruttura
fisica, il 5G allocherá porzioni di rete a servizi ad-hoc con specifici requisiti di
latenza e velocitá. L’utente sará al centro della rete, e con esso ogni sua as-
pettativa. Per tale motivo, il key asset del 5G non é piú la Quality of Service
(QoS) ma la Quality of Experience (QoE). Per anticipare e rimanere compet-
itivi nel mercato, la definizione di un sistema affidabile di monitoraggio della
QoE é cruciale per l’azienda in cui ho svolto il mio PhD, Empirix, la quale
offre servizi di diagnostica e troubleshooting ad operatori di rete ed imprese.
Questa tesi esplora il tema del 5G e della QoE, e nella parte finale propone
un approccio innovativo volto a determinare la qualitá percepita dall’utente
finale. In una prima fase, ho seguito la standardizzazione del 5G, con parti-
colare attenzione agli aspetti legati al core business dell’azienda. Ho svolto
seminari e lezioni sulle principali caratteristiche del 5G. In seguito, assieme ad
Empirix, ho individuato nei servizi voce, una delle applicazioni piú promet-
tenti dell’ecosistema 5G, e meritevole di approfondimento. Recentemente,
Forbes ha dichiarato che “with 5G every object could soon have a voice”, e
secondo le previsioni di Ericsson “voice is the king of communication and in
a 5G world it will be more important than ever [...]. The network infrastruc-
ture used for Voice over LTE (VoLTE) today will also be used to enable 5G
voice calls”. Ho dapprima sfruttato misure passive di rete per analizzare e
confrontare la qualitá di diversi milioni di chiamate VoLTE di una rete reale,
codificate dagli odierni Adaptive Multi-Rate (AMR) e Adaptive Multi-rate
Wide-Band (AMR-WB) codecs. Questa analisi ha permesso di verificare la
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maggiore robustezza delle chiamate AMR-WB rispetto agl’impariments dei
servizi voce, quali jitter e packet loss rate. In parallelo, sono giunta alla con-
clusione che fare affidamento ad un modello empirico per monitorare la QoE
porti a diverse limitazioni, prima fra tutte, la mancanza feedback dell’utente
finale. Per ovviare a questa lacuna, ho adottato un approccio customer-
driven, seppure in un contesto molto piú confinato del precedente. A questo
proposito, ho sottoposto ad un gruppo di volontari un esperimento di va-
lutazione di qualitá chiamate AMR-WB, generate in ambiente virtuale da
Hammer, una piattaforma proprietaria di Empirix volta ad emulare comu-
nicazioni Voice over IP. Confrontando le caratteristiche di diversi algoritmi
dello stato dell’arte, ho allenato un modello di Machine Learning supervision-
ato per comprendere come la QoE fosse in relazione con le metriche di rete, e
le caratteristiche dell’utente (etá, genere, tipo di dispositivo impiegato). Ho
constatato che: i) l’algoritmo che meglio approssima la relazione di cui sopra
l’Ordinal Logit Regression; ii) gli utenti spesso convengono nel definire una
chiamata di qualitá “eccellente” o “pessima” iii) per contro, quando valutano
una chiamata di qualitá definibile “intermedia”, entrano in campo variabili
soggettive che difficilmente possono essere interpretate in termini statistici,
rendendo pertanto ardua la predizione di QoE.
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Chapter 1

An Introduction to 5G
Networks

The goal of this chapter is to describe the key features of 5G Networks.
Starting from the initiatives of 5G standardization bodies, and the time-line
defined for 5G deployment, I will illustrate the demanding network require-
ments to support a brand-new set of use cases and applications. I will then
investigate the technical aspects of 5G New Radio, with a special emphasis
on the migration paths network operators might follow to roll-out their com-
mercial networks. Next, I will summarize the architectural principles of 5G
core, along with the new functionalities provided by Network Data Analytics
Function (NWDAF) and the rising concept of Network Slicing. This chapter
will end with an overview of the new emerging communication paradigms
that will uniquely characterize the next generation of networks.

1.1 Actors for 5G Standards and

5G Standardization Process Involvement

Third Generation Partnership Project (3GPP) and International Telecom-
munication Union (ITU) are the main actors leading the complex process
of 5G standardization. This section is intended to illustrate the relations
among these entities, with different roles and responsibilities, and to give an
overview of the reference standards that set requirements for the envisioned
5G use cases, the so-called International Mobile Telecommunications-2020
and beyond [1] (IMT-2020 for short).
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1.1.1 3GPP and ITU

3GPP produces Technical Specifications, to be transposed by relevant Stan-
dardization Bodies (Organizational Partners) into appropriate deliverables
(e.g., standards). Hence, 3GPP provides inputs to ITU, that releases the
standards. The standards for 5G will be under the IMT-2020 umbrella. The
technologies that are currently of interest for 3GPP are:

• Long Term Evolution-Advanced (LTE-A)

• LTE

• Carrier Aggregation Explained

• HetNet/Small Cells

• Non Access Stratum (NAS)

• Evolved Packet Core (EPC)

• High-Speed Packet Access (HSPA)

• Universal Mobile Telecommunication System (UMTS)

• Wideband-Code Division Multiple Access (W-CDMA)

• General Packet Radio Service (GPRS) & Enhanced GPRS (EDGE)

3GPP has seven Organizational Partners - from Asia, Europe and North
America that determine the general policy and strategy of 3GPP. They are
the following:

1. ARIB, The Association of Radio Industries and Businesses, Japan

2. ATIS, The Alliance for Telecommunications Industry Solutions, USA

3. CCSA, China Communications Standards Association

4. ETSI, The European Telecommunications Standards Institute

5. TSDSI, Telecommunications Standards Development Society, India

6. TTA, Telecommunications Technology Association, Korea

7. TTC, Telecommunication Technology Committee, Japan
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3GPP adopts a two-phase based approach, comprising (i) Study Item(s)
and (ii) Work Item(s). Phase 2 Study Item(s) will coincide with Phase 1
Work Item(s) beginning. Phase 1 corresponds to Release 15, that has been
completed in September 2018. Within Phase 1, initial 5G deployments has
been defined to address crucial subset of the commercial needs. Phase 2 corre-
sponds to Release 16, that should be completed by March 2020 for IMT-2020
submission. Phase 2 will cover all the identified use-cases and requirements
for 5G effective deployment actions.

The ITU with its “Working Party 5D (WP 5D) - IMT Systems” works on
IMT-2020[1], the standard for 5G mobile systems. In this document “Plan,
Timeline, Process and Deliverables for the future development of Interna-
tional Mobile Telecommunications (IMT)” are addressed. The objective of
this Recommendation from the outset was to establish the vision for IMT
for 2020 and beyond, by describing potential user and application trends,
growth in traffic, technological trends and spectrum implications, and by
providing guidelines on the framework and the capabilities for IMT for 2020
and beyond. In particular, WP 5D provides a detailed time-line for the stan-
dardization process1: “in the 2016-2017 time-frame, WP 5D will define in
detail the performance requirements, evaluation criteria and methodology for
the assessment of new IMT radio interface. It is anticipated that the time-
frame for proposals will be focused in 2018. In 2018-2020 the evaluation
by independent external evaluation groups and definition of the new radio
interfaces to be included in IMT-2020 will take place. Working Party 5D
also plans to hold a workshop in late 2017 that will allow for an explana-
tion and discussion on performance requirements and evaluation criteria and
methodology for candidate technologies for IMT-2020 that has been developed
by WP 5D, as well as to provide an opportunity for presentations by poten-
tial proponents for IMT-2020 in an informal setting.” The whole process is
planned to be completed in 2020 when a draft new ITU-R Recommendation
with detailed specifications for the new radio interfaces will be submitted for
approval within ITU-R.

1.1.2 The IMT-2020 Standard

The objective of IMT-2020 is supporting and expand various usage scenarios
and applications that will continue beyond the current IMT. Moreover, a
wide variety of key requirements would be tightly coupled with these different

1https://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2020/Pages/

default.aspx
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usage scenarios and applications for IMT-2020. Figure 1.1 illustrates some
examples of identified usage scenarios for IMT-2020.

Figure 1.1: Usage Scenario for IMT 2020[1]

Taking Figure 1.1 as a reference, threes are the major usage scenarios,
that include enhanced Mobile BroadBand (eMBB), Ultra-reliable and Low
Latency Communications (URLLC) and massive Machine Type Communi-
cations (mMTC). Many applications are in-between these three application
areas.

• The eMBB applications are centered on the human needs to get access
to multimedia content, services and data.

• URLLC applications have stringent requirements for capabilities such
as latency and availability, thus supporting mission critical services
such like autonomous vehicles and drone applications.

• mMTC applications represent the massive deployment of IoT applica-
tions, characterized by a large number of connected devices, typically
transmitting relatively low volumes of low priority data. Enabled by
low-cost, long life modules with sensors and connectivity, massive IoT
applications will range from asset tracking, smart cities, monitoring of
utilities and vital infrastructure.
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1.2 5G Key Capabilities at a Glance

The envisaged usage scenarios and applications require a robust and flexible
network infrastructure that could support such a heterogeneous ecosystem
of applications. 5G key capabilities are summarized in Figure 1.2, where the
enhancements with respect to LTE (in the ITU jargon, “IMT-advanced”) are
underlined.

Figure 1.2: Enhancement of key capabilities from IMT-Advanced to IMT-
2020[1]

In the vision of IMT-2020, eight are the parameters characterizing the
capabilities of 5G Networks (Figure 1.2):

1. Peak data rate, defined as the maximum achievable data rate under
ideal conditions per user/device (in Gbit/s). The peak data rate of
IMT-2020 for eMBB is expected to reach 10 Gbit/s; for wide area cov-
erage cases (e.g., in urban and sub-urban areas, 100Mbit/s); 1Gbit/s
in hotspot cases (e.g., indoor).

2. User experienced data rate, defined as the achievable data rate
that is available ubiquitously across the coverage area to a mobile
user/device (in Mbit/s or Gbit/s). The achievable increase in efficiency
from IMT-Advanced will vary between scenarios and could be higher
in some scenarios (for example five times subject to further research).
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IMT-2020 is expected to support 10Mbit/s/m2 area traffic capacity,
for example in hot spots.

3. Latency, defined as the contribution by the radio network to the time
when the source sends a packet to the time when the destination re-
ceives it (in ms). IMT-2020 will be able to provide 1ms over-the-air
latency, capable of supporting services with very low latency require-
ments.

4. Mobility, defined as the maximum speed at which a seamless transfer
between radio nodes can be achieved (in km/h). IMT-2020 is expected
to enable high mobility up to 500km/h with acceptable quality. This
is envisioned in particular for high speed trains.

5. Connection density, defined as the total number of connected and/or
accessible devices per unit area (per km2). IMT-2020 is expected to
support a connection density of up to 106/km2, for example in massive
machine type communication scenarios.

6. Energy efficiency, whose definition is two-fold: (i) on the network
side, energy efficiency refers to the quantity of information bits trans-
mitted to/ received from users, per unit of energy consumption of the
radio access network (RAN) (in bit/Joule); (ii) on the device side, en-
ergy efficiency refers to quantity of information bits per unit of energy
consumption of the communication module (in bit/Joule). The energy
consumption for the radio access network of IMT-2020 should not be
greater than IMT networks deployed today, while delivering the en-
hanced capabilities. The network energy efficiency should therefore be
improved by a factor at least as great as the envisaged traffic capacity
increase of IMT-2020 relative to IMT-Advanced for eMBB.

7. Spectrum efficiency, defined as the average data throughput per unit
of spectrum resource and per cell (bit/s/Hz). The spectrum efficiency
is expected to be three times higher compared to IMT-Advanced for
eMBB. The achievable increase in efficiency from IMT-Advanced will
vary between scenarios and could be higher in some scenarios (for ex-
ample five times subject to further research). The minimum require-
ments for peak spectral efficiency are expected to reach 30bit/s/Hz
(downlink) and 15bit/s/Hz (uplink).

8. Area traffic capacity, defined as the total traffic throughput served
per geographic area (in Mbit/s/m2). IMT-2020 is expected to support
a area traffic capacity up to 10Mbit/s/m2.
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1.3 5G Radio Access Network

This section aims to provide an overview of the technological aspects that 5G
New Radio features, along with LTE radio device enhancements to meet New
Radio expectations. The high demanding requirements described in section
1.2 need to be supported by a more sophisticated radio equipment that could
operate in every portion of the spectrum, from the lowest frequencies (below
1GHz) to the highest (above 6GHz).

1.3.1 5G New Radio

The new 5G Radio Access Technology (RAT) is referred to as New Radio
(NR).

There are a number of features that are unique for 5G radio access com-
pared to the previous generations, such as a wide range of carrier frequen-
cies and deployment options, diverse use cases with very different user re-
quirements, small-size base stations, self-backhaul, massive multiple-input
multiple-output (mMIMO), and large channel bandwidths. NR is intended
to be optimized for performance without considering backward compatibility
in the sense that LTE user equipments (UEs) do not need to be able to camp
on an NR carrier.

As well described and summarized by A. A. Zaidi et al in [4], these require-
ments ask for a flexible waveform, numerology, and frame structure. NR has
to support applications with very low latency, which needs very short sub-
frames. NR should support both access and backhaul links by dynamically
sharing the spectrum, enabling the full potential of multi-antenna technology.
The number of antenna elements may vary, from a relatively small number of
antenna elements in LTE-like deployments to many hundreds in NR, where a
large number of active or individually steerable antenna elements are used for
beamforming, single-user (SU-MIMO) and multi-user MIMO (MU-MIMO).
5G NR will feature a novel TDD/FDD design to deliver latency in the ms
range and it will maintain backward compatibility with LTE Radio. NR
is envisioned to mainly be based on time-division duplex (TDD) at high
frequencies (above 6GHz) and mainly on frequency-division duplex (FDD)
at lower frequencies. At very high frequencies, base stations can be small
(low-cost) access nodes, putting similar requirements in donwlink (DL) as in
uplink (UL) (transmit power, hardware impairments, etc.). In March 2016,
3GPP agreed to study various features of NR assuming orthogonal frequency-
division multiplexing (OFDM), currently used in LTE for DL transmission.

5G will make the wider usage of the spectrum than ever, enabling different
applications by exploiting both low/mid/high bands and either portions of
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licensed/shared/unlicensed spectrum. Such a wide exploitation of the spec-
trum will open new debates on spectrum allocation on a global scale. Here,
I provide a brief classification of applications by spectrum range:

• Low-bands (below 1GHz): for IoT services and extension of mobile
broadband coverage (suburban and rural areas).

• Mid-bands (1GHz to 6GHz): a reasonable mixture of coverage and
capacity for 5G services, that will be used for initial 5G deployments.

• High-bands (above 6GHz): mmWave spectrum. Even with poor pen-
etration (in the order of mm), a very large bandwidth can be allocated
to mobile communications, thus enabling enhanced mobile broadband
applications.

1.3.2 LTE Radio Evolution towards 5G

LTE is also expected to evolve to capture a part of the 5G requirements. A
tight integration of NR and LTE is envisioned in order to efficiently aggregate
NR and LTE traffic. In view of this, 3GPP Release 13 has introduced some
enhancements to LTE radio in order to ease the migration to 5G NR salient
technological enhancements, that are summarized below:

• Active Antenna Systems (AAS) and associated Self Organized Net-
work techniques. AAS systems can be considered as the basis for the
so-called Full Dimensional MIMO (FD-MIMO) systems. An active an-
tenna (AA) is a MIMO antenna that has active electronic components.
The beam of an AA, driven by software, can be adjusted according to
the capacity and coverage targets of the network. Beamforming is an
AAS feature that allows the network service to adapt to changing sit-
uations in the cellular network, providing a more efficient way to serve
parallel users.

• Elevation Beamforming and Full-Dimensional MIMO (FD-MIMO). The
MIMO enhancements in 3GPP makes possible to smartly adapt trans-
mission both vertically and horizontally by utilizing a steerable two-
dimensional antenna array. FD-MIMO simultaneously supports 3D
(elevation & azimuth) beamforming and more than 10 UEs Multi User
(MU)-MIMO.

• Coordinated Multi-Point transmission and reception (CoMP). CoMP
refers to a wide range of different techniques with the common trait
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of dynamic coordination of transmission and/or reception at multiple
geographically separated sites. Thus, in a distributed approach envi-
ronment with no central coordinating nodes, CoMP is addressed to
exchange control information among nodes in a coordinated set. The
purpose of the coordination among cells is mitigating and then exploit-
ing inter-cell interference, in order to enhance system performance and
end-user service quality.

• Licensed Assisted Access (LAA) using LTE. This feature leverages the
5GHz unlicensed band in combination with licensed spectrum, to de-
liver a performance boost for mobile device users. As a matter of fact,
5G will move upward relying on LTE cross-carrier control mechanism.

1.3.3 Target Deployment Scenarios

Differently from previous generations, that demanded for both access and
core network of the same generation, with 5G it is possible to integrate
elements of different generations in different configuration, namely Non-
Standalone and Standalone scenarios, whose salient features are outlined
below:

• Non-Standalone (NSA), features multiple radio access technologies
to provide radio access: the NR radio cells are combined with LTE radio
cells using dual connectivity. Depending on the choice of operator, the
core network may be either EPC or 5G Core. This scenario requires
tight interworking with the LTE RAN.

• In Standalone (SA), only one radio access technology is used: NR/evolved
LTE radio cells are exploited for both Control Plane and User Plane.
This option may be deployed as an independent network using normal
inter-generation handover between LTE and 5G for service continuity.
SA will open the door to greenfield operators that might want to deploy
the network from scratch.

Overview of NSA and SA Options

On December 2017, within Release 15, the first 5G NR specifications has
been approved. Among Non-Standalone / Standalone configurations, 3GPP
has identified a set of target deployment scenarios that network operators
should support in the short, medium-long term to ease the migration to 5G
networks.
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Figure 1.3: Taxonomy of NSA Options [2].

Taking Figure 1.3 as a reference, dotted lines represent Control Plane
(CP) signaling, while continuous lines represent User Plane (UP) connections.
New Radio terminology has been introduced in the 3GPP working group
RAN3-NR22, and here a brief summary of this new lexicon is provided:

• NGC: Next Generation Core, namely the 5G Core (5GC)

• NG-RAN: a Radio Network which supports either NR or E-UTRA or
both, interfacing with Next Generation Core (NGC). The NG-RAN
consists of a set of gNBs connected to the 5GC through the NG

• NR gNB: equivalent of LTE eNB in 5G NR. A gNB can support FDD
mode, TDD mode or dual mode operation

• eLTE eNB: evolution of eNB that supports connectivity to EPC and
NGC

In this classification, the concepts of Master Node (MN) and Secondary
Node (SN) are fundamental. MN establishes a direct CP connection with the
Core (either be EPC or 5GC), while SN establishes a CP connection with
the Core Network only through MN.

• Option 3: Non-standalone LTE and NR under EPC. The E-UTRAN
is extended to allow compatible devices to use Dual Connectivity to
combine LTE and NR radio access. Standard term for Option 3 is EN-
DC, that stands for “E-UTRAN New Radio-Dual Connectivity” [5].

2Revision of R2-172641
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One of the key advantages of this option is that it only requires the
development of specifications of NR as non-standalone access as part
of E-UTRAN connected to EPC rather than the specification of the
full 5G system.

• Option 2: Standalone NR under 5GC. SA Option 2 envisages the de-
ployment of both NR gNB based NG-RAN as a new radio access and
5GC as new core along with new features on LTE eNB based E-UTRAN
to support inter-RAT mobility. Option 2 requires the device to support
both a radio front end capable of receiving and transmitting data over
NR as well as new procedures for the 5GC. The UE supports com-
plete set of functionalities for CP and UP and for all interfaces to the
network.

• Option 7: Non-standalone LTE and NR under 5GC. LTE RAN needs
upgrade to connect to 5GC and more LTE base stations (eNode B)
may need to be upgraded to interwork with NR. This option allows
operators to continue to selectively deploy NR only where needed. As
LTE is already offered in wide-area coverage in initial condition (NSA
Option 3), the network can still leverage the wide-area coverage LTE
network and deploy NR only when intended use case requires it.

• Option 4: Non-standalone NR and LTE under 5GC. LTE RAN needs
upgrade to connect to 5GC and more LTE base stations (eNodeB) may
need to be upgraded to interwork with NR. This option allows operators
to continue to selectively deploy NR only where needed. However,
compared with Option 7, this path may require the deployment of a
larger number of more NR gNB since NR acts a MN, with a LTE SN,
in the area where Option 4 is to be used.

Short-term Possible Migration Paths

Adopting the view of GSMA [6], a network operator may follow alternative
migration paths towards the commercial 5G deployment, for the three-years
view of 2019/2021.

• From LTE to NSA Option 3: Besides the accelerated time to market, as
the NR will augment the existing capability of the LTE radio network,
this option allows flexible “on demand” deployment where capacity is
needed using the same or different vendors for LTE and NR. Further-
more, this option is going to be maintained in future releases of 3GPP
(beyond Release 15) and therefore can be used in longer-term, even
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if other options are deployed in parallel. The capability of deploying
NR while anchoring the communication to the EPC network offers the
opportunity of making optimal use of the spectrum above 6GHz where
operators will have available the large bandwidths necessary to deliver
the high throughput in hotspots but that cannot be provided easily
over large areas due to the fast signal attenuation.

• From NSA Option 3 to SA Option 2. The operator might migrate
from having only NSA Option 3 to adding SA Option 2 with inter-RAT
mobility mechanism used to move devices between 5G NSA LTE plus
NR under EPC coverage, and 5G NR under 5GC coverage. Whereas
the network was not able to leverage the advantages of 5GC in NSA
Option 3, in this scenario the full advantage of 5G end-to-end network
capabilities can be delivered to the users. This path enables network
operators to address all use cases envisioned by ITU in IMT-2020.

• From LTE to SA Option 2. The operator might migrate directly to
the SA Option 2 with inter-RAT mobility mechanisms used to move
devices between 4G LTE under EPC coverage and 5G NR under 5GC
coverage. One of the key benefit of this option is that SA architecture
can take full advantage of 5G end-to-end network capabilities supported
by NR and 5GC, providing customized service, especially to vertical
industry, in an effective and efficient way. New features, including
service-based architecture, and end-to-end Network Slicing (that will
be later discussed), can be enabled according to specific requirement of
each service, thus providing a customized and superior user experience.

1.4 5G System Architecture

The 5GC should be flexible enough to support the heterogeneous use cases
described before. Recent advances in mobile cloud computing infrastructure
allowed scalable, on-demand access to a vast pool of configurable resources
like processing speed, storage, networking and integrated applications over
the Internet. This centralized operational model reduces cost, increases avail-
ability, disconnects services from the existing technology and offers flexibility
in terms of provisioning. This is a major transformation for operators as they
will change how they operate and deliver services. A cloud-native architec-
ture allows the software to evolve independently from the hardware. This
reflects in moving some of the key resiliency and failover mechanism to the
cloud, thus supporting a flexible information models based on micro-services.
Differently from previous generations, in such a software-oriented framework,
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the modularized functions can be invoked using a standard API. Three are
the main architectural enablers and components that will be crucial in trans-
forming the networks to a completely cloud-based architecture:

• Cloud Radio Access Network (C-RAN), a novel mobile network archi-
tecture designed to address the challenges operators face while trying
to support growing end-user numbers.

• Software Defined Networking (SDN) is an architectural framework for
creating intelligent, flexible programmable networks by decoupling con-
trol and user forwarding functions.

• Network Function Virtualization (NFV) renders network functions once
tied to specific hardware appliances to run on industry-standard infras-
tructure operating in any data center.

Main 5GC specification has been deferred until Phase 2 of Release 16, and
they are currently under definitions. However, 3GPP addressed to LTE some
of the key enhancements to facilitate network operators to migrate to 5GC,
like Control and User Plane Separation (CUPS) of the EPC [7]-[8]. CUPS en-
ables flexible network deployment and operation, by the independent scaling
between CP/UP. CUPS allows for reducing latency on application services,
as well as handling the increase of data traffic and it brings application host-
ing from centralized data centers down to network edge, closer to consumer
and data generated by applications.

Since this shift in paradigm from traditional telecom infrastructure to IT
service is crucial, and it could be cumbersome to implement, 3GPP has de-
fined two different representations of the 5G Core itself, the so-called “Point-
to-point Architecture” (telecom-oriented) and the “Service Based Architec-
ture” (IT-oriented), both detailed in the 3GPP System Architecture reference
[9], and outlined in the next section.

1.4.1 Reference-Point Representation

This architecture diagram shows the interactions that exist between Network
Functions (NF). It is the well-established “3GPP-like” representation that
helps to inspect the differences and the similarities with the EPC.
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Figure 1.4: Non-Roaming 5G System Architecture in reference point repre-
sentation [9]

The main 5G Core NFs are the following:

• Access Management Function (AMF). It manages the session control
and the mobility (part of the MME functionalities).

• Session Management Function (SMF). It sets up and manages sessions
according to network policy (part of the MME/SGW functionalities).

• User Plane Function (UPF). It can be deployed in various configura-
tions and locations according to the service type (part of the SGW/PGW
functionalities).

• Policy Control Function (PCF). It provides a policy framework for
incorporating network slicing, roaming and mobility management (part
of the PCRF functionalities).

• Unified Data Management (UDM). It supports the access authorization
and subscription management (part of the HSS functionalities).

• Authentication Server Function (AUSF). It acts as an authentication
server (part of the HSS functionalities).

• Network Slice Selection Function (NSSF). UE performs network as-
sisted slice selection based on policy, via AMF. NSSF has not a LTE
counterpart: I discuss later the concept of Network Slicing.
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This representation shows the great complexity of adding new network
elements/interfaces. The operators often require to reconfigure multiple ad-
jacent interfaces. Thus, over the time, Reference-Point representation will
be substituted by a Service Based model, using reusable APIs between any
CP/UP functions. Existing mobile networks cannot customize control func-
tions for a specific service type, like SBA does by ensuring short time to
market for new services and greater flexibility for system updates.

1.4.2 Service Based Architecture

This representation provides a set of logical control function for diversified
services. It illustrates how network functions within the CP enables other au-
thorized NF to access their services. Service-based interfaces are used within
the CP, with the purpose of simplifying the development and deployment of
new services.

Figure 1.5: 5G System Architecture [9]

In this representation, additional NFs appear:

• Network Exposure Function (NEF). It provides a mean to securely
expose the services and the capabilities provided by 3GPP NFs. Ex-
amples would include third party internal exposure or re-exposure.

• Network Repository Function (NRF). It supports the service discovery
function. As such, it is able to receive NF discovery request from a NF
instance and it can provide information about discovered NF instances.
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1.4.3 The Concept of Network Slicing

Network Slicing technology is expected to be one of the game changer of 5G
Networks. A network slice is a logical network serving a defined business
purposes or customer, consisted of all required network resources configured
together. A network slice is created, changed and removed by UE via AMF.
As per 3GPP definition: [10] “Network slicing allows the operator to provide
customized networks. For example, there can be different requirements on
functionality (e.g., priority, charging, policy control, security, and mobility),
differences in performance requirements (e.g., latency, mobility, availabil-
ity, reliability and data rates), or they can serve only specific users (e.g.,
Multimedia Priority Service users, Public Safety users, corporate customers,
roamers, or hosting an Mobile Virtual Network Operator). A network slice
can provide the functionality of a complete network, including radio access
network functions and core network functions (e.g., potentially from different
vendors). One network can support one or several network slices.”
Network slice is not a new concept in the 3GPP specifications: in Release
13, the “DECOR” allowed the UE to connect to a Dedicated Core Network
(DCN), based upon the parameter “UE usage type”. In Release 14, under
the evolved DECOR (eDECOR) framework, the UE assisted RAN in Access
Stratum signaling towards the eNB during the EPC registration. However,
both DECOR and eDECOR showed a limit: the UE can connect to only
one DCN, that could not be optimized to multiple services. As a matter
of fact, the slicing technology allows the operators to deploy multiple and
independent end-to-end networks over the same network infrastructure.

1.4.4 The Network Data Analytics Function

There is another important function in 5GC, the Network Data Analytics
Function (NWDAF) whose connections with other NFs, e.g. PCF, are not
depicted in the reference point and service-based architecture diagrams. The
NWDAF [3] has been introduced in the 5G System Architecture in 3GPP#
SA2119 meeting, on February 2017. It is expected that will play a crucial
role in NFs provisioning and management. As a matter of fact, NWDAF
is responsible for transferring network analysis information when requested
from any Network Functions, as depicted in Figure 1.6.

Analytics information are either statistical information of the past events,
or predictive information. Different NWDAF instances may be present in the
5GC, with possible specializations per categories of analytics, and its capa-
bilities are described in the NWDAF profile stored in the NRF. For instance,
NWDAF could provide network slice level data analytics (e.g., load level in-
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Figure 1.6: Data Collection architecture from any NF [3]

formation) to PCF and NSSF. PCF uses that data in its policy decisions,
and NSSF may use the load level information provided by NWDAF for slice
selection.

1.5 5G Emerging Communications

5G will open to new communications paradigms, that can be broadly classi-
fied in two groups: the Machine-to-Machine Communications and its exten-
sion, the Vehicle-to-Anything Communications.

1.5.1 Machine-to-Machine Communications

5G should ensure direct machine-to-machine communication (M2M for short)
without infrastructures such as Access Points or Base Stations. This will be
possible by optimizing the resource control policies, with more degrees of free-
dom in terms of mode selection, power control, and resource allocation. M2M
communication will exploit portion of the “high-bands” spectrum, communi-
cations between devices will be ran in close vicinity (mmWave wavelength).

1.5.2 Vehicle-to-Anything Communications

It is expected that 5G will be used to enable all forms of extra vehicle commu-
nication, initially to provide more sophisticated advanced driver assistance
systems and eventually leading to fully autonomous self-driving vehicles. In
particular:

• V2I - Vehicle-to-Infrastructure: e.g. traffic signal, timing/priority

• V2N - Vehicle-to-Network: e.g. real time traffic/routing, cloud services

• V2P - Vehicle-to-Pedestrian: e.g. safety alerts to pedestrian, bicyclists

• V2V Vehicle-to-Vehicle: e.g. collision avoidance, safety systems
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Using 5G technology to develop such a rich ecosystem scenarios will help
to reduce costs and investment into infrastructure, which would be required
by alternative technologies “dedicated” to just automotive applications.



Chapter 2

Quality of Experience towards
5G Networks

After the description of 5G architectural concepts and framework, in this
chapter I am going to introduce the definition of Quality of Experience (QoE)
and of its technological counterpart, the so-called Quality of Service (QoS).
Then, I will underline the elements that are natively designed in 5G Networks
to address and satisfy the user experience needs. Finally, I will shed light on
the technological and architectural challenges 5G will have to deal with, in
order to meet such high users’ demands and expectations.

2.1 Quality of Experience and Quality of Ser-

vice

There are different definitions of QoE across ITU, ETSI and others organi-
zations’ deliverables. For instance, ETSI [11] defines QoE as:

“A measure of user performance based on both objective and subjective
psychological measures of using an Information and Communications

Technology (ICT) service or product.”

Whereas, in the Recommendation P.10/G.100 [12] ITU adopted the Qua-
linet definition [13]:

“The degree of delight or annoyance of the user of an application or service”

The ITU Recommendation [12] specifies in a note that “Recognizing on-
going research on this topic, this is a working definition which is expected
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to evolve for some time”, thus giving an idea of the complex research fields
underneath this topic.

The technical report [11] enlightens how, in the last two decades, the use
of ICT had extended from the workplace to the home and for applications
that support leisure and social activities in addition to work. Consequently,
the concerns of human-computer interaction have evolved from a focus on
effectiveness and efficiency to user experience factors such as entertainment,
engagement and the appeal of using and owning ICT. Whereas most of the
work on user experience is conducted in relation to computer applications,
there is also the need to address the user-centered development of telecom-
munication services. Telecommunication services are similar to computer ap-
plications since they require users to interact with devices and applications,
with hardware and software interfaces. In addition, however, with telecom-
munication services, users have the specific intention to communicate with
other people at distance. This communication is either direct to other peo-
ple through technology or involves interaction with a machine rather than
with a person. During either person-to-person (two-way) communication or
person-to-machine (one-way) communication, the users will interact with a
service that will have properties that may vary and that may have an ef-
fect on users behavior. For example, a delay between the arrival of audio
and video information may lead to lack of lip-synchrony of the speaker as
perceived by a listener. Properties such as audio-video asynchrony, trans-
mission delay, video frame-rate and resolution have the potential to help or
hinder communication. These technical properties are under the scope of the
so-called Quality of Service (QoS).

Among service providers, network operators and equipment manufactur-
ers, QoS has been in use for a long time and it has reached a high level of
common understanding. QoS has its strongest reference from the ITU [14],
where it has been defined as:

“Totality of characteristics of a telecommunications service that bear on its
ability to satisfy stated and implied needs of the user of the service.”

Although ITU refers to user satisfaction, the definition of QoS is well
established and it is often used to determine the technical parameters of
telecommunication applications such as network delay and packet loss. In
addition to that, the focus on user satisfaction is rather limited because
it is only one of many measures of user behavior with a communication
service. For example, other measures include the time taken to perform a
communication task (a measure of efficiency) and the accuracy with which a
task is completed (a measure of effectiveness).
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2.2 Benefits of QoE Data

Whereas the definition of QoS covers technical performance (i.e., it is mainly
technology-centered), QoE is based on end-user behavior (i.e., it is user-
centered). Working on QoS is critical, but not sufficient, for measuring user
experience: QoE and QoS are distinct and both are important and should
be interrelated. To this regard, ETSI Technical Report [11] identifies some
essential factors related to the importance of collecting QoE-data:

• To prevent churn. Although developing a product or service that has
instant appeal may increase the probability of a purchase and use, the
profitability and image of the supplier can be predicted to be affected
if subsequently the product or service does not meet up to expectation.

• To prevent product or service rejections. There is a history of products
and services that have been rejected from the market despite that mar-
keting departments have predicted success and without conclusively
being able to explain the rejection. One important reason for rejection
is that the QoE has been too low in the usage situation. Some of these
rejections would have be foreseen, understood and avoided if QoE data
had been applied or user tests been performed before product launches.

• To optimize a product or service. Within technical teams working with
products, there may be little knowledge of how a certain set of technical
parameters will be experienced by the end users. A particularly im-
portant situation is when trade-off decisions are required, such as with
packet loss versus delay for speech services, frame-rate versus resolu-
tion for audio-visual services and bitrate versus latency for multimedia
broadband services.

• By expressing QoE as a function of QoS. It is argued that the focus of
QoE should be extended to include how end-users experience the use
of a specific service, terminal or network. It is also argued that QoE
data should succeed where possible, to combine knowledge of both user
experience and technical parameter values, for example, to provide a
statement about QoE with a particular communication service with
known levels of QoS.
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2.3 Classification of Methods for

Quality Evaluations

Since it is of particular difficulty defining and assessing Quality of Experi-
ence, there are several methods to measure it. Choosing one rather than
other is a matter of tradeoffs, depending also on several factors, like the ex-
perimental conditions. I here adopt the classification of U. Engelke and H.J.
Zepernick that reported in their work [15] the classification of methodologies
used to measure QoE, especially in the context of multimedia applications
(e.g., voice- and video-streaming).

Subjective Methods

The evaluation of quality may be divided into two classes, subjective and
objective methods. Intuitively, one can say that the best judge of quality is
the human himself. That is why subjective methods are said to be the most
precise measures of perceptual quality and to date subjective experiments
are the only widely recognized method of judging perceived quality [16]. In
these experiments humans are involved, having to vote for the quality of
a medium in a controlled test environment. This can be done by simply
providing a distorted medium of which the quality has to be evaluated by
the subject. Another way is to additionally provide a reference medium,
which the subject can use to determine the relative quality of the distorted
medium. These different methods are specified for television sized pictures
by ITU-R [17] and are, respectively, referred to as single stimulus continuous
quality evaluation (SSCQE)[18] and double stimulus continuous quality-scale
(DSCQS)[18]. Similar, for multimedia applications absolute category rating
(ACR) and degradation category rating (DCR) are recommended by ITU-T
in [19] and [20]. Common to all procedures is the pooling of the votes into
a Mean Opinion Score (MOS) [20], which provides a measure of subjective
quality on the media in the given test set.

Objective Methods: Psychophysical and Engineering
Approach

Two general approaches have been followed in designing objective quality
metrics. They are often referred to as the psychophysical approach and the
engineering approach. For the former, this can include modeling of contrast
and orientation sensitivity, spatial and temporal masking effects, frequency
selectivity and color perception. Due to the complexity of the human visual
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and perceptual system, these models, and their metrics, can become very
complex and computationally expensive. On the other hand, they usually
correlate very well with human perception and are usable in a wide range
of applications. Methods following the engineering approach are primarily
based on image/sound analysis and feature extraction, which also takes into
account aspects of the human visual and perceptual system. The methods
range from simple, numerical measures [21] to more complex extraction and
analysis algorithms. The extracted features and artifacts can be of differ-
ent kinds such as spatial and temporal information, codec parameters, or
content classifiers. Simple methods are based on measuring single features
whereas more complex algorithms combine various measures in a meaningful
way. In any case, the metric outcomes can be connected to human visual and
ear perception by relating them to MOS obtained in subjective experiments.
Objective quality measurements can be further categorized into either “in-
trusive” or “non-intrusive” type, depending on whether they require some
reference signal or not. Intrusive methods cannot be implemented in a real
communications environment, because the reference signal is not available at
the receiver side.

Full-Reference, Reduced-Reference and No-Reference
Methods

Finally, one can classify quality metrics regarding their dependency on avail-
able reference information at the quality assessment equipment. The different
methods that will be discussed are shown in Figure 2.1.

In general, it is no problem for the human visual and perceptual system
to judge the quality of a distorted medium without having any reference
available. However, it is a highly complex task for a machine. Metrics dealing
with the approach of judging perceptual quality only based on the distorted
medium are called no-reference or “blind” methods (Figure 2.1(a)). These
approaches are easily applicable in a communication system as they reference
quality prediction on the received data/media only. The task of no-reference
quality assessment is very complex as no information about the original,
undistorted medium is available. Therewith, a no-reference method is an
absolute measure of features and properties in the distorted medium, which
have to be related to perceived quality. The no-reference standard is the
ITU E-Model, defined in the ITU-T Recommendation G.107 [22]. In order
to quantify whether a change in quality between a reference and distorted
medium has occurred, some degree of knowledge about the original medium
would ease the related evaluation compared to using an no-reference method.
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(a) No Reference method

(b) Reduced Reference method

(c) Full Reference method

Figure 2.1: Quality Assessment methods

This can be achieved by reduced-reference (RR) methods (Figure 2.1(b)).
Here, only a set of features from the reference medium is needed at the quality
evaluation equipment instead of the whole medium itself. This set of features
can then be transmitted within the medium or over an additional channel.
At the receiver, the features can then be extracted from the medium and
used along with the reference features for quality prediction.

In all the cases where the reference is available at the evaluation equip-
ment, one can use a full-reference (FR) method (Figure 2.1(c)). These meth-
ods use the reference to predict the quality degradation of the distorted
medium. In general, this kind of approach could facilitate the process and
it provides superior quality prediction performance. The existing metrics
following the psychophysical approach are FR methods. PESQ [23] and
POLQA [24] are the most used FR standard for speech quality assessment.
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2.4 Elements of QoE in 5G Network-Design

As stated by C. Tselios and G. Tsolis in [25], the forthcoming advent of
5G networks will bring an ecosystem of applications that is expecting to
improve most of the current characteristics of the legacy cellular systems,
with increased levels of user experience. For this reason, elements of QoE
have been taken under consideration by 3GPP since the early days of network
design. The most prominent ones are summarized in this section.

2.4.1 Seamless Connectivity

5G UEs need to support a huge variety of both hardware and software tech-
nologies to provide consistent and uninterrupted service with a superior qual-
ity. Devices should be designed to face unpredictable issues related to channel
conditions, high density of nodes per cell and the frequent needs of spectrum
resources. From network operators side, the seamless connectivity could
be achieved by a self-healing network architecture able to locate additional
nodes, regardless of the failure reason, by tuning the operating channels over
neighboring cells and by restoring the end users connectivity. The enhanced
QoE-aware monitoring mechanism provided by NWDAF might prove to be
useful on identifying compromised components, proactively redirect traffic
and issue an alert towards the central network monitoring entity or simply
save the particular report to the UDM, the integrated database function in
5GC.

2.4.2 Customized Service Distribution

In a user-centric communication network, NSSF is expected to correlate all
the available services with a pre-existing or dynamically generated user pro-
file. Especially when business models are involved, delivering personalized
content through Network Slices, using different network resources per session,
might be a necessity rather than a mere enhancement.

2.4.3 Neat Operability

5G network has been designed from its inception to deliver an improved level
of services while preventing end-users being aware of functionality, error han-
dling, resource allocation and traffic management. Interactivity between the
user and the network should be limited to the absolute minimum. NWDAF,
along with NSSF and PCF could provide quality feedback to the network
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itself, which will allow users to get benefits from a QoE-aware network. Ob-
viously, data collection must be conducted in a fully automated manner, thus
avoiding any level of annoyance to the end-user.

2.4.4 Energy Efficiency

Energy efficiency is amongst the areas that will undergo major redesign for
meeting the high requirements of 5G. Several services will be moved into the
network operators’ domain, rather than maintaining them in the UEs - an
approach called “edge offloading”. With edge offloading, uplink and downlink
decouple, whereas UE will be able of utilizing channels from different Mobile
Broadband Systems. This will likely increase end-user satisfaction, through
extended UE’s battery life.

2.4.5 Virtualized Ecosystem

Recent advances in mobile cloud computing infrastructure allow scalable, on-
demand access to a vast pool of configurable resources like processing speed,
storage, networking and integrated applications over the Internet. This cen-
tralized operational model might improve end-users QoE as it reduces cost,
increases availability, decouples services from the existing technology and
offers flexibility in terms of provisioning.

2.5 Challenges for QoE Management in 5G

In this section I am going to summarize the salient aspects that will bring
new challenges to QoE management. These include explosive growth of data
traffic, massive increase in the number of interconnected devices, rising of
new services and application scenarios [26].

2.5.1 Heterogeneous Radio Coverage Scenarios

In 5G, typical scenarios include communications when people are at work,
when people are at home or entertainment events, and when people are on the
move [27]. A seamless QoE is expected in all types of radio coverage scenarios,
including in buildings, dense metropolitan areas, rural areas, stadiums, sub-
ways and highways. These scenarios, which are characterized by ultra-high
traffic volume density, ultra-high mobility, are challenging for QoE manage-
ment in 5G Networks. For instance, in a high-speed scenario, maintaining
a satisfactory level of service continuity is of great importance. Similarly,
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designing an appropriate mobility management strategy in the ultra-dense
small cells scenario is fundamental to reduce the number of handovers, which
is a key issue to improve QoE. Therefore, maintaining a consistent and ac-
ceptable user experience in such heterogeneous network settings requires a
tight coordination of the various QoE control strategies.

2.5.2 Emerging Applications

With the rapid development of computer hardware and software as well as
the standardization of Internet technology, intelligent mobile terminals and
smart wearable terminals have various forms (i.e., watches, glasses and sports
wristbands, just to name a few). At the same time, mobile services, which
are based on smart terminals, are no longer limited to cell phones, text mes-
saging, and video services; rather, they play a key role in medical monitoring,
interactive games, information exchange, and other emerging verticals. Since
most existing QoE models focus on VoIP, video-streaming and HTTP ser-
vices, the new service characteristics and user demands should be expanded
to setup a proper QoE model for the above-mentioned and recently developed
applications.

2.5.3 Energy Demands

As stated before, energy efficiency is another area that will experience major
redesign for meeting the high requirements of 5G Networks, at it could have a
great impact on the overall QoE. With new attractive applications, users will
use their equipment and mobile phone, and more frequently. Consequently,
the terminal should have a long enough battery life to ensure reliable service
even with more extensive usage, otherwise QoE may drop significantly. As
noticed by Andrews et al. in [29], continuous increase of power consump-
tion is not viable from logistical, cost and battery-technology perspective.
Rapid increase of network density is directly linked to elevated energy de-
mands on the radio side, while the necessity of UE for seamless connectivity
and expected support of a broad spectrum of new applications, software and
utilities increases the overall computational cost and diminishes the average
battery duration per charge. M2M communications (under the Internet of
Things umbrella) are another areas that can be considered energy-sensitive,
since wireless sensors often have limited operational capabilities due to in-
efficient batteries. Furthermore, the introduction of NWDAF, a QoE-aware
mechanism able to obtain network datasets in a real-time way, as well as
to utilize them in proactive network management, will add significant end-
to-end complexity. For this reason, all the network functions should extend
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energy provisioning for the expected control signaling overhead, while, at the
same time, trying to retain the standards of service to the highest possible
level.

2.5.4 Handling Massive and Heterogeneous Amount of
Data

In the 5G era, with the exponential growth in network data traffic and the
rising of heterogeneous applications, it can be easily predicted that huge
amounts of data will be generated. This trend will likely rise several chal-
lenges in the fields of QoE management. Firstly, the challenge related to
capture the subjective factors affecting QoE, for instance understanding the
users specific preferences in the massive and diversified end-users expecta-
tions scenarios. As a matter of fact, there are several subjective elements
that are needed to be taken into account, such as users mood, attention,
expectation [28]. In this regard, one should be able to answer to a series of
problems involved with these factors, like how to quantify and subsequently
normalize them, or how to capture them in real-time applications. Further-
more, assessing QoE in the era of security and privacy related to intelligent
terminals is another challenging matter. This comes along with the trend
that smart devices play a non-negligible role in 5G: these devices could col-
lect users personal information, contacts, download history, application usage
records, and system logs, thus inferring a users own personality traits and
preferences, consumption habits, and even values, in order to provide per-
sonalized QoE. Since personalized service involves the collection and analysis
of a users personal information, the greatest challenge comes from balancing
the protection of a users privacy and, at the same time, ensuring personalized
QoE management.

2.5.5 Over-The-Top (OTT) Operators and Encryption

Currently more than 60% of mobile traffic is encrypted, a trend that is rapidly
rising [29]. Mobile video will increase 11-fold by 2020, accounting for 75% per-
cent of total mobile data traffic [30]. Such rapid growth impacts on network
operators who have to thoroughly change and optimize their network. In
particular, control and maintaining satisfactory QoE for multimedia stream-
ing services is becoming a greater challenge for network operators than ever
before [31]. As early mentioned, downloading and watching video content on
mobile devices is currently a growing trend among users. To perform capacity
planning, network operators have to deeply understand and track the offered
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QoE on multimedia content delivery. Techniques such as caching, transcod-
ing, compression and radio resource allocation across users have been intro-
duced to facilitate the delivery of media-rich content. However, at the same
time, a significant number of major Internet services have begun to protect
and encrypt their traffic. Popular OTT video providers such as YouTube,
Netflix and Hulu now encrypt a large part of their video content. This trend
suggests that most of multimedia traffic will be encrypted in the next years
[32]. Network operators are blind towards services delivered by OTT, thus
compromising their ability to monitor and keep track of the overall experience
they offer to end-users [33].
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Chapter 3

VoLTE: A Promising 5G
Application

LTE and LTE-A are the latest fully standardized technologies for cellular
connectivity and their evolution poses new basis to the commercial advent
of 5G. As previously remarked, 5G standardization will deeply leverage on
the progresses of several LTE features and services, such Voice over LTE
(VoLTE). Solutions for supporting voice services in LTE have been histori-
cally built on two distinct technologies:

1. Circuit Switched Fall Back (CSFB) [34], that relies on the preexistent
GSM/UMTS networks;

2. VoLTE via IP Multimedia Subsystem (IMS), defined by GSMA in 2014
[35], where voice functionality is provided by an architectural frame-
work paired to the LTE core network.

The main advantage of VoLTE via IMS is the exploitation of LTE archi-
tecture, with no dependency upon external GSM/UMTS networks. More-
over, IMS is in charge of the interworking with legacy 2G/3G networks, thus
supporting call continuity in case of LTE coverage losses.

On the market, the road to VoLTE is partially paved: in some countries
VoLTE is experiencing widespread diffusion, whereas the adoption of such
technology is in its early stages in many other regions. Main standardization
bodies, such as 3GPP and ITU, are at the forefront to enhance and promote
VoLTE deployment. The reason is two-fold: firstly, there is an acclaimed
urgency to release the spectrum that is currently assigned to 2G/3G oper-
ators; secondly, as 5G promises to shift network paradigms from network-
centricity to user-centricity, VoLTE, assisted by wide-band and super-wide
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band codecs, is the best candidate to perform high definition calls and to
ensure high quality in a totally IP-based scenario.

In view of the forecast user-centric scenario, I leveraged on over ten million
calls collected from a real LTE commercial network to assess the quality that
a VoLTE user shall expect. In doing so, a network perspective is taken,
focusing on the effects that different values of packet loss rate and maximum
jitter have on the quality of voice calls. The analysis is centered on two
widespread speech audio codecs, namely, Adaptive Multi Rate (AMR) and
Adaptive Multirate Wide Band (AMR-WB). Several illuminating results are
provided, that can be summarized as follows:

1. on a well designed LTE network, the packet loss rate and the max-
imum jitter that voice calls experience are confined and the network
parameter that mostly influences their quality is the packet loss rate;

2. calls employing the AMR-WB codec are more robust against the packet
loss rate: not only their quality is superior, but it also exhibits a lower
standard deviation than the narrowband counterpart. Further, the
maximum jitter experienced by AMR-WB calls has a very modest effect
on quality;

3. the dependency of reconstructed voice quality on the packet loss rate is
successfully captured by an exponential law for both narrowband and
wideband speech audio codecs.

The remainder of this chapter is organized as follows. Section 3.1 gives an
overview of the existing contributions. Section 3.2 depicts the background
for this work, touching upon VoLTE architecture, currently adopted voice
codecs and objective voice quality assessment. Section 3.3 illustrates the
data collection process and then discusses the main measured characteristics
of the network under examination, as well as the results obtained in terms
of voice quality analysis.

3.1 Related Work

In the past, several analysis have been conducted to evaluate the impact
that network impairments have on the quality experienced by end-users for
different types of service, such as real-time communications and streaming
applications [36]-[37]. Within this framework, in [36] Fiedler et al. gave
a major contribution by observing that “generic Quality of Service (QoS)
problems (e.g., loss, delay, jitter, reordering) imply generic Quality of Experi-
ence (QoE) problems (e.g. glitches, artifacts, impairments of various kind)”.
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Moreover, they expressed the functional dependency of QoE by QoS through
a differential equation whose solution is an exponential function. They suc-
cessfully proved the mathematical foundation of their work for Skype-VoIP,
a popular voice-call service affected by packet loss, jitter and reordering.

The authors of [38] exploited a test framework consisting of a UMTS sim-
ulator for the air interface and an IP network simulator for the transmission
of the IP packets on the Core Network to perform real-time conversational
tests. Their results showed that the AMR and AMR-WB speech codecs
are well-suited for packet switched conversational applications. More re-
cently, the performance of commercially deployed VoLTE was characterized
by means of controlled experiments in [39]; in detail, a comparison was set
up, to confront VoLTE against circuit-switched and Skype/Google Hangouts
voice calls. In [40], the performance of VoLTE and of Circuit-Switched Fall
Back was benchmarked, pinpointing what values of call set up delay can be
achieved under various radio conditions. In [37], the dependency of the av-
erage VoLTE call duration on call quality was investigated. Finally, in [41]
the authors’ objective was to understand whether the adoption of a lower
bit rate of the AMR-WB codec could result in an augmented coverage for
VoLTE users.

Differently from previous contributions, the aim of my research is to dis-
cern the dependency of VoLTE call quality on network impairments, i.e.,
packet loss and jitter, and to grasp the influence that different codec choices,
namely, AMR or AMR-WB, have on end-to-end speech quality. These goals
are achieved inspecting a real LTE network and accordingly examining a
significantly large set of VoLTE calls: the network conditions they encoun-
tered were recorded and their quality estimated via VQmon R©. The obtained
results allow to realistically compare the behavior of AMR and WB-AMR
codecs and to shed light on VoLTE performance.

3.2 Background

This section serves different purposes. It first illustrates VoLTE architecture,
so as to understand the approach undertaken to monitor VoLTE calls. It
next summarizes the most salient features of the AMR and AMR-WB voice
codecs, that are the subject of the current investigation. It finally provides a
brief description of the tool employed for objective voice quality evaluation.
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3.2.1 VoLTE Architecture

Fig 3.1 reports the main elements of the LTE network that are involved in
a VoLTE call, along with the standard interfaces traversed by the data and
signaling flows. Within the Evolved Universal Terrestrial Radio Access Net-
work (E-UTRAN), they are: (i) the User Equipment (UE) of the subscriber
engaged in the conversation and (ii) the e-NodeB (eNB), being responsible
to allocate UEs radio resources on the uplink and downlink, as well as to
protect the UE sensitive data crossing the Uu radio interface via a suitable
encryption method.

Within the Evolved Packet Core (EPC), the Mobility Management Entity
(MME), the Serving Gateway (SGW) and the Packet Data Network Gateway
(PGW) are the next blocks encountered. The MME is the key access control
element in LTE, as it is in charge of the proper SGW choice whenever a UE
attaches to the network. The SGW forwards the user plane data packets
to an eNB and/or to a PGW, that in turn takes care of the connection
between the UE and the outside, e.g., the Internet. For a VoLTE call, the
PGW connects to the IP Multimedia Subsystem (IMS), a VoIP platform
whose main constituent elements are the Media Resource Function Processor
(MRFP) and the Media Resource Function Controller (MRFC); the former
handles the RTP packets, carrying voice samples; the latter takes care of the
associated signaling, provided by the Session Initiation Protocol (SIP). The
PGW and the IMS communicate via the Mb interface.

The E-UTRAN plus the EPC, i.e., the Evolved Packet system (EPS), are
connection oriented; hence, after the UE has connected to the network and
the authentication process has successfully come to an end, a first virtual con-
nection, called Default EPS Bearer, is activated. In this circumstance, and
differently from what happens in UMTS, the UE is assigned an IP address.
Moreover, the QoS class assigned to this first bearer, which in the LTE jargon
is the Quality Class Identifier (QCI) [42], is set equal to 9 (i.e., the lowest
priority), that corresponds to a packet loss rate equal to 10−6, and to a delay
budget of 300 ms, a combination deemed acceptable for non-Guaranteed Bit
Rate (non-GBR) applications.

When a VoLTE call is performed, two additional logical pipes have to be
opened between the UE and the network. Namely, a second Default Bearer
is activated with the IMS network: it will be responsible for carrying the SIP
signaling between the UE and the IMS. This bearer is assigned a QCI equal
to 5, i.e., the highest priority level, requiring from the network a packet loss
rate of 10−6, and a packet delay budget of 100 ms, apt for GBR traffic. The
third, dedicated bearer is finally activated for the delivery of the voice media
packets, with QCI = 1, that corresponds to the second highest priority, that
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is, a packet loss rate of 10−2 and a stringent packet delay budget of 100 ms,
fulfilling the needs of conversational voice.
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Figure 3.1: Simplified LTE and IMS network architecture

3.2.2 Codec Overview

When it comes to the voice codecs most widely adopted in current days,
it can be observed that the Adaptive Multi-Rate (AMR) [43] codec is a
narrow-band codec largely popular in GSM and UMTS. It was originally
developed by ETSI for GSM cellular systems and it was then chosen by
3GPP as a standard speech codec for UMTS, as it overcomes the limitations
of the previous standardized GSM Enhanced Full-Rate (EFR) codec [44].
The AMR encoder is able to dynamically adapt its output rate to the current
radio channel conditions, featuring eight different source rates of 4.75, 5.15,
5.9, 6.7, 7.4, 7.95, 10.2 and 12.2 kbit/s. The sampling frequency it uses is
8000 Hz and the duration of the speech frames it produces is 20 ms. Hence,
each encoded AMR speech frame carries 160 samples of the original speech.
User terminals that are VoLTE capable must be able to operate in all AMR
eight modes.

In 1999, 3GPP together with ETSI began the standardization of a wide-
band speech codec designed for WCDMA 3G and GSM systems. The process
was finalized at the beginning of 2001, when the Adaptive Multi Rate Wide-
Band codec (AMR-WB) [45] specifications were approved. Nowadays, AMR
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codec is going to be progressively replaced by its AMR-WB counterpart,
capable of operating with nine source rates of 6.6, 8.85, 12.65, 14.25, 15.85,
18.25, 19.85, 23.05 and 23.85 kbit/s. The sampling frequency in AMR-WB is
16000 Hz and each encoded speech frame carries 320 samples of the original
speech. If wide-band speech communication is offered as part of the VoLTE
service, all nine modes must be supported by the user terminal. Whereas
the AMR codec has been optimized for the voice components falling within
the [300, 3400] Hz frequency window, AMR-WB covers a wider frequency
range, spanning from 50 Hz to 7000 Hz. Such broader bandwidth increases
the intelligibility and the naturalness of the reconstructed speech, easing the
recognition of the speaker. The official ITU-T test outcomes reported in [46]
and [45] prove the substantial improvement of perceived voice quality pro-
vided by the bandwidth extension from narrowband to wideband. On the
industry rim, in 2006 T-Mobile (Deutsche Telekom AG) in partnership with
Ericsson, collected the results of subjective tests administered to a pool of
150 external research participants, with approximately 80% of them claim-
ing to have “heard distinct differences between normal and high voice quality
call”.

3.2.3 Non-intrusive Voice Quality Monitoring
and VQmon R©

Voice quality monitoring is a crucial topic for mobile operators, and as such
has recently experienced an increased interest. As already outlined in chap-
ter 2, the approaches to voice quality assessment are broadly classified in
subjective and objective, the former mandating for a pool of listeners that
rate the quality of test calls, the latter relying on automated algorithms. As
subjective tests are costly, hard to repeat and time consuming for massively
and periodically performed measurements campaigns, objective tests are by
far preferred for in-service networks. Among objective tests, the further dis-
tinction between intrusive (active) and non-intrusive (passive) solutions is in-
troduced. When intrusive strategies are employed, test calls are deliberately
injected in the network, to some extent spoiling its operating conditions; for
passive solutions however, quality is inferred indirectly, from current network
parameters such as packet loss rate, packet delay and jitter.

VQmon R© [47]-[48] is the objective, non-intrusive tool employed in this
study; it is an extension of the the E-Model [22], a well-established method
for assessing the end-to-end transmission quality of a voice call. Exactly like
for the E-Model,VQmon R© output is a number between 0 and 100, the so-
called Rating factor, R-factor for short, representing the overall call quality.
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Table 3.1: Classes Definition of Speech Transmission quality

R-factor MOS Speech Quality User Satisfaction
≥ 90 ≥ 4.34 Best Very Satisfied
≥ 80 ≥ 4.03 High Satisfied
≥ 70 ≥ 3.60 Medium Some Users Dissatisfied
≥ 60 ≥ 3.10 Low Many Users Dissatisfied
≥ 50 ≥ 2.58 Poor Nearly All Users Dissatisfied

The R-factor can be suitably mapped to the Mean Opinion Score (MOS)[20]
on the well-known 1 − 5 scale. Such correspondence has been recently up-
dated for the Wide-band version of the E-Model [49], where the R-factor
can reach values up to 129, as it might happen when the AMR-WB codec is
used. Table 3.1 summarizes the correspondence between the R-factor ranges
and the MOS values, together with the classes of speech quality and user
satisfaction.

VQmon R© aims to seize the time-varying nature of packet losses, that
heavily affects the quality of VoIP calls. For this reason, it extends the E-
model, and rather than employing the average packet loss rate, it assumes
there are two states of packet loss during the call: a high loss, burst state,
and a low loss, gap state, each with a distinct packet loss probability.

3.3 Settings and Results

3.3.1 Data Collection

I conducted this study on a pool of more than ten million VoLTE calls per-
formed over a few days during the first half of 2018, in an urban area.

A single commercial LTE network was considered for the measurements.
A proprietary probe was positioned at its Mb interface: the RTP voice flows
traversing the interface were anonymized and inspected; the results were next
aggregated in a .csv file. This probe, purchased by Empirix, has an Intel R©

Xeon R© Processor E5-2680 v2 with 192GB RAM and 4TB x 12 as HDD.
Positioning the tapping point at the Mb interface allowed to collect call

detail records for both directions, i.e., for the voice flows being originated
by the UEs and for the flows directed to the UEs, not necessarily originated
within the same LTE network. For every call, I chose to analyze the uplink
direction, in order to capture the negative effects that the Radio Access
Network (RAN) traversal has on voice packets. For each call and for each
direction, several data were available, such as the total number of transmitted
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packets, the total number of received packets, the average and maximum
jitter, the R-factor computed according to VQmon R©, the type of codec, the
call duration.

Moreover, a jitter buffer emulator (JBE) was instantiated, in order to
realistically model the compensation that takes place receiver side, smooth-
ing out the delay variations that voice packets exhibit after traversing the
network. The emulator forces a delay on packets that arrive early, and im-
mediately forwards late packets. In my system, the JBE was set to receive
initial packets with a 50 ms delay, then to dynamically modify its play-out
delay according to the average jitter of the previous 16 packets. Under these
assumptions, I was able to estimate the packet loss rate, evaluating the ra-
tio between the number of lost or excessively delayed packets and the total
number of received packets after the JBE.

Filtering out invalid data and neglecting the calls that either employed the
Enhanced Voice Services (EVS) wideband codec [50] or alternative, less pop-
ular speech audio codecs, I was left with 10, 862, 591 voice calls. They were
further distinguished in AMR and AMR-WB based, amounting to 71% and
29%, respectively. A reasonable explanation of the outstanding prevalence
of AMR based calls lies in the inability of one party to support AMR-WB:
in that event, AMR is chosen. It is on this number of calls that I based my
analysis, first focusing on LTE network conditions, as discussed next.

3.3.2 Network Conditions

To have an exhaustive picture of the operating conditions guaranteed to con-
versational voice by the cellular network where VoLTE calls were collected,
I first computed the Cumulative Distribution Function (CDF) of the packet
loss rate after the JBE and the CDF of the maximum jitter.

Fig. 3.2 shows the CDF of the packet loss rate Ploss experienced by the
examined flows, for 0 ≤ Ploss ≤ 0.2. This Figure indicates that Ploss values
lower than or equal to 0.01 are guaranteed with probability 0.96 and that
the probability an RTP stream experiences no packet losses is equal to 0.7,
a remarkably high value, suggesting the LTE network under examination
guarantees good operating conditions.

Last conclusion is corroborated by next figure. In detail, Fig. 3.3 reports
the CDF of the maximum jitter Jmax, for 0 ≤ Jmax ≤ 1050 ms, and shows
that a stream experiences a maximum jitter value lower than or equal to 150
ms with a 0.9 probability.

Next, Figs. 3.4(a) and (b) provide a unified view of the examined LTE
network: Fig. 3.4(a) portrays the joint probability density function (pdf) of
the packet loss rate Ploss and of the maximum jitter Jmax that the AMR
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Figure 3.2: Packet loss rate CDF

based voice flows undergo, whereas Fig. 3.4(b) reports the joint pdf referring
to the AMR-WB flows. Although slight numerical differences are present, it
is immediate to notice that both pdfs exhibit a remarkable densification near
the origin, a strong clue of good network functioning. Overall, these figures
offer an enlightening spot on the QoS level that QCI = 1 services experience
in LTE, when clients are equipped with a playout buffer.

3.3.3 R-factor Results

Next goal was to investigate the QoE perceived by VoLTE calls. To this
regard, Figs.3.5(a) and (b) display the R-factor values of the examined flows
as a function of Ploss and Jmax, for the AMR and AMR-WB case, respectively.
The comparison between the two figures indicates that the adoption of the
AMR-WB codec leads to higher R-factor values and suggests a far more
pronounced dependence of the R-factor on Ploss than on Jmax. Note that
the jagged behavior appearing in Fig.3.5(b) is exclusively due to the lack of
points in the region of high packet loss rates and high values of maximum
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Figure 3.3: CDF of the maximum jitter

jitter, that the former Figs.3.4 (a) and (b) already evidenced.

In order to better investigate the R-factor dependency on Ploss, Fig. 3.6
reports its average and standard deviation values over 10 uniform intervals
of packet loss rate, when Ploss varies between 0 and 0.2. It is interesting to
observe the sharp decay that the average R-factor displays for increasing Ploss

values in the AMR case, whereas the decrease is less pronounced in the AMR-
WB case. The standard deviation tends to increase for increasing values of
the packet loss rate, but this has to be mainly ascribed to a decreasing size
of the population of samples. For the AMR case, this figure shows the first
order, exponential fit performed on the set of (xi, yi) points, i = 1, 2, . . . , 10,
where xi represents the median value of Ploss in every interval and yi the
value of the corresponding average R-factor. The Levenberg-Marquardt al-
gorithm has been used, choosing y(x) = y0 + Ae−x/B as the fit function
(dashed line). The y0, A and B values are 17.953, 71.63 and 0.12, respec-
tively. By visual inspection, I conclude that the fitting is truly satisfying. To
confirm the goodness of the exponential choice, I computed the Mean Square
Error (MSE), that measures the distance between the points estimated by
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the regression and the measured values: it turns out that MSEexp = 2.03.
Although not reported on the figure, I also tested the linear regression on the
same set of data; the latter has been performed using y(x) = A

′
+B

′
x as the

fit function, with A
′

= 85.74 and B
′

= −304.58. For the linear regression
MSElin = 13.82, confirming that the exponential fitting is by far better.

For the AMR-WB case, Fig.3.7 reports the original (Ploss, R) points, to-
gether with the comparison between the exponential and the linear fitting.
For the former, y0 = −31.72, A = 135.07 and B = 0.28, whereas for the
linear regression A

′
= 99.01 and B

′
= −340.7. Interestingly, in this case I

have MSEexp = 4.25 and MSElin = 5.94; moreover, for the linear case the
coefficient of determination quantifying the fitting goodness is R2 = 0.98. As
a matter of fact, the linear choice is as adequate as the exponential. This
can be explained observing that the R-factor decrease for increasing values
of Ploss is much smoother when the AMR-WB codec is employed, than when
AMR is.

Although not reported in this chapter, I verified that the dependency of
the R-factor on Jmax is pronounced for the AMR-based voice calls, whereas
it is nearly absent for the AMR-WB based calls.

It is then possible to conclude that the quality experienced by the calls
based on both codecs significantly depends on the packet loss rate values
of the traversed LTE network. Furthermore, the R-factor dependency on
Ploss can well be described by the exponential function for AMR based calls,
whereas either a linear or an exponential decay captures such behavior for
AMR-WB based calls. Overall, the above results reasonably allow to con-
clude that the quality dependence of AMR VoLTE calls on Ploss replicates
the QoE – exponential – dependence on the QoS parameters first outlined in
[36].
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(a) AMR based flows

(b) AMR-WB based flows

Figure 3.4: Joint pdf of the packet loss rate Ploss and of the maximum jitter
Jmax
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(a) AMR based flows

(b) AMR-WB based flows

Figure 3.5: R-factor as a function of the packet loss rate Ploss and of the
maximum jitter Jmax
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Figure 3.6: R-factor as a function of Ploss

Figure 3.7: Fitting comparison for the AMR-WB case



Chapter 4

A Novel Approach for Speech
Quality Assessment

4.1 Introduction

Given a certain applications, one of the main goal of a Service Assurance
company, like Empirix, is to get a QoE estimation out of a set of measurable
input parameters. In a more formal view, this can be seen as the general
problem of modeling a mapping function f to assign QoE values from a set
of measurable parameters P1, P2, ..., Pn as represented in Figure 4.1.

Figure 4.1: Map of QoS/QoE general problem

P1, P2, ..., Pn could be either QoS Network Features (e.g., Average Jitter,
Packet Loss Rate, ...) and/or other factors that influence QoE (e.g., environ-
ment, mood, ...). Finding the function f that relates the input parameters
with QoE is one of the most challenging problems the scientific literature
has been investigated since years. In this view, Machine Learning (ML) can
be a powerful tool to discover the hidden correlation (i.e., the function f)
between network metrics and the user experience, directly from the data.
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A research field at the intersection of statistics, artificial intelligence, and
computer science, ML, also known as “predictive analytics” or “statistical
learning”, deals with extracting knowledge from data. Even though ML
turned out to be a buzz-word, it is important to recognize that its methods
of application have in recent years become ubiquitous in everyday life. From
automatic recommendations of which movies to watch, to what food to order
or which products to buy, to personalized online podcasts and recognizing
persons in photos, many modern tools and devices have machine learning
algorithms at their core. Thus, given the huge amount of data traffic that
5G networks will generate, and the emerging customer-centric technology,
ML is expected to exhibit the right requirements to approach the problems
related to QoE. Once a ML-based model has been properly trained, it could
give any enterprise the opportunity to identify problems and their causes,
saving operational costs.

To this end, Empirix and I have leveraged ML techniques to explore novel
ways to assess QoE in the promising context of voice delivery applications
ensured by 5G. As a matter of fact, QoE of VoIP calls is a relevant topic
in the realm of contemporary networks, given VoIP widespread adoption in
wired scenarios, but even more in cellular networks, where its counterpart,
VoIP over LTE (VoLTE), combined with super-wideband codecs, plays the
leading role in ensuring high quality levels to voice calls in a totally IP-
based scenario. In a previous study [51] - [52], discussed in chapter 3, I
assessed the end-to-end transmission quality of several millions of VoLTE
calls employing VQmon R©[48], an objective, non-intrusive tool, that enhances
the standardized E-Model[22]. Tools like VQmon R© are quite popular on
the service assurance rim, as they can be easily integrated in proprietary
software. Yet, they are quickly becoming obsolete, given the complexity
and heterogeneity of modern communication systems [53]. In particular,
VQmon R© puts the emphasis on packet loss rate, and my focus is also to
explore the effects of jitter and delay on QoE.

Taking these remarks as its starting point, the aim of this chapter and of
my most recent research work [54] is two-fold:

1. first, to quantify VQmon R© limits in QoE assessment of VoIP calls that
employ a wideband voice codec;

2. then, to overcome such limits proposing the adoption of a supervised
ML approach.

With reference to the latter point, the current study demonstrates to what
extent Ordinal Logistic Regression (OLR) performs better than other popular
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state-of-the art ML solutions. It therefore proves that the OLR algorithm is
well suited to model the human level of preferences expressed on an ordinal
rating scale.

In order to achieve the goals stated above, a subjective listening campaign
has been led in a controlled environment; the transmission of wideband, high
quality VoIP calls, has been repeatedly mimicked, collecting network metrics
and several categorical features of the volunteers participating to the quality
assessment test. Participants have been asked to rate the listening quality
of test calls and the test outcomes have first of all disclosed VQmon R© flaws.
Most importantly, they have allowed to highlight the benefits of the proposed
ML approach, which is fast like non-intrusive methods, as it automates speech
quality prediction, and trustable, being built on a subjective basis that can be
retrained several times upon customer availability and network adjustments.
My proposal therefore embraces the cause of mobile operators and network
monitoring companies, that not only mandate for effective monitoring tools,
but also for easiness of deployment on millions of VoIP calls.

The study further highlights that the conventional five score scale for call
quality classification is often perceived as excessive by test participants. In
the limit case where ratings are collapsed on a coarse binary scale, OLR and
alternative ML models are verified to guarantee a very high and comparable
accuracy level.

The remainder of this chapter is organized as follows. Section 4.2 summa-
rizes the existing contributions. Section 4.3 gives an overview of the employed
ML models and of the experimental environment. Section 4.4 illustrates the
data collection process and then discusses the results obtained in terms of
performance prediction.

4.2 Related Work

In the past, a few solutions based on advanced statistics and ML models
such as Bayesian Classifier [55], Artificial Neural Networks [56] and Random
Neural Networks [57] have been proposed to predict VoIP speech quality. As
a recent example belonging to this category, the study in [58] compares the
performance of different ML classifiers, considering packet loss, narrow-band
codec type, language and gender as features. All the previously cited works
assume as learning basis (equivalently termed ground-truth) the quality rat-
ings that the Perceptual Evaluation of Speech Quality (PESQ) technique [23]
provides. PESQ is an algorithm for narrow-band voice evaluation; it is ob-
jective, i.e., it automatically evaluates speech quality with no involvement of
human subjects, and it is double-reference, as it compares the received voice
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signal against the clean, original signal. However, one relevant drawback in-
herent to the choice of employing PESQ outcomes as ground truth is that
the estimate error affecting the reference technique propagates to the learn-
ing algorithm. Alternative studies, like [59], considered as ground-truth the
subjective Mean Opinion Score (MOS), that ITU defines as the arithmetic
mean of a collection of single user opinion scores [20]. Yet, the arithmetic
mean might represent a rough approximation when judging the quality of
VoIP calls: it inevitably smooths out the quality score that a specific user
assigns the call under certain network conditions. Lastly, P. Charonyktakis
et al. [60] designed a modular algorithm that uses multiple ML models,
including Decision Trees and Support Vector Regression, and relies on an
optimized technique, termed nested cross validation, to select the best clas-
sifier. This study adopts both subjective tests and PESQ to rate the actual
QoE of narrow-band VoIP calls.

Partly in analogy to the contribution in [60], this study concentrates on
the subjective experience of single users as ground truth. Differently from
[60] and previous works, our study proposes to handle the rating of the call
quality experienced by the single user as an intermediate problem between
regression and classification. It therefore suggests to exploit a specific algo-
rithm, the so-called Ordinal Logistic Regression (OLR), and it benchmarks
its performance against some of the most popular ML methods already uti-
lized in the works cited above, highlighting its better accuracy. Further, my
contribution concentrates on wide-band, high definition voice, which is of
paramount importance in VoLTE, as well as in 5G networks. To the best of
my knowledge, all the investigations on VoIP QoE presented so far in litera-
ture are centered on the adoption of narrow-band codecs, that work on audio
frequencies in the 300-3400 Hz range. However, all modern applications rely-
ing on telephony audio employ wideband and super-wideband codecs, which
extend the maximum operating frequency to 7 and 22 KHz, respectively.
This is the case I therefore choose to concentrate on.

4.3 Background and Setting

This section is intended to provide a brief overview of the employed ML
models and of the experiment setting and design. An extensive explanation
of the selected algorithms and of their implementation details can be found
in [61] and [62].
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4.3.1 Prediction Models

The distinctive feature of supervised learning is that the target variable to
predict is known (e.g., in this work I know the QoE labels), and this informa-
tion is explicitly used in the learning process. Moreover, supervised learning
approaches can be distinguished in classification and regression solutions. I
refer to classification when the target variable is a class, as in the examined
problem. Decision Tree classifier (DT) is a ML classification algorithm that
produces interpretable models and it is widely employed for this distinctive
feature: its goal is to create a model that learns from simple if/else rules
inferred from data. To build a tree, the algorithm searches over all possible
paths and finds the one that is the most informative about the target vari-
able. An enhancement to DT is Random Forest (RF), fitting a number of DT
classifiers on various subsets of the dataset. RF relies upon an ensemble of
trees to improve predictive accuracy. Trees can be easily visualized and inter-
preted, but their main drawback is that they neglect any ordered trait of the
target feature. Differently from classification, regression predicts a continu-
ous outcome. The reference model is Linear Regression (LinReg), utilized to
find the relation between two or more continuous variables. Logistic Regres-
sion (LogReg) replaces LinReg when the target is no longer continuous and
is expressed as a dichotomous variable. Its generalization to more than two
classes is Multinomial Logistic Regression (MLR). Lastly, OLR represents
an intermediate approach between classification and regression, and it is my
belief that it can successfully fit the present problem of predicting ordered
classes of QoE. As a matter of fact, OLR handles labels that are both discrete
as in classification, and ordered as in linear regression. Its complex math-
ematical formulation is based on the generalized linear model, well-detailed
in [63] and [64].

4.3.2 Experiment Setting and Design

Fig.4.2 portrays the end-to-end setting of the experiment. Calls were gener-
ated by Hammer R©, a proprietary platform by Empirix [65] that emulates soft-
ware agents initiating and accepting VoIP calls and establishing an SIP/RTP
session for every call. One Hammer was installed on the Virtual Machine
(VM) of a Windows PC, acting as the caller (Hammer A), a second Ham-
mer was installed on the VM of a second PC, representing the callee; a
Linux-based, Ubuntu VM on a third PC routed packets from the caller to
the callee, and also acted as a source of impairments through Netem[66], a
network simulator available in Linux kernels. All PCs belonged to the same
Gigabit Ethernet LAN.
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Figure 4.2: End-to-end experiment workflow

I chose to deliver the short audio stream “You will have to be very
quiet”, encoded through Adaptive Multi Rate WideBand (AMR-WB) [45]
(mode 25.85 kb/s) and fully compliant with ITU-T guidelines about subjec-
tive listening tests [20]. Each call featured the same audio stream. Through
Netem[66], I intervened on the one-way delay and packet loss to simulate
the typical impairments of real networks. In detail, given the ITU-T G.1010
document [67], that suggests the tolerated values of one-way delay (lower
than 400 ms) and packet loss rate (lower than 1%) for conversational au-
dio, I combined four profiles of packet loss (random, uniformly distributed
losses with rates 0%, 0.5%, 1% and 2%) with three profiles of one-way delay
(Gaussian distributed with mean and standard deviation equal to (0± 0)ms,
(150 ± 25)ms and (400 ± 25)ms), thus obtaining twelve scenarios. At callee
side, the jitter buffer was instantiated to receive packets with a fixed inter-
packet delay. The received files were collected in a Wireshark [68] compatible
format, and sent to a proprietary probe, where they were processed and then
exported. Since I operated in a virtual environment, I made use of ad-hoc
scripts1 to extract the audio trace in a listenable format.

I next conducted a subjective listening campaign, and designed the listen-
ing experiments in accordance to ITU-T guidelines [20]. Among the available
quality assessment methods, I adopted the popular Absolute Category Rat-
ing (ACR) test, because of its reliability and fast implementation. In ACR
subjective tests, users are asked to evaluate calls, presented only once, and
have to rate the listening quality, i.e., their QoE, on an ordered scale featur-

1https://github.com/Spinlogic/AMR-WB_extractor
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ing five score values: 1 (bad), 2 (poor), 3 (fair), 4 (good) and 5 (excellent).
For the experiment, a pool of 56 participants was recruited on a voluntary
basis in the first half of 2019. Every listener was asked to evaluate the quality
of 12 calls, corresponding to the received audio streams in the 12 scenarios
described above. Before starting the survey, I additionally asked volunteers
to answer a few questions, namely, to indicate their gender, age and the type
of headset employed during the test. These features uniquely characterized
each participant, along with the rating she/he attributed to the quality of
the calls. In addition, I encouraged users to share their feedback. At the
end of the experiment, I collected a total of 672 evaluations. Because of the
arbitrary property of subjective tests, it is known that some ratings might
have been assigned in an inappropriate manner. Thus, I grouped call scores
by call identifier and applied the popular DBscan algorithm [69] to detect
outliers among the evaluations collected for each call. DBscan found a total
of 55 outliers, that were removed from the initial set.

4.4 Experimental Results

4.4.1 Data Set Preprocessing

The dataset available after the listening campaign included the actual net-
work metrics characterizing each evaluated call, that is, the following nu-
merical features: average and maximum jitter, number of received packets,
packet loss rate, out-of-sequence packets and duplicated packets, as well as
the set of categorical features directly collected from the participants, that
is, their age, gender and type of headset. Most importantly, I collected the
rating each participant attributed to the quality of the calls, i.e., their QoE
scores.

To minimize the risk of injecting noise in the model, I firstly determined
the most informative features with respect to the target label, i.e., the QoE
score. According to Pearson correlation test [70], those numerical features
exhibiting a p value greater than 0.01 were considered insignificant. I there-
fore neglected the number of received packets and the number of duplicated
packets. Given the relatively modest number of examined settings for the
test, I additionally “flagged” the packet loss rate as a binary variable: I
stated that it was present in any scenario where it took on values greater
than 10−2, otherwise it was interpreted as absent (for the examined scenar-
ios, this corresponds to values lower than 10−3). Lastly, as the examined
numerical features span on different scales, I rescaled them, in order not to
privilege one over others (e.g., maximum jitter over out-of-sequence packets).
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Given the relatively low number of research participants, I decided to include
all the categorical features in the present study, as it is not possible to firmly
state that QoE is independent of them.

4.4.2 Exploratory Investigation and Performance As-
sessment

Preliminarily, I investigated the reliability of VQmon R© when assessing the
quality of VoIP calls; for doing so, I compared the MOS values that VQmon R©

provides against those determined from the actual subjective ratings; adher-
ing to MOS definition, I computed the latter value as the average of the
individual ratings that different users assigned to the same call. Fig. 4.3
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Figure 4.3: VQmon R© MOS and Users MOS per Call ID

shows how far VQmon R© MOS values (red squared markers in the figure) are
from their experimental counterparts (blue circles) for the 12 synthetic calls
evaluated by the users. The results reported in this figure clearly demonstrate
that VQmon R© cannot predict the actual call quality, and further motivates
us to explore the effectiveness of a user-driven methodology that leverages
ML tools.

Given the presence of ordered classes, i.e., the five possible QoE scores, I
deliberately focused on OLR as a promising candidate among the alternative
ML algorithms. To validate the goodness of such a choice, I considered a ran-
dom split of the QoE scores, employing 80% of them as the training set and
the remaining 20% as the test set and first benchmarked OLR classification
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accuracy against that of the Random Classifier (RC), DT, RF and MLR.
Given the relatively few training data available, I decided to exclude neural
networks from my investigation [71]. Moreover, I did not consider Support
Vector Machines (SVM) models either, because they do not perform well
with unbalanced classes [72], as it is the case here. Recalling that accuracy
is defined as the percentage of correct predictions to the total number of test
samples, I found that OLR outperforms all other algorithms. As a matter of
fact, its accuracy is 61%, almost four times the RC accuracy, which amounts
to 16%, and higher by ten percentage points than both DT (51%) and MLR
(52%), where I emphasize that the latter two algorithms do not take into
account class ordering.

Table 4.1: OLR and DT Confusion Matrix

Predicted by OLR
1 2 3 4 5

Observed

1 2 15 0 0 0
2 2 39 3 0 0
3 0 13 6 2 3
4 0 0 0 12 6
5 0 0 0 3 17

Predicted by DT
1 2 3 4 5

Observed

1 0 17 0 0 0
2 0 44 0 0 0
3 0 19 0 5 0
4 0 0 0 4 14
5 0 0 0 5 15

Confusion matrix (CM) generalizes the concept of accuracy: every CM
row represents the instances in an actual class and every column represents
the instances in a predicted class, so that the ideal CM has zero elements
everywhere except for the main diagonal, meaning that all the predicted
instances coincide with the actual observations. Table 4.1 compares OLR
and DT confusion matrices, revealing that OLR better captures intermedi-
ate opinions (3 and 4 QoE values), that are more likely related to each test
participant and her/his set of unmeasurable characteristics (e.g., mood, tol-
erance level), whereas DT limits its prediction to three out of five QoE classes
(2, 4 and 5). To exclude that this study had to be approached as a linear
problem, I further considered LinReg as an alternative baseline. I therefore
extended the domain of the target label QoE from integer to real, thus re-
moving the concept of classes. The subjective QoE scores (red crosses) and
the predicted values (blue circles) are reported in Fig. 4.4(a) for LinReg and
in Fig.4.4(b) for OLR. They allow to compare the performance of LinReg
and OLR, revealing that LinReg is unable to predict intermediate results,
whereas OLR can.

Lastly, it is interesting to outline that out of 56 research participants,
almost half of them pointed out that five classes were too many to evaluate
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the QoE of the test calls, which might more simply be rated as poor or good.
Adhering to this rationale, I remapped the five original classes into two, class
0 collecting the previous 1 and 2 classes, and class 1, merging classes 3, 4 and
5, so as to reduce the problem to binary classification. As such, the concept
of ordering no longer holds, and the binary counterpart of OLR is LogReg.
When taking this approach, both accuracy and confusion matrix remarkably
improve, and as expected, LogReg and DT exhibit similar performance. In
detail, LogReg accuracy stands at 83% and by inspecting LogReg and DT
CMs reported in Table 4.2, I observe the prevalence of correctly predicted
instances.

Table 4.2: DT and LogReg Confusion Matrix (Binary classification)
Predicted (DT)

Observed
0 1

0 62 0
1 21 41

Predicted(LogReg)

Observed
0 1

0 60 2
1 18 44
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(a) LinReg

(b) OLR

Figure 4.4: LinReg and OLR performance
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Chapter 5

Conclusion

In this thesis I focused on the increasing interest towards Quality of Expe-
rience research in the context of LTE and 5G networks, proposing a novel
approach to assess the quality that end-users will undergo.

At first I have investigated the key aspects of 5G networks following
the standardization process promoted by 3GPP and ITU. I then narrowed
the focus of my research towards the new architectural concepts addressed to
enhance the overall Quality of Experience, a strategical indicator for Empirix,
given it has been identified as one of the salient differentiating elements with
respect to the previous generations of cellular networks.

Next, I performed a comparative analysis of the end-to-end quality guar-
anteed by VoLTE, focusing on calls that employ two popular speech audio
codecs, namely, Adaptive Multi-Rate (AMR) and Adaptive Multi-Rate Wide
Band (AMR-WB). The corresponding work has first portrayed the operating
conditions that VoLTE calls experience on a real LTE commercial network,
exploring the occurrence frequencies of the packet loss rate and maximum
jitter values, i.e., of two amongst the most meaningful network parameters
for real-time services. Next, with the help of an objective, no-reference met-
ric, I have investigated the QoE guaranteed to AMR and AMR-WB based
calls. Examining over ten million calls, the study has revealed that the loss
rate and the maximum jitter are successfully confined for VoLTE services
and that the packet loss rate is the most relevant impairment to consider for
both AMR and AMR-WB.

At the end of this study, I have conducted a subjective campaign of qual-
ity assessment on artificially generated VoIP calls, collecting the values of
network metrics associated to each test call, some categorical features of the
participants and their QoE scores. This work has first demonstrated the
shortcomings of a conventional objective, no-reference model when assessing
speech quality of VoIP wide-band calls. Next, I have proposed to adopt a
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customer-driven, Machine Learning approach to correlate network-oriented
features and human-related aspects to the levels of QoE that listeners per-
ceive. Ordinal Logistic Regression (OLR) has been proved to be the best
algorithm to model the examined problem, as it better approximates the
ordinal behavior of subjective experience. The study has additionally pro-
vided an insight into the difficulties of utilizing a five level scale to evaluate
VoIP QoE, often perceived by test participants as poor or good. When han-
dling the quality assessment problem as binary instead of ordinal, I have
shown that both Logistic Regression, the binary counterpart of OLR, as well
as alternative ML algorithms (such as Decision Trees and Random Forest),
guarantee reliable and similar predictions. From network operators side, the
output of this research activity could help customer experience managers and
service quality managers to identify in a fast way potential issues in their core
network depending on predicted values of the QoE.

Future research work should aim at collecting additional measurements
from access network. This would allow to improve the generalization capa-
bilities of the OLR algorithm and to evaluate its performance under different
operating conditions.
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