
Smart Cities: Bridging
Driver’s, Vehicle and

Infrastructure Viewpoints

Andrea Palazzi

University of Modena and Reggio Emilia
XXXII Cycle of the International Doctorate School in

Information and Communication Technologies

Doctor of Philosophy Dissertation in
Computer Engineering and Science

Supervisor: Prof. Rita Cucchiara
PhD Course Coordinator: Prof. Sonia Bergamaschi

Modena, 2020





Review committee composed of:

Prof. Alberto Del Bimbo
University of Firenze

Iuri Frosio, PhD
NVIDIA Research

Smart Cities: Bridging Driver’s, Vehicle and Infrastructure Viewpoints iii





To Francesco, Davide and Luca

(in chronological order)

Smart Cities: Bridging Driver’s, Vehicle and Infrastructure Viewpoints v





The next aspect of science is its contents, the
things that have been found out. This is the
yield. This is the gold. This is the excitement,
the pay you get for all the disciplined thinking
and hard work. The work is not done for the
sake of an application. It is done for the
excitement of what is found out. Perhaps most
of you know this. But to those of you who do
not know it, it is almost impossible for me to
convey in a lecture this important aspect, this
exciting part, the real reason for science. And
without understanding this you miss the whole
point. You cannot understand science and its
relation to anything else unless you understand
and appreciate the great adventure of our time.
You do not live in your time unless you
understand that this is a tremendous
adventure and a wild and exciting thing.

Richard Feynman, The Meaning of It All
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Abstract

In this thesis we dive deep into visual understanding of the urban scene with
a smart city scenario in mind. The problem is framed from multiple points
of view, following a zoom out approach. First, we put our focus on the
inside of the vehicle, investigating the dynamics of human attention during
the driving task. We show how a deep neural network can be designed
and trained to replicate the human attentional behavior while driving. We
also study which parts of the scene are the most likely to capture the
attention of the human driver, and in which measure these patterns can be
automatically learnt from the data. A large-scale dataset of human fixations
while driving in a real world scenarios - collected and made available for
the research community for the first time - enables the aforementioned
studies. The focus is then shifted from the vehicle to the infrastructure
point of view. Vehicles are now viewed from the outside, as one of the
most important agents which populate the urban scene. In this frame we
introduce novel methods to infer vehicles characteristics - such as identity,
model, 3D pose and occupancy - which are essential to comprehend the
scene. Finally, we propose a novel framework to exploit these information
to ‘hallucinate’ novel views of the vehicles and of the urban scene in its
whole, paving the way for multiple significant applications in the domain of
urban scene understanding.





Abstract (Italian)

In questa tesi si studia il problema della comprensione visuale della scena
urbana in uno scenario di smart city. In questo processo il problema è
inquadrato da più punti di vista, seguendo un approccio di zoom out. Per
prima cosa l’attenzione è posta all’interno del veicolo stesso, indagando
le dinamiche dell’attenzione umana durante la guida. Si mostra come
una rete neurale profonda possa essere progettata e allenata per replicare
il comportamento attentivo del guidatore umano. Si studia anche quali
parti della scena abbiano maggiori probabilità di catturare l’attenzione del
conducente umano e in quale misura questi pattern possano essere appresi
automaticamente dai dati. Un vasto dataset di punti di fissazione dei
guidatori - raccolti in scenari reali e resi disponibili alla comunità di ricerca
per la prima volta - è ciò che consente gli studi sopra citati. L’attenzione
viene poi spostata dal punto di vista del veicolo a quello dell’infrastruttura
cittadina. I veicoli sono ora visti dall’esterno, come uno dei più importanti
agenti che popolano la scena urbana. In questo scenario introduciamo nuovi
metodi per inferire le caratteristiche del veicolo - identità, modello, posa 3D
e occupazione spaziale - che sono essenziali per una piena comprensione della
scena. Infine, proponiamo un nuovo framework che consente di sfruttare
queste informazioni per generare nuovi possibili aspetti visuali dei veicoli e
della scena nel suo complesso, aprendo la strada a molteplici applicazioni
nel campo della comprensione della scena urbana.
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Chapter 1

Introduction

The number of connected ‘things’ we share our life with is growing exponen-
tially. Although it is hard to agree on a precise figure, it is safe to say that
the number of connected devices already surpasses several billions [158].
Cities are among the hottest spots of this densely connected network, as
the world population congregates in larger and larger urban areas.

Meanwhile, the recent technological progresses - particularly in wireless
networks and AI in the broadest sense - are allowing these devices to have
an increasing capability to perceive and understand the world. Given the
favourable circumstances, there is reason to believe in a new generation
of smart cities in which vehicles and infrastructure communicate closely
to alleviate the historical issues afflicting mobility in dense urban areas,
such as fatal accidents and heavy traffic. For sure, a tight interconnection
between vehicles and infrastructure will be necessary for this potential to
unfold.

In this work we analyze some of the challenges posed by this interac-
tion and propose novel solutions to approach them. In particular, the
thesis is organized following a zoom-out approach. We start our research
work from inside the vehicle itself, diving deep into the human attentional
dynamics during the driving task. We replicate the human attentional
behavior through a deep neural network, trained to infer which areas of
the urban scene would be more likely to attract the attention of the human
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driver in a certain context. In this process, we were the first to collect and
publicly release to the research community a large-scale dataset of human
fixations while driving in real world scenarios.

We then progressively zoom out in the process of moving from the vehicle
to the infrastructure point of view. First, we show how we can exploit
object detection in a vehicle dashboard camera view to learn a semantic-
aware occupancy map of the scene. We then present novel methods for
identifying and re-identifying vehicles, as well as for inferring their poses
in the 3D world. Finally, we present a novel image synthesis framework,
which is particularly designed for the generation of novel views of vehicles
and man-made rigid objects in a broader sense. Based on these results, we
conclude showing how this framework could be exploited to ‘hallucinate’
novel views of the whole urban scene. We foresee that this imagination
capability - which enable not only to predict, but also to visually depict
different possible evolutions of the urban scene - might have significant
applications in many domains; surveillance, vehicle re-identification and
forensics to name a few.
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Chapter 2

Literature Survey

In the following sections we briefly report other research approaches which
are related to the topics tackled in this thesis. Although the list could be
much longer, we choose to limit ourselves to the methods which are either
most relevant for the community or more strictly related to the proposed
algorithms.

The rest of the chapter is organized following the flow of the thesis: First
we review methods for driver’s gaze estimation (Sec. 2.1), then we move
to approaches for urban scene understanding (Sec. 2.2). We appreciate
that the latter term is very broad. Here we restrict to domains for which
contributions have been proposed during the PhD: vehicle pose estimation
and viewpoint changes, vehicle re-identification, and vehicle novel view
generation.

2.1 Predicting the Driver’s Focus of Attention

Attention in images

Coherently with psychological literature, that identifies two distinct mech-
anisms guiding human eye fixations [182], computational models for Focus
of Attention (FoA) prediction branch into two families: top-down and
bottom-up strategies. Former approaches aim at highlighting objects and
cues that could be meaningful in the context of a given ongoing task. For
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this reason, such methods are also known as task-driven. Usually, top-
down computer vision models are built to integrate semantic contextual
information in the attention prediction process [183]. This can be achieved
by either merging estimated maps at different levels of scale and abstrac-
tion [62], or including a-priori cues about relevant objects for the task at
hand [208, 57, 45]. Human focus in complex interactive environments (e.g.
while playing videogames) [138, 139, 16] follows task-driven behaviors as
well.
Conversely, bottom-up models capture salient objects or events naturally
popping out in the image, independently of the observer, the undergoing
task and other external factors: that is, ceteris paribus, how much each pixel
of a scene attracts the observer’s attention. This task is widely known in lit-
erature as visual saliency prediction. In this context, computational models
focus on spotting visual discontinuities, either by clustering features or con-
sidering the rarity of image regions, locally [159, 114] or globally [1, 224, 32].
For a comprehensive review of visual attention prediction methods, we refer
the reader to [14]. Recently, the success of deep networks involved both
task-driven attention and saliency prediction, as models have become more
powerful in both paradigms, achieving state-of-the-art results on public
benchmarks [91, 102, 74, 37, 38].

Attention in videos

In video, attention prediction and saliency estimation are more complex
compared to still images since motion heavily affects human gaze. Some
models merge bottom-up saliency with motion maps, either by means of
optical flow [232] or feature tracking [224]. Other methods enforce temporal
dependencies between bottom-up features in successive frames. Both super-
vised [232, 117] and unsupervised [118, 200, 201] feature extraction can be
employed, and temporal coherence can be achieved either by conditioning
the current prediction on information from previous frames [154] or by
capturing motion smoothness with optical flow [232, 117]. While deep
video saliency models still lack, an interesting work is [8], which relies on a
recurrent architecture fed with clip encodings to predict the fixation map by
means of a Gaussian Mixture Model (GMM). Nevertheless, most methods
limit to bottom-up features accounting for just visual discontinuities in
terms of textures or contours. The model proposed in this thesis (see
Sec. 3.2 and Sec.3.3), instead, is specifically tailored to the driving task
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and fuses the bottom-up information with semantics and motion elements
that have emerged as attention factors from the analysis of the DR(eye)VE
dataset.

Attention in the driving context

Prior works addressed the task of detecting saliency and attention in the
specific context of assisted driving. In such cases, however, gaze and
attentive mechanisms have been mainly studied for some driving sub-
tasks only, often acquiring gaze maps from on-screen images. Bremond et
al. [166] presented a model that exploits visual saliency with a non-linear
SVM classifier for the detection of traffic signs. The validation of this study
was performed in a laboratory non-realistic setting, emulating an in-car
driving session. A more realistic experiment [19] was then conducted with
a larger set of targets, e.g. including pedestrians and bicycles.
Driver’s gaze has also been studied in a pre-attention context, by means
of intention prediction relying only on fixation maps [142]. The study
in [191] inspects the driver’s attention at T junctions, in particular towards
pedestrians and motorbikes, and exploits object saliency to avoid the looked-
but-failed-to-see effect. In absence of eye tracking systems and reliable gaze
data, head orientation can be used as proxy to infer eyes off-the-road
and other dangerous driving habits. In this line of work we can collocate
methods such as [52, 180, 194, 12], which focus on drivers’ head, detecting
facial landmarks to predict head orientation. Although such mechanisms
are often more robust to varying lighting conditions and occlusions, there
is no certainty about the adherence of predictions to the true gaze during
the driving task.

Datasets on attention and saliency

Many image saliency datasets have been released in the past few years,
improving the understanding of the human visual attention and pushing
computational models forward. Most of these datasets include no motion in-
formation, as saliency ground truth maps are built by aggregating fixations
of several users within the same still image. Usually, a Gaussian filtering
post-processing step is employed on recorded data, in order to smooth such
fixations and integrate their spatial locations. Some datasets, such as the
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MIT saliency benchmark [21], were labeled through an eye tracking system,
while others, like the SALICON dataset [80] relied on users clicking on
salient image locations. We refer the reader to [15] for a comprehensive list
of available datasets.
On the contrary, datasets addressing human attention prediction in video
still lack. Up to now, Action in the Eye [117] represents the most important
contribution, since it consists in the largest video dataset accompanied
by gaze and fixation annotations. That information, however, is collected
in the context of action recognition, so it is heavily task-driven. A few
datasets address directly the study of attention mechanisms while driving,
as summarized in Tab. 3.1. However, these are mostly restricted to limited
settings and are not publicly available. In some of them [166, 191] fixation
and saliency maps are acquired during an in-lab simulated driving experi-
ence. In-lab experiments enable several attention drifts that are influenced
by external factors (e.g. monitor distance and others) rather than the
primary task of driving [179].
A few in-car datasets exist [19, 142], but were precisely tailored to force the
driver to fulfill some tasks, such as looking at people or traffic signs. Coarse
gaze information is also available in [52], while the external road scene
images are not acquired. We believe that the dataset presented in [142]
is, among the others, the closer to our proposal. Yet, video sequences are
collected from one driver only and the dataset is not publicly available.
Conversely, our DR(eye)VE dataset (see Sec. 3.1) - featuring 74 videos
of five minutes each, for a total of more than 500K frames annotated
with driver fixation points via an eye tracking device - is the first dataset
addressing driver’s focus of attention prediction which is made publicly
available. Furthermore, it includes sequences from several different drivers
and presents a high variety of landscapes (i.e. highway, downtown and
countryside), lighting and weather conditions.

2.2 Urban Scene Understanding
Vehicle re-identification

Vehicle re-identification is the problem of matching the identities of vehicles
across non-overlapping views from different cameras. Despite its huge
application significance, this task is far from being solved and it still fea-
tures many open challenges. Recently Liu et al. [104] proposed an hybrid
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approach to vehicle re-identification, based on features fusion (FACT). The
method is called hybrid as it leverages both handcrafted features (Bag of
Words (BoW), SIFT [110] and color names [192]) and learned features by
means of deep learning models. In particular, they rely on GoogleNet [176]
network to extract high level semantic features such as the number of doors,
the number of seats or the shape. For this purpose they fine-tune the net-
work on CompCars dataset [219]. After merging texture, color and semantic
features the euclidean distance is used to match the prediction against a
features gallery. In a successive work, the same authors [105] introduce
two new features - an embedding of the license plate and spatio-temporal
properties - which are concatenated with the former. Notably, a Siamese
network is trained to determine if a couple of plates actually point to the
same vehicle.
With the rise of Triplet Network architectures in various challenging com-
puter vision domains [107, 165, 163, 31] with promising results, Hoffer et
al.[73] revisited the proposal from [101] to include the concept of vehicles
classes. The successive work [228] further improves triplet-wise training
procedure by introducing a custom classification-oriented loss to augment
with the original triplet loss as well as a new triplet sampling method based
on pairwise images.
In this frame, in Sec. 4.1 we propose to leverage a Triplet Network to
learn a feature space where visually similar vehicles are clustered together,
whereas the ones visually different are kept far apart. While using Triplet
Networks for vehicle re-identification is not novel itself, in our work we
mainly focus on presenting an overall pipeline that can be deployed for
re-identifying vehicles across completely different views. Furthermore, we
detail how a re-identification network can be trained even in absence of
manually labelled data, as it was the case of the NVIDIA AI City Challenge
we participated in.

Object 3D shape reconstruction

Ten years after its public release, the ImageNet [40] dataset has been the
essential ingredient to many advances, as for the first time enough data
were available for training very large (deep) models which in turn shook
many benchmarks [167, 69, 145, 27]. More recently the large-scale database
of synthetic models ShapeNet [23] dataset is having an analogous impact on
the 3D community, showing that, in presence of enough data, 3D geometry
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and deep learning can be integrated successfully [172, 211, 34, 171, 97, 6].
One of the areas in which this marriage is being fertile the most is the one of
estimating the 3D shape of an object given an image, either in explicit (e.g.
generating voxels), or implicitly (e.g. generating novel views of the same
object). Indeed, pre deep learning methods [17, 65, 89, 195, 140, 170] often
need multiple views at test time and rely on the assumption that descriptors
can be matched across views [51, 2], handling poorly self-occlusions, lack of
texture [156] and large viewpoint changes [111]. Conversely, more recent
works [172, 211, 34, 171, 97, 6] are built upon powerful deep learning models
trained on virtually infinite synthetic data rendered from ShapeNet [23].
From a high level perspective, we can distinguish at least two categories of
methods; i) the ones that learn an implicit representation of object pose
and volume and then decode it by means of another deep network [177, 43,
34, 218] and ii) the ones that infer from the image a valid 3D representation
(e.g. voxel-based) that can be re-projected by means of a differentiable
renderer [217, 189, 55, 205] to eventually measure its consistency w.r.t.
the input image. Works leveraging the latter approach are strictly related
to our proposed method in that they all found different ways to back-
propagate through the renderer in order to correct the predicted object
volume. [217], [55] and [205] take inspiration from the spatial transformer
network [78] in the way the predicted volume is sampled to produce the
output silhouette, even though they differ in the way the contribution of
each voxel is counted for each line of sight. Rendering process proposed in
[149] has to be trained via REINFORCE [206] since it is not differentiable;
[189] frames the rendering phase in a probabilistic setting and define ray
potential to enforce consistency.
Our method presented in Sec. 4.3 differs substantially from all these works
in several aspects. First, we keep the volume fixed and back-propagate
through the renderer to correct the object pose, while the aforementioned
works project the predicted 3D volume from a pre-defined set of poses (e.g.
24 azimuthal angles 0◦, 15◦, . . . 345◦ around y-axis) and back-propagate
the alignment error to correct the volume. Furthermore, while all these
works use ray-tracing algorithm for rendering, our work is the first to
propose a differentiable raster-based renderer. Eventually, all mentioned
works represent the volume using voxels, which is inefficient and redundant
since most of valuable information is in the surface [168], while we use its
natural parametrization by vertices and faces, i.e. the mesh.
Eventually, more recent works [209, 238] have shown that 2.5D sketches can
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be a useful intermediate representation to bridge 2D and 3D worlds as well
as to alleviate the gap between synthetic and real-world data. In particular,
in [238] the 2.5D sketch consists of both a silhouette and a depth image
rendered from a learnt low-resolution voxel grid by means of a differentiable
ray-tracer. While this method is appealing for its geometrical guarantees,
it is limited by a number of factors: i) it requires a custom differentiable
ray-tracing module; ii) footprint of voxel-based representations scales with
the cube of the resolution despite most of the information lying on the
surface [168, 130]; iii) errors in the 3D voxel grid naturally propagate to the
2.5D sketch. We also follow this line of work to provide soft 3D priors to the
synthesis process. Conversely, in the semi-parametric setting presented in
Sec. 4.4 the 2.5D sketches are simply additional inputs which do not require
to be differentiable and can thus be rendered from arbitrary viewpoints
using standard rendering engines.

Object pose estimation

Image formation is essentially a lossy process, as during the perspective
projection we loose a lot of information about 3D structure of the captured
scene. For this reason, recovering back the 6-Degrees of Freedom (6-DoF)
pose of an object from a single image is extremely challenging. The task
of object pose estimation, traditionally framed as a Perspective-n-Points
(PnP) correspondence problem between the 3D world points and their
2D projections in the image [95, 120], was recently re-framed in a deep
learning context with analogous effectiveness. With respect to descriptor-
based methods [35, 36, 111], recent methods relying on convolutional neural
networks [108, 172, 188] can solve ambiguities and handle occluded keypoints
thanks to their high representational power and composite field of view.
Indeed, these have already shown impressive results in specific tasks such
as the one of human pose estimation [123, 204, 184, 235]. Building upon
this success, approaches as [239, 136] combine CNN-extracted keypoints
and deformable shape models in a unique optimization framework to jointly
estimate the object pose and shape. Differently from all these works, the
pose estimation method proposed in Sec. 4.3 integrates object shape and
pose estimation and model fitting into a coherent end-to-end differentiable
framework. In particular, the differentiable renderer is used to correct
the 6-DoF object pose estimation by back-propagating 2D information
on silhouette alignment error. Furthermore, in Sec. 4.3 we abandon the
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redundant voxel representation in favor of meshes, which are lightweight
and better tailored to represent 3D models [168].

Learning the occupancy grid around the vehicle

Few works in literature tackle the problem of learning the vehicle’s surround-
ing occupancy map from a single monocular image. From an application
standpoint, most of these approaches aim at helping drivers during parking
manoeuvres and rely on both geometry and computer vision to merge
information from usually multiple cameras mounted on the vehicle. In
particular, in [99] a perspective projection image is transformed into its
corresponding bird’s eye view, through a fitting parameters searching al-
gorithm. In [106] authors took a dynamic programming approach, exploiting
six calibrated fish eye cameras to compose a unique overall image of the
scene. In [124] were described algorithms for creating, storing and viewing
surround images, thanks to synchronized and aligned different cameras.
[175] proposed a camera model based algorithm to reconstruct and view
multi-camera images. In [187], an homography matrix is used to perform
a coordinate transformation: visible markers are required in input images
during the camera calibration process. Recently, [225] proposed a surround
view camera solution designed for embedded systems, based on a geometric
alignment, to correct lens distortions, a photometric alignment, to correct
brightness and color mismatch and a composite view synthesis.

Videgames and simulators for data collection

The use of synthetic data has recently gained considerable importance in the
computer vision community for several reasons. First, modern open-world
games exhibit constantly increasing realism - which does not only mean
that they feature photorealistic lights/textures etc, but also show plausible
game dynamics and lifelike autonomous entity AI [150, 153] . Furthermore,
most research fields in computer vision are now tackled by means of deep
networks, which are notoriously data hungry in order to be properly trained.
Particularly in the context of assisted and autonomous driving, the oppor-
tunity to exploit virtual yet realistic worlds for developing new techniques
has been embraced widely: indeed, this makes possible to postpone the
(very expensive) validation in real world to the moment in which a new
algorithm already performs reasonably well in the simulated environment
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[212, 56]. Building upon this tendency, [26] relies on TORCS simulator
to learn an interpretable representation of the scene useful for the task of
autonomous driving. However, while TORCS [212] is a powerful simulation
tool, it’s still severely limited by the fact that both its graphics and its game
variety and dynamics are far from being realistic. CARLA [42] is another
simulator designed to support development, training, and validation of
autonomous driving systems; despite not being photorealistic, it is under
active development and it is reasonable to expect that it will be even more
widely used in the near future. In our work on learning the occupancy
grid surrounding the vehicle (Sec. 4.3), we rely on GTAV videogame for
automatically extracting annotated data. In different papers we instead
relied on the ShapeNet [23] database to get individual 3D models which we
then rendered using either Blender [11] or Open3D [233].

Object and vehicle novel view generation

In just few years, the widespread adoption of deep generative models [88, 64]
has led to astounding results in different areas of image synthesis [144, 5,
226, 85, 199, 222]. In this scenario, conditional GANs [119] have been
demonstrated to be a powerful tool to tackle image-to-image translation
problems [77, 236, 237, 33]. Hallucinating novel views of the subject of
a photo can be naturally framed as an image-to-image translation prob-
lem. For human subjects, this has been cast to predicting the person’s
appearance in different poses [113, 164, 229, 46]. Fashion and surveillance
domains drew most of the attention, with much progress enabled by large
real-world datasets providing multiple views of the same subject [107, 230].

For rigid objects instead, this task is usually referred to as novel 3D
view synthesis and additional assumptions such as object symmetry are
taken into account. In point of fact, symmetry is the most common assump-
tion [234, 134, 238] to synthesise disoccluded portions of the object. Starting
from a single image, Yang et al. [218] showed how a recurrent convolutional
network can be trained via curriculum-learning to perform out-of-plane
object rotation. In a similar setting Tatarchenko et al. [177] predicted both
object appearance and depth map from different viewpoints. Successive
works [234, 134] trained a network to learn a symmetry-aware appearance
flow, re-casting the remaining synthesis as a task of image completion; [173]
extends this approach to the case in which N > 1 input viewpoints are
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available. However, all these works [218, 177, 234, 134, 173] assume the
target view to be known at training time. As this is not usually the case in
the real-world, these approaches are limited by the need to be trained solely
on synthetic data and exhibit limited generalization in a real-world scenario.
The recent work by Zhu et al. [238] exploits cycle consistency losses to
overcome the need of paired data, thus training on datasets of segmented
real-world cars and chairs they gathered for the purpose. Although that
work shows more realistic results, it requires pixel-level segmentation for
each class of interest. In contrast, we show that already available datasets
for object 3D pose estimation [215, 214] can be used for this purpose, despite
the extremely rough alignment between the annotated model and the image.

Non-parametric approaches to novel view synthesis

In the interactive editing setting, recent works [86, 147] have shown astound-
ing results by keeping the human in the loop and assuming a perfect (even
part-level) alignment between the 3D model and the input image. However,
as pixels are warped from the input to the target view [147] it is not feas-
ible to perform shape transfer to a completely different model. Moreover,
the time required to synthesise the output is still far from real-time (few
seconds). On the opposite, our semi-parametric framework presented in
Sec. 4.4 enables disentangled shape and appearance transfer in real-time,
with only a coarse alignment between the input image and the 3D model.
In the scenario of image synthesis from semantic layout the recent work of
Qi et al. [143] has shown that non-parametric components (i.e. a memory
bank of image segments) can be integrated in a parametric image synthesis
pipeline to produce impressive photo-realistic results. Despite our different
setting, we similarly rely on image patches to provide hints to the Image
Completion Network (ICN); however, our patches are not queried from a
database but warped directly from the input view.
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Chapter 3

Inside the Vehicle:
Predicting the Driver’s
Focus of Attention

Autonomous and assisted driving are hot topics in computer vision these
days. Despite the advent of autonomous cars, it’s likely - at least in the
near future - that human attention will still maintain a central role as a
guarantee in terms of legal responsibility during the driving task. However,
the driving task is extremely complex and a deep understanding of drivers’
behavior is still lacking. Several researchers are now investigating the
attention mechanism in order to define computational models for detecting
salient and interesting objects in the scene. Nevertheless, most of these
models only refer to bottom-up visual saliency and are focused on still
images. Instead, during the driving experience the temporal nature and
peculiarity of the task influence the attention mechanisms, leading to the
conclusion that a deeper and more comprehensive study on real-life driving
data is mandatory. In this chapter we describe our research effort for
reducing this gap.
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3.1 The DR(eye)VE Dataset

Autonomous and assisted driving have recently gained increasing momentum
in the computer vision community. With the advent of deep learning, many
tasks involving visual understanding –something which cannot be eluded in
driving– have reached human-level performance, and sometimes overtaken
it. Examples are pedestrian and vehicle detection and tracking, lanes or
road signs recognition and, ultimately, semantic segmentation, where each
pixel gets a label according to what it represents [30, 231]. All of these
achievements are great examples of subtasks to autonomous and assisted
driving, but we must not forget that the utmost goal is (better) driving
itself. Do humans really need to detect all pedestrians or recognize all signs
to drive? Do humans really need to label the whole scene?

In widely accepted psychological studies on the topic, the connection
between driving, attention and gaze has been explored [179], negatively
answering the above questions. It is known that humans’ selective attention
is a constraint required by the limited amount of resources available to our
brain. Hence, it is still debatable if this approach may also bring benefits
to visual computing models where the computational resources can be
raised by adopting advanced performant hardware (e.g. GPUs, clusters).
Nevertheless, the act of driving combines attention mechanisms influenced
by the driver past experience, the temporal nature of the task and strong
contextual constraints. As a result, we can drive much more safely and
effectively than any automated system. One of the most relevant open
questions in the field is to establish whether autonomous cars could benefit
from attention-like mechanisms as well. Unluckily, this topic is under-
investigated in computer vision and the lack of a realistic experimental
framework does not help. In this section we describe our contribution of a
new dataset available to the community, depicted in Fig. 3.1. We recorded
more than six hours and 500,000 frames of driving sequences in different
traffic and weather conditions. For every frame, we also acquired the driver
gaze through an accurate eye tracking device. Additionally, to favor the car
point of view, we projected gaze information on a HD quality video recorded
from a roof-mounted camera. Given the subjective nature of both attention
and driving, experimental design has played a crucial role in preparing the
dataset and rule out spurious correlation between driver, weather, traffic,
daytime and scenario.
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Figure 3.1: An exemplar frame from the DR(eye)VE dataset. From left to
right, from up to bottom: car-mounted view, driver’s point of view, gaze
map overlay and geo-referenced course.

At a computational level, human attention and eye fixation are typically
modeled through the concept of visual saliency. Most of the literature on
visual saliency focuses on filtering, selecting and synthesizing task depend-
ent features for automatic object recognition. Nevertheless, the majority
of experiments are constructed in controlled environments (e.g. laborat-
ory settings) and on sequences of unrelated images [191, 21, 80]. Instead,
our dataset has been collected “on the road" and it exhibits the following
features:

• It is public and open. It provides hours of driving videos that can be
used for understanding the attention phenomena;

• It is task and context dependent. According to the psychological
studies on attention, data are collected during a real driving experience
thus being as much realistic as possible;

• It is precise and scientifically solid. We use high end attention
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recognition instruments, in conjunction with camera data and GPS
information.

We believe that our proposal can be useful in several contexts aimed at
understanding the driving phenomenon. It can be applied to identify and
collect new features tailored for the driving experience (by analogy with
what recently studied for video action recognition [117]). It can help under-
standing the influence of motion and semantics in salient object detection
[169, 200]. It can foster the creation of new driver-centric visual ontholo-
gies, and as well serve the purpose to better understand how driver past
experience affects the importance of objects in the scene.

The following is organized as follows. First, the acquisition apparatus
and protocol is described in Sec. 3.1.1. In Sec. 3.1.2 we dive deep into
the details about dataset design, video-gaze registration, computation of
fixation maps and annotation provided. We present the attentional patterns
emerging from the data analysis and exploration of the DR(eye)VE dataset
in Sec. 3.1.3. Eventually, the section is concluded with a discussion on the
possible uses of the collected data.

3.1.1 Apparatus and acquisition protocol

The driver’s gaze information was captured using the commercial SMI ETG
2w Eye Tracking Glasses (ETG). ETG capture attention dynamics also in
presence of head pose changes, which occur very often during the task of
driving. While a frontal camera acquires the scene at 720p/30fps, users
pupils are tracked at 60Hz. Gaze information are provided in terms of eye
fixations, saccade movements, blinks and pupil dilation. In order to ensure
the highest possible gaze quality, manual 3-points calibration is performed
before each recorded sequence to adapt to small changes in the ETG device
position.
Simultaneously, videos from the car perspective were acquired using the
GARMIN VirbX camera mounted on the car roof (RMC, Roof-Mounted
Camera). Such sensor captures frames at 1080p/25fps, and includes further
information such as GPS data, accelerometer and gyroscope measurements.
Figure 3.2 illustrates the aforementioned acquisition rig. During the acquis-
ition phase, the two cameras are started simultaneously and the resulting
videos are manually aligned to the frame in an offline stage to achieve the
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Figure 3.2: The acquisition rig for the DR(eye)VE dataset, featuring the
head-mounted ETG and the car-mounted camera.

best possible synchronization. In order to re-project the gaze point on the
video acquired by the car-mounted camera, local keypoints correspondences
are exploited, resulting in the gaze information being present on both video
sequences (see Section 3.1.2).

3.1.2 Dataset description and annotation

In this section we present the DR(eye)VE dataset (Fig. 3.16), the protocol
adopted for video registration and annotation, the automatic processing

Table 3.1: Summary of the DR(eye)VE dataset characteristics. The dataset
was designed to embody the most possible diversity in the combination of
different features.

Videos Frames Drivers Weathers Lighting Gaze Info Metadata Viewpoint

74 555,000 8
Sunny Day Raw fixations GPS Driver (720p)
Cloudy Evening Gaze map Speed Car (1080p)
Rainy Night Pupil dilation Course
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Table 3.2: A comparison between DR(eye)VE and other datasets.

Dataset Frames Drivers Scenarios Annotation Real-world Public

Pugeault et al. [142] 158,668 –
Countryside
Highway
Downtown

Gaze Maps
Driver’s Actions Yes No

Simon et al. [166] 40 30 Downtown Gaze Maps No No
Underwood et al. [191] 120 77 Motorway – No No
Fridman et al. [52] 1,860,761 50 Highway 6 Gaze classes Yes No

DR(eye)VE [4] 555,000 8
Countryside
Highway
Downtown

Gaze Maps
GPS, Speed,
Course

Yes Yes

of eye-tracker data and the analysis of the driver’s behavior in different
conditions.

Dataset design

The DR(eye)VE dataset1 consists of 555,000 frames divided in 74 sequences,
each of which is 5 minutes long. Eight different drivers of varying age from
20 to 40, including 7 men and a woman, took part to the driving experiment,
that lasted more than two months. Experimental design played a crucial
role in preparing the dataset to rule out spurious correlation between driver,
weather, traffic, daytime and scenario. Per-sequence details are reported in
Tables 3.3 and 3.4.
To cover the widest range of scenarios as possible, videos were recorded
in different contexts, both in terms of landscape (downtown, countryside,
highway) and traffic condition, ranging from traffic-free to highly cluttered
scenarios. They were also recorded in diverse weather conditions (sunny,
rainy, cloudy) and at different hours of the day (both daytime and night).
Tab. 3.1 recaps the dataset features and Tab. 3.2 compares it with other
related proposals. DR(eye)VE is currently the largest publicly available
dataset including gaze and driving behavior in automotive settings.

Video-gaze registration

The dataset has been processed to move the acquired gaze from the ego-
centric (ETG) view to the car (RMC) view. In fact, the latter features
a much wider field of view (FoV), and can contain fixations that are out

1http://imagelab.ing.unimore.it/dreyeve
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of the egocentric view. For instance, this can occur whenever the driver
takes a peek at something at the border of this FoV, but doesn’t move
his head. For every sequence, the two videos were manually aligned to
cope with the difference in sensors framerate. Videos were then registered
frame-by-frame through a homographic transformation that projects fixa-
tion points across views. More formally, at each timestep t the RMC frame
ItRMC and the ETG frame ItETG are registered by means of a homography
matrix HETG→RMC , computed by matching SIFT descriptors [110] from
one view to the other (see Fig. 3.3). A further pass of Random Sample
Consensus (RANSAC) [50] procedure ensures robustness to outliers. While
homographic mapping is theoretically sound only across planar views -
which is not the case of outdoor environments - we empirically found that
projecting an object from one image to another always recovered the correct
position. This makes sense if the distance between the projected object
and the camera is far greater than the distance between the object and the
projective plane. In Sec. 9 of the supplementary material, we derive formal
bounds to explain this phenomena.

Fixation map computation.

The pipeline discussed above provides a frame-level annotation of the
driver’s fixations. In contrast to image saliency experiments [21], there is
no clear and indisputable protocol for obtaining continuous maps from raw
fixations when acquired in task-driven real-life scenarios. This is even more
evident when fixations are collected in task-driven real-life scenarios. The

Figure 3.3: Registration between the egocentric and roof-mounted camera
views by means of SIFT descriptor matching.
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main motivation resides in the fact that observer’s subjectivity cannot be
removed by averaging different observers’ fixations. Indeed two different
observers cannot experience the same scene at the same time (e.g. two
drivers cannot be at the same time in the same point of the street). The
only chance to average among different observers would be the adoption of
a simulation environment, but it has been proved that the cognitive load
in controlled experiments is lower than in real test scenarios and it effects
the true attention mechanism of the observer [155]. In our preliminary
DR(eye)VE release [4], fixation points were aggregated and smoothed by
means of a temporal sliding window. In such a way, temporal filtering
discarded momentary glimpses that contain precious information about the
driver’s attention. Following the psychological protocol in [115] and [66],
this limitation was overcome in the current release where the new fixation
maps were computed without temporal smoothing. Both [115] and [66]
highlight the high degree of subjectivity of scene scanpaths in short tem-
poral windows (< 1 sec) and suggest to neglect the fixations pop-out order
within such windows. This mechanism also ameliorates the inhibition of
return phenomenon that may prevent interesting objects to be observed
twice in short temporal intervals [141, 71], leading to the underestimation
of their importance.
More formally, the fixation map Ft for a frame at time t is built by ac-
cumulating projected gaze points in a temporal sliding window of k = 25
frames, centered in t. For each time step t + i in the window, where
i ∈ {−k2 ,−

k
2 + 1, . . . , k2 − 1, k2}, gaze points projections on Ft are estimated

through the homography transformation Ht
t+i that projects points from

the image plane at frame t+ i, namely pt+i, to the image plane in Ft. A
continuous fixation map is obtained from the projected fixations by center-
ing on each of them a multivariate Gaussian having a diagonal covariance
matrix Σ (the spatial variance of each variable is set to σ2

s = 200 pixels)
and taking the max value along the time axis:

Ft(x, y) = max
i∈(− k2 ,...,

k
2 )
N ((x, y) |Ht

t+i · pt+i,Σ) (3.1)

The Gaussian variance has been computed by averaging the ETG spatial
acquisition errors on 20 observers looking at calibration patterns at different
distances from 5 to 15 meters. The described process can be appreciated in
Fig. 3.4. Eventually, each map Ft is normalized to sum to 1, so that it can
be considered a probability distribution of fixation points.
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Figure 3.4: Resulting fixation map from a 1 second integration (25 frames).
The adoption of the max aggregation of equation 3.1 allows to account in
the final map two brief glances towards traffic lights.

Labeling attention drifts

Fixation maps exhibit a very strong central bias. This is common in saliency
annotations [178] and even more in the context of driving. For these reasons,
there is a strong unbalance between lots of easy-to-predict scenarios and
unfrequent but interesting hard-to-predict events.

To enable the evaluation of computational models under such circum-
stances, the DR(eye)VE dataset has been extended with a set of further
annotations. For each video, subsequences whose ground truth poorly
correlates with the average ground truth of that sequence are selected. We
employ Pearson’s Correlation Coefficient (CC) and select subsequences
with CC < 0.3. This happens when the attention of the driver focuses
far from the vanishing point of the road. Examples of such subsequences
are depicted in Fig. 3.5. Several human annotators inspected the selected
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(a) Acting - 69 719 (b) Inattentive - 12 282

(c) Error - 22 893 (d) Subjective - 3 166

Figure 3.5: Examples of the categorization of frames where gaze is far from
the mean. Overall, 108 060 frames (∼20% of DR(eye)VE ) were extended
with this type of information.

frames and manually split them into (a) acting, (b) inattentive, (c) errors
and (d) subjective events:

• errors can happen either due to failures in the measuring tool (e.g.
in extreme lighting conditions) or in the successive data processing
phase (e.g. SIFT matching);

• inattentive subsequences occur when the driver focuses his gaze on
objects unrelated to the driving task (e.g. looking at an advertise-
ment);

• subjective subsequences describe situations in which the attention is
closely related to the individual experience of the driver, e.g. a road
sign on the side might be an interesting element to focus for someone
that has never been on that road before but might be safely ignored
by someone who drives that road every day.

22 Smart Cities: Bridging Driver’s, Vehicle and Infrastructure Viewpoints



(a) (b)

Figure 3.6: Mean frame (a) and fixation map (b) averaged across the whole
sequence 02, highlighting the link between driver’s focus and the vanishing
point of the road.

• acting subsequences include all the remaining ones.

Acting subsequences are particularly interesting as the deviation of driver’s
attention from the common central pattern denotes an intention linked to
task-specific actions (e.g. turning, changing lanes, overtaking . . . ). For
these reasons, subsequences of this kind will have a central role in the
evaluation of predictive models in Sec. 3.3.3.

3.1.3 Dataset exploration and analysis
Here we present several insights about where and what the driver is looking
at while driving. We analyze what people pay attention to while driving,
and which part of the scene around the vehicle is more critical for the task.
In particular, we dive deep into the influence of car speed, course and the
landscape over the driver’s attentional behavior. The indication of which
elements in the scene are likely to capture the driver’s attention may benefit
several applications in the context of human-vehicle interaction and driver
attention analysis.

Attraction towards the vanishing point

By analyzing the dataset frames, the very first insight is the presence of a
strong attraction of driver’s focus towards the vanishing point of the road,
that can be appreciated in Fig. 3.6. The same phenomenon was observed in
previous studies [190, 13] in the context of visual search tasks. We observed
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indeed that drivers often tend to disregard road signals, cars coming from
the opposite direction and pedestrians on sidewalks.
This is an effect of human peripheral vision [157], that allows observers to
still perceive and interpret stimuli out of - but sufficiently close to - their
focus of attention (FoA). A driver can therefore achieve a larger area of
attention by focusing on the road’s vanishing point: due to the geometry of
the road environment, many of the objects worth of attention are coming
from there and have already been perceived when distant.

Influence of speed on driver’s gaze

Moreover, the gaze location tends to drift from this central attractor when
the context changes in terms of car speed and landscape. Indeed [151]
suggests that our brain is able to compensate spatially or temporally dense
information by reducing the visual field size. In particular, as the car travels
at higher speed the temporal density of information (i.e. the amount of
information that the driver needs to elaborate per unit of time) increases:
this causes the useful visual field of the driver to shrink [151]. We also
observe this phenomenon in our experiments, as shown in Fig. 3.7.

Car trajectory distribution

Leveraging course and speed information which come with the DR(eye)VE
dataset, we are able to compute basic statistics about the distribution of
car trajectory across different landscape scenarios. Unsurprisingly, results
show that the vehicle goes straight for most of the time - up to 98% of time
during highway runs. Along with the aforementioned attraction towards the
vanishing point, this skewed distribution contributes in creating a strong
attentional bias towards the center of the image.

Influence of semantic categories

DR(eye)VE data also highlight that the driver’s gaze is attracted towards
specific semantic categories. To reach the above conclusion, the dataset is
analysed by means of the semantic segmentation model in [221] and the
distribution of semantic classes within the fixation map evaluated.
More precisely, given a segmented frame and the corresponding fixation map,
the probability for each semantic class to fall within the area of attention is
computed as follows: First, the fixation map (which is continuous in [0, 1])
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is normalized such that the maximum value equals 1. Then, nine binary
maps are constructed by thresholding such continuous values linearly in the
interval [0, 1]. As the threshold moves towards 1 (the maximum value), the
area of interest shrinks around the real fixation points (since the continuous
map is modeled by means of several Gaussians centered in fixation points,
see previous section). For every threshold, a histogram over semantic labels
within the area of interest is built, by summing up occurrences collected
from all DR(eye)VE frames. Fig. 3.9 displays the result: for each class,
the probability of a pixel to fall within the region of interest is reported for
each threshold value. The figure provides insight about which categories
represent the real focus of attention and which ones tend to fall inside the
attention region just by proximity with the formers. Object classes that
exhibit a positive trend, such as road, vehicles and people, are the real
focus of the gaze, since the ratio of pixels classified accordingly increases
when the observed area shrinks around the fixation point. In a broader
sense, the figure suggests that despite while driving our focus is dominated
by road and vehicles, we often observe specific objects categories even if
they contain little information useful to drive.

3.1.4 Discussion and open questions

In this section we pose a few challenges and opportunities unlocked by
the availability of the proposed dataset to the computer vision community.
According to a qualitative analysis, it appears that when using an image
based saliency prediction method (e.g. [227], which achieves state of the
art performance on [21]), the regions of interest heavily rely on visual
discontinuities resulting in fairly different attention maps with respect to
the driver actual intentions, Figure 3.8 fourth and fifth columns. While this
difference has not yet been quantitatively studied, it raises a set of open
questions that we believe of interest for the computer vision community.
Investigating the following topics (and possibly achieving positive answers)
may consequently help pushing forward the field of assisted and autonomous
driving.

Can driver’s gaze be predicted?

Despite a large body of psychological literature, the computer vision com-
munity has not yet seen effective computational models able to predict
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human gaze while driving. In particular, the temporal nature of the driving
task has never been considered. In point of fact, we qualitatively observed
that during red traffic lights and jams, visual saliency models trained on
images could predict driver gaze quite accurately, [91, 21, 227]. Neverthe-
less, as driving speed increases, the amount of attention drivers dispose of
at each instant decreases, resulting into very sparse and specific attention
regions. Future models will need to take into account this behavior to
provide reliable accuracy. Moreover, how easier is this task going to be if
we were to feed the driver intentions (e.g. turn right in 10s) to the model?

Can driver’s intentions be anticipated from gaze data?

Here we pose the opposite challenge to gaze prediction, that is whether we
can build models that given video data and related gaze (true or predicted)
are able to estimate the driver next move. These estimates can include
the car turning angle, instantaneous speed, breaking events and so on. On
top of this, the community may build systems able to exploit intentions
prediction to alert the driver in dangerous situations.

Can gaze models be employed to enhance signalization and road
safety?

While driving we only observe a small part of all the road signs, cars and
traffic lights. In most of the cases, this is due to drivers’ confidence about
the path taken or irrelevant signalization with respect to driver current
intentions. At the same time, overconfidence during driving may result in
mistakes whenever signals change leading to possible dangerous situations.
Local administrations can take advantage from gaze models to better decide
how to place road signals and traffic lights. This is not a completely new
line of work [166, 19], however the availability of a public dataset can serve
as a unified benchmark for the research community.

Can gaze models help autonomous cars in planning better driving
strategies?

Autonomous cars leverage on many different levels of structured information,
ranging from lanes detection to semantic segmentation. Nevertheless,
autonomous driving is ultimately a decision task. Can gaze information
be yet another level of information to input to this decision process? Can
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human-like attention bring benefits to human-less vehicles? This is probably
a far reaching question and we fully expect better experimental frameworks
to be conceived in the future in order to answer it. Meanwhile, we make
available the first dataset for the community to download and start tackling
this challenge.

3.1.5 Concluding remarks
We have proposed a novel dataset that addresses the lack of public bench-
marks concerning drivers’ attention in real-world scenarios. It comes with
pre-computed gaze maps and contextual information such as the car’s speed
and course. The dataset is freely available for academic research, along
with the code used in the creation of gaze maps and annotation.
However, collecting the data is only the first step in our research project.
In the following sections we will describe how the data from the DR(eye)VE
dataset have been exploited to create a computational model of human
attention during the driving task.
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Sequence Daytime Weather Landscape Driver Set
01 Evening Sunny Countryside D8 Train Set
02 Morning Cloudy Highway D2 Train Set
03 Evening Sunny Highway D3 Train Set
04 Night Sunny Downtown D2 Train Set
05 Morning Cloudy Countryside D7 Train Set
06 Morning Sunny Downtown D7 Train Set
07 Evening Rainy Downtown D3 Train Set
08 Evening Sunny Countryside D1 Train Set
09 Night Sunny Highway D1 Train Set
10 Evening Rainy Downtown D2 Train Set
11 Evening Cloudy Downtown D5 Train Set
12 Evening Rainy Downtown D1 Train Set
13 Night Rainy Downtown D4 Train Set
14 Morning Rainy Highway D6 Train Set
15 Evening Sunny Countryside D5 Train Set
16 Night Cloudy Downtown D7 Train Set
17 Evening Rainy Countryside D4 Train Set
18 Night Sunny Downtown D1 Train Set
19 Night Sunny Downtown D6 Train Set
20 Evening Sunny Countryside D2 Train Set
21 Night Cloudy Countryside D3 Train Set
22 Morning Rainy Countryside D7 Train Set
23 Morning Sunny Countryside D5 Train Set
24 Night Rainy Countryside D6 Train Set
25 Morning Sunny Highway D4 Train Set
26 Morning Rainy Downtown D5 Train Set
27 Evening Rainy Downtown D6 Train Set
28 Night Cloudy Highway D5 Train Set
29 Night Cloudy Countryside D8 Train Set
30 Evening Cloudy Highway D7 Train Set
31 Morning Rainy Highway D8 Train Set
32 Morning Rainy Highway D1 Train Set
33 Evening Cloudy Highway D4 Train Set
34 Morning Sunny Countryside D3 Train Set
35 Morning Cloudy Downtown D3 Train Set
36 Evening Cloudy Countryside D1 Train Set
37 Morning Rainy Highway D8 Train Set

Table 3.3: DR(eye)VE train set: details for each sequence
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Sequence Daytime Weather Landscape Driver Set
38 Night Sunny Downtown D8 Test Set
39 Night Rainy Downtown D4 Test Set
40 Morning Sunny Downtown D1 Test Set
41 Night Sunny Highway D1 Test Set
42 Evening Cloudy Highway D1 Test Set
43 Night Cloudy Countryside D2 Test Set
44 Morning Rainy Countryside D1 Test Set
45 Evening Sunny Countryside D4 Test Set
46 Evening Rainy Countryside D5 Test Set
47 Morning Rainy Downtown D7 Test Set
48 Morning Cloudy Countryside D8 Test Set
49 Morning Cloudy Highway D3 Test Set
50 Morning Rainy Highway D2 Test Set
51 Night Sunny Downtown D3 Test Set
52 Evening Sunny Highway D7 Test Set
53 Evening Cloudy Downtown D7 Test Set
54 Night Cloudy Highway D8 Test Set
55 Morning Sunny Countryside D6 Test Set
56 Night Rainy Countryside D6 Test Set
57 Evening Sunny Highway D5 Test Set
58 Night Cloudy Downtown D4 Test Set
59 Morning Cloudy Highway D7 Test Set
60 Morning Cloudy Downtown D5 Test Set
61 Night Sunny Downtown D5 Test Set
62 Night Cloudy Countryside D6 Test Set
63 Morning Rainy Countryside D8 Test Set
64 Evening Cloudy Downtown D8 Test Set
65 Morning Sunny Downtown D2 Test Set
66 Evening Sunny Highway D6 Test Set
67 Evening Cloudy Countryside D3 Test Set
68 Morning Cloudy Countryside D4 Test Set
69 Evening Rainy Highway D2 Test Set
70 Morning Rainy Downtown D3 Test Set
71 Night Cloudy Highway D6 Test Set
72 Evening Cloudy Downtown D2 Test Set
73 Night Sunny Countryside D7 Test Set
74 Morning Rainy Downtown D4 Test Set

Table 3.4: DR(eye)VE test set: details for each sequence

Smart Cities: Bridging Driver’s, Vehicle and Infrastructure Viewpoints 29



|Σ| = 2.49× 109 |Σ| = 2.03× 109 |Σ| = 8.61× 108

0 ≤ km/h ≤ 10 10 ≤ km/h ≤ 30 30 ≤ km/h ≤ 50
(a) (b) (c)

|Σ| = 1.02× 109 |Σ| = 9.28× 108

50 ≤ km/h ≤ 70 70 ≤ km/h
(d) (e)

Figure 3.7: As speed gradually increases, driver’s attention converges
towards the vanishing point of the road. (a) When the car is approximately
stationary, the driver is distracted by many objects in the scene. (b-e)
As the speed increases, the driver’s gaze deviates less and less from the
vanishing point of the road. To measure this effect quantitatively, a two-
dimensional Gaussian is fitted to approximate the mean map for each speed
range, and the determinant of the covariance matrix Σ is reported as an
indication of its spread (the determinant equals the product of eigenvalues,
each of which measures the spread along a different data dimension). The
bar plots illustrate the amount of downtown (red), countryside (green) and
highway (blue) frames that concurred to generate the average gaze position
for a specific speed range. Best viewed on screen.
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Figure 3.8: Example sequence taken from the DR(eye)VE dataset. Left to
right: Garmin VirbX frames, ETG frames with fixation information, the
available gaze map, overlay between the frame and the gaze map, visual
saliency predicted using [227]. Up to bottom: the temporal dimension of
the video with 1 frame every 30 displayed.
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Still Going straight Curving
Countryside 03% 92% 05%
Downtown 25% 69% 06%
Highway 01% 98% 01%

Table 3.5: Distribution of car trajectory across different landscape scenarios.

Figure 3.9: Proportion of semantic categories that fall within the driver’s
fixation map when thresholded at increasing values (from left to right).
Categories exhibiting a positive trend (e.g. road and vehicles) suggest a
real attention focus, while a negative trend advocates for an awareness of
the object which is only circumstantial. See Sec. 3.1.3 for details.
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3.2 Learning Where to Attend Like a Human
Driver: a Deep Learning Model of Driver’s
Attention

In this section we engineer and design a computational model of human
attention during the driving task. In particular, here we train a coarse-
to-fine convolutional network on sequences from the DR(eye)VE dataset.
Experiments against baselines and state of the art competitors show that
this model already provides favourable results. The model presented here
will constitute the backbone of the more powerful model designed in Sec. 3.3,
in which we will explicitly integrate in our model the most influencing factors
for the driver’s attentional behavior (i.e. motion and scene semantics).

3.2.1 Motivation

While autonomous driving is quickly reaching maturity, it’s not clear how
far in time society will overlook the legal responsibility of the human
driver [126]. Conversely, Advanced Driver Assistance Systems (ADAS) are
human-centric and already established both in literature and in the market.
The ultimate aim of these systems is to increase the safety of the driver
and the road environment at large; this is usually done through collision
avoidance systems, blind spot control, lane change assistance, traffic signs
recognition and many others. Some of the most ambitious examples of
assisted driving are related to driver monitoring systems [79, 54, 90, 121],
where the attentional behavior of the driver is parsed together with the
road scene to predict potentially unsafe manoeuvres and act on the car in
order to avoid them (either by signaling the driver or braking). However, all
these approaches are limited by their ability to capture the true attentional
and intentional behavior of the driver, which is still a complex and largely
unsolved task today. Conversely, we advocate for a new assisted driving
paradigm which suggests to the driver, with no hard intervention, where
he should focus his attention. The problem is thus shifted from a personal
level (what the driver is looking at) to a task-driven level (what the driver
should be looking at). Following the notion that gaze is a primary cue to
human visual attention, here we tackle the challenge of building a deep
network architecture to model human attention while driving (see Fig. 3.10,
and evaluate the ability of the proposed approach to replicate what we
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(a) roof-mounted camera (b) network prediction

Figure 3.10: Starting from raw frames and attentional maps provided with
the DR(eye)VE dataset, our goal is to replicate the driver’s attentional
through a deep network model. In (b) we show the attentional map
predicted by our model for frame (a).

observed in humans (Sec. 3.2.2-3.2.3).
We train our model on the DR(eye)VE data [4], under the hypothesis that i)
individuals were thoughtfully driving and ii) distractions have no predefined
pattern and can thus be considered outliers. Given that the provided gaze
annotation is reliable, we aim to generalize from what the driver was looking
at in annotated sequences to what the driver should be looking at in unseen
scenarios.

3.2.2 A deep network model of driver’s attention

Exploting DR(eye)VE data

In this section we investigate the attentional mechanisms involved in driving.
To this end, we rely on the recently proposed DR(eye)VE [4] dataset, which
is a collection of 74 sequences 5 minutes long, featuring different landscapes,
weather scenarios, lighting conditions and 8 drivers (details in Sec. 3.1).
Every sequence is composed of two videos, capturing both the driver’s and
the car point of view. While the driver’s gaze is synchronized with the
former video, ground truth attentional maps are provided on the latter
through a homographic projection followed by spatial smoothing and time
integration. These latter post-processing steps attenuate subjectivity of
the drivers’ scan-path and reduce measurement inaccuracies in the ground
truth. More formally, we can define an attentional map as a 2D grid where
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Figure 3.11: COARSE prediction architecture. The first part of the network
performs the feature encoding. The input videoclip is a tensor of size
3× 16× 112× 112 that undergoes a sequence of conv3D and pool3D layers
that gradually squeeze it to size 512×1×7×7. All conv3D have kernel size
(3,3,3) and ReLU activation units; all pool3D have pool size (2,2,2) except
the first one that has pool size (1,2,2). In order to obtain a saliency map
with the same spatial size of the input frame, the feature representation is
decoded through a series of intertwined layers of conv2D and ×2 upsampling
on the spatial dimensions. All conv2D have kernel size (3,3) and are followed
by leaky ReLU activations with α = .001. As a result, the output of the
network is a tensor of size 1× 112× 112, i.e. the predicted attentional map.

each cell represents the probability that the corresponding pixel of the
roof-mounted camera image is within the driver’s focus of attention. The
DR(eye)VE dataset analysis and exploration (see Sec. 3.1) provided insights
on the mechanisms that govern human attention while driving. Below, we
learn a deep attentional model that, given a driving sequence, is able to
focus where the human driver would.

Various recent works show [185, 84] that when dealing with videos, taking
explicitly into account the temporal dimension of the input in the network
architecture can lead to results that easily outclass the single-frame-input
baselines in various high-level video analysis tasks such as video classifica-
tion and action recognition among others. To this end, we can distinguish
at least two main trends that emerged in the recent literature. Those who
just want to exploit short-range dependencies in the data structure often
make use of 3D convolutional architectures in which data of successive
time steps are stacked along an additional dimension of the input tensor.
Conversely, if the task requires to capture longer-term interactions recurrent
architecture (e.g. LSTM, GRU) are often the clear winners.
Here, we make the assumption that a short video sequence (e.g. half
a second) contains enough information to successfully predict where the
driver should look in that situation. Indeed, it can be argued that humans
take even less time to react to a stimulus. For this reason, we build our
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Figure 3.12: COARSE+FINE prediction architecture. The COARSE module
(see Figure 3.11) is applied to both a cropped and a resized version of the
input tensor, which is a videoclip of 16 consecutive frames. The cropped
input is used during training to augment the data and the variety of ground
truth attentional maps. The prediction of the resized input is stacked with
the last RGB frame of the videoclip and fed to a series of convolutional
layers (FINE prediction module) with the aim of refining the prediction. All
convolutions have kernel size (3,3). Training is performed end-to-end and
weights between COARSE modules are shared. At test time, only the refined
predictions are used.

approach on 3D convolutions which take as input a fixed-size sequence of 16
consecutive frames from a video (called from now on videoclip) and outputs
the gaze map for the last frame of the input clip.

Coarse gaze prediction module

The core of our deep network model is a fully convolutional network whose
architecture is represented in Fig. 3.11. The first half of the network acts
as an encoder and maps the input videoclip in feature space. Conversely,
the second block decodes the feature representation in an attentional map
which has the same width and height of the input videoclip, but singleton
temporal dimension. In order to perform the encoding, we employ the C3D
network by [185] with pre-trained weights and few minor modifications,
such as dropping the last convolutional and the fully connected layers in
order to maintain spatial information that would be otherwise discarded.
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See Fig. 3.11 for further details. During training we resize the training
images to 128× 128 and then randomly crop them to 112× 112, following
the training process described in [185]. Due to the strong bias towards the
vanishing point, this standard cropping policy turned out to be insufficient
for creating a real variety in the location of the attentional maps; thus the
network prediction resulted strongly attracted towards the center of the
image.

Complete architecture

In order to solve the aforementioned problem, we moved to an extremely
more aggressive crop policy. In this second attempt the training sequences
were resized to 256 × 256 before cropping them to 112 × 112. This way
the crop constituted less than a quarter of the original image, creating
enough variety in the location of the ground truth. This posed however a
new challenge: As the network was trained on small crops, it learned to
predict better localized but significantly wider attentional maps, reflecting
the proportion between salient and non-salient areas seen at training time.
We thus enhanced the network architecture towards a more sophisticated
multi-input multi-output approach, shown in Fig. 3.12. The network still
takes a 16 frames videoclip as input, although now there are three different
data streams. The first stream provides the model with a randomly cropped
videoclip, as explained above. This videoclip passes through the encoding-
decoding pipeline and produces a coarse prediction: A first loss on this
output is employed to force the model to learn variety in the prediction
position and avoid the trivial hit-the-center solution. The second stream
feeds the model with the same uncropped videoclip, but resized to match the
input shape. This videoclip also goes through the encoding-decoding stack,
producing a new coarse uncropped saliency prediction. The prediction is
then upsampled and stacked on the RGB image of the last frame of the
videoclip, which is provided as third input. Eventually, the concatenated
tensor is passed through a last block of convolutions, with the purpose
of refining the prediction. This last step also exploits the appearance
information of the original videoclip. On the output of this block - our final
attentional map prediction - we compute the second loss.
In the following experimental sections we evaluate both quantitatively and
qualitatively the proposed model. In Sec. 3.2.3 we rely on saliency metrics
to measure the network’s performance against several baselines and state-
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Table 3.6: Training and test results obtained by both the baselines and the
proposed networks. See text for details.

Test sequences CC(GT, MEAN) < 0.3
CC KL CC KL

Baseline (gaussian) 0.33 ± 0.13 2.50 ± 0.63 0.22 ± 0.15 2.70 ± 0.74
Baseline (mean train GT) 0.48 ± 0.27 1.65 ± 1.17 0.17 ± 0.20 2.85 ± 1.31
COARSE 0.44 ± 0.23 1.73 ± 1.00 0.19 ± 0.18 2.74 ± 1.07
COARSE+FINE 0.55 ± 0.28 1.42 ± 1.07 0.30 ± 0.24 2.24 ± 1.10

of-the-art video saliency methods; while in Sec. 3.2.3 we analyze how well
the model mimics the driver’s focus dynamics.

3.2.3 Experimental evalutation

The performance of the proposed COARSE and COARSE+FINE models are
quantitatively measured against different baselines. Following the guidelines
in [22], for the evaluation phase we rely on Pearson’s Correlation Coefficient
(CC) and Kullback–Leibler divergence (KL) measures.

Training details. The encoding half of the COARSE network is initialized
with pre-trained weights [185]. Training sequences are randomly mirrored
to augment the data. End-to-end training minimizes the Mean Squared
Error for both losses of the COARSE+FINE model; we employ Adam optimizer
with parameters suggested in the original paper [87]. Train and test are
split according to [4] and 500 central frames from each training sequence
are used for validation.

Keeping it simple: Baselines from saliency

It is widely known that a centered Gaussian, stretched to the aspect ratio of
the image, makes for an incredibly effective baseline for the visual saliency
task. This static baseline scores better than many methods benchmarked
on the MIT300 [21] dataset. Section WHERE revealed that a similar bias
affects the DR(eye)VE dataset (see Fig. 3.6). Thus, to validate the proposed
model, we compare it against both the aforementioned baseline and a more
task-driven version of it built as the average of all training set attentional
maps, Fig. 3.13(c) and (d). Results are reported in Tab. 3.6: The second
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Table 3.7: Comparison with video saliency state-of-the-art methods.

CC KL
Wang et al. [201] 0.08 ± 0.11 3.77 ± 0.77
Wang et al. [200] 0.03 ± 0.09 4.24 ± 1.13
Mathe et al. [117] 0.04 ± 0.08 3.92 ± 0.53

baseline performs better than both the Gaussian baseline and the COARSE
model on the test set, but significantly worse than COARSE+FINE model.
Indeed the latter has a relative gain of about +25% over the COARSE model
and about +15% over the average training ground truth.

Comparison with state-of-the-art

In Tab. 3.7 we report results from two recent unsupervised video saliency
methods [200, 201] and a supervised one [117] on the test set. Both
unsupervised methods rely on appearance and motion discontinuities and are
easily fooled by the motion of the roof-mounted camera. Unfortunately, [117]
is trained on the Action in The Eye dataset and thus performs poorly on
this domain. As far as we know, no supervised video saliency method
releases the source code allowing us to re-train it, nor reports performance
on DR(eye)VE. Results shown in Tab. 3.7 call for supervised methods aware
of both the semantic of the scene and the peculiarities of the task. To our
knowledge, our proposal is the first deep model for driving attention, and
video saliency to a greater extent.

New annotations to escape the bias

Despite showing good results, the baselines introduced in Sec. 3.2.3 are of no
interest for the driving task as they are not able to generalize when required.
There is a strong unbalance between lots of trivial-to-predict scenarios of
little interest and few but important hard-to-predict events. To enable
the evaluation of our model under such circumstances, we select from
the DR(eye)VE dataset those sub-sequences whose ground truth poorly
correlates with the average ground truth of the whole sequence (CC < 0.3),
under the assumption that in these situations something worth noticing is
drifting the driver’s focus from the vanishing point of the road. The last
column of Tab. 3.6 reports the results computed on such subset. When

Smart Cities: Bridging Driver’s, Vehicle and Infrastructure Viewpoints 39



(a) ground truth (b) network prediction

(c) baseline: gaussian (d) baseline: average GT

Figure 3.13: Visual comparison between the ground truth, the prediction
and the baselines on an example frame of the DR(eye)VE dataset.

tested on these sequences, the Gaussian baseline outperforms both the
COARSE model and the average training ground truth baseline. To interpret
this result, consider that when measuring a distance between distributions,
a high probability but wrong prediction is severely penalized over a somehow
uncertain prediction (i.e. a Gaussian with high variance). Nonetheless, the
COARSE+FINE model scores higher than all other methods with a relative
gain of about +35% over the second best.

Do we capture the attentional dynamics?

In Sec. 3.2.3 we quantitatively evaluated the proposed network. Here,
we qualitatively investigate the ability of the model to learn both where
and what a human driver would focus while driving. The results are
then compared against the analysis previously introduced in Sec. 3.2.2.
Figure 3.22 shows the average attentional maps predicted by our model,
arranged by speed range. On each plot we also overlay precision errors
(green) and recall errors (red), i.e. pixels whose value differs by more than
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0 ≤ km/h ≤ 10 10 ≤ km/h ≤ 30 30 ≤ km/h ≤ 50
(a) (b) (c)

50 ≤ km/h ≤ 70 70 ≤ km/h
(d) (e)

Figure 3.14: Model prediction averaged across all test sequences of
DR(eye)VE dataset, grouped by driving speed. We highlight areas in which
the mean prediction deviates by more than 10% from the mean ground
truth. Precision errors are overlaid in green, while recall error in red.

10% from the analogous ground truth plots reported in Fig 3.7. We observe
that i) the model generally succeeds in capturing the location of the driver
gaze at different speed, ii) errors are mostly due to precision (prediction is
wider than ground truth) and iii) errors decrease as the speed increases,
as the lower variance of the gaze at high speed makes the modeling task
easier.

3.2.4 Final remarks and future works
In this work we investigated the spatial and semantic attentional dynamics
of the human driver and designed a deep network able to replicate such
behavior while driving. These results eventually pave the way for a new
assisted driving module, where real-time attentional maps support the
driver by both decreasing fatigue and helping in keeping focus. We argue
that such attentional maps can be less invasive than other Advanced Driver
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Assistance Systems that directly act on the car (e.g. by activating breaks),
whereas attentional maps leave full control to the driver.

Despite the encouraging results, up to this point the proposed model
architecture is fairly general-purpose and it does not take advantage of the
insights got during dataset analysis in Sec. 3.1.3. Thus, in the following we
customize the model architecture to exploit in explicit two factors which
we know heavily influence the driver’s attentional behavior: motion and
scene semantics.

3.3 Integrating Motion and Semantics: a Multi-
branch Architecture for Driver’s Focus of
Attention Prediction

In this section we build upon the data-driven study on drivers’ gaze fixations
under different circumstances and scenarios (see Sec. 3.1.3). The study
suggests that the semantic of the scene, the speed and bottom-up features all
influence the driver’s gaze. Here we show how we integrated all these factors
in the model architecture in a principled manner. We also advocate for the
existence of common gaze patterns that are shared among different drivers;
we empirically demonstrate the existence of such patterns by developing
a deep learning model that can profitably learn to predict where a driver
would be looking at in a specific situation.

3.3.1 Introduction

The DR(eye)VE data richness enables us to train an end-to-end deep
network that predicts salient regions in car-centric driving videos. The
network we propose is based on three branches which estimate attentional
maps from a) visual information of the scene, b) motion cues (in terms
of optical flow) and c) semantic segmentation (Fig. 3.15). In contrast to
the majority of experiments, which are conducted in controlled laboratory
settings or employ sequences of unrelated images [191, 21, 80], we train our
model on data acquired on the field. Final results demonstrate the ability
of the network to generalize across different day times, different weather
conditions, different landscapes and different drivers.
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(a) RGB frame (b) optical flow

(c) semantic segmentation (d) predicted map

Figure 3.15: An example of visual attention while driving (d), estimated
from our deep model using (a) raw video, (b) optical flow and (c) semantic
segmentation.

Eventually, we believe our work can be complementary to the current se-
mantic segmentation and object detection literature [221, 196, 125, 30, 122]
by providing a diverse set of information. According to [179], the act of
driving combines complex attention mechanisms guided by the driver’s past
experience, short reactive times and strong contextual constraints. Thus,
very little information is needed to drive if guided by a strong focus of
attention (FoA) on a limited set of targets: our model aims at predicting
them. The way humans favor some entities in the scene, along with key
factors guiding eye fixations in presence of a given task (e.g. visual search)
has been extensively studied for decades [186, 207]. The main difficulty
that rises when approaching the subject is the variety of perspectives under
which it can be cast. Indeed, visual attention has been approached by psy-
chologists, neurobiologists and computer scientists, making the field highly
interdisciplinary [53]. We are particularly interested in the computational
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Figure 3.16: Examples taken from a random sequence of DR(eye)VE . From
left to right: frames from the eye tracking glasses with gaze data, from the
roof-mounted camera, temporal aggregated fixation maps (as defined in
Sec. 3.1.2) and overlays between frames and fixation maps.

perspective, in which predicting human attention is often formalized as an
estimation task delivering the probability of each point in a given scene to
attract the observer’s gaze.

3.3.2 Multi-branch architecture for focus of attention
prediction

The DR(eye)VE dataset is sufficiently large to allow the construction of a
deep architecture to model common attentional patterns. Here, we describe
our neural network model to predict human FoA while driving.

Architecture design. In the context of high level video analysis (e.g. ac-
tion recognition and video classification), it has been shown that a method
leveraging single frames can be outperformed if a sequence of frames is used
as input instead [185, 84]. Temporal dependencies are usually modeled
either by 3D convolutional layers [185], tailored to capture short range
correlations, or by recurrent architectures (e.g. LSTM, GRU), that can
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Figure 3.17: The COARSE module is made of an encoder based on C3D
network [185] followed by a bilinear upsampling (bringing representations
back to the resolution of the input image) and a final 2D convolution.
During feature extraction, the temporal axis is lost due to 3D pooling. All
convolutional layers are preceded by zero paddings in order keep borders,
and all kernels have size 3 along all dimensions. Pooling layers have size and
stride of (1, 2, 2, 4) and (2, 2, 2, 1) along temporal and spatial dimensions
respectively. All activations are ReLUs.

model longer term dependencies [7, 133]. Our model follows the former
approach, relying on the assumption that a small time window (e.g. half
a second) holds sufficient contextual information for predicting where the
driver would focus in that moment. Indeed, human drivers can take even
less time to react to an unexpected stimulus. Our architecture takes a
sequence of 16 consecutive frames (≈ 0.65s) as input (called clips from now
on) and predicts the fixation map for the last frame of such clip.
Many of the architectural choices made to design the network come from
insights from the dataset analysis presented in Sec.3.1.3. In particular, we
rely on the following results:

• the drivers’ FoA exhibits consistent patterns, suggesting that it can
be reproduced by a computational model;

• the drivers’ gaze is affected by a strong prior on objects semantics,
e.g. drivers tend to focus on items lying on the road;

• motion cues, like vehicle speed, are also key factors that influence
gaze.

Accordingly, the model output merges three branches with identical ar-
chitecture, unshared parameters and different input domains: the RGB
image, the semantic segmentation and the optical flow field. We call this
architecture multi-branch model. Following a bottom-up approach, in
Sec. 3.3.2 the building blocks of each branch are motivated and described.
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Figure 3.18: A single FoA branch of our prediction architecture. The COARSE
module (see Fig. 3.17) is applied to both a cropped and a resized version of
the input tensor, which is a videoclip of 16 consecutive frames. The cropped
input is used during training to augment the data and the variety of ground
truth fixation maps. The prediction of the resized input is stacked with
the last frame of the videoclip and fed to a stack of convolutional layers
(refinement module) with the aim of refining the prediction. Training is
performed end-to-end and weights between COARSE modules are shared. At
test time, only the refined predictions are used. Note that the complete
model is composed of three of these branches (see Fig. 3.19), each of which
predicting visual attention for different inputs (namely image, optical flow
and semantic segmentation). All activations in the refinement module are
LeakyReLU with α = 10−3, except for the last single channel convolution
that features ReLUs. Crop and resize streams are highlighted by light blue
and orange arrows respectively.

Later, in Sec. 3.3.2 it will be shown how the branches merge into the final
model.

Single FoA branch

Each branch of the multi-branch model is a two-input two-output architec-
ture composed of two intertwined streams. The aim of this peculiar setup
is to prevent the network from learning a central bias, that would otherwise
stall the learning in early training stages 2. To this end, one of the streams

2For further details the reader can refer to Sec. 10 and Sec. 11 of the supplementary
material.
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is given as input (output) a severely cropped portion of the original image
(ground truth), ensuring a more uniform distribution of the true gaze, and
runs through the COARSE module, described below. Similarly, the other
stream uses the COARSE module to obtain a rough prediction over the full
resized image and then refines it through a stack of additional convolutions
called REFINE model. At test time, only the output of the REFINE stream
is considered. Both streams rely on the COARSE module, the convolutional
backbone (with shared weights) which provides the rough estimate of the
attentional map corresponding to a given clip. This component is detailed
in Fig. 3.17.
The COARSE module is based on the C3D architecture [185] that encodes
video dynamics by applying a 3D convolutional kernel on the 4D input
tensor. As opposed to 2D convolutions that stride along the width and
height dimension of the input tensor, a 3D convolution also strides along
time. Formally, the j-th feature map in the i-th layer at position (x, y) at
time t is computed as:

vx,y,ti,j = bi,j +
∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wp,q,ri,j,mv
x+p,y+q,t+r
i−1,m (3.2)

where m indexes different input feature maps, wp,q,ri,j,m is the value at the
position (p, q) at time r of the kernel connected to the m-th feature map,
and Pi, Qi and Ri are the dimensions of the kernel along width, height and
temporal axis respectively; bi,j is the bias from layer i to layer j.
From C3D, only the most general-purpose features are retained by remov-
ing the last convolutional layer and the fully connected layers which are
strongly linked to the original action recognition task. The size of the last
pooling layer is also modified in order to cover the remaining temporal
dimension entirely. This collapses the tensor from 4D to 3D, making the
output independent of time. Eventually, a bilinear upsampling brings the
tensor back to the input spatial resolution and a 2D convolution merges
all features into one channel. See Fig. 3.17 for additional details on the
COARSE module.

Training the two streams together The architecture of a single FoA
branch is depicted in Fig. 3.18. During training, the first stream feeds the
COARSE network with random crops, forcing the model to learn the current
focus of attention given visual cues rather than prior spatial location. The
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C3D training process described in [185], employs a 128× 128 image resize,
and then a 112× 112 random crop. However, the small difference in the
two resolutions limits the variance of gaze position in ground truth fixation
maps and is not sufficient to avoid the attraction towards the center of
the image. For this reason, training images are resized to 256× 256 before
being cropped to 112× 112. This crop policy generates samples that cover
less than a quarter of the original image thus ensuring a sufficient variety
in prediction targets. This comes at the cost of a coarser prediction: as
crops get smaller, the ratio of pixels in the ground truth covered by gaze
increases, leading the model to learn larger maps.
In contrast, the second stream feeds the same COARSE model with the same
images, this time resized to 112 × 112 – and not cropped. The coarse
prediction obtained from the COARSE model is then concatenated with the
final frame of the input clip, i.e. the frame corresponding to the final
prediction. Eventually, the concatenated tensor goes through the REFINE
module to obtain a higher resolution prediction of the FoA.
The overall two-stream training procedure for a single branch is summarized
in Algorithm 1.

Training objective Prediction cost can be minimized in terms of Kullback-
Leibler divergence:

DKL(Y ‖Ŷ ) =
∑
i

Y (i) log

(
ε+

Y (i)

ε+ Ŷ (i)

)
(3.3)

where Y is the ground truth distribution, Ŷ is the prediction, the summation
index i spans across image pixels and ε is a small constant that ensures
numerical stability3. Since each single FoA branch computes an error on
both the cropped image stream and the resized image stream, the branch
loss can be defined as:

Lb(Xb,Y) =
∑
m

(
DKL(φ(Y m)‖C(φ(Xm

b ))) +

DKL(Y m‖R(C(ψ(Xm
b )), Xm

b )))

) (3.4)

3Please note that DKL inputs are always normalized to be a valid probability
distribution despite this may be omitted in notation to improve equations readability.
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Algorithm 1 TRAINING. The model is trained in two steps: first each
branch is trained separately through iterations detailed in procedure
single_branch_training_iteration, then the three branches are
fine-tuned altogether as shown by procedure multi_branch_fine-
tuning_iteration. For clarity, we omit from notation: i) the subscript
b denoting the current domain in all X, x and ŷ variables in the single
branch iteration and ii) the normalization of the sum of the outputs from
each branch in line 13.

1: procedure A: single_branch_training_iteration
input: domain data X = {x1, x2, . . . , x16}, true attentional map y

of last frame x16 of videoclip X
output: branch loss Lb computed on input sample (X, y)

2: Xres ← resize(X, (112, 112))
3: Xcrop, ycrop ← get_crop((X, y), (112, 112))
. Get coarse prediction on uncentered crop

4: ŷcrop ← COARSE(Xcrop)
. Get refined prediction over whole image

5: ŷ ← REFINE(stack(x16, upsample(COARSE(Xres))))
. Compute branch loss as in Eq. 3.4

6: Lb(X,Y )← DKL(ycrop‖ŷcrop) +DKL(y‖ŷ)

7: procedure B: multi_branch_fine-tuning_iteration
input: data X = {x1, x2, . . . , x16} for all domains, true attentional

map y of last frame x16 of videoclip X
output: overall loss L computed on input sample (X, y)

8: Xres ← resize(X, (112, 112))
9: Xcrop, ycrop ← get_crop((X, y), (112, 112))

10: for branch b ∈ {RGB,flow, seg} do
. As in line 4 of the above procedure

11: ŷbcrop ← COARSE(Xbcrop)
. As in line 5 of the above procedure

12: ŷb ← REFINE(stack(xb16 , upsample(COARSE(Xbres))))
. Compute overall loss as in Eq. 3.5

13: L(X,Y )← DKL(ycrop‖
∑
b ŷbcrop) +DKL(y‖

∑
b ŷb)
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Figure 3.19: The multi-branch model is composed of three different
branches, each of which has its own set of parameters, and their predictions
are summed to obtain the final map. Note that in this figure cropped streams
are dropped to ease representation, but are employed during training (as
discussed in Sec. 3.3.2 and depicted in Fig. 3.18.

where C and R denote COARSE and REFINE modules, (Xm
b , Y

m) ∈ Xb × Y
is the m-th training example in the b-th domain (namely RGB, optical
flow, semantic segmentation), and φ and ψ indicate the crop and the resize
functions respectively.

Inference step While the presence of the C(φ(Xm
b )) stream is beneficial in

training to reduce the spatial bias, at test time only the R(C(ψ(Xm
b )), Xm

b ))
stream producing higher quality prediction is used. The outputs of such
stream from each branch b are then summed together, as explained in the
following section.

Multi-Branch model

As described at the beginning of this section and depicted in Fig. 3.19,
the multi-branch model is composed of three identical branches. The
architecture of each branch has already been described in Sec. 3.3.2 above.
Each branch exploits complementary information from a different domain
and contributes to the final prediction accordingly. In detail, the first
branch works in the RGB domain and processes raw visual data about the
scene XRGB. The second branch focuses on motion through the optical
flow representation Xflow described in [61]. Eventually, the last branch
takes as input semantic segmentation probability maps Xseg. For this last
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branch, the number of input channels depends on the specific algorithm
used to extract the results, 19 in our setup (Yu and Koltun [221]). The
three independent predicted FoA maps are summed and normalized to
result in a probability distribution.
To allow for larger batch size, we choose to bootstrap each branch independ-
ently by training it according to Eq. 3.4. Then, the complete multi-branch
model which merges the three branches is fine-tuned with the following
loss:

L(X ,Y) =
∑
m

(
DKL(φ(Y m)‖

∑
b

C(φ(Xm
b ))) +

DKL(Y m‖
∑
b

R(C(ψ(Xm
b )), Xm

b )))

)
.

(3.5)

The algorithm describing the complete inference over the multi-branch
model in detailed in Alg. 2.

3.3.3 Experiments

In this section we evaluate the performance of the proposed multi-branch
model. First, we start by comparing our model against some baselines
and other methods in literature. Following the guidelines in [22], for the
evaluation phase we rely on Pearson’s Correlation Coefficient (CC) and
Kullback–Leibler Divergence (DKL) measures. Moreover, we evaluate the
Information Gain (IG) [92] measure to assess the quality of a predicted
map P with respect to a ground truth map Y in presence of a strong bias,

Algorithm 2 INFERENCE. At test time, the data extracted from the
resized videoclip is input to the three branches and their output is summed
and normalized to obtain the final FoA prediction.

input: data X = {x1, x2, . . . , x16} for all domains
output: predicted FoA map ŷ
1: Xres ← resize(X, (112, 112))
2: for branch b ∈ {RGB,flow, seg} do
3: ŷb ← REFINE(stack(xb16 , upsample(COARSE(Xbres))))
4: ŷ ←

∑
b ŷb/

∑
i

∑
b ŷb(i)
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as:
IG(P, Y,B) =

1

N

∑
i

Yi[(log2(ε+ Pi)− log2(ε+Bi)] (3.6)

where i is an index spanning all the N pixels in the image, B the bias
computed as the average training fixation map and ε ensures numerical
stability.
Furthermore, we conduct an ablation study to investigate how different
branches affect the final prediction and how their mutual influence changes
in different scenarios. We then study whether our model captures the
attention dynamics observed in Sec. 3.1.3. Eventually, we assess our model
from a human perception perspective.

Implementation details. The three different pathways of the multi-branch
model (namely FoA from color, from motion and from semantics) have
been pre-trained independently using the same cropping policy of Sec. 3.3.2
and minimizing the objective function in Eq. 3.4. Each branch has been
respectively fed with:

• 16 frames clips in raw RGB color space;
• 16 frames clips with optical flow maps, encoded as color images

through the flow field encoding [61];
• 16 frames clips holding semantic segmentation from [221] encoded as

19 scalar activation maps, one per segmentation class.

During individual branch pre-training clips were randomly mirrored for data
augmentation. We employ Adam optimizer with parameters as suggested in
the original paper [87], with the exception of the learning rate that we set
to 10−4. Eventually, batch size was fixed to 32 and each branch was trained
until convergence. The DR(eye)VE dataset is split into train, validation
and test set as follows: sequences 1-38 are used for training, sequences
39-74 for testing. The 500 frames in the middle of each training sequence
constitute the validation set.
Moreover, the complete multi-branch architecture was fine-tuned using the
same cropping and data augmentation strategies minimizing cost function
in Eq. 3.5. In this phase batch size was set to 4 due to GPU memory
constraints and learning rate value was lowered to 10−5. Inference time of
each branch of our architecture is ≈ 30 milliseconds per videoclip on an
NVIDIA Titan X.
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Input frame GT multi-branch Palazzi [132]

Input frame GT RMDN [8] MLNet [37]

Figure 3.20: Visual assessment of the predicted fixation maps. From left
to right: input clip, ground truth map, our prediction, prediction of the
previous version of the model [132], prediction of RMDN [8] and prediction
of MLNet [37].
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Model evaluation

In Tab. 3.8 we report results of our proposal against other state-of-the-art
models [200, 117, 37, 132, 8, 201] evaluated both on the complete test set
and on acting subsequences only. All the competitors, with the exception of
[132] are bottom-up approaches and mainly rely on appearance and motion
discontinuities. To test the effectiveness of deep architectures for saliency
prediction we compare against the Multi-Level Network (MLNet) [37],
which scored favourably in the MIT300 saliency benchmark [21], and the
Recurrent Mixture Density Network (RMDN) [8], which represents the
only deep model addressing video saliency. While MLNet works on images
discarding the temporal information, RMDN encodes short sequences in a
similar way to our COARSE module, and then relies on a LSTM architecture
to model long term dependencies and estimates the fixation map in terms
of a GMM. For a fair comparison, both models were re-trained on the
DR(eye)VE dataset.
Results highlight the superiority of our multi-branch architecture on
all test sequences. The gap in performance with respect to bottom-up
unsupervised approaches [200, 201] is higher, and is motivated by the
peculiarity of the attention behavior within the driving context, which calls
for a task-oriented training procedure. Moreover, MLNet’s low performance
testifies for the need of accounting for the temporal correlation between
consecutive frames that distinguishes the tasks of attention prediction in
images and videos. Indeed, RMDN processes video inputs and outperforms
MLNet on both DKL and IG metrics, performing comparably on CC.
Nonetheless, its performance is still limited: indeed, qualitative results
reported in Fig. 3.20 suggest that long term dependencies captured by its
recurrent module lead the network towards the regression of the mean,
discarding contextual and frame-specific variations that would be preferrable
to keep. To support this intuition, we measure the average DKL between
RMDN predictions and the mean training fixation map (Baseline Mean),
resulting in a value of 0.11. Being lower than the divergence measured with
respect to groundtruth maps, this value highlights the closer correlation to
a central baseline rather than to groundtruth. Eventually, we also observe
improvements with respect to our previous proposal [132], that relies on a
more complex backbone model (also including a deconvolutional module)
and processes RGB clips only. The gap in performance resides in the
greater awareness of our multi-branch architecture of the aspects that
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characterize the driving task as emerged from the analysis in Sec. 3.1.3.
The positive performances of our model are also confirmed when evaluated
on the acting partition of the dataset. We recall that acting indicates
sub-sequences exhibiting a significant task-driven shift of attention from
the center of the image (Fig. 3.5). Being able to predict the FoA also on
acting sub-sequences means that the model captures the strong centered
attention bias but is capable of generalizing when required by the context.
This is further shown by the comparison against a centered Gaussian
baseline (BG) and against the average of all training set fixation maps
(BM). The former baseline has proven effective on many image saliency
detection tasks [21] while the latter represents a more task-driven version.
The superior performance of the multi-branch model w.r.t. baselines
highlights that despite the attention is often strongly biased towards the
vanishing point of the road, the network is able to deal with sudden task-
driven changes in gaze direction.
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Figure 3.21: DKL of the different branches in several conditions (from left
to right: downtown, countryside, highway, morning, evening, night, sunny,
cloudy, rainy). Underlining highlights difference of aggregation in terms of
landscape, time of day and weather. Please note that lower DKL indicates
better predictions.
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|Σ| = 2.50× 109 |Σ| = 1.57× 109 |Σ| = 3.49× 108

0 ≤ km/h ≤ 10 10 ≤ km/h ≤ 30 30 ≤ km/h ≤ 50
(a) (b) (c)

|Σ| = 1.20× 108 |Σ| = 5.38× 107

50 ≤ km/h ≤ 70 70 ≤ km/h
(d) (e)

Figure 3.22: Model prediction averaged across all test sequences and grouped
by driving speed. As the speed increases, the area of the predicted map
shrinks, recalling the trend observed in ground truth maps. As in Fig. 3.7,
for each map a two dimensional Gaussian is fitted and the determinant of
its covariance matrix Σ is reported as a measure of the spread.

Model analysis

In this section we investigate the behavior of our proposed model under
different landscapes, time of day and weather (Sec. 3.3.3); we study the
contribution of each branch to the FoA prediction task (Sec. 3.3.3); and we
compare the learned attention dynamics against the one observed in the
human data (Sec. 3.3.3).
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Figure 3.23: Comparison between ground truth (gray bars) and predicted
fixation maps (colored bars) when used to mask semantic segmentation of
the scene. The probability of fixation (in log-scale) for both ground truth
and model prediction is reported for each semantic class. Despite absolute
errors exist, the two bar series agree on the relative importance of different
categories.

Dependency on driving environment

The DR(eye)VE data has been recorded under varying landscapes, time
of day and weather conditions. We tested our model in all such different
driving conditions. As would be expected, Fig. 3.21 shows that the human
attention is easier to predict in highways rather than downtown, where the
focus can shift towards more distractors. The model seems more reliable
in evening scenarios, rather than morning or night, where we observed
better lightning conditions and lack of shadows, over-exposure and so on.
Lastly, in rainy conditions we notice that human gaze is easier to model,
possibly due to the higher level of awareness demanded to the driver and
his consequent inability to focus away from vanishing point. To support
the latter intuition, we measured the performance of BM baseline (i.e. the
average training fixation map), grouped for weather condition. As expected,

Smart Cities: Bridging Driver’s, Vehicle and Infrastructure Viewpoints 57



the DKL value in rainy weather (1.53) is significantly lower than the ones
for cloudy (1.61) and sunny weather (1.75), highlighting that when rainy
the driver is more focused on the road.

Ablation study

In order to validate the design of the multi-branch model (see Sec. 3.3.2),
here we study the individual contributions of the different branches by
disabling one or more of them.
Results in Tab. 3.9 show that the RGB branch plays a major role in FoA
prediction. The motion stream is also beneficial and provides a slight
improvement, that becomes clearer in the acting subsequences. Indeed,
optical flow intrinsically captures a variety of peculiar scenarios that are
non-trivial to classify when only color information is provided, e.g. when the
car is still at a traffic light or is turning. The semantic stream, on the other
hand, provides very little improvement. In particular, from Tab. 3.9 and by
specifically comparing I+F and I+F+S, a slight increase in the IG measure
can be appreciated. Nevertheless, such improvement has to be considered
negligible when compared to color and motion, suggesting that in presence
of efficiency concerns or real-time constraints the semantic stream can be
discarded with little losses in performance. However, we expect the benefit
from this branch to increase as more accurate segmentation models will be
released.

Do we capture the attention dynamics?

The previous sections validate quantitatively the proposed model. Now,
we assess its capability to attend like a human driver by comparing its
predictions against the analysis performed in Sec. 3.1.3.
First, we report the average predicted fixation map in several speed ranges
in Fig. 3.22. The conclusions we draw are twofold: i) generally, the model
succeeds in modeling the behavior of the driver at different speeds, and
ii) as the speed increases fixation maps exhibit lower variance, easing the
modeling task, and prediction errors decrease.
We also study how often our model focuses on different semantic categor-
ies, in a fashion that recalls the analysis of Sec. 3.1.3, but employing our
predictions rather than ground truth maps as focus of attention. More
precisely, we normalize each map so that the maximum value equals 1, and
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apply the same thresholding strategy described in Sec. 3.1.3. Likewise, for
each threshold value a histogram over class labels is built, by accounting
all pixels falling within the binary map for all test frames. This results in
nine histograms over semantic labels, that we merge together by averaging
probabilities belonging to different threshold. Fig. 3.23 shows the compar-
ison. Color bars represent how often the predicted map focuses on a certain
category, while gray bars depict ground truth behavior and are obtained
by averaging histograms in Fig. 3.9 across different thresholds. Please
note that, to highlight differences for low populated categories, values are
reported on a logarithmic scale. The plot shows a certain degree of absolute
error is present for all categories. However, in a broader sense, our model
replicates the relative weight of different semantic classes while driving,
as testified by the importance of roads and vehicles, that still dominate,
against other categories such as people and cycles that are mostly neglected.
This correlation is confirmed by Kendall rank coefficient, which scored 0.51
when computed on the two bar series.

Do subtasks help in FoA prediction?

The driving task is inherently composed of many subtasks, such as turning
or merging in traffic, looking for parking and so on. While such fine-grained
subtasks are hard to discover (and probably to emerge during learning)
due to scarcity, here we show how the proposed model has been able to
leverage on more common subtask to get to the final prediction. These
subtasks are: turning left/right, going straight, being still. We gathered
automatic annotation through GPS information released with the dataset.
We then train a linear SVM classifier to distinguish the above 4 different
actions starting from the activations of the last layer of multi-path model,
unrolled in a feature vector. The SVM classifier scores a 90% of accuracy
on the test set (5000 uniformely sampled videoclips), supporting the fact
that network activations are highly discriminative for distinguishing the
different driving subtasks. Please refer to Fig. 3.24 for further details.

3.3.4 Conclusions

This section presented a study of human attention dynamics underpinning
the driving experience. Our main contribution is a multi-branch deep
network capable of capturing such factors and replicating the driver’s focus
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Figure 3.24: Confusion matrix for SVM classifier trained to distinguish
driving actions from network activations. The accuracy is generally high,
which corroborates the assumption that the model benefits from learning
an internal representation of the different driving sub-tasks.
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of attention from raw video sequences. The design of our model has been
guided by a prior analysis highlighting i) the existence of common gaze
patterns across drivers and different scenarios; and ii) a consistent relation
between changes in speed, lightning conditions, weather and landscape, and
changes in the driver’s focus of attention. Experiments with the proposed
architecture and related training strategies yielded state-of-the-art results.
To our knowledge, our model is the first able to predict human attention
in real-world driving sequences. As the model only input are car-centric
videos, it might be integrated with already adopted ADAS technologies.
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Table 3.8: Experiments illustrating the superior performance of the
multi-branch model over several baselines and competitors. We report
both the average across the complete test sequences and only the acting
frames.

Test sequences Acting subsequences
CC DKL IG CC DKL IG
↑ ↓ ↑ ↑ ↓ ↑

Baseline Gaussian 0.40 2.16 -0.49 0.26 2.41 0.03
Baseline Mean 0.51 1.60 0.00 0.22 2.35 0.00

Mathe et al.[117] 0.04 3.30 -2.08 - - -
Wang et al.[200] 0.04 3.40 -2.21 - - -
Wang et al.[201] 0.11 3.06 -1.72 - - -

MLNet[37] 0.44 2.00 -0.88 0.32 2.35 -0.36
RMDN[8] 0.41 1.77 -0.06 0.31 2.13 0.31

Palazzi et al.[132] 0.55 1.48 -0.21 0.37 2.00 0.20
multi-branch 0.56 1.40 0.04 0.41 1.80 0.51

Table 3.9: The ablation study performed on our multi-branch model. I,
F and S represent image, optical flow and semantic segmentation branches
respectively.

Test sequences Acting subsequences
CC DKL IG CC DKL IG
↑ ↓ ↑ ↑ ↓ ↑

I 0.554 1.415 -0.008 0.403 1.826 0.458
F 0.516 1.616 -0.137 0.368 2.010 0.349
S 0.479 1.699 -0.119 0.344 2.082 0.288

I+F 0.558 1.399 0.033 0.410 1.799 0.510
I+S 0.554 1.413 -0.001 0.404 1.823 0.466
F+S 0.528 1.571 -0.055 0.380 1.956 0.427

I+F+S 0.559 1.398 0.038 0.410 1.797 0.515
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3.4 Perceptual Assessment of Predicted Fixa-
tion Maps

3.4.1 A perceptual experiment

To further validate the predictions of our model from the human perception
perspective, 50 people with at least 3 years of driving experience were
asked to participate in a visual assessment4. First, a pool of 400 videoclips
(each 40 seconds long) is sampled from the DR(eye)VE dataset. Sampling
is weighted such that resulting videoclips are evenly distributed among
different scenarios, weathers, drivers and daylight conditions. Also, half of
these videoclips contain sub-sequences that were previously annotated as
acting.

To approximate as realistically as possible the visual field of attention
of the driver, sampled videoclips are pre-processed following the procedure
in [197]. As in [197] we leverage the Space Variant Imaging Toolbox [137]
to implement this phase, setting the parameter that halves the spatial
resolution every 2.3◦ to mirror human vision [197, 94] (please see Sec. 3.4.2
and Sec. 3.4.3 for additional details). The resulting videoclip preserves
details near to the fixation points in each frame, whereas the rest of the
scene gets more and more blurred getting farther from fixations until only
low-frequency contextual information survive. Coherently with [197] we
refer to this process as foveation (in analogy with human foveal vision).
Thus, pre-processed videoclips will be called foveated videoclips from now
on. To appreciate the effect of this step the reader is referred to Fig. 3.25.

Foveated videoclips were created by randomly selecting one of the fol-
lowing three fixation maps: the ground truth fixation map (G videoclips),
the fixation map predicted by our model (P videoclips) or the average
fixation map in the DR(eye)VE training set (C videoclips). The latter
central baseline allows to take into account the potential preference for a
"stable" attentional map (i.e. lack of switching of focus).
Each participant was asked to watch five randomly sampled foveated

videoclips. After each videoclip, he answered the following question:
4These were students (11 females, 39 males) of age between 21 and 26 (µ = 23.4, σ =

1.6) recruited at University of Modena and Reggio Emilia on a voluntary basis through
an online form.
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Figure 3.25: The figure depicts a videoclip frame that underwent the
foveation process. The attentional map (above) is employed to blur the
frame in a way that approximates the foveal vision of the driver[137]. In the
foveated frame (below), it can be appreciated how the ratio of high-level
information smoothly degrades getting farther from fixation points.

• Would you say the observed attention behavior comes from a human
driver? (yes/no)

Each of the 50 participant evaluates five foveated videoclips, for a total of
250 examples.
The confusion matrix of provided answers is reported in Fig. 3.26. Par-
ticipants were not particularly good at discriminating between human’s
gaze and model generated maps, scoring about the 55% of accuracy which
is comparable to random guessing; this suggests our model is capable of
producing plausible attentional patterns that resemble a proper driving
behavior to a human observer.
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Figure 3.26: The confusion matrix reports the results of participants’ guesses
on the source of fixation maps. Overall accuracy is about 55% which is
fairly close to random chance.

3.4.2 Space Variant Imaging System (SVIS)

The aforementioned perceptual experiment would have been impossible
without a well-grounded algorithm for performing image foveation. We
decided to rely on Space Variant Imaging System (SVIS), a MATLAB
toolbox that allows to foveate images in real-time[137], which has been used
in a large number of scientific works to approximate human foveal vision
since its introduction in 2002. In this frame, the term foveated imaging
refers to the creation and display of static or video imagery where the
resolution varies across the image. In analogy to human foveal vision, the
highest resolution region is called the foveation region. In a video, the
location of the foveation region can obviously change dynamically. It is also
possible to have more than one foveation region in each image.

The foveation process is implemented in the SVIS toolbox as follows: first
the the input image is repeatedly low-passed filtered and down-sampled
to half of the current resolution by a Foveation Encoder. In this way
a low-pass pyramid of images is obtained. Then a foveation pyramid is
created selecting regions from different resolutions proportionally to the
distance from the foveation point. Concretely, the foveation region will be
at the highest resolution; first ring around the foveation region will be taken
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(a) (b) (c)

Figure 3.27: Foveation process using SVIS software is depicted here. Start-
ing from one or more fixation points in a given frame (a), a smooth resolution
map is built (b). Image locations with higher values in the resolution map
will undergo less blur in the output image (c).

from half-resolution image; and so on. Eventually, a Foveation Decoder
up-sample, interpolate and blend each layer in the foveation pyramid to
create the output foveated image.

The software is open-source and publicly available here: http://svi.cps.
utexas.edu/software.shtml. The interested reader is referred to the
SVIS website for further details.

3.4.3 A deeper look into videoclip foveation

From fixation maps back to fixations. The SVIS toolbox allows to
foveate images starting from a list of (x, y) coordinates which represent
the foveation points in the given image (please see Fig. 3.27 for details).
However, we do not have this information as in our work we deal with
continuous attentional maps rather than discrete points of fixations. To be
able to use the same software API we need to regress from the attentional
map (either true or predicted) a list of approximated yet plausible fixation
locations. To this aim we simply extract the 25 points with highest value
in the attentional map. This is justified by the fact that in the phase of
dataset creation the ground truth fixation map Ft for a frame at time t
is built by accumulating projected gaze points in a temporal sliding win-
dow of k = 25 frames, centered in t (see Sec.3 of the paper). The output
of this phase is thus a fixation map we can use as input for the SVIS toolbox.
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Taking the blurred-deblurred ratio into account. To the visual
assessment purposes, keeping track the amount of blur that a videoclip has
undergone is also relevant. Indeed, a certain video may give rise to higher
perceived safety only because a more delicate blur allows the subject to see
a clearer picture of the driving scene. In order to consider this phenomenon
we do the following.
Given an input image I ∈ Rh,w,c the output of the Foveation Encoder is a
resolution map Rmap ∈ Rh,w,1, taking value in range [0, 255], as depicted
in Fig. 3.27 (b). Each value indicates the resolution that a certain pixel
will have in the foveated image after decoding, where 0 and 255 indicates
minimum and maximum resolution respectively.
For each video v, we measure video average resolution after foveation as
follows:

vres =
1

N

N∑
f=1

∑
i

Rmap(i, f)

where N is the number of frames in the video (1000 in our setting) and
Rmap(i, f) denotes the ith pixel of the resolution map corresponding to
the f th frame of the input video. The higher the value of vres the more
information is preserved in the foveation process. Due to the sparser
location of fixations in ground truth attentional maps, these result in
much less blurred videoclips. Indeed videos foveated with model predicted
attentional maps have in average only the 38% of the resolution w.r.t.
videos foveated starting from ground truth attentional maps. Despite this
bias, model predicted foveated videos still gave rise to higher perceived
safety to assessment participants.

3.4.4 Perceived safety assessment
The assessment of predicted fixation maps described in Sec 5.3 has also been
carried out for validating the model in terms of perceived safety. Indeed,
participants were also asked to answer the following question:

• If you were sitting in the same car of the driver whose attention
behavior you just observed, how safe would you feel? (rate from 1 to
5)

The aim of the question is to measure the comfort level of the observer
during a driving experience when suggested to focus at specific locations in
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the scene. The underlying assumption is that the observer is more likely to
feel safe if he agrees that the suggested focus is lighting up the right portion
of the scene, that is what he thinks it is worth looking in the current driving
scene. Conversely, if the observer wishes to focus at some specific location
but he cannot retrieve details there, he is going to feel uncomfortable.

The answers provided by subjects, summarized in Fig. 3.28, indicate that
perceived safety for videoclips foveated using the attentional maps predicted
by the model is generally higher than for the ones foveated using either
human or central baseline maps. Nonetheless the central bias baseline
proves to be extremely competitive, in particular in non-acting videoclips in
which it scores similarly to the model prediction. It is worth noticing that
in this latter case both kind of automatic predictions outperform human
ground truth by a significant margin (Fig. 3.28b). Conversely, when we
consider only the foveated videoclips containing acting subsequences, the
human ground truth is perceived as much safer than the baseline, despite
still scores worse than our model prediction (Fig. 3.28c). These results hold
despite due to the localization of the fixations the average resolution of
the predicted maps is only the 38% of the resolution of ground truth maps
(i.e. videos foveated using prediction map feature much less information).
We did not measure significant difference in perceived safety across the
different drivers in the dataset (σ2 = 0.09).

We report in Fig 3.29 the composition of each score in terms of answers
to the other visual assessment question ("Would you say the observed
attention behavior comes from a human driver? (yes/no)"). This analysis
aims to measure participants’ bias towards human driving ability. Indeed,
increasing trend of false positives towards higher scores suggests that par-
ticipants were tricked into believing that “safer” clips came from humans.
The reader is referred to Fig. 3.29 for further details.
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(a)

(b)

(c)

Figure 3.28: Distributions of safeness scores for different map sources,
namely Model Prediction, Center Baseline and Human Groundtruth. Con-
sidering the score distribution over all foveated videoclips (a) the three
distributions may look similar, even though the model prediction still scores
slightly better. However, when considering only the foveated videos contain-
ing acting subsequences (b) the model prediction significantly outperforms
both center baseline and human ground truth. Conversely, when the video-
clips did not contain acting subsequences (i.e. the car was mostly going
straight) the fixation map from human driver is the one perceived as less
safe, while both model prediction and center baseline perform similarly.
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Figure 3.29: The stacked bar graph represents the ratio of TP, TN, FP
and FN composing each score. The increasing score of FP – participants
falsely thought the attentional map came from a human driver – highlights
that participants were tricked into believing that "safer" clips came from
humans.
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Chapter 4

Outside the Vehicle:
Infrastructure-level
Understanding of the Urban
Scene

The previous chapter tackled the problem of urban scene understanding
from an inside-the-vehicle point of view. There we presented an extensive
study on driver’s attention, as well as introducing novel deep learning
models to predict which visual regions are more likely to be salient for
the task of driving. Conversely, here we zoom out from the vehicle to the
infrastructure point of view. Although the focus will still be on vehicles,
these will be viewed from the outside - as the most important agents
which populate the urban scene. In this perspective, the ability to infer
fine grained vehicles information - such as identity, model, 3D pose and
occupancy - becomes essential to comprehend the scene; Sec 4.1, Sec. 4.2
and Sec 4.3 present novel methods in this direction. Eventually, we propose
a novel framework to exploit these information to ‘hallucinate’ novel views
of the vehicles and of the urban scene in its whole (Sec. 4.4). We foresee
that the capability to imagine different visual appearance of the scene
in the next future might have significant applications in many domains;
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surveillance, vehicle re-identification and forensics to name a few.

4.1 Unsupervised Vehicle Re-Identification us-
ing Triplet Networks

Vehicle re-identification is a problem with a huge application significance,
and it already plays a major role in modern smart surveillance systems.
From an high-level perspective, the problem is basically the one of match-
ing vehicles identities across non-overlapping views from different cameras.
More formally, it can be cast as a ranking problem: given a probe image
of a vehicle, the model needs to rank candidate images based on their
similarities w.r.t the probe image.

Here we present a metric learning model that employs a supervision based on
local constraints. In particular, we leverage pairwise and triplet constraints
for training a network capable of assigning a high degree of similarity to
samples sharing the same identity, while keeping different identities far
apart in feature space. Eventually, we show how vehicle tracking can be
exploited to automatically generate a weakly labelled dataset that can be
used to train the deep network for the task of vehicle re-identification.

4.1.1 A pipeline for vehicle re-identification

Overall, the system is composed of three main modules (Figure 4.2):

1. A detector identifies all vehicles appearing in the region of interest.
Each detection is either assigned to an existing tracklet or a new
tracker is initialized from it (Sec. 4.1.1).

2. Exploiting the aforementioned tracklets, a triplet network is trained
to keep vehicles belonging to the same tracklet close in a learned
feature space. (Sec. 4.1.1)

3. A matching strategy is employed to re-identify vehicles between
different videos. (Sec. 4.1.1)

In the following we detail each of these components separately.
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(c) (d)

Figure 4.1: Examples of real-world settings in which the task of re-
identification is particularly challenging. Large illumination changes (a),
(b), completely different scales (c), cluttered scenes (d). Images taken from
the NVIDIA AI city challenge videos.

Detection and Tracking

The goal of a detector is to detect all objects belonging to a particular
class in a scene, regardless of their intra-class variation. In the case of
vehicles appearing in real-world videos as the ones in the NVIDIA AI City
Challenge, detection is made challenging by many factors of variation (e.g.
different scales, poses and lighting conditions).

In order to alleviate these issues, in each of the challenge video a region of
interest (ROI) is manually selected in order to preserve as much information
as possible while reducing computational effort. Vehicles outside the RoI
are likely to be too far to provide reliable information. This cropping policy
allows to greatly reduce the number of false positives, trading off this gain
with a small loss on the detector recall. An example of the considered
ROI for one of the challenge videos is depicted in Figure 4.4. Privileging
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Figure 4.2: Our re-identification pipeline that is composed of three modules.
The first phase is vehicle detection and tracking. Detections are either
assigned to an existing tracklet or used to initialize a new tracker. Tracklets
are exploited to automatically annotate the videos and train a triplet
network for vehicle re-identification. The output vector of the triplet network
is used as feature vector to represent each detected vehicle. Eventually,
these feature vectors are compared between different probes and the gallery
to generate a ranking. We refer the reader to Section 4.1.1 for further
details.

precision over recall is particularly important since the output of the tracker
is later used to automatically label the dataset.

After qualitatively evaluating the performance of various state-of-the-art
detectors [146, 60, 148], we employ as detector the Single Shot MultiBox
Detector (SSD) [103] architecture since it gave us the best results on the
challenge videos. The SSD network is built upon a VGG-16 backbone and
is trained using the COCO dataset and then fine-tuned using only the
vehicle class. For details on the SSD architecture we refer the reader to the
original SSD paper [103].

Detections are filtered in order to remove the ones in which the vehicle
is only partially present in the bounding box, e.g. at the edge of the frame.
We then use the detection to initialize the same correlation tracker as [39].
Whenever a new vehicle is detected, the tracker is initialized and then
updated with new detections until the vehicle leaves the region of interest.
Furthermore each different vehicle track has a different ID in case it appears
among different videos.

Representation learning

As mentioned above, NVIDIA AI city challenge videos do not come along
with any annotation. Thus, we apply the method shown in [202] to the
vehicle re-identification task to create an annotation in an unsupervised
manner - exploiting visual tracking to produce a (weakly) labelled training
set for our task. As result, for each video we identify as positive examples

74 Smart Cities: Bridging Driver’s, Vehicle and Infrastructure Viewpoints



Figure 4.3: Here the automatic labeling of the NVIDIA AI city challenge
videos is schematized. Each detected car is tracked until it exits the region
of interest. Different detections belonging to the same tracklet constitute
positive examples for the triplet network (green arrow). Conversely, patches
that belong to different tracklets are labelled as negative examples (red
arrow). See Section 4.1.1 for details.

different detections belonging to the same tracklet and negative examples
couples of detections belonging to different tracklets. More formally, for
each detection of a particular vehicle xi we define the set of positive and
negative pairs as follows:

X+
i = {xj |t(xj) = t(xi)} (4.1)

X−i = {xj |t(xj) 6= t(xi)} (4.2)

where t(xi) indicates the tracklet to which detection xi belongs to, i.e. the
tracklet ID. We can now form a set of triplets T as follows:

T = {(xi, x+
i , x

−
i )|x+ ∈ X+

i , x
− ∈ X−i } (4.3)

where xi are detections from the NVIDIA AI city challenge videos and
similar and different vehicles are sampled from X+

i and X−i sets respectively.
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Figure 4.4: Example of considered Region of Interest (ROI) for location
4 of NVIDIA AI city challenge. It can be appreciated how the farthest
vehicles are ignored, thus trading off the detector recall for an improved
precision. Ignored detections usually correspond to the farthest vehicles,
which would be anyway very hard to track correctly. Since in the successive
phase tracklets are used as ground truth annotations for the challenge
videos we choose to privilege the precision w.r.t. the recall of the tracker.

The underlying assumption is that the tracker is always correct: despite
this is not the case, we empirically verify that the generated labelled dataset
is reasonable enough to be useful in practice.

In general, a common approach in re-identification is to map any given
example (possibly of variable size) to a vector of fixed low dimensionality.
This dense representation can be later used for the matching stage. Spe-
cifically, the input bounding box bi ∈ Rw×h is transformed into a vector
vi ∈ Rd, where w, h indicate the width and height of the detected bounding
box and d is the dimensionality of the representation space. Commonly
d << w × h, which greatly speeds up the successive matching phase.

In order to tell different detections of the same vehicle apart, we need
to represent the vehicle’s visual appearance in a feature space in which
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Figure 4.5: Triplet network architecture. The network is composed of three
branches with shared weights, initialized from VGG-16 [167] parameters
pre-trained on ImageNet [40] dataset. Details in Sec. 4.1.1.

similar vehicles lie closer than different ones. To this end we leverage on the
triplet network architecture [73] to represent each detected vehicle with the
output vector of the network. This architecture is based on three VGG-16
networks sharing the same weights and is depicted in Figure 4.5. The very
last layer of the network is a fully connected layer of dimension d: this is
used as feature vector. The triplet network can be trained for the task of
vehicle re-identification using the set automatically labelled triplet T . The
intuition is that the distance between negative pairs is required to be larger
than distance from positive pairs (plus a margin). Formally we want to
minimize the following hinge loss:

di = ||f(xi)− f(x+
i )||22 − ||f(xi)− f(x−i )||22

LT =
∑

(xi,x
+
i ,x

−
i )∈T

max(0, di + γ) (4.4)

where γ ≥ 0 is a positive margin and f(xi) is the network output for
detection xi.
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Figure 4.6: During the matching phase a single dense representation need
to be extracted from each tracklet. Indeed, frames in each tracklet exhibit
a high redundancy (i.e. the visual appearance of the vehicle hardly changes
from one frame to the next). Thus we represent each tracklet with the
feature vector of the vehicle in the middle of the tracklet.

Matching strategy

To be able to match identities of vehicles which belong to different tracklets,
a single dense representation need to be extracted from each tracklet. Also,
since a tracklet can last for several hundreds of frames, information is
extremely redundant (i.e. the visual appearance of the vehicle hardly
changes from one frame to the next). Thus, during the matching phase we
choose to encode each tracklet with the feature vector of the vehicle in the
median frame of the tracklet (see Figure 4.6). Furthermore, tracklets are
grouped by the location of the video (1 . . . 4), under the assumption that
a car does not appear more than once in each location. To compute the
matches, we iterate over all different vehicle IDs, each one represented by
the feature vector of the median frame of the tracklet. Euclidean distance
is used to compare the two feature vectors::

dij = ||f(xi)− f(xj)||2 (4.5)

This distance can be used to compute the best match with vehicles from
different video locations, where lower distance indicates a better match.
Although there is always a best match candidate for each vehicle, matches
are validated only in case the distance is lower than a definite threshold θ ≥ 0.
Furthermore, following the indication of the NVIDIA AI City Challenge,
we keep only one ID correspondence for each of the four locations. We
then consider the quadruple composed by

{IDmin(loc1), IDmin(loc2), IDmin(loc3), IDmin(loc4)}
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as the proposed vehicle re-identified. Moreover, once a vehicle ID is assigned
to one quadruple, we remove the correspondent ID to avoid it to be chosen
again in future comparisons. Eventually, once all the IDs are processed,
we compute the average distance among the members of each quadruple.
This distance is then normalized to lie in range [0, 1] as used as measure of
re-identification confidence to sort the matches. In this way we can keep
only the top k similar groups.

4.1.2 Implementation details

The methodology is applied over all 15 videos of the NVIDIA AI city
challenge, a total of 15 hour approx. of recording. Videos are captured at
30 frames per second (fps) with a Canon EOS 550D camera at four different
locations (I280 and Winchester, I280 and Wolfe, San Tomas and Saratoga,
Stevens Creek and Winchester) and feature a resolution of 1920 × 1080
pixels.
To reduce the computational burden, each vehicle’s detection is resized to
80× 80 pixels in RGB color space. Overall, our automatically-annotated
dataset is composed by 2,198,829 vehicles belonging to 67,825 different
tracklets.
The triplet network is trained using a batch size equal to 64 for a total of
10 epoch. We minimize the mean squared error loss using a SGD optimizer
with a learning rate of 0.01. We empirically choose the size of the feature
vector equal to 100 since it gave the best results.
Detections whose centroid is closer than 100 pixels from the edge of the
frame are ignored. Eventually, the threshold θ used during the matching
phase is set to 3,500.

4.2 Mapping Vehicles into Bird’s Eye View

Awareness of the surrounding road scene is becoming an essential component
for any ground vehicle. This information is exploited by Advanced Driver
Assistance Systems (ADAS), while there is still a human driver behind
the wheel. In the longer run, this will be an essential ability required to
all autonomous agents to safely navigate in their environment. In fact,
vision-based algorithms and models have massively been adopted in cur-
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rent generation ADAS solutions. Moreover, recent research achievements
on scene semantic segmentation [59, 100], road obstacle detection [9, 96]
and driver’s gaze, pose and attention prediction [41, 193] are playing a
major role in the newborn autonomous mobility sector. In this frame,
here we present a way to learn a semantic-aware transformation which
maps detections from a single dashboard camera frame onto a broader
bird’s eye occupancy map of the scene. We demonstrate the effectiveness
of our model against several baselines and observe that is able to gener-
alize on real-world data despite having been trained solely on synthetic ones.

Dataset, code and pre-trained model are publicly available and can be
found at http://imagelab.ing.unimore.it/scene-awareness.

4.2.1 An interpretable proxy of the road state
As suggested in [26], three major paradigms can be individuated for vision-
based autonomous driving systems: mediated perception approaches, based
on the total understanding of the scene around the car, behavior reflex
methods, in which driving action is regressed directly from the sensory
input, and direct perception techniques, that fuse elements of previous
approaches and learn a mapping between the input image and a set of
interpretable indicators which summarize the driving situation.
Following this last line of work, here we develop a model for mapping
vehicles across different views. In particular, our aim is to warp vehicles
detected from a dashboard camera view into a bird’s eye occupancy map of
the surroundings, which is an easily interpretable proxy of the road state.
Being almost impossible to collect a dataset with this kind of information in
real-world, we exclusively rely on synthetic data for learning this projection.
We aim to create a system close to surround vision monitoring ones, also
called around view cameras that can be useful tools for assisting drivers
during maneuvers by, for example, performing trajectory analysis of vehicles
out from own visual field.
In this framework, our contribution is twofold:

• We make available a huge synthetic dataset (> 1 million of examples)
which consists of couple of frames corresponding to the same driving
scene captured by two different views. Besides the vehicle location,
auxiliary information such as the distance and yaw of each vehicle at
each frame are also present.
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Figure 4.7: Simple outline of our task. Vehicle detections in the frontal
view (left) are mapped onto a bird’s-eye view (right), accounting for the
positions and size.

• We propose a deep learning architecture for generating bird’s eye
occupancy maps of the surround in the context of autonomous and
assisted driving. Our approach does not require a stereo camera,
nor more sophisticated sensors like radar and lidar. Conversely, we
learn how to project detections from the dashboard camera view onto
a broader bird’s eye view of the scene (see Fig.4.7). To this aim
we combine learned geometric transformation and visual cues that
preserve objects size and orientation in the warping procedure.

Many elements mark as original our approach. In principle, we want
our surround view to include not only nearby elements, like commercial
geometry-based systems, but also most of the elements detected into the
acquired dashboard camera frame. Additionally, no specific initialization
or alignment procedures are necessary: in particular, no camera calibration
and no visible alignment points are required. Eventually, we aim to preserve
the correct dimensions of detected objects, which shape is mapped onto
the surround view consistently with their semantic class.

4.2.2 Surround Vehicle Awareness (SVA) Dataset
In order to collect data, we exploit Script Hook V library [10], which
allows to use Grand Theft Auto V (GTAV) video game native functions [3].
We develop a framework in which the game camera automatically toggle
between frontal and bird-eye view at each game time step: in this way we
are able to gather information about the spatial occupancy of the vehicles in
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(a)

(b)

Figure 4.8: (a) Randomly sampled couples from our SVA dataset, which
highlight the huge variety in terms of landscape, traffic condition, vehicle
models etc. Each detection is treated as a separate training example (see
Sec. 4.2.2 for details). (b) Random examples rejected during the post-
processing phase. These are mostly due to the game engine failing to
provide the right bounding box coordinates around an entity. Best viewed
zoomed on screen.
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the scene from both views (i.e. bounding boxes, distances, yaw rotations).
We associate vehicles information across the two views by querying the
game engine for entity IDs. More formally, for each frame t, we compute
the set of entities which appear in both views as

E(t) = Efrontal(t) ∩ Ebirdeye(t) (4.6)

where Efrontal(t) and Ebirdeye(t) are the sets of entities that appear at
time t in frontal and bird’s eye view, respectively. Entities e(t) ∈ E(t)
constitute the candidate set for frame t C(t); other entities are discarded.
Unfortunately, we found that raw data coming from the game engine are
not always accurate (Fig. 4.8). To deal with this problem, we implement a
post-processing pipeline in order to discard noisy data from the candidate
set C(t). We define a discriminator function

f(e(t)) : C 7→ {0, 1} (4.7)

which is positive when information on dumped data e(t) are reliable and
zero otherwise. Thus we can define the final filtered dataset as

T⋃
t=0

D(t) where D(t) = {ci(i) | f(ci(t)) > 0} (4.8)

being T the total number of frames recorded. From an implementation
standpoint, we employ a rule-based ontology which leverage on entity
information (e.g. vehicle model, distance etc.) to decide if the bounding
box of that entity can be considered reasonable. This implementation has
two main values: first it’s lightweight and very fast in filtering massive
amounts of data. Furthermore, rule parameters can be tuned to eventually
generate different dataset distribution (e.g. removing all trucks, keeping
only cars closer than 10 meters, etc.).
Each entry of the dataset is a tuple containing:

• framef , frameb: 1920× 1080 frames from the frontal and bird’s eye
camera view, respectively;

• IDe, modele: identifiers of the entity (e) in the scene and of the
vehicle’s type;

• frontal_coordse, birdeye_coordse : the coordinates of the bounding
box that encloses the entity;
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Total
Number of runs 300
Number of bounding boxes 1125187
Unique entity IDs 56454
Unique entity models 198

Table 4.1: Overview of the statistics on the collected SVA dataset. See text
for details.

(a) (b)

Figure 4.9: Unnormalized distribution of vehicle orientation (a) and dis-
tances (b) present in the collected dataset. Distribution of angles conversely
presents two prominent modes around 0◦/360◦ and 180◦ respectively, due
to the fact that the major part of vehicles encountered travel in parallel
to the player’s car, on the same (0/360◦) or the opposite (180◦) direction.
Conversely, distance is almost uniformly distributed between 5 and 30
meters.

• distancee, yawe : distance and rotation of the entity w.r.t. the player.

Fig. 4.9 shows the distributions of entity rotation and distance across the
collected data.

4.2.3 Semantic-aware Dense Projection Network
At a first glance, the problem we address could be mistaken with a bare
geometric warping between different views. Indeed, this is not the case
since targets are not completely visible from the dashboard camera view
and their dimensions in the bird’s eye map depend on both the object
visual appearance and semantic category (e.g. a truck is longer than a car).
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Figure 4.10: A graphical representation of the proposed SDPN (see Sec.
4.2.3). All layers contain ReLU units, except for the top decoder layer
which employs tanh activation. The number of fully connected units is
(256, 256, 256) and (1024, 1024, 512, 256, 128, 4) for the coordinate encoder
and decoder respectively.

Additionally, it cannot be cast as a correspondence problem, since no bird’s
eye view information are available at test time. Conversely, we tackle the
problem from a deep learning perspective: dashboard camera information
are employed to learn a spatial occupancy map of the scene seen from above.

Our proposed architecture composes of two main branches, as depicted in
Fig. 4.10. The first branch takes as input image crops of vehicles detec-
ted in the dashboard camera view. We extract deep representations by
means of ResNet50 deep network [69], taking advantage of pre-training
for image recognition on ImageNet [40]. To this end we discard the top
fully-connected dense layer which is tailored for the original classification
task. This part of the model is able to extract semantic features from input
images, even though it is unaware of the location of the bounding box in
the scene.
Conversely, the second branch consists of a deep Multi Layer Perceptron
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IoU ↑ CD ↓ hE ↓ wE ↓ arE ↓
homo 0.13 191.8 0.28 0.34 0.38
grid 0.18 154.3 0.74 0.70 1.30
MLP 0.32 96.5 0.25 0.25 0.29
SDPN 0.37 78.0 0.21 0.24 0.29

Table 4.2: Table summarizing results of proposed SDPN model against the
baselines.

(MLP), composed by 4 fully-connected layers, which is fed with bounding
boxes coordinates (4 for each detection), learning to encode the input into
a 256 dimensional feature space. Due to its input domain, this segment of
the model is not aware of objects’ semantic, and can only learn a spatial
transformation between the two planes.
Both appearance features and encodings of bounding box coordinates are
then merged through concatenation and undergo a further fully-connected
decoder which predicts vehicles’ locations in the bird’s eye view. Since our
model combines information about object’s location with semantic hints on
the content of the bounding box, we refer to it as Semantic-aware Dense
Projection Network (SDPN in short).

Training Details: ImageNet [40] mean pixel value is subtracted from
input crops, which are then resized to 224 × 224 before being fed to the
network. During training, we freeze ResNet50 parameters. Ground truth
coordinates in the bird’s eye view are normalized in range [−1, 1]. Dropout
is applied after each fully-connected layer with drop probability 0.25. The
whole model is trained end-to-end using Mean Squared Error as objective
function and exploiting Adam [87] optimizer with the following parameters:
lr = 0.001, β1 = 0.9, β2 = 0.999.

4.2.4 Experimental results

We now assess our proposal comparing its performance against some
baselines. Due to the peculiar nature of the task, the choice of com-
petitor models is not trivial.
To validate the choice of a learning perspective against a geometrical one,
we introduce a first baseline model that employs a projective transforma-
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tion to estimate a mapping between corresponding points in the two views.
Such correspondences are collected from bottom corners of both source
and target boxes in the training set, then used to estimate an homography
matrix in a least-squares fashion (e.g. minimizing reprojection error). Since
correspondences mostly belong to the street, which is a planar region, the
choice of the projective transformation seems reasonable. The height of
the target box, however, cannot be recovered from the projection, thus it
is cast as the average height among training examples. We refer to this
model as homography model.
Additionally, we design second baseline by quantizing spatial locations in
both views in a regular grid, and learn point mappings in a probabilistic
fashion. For each cell Gfi in the frontal view grid, a probability distribution
is estimated over bird’s eye grid cells Gbj , encoding the probability of a
pixel belonging to Gfi to fall in the cell Gbj . During training, top-left and
bottom-right bounding box corners in both views are used to update such
densities. At prediction stage, given a test point pk which lies in cell Gfi
we predict destination point by sampling from the corresponding cell dis-
tribution. We fix grid resolution to 108x192, meaning a 10x quantization
along both axes, and refer to this baseline as grid model.
It could be questioned if the appearance of the bounding box content in the
frontal view is needed at all in estimating the target coordinates, given suf-
ficient training data and an enough powerful model. In order to determine
the importance of the visual input in the process of estimating the bird’s
eye occupancy map, we also train an additional model with approximately
the same number of trainable parameters of our proposed model SDPN, but
fully connected from input to output coordinates. We refer to this last
baseline as MLP.
For comparison, we rely on three metrics:

• Intersection over Union (IoU): measure of the quality of the predicted
bounding box BBp with respect to the target BBt:

IoU(BBp, BBt) =
A(BBp ∩BBt)
A(BBp ∪BBt)

where A(R) refers to the area of the rectangle R;

• Centroid Distance (CD): distance in pixels between box centers, as
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Figure 4.11: Degradation of Intersection over Union (IoU) performance as
the distance to the detected vehicle increases.

an indicator of localization quality1;

• Height, Width Error (hE,wE): average error on bounding box height
and width respectively, expressed in percentage w.r.t. the ground
truth BBt size;

• Aspect ratio mean Error (arE): absolute difference in aspect ratio
between BBp and BBt:

arE =

∣∣∣∣BBp.wBBp.h
− BBt.w

BBt.h

∣∣∣∣ (4.9)

The evaluation of baselines and proposed model is reported in Fig. 4.11 (a).
Results suggest that both homography and grid are too naive to capture the
complexity of the task and fail in properly warping vehicles into the bird’s
eye view. In particular, grid baseline performs poorly as it only models
a point-wise transformation between bounding box corners, disregarding
information about the overall input bounding box size. On the contrary,
MLP processes the bounding box in its whole and provides a reasonable
estimation. However, it still misses the chance to properly recover the
length of the bounding box in the bird’s eye view, being unaware of entity’s
visual appearance. Instead, SDPN is able to capture the object’s semantic,
which is a primary cue for correctly inferring vehicle’s location and shape

1Please recall that images are 1920x1080 pixel size.
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homography grid MLP SDPN ground truth

Figure 4.12: Visual comparison between different models. Baselines often
predict reasonable locations for the bounding boxes. SDPN is also able to
learn the orientation and type of the vehicle (e.g. a truck is bigger than a
car etc.).

in the target view.
A second experiment investigates how vehicle’s distance affects the warping
accuracy. Fig. 4.11 (b) highlights that all the models’ performance degrades
as the distance of target vehicles increases. Indeed, closer examples exhibit
lower variance (e.g. are mostly related to the car ahead and the ones
approaching from the opposite direction) and thus are easier to model.
However, it can be noticed that moving forward along distance axis the gap
between the SDPN and MLP gets wider. This suggests that the additional
visual input adds robustness in these challenging situations. We refer the
reader to Fig. 4.12 for a qualitative comparison.

A real-world case study

In order to judge the capability of our model to generalize on real-world
data, we test it using authentic driving videos taken from a roof-mounted
camera [4]. We rely on state-of-the-art detector [103] to get the bounding
boxes of vehicles in the frontal view. As the ground truth is not available for
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Figure 4.13: Visual results on real-world examples. Predictions look reas-
onable even if the whole training was conducted on synthetic data.

these sequences, performance is difficult to quantify precisely. Nonetheless,
we show qualitative results in Fig. 4.13: it can be appreciated how the
network is able to correctly localize other vehicles’ positions, despite having
been trained exclusively on synthetic data.
SDPN can perform inference at approximately 100Hz on a NVIDIA TitanX
GPU, which demonstrates the suitability of our model for being integrated
in an actual assisted or autonomous driving pipeline.

Concluding remarks

In this section we presented two main contributions. A new high-quality
synthetic dataset, featuring a huge amount of dashboard camera and bird’s
eye frames, in which the spatial occupancy of a variety of vehicles (i.e.
bounding boxes, distance, yaw) is annotated. Furthermore, we presented
a deep learning based model to tackle the problem of mapping detections
onto a different view of the scene. We argue that these maps could be
useful in an assisted driving context, in order to facilitate driver’s decisions
by making available in one place a concise representation of the road state.
Furthermore, in an autonomous driving scenario, inferred vehicle positions
could be integrated with other sensory data such as radar or lidar by means
of e.g. a Kalman filter to reduce overall uncertainty.
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4.3 End-to-end 6-DoF Object Pose Estimation
through Differentiable Rasterization

In the previous chapter we saw how a convolutional neural network can be
trained to infer the bird’s eye occupancy map of the scene given a single
frame from the vehicle dashboard camera. Here we take a complementary
approach, proposing a novel model for estimating the pose of the vehicles
in the scene given a minimal amount of monocular visual information.
Before diving deep into this topic, it might be worth spending a few words
on the challenge of this task. Image formation is essentially a lossy process,
as during the perspective projection we lose a lot of information about
the 3D structure of the captured scene. For this reason, inferring the six
degrees of freedom (6-DoF) pose (3D rotations + 3D translations) of an
object given a single RGB image is extremely challenging. Estimating the
pose requires the distillation of a lot of information from a single frame;
the object 3D structure, as well as the 3D roto-translation that leads to
visually plausible outputs must be inferred jointly.

Code related to this project is open-source at:
https://github.com/ndrplz/tensorflow-mesh-renderer.

4.3.1 Differentiable rendering for 6-DoF pose estima-
tion

From a high level view, a renderer can be thought as a black-box receiving
two inputs and producing one output. It takes as input (i) a given repres-
entation of the 3D object (e.g. voxels, mesh etc.) and (ii) the 6-DoF pose
of the object w.r.t. the camera and produces the 2D image of the object
or, as in our setting, solely its silhouette.
Typically a rendering algorithm includes many non-differentiable opera-
tions (e.g. rounding, hard assignments etc.), preventing it to be used
in a deep learning architecture as it would break the back-propagation
chain. Nonetheless, in the context of 3D volume estimation recent works
[78, 217, 109, 55, 189] have been proposed which exploit approximated
differentiable renderers to back-propagate the loss to the first renderer
input, namely the 3D representation of the object, but leaving fixed the set
of possible camera poses.
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Figure 4.14: The overall proposed framework. A deep convolutional encoder
is fed with the object mask and predicts both the object’s class and 6-DoF
pose. By means of a differentiable renderer the predicted cluster medoid
can be projected back according to the predicted pose, adding a further
online alignment supervision w.r.t. the input mask.

In this work, we propose to leverage a differentiable renderer to re-project
the 3D object model on the image according to the pose predicted by a
convolutional encoder (see Fig. 4.14). The alignment error between the
observed and the re-projected object silhouette can then be measured and
- being the renderer differentiable - back-propagated through it to the
encoder, correcting the estimated pose. We demonstrate that this differ-
entiable block can be stacked on a 6-DoF pose estimator to significantly
refine the estimated pose using only the 2D alignment information between
the input object mask and the rendered silhouette. Notably, this can also
happen iteratively at inference time, in an online learning fashion.
The convolutional encoder produces a coarse classification of the object to
profitably re-project a representative model of the predicted class (i.e. a
medoid) instead of the exact 3D model of the object - as we reckon that
the exact 3D model is hardly available in a real setting. Experimental
results show that the proposed pipeline is able to correct the estimated
pose effectively even when using surrogate models.

4.3.2 Model architecture

We design our model as composed of two main components: i) the convolu-
tional encoder, responsible for classifying the object and performing a first
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Figure 4.15: Architecture of the encoder network. Visual features are
extracted from the input image by means of 2D convolutions (first three
layers have 5x5 kernel, last two have 3x3 kernel. All convolutional layers
have stride 2 and are followed by leaky ReLu non-linearities). The flattened
feature vector is fed to two fully connected branch, which estimate the
object class and pose respectively.

estimation of its pose; and ii) the differentiable renderer introduced above.
In this section we provide details on both modules.

Convolutional encoder for pose and class estimation

The deep convolutional encoder network is schematized in Fig. 4.15. The
first part of the network is dedicated to feature extraction and it is shared
by the classification and the pose estimation branch. The network has
been designed inspired by [177] which showed favorable results in a related
task. Features extracted are then used by two fully-connected independent
branches to infer the object class and the camera pose respectively. All
layers but the last are followed by leaky ReLu activation with α = 0.2.
Differently from most of the literature [217, 55, 205] we do not quantize
the pose space into a discrete set of pre-defined poses to ease the task.
Conversely, given a rotation matrix R3×3 and a translation vector t3×1 we
regress the object pose

P3×4 =
[
R t

]
(4.10)
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by optimizing the mean square error between the predicted and the true
pose:

L(X ,Yp, θ) =
1

N

∑
i

||yi − fp(xi, θ)||2 xi ∈ X , yi ∈ Yp (4.11)

where X is the set of RGB images, Yp is the set of true P3×4 pose matrices
and fp(xi, θ) is the pose predicted by the encoder for example xi according
to its weights θ. From a technical standpoint, for each X, Y, Z axis the
encoder regresses the cosine of the Euler rotation angle and the respective
translation. The output roto-translation matrix is then composed following
Euler ZYX convention: in this way predicted matrices are guaranteed to
be always geometrically consistent. For the classification branch we instead
optimize the following categorical cross-entropy function:

L(X ,Yc, θ) = − 1

N

∑
i

yi log fc(xi, θ) (4.12)

where xi ∈ X is an input RGB image, fc(xi, θ) is the encoder predicted
distribution over possible clusters for example xi and yi in the true one-hot
distribution for example xi.

Differentiable Renderer

To measure the reliability of the predicted 6-DoF pose and to be able
to correct it at test time, we design a fully differentiable renderer for re-
projecting the silhouette of the 3D model on the image according to the
predicted object pose. This allows to refine the estimated pose by back-
propagating the alignment error between the 2D silhouettes. To the best of
our knowledge, it is the first time that a fully-differentiable raster-based
renderer is used to this purpose. Differently from concurrent works such
as [217], our rendering process starts from the raw mesh triangles and not
from a 3D voxel representation. While the latter is easier to predict by
a neural network since it has a static shape, its footprint scales with the
cube of the resolution and forces to use ray-tracing techniques to render the
final image, known to be slow and harder to parallelize. Despite rastering
does not allow for photo-realistic shaded images, as it does not imply light
sources rays tracing, it is still well suited for all tasks which require the
object shape silhouette from different point of views as in our case.
Our renderer is composed of two main parts:
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• A rastering algorithm, which applies the predicted camera to the 3D
triangles meshes to obtain 2D projected floating point coordinates of
the corners;

• An in/out test to determine which projected points lie inside the
triangles, i.e. which triangles must be filled.

Figure 4.16: Visual explanation of the proposed approximated rastering
process. First each triangle composing the mesh is projected in the 2D
image (a) using Eq. 4.13. The determinant product inside the max of Eq.
4.14 selects the points which lie on the left side of each edge of the triangle
(b), (c), (d). The product of these three terms gives an approximated yet
differentiable rendering of the triangle’s silhouette (e).

While the first step is fully differentiable, a naive implementation of the latter
exploits boolean masks to select the pixels to be filled, which eventually
breaks the backpropagation through the network. Inspired by [78], we
employed a spatial transformation to assign a value to each pixel based on
a relation between its coordinates and those of the triangles corners. While
a boolean mask represents hard membership, this approach assigns each
pixels a continuous value, thus applying a soft (differentiable) membership.
From a more technical standpoint, given all triangles T which compose the
mesh of current model, we project the 3D triangle vertices V3D as follows:

[
V2D

1

]
=

x/zy/z
1

 = K3×3P
−1
3×4

[
V3D

1

]
(4.13)

where K3x3 is the camera calibration matrix and P−1
3×4.

Then, defined as E(i) = [(v1, v0), (v2, v1), (v0, v2)] the three edges of the i-th
projected triangle, the renderer’s output for pixel in location (u, v) can be
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computed as:

gu,v =

T∑
i

Fnorm

 E(i)∏
(vj ,vk)

max

(∣∣∣∣ vj − vkvj − (u, v)

∣∣∣∣ ∣∣∣∣v1 − v0

v2 − v1

∣∣∣∣ , 0)
 , (u, v) ∈ H ×W

where Fnorm(x) = tanh
x−min(x)

max(x)−min(x)
(4.14)

and H,W indicate the image height and width in pixels. We refer the
reader to Fig. 4.16 for a better intuition of Equation 4.14. It is worth
noticing that the i-th triangle contributes to the output only if all the three
determinant products are positive, meaning that (u, v) point lies on the left
side of all three triangle edges i.e. it is inside the triangle.

4.3.3 Experimental results
Dataset

We train our model on ShapeNetCore(v2) [23] dataset, which comprises
more than 50K unique 3D models from 55 distinct man-made objects. We
focus in particular on the car synset since it is one of the most populated
category with 7497 different 3D CAD vehicle models. Each model is stored
in .obj format along with its materials and textures: dimensions, number
of vertices and details vary greatly from one model another.

Data collection To collect the data, we first load a random model on
the origin t = (0, 0, 0) of our reference system. We then create a camera in
location t = (x, y, z). While on xy plane the location is randomly sampled
in a qx×qy grid, we keep fixed z = k under the assumption that the camera
is mounted somewhere at height k on a moving agent (e.g. an unmanned
vehicle). We then force the camera to point an empty object e that is
randomly sampled at z = 0 and x, y sampled as above in a ex × ey grid:
in this way we make the object to appear translated in the camera image.
Eventually, the camera image is dumped along with the camera pose to
constitute an example xi. We refer the reader to Fig. 4.17 to get a better
insight into the procedure. Data collection details: In our experiments we
set qx = qy = 10 and k = 1.5, which is the average height of a European
vehicle. For the empty object we set ex = ey = 3. Models are standardized
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s.t. the major dimension has length 6. For each cluster, the models are
split with ratio 0.6-0.2-0.2 into train, validation and test set respectively.
Medoids are expected to be known at test-time and do not belong to any
of the splits. Models are rendered using Blender CYCLES engine [11] to
maximize photo-realism.

Figure 4.17: On the left is depicted how all camera poses predicted by
the encoder independently for each object (a) can be roto-translated to
a common origin to reconstruct the overall scene (b), also in Fig. 4.20.
On the right, the average silhouette of vehicles belonging to sedan, SUV
and cargo is shown (c). For each cluster all 3D meshes are overlaid before
taking the snapshot from the side view; the high overlap highlights the low
intra-cluster variance.

Selecting the representative 3D model Since the true 3D object
model is hardly available at test time, we want to verify if a surrogate 3D
model can be instead successfully employed for the rendering process. Ana-
logously to Du et al. [44] we distinguish three main vehicle clusters, namely
i) Sedan passenger cars, ii) Sport-utility vehicles (SUV, which are also pas-
senger cars but have off-road features like raised ground clearance) and iii)
Cargo vehicles such as trucks and ambulances. Following Tatarchenko et al.
[177] we selected the representative model for each cluster, by extracting
and comparing the HOG descriptors from two standard rendered views of
each CAD model (i.e. frontal and side). The low intra-cluster variance can
be appreciated in Fig. 4.17(c). Eventually we compute the L2 distance
between descriptors and for each cluster we retain the cluster medoid, i.e.
the model with the least average distance from all the others.
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Table 4.3: Table summarizing model performance. It is worth noticing that
none of the metrics in the table is explicitly optimized during refinement.
Results of concurrent works on the vehicle class are shown for reference,
despite the task of [188, 172] is only viewpoint estimation (not 6-DoF pose)
and all are trained on different dataset.

Model Accuracy ↑ mIoU ↑ MVE ↓ Accπ
6
↑

encoder 0.89 0.59 5.7 0.86
encoder+refinement 0.89 0.72 4.5 0.90
Pavlakos et al. [136] - - 6.9 -
Tulsiani and Malik [188] - - 9.1 0.89
Su et al. [172] - - 6.0 0.88

Model Evaluation

Metrics The encoder ability to estimate the 3D pose of the object is
measured by means of geodesic distance between predicted and true rotation
matrix [188, 75] as:

∆(Rtrue,Rpred) =
|| log(RT

trueRpred)||F√
2

(4.15)

where ||A||F =
√∑

i,j |aij |2 indicates the Frobenius norm. In particular, we
report the median value of the aforementioned distance over all predictions
in test set as Median Viewpoint Error (MVE). We also report the percentage
of examples in which the pose rotation error is smaller than π/6 as Accπ

6
.

To measure the re-projection alignment error we instead rely on mean
intersection over union (mIoU) metric defined over the N test examples as
1
N

∑
i
Si∩S̃i
Si∪S̃i

i = 1, . . . , N :

where Si is the ground truth silhouette and S̃i = g(fp(xi), fc(xi),K) is
the renderer output given the predicted object pose, cluster and camera
intrinsics K.

Model performance To prove the effectiveness of the proposed
method we first train the 6-DoF pose estimation network alone to jointly
estimate the object class and its 6-DoF pose. In this way, we get a baseline
to measure the successive contribute of the prediction refinement through
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Figure 4.18: Online refinement of the estimated pose; We overlay in red the
predicted silhouette for each optimization step. Despite the initial estimate
(t=0) was noticeably wrong, the 6-DoF object pose is gradually corrected
using only 2D silhouette alignment information.

our differentiable rendering module. State-of-the-art results on test set
reported in Table 4.3(first row) indicate this to be already a strong baseline.
The prediction refinement module is then plugged-in, and the evaluation is
repeated. For each example, the medoid of the predicted class is rendered
according to the predicted pose, back-propagating the alignment error
between the true and the rendered silhouette for 30 optimization steps.
Results of this analysis are reported in Table 4.3(second row) and indicate
a huge performance gain (20%) obtainable by maximizing the 2D alignment
between object masks. The significant improvement in all the metrics,
despite none of these is optimized explicitly, suggests that the proposed
differentiable rendering module is a viable solution for refining the predicted
6-DoF even at test time, requiring minimal information (i.e. only the object
mask). The process of prediction refinement can be appreciated in Fig. 4.18.

Renderer ablation study We measure, at first, the impact of rendering
resolution on the optimization process by refining the object 6-DoF estim-
ated pose using different rendering resolutions. Results reported in Table 4.4
show that working at higher resolution is definitely helpful while very-low
resolution are hardly beneficial, if not detrimental, for the optimization
process. This supports the need to abandon the voxel-based representation,
whose computational footprint increases with the cube of resolution. We
then compare our renderer with the publicly available implementation of
Perspective Transformer Network (PTN) by Yan et al. [217]. Results
are shown in Fig. 4.19(a). Since PTN relies on a fixed 32x32x32 voxel
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Table 4.4: Gains obtained in pose estimation using different rendering
resolutions. Increasing the resolution used for rendering the silhouette
is much beneficial to the optimization process. Conversely, for very low
resolution this phase is hardly helpful. ∆V and ∆T indicate viewpoint and
translation error respectively.

Renderer Resolution ∆ IoU ↑ ∆V Error ↓ ∆T Error ↓
16x16 +0.00 +0.15 +0.02
32x32 +0.03 -0.26 +0.00
64x64 +0.05 -0.57 +0.00
128x128 +0.11 -1.03 -0.01
256x256 +0.13 -1.29 -0.03

(a) (b) (c)

Figure 4.19: (a) Intersection over union between rendered silhouette and
the ground truth one for both our renderer and Perspective Transformer
Networks (PTN) [217], at different rendering resolutions. (b) Rendering
time for different image (and PTN voxel) resolutions. (c) Average viewpoint
error improvement for different number of optimization steps. See text for
details.

representation, rendering at higher resolution hardly changes the output’s
fidelity w.r.t. the true silhouette. Conversely, our mesh-based renderer
is able to effectively take advantage of the higher resolution. Comparing
our rendering time with PTN [217] in Fig. 4.19(b), we see that PTN
scores favorably only for very-low voxel and image resolutions, while as
resolution increases the PTN rendering time increases exponentially due to
the voxel-based representation. Eventually, in Fig. 4.19(c) we show that
our average viewpoint error continues to decrease along with the number
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Figure 4.20: Visual results for scenes with multiple objects. Since all
predicted poses lie in the same reference system (see Fig. 4.17), different
views of the scene can be produced by means of any rendering engine. It is
worth noticing that each object has been substituted by the representative
model for its predicted class.

of refinement optimization steps.

Training details Encoder is trained until convergence with batch size=64
and ADAM optimizer with learning rate 10−5 (other hyper-parameters as
suggested in the original paper [87]). Batch size is decreased to 20 and
learning rate to 10−6 during renderer fine-tuning. We find useful dropout
(p = 0.5) after all dense layers and L2 weight decay over feature extraction
for regularization purposes.

4.3.4 Details on the differentiable renderer

Number of triangles used for rendering

Our approximated rendered abandons the voxel-based representation and
makes instead use of the 3D triangle mesh of the object. However, even
if a 3D mesh is often composed of thousands of triangles, we found that
there was no need to render all the triangles to produce a good render
of the object silhouette. Figure 4.21 shows how the rendering output is
affected by the number of triangles used. In this work all experiments are
performed using only the 1000 widest-area triangle of each mesh (another
sub-sampling strategy could have been to increase the density of triangles
towards the edges, leaving a sparser mesh on the inside of the object).
These heuristic allowed to save precious running time while maintaining a
good output quality.
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Figure 4.21: Influence of triangle mesh down-sampling on the renderer
output.

Output post-processing

Renderer output formation is described in Sec. 3.2 of the paper; in particular,
Eq. 5 which shows how the output is computed for each pixel (u, v) in
the image. Since the value of each pixel is proportional to the number of
triangles which lie over it once projected into the image, nearby pixels can
have significantly different values (see raw output in Fig. 4.22). From an
implementation standpoint, we found useful to post-process the renderer
output to make it homogeneous, moving all positive pixels towards 1. Since
we could not perform hard threshold to keep the output back-propagable,
we found as the easiest solution was to train apart a nano-CNN to perform
only this post-processing. Being cNk×k a convolutional layers with N filters
and squared kernel of side k followed by ReLu activation, the architecture
of this nano-CNN follows: c105×5, c105×5, c103×3, c13×3. It is worth
noticing that this nano-CNN is trained apart once and then it is used only
in inference mode to post-process the renderer output: thus the renderer
has still zero learnable parameters during the pose optimization phase.

𝑹 𝑻
𝟎 1

Predicted 
pose

Predicted 
medoid

Differentiable
Rasterer

Raw output Post-processed output

Post-processing

10 10 10 1

Figure 4.22: Visualization of renderer output post-processing. See text for
details.
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4.3.5 Concluding remarks

In this work we introduce a 6-DoF pose estimation framework which allows
an online refinement of the predicted pose from minimal 2D information
(i.e. the object mask). A fully differentiable raster-based renderer is
developed for re-projecting the object silhouette on the image according
to the predicted 6-DoF pose: this allows to correct the predicted pose by
simply back-propagating the alignment error between the observed and the
rendered silhouette. Experimental results indicate i) the overall effectiveness
of the online optimization phase, ii) that proxy representative models can be
profitably used in place of the true ones in case these are not available and
iii) the benefit of working in higher resolution, well-handled by our raster-
based renderer but hardly managed by concurrent ray-tracing, voxel-based
algorithms. While these results are encouraging, additional efforts must be
spent for applying the proposed model in a real-world setting, where the
vehicles must also segmented from a possibly cluttered background.

4.4 Warp and Learn: Generating Novel Views
of the Urban Scene

A smart infrastructure has to solve a number of challenging problems to-
wards a deep understanding of the urban scene. In the last chapters we
already introduced and proposed novel models to tackle some of those,
such as vehicle re-identification (Sec. 4.1) and registration of vehicle and
infrastructure viewpoints (Sec. 4.2, Sec. 4.3).

Here we make a step forward and we address the more ambitious goal
of generating the visual appearance of the whole urban scene in the future.
Indeed, being able to generate novel views from arbitrary virtual cameras
in an urban scene promises to have huge impacts is many domains: surveil-
lance, vehicle re-identification and forensics to mention a few. Since the
topic is extremely broad we make a few assumptions not to be overwhelmed
by the ill-definedness of the problem. In particular, we consider vehicles
the only agents in the scene, ignoring other classes of moving objects such
as pedestrian or bicycles. Finding a solution to the problem under this
constraint would still be extremely interesting, due to vehicles ubiquity in
urban scene understanding applications [220, 181, 49, 160, 116, 104].
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Figure 4.23: We propose a semi-parametric framework to generate realistic
novel views of a vehicle and / or to transfer its appearance to different
models.

Code, data and multimedia related to this project are available at:
https://github.com/ndrplz/semiparametric

4.4.1 Inferring the visual aspect of vehicles from novel
viewpoints

How would you see an object from another point of view? Given a single
view of an object in the world, predicting how it would look like from
arbitrarily different viewpoints is definitely non-trivial for both humans
and machines. Still, people with a good visual-spatial intelligence [58] can
easily imagine objects’ rotation, zoom and translation shifts, especially if
objects have a well known shape and feature some degree of symmetry.
Indeed, humans have been shown to perform mental transformations for
decision-taking about their surrounding environment [161, 20, 223].
Machines are still far from this level of intelligence. Still, powerful para-
metric (i.e. entirely learning-based) deep learning models [88, 64] made it
possible to frame the generation of novel viewpoints as a conditioned image
synthesis problem. However, this is an holistic approach that under-exploits
the fact that man-made objects 3D models are roughly distributed according
to few prototypes (e.g. sedan, VAN, pick-up, truck etc. for vehicles). Up

104 Smart Cities: Bridging Driver’s, Vehicle and Infrastructure Viewpoints

https://github.com/ndrplz/semiparametric


to now, the generation is constrained to be visually plausible with almost
no geometric support from prototypes’ shapes [177, 134]. Furthermore,
even though generated images may look realistic per se, fine-grained visual
appearance characterizing the particular object instance (e.g. texture) is
often lost due to its high frequency which hardly survives being encoded
through a deep network [177, 238, 46]. Eventually, most methods are
supervised on the target image, which is seldom available for real data.
Also, vast amount of data are required for the network to generalize to
arbitrary transformations (i.e. a sufficient number of images for every
possible viewpoint). This constrains many methods to be trained solely on
synthetic data and to be restricted to a discrete set of viewpoints: in fact,
most recent works only handle a small set of transformations (e.g. rotating
around the object at constant radius) [218, 177, 234, 134].

At the same time, an independent line of research has shown that a
non-parametric approach can be a viable path for photorealism, as also
pointed out by Qi et al. [143]. For instance, new images can be generated
by collaging [67, 93, 29, 82, 76] or by leveraging multiple photographs to
synthesize novel views via image-based rendering [25, 24, 127, 70, 128]. Still,
these methods require a large amount of data at test time: entire image
banks for collaging, multiple photographs and depth data for image-based
rendering.

Here we propose a new approach - inherently semi-parametric - being
based on both learning and geometry, self-supervised and efficient to be
used in real-time. By taking the best from both worlds, we exploit geo-
metric constraints to roughly sketch the target shape of the object and its
textures while still relying on deep view synthesis to refine the generated
view. The rationale behind this work is that many man-made objects ad-
here to a-priori geometric rules: vehicles in particular, exhibit a symmetric,
piece-wise planar structure. Therefore, those properties may be exploited
to approximately represent them by a small set of piece-wise planar patches,
which can be warped almost exactly from source to destination viewpoint
via a symmetry-aware homography transformation. Although these warped
patches provide a rich hint about the visual content of the target viewpoint,
they are far from being useful on their own. Thus, a fully-convolutional
network is seeded with these patches along with a 2.5D CAD-rendered
sketch to be used as guidance; it is then trained in a self-supervised manner
to discriminate which part of the image must be completed or in-painted
for the result to look realistic (see Fig. 4.14).
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We tested our solution in particular in vehicle generation due to their ubi-
quity in urban scene understanding applications [220, 181, 49, 160, 116, 104].
Moreover, to highlight that a decomposition in planar patches holds for
different types of rigid objects, we evaluate our semi-parametric framework
on both convex objects (vehicles) and concave ones (chairs). We leave as
future work the analysis of a broader set of object categories.

In summary, our main contributions in this topic follow:

• We propose an original formulation of the problem of object novel
viewpoint synthesis in a semi-parametric setting. Loose geometrical as-
sumptions about the object shape provide rich hints about its appear-
ance (non-parametric); this information guides a fully-convolutional
network (parametric) in the generation process.

• We design our model to be trainable on existing datasets for 3D
object detection in a self-supervised manner, with no need for paired
source/target viewpoint images. Furthermore, we leverage 2D key-
points for real-world images where foreground segmentation is not
provided.

• We demonstrate how our method excels in preserving visual details
(e.g. texture) and in performing realistic shape transfer to completely
different 3D models, while still being resilient to a much wider range
of 3D transformations than competitors.

Our method can be employed to generate realistic novel views of an ob-
ject from an arbitrary zoom, viewpoint and distance, as depicted in Fig-
ures 4.23, 4.26, 4.28, 4.29, 4.31, 4.33, 4.34. Also, our approach allows a
disentangled editing of object shape and appearance (i.e. shape can be
changed while preserving appearance or the other way around). This en-
ables applications in interactive 3D manipulation and design, as well as
data augmentation (Fig. 4.35).

A thorough experimental analysis is conducted comparing our proposal
with state-of-the-art methods, considering both the quantitative and the
perceptual point of view.
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Figure 4.24: We model a rigid object with a small of piece-wise planar
patches, whose vertices are defined by 2D keypoints. We also include a
small central crop as appearance prior to carry low-frequency information.

4.4.2 Semi-parametric model architecture
Our model generates novel views of objects in a semi-parametric setting
- relying on both geometry and learning. To this end, 2D keypoints and
additional 3D information are extracted from a single view of the object.
Keypoints are used as a proxy to describe 2D geometrical abstractions of
the 3D shape (i.e. planar patches), which are transformed to the novel
viewpoint. Eventually, a convolutional neural network seamlessly fuses this
prior information to generate a realistic image from the novel view.
More into details, our model takes as input an image depicting a single
object xs ∈ IRH×W×3 viewed from the source viewpoint Vs ∈ IR4×4, its 2D
keypoints Ks and its associated 3D CAD model C ∈ IRfaces×3×3 having
3D keypoints K3D.
Training (Fig. 4.25, top) is performed in a self-supervised fashion max-
imizing the consistency between the input image and the generated one
when projected onto the source viewpoint, with no need for coupled images
from the two viewpoints as supervision. Given xs and Ks, planar patches
are extracted (Sec. 4.4.2). The patches are then projected to the target
viewpoint Vd through an intermediate view (Sec. 4.4.2) according to a vis-
ibility model (Sec. 4.4.2). The 3D model C is also rendered from the target
viewpoint Vd to get a 2.5D sketch of the object (Sec. 4.4.2). Eventually, the
image completion network (ICN) starts from these visual seeds to generate
a realistic final image (Sec. 4.4.2, 4.4.2).
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Figure 4.25: Model architecture overview. Approximately planar patches
are extracted from the 2D keypoints locations. The Image Completion
Network (ICN) uses the synthetic 2.5D sketches as templates to reconstruct
object’s appearance from the patches in a self-supervised fashion. During
training, input patches are warped forth and back to a randomly sampled
viewpoint to enforce resilience against homography issues that are likely
to be encountered at test time. During inference, novel views of the input
object are synthesised by providing the ICN a novel viewpoint and a
(possibly different) rendered 3D model to be used as shape guideline.
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Inference (Fig. 4.25, bottom) follows a similar flow. However, in this case
only 2D keypoints Ks and source viewpoint Vs are needed; the 3D model
can be either inferred from the input or arbitrarily selected to perform
shape transfer.

Without loss of generality, in this work we rely on ground truth data
whenever possible, as our focus lies on the overall viewpoint generation
pipeline. Off-the-shelf detectors [68, 136, 188] can be used to provide these
information in an in-the-wild scenario.

Keypoint-based decomposition into planar patches

We leverage 2D keypoints to approximate the visible shape of the object with
a simple polyhedron with a small set of faces, as depicted in Fig. 4.24. Since
keypoints mark characteristic locations in the object shape (e.g. corners), a
face defined from at least three of those could carry a perceptual / semantic
meaning (e.g. the roof of a car). Exploiting 2D keypoints to find object
faces is appealing for a number of reasons. First, this makes straightforward
computing the homography matrix between planes in different viewpoints
(see Sec. 4.4.2). Furthermore, a number of datasets provide object landmark
annotations in real-world scenarios (e.g. [98, 215, 214, 203, 210, 198]) and
solid keypoints detection methods exist [188, 136, 68].
Specifically, for each source image xs ∈ IRH×W×3 an array of 2D keypoints
Ks ∈ IR|Ks|×2 is available, being |Ks| the category-specific number of
keypoints (we set |Ks| = 12 for vehicles). From these a set of planar
patches are extracted according to the geometry of the object:

Ps = {p(0)
s ,p(1)

s , . . . ,p(|P|)
s }, p(i)

s = Γ(k(i)
s ) (4.16)

where each patch p
(i)
s is defined as the convex hull Γ of the subset of

keypoints k
(i)
s ⊆ Ks. Prior knowledge about the object class can be

leveraged to choose the planar patches Ps: for instance, we choose roof,
left, right, front and back sides for vehicles.

Warping and dewarping

Warping patches Source patches Ps are warped to the destination view-
point to get a set of warped patches Pd that are employed to bootstrap the
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novel viewpoint synthesis. To this end, we define the destination viewpoint
Vd ∈ IR4×4 to be an arbitrary rigid transformation of the camera:

Vd =

[
R t
0T 1

]
(4.17)

Locations of 2D keypoints Kd ∈ IR|Ks|×2 in the novel viewpoint can be now
computed by using the classical pinhole camera model as:

k
(i)
d =

f 0 cx
0 f cy
0 0 1

V−1
d k

(i)
3D (4.18)

where k(i)
3D is the ith 3D keypoint in the CAD model and cx, cy are the

principal point coordinates. As the focal f is unknown, we set it to
an high value to minimize perspective effects; we choose f = 3000 as
in Pascal3D+ [215]. A set of homography transformations H relating
planar surfaces in the two views can be estimated from correspondences
between Ks and Kd. In this way patches in the destination viewpoint
(warped patches from now on) can be computed as:

Pd = {p(0)
d ,p

(1)
d , . . . ,p

(|P|)
d }, p

(i)
d = H(i)(p(i)

s ) (4.19)

De-warping patches Since real-world datasets do not provide paired
views, it is not possible to supervise the destination image x̃d; hence,
we propose to train the ICN network in a self-supervised manner. A
straightforward approach would be to reconstruct xs from Ps. Nonetheless,
this would create a distribution shift between the data fed to the network
during training and inference stages. In fact, while Ps is perfectly aligned
with xs, Pd might be affected by homography failures and interpolation
errors among other issues. For example, when the destination area is smaller
than the source one many source pixel land onto the same destination pixel,
and the inverse warping cannot recover all the information in the original
patch. To alleviate this shift, we train the network to reconstruct the image
xs from a third set of patches (called dewarped patches in what follows):

P̃s = {p̃(0)
s , p̃(1)

s , . . . , p̃(|P|)
s }, p̃(i)

s = (H(i))−1(p
(i)
d ) (4.20)

During training, patches are warped towards a random viewpoint sampled
from the training set distribution before being warped back to the source
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Figure 4.26: Results of 360◦ rotation. Our output is consistent for the
whole rotation circle. Best viewed zoomed on screen.

one. In this way the network learns to cope with possible transformation
errors and cannot simply short-circuit input patches to the output. The
importance of this dewarping trick for a well-behaved network training is
highlighted in Sec. 4.4.3.

Visibility model

Whenever a 3D object is projected into a 2D image, self-occlusions almost
inevitably arise. Consequently, not all planar patches into the set Ps are
effectively visible. Were they to be warped regardless of their visibility,
following parts of our architecture would require to discern which of them
to keep or discard. Furthermore, when warping between Ps and Pd the
visibility of some of those planes may vary. To take these dynamics into
account, we first render the object 3D model from the camera viewpoint to
obtain the 3D planes corresponding to the detected 2D patches. The z-buffer
computed through ray-casting is then exploited to filter the patches which
are not visible from the source viewpoint. These are ‘dropped’, in the sense
that they are zeroed before feeding them to the ICN. As during training the
intermediate viewpoint Vd is sampled randomly, the warping-dewarping
phase results in a random dropout at patch-level, where the chance of drop
is inversely proportional to the frequency of visibility of the patch. This
forces the network to hallucinate missing patches during training, thus
improving generalization when source and destination viewpoint differ.

Leveraging 2.5D sketches

While image patches carry rich information about the appearance of the
object, they bear few cues about the object shape. In other words, visual
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aspect and shape are disentangled by design. This is a desirable property
enabling multiple applications which require to change one of the two while
keeping the other fixed. In this section we propose a method to constrain
the synthesised object shape. Let

C = {C(0), C(1), . . . , C(|C|)}, C(i) ∈ IRfaces×3×3 (4.21)

be the set of 3D CAD models which approximate the intra-class variation
for the current object class, each C(i) being a 3D mesh composed of f
faces. The number of CADs |C| needed to cover the intra-class variation
reasonably depends on the object category, but it is often relatively low
(e.g. |C| = 10 for the vehicle class in the Pascal3D+ dataset [215]). Each
training example i is thus composed by an image x(i) and its associated
viewpoint V(i) and CAD index α ∈ {0, 1, . . . , |C|} which can be possibly
selected through a classifier. Therefore, a virtual camera can be used to
render the CAD C(α) from viewpoint V(i). In particular, following [209],
we render the 2.5D sketch of CAD surface normals:

s2.5D(C(α),V(i)) ∈ IRH×W×3 (4.22)

which provides rich information about the object’s 3D shape. During
training, this 2.5D sketch is fed to the ICN together with de-warped patches
P̃s to reconstruct xs.

Appearance prior

Our method relies on warped patches to transfer the object appearance from
a source to a destination viewpoint. Still it might happen that viewpoints
Vs and Vd are so far apart (e.g. front to back) that an object shares no
visible faces across the two even with symmetry constraints. To alleviate
this issue, we crop from the center of the input image xs a small patch cs
with side 10% of the image size and give it as an additional input to the
image completion network as a prior knowledge about the rough object
appearance in absence of other hints (depicted in Fig. 4.24). The network
can extract from this crop coarse information about the object visual aspect
(e.g. the average color) as a prior to cope with large changes between
viewpoints.
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Image Completion Network

The Image Completion Network (ICN) g(· | θ) is a fully convolutional
network parametrized by θ trained to reconstruct a realistic image xs from
dewarped patches P̃s, 2.5D sketch s2.5D and appearance prior cs:

x̃s = g(P̃s, s2.5D(C(α),Vs), cs | θ) (4.23)

Architecture Our ICN features an encoder / decoder structure as in
[236, 238]. The encoder is composed of 3 convolutional blocks to reduce
the spatial resolution and 3 additional residual blocks applied to the lowest
resolution code. Except for the first one, every convolution has kernel size
4x4 and it’s preceded by reflection padding, while ReLU activation and
Instance normalization are applied afterwards. The decoder follows the
same structure in reverse order. For the discriminator network we rely on
the two-scale PatchGAN classifier [77, 236, 238].
Objective A number of recent works [81, 28, 143] indicate that loss func-
tions based on high-level features extracted from pretrained networks can
lead to much more realistic results compared to naive per-pixel losses
between the output and ground-truth image. Given a set of layers {Φl}
from a network Φ and a training pair consisting of a real and a generated
images (xs, x̃s), we define the perceptual loss function as

LV GGxs,x̃s(θ) =
∑
l

λl‖Φl(xs)− Φl(x̃s)‖1. (4.24)

We employ each second convolutional layer of each block in VGG-19 [167]
as feature extractor Φl; {λl} is set as in [28].
As mentioned above, images generated from novel viewpoints x̃d cannot be
directly supervised if the dataset does not provide paired views. Neverthe-
less, we can still enforce the realism of ICN output in an adversarial fashion.
Given a generic image x̃ synthesised by ICN either in the source (x̃s) or
the destination (x̃d) viewpoint, we set up a min-max game as follows:

Ladvxs,x̃ = Exs [logD(xs)] + Ex̃[log(1−D(x̃))] (4.25)

where D is the discriminator network aiming to distinguish between real
and synthesised images. Our total loss is defined as:

L = LV GGxs,x̃s + γLadvxs,x̃ (4.26)

where γ modulates the contribution of the adversarial term.
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Figure 4.27: Comparison with ablated versions of the proposed method
on Pascal3D+ test set. Better viewed zoomed on screen. Please refer to
Sec. 4.4.3 for details.
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Figure 4.28: Visual results comparison with competitors on Pascal3D+ test
set. Better viewed zoomed on screen. Please refer to Sec. 4.4.3 for details.

4.4.3 Experimental results

The experiments we propose concern with the evaluation of the quality of
the generated object images across different viewpoints. First, both visual
comparison (Sec. 4.4.3) and quantitative experiments (Sec. 4.4.3) against
state-of-the-art competitors are reported. Then, we keep the human in the
loop by relying on human judgement to measure the output quality via A/B
preference tests (Sec. 4.4.3). Eventually, we extend the evaluation to other
classes (Sec. 4.4.4) and we investigate the contribution of complementary
synthetic data for modelling extreme viewpoint changes (Sec. 4.4.5).

Datasets Although large-scale 3D shape repositories providing object
geometries such as Princeton Shape Benchmark [162] and Shapenet [23]
exist, they do not come with real-world images aligned. As we want to
work with real-world data, we rely on Pascal3D+ [215], an in-the-wild 3D
object detection dataset which augments the 12 rigid categories of the PAS-
CAL Visual Object Classes (VOC) [47] with 3D annotation -roughly [174]-
aligned. In particular, we use the car and chair subsets, which consist of
around 5000 and 1500 images respectively.

Competitors We evaluate our method against six state-of-the-art works
in the task of novel viewpoint synthesis. The first one is VON [238], an ad-
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Figure 4.29: Predictions of our model from different viewpoints. The
geometry-aware design of our semi-parametric method allows the model to
be resilient to large viewpoint variations, including rotation, elevation and
camera distance.

0◦ 30◦ 60◦ 90◦ 120◦ 150◦ 180◦ 210◦ 240◦ 270◦ 300◦ 330◦ Avg

oursreal+synth 174.2 57.0 47.9 53.8 52.9 59.9 168.8 61.2 52.1 54.2 46.8 60.2 74.1
oursreal 178.9 54.6 51.0 53.2 56.8 58.1 202.5 62.2 54.1 49.8 46.3 56.1 77.0
MV2NV [173] 144.5 170.9 136.5 192.3 144.7 163.1 152.2 179.1 137.5 186.0 136.0 161.3 158.7
MV3D [177] 257.5 263.9 259.7 284.2 273.0 271.9 267.7 263.7 261.5 277.9 266.5 265.3 267.7
TVSN [134] 70.8 71.3 74.1 78.9 79.0 82.2 89.4 81.1 79.0 78.9 78.0 72.9 78.0
VUnet [46] 202.4 90.7 79.9 88.3 78.8 96.3 203.3 94.0 77.5 85.2 82.0 92.6 105.9
VON [238] 134.1 107.2 150.0 126.5 124.4 114.4 151.7 113.8 127.2 128.9 132.0 107.3 126.4
VON FT [238] 165.2 100.6 137.8 125.9 137.6 108.1 190.5 155.7 134.8 123.1 117.1 102.1 133.2

Table 4.5: Fréchet Inception Distances [72] results for car. Each row lists
the average distance between real and generated images for each method
on the left. Results are reported from 12 evenly spaced azimuthal angles
while rotating around the object at fixed elevation and radius. Details in
Sec. 4.4.3.
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versarial learning framework in which object shape, viewpoint and texture
are treated as three conditionally independent factors that contribute to
the synthesis of the novel viewpoint. Since VON was originally trained on
a custom car dataset collected by the authors [238], for a fair comparison
we implement a second baseline VON FT by fine-tuning their network on
Pascal3D+. For both competitors we provide ground truth voxelized shapes
from [238] matching the images’ CADs, relying on the texture encoder net-
work from [238] for extracting the textures from Pascal3D+ images. Third,
we compare to VUnet [46], a state-of-the-art framework for conditional
image generation based on variational autoencoder [88], which shows a good
generalization capability across a variety of poses and viewpoints. In the
authors’ implementation [46] a U-net [152] architecture is fed with keypoint-
based skeletons to perform pose-guided human generation. We re-train
their model on Pascal3D+ to perform pose-guided object generation. For
this process, we feed their shape-encoding network with our 2.5D sketches
rendered from the object CAD - which is a more informative reference
signal than the one used in the original implementation (i.e. skeleton or
edges).
We also compare with three recent pairwise-trained models: MV3D [177],
TVSN [134] and MV2NV [173]. Pairwise methods share the need for both
source and target pairs during training; thus we cannot re-train or finetune
them on Pascal3D+ and we rely on pre-trained models released by the
authors. To maximize evaluation fairness, in what follows we only sample
novel viewpoints rotating around the z-axis at fixed distance and elevation,
which is the only setting handled by competitors. Still, our method can
handle general roto-translations as well as variation in camera intrinsic.
Fig. 4.29 and Fig. 4.31 show visual results for large viewpoint changes
in both elevation and azimuth; even more extreme transformations are
depicted in Fig. 4.34.

Implementation details The 2D bounding box of each example of Pas-
cal3D+ [215] is padded to a squared aspect ratio and resized to 128x128
pixels. We work in LAB space relying on the training procedure from [213].
Following [188, 136] truncated and occluded objects are discarded, resulting
in 4081 training and 1042 testing examples respectively. For vehicles, the
oursreal+synth model is trained for 20 epochs with batch size 8. During
training images undergo small random rotations, translations and shear-
ing for data augmentation purposes. We use Adam [87] optimizer with
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constant learning rate 2e−4. Loss balancing term γ is set to 8. The code
is developed in PyTorch [135]: we depend on Open3D library [233] for
3D data manipulation and rendering. Random search has been employed
for hyper-parameter tuning. Without any optimization, inference for a
128x128 image takes ∼ 3ms on a NVIDIA GTX 1080, making it suitable
for real-time applications.

Visual results

Our model produces high-quality results for a variety of camera viewpoints,
preserving fine-grained object appearance, as it can be appreciated in Fig-
ures 4.23, 4.26, 4.27, 4.28, 4.29, 4.33 and 4.34.

Competitors The key differences between the proposed method and com-
petitors can be appreciated in Fig. 4.28. From left to right. MV2NV [173]
seems to suffer the most the reality gap as well as the lack of multiple
views, leading to the worse quality results in our setting. MV3D [177]
predicts at least a reasonable overall shape, although images are blurry to
the point that in some cases one can barely recognize the vehicle. Results
from TVSN [134] show the highest variability: while looking generally
fine, they are disastrous for less common poses such as (b) and (e). The
output from Visual Object Networks [238] (VON ) is generally realistic, but
hardly reflects the visual appearance of the input. Furthermore, both VON
and VON FT generator networks do not generalize to poses which are less
common in the training set such as the frontal pose in (d). VUnet [46]
suffers from blurred results typical from variational autoencoders [63]; also,
due to skip connections, input appearance may leak to the output when
the two viewpoints are very different (b). More generally, the drawbacks of
a solely learning-based viewpoint synthesis are evident in (a, c): complex
textures cannot be recovered once compressed in a feature vector.

Ablation study Ablated versions of our model are shown in Fig. 4.27. The
effect of removing the appearance prior is showcased in No-prior column.
Without prior information, the ICN fails to infer the object appearance when
no planar patch is provided, as shown in (b, e). Removing the adversarial
term (No-adv column) results in slightly blurred outputs. We also investig-
ate the aid of the dewarping trick presented in Sec. 4.4.2. In No-dewarp
column, the ICN was trained to reconstruct the image from Ps instead
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of P̃s (see Sec. 4.4.2). As expected, despite the very low reconstruction
error at training time (due to the similarity between xs and Ps), the model
fails to generalize to the synthesis of novel viewpoints where the textures
Pd are the result of an homography transformation. This highlights the
importance of the dewarping trick for a well-behaved training. Eventually,
Sil-only shows the ablated versions in which the input sketch is constituted
only by 2D silhouette. Although results do not differ dramatically, it can
be appreciated how the network benefits from additional information to
resolve ambiguous situations such as self-occlusions (e) and details such as
side windows, lights, wheels.

Shape transfer Visual results for shape transfer are showed in Fig. 4.23.
In this setting, the network is requested to complete the warped faces Pd

using the 2.5D sketch rendered from a totally different CAD. It can be ap-
preciated how novel viewpoints are still realistic, since the network exploits
the 2.5D sketch to complete the warped appearance in a CAD-agnostic
manner.

Metrics and quantitative results
Fréchet Inception Distance To quantitatively measure the similarity
between generated and real images we rely on Fréchet Inception Distance
(FID), which was shown to consistently correlate with human judgment [72,
112]2. We employ activations from the last convolutional layer of an
InceptionV3 model pretrained on ImageNet [40] as features. Assuming a
multidimensional Gaussian distribution for these features, we compute the
FID as follow:

FID = ‖m−mw‖22 + Tr
(
C + Cw − 2

(
CCw

)1/2) (4.27)

Where m, C are the mean and covariance of the features extracted from
Pascal3D+ data, while mw and Cw are the corresponding statistics extrac-
ted from the generated images.
To enable the comparison with other works, we sample novel viewpoints
while rotating around the object at fixed distance and elevation: results are

2There are also critic voices who point out that these measures can be easily fooled by
optimizing for the evaluated measure, resulting in images which score very high despite
being visibly (for a human) unrealistic [28]. How to quantitatively evaluate the realism
of an image without a human in the loop is still open to debate.

Smart Cities: Bridging Driver’s, Vehicle and Infrastructure Viewpoints 119



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

125 250 500 1000 2000 4000 8000

Real>VUnet
Real>VON
Real>VONFT

Real>ours

Time (ms)

Pe
rc

en
ta

ge
 R

at
e

Figure 4.30: Results of time-limited A/B preference test against real images.
Both VON and our method are resilient to human judgement over time.
Green line denotes random chance. Please refer to Sec.4.4.3 for details.

Car (plain) Car (textured) Avg

ours > VUnet [46] 76.0% 85.0% 78.0%
ours > VON [238] 88.0% 98.0% 91.0%
ours > VON FT [238] 96.0% 99.0% 97.0%

Table 4.6: Blind randomized A/B test results. Each row lists the percentage
of workers who preferred the novel viewpoint generated with our method
with respect to each baseline (chance is at 50%).

reported in Table 4.5, binned in 12 equidistant azimuthal angles. Fréchet In-
ception Distance rewards the realism we can get with our semi-parametric
approach; our method outperforms all competitors. In particular, our
method preserves both low (i.e. shape) and high-frequency (i.e. texture)
image statistics which are both contribute to the overall FID score.

Perceptual experiments

To assess the quality of our results also from a perceptual point of view,
randomized A/B preference tests were performed by 43 human workers,
following the experimental protocol of previous works [28, 143, 238]. Due
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real real+synthInput real real+synth real real+synth real real+synth

Figure 4.31: Visual comparison showing the effect of adding synthetic data
to Pascal3D+ training set. The ICN network trained on the mixture of
the two domains performs significantly better under extreme viewpoint
transformations. Please see supplementary material for more examples.

to time constraint, for this phase we select only the three most recent
competitors, namely VON [238], VON FT [238] and VUnet [46]. As we
want to evaluate both the realism and the appearance coherence of our
method, we perform two different tests.

View transfer coherence In the first setting, the subject is presented
with three images: while the first one comes from Pascal3D+ test set, A
and B depict a novel viewpoint of the object generated with two different
methods. The human worker is then asked whether rotating the input ob-
ject would better lead to A or B. Results reported in Tab. 4.6 indicate that
our method is largely preferred to competitors, likely because of the built-in
realism that comes from warping the original image. As a further analysis
we split by manual annotation Pascal3D+ images into plain and textured
sets, the latter set containing vehicles which feature characteristic textures.
Table 4.6 highlights that workers expressed almost unanimous preference
for our method on the textured set. The fact that human attention was
caught by these appearance details highlights the importance of preserving
fine-grained details in the synthesized output.
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(a) (b)

Figure 4.32: Viewpoints’ distributions for real (a) and synthetic data (b) of
the car class in Pascal3D+. Radii have been normalised to unit length for
clearness. In red viewpoints with elevation lesser or equal than π

8 rad.

Output realism The second experiment consists of a two-alternative
forced choice aimed at evaluating the relative realism of each method. Here
the subject is presented with only two images for a determined amount of
time. The worker is then asked which of the two appeared more realistic
and the experiment is repeated by varying the amount of time. Results
depicted in Fig. 4.30 follow two trends. On the one hand, workers clearly
discern VUnet and VON FT images from real ones as more time is available.
VUnet is hurt by excessive blur and visual artifacts; VON FT suffers from a
severe loss of realism w.r.t. the original VON method, which may be related
to the great variety of viewpoints in the Pascal3D+ dataset compared with
the one used in Zhu et al. [238]. On the other hand, both VON and our
method produce realistic images workers struggle to distinguish from the
real ones even in 8000ms.

4.4.4 Extending the evaluation on different classes

Similarly to [173, 134, 238], we test our method also on the chair subset
from Pascal3D+ dataset, consisting of 1195 images annotated with 10
different CAD models to assess the generalisation capability of our method.
As for vehicles, also for chairs we define a set of planes from 3D annotated
keypoints to approximate the surface of the objects, namely: left, right,
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Figure 4.33: Visual results comparison with competitors for chair class on
Pascal3D+ test set. Better viewed zoomed on screen.

Figure 4.34: Geometric guidance built in our semi-parametric model allows
to perform extreme object transformations which are currently unfeasible
for any fully-parametric method. In this case we are able to rotate the
armchair upside-down, although this configuration never appears in the
training set. Best viewed zoomed on screen.
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0◦ 30◦ 60◦ 90◦ 120◦ 150◦ 180◦ 210◦ 240◦ 270◦ 300◦ 330◦ Avg

oursreal+synth 83.9 57.9 66.5 120.1 82.5 76.1 102.3 77.2 83.4 117.0 65.2 60.9 82.8
oursreal 92.6 62.4 68.0 122.5 84.8 84.7 117.3 82.3 85.0 127.5 70.1 64.0 88.4
TVSN [134] 84.7 86.6 90.8 95.1 94.0 97.2 93.9 94.6 95.0 93.0 87.8 82.7 91.6
VON [238] 125.5 107.7 100.1 121.1 122.6 136.8 203.9 141.4 123.8 114.2 102.1 96.1 124.6
VUnet [46] 118.9 97.1 123.1 171.0 160.5 137.9 151.2 141.9 155.8 154.9 120.1 95.8 135.7
MV2NV [173] 180.3 168.0 178.3 187.8 184.1 177.8 184.7 184.3 200.2 191.0 184.7 166.4 182.3

Table 4.7: ]
Fréchet Inception Distances [72] results for chair class. Each row lists the
average distance between real and generated images for each method on
the left. Results are reported from 12 evenly spaced azimuthal angles while
rotating around the object at fixed elevation and radius.

seat and back. Even though chairs often feature holes and slits leaking
some of the background, we treat them as filled planes. This is due to
having access to the foreground segmentation mask through the rendered
CAD model, which can be used to mask out background areas. However,
the very coarse alignment of the chairs CAD models in Pascal3D+ leads to
an additional difficulty when training the ICN.
Table 4.7 reports results against competitors in terms of Fréchet Inception
Distance score: MV3D [177] is omitted since it only releases pre-trained
model for cars. Our method outperforms all other competitors also for
this class of objects; visual examples are reported in Fig. 4.33. While
MV2NV [173] and TVSN [134] often struggle to generate the object from
the correct viewpoint, VON [238] fails to transfer visual details in the final
output. Although the generated image looks realistic, it doesn’t resemble
the input one. Contrarily, our method successfully generate realistic views
of the input object, even under severe viewpoint transformations 4.34. Still,
when background leaks in the input mask due to the CAD misalignment
(first and fourth row) the final output quality decreases.

4.4.5 On the use of synthetic data

Even though the semi-parametric nature of our proposed method copes with
a variety of viewpoint, it still rely on data to learn how to stitch together
the warped patches. Therefore, for dramatic changes of viewpoint that are
completely uncovered in the dataset, performances may drop significantly.
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As shown in Fig. 4.32 (a), Pascal3D+ viewpoints’ distribution for the car
set is profoundly skewed towards low elevation values and is polarized with
regard to the azimuth to frontal and lateral views, reflecting how the images
were acquired. As it is of great interest to produce realistic images from
more varied viewpoints (e.g. bird’s eye view), we include synthetic data in
the training set for balancing the viewpoints’ distribution. To this end, we
sample 59 models from the car synset in the ShapeNet [23] dataset and we
annotate them with 3D keypoints to define the planes of interest. We then
render 6950 images sampling viewpoints uniformly in a 3D semi-spheres
around the origin. As shown in Fig. 4.32 (b) this viewpoints’ distribution
is much more uniformly distributed in terms of azimuth and elevation. We
name oursreal+synth the ICN network trained on a mixture of synthetic and
real data. We also experimented pre-training our model on synthetic data
and fine-tuning on the real ones, although in our experience that policy led
to worse results.
Visual comparison between oursreal and oursreal+synth is shown in Fig. 4.31.
It can be seen how training only on Pascal3D+ entails artefacts for out-
of-distribution viewpoints (e.g. bird’s eye view). Conversely, combining
the two domains the network learns from synthetic data a prior about the
overall structure and color.
We perform an analogous augmentation of the chair class. In this case we
included 1858 freshly rendered synthetic images from 73 annotated models.
As the rendered images are perfectly aligned with the foreground mask, this
also contributes to reduce the planes’ misalignment introduced by images
from Pascal3D+.

4.4.6 Concluding remarks

In this chapter we introduced a novel formulation of the problem of vehicle
novel viewpoint synthesis in a semi-parametric setting. Notably, our model
is designed to be trainable on existing datasets for 3D object detection in a
self-supervised manner, without the need for paired source/target viewpoint
images - although it can be complemented with synthetic data. Non-
parametric visual hints act as prior information to guide a deep parametric
model for generating realistic images, disentangling by design appearance
and shape. This enables truly continuous manipulation of the viewpoint
and shape transfer to different 3D models. As completing the image is
much easier than generating it from scratch, we can train our ICN on just
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Figure 4.35: Artificial data created stitching generated vehicles onto Pas-
cal3D+ [215] backgrounds.

few thousands images from the Pascal3D+ dataset and still be able to
generalize to unseen viewpoints.
Although vehicles were the main focus of our work, we show that our
framework is generic enough to handle rigid objects of completely different
geometric structure such as chairs. Perceptual experiments results as well
as image-quality metrics reward our method for its realism and the visual
consistency of the synthesised object across arbitrary points of view.

Images from: Zhu, et al. “Visual object networks: image generation with disentangled 3D representations” (NeurIPS 2018)

Pre-trained model, 20° azimuthal rotation

Pre-trained model, 10° azimuthal rotation

Figure 4.36: Qualitative results from VON [238]. Since the model has no
geometric constraints, a very small viewpoint variation from a situation
where it performs impressively (middle) can lead to a dramatic failure
(bottom). Please see Sec. 4.4.7 for details.
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Figure 4.37: The the explicit texture warping and the geometric guidance
given by the 2.5 sketches allows our method to produce consistent predictions
from arbitrary viewpoint even tough no explicit consistency loss between
different views is optimized. First row shows input. Best viewed in color.

4.4.7 Additional discussion

Regarding output consistency

In this work we argue that a semi-parametric method for object novel view
synthesis has very appealing properties coming from the fact that the output
is not generated from scratch; on the opposite, much of the information
is warped from the input viewpoint in a geometrically-principled manner.
We find that one of the major advantages of this semi-parametric approach
is that the geometric guidance helps avoiding catastrophic failures in the
generation process. In particular, our model does not have to explicitly
learn the hard concept of distance between two viewpoints in 3D space.
Since the 2.5D sketch which guide the generation process are rendered from
a 3D model in a purely geometric fashion, continuous change in viewpoint
will lead by construction to continuous variation in the 2.5D sketch.
Conversely, in a completely learning-based pipeline the model is let to learn
the concept of 3D viewpoint proximity from a massive amount of data.
Still, it is a very hard concept: the model may or may not learn it properly.
In Fig. 4.36 we make use of the VON [238] pre-trained model to showcase
one situation of this kind. Even though the model is state-of-the-art and
its performance is impressive, very little viewpoint variation can result in a
dramatic failure in the image generation for no apparent reason.
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Figure 4.38: Visual examples of 360 degrees car rotation. Best viewed
zoomed on screen.
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Figure 4.39: Additional visual results from our model, showing how training
the ICN on a mix of synthetic and real data dramatically improves the
performance for out-of-distribution viewpoints.
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Figure 4.40: Visual examples of 360 degrees chair rotation. Best viewed
zoomed on screen.
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Figure 4.41: Additional visual results for shape transfer on vehicle class.
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Figure 4.42: Semantic keypoints annotated for each 3D model in the
Pascal3D+ [215] dataset: bottom row indicates the CAD index in the
dataset. These are the same keypoints we choose to annotate in our
synthetic dataset. Please refer to Sec. 4.4.7 for further discussion.

On the opposite, the explicit texture warping and the geometric guidance
given by the 2.5 sketch allows our method to produce consistent predictions
from arbitrary viewpoints even tough no explicit consistency loss between
different views is optimized. Visual examples from our methods are shown
in Figures 4.37,4.39,4.38,4.40, where we drastically jointly change both
azimuth and elevation of the target viewpoint. Additional visual results for
shape transfer on the vehicle class are depicted in Fig. 4.41.

Decomposing the object using the ‘right’ keypoints and planes

In this work semantic keypoints are leveraged as a proxy to decompose
the object in the image into a small set of planar faces, with the keypoints
constituting the vertices of each face.
There is no universal agreement about the number of significant objects’
landmarks, not even for most common classes such as vehicles. Indeed, dif-
ferent works have often used a different number of keypoints to characterize
the same objects [98, 215, 214, 203, 210, 198].
Here we follow the convention of the Pascal3D+ [215] dataset, which defines
12 keypoints for vehicles (front and back wheels, upper windshield, upper
rear window, front light, back trunk - left and right) and 10 for chairs (back
upper, seat upper, seat lower, leg upper, leg lower - left and right).
The location of these keypoints on the Pascal3D+ models can be visually
inspected in Fig. 4.42; some examples of annotated models are depicted in
Fig. 4.43. These keypoints are then used to define a small set of planes to
approximate the object, each one delimited by at least 3 distinct keypoints.
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Figure 4.43: Random 3D models from our synthetic dataset, rendered
together with their annotated 3D keypoints.

The size of this set is an hyper-parameter for our model. In fact, this value
must be set accordingly to balance two factors. On the one side, as the
number of planes increases the same must hold true for the number of
available keypoints. A very large number of keypoints would lead to a good
approximation of the whole 3D surface of the object - however, in practice
the number of annotated keypoints in a dataset is seldom higher than a
few dozens. On the other hand, when the number of keypoints is extremely
low the set of planes hardly approximate the surface of the object. Here
we empirically found that six planes are enough for the car setting, while
four suffices for the chair one. We believe this to be due to the presence
of textures and other high-frequency details on these planes. Although
the side of a vehicle is not a single flat surface (thus introducing a strong
approximation while relying on planar homography for the warping) the
presence of those details tricks the human’s eye in believing the surface has
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Figure 4.44: Examples of misalignment between the source image and the
annotated cad model. Mainly sources of error consist of wrong annotated
model viewpoint and the model not resembling the depicted object.

in fact three dimensions. Then, the ICN is trained to fix inconsistencies
at the borders between warped planes and to merge all the patches into a
seamless figure.

CAD alignment details

Perfectly aligning a 3D model with a 2D image is hard, even when is a
human the one attempting the process. Indeed, many datasets featuring
3D annotation come with annotation issues - and Pascal3D+ [215] dataset
makes no exception. This is due to two main reasons. Firstly, the CAD
models have been placed by human workers and then refined using an
automatic algorithm. Several geometric simplifications and assumptions
are introduces (e.g. about camera intrinsic), and re-projection errors and
human mistakes may arise. According to Pascal3D+ [215]:

The annotator (...) rotates the 3D CAD model (...). The
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Figure 4.45: Most common failure cases of our model on the vehicle class.
Please see Sec. 4.4.7 for details.

alignment provides us with rough azimuth and elevation angles,
which are used as initialization (...). We assume a simplified
camera model, where the world coordinate is defined on the 3D
CAD model and the camera is facing the origin of the world
coordinate system (...).

Secondly, those CAD models don’t match the object portrayed, as they
hail from a very reduced subset of only 10 elements. Again, from Pas-
cal3D+ [215]:

The annotator first selects the 3D CAD model that best re-
sembles the object instance (...).

Figure 4.44 shows some example of the effects of this misalignment for the
chair subset, where holes and slits present an additional source of error.

Failure cases

We refer the reader to Fig. 4.45 for visual examples of failure cases for the
vehicle class. In (a) the ICN is not able to recover in case of input patches
which are grossly wrong, either due to a failure in keypoint estimation or
to further objects occluding the car such as the people in the first image.
Furthermore, we report cases in which the ICN fails to guarantee a realistic
output which is consistent with the input image. This happens particularly
from rarer viewpoints such as bird’s eye (b) and back (c) views.
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Figure 4.46: The background leakage is the most common failure case for
the chair class. This can be solved by providing a 3D model which more
closely resembles the one of the input. Please refer to Sec. 4.4.7 for details.

Even more than for vehicles, the concave geometry of the chair object makes
easier for unwanted portions of the background to leak in the generation
process. In theory, our method can perfectly deal with these cases, as
it masks the generated image with the silhouette of the rendered model.
However, in some cases the 3D chair model rendered is so different from
the one in the input image that spurious background region make their
way to the final output. In Fig. 4.46 we provide visual examples of this
case. Arguably, this problem would be much alleviated if more 3D models
were used for inference (at the current state we only choose among the 10
Pascal3D+ models).

Visualisation Tool

We release at https://github.com/ndrplz/semiparametric the visualization
tool we used to inspect the results and create most of the images in this
paper. It is written in Python and depends on the Open3D [233] and
OpenCV [18] libraries. The interface simulates a camera moving around
an object centered in the origin. The movement are described in terms of
spherical coordinates and radius, and each of the three components can be
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Viewport 2.5D sketch App. Prior Prediction Source Image

Figure 4.47: Visualisation Tool interface example.

manipulated individually. The user can change:

• the elevation value, thus moving from lateral to bird-eye camera;

• the azimuth value, thus moving around the object centered in the
origin describing a 360 degrees circular trajectory;

• the radius value, thus simulating a zoom.

The Open3D library provides a 3D environment where the CAD model is
loaded, and callbacks enable rendering the scene as a 2D image. Normals
visualisation is also supported. Along with the manipulation of the previous
variables, the user can also independently change the CAD model and the
appearance image. When started, the tool present the CAD aligned with
the input image accordingly to the annotated viewpoint in the data. By
changing the spherical coordinates and the radius new viewpoints of the
object are synthesised, while by selecting a different CAD model a shape
transfer is performed. An example of the interface is shown in 4.47.

A/B Perceptual Experiments

We developed a tool to perform A/B test preferences based on Django
web server. The system is centralised and can be accessed from multiple
terminals simultaneously. We wrote asking for volunteers on the University
of Modena and Reggio Emilia mailing list, and the tests were performed
from the volunteer’s computer. We didn’t interact directly with participants
to avoid introducing any bias inadvertently. To ensure the correctness of the
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information in order to improve and customize your browsing experience and for analytics and metrics about our visitors both on this website and other media. To find out more 
about the cookies we use, see our Privacy Policy.

Which of the two images do you think is the most realistic one?

This One This One

Figure 4.48: Screenshots for the two A/B preference tests settings.

data we discarded the first results from each session, which were considered
as a briefing. For all experiments, images were shown at the same resolution
of 128x128 pixels. As all methods produce a white background, ground
truth aligned 3D CAD is used to mask Pascal3D+ real images. Both
sampling order and left-right order of A and B were randomized. Raw
results have been stored into a MySQL DB to ensure persistence, while
aggregated statistics were presented on an administrator interface. Figure
4.48 depicts screenshots from the two perceptual experiments described in
Sec.4.

4.4.8 From the vehicles to the whole scene

In the previous sections we introduced a novel semi-parametric approach to
generate novel views of a vehicle from a single monocular image. Here we
sketch how the aforementioned method can be applied to hallucinate the
visual appearance of the whole scene in the next future; the task overview
is depicted in Fig. 4.49. In this section we outline the main ideas and
preliminary results (see also Fig. 4.50 and Fig. 4.51) as the current research
is still in an early stage.

Problem overview

The capacity to imagine how the visual aspect of a scene will evolve in the
future is definitely non-trivial. This should not discourage an attempt to
solve it, as the rise of deep learning during the last years demonstrated
that many tasks considered extremely hard or even unsolvable can instead
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be tackled - often with superhuman performance - given enough data,
computational power and a large enough model. In this setting, intuition
might suggest as appropriate to borrow models from the image/video
generation literature. For example, an image translation framework [77]
might be adopted with small tweaks to translate the current scene into the
future one; alternatively, a recurrent convolutional model [216] could be
trained to recursively generate the next frame until the desired distance
in the future. However, we argue that this problem is still too complex
to be currently solved in an end-to-end fashion, no matter how powerful
the model is. Indeed, all the aforementioned approach share a number of
drawbacks, the three main ones being: i) the 3D structure of the world
is not explicitly taken into account, leading to implausible outputs; ii)
trying to predict jointly agents motion and appearance complicates the
task further; iii) error propagation leads the output quality to degrade just
a few frames in the future.

Method outline

In contrast to the aforementioned end-to-end approach, we advocate for
the use of a semi-parametric framework in which prior information about
the objects and the world are properly taken into account. We follow a
divide-and-conquer strategy to split the overall problem of scene generation
in a number of sub-problems which are well-studied in the research com-
munity: object detection, vehicle classification, keypoint localization, 3D
pose estimation, trajectory prediction, image inpainting. Although these
sub-problems are themselves challenging, at least algorithms and models
providing robust solutions to these tasks already exist. Given the image
depicting the actual scene, we can sketch the overall pipeline as follows:

1. An object detector produces the bounding boxes for all the vehicles
in the scene.

2. For each bounding box, we classify the vehicle and localize its keypo-
ints as described in Sec. 4.4.2.

3. An iterative Perspective-n-Points (PnP) algorithm is used to find the
3D pose of each vehicle, minimizing the re-projection error of the
localized keypoints w.r.t. the ones of the 3D model of the predicted
class.
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After these three steps, a massive amount of additional information is
available both about each vehicle and about the geometry of the scene.
Each vehicle can now be arbitrarily moved in a geometrically plausible
manner - taking the geometry of the scene into account. The next location
of each vehicle can be obtained either i) predicting its future trajectory
from the past locations or ii) manually manipulating the object location
if we consider an interactive editing setting. Once the future location is
decided, the previous one is inpainted and our proposed framework for
vehicle novel view synthesis (Sec. 4.4) can be used to generate the novel
appearance of the vehicle.

Visual results and ongoing work

Preliminary visual results for future scene generation are available in
Fig. 4.50 and Fig. 4.51, where we show how vehicles can be stitched and
moved in the image in a plausible manner. This is a currently ongoing
work and we are working in these very days to produce more detailed
quantitative as well as visual results; we hope to be able to formalize in
our scene generation framework in a peer-reviewed publication in the next
future.
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Input frame Selection of the vehicle of interest

Prediction (1) Prediction (2) Prediction (3)

Figure 4.49: Overview of our task. We want to predict the visual appearance
of the scene in the next future, considering the most likely trajectories of
each vehicle.

Smart Cities: Bridging Driver’s, Vehicle and Infrastructure Viewpoints 141



Figure 4.50: Preliminary visual results from the proposed urban scene
synthesis framework. In each scene, one vehicle is not real. Can you spot
which one? Answer in Fig. 4.51.

.
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Figure 4.51: Preliminary visual results from the proposed urban scene
synthesis framework. In each scene, the highlighted vehicle is generated.
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Chapter 5

Conclusions

The aim of this thesis - and of most of the research work carried out during
the PhD - was to study the problem of visual understanding of the urban
scene from multiple viewpoints. Our inquiry started from the point of view
of the vehicle - investigating which parts of the scene are more likely to
draw the attention of the human driver - and progressively zoomed out to
the infrastructure viewpoint - first understanding vehicles’ locations and
poses in the world, then inferring the visual aspect of the vehicles from
novel viewpoints, finally hallucinating the possible evolution of the visual
appearance of the whole urban scene.

In the following we summarize the major contributions presented in this
thesis, drawing a few concluding remarks on the results achieved so far.

Summary of Contributions
The DR(eye)VE dataset

In Sec. 3.1 we introduced a novel, publicly available dataset for driver’s
gaze estimation, acquired during real-world driving. Our dataset, composed
by more than 500,000 frames, contains drivers’ gaze fixations and their
temporal integration providing task-specific saliency maps. Geo-referenced
locations, driving speed and course enrich the set of released data. The
DR(eye)VE dataset was the first publicly available dataset of this kind
at the time of the publication. Three years later its first publication, it
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has been downloaded several hundreds of times and fostered discussion on
better understanding, exploiting and reproducing the driver’s attention
process in the autonomous and assisted cars of future generations.
Thanks to the DR(eye)VE dataset, we were able to perform large-scale
analysis of driver’s attentional behavior on real-world data. The study
presented in Sec. 3.1.3 resulted in many insights about where and what the
driver is looking at while driving. We analyzed what people pay attention
to while driving, and which parts of the scene around the vehicle are more
critical for the task. We also investigated the dynamics of the driver’s gaze
and use it as a proxy to understand related attentional mechanisms. In
this process, we dived deep into the influence of car speed, course and the
landscape over the driver’s attentional behavior, as the information about
which elements in the scene are likely to capture the driver’s attention may
benefit several applications in the context of human-vehicle interaction and
driver attention analysis.

The first deep learning based model of driver’s attention

In Sec. 3.2 and Sec. 3.3 we engineered, designed and trained a computa-
tional model of human attention during the driving task. First we trained
a coarse-to-fine convolutional network on short sequences extracted from
the DR(eye)VE dataset. Moving a step forward, we built upon the insights
gained during the DR(eye)VE dataset analysis to explicitly integrate in our
model the factors which most influenced the driver’s attentional behavior,
i.e. motion and scene semantics. To this end we proposed a new model
based on a multi-branch deep architecture integrating all these three sources
of information: raw RGB video, motion and scene semantics. Experimental
results highlighted that several attention patterns are shared across drivers
and can be reproduced to some extent. The comprehensive experimental
evaluation in Sec. 3.3.3 indicated that our multi-branch model of driver’s
attention obtains state-of-the-art performance on a number of metrics com-
monly used to benchmark methods for image and video saliency. These
encouraging results allowed us to envision an hypothetical new assisted
driving paradigm which suggests to the driver, with no intervention, where
he/she should focus his/her attention. In this perspective, besides the
quantitative evaluation, we carefully designed and setup a perceptual exper-
iment to know how a human would find the predicted attentional maps. In
Sec. 3.4 we introduced a protocol to evaluate the predicted attention maps,
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where we processed the predicted videoclips to approximate as realistically
as possible the visual field of attention of the driver and validated our model
also from a perceptual point of view.

Novel methods for vehicle (re)identification, pose and occupancy
estimation

We delved into the problem of vehicle re-identification in occasion of the
NVIDIA AI City Challenge 2018; our pipeline, based on a triplet network
trained on automatically annotated data, was described in Sec. 4.1. Our
work in vehicle occupancy estimation was introduced in Sec. 4.2, where
we introduced a learnt semantic-aware transformation to map detections
from a single dashboard camera frame onto a bird’s eye occupancy map of
the scene. This inferred map thus constitutes an interpretable and concise
representation of the road state. We demonstrated the effectiveness of
our model for occupancy estimation against several baselines and observed
its ability to generalize on real-world data despite having been trained
solely on synthetic ones. Indeed, the model training was enabled by the
collection of a high-resolution synthetic dataset (SVA dataset, also publicly
released) featuring a huge amount of coupled dashboard camera and bird’s
eye frames. These frames are annotated ‘for free’ with the information
extracted from the GTAV game engine: precise 3D poses and spatial
occupancy of the vehicles, bounding boxes, reciprocal distances. Notably,
this dataset set the foundations for another dataset on pedestrian tracking
- the JTA dataset [48] - which we collected shortly later using the same
software framework. Eventually, in Sec. 4.3 we described a novel method for
vehicle pose estimation, where a differentiable renderer component is used
to refine the estimated pose by back-propagating the silhouette alignment
error.

A novel formulation to object novel viewpoint synthesis

In Sec. 4.4 we introduced a novel formulation of the problem of object novel
viewpoint synthesis in a semi-parametric setting. Differently from most
existing methods, we designed our model to be trainable on existing datasets
for 3D object detection in a self-supervised manner, with no need for paired
source/target viewpoint images - although it can be complemented with
synthetic data. In our proposed framework, non-parametric visual hints
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act as prior information to guide a deep parametric model for generating
realistic images, disentangling by design appearance and shape; this enables
continuous manipulation of the viewpoint and shape transfer to different
3D models. As completing the image is much easier than generating it
from scratch, an Image Completion Network (ICN) can be trained on just
few thousands images from the Pascal3D+ dataset and still be able to
generalize to unseen viewpoints. Although vehicles were the leading thread
of our work, we demonstrated that our framework is generic enough to
handle rigid objects of completely different geometric structure such as
chairs. We eventually showed how both perceptual experiments results
and image-quality metrics rewarded our method for its realism and the
visual consistency of the synthesised object across arbitrary points of view.
Finally, we outline how this method can fit into a more general framework
for generating the visual appearance of the urban scene in the next future,
providing preliminary yet encouraging results.

Discussion and Future Works

This thesis collects a variety of results on different facets of the task of
urban scene understanding. Although many of the outcomes are exciting
and might possibly trail-blaze future applications in a smart city scenario, it
is worth recalling that there is often a long way from research to real-world.
Here we list the most evident limitations for each line of research.

Driver attention prediction

First, the study is not conclusive about the role of the segmentation branch
within the full architecture. Indeed, such a branch was introduced after a
detailed analysis of the DR(eye)VE dataset highlighted a strong correlation
between some semantic classes (e.g. street and cars) and the driver’s eye
fixations. However, the presented ablation study does not show a significant
boost in performance when the segmentation branch is employed, with
respect to a baseline composed of the RGB and optical flow branch. This
outcome may be due to the fact that the model we employed to compute
segmentation maps (Dilation-10) was pre-trained on a different dataset (i.e.
Cityscapes), and showed poor generalization to the DR(eye)VE dataset.
Indeed, especially in very challenging sequences (e.g. rainy, night), we
observed poor predictions. Since our work was published, the research
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community yielded better and better solutions for semantic segmentation,
as well as new large scale datasets of urban scenes (e.g. Mapillary). It is
worth questioning whether the outcomes of the ablation study would change
by updating the semantic segmentation network and its pre-training.
From the application standpoint, the work could sound more complete
by devising a prototypical ADAS (Advanced Driver-Assistance System)
integrating the presented model for attention prediction. Such prototype
could involve an head pose of an eye tracking system monitoring the driver
inside the cabin, and infer where he/her is actually looking in 2 the outside
scene. The prediction of the multi-branch network, providing a sort of
‘expectation’ describing what most drivers would pay attention to in that
same situation, could be integrated in (at least) two ways:

• acting as a prior for where the driver is looking, e.g. by refining the
predicted fixation point of the driver;

• detecting situations in which the driver’s gaze frequently diverges
from the expected, indicating potential drowsiness or distraction.

In this context, preliminary results from perceptual experiments in Sec. 3.4
should be explored further, and a few assumptions currently lying ‘under
the hood’ discussed, the main open question being: can we trust the ability
of a human observer to provide an objective evaluation of the safety level
from the foveated videoclip?

Scene understanding

Starting from re-identification, our model was engineer for participating to
the NVIDIA AI City Challenge 2018, and evaluation was thus conducted
only on the data provided for the competition. It would be interesting to
measure the method performance on more standard academic benchmarks
such as [83, 203]. As far as our proposed model for learning to transform
detections from dashboard view to bird’s eye view, more exhaustive experi-
ments would be necessary to prove the capacity of the model to generalize
on real-world data. Indeed, the model is trained only on synthetic data
and generalization on real-world data is measured only qualitatively, as the
ground truth is difficult to provide (this was the reason why we resorted
to synthetic data for training in the first place). Eventually, the main
bottleneck and open issue of our work in pose estimation is probably related
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to the performance of the differentiable renderer. Indeed, our implemented
rendered can only render the grayscale silhouette of the objects, which
clearly poses a lot of constraints on the architecture and performance of
the overall pipeline. Recently, major deep learning frameworks released
branches providing differentiable layers for working with 3D data (e.g.
TensorFlow Graphics, PyTorch3D). It would be definitely very interesting
to test our proposed pipeline for object pose refinement using one of the
much more powerful differentiable renderers provided by these frameworks.

Object/scene novel viewpoint synthesis

While we find that our semi-parametric framework for novel view synthesis
introduces several improvements over the state of the art, there are also
notable issues which are still open. First, in all experiments we set our
output resolution to 128x128 pixels. Although this choice enabled us to
run a number of experiments in a reasonable time, it is definitely necessary
to provide results to higher resolutions. Also, most of the evaluation was
conducted on only two classes of rigid objects, namely vehicles and chairs;
a more satisfactory evaluation would necessarily need to consider additional
object classes. In the mid to long-term, it would be interesting to come
up with a solution for applying this intuition of semi-parametric synthesis
to natural (not man-made) objects. How to apply this method to the
generation of the whole urban scene is still subject to debate. While we
already designed and trained a model and we provided a few encouraging
preliminary results in the last chapter of the thesis, additional research and
extensive experiments are surely needed before this method can be called
solid.

Notable Achievements

The research work on driver’s focus of attention led to several publications
in conferences and it eventually made its way in the top-tier journal of Trans-
action on Pattern Analysis and Machine Intelligence (TPAMI). Our paper
about learning a mapping between dashboard and bird’s eye views [131]
has been awarded the special mention prize in the International Conference
on Image Analysis and Processing (ICIAP). Furthermore, several datasets
have been collected and publicly released to the research community during
these years: the DR(eye)VE dataset [4, 129], the SVA dataset [131], the
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JTA dataset [48]; all three datasets have met with a significant interest in
the community and have been downloaded several hundreds of times from
all over the world in these years.

In the following pages, we also report the complete list of our publica-
tions. The reader may observe that some of them were not discussed in the
previous chapters, as they did not fall under the leitmotiv of the thesis.
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Appendix A

List of publications

In this section we briefly report the research papers published during my
PhD period, as well as some pre-prints which are currently under review.
Some of them did not make it in the final thesis, either because they have
been improved or replaced by a successive work, either because their topic
did not overlap with the main flow of this thesis.

Content and experimental results published in some of this papers has
been included, even verbatim, in the previous chapters.

• Alletto, S., Palazzi, A., Solera, F., Calderara, S. and Cucchiara,
R., 2016. Dr (eye) ve: a dataset for attention-based tasks with
applications to autonomous and assisted driving. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
Workshops (pp. 54-60).

• Palazzi, A., Calderara, S., Bicocchi, N., Vezzali, L., di Bernardo,
G.A., Zambonelli, F. and Cucchiara, R., 2016, September. Spotting
prejudice with nonverbal behaviours. In Proceedings of the 2016
ACM International Joint Conference on Pervasive and Ubiquitous
Computing (pp. 853-862). ACM.

• Di Bernardo, G.A., Vezzali, L., Palazzi, A., Calderara, S., Bicocchi,
N., Zambonelli, F., Cucchiara, R. and Cadamuro, A., 2017. A new era
in the study of intergroup nonverbal behaviour: Studying intergroup
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dyadic interactions “online”. In 18th General Meeting of the European
Association of Social Psychology.

• Palazzi, A., Solera, F., Calderara, S., Alletto, S. and Cucchiara, R.,
2017, June. Learning where to attend like a human driver. In 2017
IEEE Intelligent Vehicles Symposium (IV) (pp. 920-925). IEEE.

• Palazzi, A., Borghi, G., Abati, D., Calderara, S. and Cucchiara, R.,
2017, September. Learning to map vehicles into bird’s eye view.
In International Conference on Image Analysis and Processing (pp.
233-243). Springer, Cham.

• Cornia, M., Abati, D., Baraldi, L., Palazzi, A., Calderara, S. and Cuc-
chiara, R., 2017, November. Attentive models in vision: computing
saliency maps in the deep learning era. In Conference of the Italian
Association for Artificial Intelligence (pp. 387-399). Springer, Cham.

• Cornia, M., Abati, D., Baraldi, L., Palazzi, A., Calderara, S. and
Cucchiara, R., 2018. Attentive models in vision: Computing saliency
maps in the deep learning era. Intelligenza Artificiale, 12(2), pp.161-
175.

• Fabbri, M., Lanzi, F., Calderara, S., Palazzi, A., Vezzani, R. and
Cucchiara, R., 2018. Learning to detect and track visible and oc-
cluded body joints in a virtual world. In Proceedings of the European
Conference on Computer Vision (ECCV) (pp. 430-446).

• Antonio Marin-Reyes, P., Palazzi, A., Bergamini, L., Calderara, S.,
Lorenzo-Navarro, J. and Cucchiara, R., 2018. Unsupervised vehicle
re-identification using triplet networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops
(pp. 166-171).

• Di Bernardo, G.A., Vezzali, L., Giovannini, D., Palazzi, A., Calder-
ara, S., Bicocchi, N., Zambonelli, F., Cucchiara, R., Cadamuro, A.
and Cocco, V.M., 2018. Comportamento non verbale intergruppi
“oggettivo”: una replica dello studio di Dovidio, kawakami e Gaertner
(2002). In XV Congresso Nazionale della Sezione di Psicologia Sociale
dell’Associazione Italiana di Psicologia.
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• Palazzi, A., Bergamini, L., Calderara, S. and Cucchiara, R., 2018.
End-to-end 6-DoF Object Pose Estimation through Differentiable Ras-
terization. In Proceedings of the European Conference on Computer
Vision (ECCV) (pp. 0-0).

• Palazzi, A., Abati, D., Solera, F. and Cucchiara, R., 2018. Predicting
the Driver’s Focus of Attention: the DR (eye) VE Project. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 41(7),
pp.1720-1733.

• Bergamini, L., Trachtman, A.R., Palazzi, A., Del Negro, E., Dondona,
A.C., Marruchella, G. and Calderara, S., 2019, September. Segmenta-
tion Guided Scoring of Pathological Lesions in Swine Through CNNs.
In International Conference on Image Analysis and Processing (pp.
352-360). Springer, Cham.

• Bicocchi, N., Calderara, S., Porrello, A., Palazzi, A., Di Bernardo,
G. A., Vezzali, L., Cucchiara, R., Zambonelli, F., 2019. Revealing
implicit forms of prejudice with automated analysis of nonverbal
behaviours. (under review)

• Palazzi, A., Bergamini, L., Calderara, S. and Cucchiara, R., 2019.
Warp and Learn: Novel Views Generation for Vehicles and Other
Objects, arXiv preprint arXiv:1907.10634. (under review)
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Appendix B

Activities carried out during
the PhD

Besides the research activities described in this thesis and those listed in
Appendix A, I also took part in other teaching and service activities which
are briefly reported below.

Participation in projects

• National project “Città educante” (ctn01 00034 393801) of the National
Technological Cluster on Smart Communities cofunded by the Italian
Ministry of Education, University and Research - MIUR.

• MIUR PRIN project "PREVUE: PRediction of activities and Events
by Vision in an Urban Environment", grant ID E94I19000650001.

• IARPA Deep Intermodal Video Analytics (DIVA) (IARPA-BAA-
16-13) on development of robust automated activity detection in a
multi-camera streaming video environment.

• Modena Automotive Smart Area (MASA) - open air test bed for
the experimentation and certification of autonomous driving and
connected driving technologies.
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Foreign collaborations

• Joint participation to NVIDIA AI City Challenge 2018 with Dr. Pedro
A. Marìn Reyes, University of Las Palmas de Gran Canaria (Spain) -
track of vehicle re-identification.

• Research internship in the Amazon computer vision team. Berlin
(Germany), May - August 2018.

Teaching activities

• Lecturer for the Deep Learning postgraduate course in Master of
Visual Computing (2017)

• Laboratory lecturer for the Computer Vision graduate course, Prof.
Cucchiara, at University of Modena and Reggio Emilia

• Laboratory lecturer for the Machine Learning and Pattern Recognition
graduate course, Prof. Calderara, at University of Modena and Reggio
Emilia

• Laboratory lecturer for the Neural Network Computing, AI and Ma-
chine Learning for Automotive graduate course, Prof. Cucchiara, at
University of Modena and Reggio Emilia

Grants, within the AImagelab group

• Italian Supercomputing Resource Allocation (ISCRA) Grant from
CINECA, for accessing the Galileo HPC Platform (from 2015 to
2017).

• Facebook AI Partnership, with the donation of a GPU-based server.

Thesis co-advisor

• Moving object detection via deep autoencoder - Angelo Porrello
(MSc).
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• Automatic extraction of pedestrian joints from videogames - Marco
Gianelli (BSc).

• Convolutional Neural Networks for Vehicle Model Classification -
Paolo Bertellini (BSc).

• Future urban scene generation: a deep learning approach for a 3D
temporal vehicle reconstruction starting from monocular images -
Alessandro Simoni (MSc).

Other academic services
• Reviewer for Robotics and Automation Letters.

• Site admin and events organizer for Master of Visual Computing and
Multimedia Technologies (MUMET), 2017.

Conferences, courses, seminars attended
Conferences

• ACM International Joint Conference on Pervasive and Ubiquitous
Computing (UbiComp 2016) - Heidelberg, Germany.

• International Conference on Computer Vision - ICCV, Venice, 2017

• International Conference on Image Analysis and Processing (ICIAP)
2019, 9-13 September - Trento Italy.

Courses and seminars

• Summer School Regularization Methods for Machine Learning (RegML)
2016, held by Lorenzo Rosasco at IIT (Genoa).

• Udacity Self-Driving Car Nanodegree Program.

• Academic English Workshop I - Dr. Silvia Cavalieri, University of
Modena and Reggio Emilia.

• Academic English Workshop II - Dr. Silvia Cavalieri, University of
Modena and Reggio Emilia.
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• Faces, deep learning and the pursuit of training data - Prof. Tal
Hassner, Open University of Israel - May 17th, 2016.

• Multi-camera tracking: following people in large camera networks -
Dr. Ergys Ristani - October 18th, 2016.

• Syncronization problems in computer vision - Prof. Andrea Fusiello -
October 21st 2016.

• Internet privacy: towards more transparency - Balachander Krish-
namurthy - November 21st 2016.

• The eye of the machine. - Prof. Simone Arcagni, University of
Palermo - September 9th, 2017.

• Security and quantistic technology: potential uses and risks - Dr.
Enrico Prati, CNR - November 21st, 2017.

• Deep learning technologies: from hardware components to vertical
frameworks - Dr. Piero Altoè, NVIDIA - November 29th, 2017.

• Visual appearance acquisition of real objects - Dr. Massimiliano
Corsini, CNR - February 8th, 2018.

• Computational Aspects of Deep Reinforcement Learning - Dr. Iuri
Frosio, NVIDIA Research - July 15th, 2019.
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