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Abstract

The aim of this work is to investigate turbulent flows and heat transfer phe-
nomena where buoyancy forces are non-negligible. The studies are conducted
by means of Direct Numerical Simulations performed in two configurations: a
wall-bounded buoyancy-driven flow and a free-shear buoyancy-aided case. Cal-
culations are conducted using a customised version of the open source code Incom-
pact3d , where modifications include the addition of the Boussinesq’s buoyancy
term in the momentum equations and the implementation of an open outflow
boundary condition suitable for buoyant and turbulent flows. In the text each
novel implementation is presented together with a validation test.

Firstly buoyancy-driven convection is investigated in the Rayleigh-Bénard
cell employing different fluids: mercury (Pr = 0.025), air (Pr = 0.7) and water
(Pr = 7). Instead of the usual approach, where the Prandtl number is varied
in constant-Rayleigh-number conditions, the three simulations are performed at
constant Grashof number, Gr = Ra/Pr = 5 x 107. This procedure allows the
study of the Prandtl number influence while maintaining a constant ratio between
the advective and diffusive terms in the momentum equations. The analysis of
customarily and specifically developed statistics sheds light on the small-scale
fluctuations and large-scale motions which are responsible for the energy trans-
fer at different Prandtl numbers. Secondly, a non-canonical configuration which
involves three planar jets vertically entering a pool at different temperature is
studied. Beside the theoretical interest, this research is motivated by the study
of temperature fluctuations induced by fuel rods cooling inside Liquid Metal Fast
Reactors (LMFRs), which employ a liquid metal as coolant. This phenomenon
is called thermal striping and might induce thermal-fatigue failures in the con-
tainment vessels. In order to infer about thermal striping the Prandtl number of
Lead-Bismuth Eutectic at 220° C, i.e. a typical envisaged condition in LMFRs,
is considered, Pr = 0.031. Reynolds number is set to Re = 5000 and the mixed
convection regime is established at a Richardson number Ri = 0.25. Results show
that jets undergo an intense mixing close to their inlets, while at distances larger
than ten times the jets width they are coalesced in a single and almost isother-
mal stream. Here the flow displays some of the self-similar properties observed
in canonical planar jets. An original formulation of the Coanda effect reveals the

mechanism underlying jets coalescence. Finally, fields of turbulent viscosity and
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diffusivity, as well as kinetic and thermal dissipations, show behaviours which are
unlikely to be reproduced by typical eddy-viscosity turbulence models.

In summary this study provides an original insight into the physics of turbu-
lent heat transfer in wall-bounded and free-shear configurations where buoyancy
forces are non-negligible. Results reported in this text might also be used for
the development and validation of turbulence models to be employed in buoyant

flows.
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Sommario in lingua italiana

In questo testo e riportato uno studio degli aspetti termo-fluidodinamici di
flussi turbolenti in regime di convezione naturale e mista. La ricerca e stata
condotta mediante simulazioni numeriche ai principi primi eseguite in un flusso
indotto dalle forze di galleggiamento tra due lastre piane e in uno caratterizzato
da tre getti a diversa temperatura. I calcoli sono stati eseguiti impiegando una
versione modificata del codice open source Incompact3d , dove le modifiche ap-
portate prevedono l'introduzione del termine di galleggiamento secondo le ipotesi
di Boussinesq e l'implementazione di una condizione al contorno di deflusso.
Assieme alle modifiche apportate al codice vengono presentate le prove atte a
validare le modifiche stesse.

La prima parte del testo riporta lo studio del moto all’interno della cella
di Rayleigh-Bénard considerando diversi fluidi: mercurio (Pr = 0.025), aria
(Pr =0.7) ed acqua (Pr = 7). Invece di variare il numero Prandtl mantenendo
costante il numero di Rayleigh, come spesso riscontrato in letteratura, le tre sim-
ulazioni vengono eseguite a pari numero di Grashof, Gr = Ra/Pr = 5 x 107.
Questo approccio permette lo studio dell’influenza del numero di Prandtl con-
servando un rapporto costante tra il termine advettivo e diffusivo nelle equazioni
di bilancio della quantita di moto. Attraverso ’analisi delle consuete statistiche
e di altre sviluppate appositamente per questo studio vengono caratterizzate le
strutture di piccola e grande scala responsabili del trasporto di calore. In secondo
luogo viene analizzata una configurazione composta da tre getti a diversa tem-
peratura che sfociano all’interno di una piscina a forma di parallelepipedo. Oltre
alllimportanza in ambito di ricerca di base, questo flusso permette di indagare
le fluttuazioni di temperatura indotte dal raffreddamento delle barre di com-
bustibile all’interno di reattori nucleari che impiegano un metallo liquido come
refrigerante, i cosiddetti Liquid Metal Fast Reactors. 1l fenomeno descritto viene
chiamato thermal striping e pud provocare cedimenti per fatica termica nelle
strutture di contenimento. Al fine di analizzare il thermal striping il numero di
Prandtl scelto per la simulazione ¢ Pr = 0.031, caratteristico della lega eutet-
tica piombo-bismuto a 220° C, una tipica condizione prevista per questo tipo

di reattori. Il numero di Reynolds del flusso vale Re = 5000 e l'intensita del
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regime di convezione mista ¢ data dal numero Richardson R:i = 0.25. I risul-
tati mostrano che i getti si mescolano vigorosamente in prossimita del loro in-
gresso, mentre piu a valle sono uniti in un’unica colonna di fluido, essenzialmente
isoterma. In questa regione il flusso mostra alcune delle caratteristiche universali
osservate nella configurazione canonica dei getti turbolenti. Inoltre il fenomeno
responsabile dell'unione dei getti, il cosiddetto “effetto Coanda”, viene spiegato in
maniera originale attraverso ’analisi dei flussi di quantita di moto. Infine, i campi
di viscosita e diffusivita termica turbolenta, assieme alla dissipazione di energia
cinetica turbolenta e varianza di temperatura, mostrano andamenti difficilmente
riproducibili mediante i tradizionali modelli di turbolenza basati sull’approccio
eddy-viscosity.

Riassumendo, questo studio fornisce un punto di vista originale sui meccan-
ismi di trasporto del calore in circostanze in cui le forze di galleggiamento non
possono essere trascurate, sia in configurazioni caratterizzate dalla presenza di
pareti che in configurazioni prive di superfici solide. I risultati riportati potreb-
bero inoltre essere impiegati per lo sviluppo e la validazione di modelli di tur-

bolenza specifici.
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Notation

Latin letters

l Jet width defined for single and purely mechanical jets

Gr Grashof number

Nu Nusselt number

Pe Péclet number

Pr Prandtl number

Ra Rayleigh number

Re Reynolds number

Re: Reynolds number based on friction velocity

Res shear Reynolds number

Ri Richardson number

Sc Schmidt number

divy Divergence of the horizontal velocity field in Rayleigh-Bénard
configurations

g magnitude of gravitational acceleration

gi i-nth component of gravitational acceleration

H Jet width in triple jet configuration, cell height in Rayleigh-
Bénard convection

K Kurtosis (fourth-order moment of fluctuating variables)

L Length

Ly, Ly, L, extension of the computational domain in z,y, z directions

Mgy My, N number of computational nodes along x,y, z directions

NBro Number of computational nodes inside the thermal boundary
layer

NBrLu Number of computational nodes inside the velocity boundary

layer
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U, V, W

Greek letters
«

Qi

Af

AT

At

Ax, Ay, Az

Pressure

Root-mean-squared error

Skewness (third-order moment of fluctuating variables)
Element of the strain rate tensor

Temperature

Temporal coordinate

Velocity scale of large scale circulation

Velocity components, written also as u;, u; for 4,5 =1,2,3
Average centreline velocity at jet inlets

Friction velocity

Centreline velocity

Convective velocity in one-dimensional advection equation
Phase velocity in one-dimensional advective diffusive equation

Advective velocity in one-dimensional advective diffusive equa-
tion

Free-fall velocity

Cartesian coordinates, written also as x;, x; for 4,5 = 1,2,3
Position vector

Surface-normal unity vector

Thermal diffusivity

Turbulent thermal diffusivity

Thermal expansion coefficient

Diffusion coefficient

Time period

Non-dimensional temperature difference
Temperature difference

Time step

Grid spacing in direction z;

Channel half-height or Kronecker delta
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O Thermal boundary layer thickness
Ou Velocity boundary layer thickness
n Length scale of turbulent motion

Aspect ratio of the computational domain in Rayleigh-Bénard

convection
A Taylor scale
v Kinematic viscosity
vy Turbulent kinematic viscosity
Qg Extended domain
Qn Regular-size domain
Or Restricted domain
10} Generic flow variable, it indicates either a velocity component

or temperature
P Generic passive scalar

Density or autocorrelation coefficient

T Time scale of turbulent motion

0 Non-dimensional temperature

0; Average, centreline, non-dimensional temperature of the hot
jet

g0’ Dissipation rate of temperature

€ Pseudo-dissipation rate of turbulent kinetic energy

g’ Pseudo-dissipation rate of kinetic energy

€ Dissipation rate of turbulent kinetic energy

€o Dissipation rate of temperature variance

©j j-nth component of momentum flux per unit volume

Subscripts

0 Relative to the temperature field

B Batchelor scale

b At domain boundaries

c Cold



h Hot

1 and j i-nth or j-nth Cartesian component of a vector
K Kolmogorov scale

min Minimum

14 Relative to the pressure field

ref Reference value

rms Root-mean-square value or standard deviation
U, UV, W Relative to one of the velocity component

w At walls

Superscripts

(n) Current time step

+ Scaled over the smallest turbulence scales

0 Quantity in reference thermodynamic conditions
* Dimensional quantity

/ Turbulent fluctuation unless otherwise stated
E FExtended domain

N Regular domain

Other symbols (e is a placeholder)

[ X

Used for locally defined scales, unless otherwise stated
(o) Averaged value

(o)y Volume-averaged statistics



Introduction

Turbulent heat transfer in mixed and natural convection regime occurs whenever
temperature differences in fluids are large enough to originate density gradients
and thus non-negligible buoyancy forces. Such flows are observed in numerous
environmental fluid motions of interest, think for example to air circulation in
the atmosphere, natural streams in the oceans and convection on Sun’s outer
layer. Beside environmental flows, countless technological applications rely on
buoyancy-driven or buoyancy-aided heat transfer. Passive cooling of nuclear re-
actors and electronic devices are just two examples.

The non-trivial coupling between velocity and temperature fields introduced
by buoyancy has been mainly studied for fluids with order-one Prandtl number.
Other fluids received less attention despite their importance in applications and
environmental flows. To provide sensible advancements in this field only exper-
iments and Direct Numerical Simulations (DNSs) seem to be suitable tools, as
turbulence models could affect the simulated physical phenomena. However, lab-
oratory measurements inherently interfere with the flow and when opaque fluids
are employed, such as liquid metals, local and global velocity measures are prob-
lematic and require unconventional techniques (Schulenberg and Stieglitz, 2010).
On the contrary, DNSs allow to obtain fully tridimensional fields of velocity and
temperature with spatial and temporal resolutions able to represent all the scales
of turbulent motions. As turbulence models are not employed in DNSs, simula-
tion errors lie exclusively in the selection of a suitable set of governing equations,
in the truncation errors of numerical schemes adopted and in the specific algo-
rithm employed, e.g. the pressure-velocity coupling. These errors can be easily
calculated making DNSs a research tool where the accuracy of results is well
under control.

In the present thesis turbulent flows in mixed and natural convection regimes
are studied in two configurations, a wall-bounded buoyancy-driven one and a
free-shear buoyancy-aided flow. The former configuration is represented by the
canonical Rayleigh-Bénard Convection (RBC), which is studied in a rectangular
and laterally unbounded domain with aspect ratio I' = 8 employing different
working fluids: liquid mercury (Pr = 0.025), air (Pr = 0.7) and water (Pr = 7).



2 Introduction

Instead of the usual approach, where Pr is varied while maintaining a constant
Rayleigh number, simulations presented here are performed in constant-Grashof-
number conditions Gr = Ra/Pr = 5 x 107, therefore Ra and Pr are varied
together. Such approach, firstly used by Schumacher et al. (2015), allows to
study turbulent natural convection by varying the ratio between the convec-
tive and diffusive terms in the energy equation, while momentum equations are
left unchanged, i.e. advective and viscous terms have the same relative magni-
tude. Secondly, a non-conventional configuration is employed to study free-shear
flows in mixed convection regime. This involves three planar jets of liquid metal
vertically-discharged in a pool from the bottom, where the jets have the same
average velocity but different temperature and are symmetrically arranged as
cold-hot-cold. Beside the theoretical interest in buoyancy-aided mixing phenom-
ena, the study of triple jet configuration is motivated by its relevance in nuclear
engineering applications (Kimura et al., 2007). Indeed in the upper plenum of
Liquid Metal Fast Reactors (LMFRs), i.e. nuclear reactors which employ liquid
metals as fuel-rods coolants with the aim to be inherently safe in case of electric
power failures, hot and cold streams are mixed in conditions where buoyancy
forces are non-negligible. As thermal diffusivity of liquid metals is extremely
high, temperature fluctuations originated by the mixing are quickly transmitted
to the containment structures potentially leading to failures due to thermal fa-
tigue; this phenomenon is called “thermal striping” (Brunings, 1982). In order
to infer about thermal striping, Prandtl number Pr = 0.031 is set, representing
Lead-Bismuth Eutectic (LBE) at 220°, a typical envisaged coolant in LMFRs.
Reynolds number based on jets centreline velocity and their width is Re = 5000,
Grashof number is Gr = 6.25 x 105. Therefore the mixed convection regime is
established at a Richardson number Ri = Gr/Re* = 0.25.

Simulations presented are performed using two different modified versions of
the open-source and highly-parallel code Incompact3d (Laizet and Lamballais,
2009; Laizet and Li, 2011). The native version of the code solves the incompress-
ible Navier-Stokes equations together with a passive-scalar transport equation
on Cartesian grids by using the finite difference formalism. Modifications intro-
duced by the author feature the addition of the Boussinesq’s buoyancy term in
the momentum equations, the implementation of an open outflow boundary con-
dition and the development of an inflow strategy to set at jet inlets velocity and
temperature profiles recorded from a precursor channel DNS. Besides, to perform
calculations in the precursor channel configuration and in RBC at low Prandtl

number, a semi-implicit version of Incompact3d developed by Flageul et al. (2015)
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has been used. This implements an implicit strategy along y direction in order to
help numerical stability in configurations where the Péclet number Pe = Re Pr
is small and stretched grids are employed in y direction. All the code versions
and modifications implemented are presented in the text along with a validation
test.

The present document is organised as follows. In chapter 1 the main features
of Incompact3d are briefly presented along with the in-house modifications and
validation tests. The addition of the buoyancy term is assessed by comparing
results on a Rayleigh-Bénard configuration against reference data by Togni et al.
(2015), while precursor channel statistics are compared with well-known bench-
marks by Moser et al. (1999) and Kawamura et al. (1999). The implementation
of the open outflow boundary condition is validated by comparing results on two
triple jet configurations, where the vertical extension of one domain is two times
larger than the base case. The study of RBC at different Prandtl number is
presented in chapter 2. In section 2.3 the spatio-temporal discretisation of each
simulation is carefully assessed and the validity of the Boussinesq’s approxima-
tion is checked by using validity maps constructed with the method by Gray and
Giorgini (1976). Results presented are compared with analyses reported in liter-
ature and allow to compare heat transfer features at different Prandtl numbers.
Chapter 3 reports the investigations on the triple jet configuration where, again,
discretisation and applicability of Boussinesq’s hypotheses are described in detail.
Results show that the flow can be divided in two different regions, one close to
the inlets, where turbulent activity is promoted by shear-layer instabilities and
buoyancy production, and one far from the inlets where jets are coalesced in sin-
gle, isothermal stream which recovers some of the self-similar properties of purely
mechanical jets. Concluding remarks are collected in the last chapter.

Finally, it is worth to notice that RBC calculations have been made possible
thanks to a PRACE (Partnership for Advanced Computing in Europe) grant of
65 million core hours, while several ISCRA (Italian SuperComputing Resource
Allocation) grants supported the triple jet simulation. Studies aimed at produc-
ing a high-fidelity numerical benchmark in the triple jet configuration have re-
ceived funding from the Euratom programme under grant agreement No 654935,
acronym “SESAME”. The author acknowledges the above mentioned research

programimes.






1 Code development and

validation tests

In this chapter the code Incompact3d is presented together with modifications
implemented by the author. These include the addition of the Boussinesq’s buoy-
ancy term in the momentum equations, the implementation of an open outflow
boundary condition and the development of an inflow strategy which allows to
set inlet conditions using profiles recorded from a precursor simulation. Besides,
validation tests aimed at assessing the accuracy of new implementations are re-

ported.

1.1 Incompact3d

Incompact3d is an open source code developed by Sylvain Laizet and Eric Lam-
ballais (Laizet and Lamballais, 2009). It solves the incompressible Navier-Stokes
equations and a passive scalar transport equation using a direct or large eddy
approach to turbulence. Computations are performed on a Cartesian mesh and
sixth-order compact schemes are used for spatial discretisation, see Lele (1992)
for an extensive discussion about the topic. Time advancement is performed
employing one of the following explicit schemes: second- and third-order Adams-
Bashforth, third- and fourth-order Runge-Kutta. The set of equations numeri-

cally solved by the original version of Incompact3d reads

ﬁui
61‘1' =0

Qup  Oui _ Op 1 0u; 11
ot ]0;1:j ~ Ox; Re Oxj Ox; (1.1)
oY o 1 0%
- 4 Uj— =
Oxj  ScRe Oxj0x;

ot
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where subscripts ¢, j = 1,2, 3. x; stands for the spatial coordinates in a Cartesian
reference frame x1 = x, xo2 = y and x3 = z, as well as u; indicates velocity com-
ponents, u; = u, ug = v and uz = w; p represents pressure and 1 is a passively
transported scalar. Re and Sc are respectively the Reynolds and Schmidt num-
bers. When the scalar considered is temperature the Prandtl number substitutes
the more general Schmidt number.

The main originality of Incompact3d lies in the enforcement of the incompress-
ibility constraint, which is done using a projection method and hence requires to
solve a Poisson problem for the pressure field. The Poisson equation is fully
solved in the spectral space via the use of Fast Fourier Transforms regardless
of boundary conditions. This is shown to reduce the accuracy of the numerical
scheme for example in near-wall regions, where Dirichlet conditions are imposed.
However, as reported in the validation test by Laizet and Lamballais (2009),
truncation errors are smaller than second order even close to such boundaries.
Another key feature of Incompact3d is its excellent scalability, as reported in
Laizet and Li (2011). Parallelism is implemented by the domain decomposition
technique implemented in the 2Decompédfft open source library, which divide the

computational domain in 2D pencils alternatively along z,y and z directions.

1.2 Buoyancy

The implementation of buoyancy forces in Incompact3d is done following the
Boussinesq’s hypotheses, the validity of which is discussed later for each configu-
ration studied, see sections 2.3 and 3.2. Boussinesq’s approximation assumes that
density is constant and equal to a reference value p? in each term of the governing
equations except for the gravitational term in the momentum equations. There
density is considered to vary linearly with temperature. All other fluid properties
are considered constant, see Tritton (1988) and Gray and Giorgini (1976) for a

thorough discussion about the Boussinesq’s approximation.
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Including the Boussinesq’s buoyancy term the set of non-dimensional govern-

ing equations is the following

Bui
ou; ou; dp 1 0%y Gr

e = — — L g .
815 +u38$j a$Z+R€ a$j8$j+R62 9 (1 2)

w0, w1 2
ot U Ox;j - PrRe Oz 0x;

where variables are made non-dimensional by selecting specific reference quan-
tities: a velocity u,.r, a length [,.; and a temperature difference AT,.r. With
respect to equations (1.1) the gravitational term Gr/ Re?0g; has been added,
where Gr is the Grashof number, 0 stands for the non-dimensional temperature
and g; is the i-nth component of the gravitational acceleration.

The implementation of the buoyancy term in Incompact3d simply require the
addition of the term fg; Gr/Re? to the right-hand side of the momentum equa-
tions. Beside this modification also a subroutine to impose Dirichelet boundary

condition for the temperature field has been introduced in the code.

1.2.1 Validation test

The implementation of the Boussinesq’s buoyancy term in Incompact3d has been
assessed by performing a DNS of Rayleigh-Bénard convection in a rectangular
and laterally unbounded cell, see figure 1.1. For conciseness the description of
the flow configuration is reported only in chapter 2. The comparison is performed
by reproducing physical and numerical parameters of the simulation reported by
Togni et al. (2015), which employ a pseudo-spectral code relying on a Fourier rep-
resentation on horizontal planes and Chebyshev polynomials in the wall-normal
direction.

The problem is made non-dimensional by selecting as reference quantities the
free-fall velocity (see equation (2.2)), the height of the cell H and the temperature
difference between the walls AT,..; = T}, —T,.. Rayleigh and Prandtl numbers are
set to Ra = 1.7 x 10° and Pr = 0.7. The rectangular computational domain has
dimensions L, X Ly x L, = 8 x 1 x 8 and the computational grid accounts for
Ng X Ny X n, = 128 x 129 x 128 points. The third-order Runge-Kutta scheme is
used for time integration and a non-dimensional time step At = 0.0005 is adopted.

In the horizontal directions, x and z, periodic boundary conditions are applied,
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L
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FI1GURE 1.1: Sketch of the Rayleigh-Bénard cell considered.

while at the walls no-slip and constant temperature conditions are set respectively
for the velocity and temperature field. The non-dimensional temperature of the
bottom and top wall is respectively 6, = 0.5 and . = —0.5. The same numerical
numerical parameters are employed in the reference simulation.

In figure 1.2 statistics computed using the modified version of Incompact3d
are compared with reference data by Togni et al. (2015). To quantify errors on
statistics presented the root-mean-square deviations between profiles are used.
These are R((6)) = 0.245%, R(O;ms) = 0.611%, R(urms) = 1.026% and R(vyms) =
0.522% where relative errors are computed with respect to the maximum val-
ues. The comparison reported suggests that present results are not affected by

implementation errors.

1.3 Open outflow boundary condition

To be resolvable a partial differential equations problem, such as the Navier-
Stokes equations, require the definition of boundary conditions. In computa-
tional fluid dynamics boundary conditions for the velocity and temperature fields
are specified at the domain boundaries. At boundaries where fluid may enter
or leave the domain “open boundary” conditions have to be set. The aim of
such conditions is to represent an unlimited space, as flows in reality are not
bounded, through a limited computational domain. In particular when deal-
ing with constant-density fluids the incompressibility constraint at permeable
boundaries is difficult to meet because of the coupling between pressure and the

velocity component normal to the boundary itself. This makes the definition of
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FiGURE 1.2: Comparison of statistics in the Rayleigh-

by Togni et al. (2015).

Bénard configuration used to validate the implementation
of the buoyancy term: — present results, x reference data
(a) average temperature profile,
(b) temperature fluctuations, (c) horizontal velocity fluctu-

ations and (d) vertical velocity fluctuations.
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open boundary conditions an “exercise in frustration” as defined by Sani and
Gresho (1994) at the end of a symposium on that topic.

The outflow condition implemented in the original version of Incompact3d is
one-dimensional convective equation along the direction normal to the outflow
plane

putai’ | = 1.
e b+UMa($‘n)b 0 (1.3)

In equation (1.3) Uy is a convective velocity computed as the mean value be-
tween the maximum and the minimum normal velocity on the boundary; n is
the unit vector normal to the outflow boundary. Condition (1.3) has shown to
be suitable in simulations where buoyancy forces are negligible or when passive
scalars are not considered, see for example Gautier et al. (2014); Laizet et al.
(2010); Lamballais et al. (2010). On the contrary in buoyant flow configurations
it makes the solver algorithm unstable. For such type of flows Hattori et al.
(2013) review the open outflow boundary conditions employed in literature and
state that the most accurate one to deal with buoyant and turbulent flows is the
condition proposed by Stevens (1990). This condition is based upon the following
one-dimensional advection-diffusion equation defined at the outlet plane z = L,
9¢ ¢ _ 0%

where Y is the diffusion coeflicient, 7.e. kinematic viscosity v or thermal diffusivity
a, and the transport velocity is obtained by summing the advection velocity Uy

to the phase velocity U,, defined as

(n) (n) (n) (n—1)
_ Un, + unz—l . — anz_l _ d)nl.—l

Us = fv Up = (n—1) (n—1) (15 & b)
¢nz—2 - qbnm—l

In equations (1.4) and (1.5) ¢ stands for a velocity component or temperature, n
indicates the current time-step and n, is the vertical grid index at which x = L,.
In addition, clipping is applied to the sum U, + Us to ensure that 0 < U, + U <
Uo+Uyy, where Uy is the average centreline velocity of jets and Uy is the free-fall
velocity, 7.e. the velocity scale related to the buoyancy effect. In non-dimensional
form Uyy = Ri%5.

1.3.1 Validation test

The outflow condition (1.4) is tested by comparing results obtained in two simula-

tions on the triple jet configuration depicted in figure 1.3 (see chapter 3 for a more
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FIGURE 1.3: Sketch of the triple jet configuration.

extensive description of the flow), performed on computational domains of differ-
ent vertical extension. The domain of regular size is Qn = [0, 30] x [—15, 15] x [0, 6]
while the extended domain dimensions are Qg = [0, 60] x [—15,15] x [0, 6]. The
two grids include 257 x 256 x 64 and 513 x 256 x 64 points, respectively, in
order to maintain the same grid spacing. The physical case selected for the
test is very close to the triple jet presented in section 3.2. In order to reduce
the computational effort Reynolds number based on the jet width H is set to
Re = Uy H/v = 500 instead of Re = 5000, while for simplicity velocity compo-
nents and temperature at the jet inlets are specified using hyperbolic tangent

profiles, as suggested by Stanley et al. (2002). For the central jet

_U D a_ /2)]

u—2—|—2 tanh{5(2 Y
On Oy H

9:—2 +—2 tanh [5 (2 —\/y2>}

while cross-flow velocities are set to zero, v = w = 0. Temperature profiles of lat-
eral jet are obtained by setting 6. as the centreline temperature and substituting
y by y — 3.5H and y + 3.5H for the right and left jet respectively.

Even at Re = 500 in both simulations the flow displays a turbulent behaviour.

Figure 1.4 reports contours of percentage errors between statistics computed in
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the regular and extended computational domains. Errors are computed as

Caletial

x 100 1.7
¢7“ef ( )

where ¢ is the statistic quantity considered and ¢,y is a reference value, Ug for
velocity-related statistics and A@ for the average temperature field. As one may
expect figure 1.4 shows that errors on statistics considered are larger close to the
top and lateral boundaries. The only exception is Upms-

Overall the errors introduced by the outflow condition on the regular domain
Q2 can be quantified by root-mean-square deviations of first-order statistics cal-
culated in Q2 with respect to statistics computed on the extended domain Qg

taken as reference. Errors are defined similarly to the paper Hattori et al. (2013)

2
N E
S (o8 - o)
Nij

R(¢) = (1.8)
In equation (1.8) the summation is performed only on indices i and j because
statistics are obtained by averaging in time and along z-direction (k index). Table
1.1 shows deviations computed using equation 1.8 on domain Qy = [0,30] x
[—15,15] x [0,6] and on the restricted portion Qg = [0,20] x [-10,10] x [0, 6],
see figure 1.5. This is in view of evaluating errors and locating regions where
deviations induced by the vicinity of the outflow boundary are well under control.
Results in table 1.1 should be read in comparison to the reference quantities: inlet
velocity and temperatures (Uy = 1; 60, = 0.5;0. = —0.25) and the free-fall velocity
Ury = 0.5. It is apparent that deviations introduced by the outflow conditions
are acceptable, especially when results in (r are considered. As a consequence
results in the triple jet simulation (section 3.4) are presented in the restricted

sub-domain Qg.

1.4 Precursor channel

In order to set realistic inlet conditions at the jets entrance in the triple jet
simulation a precursor simulation technique is employed. Inlet profiles of veloc-
ity components and temperature are specified using instantaneous bidimensional
fields saved on a cross-flow plane in a DNS of a fully developed channel flow in
which temperature is computed as a passive scalar. To match the flow regime in

the triple jet configuration, the Reynolds number based on the channel height and
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FIGURE 1.4: Contours of percentage errors defined by equa-
tion (1.7) on the fields of (a) average vertical velocity com-
ponent, (b) average non-dimensional temperature, (c) and
(d) root-mean-squared fluctuations of u and v respectively.
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0 " |

-20 -10 0 10 20

FIGURE 1.5: Two-dimensional domains on which statistics

are defined. Black-solid square represents regular domain

Qn, red-dashed rectangle indicates the extended domain Qg
and blue-dashed square is the trace of ()p.

R((u)) 843-10°2 4.77-102
R({v))  6.67-1072 5.85-102
((0))  3.97-107% 3.27-1073
(tpms)  4.70-1072 3.77-1072
(Vpms)  4.07-1072 1.75-1072
(Wrms) 8.54-107% 8.13-1073
R(0,ms) 1.65-1073 1.58-1073

TABLE 1.1: Root-mean-square deviations used to compare

results obtained in different domains. Errors are computed

on statistics in two different sub-domains: Q2 and Qg, con-
sidering solutions on g as reference.
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the time averaged centreline velocity is set to Re = 5000, while Prandtl number
is Pr = 0.031. The friction Reynolds number computed a posteriori, based on
the channel half-height ¢, is Re; = u,6/v = 141, falling in the weakly turbulent
regime.

The computational domain dimensions are L, x L, x L, = 27 x 1 x 6 and
computations are performed on 256 x 129 x 256 grid points, respectively in the
streamwise x, wall-normal y and spanwise z direction. Boundary conditions im-
pose periodicity along x and z directions, while at y-normal walls no-slip and
constant heat flux conditions are applied. To simulate a fully-developed flow and
thus apply periodic conditions in the streamwise direction the fluid excess tem-
perature formalism is employed, see Kawamura et al. (1999). The computational
time-step is the same of the triple jet simulation, At = 0.0005. It is worth to
notice that to employ such time step the semi-implicit version of Incompact3d
developed by Flageul et al. (2015) !, in which the diffusive terms in y direction
are treated implicitly, has been used. If the above-mentioned numerical parame-
ters are set in the native and fully explicit version of Incompact3d the code will
become unstable due to low Prandtl number considered and the grid spacing
employed in proximity of walls.

In figure 1.6 statistics computed in the precursor channel simulation (Re, =
141, Pr = 0.031) are compared against reference data by Moser et al. (1999)
and Kawamura et al. (1999), obtained at Re, = 180 and Pr = 0.025. Present
results agree well with reference data, despite the small difference in Reynolds

and Prandtl numbers.

thttps://framagit.org/ CFLAG /incompact3d



16 Chapter 1. Code development and validation tests
3
20
15+
N
W™
5 L
0 - : 70 ol 2 : ; : ! '
10 10 10 10° 0 30 60 90 120 150 180
y* yt
(a) (b)
1
0.06
0.7!' +
5 +++
+++
e 0.04]
<0> 0.5} ++++ 7] ev'ms
Vad
0.25 0.02 -
0 ‘ ‘ ‘ 0 ‘ ‘ ‘
0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
Y y
(c) (d)

FIGURE 1.6: Comparison of precursor channel statistics ob-
tained with Incompact3d at Rer = 141 and Pr = 0.031
(lines) with reference data: Moser et al. (1999) (Re, = 180,
symbol x) and Kawamura et al. (1999) (Pr = 0.025, symbol
+). (a) average velocity and (b) velocity components fluc-
tuations: u(——), v(——) and w (— - —) in viscous units; (c)
average temperature and (d) temperature fluctuations.
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2 Rayleigh-Bénard convection

2.1 Introduction

Turbulent natural convection is observed in countless flows in Nature as well as
in several engineering applications. Circulations in the oceans, air atmospheric
cycle and overturning of liquid metal in Earth’s outer core are just few examples
of environmental fluid motions induced by density differences due to temperature
gradients, see for example Marshall and Schott (1999), Hartmann et al. (2001)
and Larson (1991). Outside the atmosphere thermally-driven turbulence occurs in
the outer layer of the Sun (Nordlund et al., 2009) and other stars (Michel et al.,
2008), while in the technological field it plays a prominent role in passengers
cabins and buildings thermal comfort of (Wang et al., 2014), and also in the
passive cooling of nuclear reactors (Ortiz et al., 2019).

Although natural convection occurs is a wide variety of flows its essential
features are reproduced in the Rayleigh-Bénard configuration (Normand et al.,
1977), which is essentially made by a confined fluid layer heated from below
and cooled from above. Rayleigh-Bénard Convection (RBC) has been and is the
subject of several studies, as proven by the following three extensive reviews:
Ahlers et al. (2009), Lohse and Xia (2010) and Chilla and Schumacher (2012).
As reported by Xia (2013) four main trends are followed in the study of tur-
bulent RBC. The most important one is related to the scaling of the Nusselt
(Nu) number, i.e. the non-dimensional parameter that quantifies heat-transfer
enhancement with respect to a purely conductive layer, with parameters that
regulate the flow regime, Rayleigh (Ra) and Prandtl (Pr) numbers. In this field
the main advancements have been provided by Grossmann and Lohse (2000) and
their subsequent works (Grossmann and Lohse, 2001, 2002, 2004), who proposed
scaling laws Nu = f(Ra, Pr) which have been found to predict, within a good
approximation, the Nusselt number for a wide range of Ra and Pr. The second
trend in RBC studies is the influence of buoyancy forces on statistical properties
of turbulent flows, i.e. the occurrence of the Bolgiano-Obukhov cascade instead
of the Kolmogorov one in a certain range of scales of the energy spectrum, see
Bolgiano (1959) and Obukhov (1959). As reported for example by Calzavarini
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et al. (2002), Kunnen et al. (2008) and Sun et al. (2006) the observation of the
Bolgiano-Obukhov scaling is still an open question. The last two topics of inter-
est concern boundary layer dynamics and coherent structures and the way they
affect the mechanics of heat and momentum transfers, being these fundamentals
to develop accurate transport models. A few of the works about boundary layer
and coherent structures are Grossmann and Lohse (2004), Stevens et al. (2010),
van Reeuwijk et al. (2008a) and van Reeuwijk et al. (2008b).

Although numerous works have been published on RBC, most of them have
been performed at Prandtl numbers Pr ~ O(1) or higher (Kadanoff, 2001). Little
attention has been given to low-Prandtl-number convection despite it is observed
in the Sun’s outer layer and is exploited in nuclear reactor applications and lig-
uid metal batteries, see Nordlund et al. (2009), Grotzbach (2013) and Kelley and
Sadoway (2014). The limited number of studies in such conditions is also mo-
tivated by inherent difficulties encountered in both experiments and numerical
simulations. As no optical access is possible due to opacity of liquid metals, labo-
ratory measurements are made by taking advantage of the electrical conductivity
of such fluids by means of complex electromagnetic flow meters and magnetic
probes (Schulenberg and Stieglitz, 2010). On the other hand Direct Numerical
Simulations (DNSs) allow to obtain fully tridimensional fields of velocity com-
ponents and temperature but they require a higher computational effort with
respect to fluids with order-one Prandtl number. This is because of by one side
the presence of large-scale thermal structures requires larger computational do-
mains, while on the other higher amounts of energy are injected in the velocity
field reducing the Kolmogorov scale and, as a consequence, requiring finer com-
putational grids, see for example Calkins et al. (2012) and Schumacher et al.
(2015).

In the present chapter RBC is analysed by means of DNSs in three different
configurations, which involve fluids at different Prandtl numbers: liquid mercury
(Pr = 0.025), air (Pr = 0.7) and water (Pr = 7). Instead of comparing results
at constant Rayleigh number but different Prandtl number, present simulations
are performed by varying Pr at constant Grashof number Gr = Ra/Pr. This
approach, developed by Schumacher et al. (2015), allow to study the influence
of the ratio between kinetic and thermal diffusivities while keeping unchanged
the weight of different terms in the momentum equations. Buoyancy forces are
considered in the governing equations through the Boussinesq’s approximation,
the validity of which is carefully addressed in section 2.3. Moreover the spatio-

temporal discretisation is meticulously analysed a posteriori both in the bulk and
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FIGURE 2.1: Sketch of the laterally unbounded Rayleigh-
Bénard cell.

in the boundary layer regions. Attention is given also in the comparison between
a priori estimations of the smallest scales of turbulence against values computed
via statistics, see section 2.4. Results presented in section 2.5 are aimed to anal-
yse different features of heat and momentum transfers in configuration studied.
Instantaneous fields and spatial autocorrelations provide quantitative and qual-
itative information about plumes characteristics at different Prandtl number,
while single-point statistics are aimed at comparing present results with pub-

lished literature.

2.2 Flow configuration and numerical param-
eters

Turbulent natural convection is studied in the laterally unbounded Rayleigh-
Bénard configuration, a sketch of it is reported in figure 2.1.

The flow regime in RBC is determined by Rayleigh and Prandtl numbers
(Tritton, 1988), which are defined as

_ gBATH?

|26

v

Ra Pr = - (2.1)

In these definitions H is the height of the Rayleigh-Bénard cell, AT is the temper-

ature difference between hot and cold walls, g is gravity and 5, « and v represent
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respectively thermal expansion coefficient, thermal diffusivity and kinematic vis-
cosity of the operating fluid. When dealing with buoyancy driven flows there is
no velocity scale directly imposed by boundary conditions, thus a velocity scale
has to be derived from other quantities involved in the problem definition. In
RBC it is usual to consider as velocity scale the free-fall velocity of thermals Uy
(Gray and Giorgini, 1976) defined as

Uss = VgBATH (2.2)

Then Reynolds number based on the free-fall velocity reads

Re = Uss B (2.3)
v
and Grashof number is 5
Gr = MA% (2.4)
From definitions (2.1), (2.3) and (2.4) it follows that
Gr = % = Re? (2.5)

The system of non-dimensional governing equations in RBC has been in-
troduced in section 1.2. This is rewritten here in a more convenient form by

considering relation (2.5)

8’&1'
8121' =0
Ou;  Ouju; B Op . 1 0%u;
ot 8.7)]' N o0x; v Gr al‘j a$j
96 90, 1 0%

@ + 81‘j - Prv Gr 8.%']' aiL'j

In equations (2.6) variables are made non-dimensional by using H, Uy and
AT respectively as reference length, velocity and temperature; d;0 is the Kro-
necker delta. This form of the governing equations clarifies that studying RBC
at constant Grashof number but different Prandtl number allows to maintain the
momentum equations unchanged. By varying Pr only the energy equation is
directly modified, the dynamical field is indirectly affected through the buoyancy
term, see the paper by Schumacher et al. (2015) where this approach has been

introduced.
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Case Ra Pr LyxLy,xL, Ng X Ny X N At AT

LME 1.25x 10° 0.025 8x1x8 1458 x 513 x 1458 5 x 107° 100
AIR 3.5 x 107 0.7 8§x1x8 1024 x 513 x 1024 5 x 1075 125
WAT 3.5 x 108 7 8x1x8 2592 x 513 x 2592 5 x 107> 110

TABLE 2.1: Parameters of the simulations. L, x L, x L, and

Ng X Ny X n are the domain dimensions and computational

grid, At is the time step and A7 is the time period over
which statistics are gathered.

Numerical parameters of the simulations are summarised in table 2.1. Bound-
ary conditions impose periodicity along x and z directions while at y-normal walls
no-slip conditions are applied for the velocity field. Temperature is set to 8, = 0.5
and 0. = —0.5, respectively on the lower and upper wall. The time advancement
scheme is the second-order Adams-Bashforth in every configuration. For sim-
ulations AIR and WAT the fully explicit code has been used, while for LME
case the semi-implicit code by Flageul et al. (2015) has been employed due to
stability problems arose because of the low Prandtl number and the small grid
spacing employed in y-direction, as already mentioned in section 1.4. After an
initial transient, statistics have been gathered for a time period Ar. Statistical

convergence is assessed later in section 2.4.

2.3 Validity of the Boussinesq’s approxima-
tions

The sets of non-dimensional governing equations (1.2) and (2.6) underlies a se-
ries of assumptions named after Boussinesq (Boussinesq, 1903) and firstly used
by Oberbeck (1879). The applicability of these assumptions has to be carefully
assessed in order to correctly represent the problem addressed by keeping simu-
lation errors under control.

The Boussinesq’s approximation consider the following hypotheses (Gray and
Giorgini, 1976; Tritton, 1988):

e density is constant in every term of the governing equations except for the

gravitational term, where density is linearly variable with temperature;

e all the other fluid properties are considered constant;
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e viscous dissipation and hydrostatic effects are negligible in the energy equa-

tion.

Given a fluid at a thermodynamic condition defined by temperature 79 and
pressure p°, the validity of above assumptions can be checked by validity maps
constructed using the method by Gray and Giorgini (1976), as done in paper by
Angeli et al. (2019). These maps are regions of the bidimensional space AT,y —
L,cs (reference temperature difference and reference length) where assumptions
listed above are verified within a given tolerance. Usually 10% variations of
thermophysical properties around their reference values, observed in reference
conditions (77, p"), are permitted.

Figures 2.2, 2.3 and 2.4 display the validity region of the Boussinesq ap-
proximation in LME, AIR and WAT configurations. Reference conditions and
permitted variations on thermophysical properties are reported in the figure cap-
tions. In addition red dashed lines which represent non-dimensional parameters
of configurations studied are drawn. In LME configuration the operating fluid
considered is liquid mercury and its thermophysical properties have been taken
from Engineering ToolBox (2005), while in AIR and WAT cases, where the oper-
ating fluid is respectively air and water, properties are gathered from Eckert and
Drake (1987) and Holmgren (2006).

It appears that in LME and WAT configurations the validity region is widely
extended around the line representing actual conditions, thus the Boussinesq
formulation is deemed to be suitable to describe natural convection phenomena
in such configurations, see figures 2.2 and 2.4. For liquid mercury the reference
length (i.e. the cell height in RBC) is limited by hydrostatic effects, while the
limiting temperature difference AT,..; is about 20.3° C and is related to the
variations of specific heat with temperature. Specific heat is indeed the most
sensitive property to temperature of liquid mercury. The maximum temperature
difference in WAT at which the Boussinesq’s approximation is valid is instead
defined by the variations of viscosity with temperature. Besides, L.y is limited
by hydrostatic effects (inclined line) and by variations of thermal conductivity
with pressure (horizontal line). On the other hand the operating conditions in
AIR configuration are included in the Boussinesq’s validity region only in a small
portion, whilst a 15% tolerance on variations of air thermophysical properties
is considered. For this fluid the most limiting conditions are dictated by the
variations of density with pressure and the variations of thermal conductivity with
temperature, which respectively limit the characteristic length and temperature

difference. Although the intersection between the validity region and the line
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FIGURE 2.2: Validity region of the Boussinesq’s approxima-

tion for liquid mercury (LME case) constructed using the

method by Gray and Giorgini (1976). Reference conditions

are T° = 20° C and p° = 1 atm, and 10% relative varia-

tions of thermophysical properties around reference values
are allowed.

representing actual conditions is small, the Boussinesq’s formulation is considered
to hold in this study. For example when AT,.; = 60°C and L,.; = 0.39 m errors
are below 15%.

2.4 Assessment of the spatio-temporal dis-

cretisation

2.4.1 Consistency relations

The accuracy of the numerical procedure in RBC can be assessed by checking if
the consistency relations hold. These are exact relations proposed by Shraiman

and Siggia (1990) and Siggia (1994) which are derived from the set of governing
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FIGURE 2.3: Validity region of the Boussinesq’s approx-

imation for air (AIR case) constructed using the method

by Gray and Giorgini (1976). Reference conditions are

TY = 70° C and p° = 1 atm, and 15% relative variations

of thermophysical properties around reference values are al-
lowed.
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FIGURE 2.4: Validity region of the Boussinesq’s approxi-

mation for water (WAT case) constructed using the method

by Gray and Giorgini (1976). Reference conditions are

T° = 20° C and p° = 1 atm, and 10% relative variations

of thermophysical properties around reference values are al-
lowed.
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equations (2.6)

Nu =1+ VRaPr {6y
Nu =1+ VRaPr (&')y (2.7)
Nu = VRaPr () )v

where () indicates values averaged over the entire computational domain and

¢’ is the pseudo-dissipation rate of kinetic energy defined as

1 . .
g = Oui Oy (2.8)
v Gr 6.%']' a$j
and £y’ is the dissipation rate of temperature

- 1 ( 00 00 )
=— | — 2.9
= vV Gr Pr \Ox; Ox; (2:9)

Note that in definitions (2.8) and (2.9) velocity components and temperature are

considered, not only their turbulent fluctuations as done in equations (2.27) and
(2.35) to compute the turbulent dissipation rates.

In table 2.2 the Nusselt numbers computed using the consistency relations
(2.7) are compared with Nusselt number calculated through the wall-normal first

derivative of temperature at the walls. In non-dimensional form
Nu= —= (2.10)

where () indicates the ensemble average in general. In the flow under inves-
tigation average values are computed considering that the flow is statistically
homogeneous in time and along the horizontal directions, z and z. Also sym-
metry or antisymmetry about the mid-channel plane y = 0 is exploited. The
comparison in table 2.2 shows a very good agreement, thus numerical procedure

employed is deemed to be accurate in each configuration.

2.4.2 Turbulence micro-scales

The discretisation in space and time has been checked a posteriori by comparing
grid spacing and time step against the turbulence micro-scales. In Pr < 1 fluids,
such as in LME and AIR configurations, the smallest scales observed in the flow

are the Kolmogorov length nx and time 7x scales (Kolmogorov, 1941), defined
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1+ VRaPr(v'd)y 1+ VRaPr')y VRaPr()y

Case  Nu Nu Nu Nu
LME 5.33 1.0006 0.9991 1.0002
AIR  22.33 1.0006 1.0005 0.9989
WAT 44.12 0.9981 1.0006 0.9991

TABLE 2.2: Comparison of Nusselt number computed using
equation (2.10) with consistency relations (2.7).

as

. 3\ /4 . A\ 1/2
Nk = (a* ) Tk = <€*) (2.11)

where the asterisk marks dimensional quantities. On the other hand when Pr > 1
as in the WAT case Batchelor (1959) states that the scalar energy spectrum is
extended beyond the cut-off wavenumber of the turbulent kinetic energy spec-
trum. Diffusive effects in the scalar field become important at a wavenumber

corresponding to the Batchelor scale ng

I/* a*Z 1/4 77*
* _ K
B = ( o ) T prl2 (212)

The smallest time scale of temperature fluctuations is derived by considering ng

and the Kolmogorov velocity ux = ng /7

* #\ 1/2
=18 _ (O‘) (2.13)

A short digression on the smallest length scale of the scalar field is worth
here. Obukhov (1949) and Corrsin (1951) found that the smallest length scale in

the temperature spectrum is
a*S 1/4 *
= < ) = K (2.14)

* [ —
It po = pa/i
However, as stated by Batchelor (1959), for Pr > 1 the velocity field at scales
nK > 1 > np is smoothed out by viscous effects while the scalar field still exhibits
fluctuations. This affects the scale at which the advective term balances the
diffusive one in the energy equation, which is the Batchelor scale np defined in

equation (2.12).
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Case Azt and Az" Ayt AUTlewe AT
LME 3.039 0.696 0.904 0.129
AIR 2.766 0.275 0.923 0.053
WAT 1.866 0.340 2.227 0.058

TABLE 2.3: Discretisation in space and time expressed in

terms of the smallest scales (4 superscript) of the velocity

field (LME and AIR configurations) or temperature field
(WAT case).

In non-dimensional form the Kolmogorov length and time scales write

—3/2\ /4 172\ 1?2
(nk) = <G<E> ) (Tk) = <G<€> > (2.15)

while Batchelor scales are

—3/2 pp—2 1/4 —1/2 pp1 1/2
e R T == K

where the angular brackets indicate averaged values. Dissipation of turbulent

kinetic energy ¢ is defined as

Z_q )
Si Sis

VaGr 7Y

where s;; = 0.5 (Qu;/dxj 4 Ou};/dx;) for i,j = 1,2,3 is the strain rate tensor. Ta-

e = (2.17)

ble 2.3 reports the ratio between grid spacings and time step employed in present
simulations and the smallest scales computed a posteriori using relations (2.15)
for LME and AIR cases, and relations (2.16) for WAT configuration. Spatial
and temporal discretisations employed meet the requirements for state-of-the-art
DNSs, see Moin and Mahesh (1998).

2.4.3 Boundary layers discretisation

In addition to the requirements in terms of the smallest turbulence scales, the
computational grid in a well-resolved DNS must also be suited to correctly rep-
resent the flow inside the thermal and velocity boundary layers. According to

Shishkina et al. (2010) the number of grid points needed to correctly resolve the
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thermal and velocity boundary layers are respectively

V2a Nul/2 pr=3/4 A3/2 1:3/4 Pr<3x10~*

N . ﬁaNulﬂ Prr(—0.5355+0.033log Pr) 3x1074<Pr<i )18

BLY = V2 a Ny/2 pp(-0-0355+0.033log Pry 4 < py <3 (2.18)
\/ﬁaNul/QE?’/2 Pr>3
and

V2a Nul/? pr=1/4 A1/2 71/4 Pr<3x107*
\/iaNul/Z py(—0.1785+0.011l0g Pr) 3x1074< Pr<i

Npru > (2.19)

\/§aNu1/2 py(0.321540.011log Pr) 1< Pr<3

\/iaNul/2Pr1/3E1/2 Pr>3

where a = 0.482, A = 0.332 and E = 0.982 are constants derived when approxi-
mating the Prandtl-Blasius boundary layer theory, see Shishkina et al. (2010).

In this study the thermal boundary layer thickness dg is derived by assuming
that Jg is the height of a quiescent fluid layer subject to a temperature difference
AT/2, where heat is solely diffused throughout the layer with a temperature
gradient equal to the average temperature derivative at walls, see Chilla and
Schumacher (2012). Mathematically this means

AT 0T
267 Oy*l,

(2.20)

where the asterisk marks dimensional quantities. Considering equation (2.10) the

non-dimensional boundary layer thickness becomes

H
2 Nu

8o = (2.21)

On the other hand the velocity boundary layer thickness §,, is computed as in
Shishkina et al. (2010)

0.5 Nu Lt Pri/2 A=l =12 Pr<3x10*
bu =4 0.5 Nu~t prO37-002leg P) - 3,104 < pr < 3 (2.22)
0.5 Nu ' Pri/3 p—1 Pr>3

To develop equations (2.22) the boundary layer is assumed to be scalingwise

laminar, which means that boundary layer characteristics scale as predicted by
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Case Op Oy

LME 0.0938 0.0221
AIR  0.0224 0.0197
WAT 0.0113 0.0221

TABLE 2.4: Thicknesses of the thermal (dp) and kinetic ()
boundary layers in investigated configurations.

the Prandtl-Blasius theory for laminar boundary layers, as reported by Sun et al.
(2008). As stated by Landau and Lifshitz (1987) this assumption does not hold

when the shear Reynolds number Re, is above 420. Re, is defined as

Res = Tou ”@ (2.23)
v v

where U is the velocity scale of large-scale motions. The calculation of the

Reynolds number relative to the large-scale circulation UH /v as reported in
Grossmann and Lohse (2000) indicates that configurations LME, AIR and WAT
are characterised by shear Reynolds number respectively of 25.7, 16.9 and 12.0,
well below the threshold Res = 420.

In table 2.4 are reported the thicknesses of thermal and velocity boundary
layers for the three cases considered. As one may expect, because of the different
Prandtl numbers, the thermal boundary layer thicknesses are quite different from
one case to the others. Instead J, is similar among the configurations studied
and deviations of §,, with respect to the mean value 8, = 0.0213 are within 7.5%.
This suggests that configurations with constant Grashof number exhibit a large
scale motion of similar intensity, as the existence of a velocity boundary layer is
related to the mean wind, see also Grossmann and Lohse (2000).

The comparison between the boundary layers resolution in present configu-
rations and requirements calculated by equations (2.18) and (2.19) is reported in
table 2.5. Actual computational grids largely exceed the requirements which are
obtained by comparing the Nusselt number in simulations with increasing mesh
density, see Shishkina et al. (2010). The usage of coarser resolutions has not
been taken into account as it leads to rough statistics, this may be observed in
the profiles of turbulent kinetic energy and temperature variance balance equa-
tions reported section 2.5.3.

The above statement regarding the thickness of the velocity boundary layer
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! lA
Case Npro/Npro Npr./NpLu

LME  72/13.8 18/3.2
AIR 29/3.9 26,/3.4
WAT  21/44 39/8.6

TABLE 2.5: Comparison between the number of grid points

actually placed within the thermal and velocity bound-

ary layers (primed values) and discretisation suggested by
Shishkina et al. (2010). Requirements are largely met.

have to be considered carefully as the definition of such a quantity is still discussed
by the scientific community. For example van Reeuwijk et al. (2008a) define ¢, as
the wall-normal distance at which the intensity of horizontal fluctuations peaks,
while Stevens et al. (2010) compute the velocity boundary layer thickness as twice
the wall distance at which the kinetic energy dissipation rate ¢!/ reach a maximum

value, where
2.
" 0%uy;

Eu - <’LL1 8.1‘j (91']'

(2.24)

Figure 2.5 shows the profiles of ¢!/ in the configurations considered, as well as
the peak positions and the boundary layer thickness according to Stevens et al.
(2010). To summarise, table 2.6 reports the velocity boundary layer thicknesses
following the different definitions presented. Although Shishkina et al. (2010)
report that equations (2.22) provide results similar to the criterion by Stevens
et al. (2010), this is not the case in present simulations. Differences may be due to
the aspect ratio of the domain (1 in Shishkina et al. (2010), 8 in present studies)
and the Rayleigh number set when Pr = 0.7, which in Shishkina et al. (2010) is
two orders of magnitude higher than in present AIR configuration. Criterion by
van Reeuwijk et al. (2008a) results in similar thicknesses between each others, but
values are about three times larger than predictions by Shishkina et al. (2010).
Finally, the method by Stevens et al. (2010) provides ¢, values quite different in
configurations studied. Only in case AIR the result is similar with respect to the
calculation by Shishkina et al. (2010).

2.4.4 A priori assessment of discretisation

Approximated forms of equations (2.11), (2.12) and (2.14) are usually employed

in order to assess the spatio-temporal discretisation at the stage of simulation
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FIGURE 2.5: Profiles of kinetic energy dissipation rate &/
(equation (2.24)) in configurations studied. Solid, dashed
and dotted lines represent respectively LME, AIR and WAT
cases. Black curves represent the profiles of !/, red and blue
vertical lines indicate respectively the wall-normal distances
at which maxima are observed and the boundary layer thick-

nesses according to Stevens et al. (2010).

Ou LME AIR  WAT

Shishkina et al. (2010) 0.0221 0.0197 0.0221
Stevens et al. (2010) 0.0176 0.0233 0.0318
van Reeuwijk et al. (2008a) 0.0614 0.0573 0.0653

TABLE 2.6: Comparison between velocity boundary layer
thicknesses computed using different criteria found in liter-
ature.
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setup. As suggested by Shishkina et al. (2010) and Scheel et al. (2013), the

smallest scales of turbulent fields can be predicted as

«3\ 1/4 N 1/2
! x v /% v
— = — 2.25
Ulie < e ) TK (5*) ( )

and

1/4 1/2
. * a*2 § o /
0 =( = ) = (%) (2.26)

With respect to equations (2.11), (2.12) and (2.14), in equations (2.25) and (2.26)

the pseudo-dissipation rate of turbulent kinetic energy & defined as

1 ou’ ou!
= L L 2.2
¢ v Gr (8.%'] 8x1> ( 7)

is used instead of €. The difference between these two quantities is

1 0%} u})

- v Gr Ox; axj

and is seldom important in almost all circumstances, as stated by Pope (2001).

e—& (2.28)

To check this assumption figure 2.6 reports the ratio (¢)/(€) in the three cases
considered. Difference (2.28) is well below 5% except for the region close to the
walls.

In laterally unbounded RBC the averaged velocity components are zero, (u;)
fori = 1,2, 3, therefore the pseudo-dissipation of turbulent kinetic energy & (equa-
tion (2.27)) equals the pseudo-dissipation of kinetic energy &’ (equation (2.8)).
Thus it is possible to introduce the consistency relations (2.7) in equations (2.25)
and (2.26) to compute Kolmogorov and Batchelor scale in non-dimensional form

as . /4
(nic)v = (Gr(]{f)u—l)) (Ti)v = 77%( VGr
(2.29)

, 1 1/4 , ng \/@
(np)v = <G7’ Pr(Nu— 1)) (T)v = “prz
where Nu can be estimated a priori using the unifying theory by Grossmann and
Lohse (2000). A similar way to estimate mesh requirements in the bulk was first
proposed by Grétzbach (1983).
Table 2.7 reports the comparison between the smallest scales of velocity and
temperature fields computed a priori, using equations (2.29) (denoted by prime

superscripts), and a posteriori, obtained by relations (2.15) and (2.16) with (&)
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FIGURE 2.6: Ratio between turbulent kinetic energy dissi-

pation (¢) and the average pseudo-dissipation of turbulent

kinetic energy (¢€). Solid, dashed and dotted lines indicate
respectively LME, AIR and WAT configurations.

substituted by (e)y. The comparison shows that equations (2.29) predict well
Kolmogorov and Batchelor scales. The only notable difference lies in the Batch-
elor time scale in WAT configuration, where the value computed a priori is one
order of magnitude smaller than the one computed from results. Previous com-
parisons should be considered carefully as they involve quantities which are aver-
aged over the entire domain. Those comparisons still hold true in the bulk region,
i.e. close to mid-channel height y = 0, but if one compares scales computed a
priori against the minimum values computed at the walls, where (¢) is maximum
and in general quite different from (e)y, differences arise, see table 2.8. While
length scales predicted are about twice the minimum values computed at the
walls a posteriori, the predicted time scales are two order of magnitude larger
than results in LME and AIR configurations, and almost 30 times larger in WAT
case.

To summarise, equations (2.29) allow to compute within a good approxima-
tion the smallest length scales before the calculations both in the bulk region,
where they are almost correct, and close to the walls, where error factors ~ 2 are
found. On the contrary time scales computed a priori are almost 200 times larger
than minimum values computed a posterior: when Pr = 0.025 and 30 times when
Pr =7. In the bulk also time scales predictions are correct or smaller than the

outcomes.
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Case (ng)v or (np)v  (x)v or (np)v  (T)v or (t)v  (7x)v or (Tp)v

LME  3.21x10°3 3.28 x 1073 7.30 x 1072 7.60 x 1072
AIR 5.22 x 1073 5.06 x 1073 1.93 x 107! 1.81 x 107!
WAT 296 x 107° 2.85 x 1073 2.34 x 1072 1.52 x 107!

TABLE 2.7: Comparison between the Kolmogorov and

Batchelor scales (length n and time 7) computed a priori

(prime superscripts) and volume-averaged values computed
from the results.

Case (ng)v or (Mp)v  (Ni)m OF MB)m  (Tr)v OT (TE)v  (TK)m OF (TB)m

LME 3.21 x 1073 1.81 x 1073 7.30 x 1072 3.88 x 10~*
AIR 5.22 x 1073 2.82 x 1073 1.93 x 107! 0.49 x 1074
WAT 2.96 x 1073 1.65 x 1073 2.34 x 1072 8.60 x 10~

TABLE 2.8: Comparison between the Kolmogorov and

Batchelor scales (length n and time 7) computed a priori

(prime superscripts) and minimum values at the walls cal-
culated from the statistics.
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2.5 Results

2.5.1 Flow structures

Figures 2.7 and 2.8 display the instantaneous fields of non-dimensional tempera-
ture and velocity magnitude on zy-planes in configurations studied. As observed
by Schumacher et al. (2015) in constant-Grashof-number conditions the lower is
the Pr number the wider is the range of scales exhibited by the velocity field and
the more diffusive is the temperature field behaviour. In addition the instanta-
neous fields of 6 show that thermal plumes behave very differently as the Prandtl
number changes. Configuration LME is characterised by large and almost wall-
to-wall coherent structures, while in cases AIR and WAT plumes are narrow and
they do not reach the opposite wall. This is more evident in figures 2.9, 2.10 and
2.11 which report the isosurface # = 0.2 coloured by the vertical y coordinate in
configurations studied. At Pr = 0.025 there are few large mushroom-like plumes
and these impinge on the opposite wall. For instance the isosurface in figure 2.9
reaches y-coordinate of 0.96, which falls inside the upper thermal boundary layer,
0.96 > 1 — dg, see table 2.4. Figure 2.10 shows that in AIR configuration plumes
are thinner and most of them do not cross the plane y = 0, while in WAT case
thermals identified by # = 0.2 are so thin that they can be barely seen and they
do not reach the opposite half-channel region, see figure 2.11.

Differences in plume behaviour are due to the different ratio between kinetic
and thermal diffusivities. In low-Pr fluids thermal diffusivity is high with respect
to kinematic viscosity, thus plumes moving away from walls effectively transfer
heat to the surrounding fluid increasing the plumes width, and these can reach
the opposite wall as they are subject to low friction forces because of the relatively
low viscosity. However the morphological evolution studied by Zhou et al. (2007),
where swirling mushroom-like structures are emitted as a result of the collision
and convolution of sheet-like plumes, is observed in every configuration studied,
see figures 2.9, 2.10 and 2.11.

Fields of instantaneous vertical velocity component v and temperature 6 on
horizontal cross sections at the edge of the thermal boundary layer substantiate
the above statements about flow structures, see figures 2.12, 2.13 and 2.14. In
configuration LME (figure 2.12) the temperature field shows four large regions of
warm fluid, connected to each other through fluid filaments at high temperature.
Beside these regions some very cold fluid portions indicate the presence of cold
plumes even at the edge of the hot thermal boundary layer. The velocity field in

figure 2.12(b) reflects the temperature distribution as it shows that warm fluid
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is rising while cold plumes are falling. The same apply to configurations AIR
and WAT (figures 2.13 and 2.14), but instead of large coherent fluid regions the
network of sheet-like plumes is very dense and chaotic. Emission of very thin
mushroom-like plumes is indicated by red spots in fields of vertical velocity v, see
figures 2.13(b) and 2.14(b).

In configurations AIR and WAT the Large Scale Circulation (LSC), which
appears in every Rayleigh-Bénard cell (Krishnamurti and Howard, 1981) and is
one of the fundamentals in the widely-accepted scaling theory by Grossmann and
Lohse (2000), occurs in locations characterised by a cluster of plumes as stated
for example by Sun et al. (2005) and Niemela et al. (2001). In configuration AIR
this is visible mainly in the upper-left and lower-right regions in figure 2.13(a),
while in case WAT four clusters where sheet-like plumes are more dense are
observed in figure 2.14(a). From this analysis it can inferred that while in fluids
with Pr ~ 1 or higher the LSC is made by several plumes, in configuration where
Pr ~ O(1072) it is composed by single plumes. Therefore the findings by Verzicco
and Camussi (1999), which discriminate an heat transfer regime dominated by
LSC for Pr < 0.35 while for Pr > 0.35 heat is mainly transported by thermal
plumes, might be revised. At low-Prandtl-numbers plumes are essentially large
scale structures and therefore should be regarded as the LSC themselves.

Although the definition of thermal plumes is widely accepted, i.e. they are
fluid portions characterised by a temperature contrast with the background or
in other words temperature fluctuations of the same sign, quantitative criteria
to define plumes extensions are yet an open problem (Chilla and Schumacher,
2012). One of the possible solutions is to quantify plumes size by using the spatial
autocorrelations as they correlate fluctuations in two points of the domain. The

autocorrelation function p is defined as

(@ ()¢ (4 )
Po(r ) = T e )y

(2.30)

where ¢ is a velocity component or 0, w = (x, z) is a two-element vector represent-
ing the coordinates on horizontal planes and r = (r,,ry) is the separation vector,
again on xz-planes, which indicates the correlation distance. The angular brack-
ets () indicates that statistics are obtained by averaging in time and along = and
z directions. Due to horizontal homogeneity of statistics p is not dependent from
7 but only from the vertical coordinate y and the magnitude of the separation
vector r = |r|. Figures 2.15, 2.16 and 2.17 display the spatial autocorrelation

functions at selected vertical coordinates normalised by the thermal boundary
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FIGURE 2.7: Instantaneous fields of non-dimensional tem-

perature # on a xy-plane in configurations (a) LME, (b)

AIR and (c) WAT. Contours are limited to the region

x € [Ly/2 Lg] to compare flow details between different
configurations.
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FIGURE 2.8: Instantaneous fields of velocity magnitude on a

xy-plane in configurations (a) LME, (b) AIR and (c) WAT.

Contours are limited to the region « € [L,/2 L] to compare
flow details between different configurations.
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FIGURE 2.9: Isosurface # = 0.2 coloured by the vertical y
coordinate, LME configuration.
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FIGURE 2.10: Isosurface # = 0.2 coloured by the vertical y
coordinate, AIR configuration.
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FIGURE 2.11: Isosurface 6§ = 0.2 coloured by the vertical y
coordinate, WAT configuration.

layer thickness. Due to statistical isotropy in zz plane, statistics involving the
horizontal velocity components u and w are averaged together. In addition also
the parabolas osculating pp(r = 0) are reported in the graphs. This geometric
construction is made to clarify the concept of the Taylor scale (Pope, 2001) which
is used here to quantify plumes width. The Taylor scale is defined as the abscissa
at which the osculating parabola crosses the z-axis in the autocorrelation graphs.
In mathematical form
-2

A= m (2.31)
where pj(r = 0) is the second-order derivative of the # autocorrelation coefficient
with respect to r, evaluated at » = 0. Plumes width can be considered to be equal
to twice A due to the symmetric behaviour of the autocorrelation function about
r = 0. Table 2.9 reports plumes width at different heights in all the configurations
considered. Data show that in LME configuration plumes have a minimum width
inside the thermal boundary layer (y = 0.5dy) and they increase their size while
travelling towards the opposite wall. Plumes size computed through this criterion
agrees with evaluations that can be made on the instantaneous temperature field,
see figure 2.7(a). On the contrary in WAT case plumes have their maximum
horizontal extension inside the thermal boundary layer, which in this case means
very close to the walls, and reduce their width as moving away from the walls. In

AIR configuration an almost constant width is observed at vertical coordinates
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FIGURE 2.12: Instantaneous fields of non-dimensional tem-
perature 6 (a) and vertical velocity v (b) on the horizontal
section at y = dp = 0.094. Case LME.
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FIGURE 2.13: Instantaneous fields of non-dimensional tem-
perature 6 (a) and vertical velocity v (b) on the horizontal
section at y = dp = 0.023. Case AIR.
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wall distance LME AIR WAT

0.5 09 0.384 0.127 0.102

dp 0.503 0.117 0.056
) 0.685 0.111 0.039
3 dg 0.805 0.117 0.038
5 dp 0.911 0.132 0.043

TABLE 2.9: Plumes width computed as two times A\ (equa-
tion (2.31)) at vertical heights multiple of the thermal
boundary layer thickness in the configurations studied.

considered.

The autocorrelation functions in AIR and WAT configurations (shown in fig-
ures 2.16 and 2.17) feature a sudden change in derivative. This is particularly
evident in the autocorrelations of temperature fluctuations and suggests that the
flow in these configurations has a dual behaviour. For small separations the flow
features a high but fast-decaying correlation, while at large separations the slowly-
decaying autocorrelation coefficients indicate the presence of large scale motions.
Finally, it should be noted that figures 2.15, 2.16 and 2.17 indicate that fluctua-
tions in velocity and temperature fields remain correlated along the homogeneous
directions despite a correlation distance of four times the cell height. For future
calculations enlargements of the computational domain should be considered.

Thermal plumes can be investigated by studying the divergence of the bidi-

mensional velocity field in horizontal planes div,

ou Ow

o + 9 (2.32)

divy =

as proposed by Togni et al. (2015). Positive values of div, indicate a divergence
of the flow field parallel to the walls, i¢.e. plume impingement, while negative
values denote the characteristic flow convergence of plume ejection. To analyse
separately the contributions of impingement from those of ejection figure 2.18
shows profiles of the conditional statistics (div,)"™ = (div;) if divy > 0 and
(divg)~ = (divy) when div, < 0, plotted as functions of the distance from the
walls scaled by the thermal boundary layer thickness. It appears that in con-
figurations LME and AIR the maximum impingement occurs slightly closer to
the walls with respect to the distance of maximum ejection, as noted by Togni
et al. (2015) at Pr = 0.7. On the other hand in configuration WAT the opposite
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FIGURE 2.15: Spatial autocorrelation function of temper-

ature fluctuations (— - —), horizontal (——) and vertical

(= — —) velocity components at different vertical heights

in configuration LME. The red line indicates the parabola
osculating pg at r = 0.
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FIGURE 2.16: Spatial autocorrelation function of temper-

ature fluctuations (— - —), horizontal (——) and vertical

(= — —) velocity components at different vertical heights

in configuration AIR. The red line indicates the parabola
osculating pg at r = 0.
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FIGURE 2.17: Spatial autocorrelation function of temper-

ature fluctuations (— - —), horizontal (——) and vertical

(= — —) velocity components at different vertical heights

in configuration WAT. The red line indicates the parabola
osculating py at r = 0.
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FIGURE 2.18: Profiles of the conditional statistics (div,)™"
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functions of the scaled vertical coordinate y/dp and are lim-

ited to range y/dg € [0, 5] to focus on the region close to the
walls.

occurs, maximum impingement is located further from the walls with respect to
maximum ejection. In addition at Pr = 0.7 peaks of impingement and ejection
curves are almost equal. This is not verified in the other two cases, at Pr = 0.025

impingement is more vigorous than ejection, while at Pr = 7 the opposite applies.

2.5.2 Single-point statistics

The analysis of single point statistics is of fundamental importance in order to
topologically describe the flow. Figure 2.19 displays the average temperature
profiles together with vertical lines indicating the thermal boundary layer thick-
nesses. It is evident that the region where thermal diffusion dominates over
turbulent heat transfer, i.e. the thermal boundary layer in which the gradient
d(0)/dy is large, has a very different extension in configurations considered.
Profiles of the root-mean-square velocity fluctuations are shown in figure 2.20.
The peaks of maximum fluctuations intensity for the horizontal velocity compo-
nent occur almost at the same distance from the walls in configuration studied.
As already mentioned in section 2.4.3 this is deemed to be due to the constant

Grashof number in simulations presented. By defining the velocity boundary layer
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thickness as the wall distance at which these peaks are observed, as suggested by
van Reeuwijk et al. (2008a), one concludes that the three cases are characterised
by the same boundary layer thickness. However the intensity of velocity fluc-
tuations scaled by the free-fall velocity is quite different. Fluctuations in LME
configuration are characterised by almost twice the intensity of fluctuations in
AIR, which in turn are almost two times as intense as those in WAT case. This
occurs because of the different Prandtl number since, as reported also by van
Reeuwijk et al. (2008a), at different Rayleigh number the intensity of the peak
of horizontal velocity fluctuations is the same. Varying Ra only the wall distance
of this peak changes. The higher intensities of horizontal velocity fluctuations
in low-Prandtl-number conditions indicates that in such condition the “wind of
turbulence” is more vigorous than at higher Pr values. Moreover the velocity
boundary layer behaves like a two dimensional layer since the wall-normal fluc-
tuations are very small close to walls, see Togni et al. (2015) for a more detailed
description of the spatial redistribution of turbulent kinetic energy.

Profiles of non-dimensional temperature fluctuations are shown in figure 2.21
and are plotted as functions of the vertical coordinate scaled by the thermal
boundary layer thickness. Despite the highly-diffusive temperature field (figure
2.12(a)), temperature fluctuations are more intense in configuration LME with
respect to AIR and WAT. It can be concluded that in constant-Grashof-number
conditions the lower is the Prandtl number the higher are temperature and veloc-
ity fluctuations intensities when scaled over conventional quantities AT and Uyy.
Others and probably more appropriate scalings may modify the outcome of such
comparison. In addition, as shown in the inset, fluctuations peaks are observed
close to the edge of the thermal boundary layer in all configurations studied. In
configuration LME maximum fluctuations occurs slightly further from the walls,
while in ATR and WAT cases peaks are observed closer to the wall than dg.

The behaviour of thermal plumes can be studied more in detail by means
of skewness and kurtosis of the flow variables. The values of skewness S and
kurtosis K allow to gain information about the shape of the Probability Density
Functions (PDFs) of a random variable. These statistical quantities are the third-

and fourth-order moments of fluctuating variable ¢’ normalised by its variance

R M U

<¢/2>3/2 <¢/2>2 (2'33)

Skewness S provides information about the symmetry of PDF. Symmetric PDFs

will have zero skewness (and all the other higher-order odd moments will be zero),
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FIGURE 2.19: Average temperature profiles in configura-
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ations plotted as function of y/dp in configurations LME
(—), AIR (— — —) and WAT (—- —). The inset focuses on
the region close to the walls, y/dy € [02]

while a positive skewness indicates that ¢’ is more likely to assume values larger
than the mean (¢) with respect to values below the mean or, in other words, the
PDF of ¢ is skewed towards values higher than the mean. On the other hand the
kurtosis K indicates the flatness of a PDF. A PDF with high K has long tails
which means that extreme and intermittent events take place. On the contrary
low values of K are symptomatic of a PDF clustered around the mean value. In
fluid dynamics S and K are often used to compare the PDF of flow variables with
the values of the Gaussian (or “normal”) distribution, which is characterised by
S=0and K =3.

Profiles of skewness and kurtosis of velocity components, pressure and tem-
perature in the configurations studied are reported in figures 2.22, 2.23 and 2.24,
plotted as functions of the vertical coordinate scaled by the thermal boundary
layer thickness y/dg. Due to statistical isotropy in horizontal planes skewness and
kurtosis of velocity components along x and z directions are averaged together
and hereafter they will be referred to as S, and K,. At mid-channel height, in
each configuration, almost every variable is normally distributed as S and K ap-
proach values respectively close to 0 and 3. The only exception concerns pressure
in LME and AIR cases, where S), is negative, and temperature in WAT configura-
tion, being Ky > 3. The PDF of the horizontal velocity component is symmetric

in every configuration (S, = 0) in the entire fluid layer, while close to the walls
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K, denotes that intermittent extreme events occur. This is the footprint of im-
pingement as impinging plumes originate fluctuations which are symmetrical and
far from the mean.

The PDFs of vertical velocity v and temperature 6 are very different from
the Gaussian distributions. Close to the walls S, < 0 and K, >> 3 in LME and
AIR configurations indicating that v intermittently assumes large negative values
by extreme events. Once again this denotes plumes impingement on the walls as
negative vertical velocity fluctuations indicate the presence of cold plumes coming
from the upper wall. Interestingly in WAT configuration a different situation is
observed, skewness of the vertical velocity component is positive, while the kur-
tosis remains larger than the normal value. Hence v tends to take positive values
which are statistically closer to the mean with respect to other configurations,
denoting that in WAT configuration, close to the walls, plumes emission is more
likely to occur with respect to impingement. The tendency of emission to prevail
over impingement has been already observed in section 2.5.1, see figure 2.18.

As noted by Togni et al. (2015) skewness of temperature fluctuations is neg-
ative at walls, crosses the z-axis and assumes the Gaussian value at mid channel
in every configuration. Almost at the same vertical coordinate of the sign change
in Sy, Ky exhibits a minimum and this occurs about the edge of the thermal
boundary layer, from about 0.7dyp in WAT configuration to 1.469 in LME case.
Moreover whereas in LME and AIR configurations temperature kurtosis assume
the normal value 3, indicating that the intermittent events related to the ascend-
ing and descending plumes are balanced, in WAT case a large kurtosis is observed.
This indicates that symmetrical and extreme temperature fluctuations are likely
to be recorded in WAT case at half channel.

Finally skewness and kurtosis of pressure are analysed. The kurtosis K,
shows a small deviation from the Gaussian value throughout the fluid layer, while
the skewness S, in LME and AIR is positive at the walls and negative at mid-
channel. Such values indicates the deceleration of plumes at walls by means of
positive pressure fluctuations (Worner and Grotzbach, 1998) whereas at y = 0.5
they suggest that negative but not-so-extreme events take place, which may be
related to plumes suction in the bulk region. On the contrary in WAT case S, is
everywhere non-negative pointing out that in these conditions plumes suction is

not as vigorous as in LME and AIR.
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Profiles are plotted as functions of y/dy.

2.5.3 Distribution of turbulent kinetic energy and tem-
perature variance

To characterise the distribution of turbulent kinetic energy and temperature vari-

ance the relative balance equations are analysed. The budget equation of turbu-

lent kinetic energy reads

’U/ U’ / 2
d<§y ) d<dyp> N \/16;7 dd;’? 4 W) — (8) =0 (2.34)

where k = (u] u}) /2 is the local, instantaneous turbulent kinetic energy. The first

three terms of equation (2.34) represent inertial, pressure and viscous transports

of turbulent kinetic energy, while (v'8’) accounts for production due to buoyancy
and (€) is the average pseudo-dissipation of turbulent kinetic energy, see equation
(2.27). In section 2.4.4 it has been shown that the pseudo-dissipation of turbulent
kinetic energy & approximates well the dissipation of turbulent kinetic €, see figure
2.6.

Figures 2.25, 2.26 and 2.27 display profiles of the terms in equation (2.34)
scaled by (¢")y = (Nu—1)//v/Ra Pr (see equation (2.7)) and plotted as functions
of y/d,. The dissipation term is not reported as it is very similar in configurations
studied. The values of 4, considered are computed following Shishkina et al.
(2010), see equation (2.22). In Togni et al. (2015), where convection at Pr = 0.7
and Ra = 10° — 107 is studied, three regions are identified. Close to the walls a
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viscous layer is observed, and this region is bounded by the vertical coordinate
at which the pressure transport equals the viscous one. There a transitional
layer starts and it extends towards the region at which pressure transport equals
production. From this vertical position the bulk region begins. It is worth to
notice that at every Prandtl number involved in the present study these three
regions exist, at least at the Rayleigh numbers considered. In figure 2.28, where
the budget terms of different configurations are compared, it appears that the
viscous layer has almost the same thickness in all configurations, y/d, ~ 0.2—0.35.
On the other hand the transitional layer extension is similar in configurations
AIR and WAT, up to y/d, ~ 2.1 — 2.4, while it differs significantly in LME
where it is bounded at y/d, ~ 3.5. This occurs because production at low
Prandtl and Rayleigh numbers grows far from the walls when compared to the
other two cases. Moreover, when scaled over (£’)y/, production terms as well
as inertial and viscous transports are very similar in the configurations studied.
Only the pressure transport assumes values which are larger in LME with respect
to AIR and WAT, see figure 2.28. Such a difference is related to the very strong
pressure fluctuations in the liquid mercury configuration, indicating that plumes
impingement is more vigorous than in other cases, see also the discussion about
skewness and kurtosis in section 2.5.2.

To complete the description of energy transfers in RBC also the budget of
average temperature variance has to be considered. The balance equation for
(02) is

V"2 2092
Ve a0 e =0 2

The first and second terms represent respectively inertial and diffusive transports,
while the third and the last ones are a source and a sink, hereafter called produc-

tion and dissipation. (gg) is the average rate of temperature variance dissipation

1 06" o0’
0 = 7 o o) 230

The terms of the temperature variance equation (2.35) in configurations LME,
ATR and WAT are shown in figures 2.29, 2.30 and 2.31. The topological analysis
reported in Togni et al. (2015) divides the fluid layer in a diffusive region close
to the wall, a transitional layer and a bulk zone. The former extends towards
the coordinate at which the production term equals diffusion, further from the
wall the transitional layer starts. The separation between transitional and bulk
regions is identified where production equals the inertial transport. Again, the

regions described in such analysis applies also to present cases, the only exception
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FIGURE 2.25: Budget of turbulent kinetic energy in configu-
ration LME: inertial (——), pressure (———), viscous (—-—)

transports; production (---) and dissipation (x). z- and y-

axis are scaled respectively over the velocity boundary layer

thickness &, and the volume averaged pseudo-dissipation

rate of kinetic energy (¢’)y. In the inset are shown details
of the central region.
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FIGURE 2.26: Budget of turbulent kinetic energy in config-
uration AIR: inertial (——), pressure (———), viscous (—-—)

transports; production (---) and dissipation (x). z- and y-

axis are scaled respectively over the velocity boundary layer

thickness d, and the volume averaged pseudo-dissipation

rate of kinetic energy (¢’)y. In the inset are shown details
of the central region.
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FI1GURE 2.27: Budget of turbulent kinetic energy in configu-

ration WAT: inertial (——), pressure (———), viscous (—-—)

transports; production (---) and dissipation (x). z- and y-

axis are scaled respectively over the velocity boundary layer

thickness 0, and the volume averaged pseudo-dissipation

rate of kinetic energy (¢')y. In the inset are shown details
of the central region.

FiGure 2.28: Comparison of terms in turbulent kinetic en-

ergy equation (2.34) between configurations studied: LME

(—), AIR (—-—) and WAT (---). Red lines indicate pro-

duction while green, blue and black stands for pressure, vis-

cous and inertial transports. Axes are scaled as in figures
2.25, 2.26 and 2.27.
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FIGURE 2.29: Budget of temperature variance in configura-
tion LME: inertial (——) and diffusive (— — —) transports;
production (— - —) and dissipation (---). z- and y-axis are

scaled respectively over the thermal boundary layer thick-
ness dyp and the volume averaged rate of temperature dissi-
pation (¢')y.

might be represented by LME where the bulk region is confined to a very small
portion around y = 0.5. This indicates that the topological analysis presented in
Togni et al. (2015), as well as the description of the self-sustained motion cycle,
might be considered relevant for a wide range of Ra and Pr.

Figure 2.32 compares profiles of terms in temperature variance equation in
configurations studied. It appears that scaling the wall distance over the thermal
boundary layer thickness dy allows to superimpose peaks of each term in equa-
tion (2.35). For distances from the walls larger than 30y each term is shown to
be almost constant suggesting that, just like the turbulent kinetic energy bud-
get (figure 2.28), sufficiently far from the walls the flows display homogeneous
characteristics.

In addition figure 2.32 shows that when scaled over the thermal dissipation
rate (5')y = Nu/v/Ra Pr (see equation (2.7)) the magnitude of terms in LME are
in general smaller than terms in AIR and WAT. In these two latter configurations
diffusive transport and dissipation are very similar, while production term and
inertial transport are quite different: in WAT case production and inertial terms
are larger in magnitude with respect to configuration AIR. This means that in
WAT configurations there is a higher surplus of temperature variance, and this

is transported by inertial effects towards the bulk region.
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FIGURE 2.30: Budget of temperature variance in configu-
ration AIR: inertial (——) and diffusive (— — —) transports;
production (— - —) and dissipation (---). x- and y-axis are

scaled respectively over the thermal boundary layer thick-

ness dyp and the volume averaged rate of temperature dissi-

pation (p/)y. In the inset are shown details of the central
region.
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FI1GURE 2.31: Budget of temperature variance in configura-

tion WAT" inertial (——) and diffusive (— — —) transports;

production (— - —) and dissipation (---). z- and y-axis are

scaled respectively over the thermal boundary layer thick-

ness dyp and the volume averaged rate of temperature dissi-

pation (€p')y. In the inset are shown details of the central
region.
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equation (2.35) between configurations studied: LME (——

), AIR (—-—) and WAT (---). Blue and black lines indicate

diffusive and inertial transports, while red and green lines

stand for production and dissipation. Axes are scaled as in
figures 2.29, 2.30 and 2.31.
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3 Triple jet

3.1 Introduction

Combustion chambers of gas turbines and nuclear reactors are just two examples
of the role of entrainment and mixing between buoyant streams in industrial
applications (Pitz et al., 2019; Shams et al., 2019a). Such phenomena are observed
also in several flows of environmental interest, for example pollutant emissions in
the atmosphere (Marro et al., 2014) and waste-water discharge from pipes into
lakes (Bleninger and Jirka, 2008).

In nuclear reactors mixing of streams at different temperatures occurs in the
upper plenum of reactors core where the heat generated within fuel assemblies
by fission processes is transported to a coolant which, in the latest generation of
reactors, is a liquid metal or a molten salt (Fazio et al., 2015). Reactors of this
kind are named Liquid Metal Fast Reactors (LMFRs) and after the Fukushima
nuclear disaster on March 2011 they have been extensively investigated as they
are inherently safe in case of electric power failures. In such scenarios the large
amount of liquid metal surrounding the fuel rods adsorbs the decay heat, which
is exchanged by means of natural convection, and undergoes a significant ex-
pansion, causing a passive shutdown of the fission process. However, due to
the high thermal diffusivity of the employed coolants, temperature fluctuations
are readily transmitted to the nearby walls, leading to subsequent expansions and
contractions in the containement structure, inducing thermal fatigue cycles which
might cause structural failures. In reactor thermal-hydraulics this phenomenon
is named thermal striping (Brunings, 1982).

Thermal striping is investigated in a reference configuration which involves
three submerged jets at different temperatures, vertically entering a pool from
the bottom surface. The experiments by Tokuhiro and Kimura (1999) in water
and Kimura et al. (2007) in liquid sodium are the two main benchmarks; both
studies aim at reproducing conditions inside LMFR. As observed by Knebel et al.
(1998), results obtained with water cannot be directly extended to liquid met-
als, as turbulent heat transfer at Pr < 1 is characterised by essentially different

features with respect to Pr > 1 cases (Oti¢ et al., 2005; Scheel and Schumacher,
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2016; Verzicco and Camussi, 1999). On the other hand, experiments with liquid
metals suffer from difficulties in local velocity measurements due to the opacity
of these fluids (Bremhorst et al., 1989; Schulenberg and Stieglitz, 2010). Be-
sides experiments, a set of numerical simulations is reported by Nishimura and
Kimura (2003) and Yu et al. (2017), which perform Unsteady RANS, and in the
LES studies by Jung and Yoo (2004), Chacko et al. (2011) and Cao et al. (2012).
In general, all these studies compare numerical results with the aforementioned
benchmarks in order to assess models prediction of thermal striping. In this con-
text the correct representation of turbulent fluctuations is a key issue (Bremhorst
and Krebs, 1992). To the authors knowledge, the only attempt at a Direct Nu-
merical Simulation (DNS) on this topic is reported by Kimura et al. (2002),
who compare DNS results against experiments by Tokuhiro and Kimura (1999).
However little information is provided on the finite-difference code employed,
and on the size of the computational domain in the spanwise direction, where
the adopted grid resolution (3 points) suggests that the approach is essentially
two-dimensional and arguably should not be considered a DNS. As compared to
the experiments, numerical results are in good agreement on the mean quantities,
whereas a significant tendency to over-predict second order statistics is observed.
In this chapter results of a Direct Numerical Simulation (DNS) performed on
a triple jet configuration, where the central jet is hot and the lateral ones are cold,
are presented. The configuration of three planar buoyant jets at different temper-
atures is by one side suggested by the interest in the study of thermal striping, and
on the other side it is expected to clarify the main physical pheneomena under-
lying entrainment and mixing between buoyant streams. The Reynolds number
considered is Re = 5000 and Prandtl number is Pr = 0.031. The simulated
Grashof number is Gr = 6.25 x 10% and mixed convection regime is established
at a Richardson number is Ri = Gr/Re* = 0.25. Unlike previous studies where
typical values of Ri are O(1072), buoyancy effects are non-negligible here. The
low-Prandtl number has been considered in order to infer about thermal striping
phenomena occurring in nuclear plants. As a matter of facts the selected Pr
number represents Lead Bismuth Eutectic (LBE) at Tief = 220°C, a liquid alloy
envisaged as a coolant inside LMFRs. Beside the aim to understand the physics
behind the mixing of buoyant jets, the resulting high-accuracy data allow to pro-
vide also reliable statistics on which to develop and validate numerical models
for the prediction of turbulent heat transfer in low-Prandtl-number fluids.
Simulations are performed using a customised version of the highly-parallel,

high-order and open source code Incompact3d. The original version of the code
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z

FIGURE 3.1: Three-dimensional representation of the com-
putational domain.

is briefly presented in chapter 1 together with modifications implemented and
validation tests.

The present chapter is organised as follows. Section 3.2 describe the triple jet
configuration together with the mathematical formulation of the problem, while
in section 3.3 are presented the numerical details of the simulation. Finally section
3.4 reports convetional and specifically-developed statistics used to characterise

flow and heat transfer features.

3.2 The buoyant triple jet case

The fluid-dynamic case investigated is depicted in figure 3.1 and involves a rect-
angular pool of liquid metal, where three planar jets are discharged vertically
upwards. The jets have the same average centreline velocity Uy but different
temperatures, the central stream is at temperature T}, while the lateral jets are
at T, < Ty. Slots are spaced by 3.5 times their width H, as sketched in figure
3.1.

Mass and momentum equations are solved coupled to the energy equation
through the Boussinesq approximation. The problem is made non-dimensional
by the jet width H, the time-averaged centreline velocity of the jets Uy and a
reference temperature difference AT = (T}, — Tyef) — 2 (Te — Trer). The latter
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is used in the definition of the normalised, non-dimensional temperature 8 =

(T — Tyet) /AT. The system of non-dimensional governing equations reads

8ui
83}1' =0
Ou; ~ Ouuj  Op 1 0%y Gr
ot ox; Oz, + Re 0xj 0x; * Ré? bou (3.1)

00 06u; 1 0%

ot Ox; ~ PrRe Oxj Ox;

where u; = u, ug = v and ug = w are the streamwise (vertical), cross-flow and
spanwise velocity components.

The Reynolds, Grashof and Prandtl numbers are defined as:

H AT H3
Re = o , GTEL

v 2

, Pr (3.2a, b, c)

v
-
where kinematic viscosity, thermal expansion coefficient and thermal diffusivity of
the operating fluid at temperature Ti¢f are indicated by v, 8 and «, respectively;
g is gravity. A Prandtl number Pr = 0.031 is assigned while the Reynolds and
Grashof numbers are set to Re = 5000 and Gr = 6.25 x 105. At a Richardson
number Ri = Gr/Re* = 0.25, buoyancy effects become non-negligible. Notice
that the present Re is five times lower than in the PLAJEST experiment (Kimura
et al., 2007) and previous numerical studies (Jung and Yoo, 2004; Yu et al., 2017),
while Richardson number is an order of magnitude larger than in previous works.
Deviations from parameters employed in literature are motivated by the feasibility
of a detailed DNS of the flow and the lack of numerical benchmarks on jets mixing
in buoyant conditions.

As done in section 2.3 the accurancy of the Boussinesq’s approximation has
been checked by following the method described in Gray and Giorgini (1976).
By considering the reference temperature Ty = 220°C, which allows to set
Pr = 0.031 and therefore study conditions relevant in nuclear reactor applica-
tions, and calculating the thermophysical properties of LBE through correlations
available in (Sobolev, 2011), the validity map in figure 3.2 has been obtained.
In calculations a 10% of properties variation has been considered allowable. The
red dashed line in figure 3.2 represents actual conditions, Gr = 6.25 x 10% and
Pr = 0.031. It appears that Boussinesq’s approximation is suited to represent
present configuration as the validity region embrace a large portion of the operat-

ing curve. The most limiting conditions for the reference length and temperature
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FIGURE 3.2: Validity region of the Boussinesq approxima-
tion for LBE constructed using the method by Gray and
Giorgini (1976). Reference conditions are TY = 220° C and
p? =1 atm, and a 10% relative variations of thermophysical
properties around reference values is admitted.

difference are represented repectively by the condition for neglecting compres-
sion work in the energy equation and the variation of viscosity with temperature.
Selecting a reference length comparable with the slot height in the experiment
by Kimura et al. (2007), H = 1.5 x 10~ 2m, the selected Grashof number leads
to a reference temperature difference AT = 72.7°C, for which the Boussinesq
approximation holds with a ~ 12% error related to the sensitivity of viscosity on

temperature.

3.3 Numerical method

The set of governing equations (3.1) has been numerically solved using a modified
version of the code Incompact3d . Modifications have been presented in chapter
1 and include the addition of the Boussinesq’s buoyancy term in the momentum
equations, a newly-implemented open outflow boundary condition and an inflow
strategy to accounts for fully developed conditions at the jet inlets.

The triple buoyant jet simulation is performed on a computational domain of
dimensions L; X Ly x L, = 30x30x6. Preliminary studies reported in Angeli et al.

(2017) suggest that such dimensions in the vertical and cross-flow directions are
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suitable for the case under consideration. With particular reference to the cross-
flow direction, in Angeli et al. (2017) it is also shown that the choice of periodic
boundary conditions, instead of outflow or slip conditions, does not influence the
mean flow significantly when a cross-flow extension L, = 30 is considered.

The computational grid accounts for 2049 x 2048 x 512 equally-spaced points,
respectively in the streamwise x, cross-flow y and spanwise z directions. The
smallest turbulence scales, which in this case are the Kolmogorov length nx and
time scales 7x, have been computed a posteriori on the flow domain from the field
of turbulent kinetic energy dissipation rate e. These results nx = 3.86 x 10~ and
T = 7.43 x 1072 and are found at coordinates (z,y) ~ (1.4, 3.9), where £ = enax,
corresponding to the external shear layer of lateral, cold jets. Grid spacing along
x and y directions equals Ax = Ay = 3.8 in, while Az = 3.0 pin. The non-
dimensional time step is At = 0.0005 and has been selected on the basis of
numerical considerations. Indeed it corresponds to At /& 6.7 x 1072 7uin. Accord-
ing to Moin and Mahesh (1998) the spatial and temporal discretisations employed
are demeed sufficient to resolve the smallest scales of motion and temperature.

Periodic boundary conditions are set along the cross-flow and the homoge-
neous directions, y and z. At the inflow plane (x = 0) velocity and tempera-
ture are set to zero u = v = w = 6 = 0 except for the jet slots, where flow
variables are assigned using snapshots recorded from the precursor channel sim-
ulation presented in section 1.4. This method is used in order to consider re-
alistic conditions at jet inlets rather than to reproduce turbulent fluctuations
employing synthetic methods. At every time step in the precursor channel sim-
ulation snapshots are recorded on streamwise-normal sections, which are discre-
tised by n, x n, = 129 x 256 grid points, and are then interpolated onto the
ny X n; = 69 x 512 mesh of the jet slots in the triple jet case. Recorded tem-
perature maps are also scaled in order to set the hot jet centreline temperature
at 0, = 0.5, while the lateral jets have 8. = —0.25. In this way the net inflow
of thermal energy is zero. In addition, to avoid the particular condition where
the three jets are in phase i.e. the same velocity and temperature profiles are
set at the three jet inlets at the same time, a phase-shift is introduced between
jets. The phase-shift considered is more than twice the integral time scale of the
streamwise velocity component, which has been computed using the temporal
autocorrelation of such component of velocity. Figure 3.3 display the temporal
correlation of u in the precursor channel simulation at different wall distances.
It appears that u uncorrelates after a period equal to A7 ~ 12, the phase-shift

considered is AT’ ~ 25.
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0 2 4 6 8 10 12 14

FIiGURE 3.3: Temporal autocorrelation function of the
streamwise velocity component in the precursor channel sim-
ulation at different wall distances.

Finally, at the outflow plane (z = L,) the open outflow boundary condition

presented in section 1.3 is enforced on both the velocity and temperature fields.

3.4 Results

3.4.1 Low-frequency oscillation

Figure 3.4 displays the instantaneous fields of vertical velocity component and
temperature on a section normal to the spanwise direction z. Due to the low
Prandtl number considered, temperature is mainly diffusive and characterised
by large scales, conversely the velocity field exhibits a wide range of scales. For
vertical coordinates z > 8 the fluid exiting from the three jets is observed to
coalesce in a single and almost isothermal stream. In the region close to the
inlets three large-scale thermal plumes derived from jet mixing are shown to
oscillate in z-planes. Oscillations are associated with a low-frequency cross-flow
undulation of the jets and vortex shedding.

This undulatory phenomenon experienced by the three jets can be observed in
figure 3.5, where the spanwise-averaged vertical velocity and temperature fields
are depicted at two different times. Averaging along the spanwise direction is
known to flatten the small scale turbulent fluctuations and to retain and empha-

sise the main flow unsteadinesses. The cross-flow undulation of the central jet
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FIGURE 3.4: Instantaneous fields on a z-plane: (a) vertical

velocity component u; (b) temperature 6.
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exhibits two large-scale vortex sheddings per oscillation period. The shedding is
systematically observed at the maximum cross-flow inclination (left and right) of
the central jet. To quantitatively assess this phenomenon, figure 3.6 displays the
frequency spectrum of vertical and cross-flow velocities at (z,y) = (5.00,1.75). A
clear separation of scales is observed with small scale turbulent fluctuations oc-
curring at much larger frequencies than the large-scale oscillation, characterised
by a frequency f = 0.090 corresponding to a time interval A7 = 11.1. Inter-
estingly, a second peak at an even lower frequency, f = 0.045, corresponding to
twice the oscillation period, A7’ = 22.2, appears in the turbulent spectrum of
figure 3.6. Its intensity is the largest for the vertical velocity component. The
analysis of the time evolution of the flow reveals that this is a statistical footprint
of vortex shedding also for the lateral jets. It appears that the lateral jets do
not shed vortices each time the central jet is inclined towards them. This phe-
nomenon is instead found to occur every two oscillating periods alternatively in
the two lateral jets. Due to the simultaneous superposition of shedding of large
scale vortices from the lateral and central jets, such a very-low frequency is also
the most intense, see figure 3.6. Low frequencies are observed throughout the
computational domain and the shedding of large-scale vortices affects the overall
flow and heat transfer behaviour.

To characterise the structure of this large-scale unsteadiness of the flow, fig-
ure 3.7 displays the spatial correlation function along the z (spanwise) direction
for the velocity and temperature fields in (z,y) = (5.00,1.75). Correlations dis-
play an initially steep decrease which is typical of turbulent flows. This decrease
lasts up to r, = 0.5 for the velocity components and up to r, ~ 0.75 for tempera-
ture. Such a difference could be ascribed to the small Prandtl number considered.
These spanwise scales represent the decorrelation lengths of the turbulent velocity
and temperature fields. By further increasing the spanwise separation r,, vertical
and cross-flow velocities and temperature correlations approach different corre-
lation levels. Only the spanwise velocity component is almost uncorrelated for
r; 2 1. The non-zero value of the spanwise correlation function for temperature
and the vertical and cross-flow velocity components is an unambiguous signature
of the shedding of large-scale vortices from the undulating jets. As shown here
in quantitative terms, the large-scale instability is essentially a two-dimensional
phenomenon, at least for the spanwise domain extent considered in the present
study. Investigating whether the low-frequency undulation and shedding of large-
scale vortices remains or not a two-dimensional phenomenon over larger spanwise

lengths exceeds the computational resources available and goes beyond the main
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FIGURE 3.5: Spanwise-averaged fields at two different time
instants: vertical velocity component, (a) and (b); temper-
ature, (c) and (d).

purpose of the present work.

3.4.2 Statistics

After a statistical steady state is achieved, statistics are calculated by averaging
in time for a non-dimensional time span A7 = 110 and along the homogeneous
direction z. Also symmetry or anti-symmetry of variables about y = 0 plane is
exploited. In order to reduce the errors due to the enforcement of the boundary
condition at the outflow plane statistics are presented in the region (z,y) €
[0, 20] x [0, 10], see section 1.3.

Figure 3.8 displays the average vertical velocity component. Induced by buoy-

ancy, the centreline vertical velocity initially increases for 0 < z < 2 reaching a
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FIGURE 3.6: Frequency spectrum of vertical and cross-flow
velocity components at (z,y) = (5.00,1.75). —— wu; ——:
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FIGURE 3.7: Spanwise correlation function of the three ve-
locity components and temperature evaluated at (z,y) =
(5.00,1.75). — u; ——: v; — - —: w; ---: 0.
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maximum value larger than the inlet value. On the contrary, the vertical velocity
peaks relative to the lateral jets decrease in intensity, again due to buoyancy.
Together with this decrease, the shift of the lateral peaks towards the centreline
indicate the bending of cold jets. As a result, for 2 < z < 8, a region of strong
interactions between the three jets is observed. Mixing finally leads to the coa-
lescence of the three jets, which for x > 8 form a single stream, later shown to
have self-similar characteristics.

The mean temperature field is shown in figure 3.9. Above the cold jet exits,
temperature exihibits a plume-like pattern. Most of the mean temperature gra-
dients are limited to the mixing region while for x > 6 temperature variations
are restricted to a range |A(A)| < 0.1, thus implying that buoyancy effects are
negligible beyond that vertical coordinate.

Figures 3.10 and 3.11 display the standard deviation of vertical and cross-flow
velocity fluctuations (uyms, Urms). At the jet inlets, x = 0, tpms and vy, display
the typical channel-flow distributions and thus are strongly inhomogeneous. In
the pool fluctuations are found to increase in intensity along both the vertical and
cross-flow directions. A spreading of the regions of high turbulent activity is also
observed. The spreading is such that for z > 10, no lateral peaks of turbulent
activity are observed and the flow behaves similarly to a single turbulent jet where
turbulent intensities are the strongest at the centreline and decrese towards the
sides. Tthe increment of turbulent fluctuations close to the jet inlets is a combined
effect of the development of shear layer instabilities and buoyancy forces. This
tendency is observed up to x ~ 6 where the mean velocity shear becomes weaker,
see figure 3.8, and hence a decrease of turbulent production by mean shear and
of the turbulent intensities occurs. Also, as mentioned above, for £ > 6 mean
temperature differences are confined within [—0.1,0.1] and thus the flow behaves
as essentially non-buoyant. As a consequence, the mixing region of the three jets
is found to be the site of the higher turbulent activities with a peak centred at
(z,y) = (3.5,0.6) for the fluctuations of the vertical velocity component and at
(z,y) = (3.8,1.1) for the cross-flow.

Figure 3.12 shows the standard deviation of the temperature field. Also tem-
perature fluctuations start from a strongly inhomogeneous distribution inherited
from the inlet condition, and then undergo an increase in intensity and a spread
in the cross-flow direcion, similar to the behaviour observed for the velocity fluc-
tuations. The increase in intensity is observed up to x = 5, and can be ascribed
to turbulence production associated with the mean temperature gradients, which

are non-negligible for x < 6, see figure 3.9. Hence, the mixing region of the three
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FIGURE 3.8: Mean vertical velocity component: subfigure

(a) displays profiles at selected xz-coordinates: —- —: z = 0;

—— x=2; ——: x=4;---: z =10. Subfigure (b) displays
contours over interval [0,20] x [0, 10].
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FIGURE 3.9: Mean temperature field (#): subfigure (a) dis-

plays profiles at selected z-coordinates: — - —: z = 0; ——:

x =2, ——: x =4; ---: x = 10. Subfigure (b) displays
contours over interval [0, 20] x [0, 10].
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FIGUuRE 3.10: Velocity fluctuations in the vertical direc-

tion wuppms: subfigure (a) displays profiles at selected x-

coordinates: — - —: x = 0; — = = 2; ——: x = 4;

-2 x = 10. Subfigure (b) displays contours over interval
[0, 20] x [0, 10].
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FiGure 3.11: Velocity fluctuations in the cross-flow di-

rection v, subfigure (a) displays profiles at selected x-

coordinates: — - —: x = 0; — x = 2; ——: x = 4;

-+: ¢ = 10. Subfigure (b) displays contours over interval
[0, 20] x [0, 10].
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FIGURE 3.12: Temperature fluctuations 6,.,s: subfigure (a)
displays profiles at selected x-coordinates: — - —: x = 0;
—— x=2; ——: x=4;---: x = 10. Subfigure (b)displays

contours of 0,.,,s over interval [0, 20] x [0, 10].
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jets is recognized to be also the site of the most intense temperature fluctua-
tions, where a peak is measured for (z,y) = (5.2,1.1). For x > 10, the weakening
combined to cross-flow spreading of temperature fluctuations recover a behaviour
similar to classical single jets, as discussed in § 3.4.4.

As one may expect from the above discussion also turbulent heat transfer
undergoes a substantial increase in the pool. Figures 3.13 and 3.14 display com-
ponents of turbulent heat flux in vertical and cross-flow directions. Let us define
% and 0 to be the orders of magnitude of velocity and temperature fluctuations
in the highly active region z < 10, where velocity fluctuations share the same
order of magnitude in all directions; ¢; represents the mean centreline temper-
ature of the central jet and /¢ is the characteristic width of the jet, defined as
the y-coordinate where the mean vertical velocity reaches half of its centreline
value, (u)(x,l(z)) = U.(x)/2. Considering heat fluxes in the = direction, mean
advection is much larger than the turbulent heat flux, Uy 0; > @0. In the y
direction, mean and turbulent advection are of the same order of magnitude
(v)0; ~ @0, where (v) ~ @ from the results. Despite the present Péclet num-
ber (Pe = Re Pr = 155), turbulent heat fluxes are larger than diffusion along
both 2 and y; along the z direction: @6 > Pe_lé?j/x while in the y direction:
@0 > Pe~'0; /¢. Tn the present case the ratio between turbulent and diffusive
heat fluxes is O(10%) for # < 10. Further from the inlet, = > 10, this ratio
becomes O(101).

3.4.3 Momentum fluxes

Momentum fluxes in the x direction are introduced to provide an explaination of
the physical mechanism underlying the merging of the three jets. The average
momentum equation in the vertical direction x can be written in terms of momen-
tum flux per unit volume, indicated here by ¢ = (¢1, ¢2) in the non-dimesional
formulation 3 3

o 2 = ) (3.3)

where the components of the averaged x-momentum flux are

i 8<U1>
Re Ox;

pj = (u1){u;) + (uyuj) + (p)dy; — (3.4)
As the viscous contribution to momentum fluxes is negligible in the flow region
considered, the last term in equation (3.4) is omitted from the discussion. Figure

3.15 displays profiles of ¢ and (3 at selected = coordinates. Notice that ¢ > 0
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FIGURE 3.13: Turbulent heat fluxes along the z-direction
(u'0'y:

subfigure (a) displays profiles at selected a-

coordinates: =0 — =2, —— x = 4

x = 10. Subfigure (b)displays contours of (u'6’) over
interval [0, 20] x [0, 10].
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FiGUrE 3.14: Turbulent heat fluxes along the y-direction
(v'¢"):  subfigure (a) displays profiles at selected x-
coordinates: — - —: x = 0; — x = 2; ——: x = 4;

x = 10. Subfigure (b)displays contours of (v'68’) over
interval [0, 20] x [0, 10].
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represents a x-momentum flux occuring across y-normal surfaces in direction +y,
while if ¢2 < 0 the xz-momentum flux is directed as —y. The same reasonings
apply for ¢1.

At the inlet (z = 0) z-momentum flux occurs only along the z direction and
pressure is found to be minimum at the centreline and maximum just outside the
lateral jets. This pressure distribution is symptomatic of the jets convergence
occuring just above the inlet plane. At x = 2, the profile of 5 indicates that the
central jet (y ~ 0.5) transfers z-momentum in the +y direction, while momentum
transfer due to the jet on the right side (y ~ 3.0) is directed as —y. In addition
pressure is minimum between central and lateral jets. A similar behaviour is
observed at © = 4 where the @9 profile clearly indicates the mutual entrainment
of the jets. The positive peak of @9 corresponds to the edge of the central jet
(y ~ 0.5) while the negative peak is at y ~ 2.1, and this indicates that the
lateral jets are bending toward the centerline. For z = 8, the z-momentum fluxes
are typical of a purely mechanical, planar jet. Momentum production due to
buoyancy is negligible (as mean temperature differences are very small) and the
main momentum flux is directed in the streamwise direction. Along the cross-flow
direction gy the low-intensity momentum flux is responsible for the entrainment
of quiescent fluid and causes the spreading of the stream. This analysis suggests
that the coalescence of the three jets is associated to their mutual entrainment,

i.e. the phenomenon known as Coanda effect.

3.4.4 Self-similarity

Fluid flow and heat transfer characteristics of the region far from the inlet are
described in the following. As previously observed the flow field for > 10
behaves as a single stream similar to that of a single jet and is essentially non-
buoyant.

The mean vertical velocity component at the centerline U.(x) = (u)(x,0) is

found to scale with the square-root of the distance from a virtual origin

1

VO.15(z + 1.4)

as shown in figure 3.16(a). The jet width £(z), defined in section 3.4.2, is found

to scale linearly with . As shown in figure 3.16(b), ¢(x) scales as

Ue(z) = (3.5)

((z) = 0.13 (z + 3.54) (3.6)
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(c)x=4 (d)z=38

FIGURE 3.15: z-momentum fluxes and production by buoy-
ancy at selected vertical coordinates: =z = 0,2,4,8. ——:

@1 — (p); —— @23 —+—: (p); -+ (Gr/Re*)(0).
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FIGURE 3.16: (a) profiles of the jet centreline velocity
U.(x): ——, equation (3.5); + present results. (b) profiles of

the jet width ¢(x): ——, equation (3.6); + present results.
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Self-similarity features for > 10 are displayed in figures 3.17(a) and (b) where
velocities are scaled by the centreline velocity U.(x) and lengths are scaled using
¢(x) as the length scale. Similarity laws hold true for y/¢ < 2. Conversely, the flow
for y/¢ > 2 exhibits a different behaviour due to the complex inlet configuration.

Some observables follow the well-established similiarity laws reported by Ten-
nekes and Lumley (1972) for single, purely mechanical jets and wakes. It can be
concluded that in this region the flow recovers universal properties i.e. is largely

independent of the inlet conditions.

3.4.5 Data for turbulence modelling

Figure 3.18 displays the turbulent kinetic energy distribution. The typical channel
flow distribution of £ at the inlet rapidly evolves in the mixing region, and its

intensity increases by one order of magnitude due to the production term

O(u;)
8.%'

()

(3.7)

which accounts for the transfer of mechanical energy to the fluctuating part of
the flow (Pope, 2001). Further from the inlet, > 10, the classical bell-shaped
profile observed in planar jets is recovered.

Figures 3.19 and 3.20 show the dissipation rate of turbulent kinetic energy
(e) (equation (2.17)) and temperature variance () (equation (2.36)). Profiles of
€ in the x < 10 region are shown to have several peaks, each of them corresponds
to one of the two shear layers at the sides of each jet. A similar behaviour is
observed for the temperature variance dissipation, where €9 at the central jet
is more intense. Moreover profiles of ¢ and ¢y at x = 0 show non-zero values
outside the jets region as a result of the interaction of negatively-buoyant fluid
fallen onto the inflow plane, which is maintained at constant temperature (6 = 0)
and no slip conditions applies. Profiles of (¢) and (gy) for x > 10 are typical of
a mechanical, planar jet.

In the present configuration, the behaviour of turbulent viscosity is very ir-
regular. It undergoes sudden increases (and decreases) by orders of magnitude.

Figure 3.21 displays y-profiles of v, /v calculated as

-1
% = —Re (u/V) (8(%) + a(;?) (3.8)

Only far from the inlets (z > 10) the distribution in y direction becomes more

regular. In the self-similar region (z > 10) the viscosity ratio v;/v is observed to
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FIGURE 3.17: Profiles of (a) mean and (b) fluctuating ve-

locities scaled with the centerline velocity as functions of

y/l. O: © =10; x: © = 12; +: = = 14; «: = = 16; [:
x=18; A: x = 20.
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FiGure 3.18: Turbulent kinetic energy distribution: —- —:
=0, — 2x=2;, —: x=4;---: z=10.
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FIGURE 3.19: (a) dissipation of the turbulent kinetic energy

computed at different z-coordinates: — - —: =z = 0; —:

x =2, ——: x =4; ---: x = 10. (b) contours of € over
interval [0, 20] x [0, 10].
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(b)

FIGURE 3.20: (a) temperature variance dissipation rate

computed at different z-coordinates: — - —: z = 0; —:

x =2, ——: x=4; ---: x = 10. (b) contours of gy over
interval [0, 20] x [0, 10].
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FIGURE 3.21: Distribution of turbulent viscosity: —: =z =
2, ——: x=4;---: x =10 —- —: xz = 20. Black and red

lines respectively indicate positive and negative values.

increase in the x direction. A simple order of magnitude analysis suggests that
far from the inlet the turbulent viscosity is of order v} ~ £*u*2/U*, where the

asterisks indicate dimensional quantities. In non-dimensional form

Vi Urms \ 2
% ReUt ( - ) (3.9)
Subtitution of approximations given above for U, and /¢ (see equations (3.5) and
(3.6)) and the value of tyms/Ue ~ 0.3 observed in the self-similar region, leads to
conclude that v;/v increases like 0.03 Re \/z. This is approximately verified by
our results in the single planar jet region for x g 10, see figure 3.22.

Similar to turbulent viscosity, the behaviour of turbulent thermal diffusivity
is very irregular.  This is shown in figure 3.23, where the ratio between tur-
bulent and molecular diffusivities in the z and the y directions is displayed, for
three x stations in the region x < 10. This suggests that in very complex flow
configurations like the one considered here, turbulence modelling is not an easy
task and the gradient diffusion hypothesis is expected to provide inaccurate re-
sults; see Errico and Stalio (2014) for a more extensive discussion on these topics.
Figure 3.24 displays contour lines of the cosine of 3, the angle between average
temperature gradient and turbulent heat fluxes. The gradient diffusion hypothe-
sis requires that the gradient of the temperature field is aligned with the turbulent
heat flux vector i.e. cos 8 = 1 throughout the flow domain. As displayed in fig-

ure 3.24, the two vectors are approximately aligned 0.9 < cos 8 < 1 only in very
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FIGURE 3.22: Ratio between turbulent and molecular vis-
cosity along the centreline in the range =z € [5,25]. —:

equation (3.9), ——: 0.03 Re \/x.

limited regions of the flow computed, for example in the shear layer of the single
mechanical jet, x > 10. Most of the flow domain is instead characterized by
cos 3 < 0 7.e. the two vectors point in opposite directions and turbulence models

relying on turbulent diffusivity are expected to fail in this context.
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FIGURE 3.24: Contour lines of cos 3, where § is the an-
gle between temperature gradient and turbulent heat flux
vectors: ---: cos 8 =0.0; ——: cos B =0.5; —: cos 8 =0.9.
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Concluding remarks

In this thesis turbulent flows and heat transfer in natural and mixed convection
regimes have been studied by means of Direct Numerical Simulations. Buoyancy-
driven flows are investigated in a laterally unbounded Rayleigh-Bénard cell with
aspect ratio I' = 8, for different operating fluids: liquid mercury (Pr = 0.025),
air (Pr =0.7) and water (Pr = 7). By following a recently-introduced approach
(Schumacher et al., 2015) Rayleigh number is varied along with Pr in order
to maintain a constant Grashof number, thus leaving the momentum equations
unchanged. In second place mixed convection in low-Prandtl-number fluids is
analysed in a rectangular pool of Lead-Bismuth Eutectic (Pr = 0.031) where
three jets are vertically discharged upwards and enter with the same average ve-
locity but different temperature. The central jet is hot while the lateral ones are
cold. Both configurations are deemed to be of interest for environmental flows
and technological applications. Although RBC has been extensively studied in
the past and nowadays, simulations at constant Grashof number in such large
computational domains have not been presented yet, at least to the author’s
knowledge. On the other hand several numerical works about the triple jet con-
figuration have been published but none of them have been performed without
turbulence models. The DNS presented in this thesis might be the first one.
Simulations are performed using a customised version of the code Incom-
pact3d , where in-house modifications involve the addition of the Boussinesq’s
buoyancy term in the momentum equations, the implementation of an open out-
flow boundary condition suitable for buoyant flows and the development of an
inflow strategy, which allows to specify at jet inlets velocity and temperature pro-
files recorded from a precursor channel DNS. All the modifications implemented
have been validated and validation test are presented in chapter 1. In addition
the validity of the Boussinesq’s approximation has been assessed in every con-
figuration studied by using the well-know method by Gray and Giorgini (1976).
Computational resources required for calculations have been granted through the
PRACE (Partnership for Advanced Computing in Europe) and ISCRA (Italian
SuperComputing Resource Allocation) programmes on CINECA’s (Consorzio In-

teruniversitario per il calcolo automatico) “Marconi” cluster, accounting for more
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than 70 million core hours overall.

Results in RBC configurations show that thermal plumes behave very dif-
ferently in the three cases considered. At low Prandtl number data show that
plumes width is comparable to the cell height and no clear distinction exists
between the large scale circulation and plumes themselves. In addition, thermal
plumes in liquid mercury are found to travel across the fluid layer while increasing
their width, impingement is very vigorous and occurs inside the thermal bound-
ary layer on the opposite wall. Instead, in configurations employing water and
air, thermal plumes are much thinner with respect to the liquid mercury case and
respectively have a decreasing and constant width. Plumes penetration is also
reduced, causing impingement to create a less intense positive divergence in these
two configurations. Both (k) and (¢'2) budget equations show that the fluid layer
can be divided in a viscous (or diffusive, when temperature variance is considered)
layer close to the walls, a transitional layer and a bulk region, according to the
topological analysis reported in Togni et al. (2015). Therefore the applicability
of such subdivision, which has been developed for Ra = 10° — 107 and Pr = 0.7,
should be considered extended at least to configurations investigated here.

The statistical analysis of the triple jet configuration reveals that the three
jets undergo an intense mixing close to the inlet, while for x > 8H a single and
isothermal stream is observed. In the mixing region the intensities of velocity
and temperature fluctuations are much larger than the inlet values as a result
of the combined effect of buoyancy forces and shear-layer instabilities. Superim-
posed to the development of turbulence, low-frequency undulations and shedding
of large-scale vortices arise. Such phenomena are an unambiguous signature of
the entanglement of the three jets dynamics and affect flow behaviour through-
out the domain. The analysis of momentum fluxes suggests that the three jets
coalesce as a result of their mutual entrainment, i.e. the phenomenon commonly
known as Coanda effect. Consequently the analysis reported provides an original
interpretation of this effect commonly known for its outcomes but yet scarcely
investigated in its origins, at least to the author’s knowledge. For = > 10H the
coalesced single stream is found to recover some of the self-similar characteristics
of classical, purely mechanical jets and hence behaves in a more universal way.
Moreover, relevant quantities for turbulence modelling such as turbulent viscosity
and diffusivity, as well as dissipation of turbulent kinetic energy and temperature
variance, show very irregular behaviours suggesting that turbulence modelling is
a difficult task in this configuration. Contour lines of the angle between tem-

perature gradient and turbulent heat flux vector indicate that typical turbulent
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viscosity models are prone to fail.

In summary, results presented are aimed to shed light on heat transfer mech-
anisms in buoyant turbulent flows, in particular when operating fluids have a
non-unitary Prandtl number. Statistics reported might also serve as numerical
benchmarks on which validate turbulent models to be employed for the design of

applications involving buoyant flows.

Results of the triple jet simulation have been presented in a couple of inter-
national conferences (Angeli et al., 2017; Fregni et al., 2019¢) and in a workshop
(Fregni et al., 2019b). These have been finally published in an international
journal (Fregni et al., 2019a). Collaborative efforts with other members of the
European project named “SESAME” are published or have been recommended
for publication in Nuclear Engineering and Design (Angeli et al., 2019; Shams
et al., 2019a,b). Different kind of investigations, concerning numerical studies of
techniques for heat transfer enhancement in race-car power modules, have been
presented in an international conference (Baraldi et al., 2019) and are published

in a recently-issued international journal (Sabato et al., 2019).
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