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Abstract

Fibrous dysplasia (FD) of bone is a complex disease of the skeleton caused by dominant

activating mutations of the GNAS locus encoding for the α subunit of the G protein-coupled

receptor complex (Gsα). The mutation involves a substitution of arginine at position 201 by

histidine or cysteine (GsαR201H or R201C), which leads to overproduction of cAMP. Several

signaling pathways are implicated downstream of excess cAMP in the manifestation of dis-

ease. However, the pathogenesis of FD remains largely unknown. The overall FD pheno-

type can be attributed to alterations of skeletal stem/progenitor cells which normally develop

into osteogenic or adipogenic cells (in cis), and are also known to provide support to angio-

genesis, hematopoiesis, and osteoclastogenesis (in trans). In order to dissect the molecular

pathways rooted in skeletal stem/progenitor cells by FD mutations, we engineered human

skeletal stem/progenitor cells with the GsαR201C mutation and performed transcriptomic

analysis. Our data suggest that this FD mutation profoundly alters the properties of skeletal

stem/progenitor cells by pushing them towards formation of disorganized bone with a con-

comitant alteration of adipogenic differentiation. In addition, the mutation creates an altered

in trans environment that induces neovascularization, cytokine/chemokine changes and

osteoclastogenesis. In silico comparison of our data with the signature of FD craniofacial

samples highlighted common traits, such as the upregulation of ADAM (A Disintegrin and

Metalloprotease) proteins and other matrix-related factors, and of PDE7B (Phosphodiester-

ase 7B), which can be considered as a buffering process, activated to compensate for
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excess cAMP. We also observed high levels of CEBPs (CCAAT-Enhancer Binding Pro-

teins) in both data sets, factors related to browning of white fat. This is the first analysis of

the reaction of human skeletal stem/progenitor cells to the introduction of the FD mutation

and we believe it provides a useful background for further studies on the molecular basis of

the disease and for the identification of novel potential therapeutic targets.

Introduction

Fibrous dysplasia (FD) of bone is a crippling disease of the skeleton that can involve one

(monostotic) or several (polyostotic) bones, as an isolated disorder or as a part of the McCune-

Albright syndrome (MAS, OMIM #174800). FD/MAS is caused by activating mutations of the

GNAS locus encoding for the α subunit of the G protein-coupled receptor complex (Gsα) [1–

3]. G protein-coupled hormone receptors bind to adenylyl cyclase (AC), necessary for the gen-

eration of intracellular cAMP that mediates hormone signaling. In FD/MAS, activating muta-

tion involves a substitution of arginine at position 201 by histidine or cysteine (GsαR201H or
R201C) [4]. These mutations inhibit the intrinsic GTPase activity of Gsα, which leads to pro-

longed stimulation of AC [5]. cAMP causes dissociation of the inactive Protein Kinase A

(PKA) tetramer, thereby freeing the catalytic subunits to mediate serine–threonine phosphory-

lation of target molecules. Several signaling pathways are implicated downstream of excess

cAMP in the manifestation of MAS in various tissues [6]. However, the etiology of FD remains

largely unknown. In bone, Gsα/cAMP activation increases c-fos expression and this has been

demonstrated in FD lesions from patients with MAS [7, 8]. Gsα activity increases the expres-

sion of c-fos and other proto-oncogenes through the activation of cAMP-dependent PKA in

osteoblastic precursors. Fos binds with jun to form hetero-dimeric complex activator protein 1

(AP-1), which is also highly expressed during the proliferative phase of osteoblast development

[1]. Moreover, AP-1 can suppress the expression of late markers of mature osteoblasts, such as

osteocalcin [1]. The abnormally differentiated, misfunctioning osteoblasts in FD lesions

express elevated levels of IL-6, PDGFβ and sex steroid receptors through a cAMP-dependent

mechanism that may be important in osteoclast activation [1]. The increased cAMP level

could negatively affect the half-life of Cbfa1/RUNX2 protein, the osteogenic master gene.

Changes in expression of these aforementioned genes suggest abnormalities in bone-forming

cells, which may contribute to the pattern of inappropriate cell differentiation [3]. In 2010,

Kiss et al. examined differential expression of 118 genes in affected versus unaffected human

bone tissue of women with FD and they detected marked differences in the transcription pro-

file of 22 genes controlled via G-protein coupled pathways and the BMP cascade, as well as

genes coding for extracellular matrix proteins, and in particular, upregulation of a novel gene,

ATP2A2 (ATPase Sarcoplasmic/Endoplasmic Reticulum Ca2+ Transporting 2), in FD bone [9].

Along this same line, using microarray analysis, Zhou et al have recently analyzed craniofacial

lesional samples from FD patients, identifying ADAMTS2 (A Disintegrin and Metalloprotei-
nase with Thrombospondin Type 1 Motif 2), overexpressed in FD tissues, but rarely expressed

in normal bone [10]. Members of the ADAMTS family are involved in controlling extracellular

matrix turnover, which in turn, controls several processes including angiogenesis and cell

migration. The super-activation of ADAMST2 suggests that extracellular matrix turnover

plays a role in FD pathophysiology.

Except for the results described above, no other data are available on the molecular signa-

ture of human fibrous dysplastic bone and the manner in which the fundamental effect of
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constitutively active Gsα’s activity is translated into the distinct histological changes that char-

acterize FD bone and marrow is not well understood. Elucidating the molecular mechanisms

of these changes would benefit not only the pursuit of a precise understanding of the when

and how a particular FD-unique histological feature develops, but also the quest for therapeu-

tic targets that best relate to the actual, and likely pleiotropic, misfunction of osteogenic cells.

These changes, which we have also described through a mouse model representing a direct

replica of human FD [11], include: i) the replacement of normal marrow tissue with a fibro-

blastic tissue devoid of hematopoiesis; ii) the lack of adipocytes within the affected marrow; iii)
deposition of excess, structurally abnormal bone; iv) defective bone mineralization; v)

enhanced osteoclastogenesis; and vi) abnormal vascularity [11, 12]. In fact, each of these cardi-

nal features can be traced to an alteration of a physiological function served by normal skeletal

progenitors, which are known to: i) provide a microenvironment for hematopoiesis; ii)
develop into adipocytes; iii) generate osteoblasts; iv) produce phosphate-regulating factors; v)

cue osteoclast progenitors to differentiate into osteoclasts; and vi) guide and organize marrow

microvessels, with which they physically associate as mural cells [13–15].

Global analysis of the transcriptome and proteome of Gsα-mutated cells is expected to assist

in dissecting the diverse downstream effects of constitutively active Gsα on the functions of

the relevant cells. In vitro studies conducted so far have capitalized on the use of populations

of bone marrow stromal cells derived from the abnormal, fibrotic bone marrow spaces of FD

lesions [10]. However, conducting transcriptome or proteome analysis using human clinical

material; i.e., a comparison between isolated normal and mutated cells (separated by clonal

dilution) has two important limitations: 1) the involvement of multiple variables (patient age,

lesion age, anatomical site, type of histopathological changes, concurrent changes in distant,

e.g., endocrine, organs affecting bone secondarily) and 2) postulates a large numbers of cells

that are not easy to achieve in a rare disease, and independent samples in order to attain statis-

tical significance. Both problems, however, can be circumvented if a reliable way for stable

transduction with the causative mutation of the cell type of interest is at hand. We have shown

that bone marrow stromal cells (BMSCs, a subset of which are skeletal stem cells, SSCs) can be

prospectively isolated from BM by relying on a set of surface markers [13], and that lentiviral

technologies can be effectively used to transfer the disease phenotype in these cells [16].

A transduced cell model represents the biological context of choice for studying the acute

effects of Gsα mutation, thereby overcoming these limitations. In fact, the strictly paired com-

parison between mutant cells and their respective controls minimizes the requirements in

sample size, and the possibility of describing an effect not directly related to Gsα mutation.

Unquestionably, the use of control infection samples is important to identify possible off target

or toxic effects of the transduction procedure in this model.

Therefore, one can create stably transduced and reasonably purified populations of skeletal

progenitors while retaining untransduced cells from the same donor and tissue sample as con-

trols. By addressing the two major hurdles that stand in the way of conducting high through-

put studies using pathological human cells, this approach likely introduces an unrelated bias.

Stable ex vivo transduction of skeletal progenitors using lentiviral vectors best portrays effects

emerging within a short time frame, affecting a few generation of cells in the lineage, down-

stream of the transduced progenitor. However, many of the downstream effects that can be

envisioned would be less represented. Nonetheless, this can actually be seen as a desirable

(albeit incomplete) outcome, as it highlights those cellular changes that drive the initial devel-

opment of tissue changes.

With these aims and limitations in mind, we conducted a global analysis of the transcrip-

tome changes brought about by lentiviral-driven GsαR201C expression in BMSCs/SSCs using a

microarray approach to explore the key molecular events in FD development, and we then
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attempted to correlate the results to known cardinal features of FD lesions as defined by histo-

pathology in order to develop potential diagnostic markers or therapeutic targets for FD.

Results and Discussion

Gene chip analysis of GsαR201C hBMSCs

Thus far, the quest for therapeutic approaches, like attempts to interpret the genesis and mech-

anisms of the disease, have been dominated by almost exclusive consideration of the effect of

constitutively active Gsα, with the idea that reverting the effects of mutant Gsα activity in rele-

vant cells would necessarily lead to a cure. However, multiple lines of evidence point to a more

complex scenario, in which tissue changes that have a direct bearing on morbidity at the tissue

and organ level may well emanate from a complicated and prolonged in vivo history–of the

mutated gene, cell, tissue, and organ [11, 17–20].

Keeping these concepts in mind, skeletal stem/progenitor cells isolated from bone marrow

of three independent healthy donors and characterized as described previously [13, 21–25]

(henceforth referred to as human bone marrow stromal cells, hBMSCs) were stably transduced

with a lentiviral vector expressing the constitutively active form of the Gsα protein carrying

the R201C mutation (LV-GsαR201C) [16] or with control vector (LV-ctr) or untransduced

(mock-treated) controls. Cultures of mock-treated, LV-GsαR201C and LV-ctr transduced

hBMSCs were amplified in basic expansion medium. Ten days following infection, we checked

GsαR201C expression by Western blotting (Fig 1A). Immunoblotting using anti-HA antibody,

which highlights the exogenous GsαR201C expression demonstrates the presence of the mutant

protein. We performed in parallel immunoblotting using anti-Gsα antibody showing the pres-

ence of a 1.4 fold in average more intense band resulting from the merge of the endogenous

Gsα and exogenous GsαR201C signals. Fifteen days following infection, total RNA was isolated

and used for hybridization to an Affymetrix chip to characterize the changes in transcriptomic

profile and their relationship to the molecular mechanisms potentially leading to the overall

phenotypic changes associated with GsαR201C mutations in vivo.

Gsα RNA expression 1.6 fold quantification in the infected samples was consistent with

immunoblotting data (Fig 1B). Unsupervised hierarchical cluster analysis of differential gene

expression of cells from three donors (D01, D02, D03), revealed unique expression profiles

associated with the expression of the R201C mutation (R) compared to the mock-treated cells

(M) and to the cells transduced with LV-ctr (C) (Fig 1C). Differentially expressed genes were

identified by comparing overlapping gene lists obtained using three independent analysis of

paired samples as described in detail in the methods section, such as Affymetrix GCOS com-

parison analysis, dChip Compare Sample procedure, and paired t-test implemented in Par-

tek1GS (S1A Fig). Combining these approaches, 408 genes differentially expressed

at ± 2.5-fold levels or greater were identified in comparison to normal and LV-ctr-transduced

cells (Figs 1B and 2 and S1 Table). Among the modulated probes, 111 genes were modulated

by more than 10-fold (Fig 2), and 95 genes (approximately 23%) were under-expressed, while

313 genes were over-expressed (approximately 76%) (Fig 1D and S1 Table).

To gain more insight into the biological functions of differentially expressed genes, we per-

formed analysis of biological pathways and Gene Ontology (GO) terms associated with the dif-

ferentially expressed genes by using the list of under- and over-expressed genes as input for the

Enrichr tool (http://amp.pharm.mssm.edu/Enrichr/)). Enrichr’s Combined Score (ECS), a

combination of the p-value and z-score, was used to prioritize the Kyoto Encyclopedia of

Genes and Genomes- (KEGG)-enriched pathways and GO results. The most significant

KEGG pathways enriched in under-represented genes include TGFß (Transforming Growth
Factor-ß) signaling genes, WNT (Wingless-Type MMTV Integration Site) signaling genes and
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genes involved in osteoclast differentiation (Fig 3A). GO cellular components examined in the

context of under-represented genes identified multiple immune cell-related components (Fig

3B). In the same list of significantly under-represented genes, the GO biological processes

impacted by the FD mutation showed a significant involvement with categories related to the

negative regulation of apoptotic processes and that of cell-cell adhesion (Fig 3C). GO cellular

function-enriched results further highlighted that the FD mutation caused epigenetic alter-

ations through the modulation of histone deacetylase activity (Fig 3D). Pathway analysis of the

highly over-representative cluster demonstrated enrichment of mostly cell cycle processes,

cytokine-cytokine receptor interaction, signaling pathways regulating pluripotency of stem

cells, chemokine signaling pathway (Fig 4A). GO analysis indicated the BMP receptor

Fig 1. High throughput GeneChip analysis of GsαR201C hBMSCs. (A) Western blotting on hBMSCs from three

different individuals (D01, D02, D03), transduced with LV-Ctr (C), LV- GsαR201C (R) showing the expression of the

exogenously provided mutant GsαR201C as highlighted by immunoblotting with anti-HA and anti-Gsα antibodies. 1.4

fold change on Gsα band in LV- GsαR201C (R) respect to that transduced with LV-Ctr (C) has been calculated as the

average, on duplicates. (B) Relative values for GNAS expression in D01, D02, D03, transduced with LV-Ctr (ctr) or

LV- GsαR201C (R201C) showing the expression of the exogenously provided mutant GsαR201C. 1.6 fold change on Gsα
RNA expression has been calculated as the fold change on the average of triplicate samples from LV- GsαR201C and

LV-Ctr samples. (C) Hierarchical clustering of modulated genes in triplicate samples of hBMSCs from three different

individuals (D01, D02, D03), transduced with LV-Ctr (C), LV- GsαR201C (R) or mock-treated (M). (D) Total number

of significantly modulated genes (threshold: 2.5). Up-regulated genes are indicated in red, down-regulated in green.

https://doi.org/10.1371/journal.pone.0227279.g001
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complex, the positive regulation of cell proliferation and chemokine activity respectively (Fig

4A–4D) as the highest enriched cellular component, biological process and molecular

function.

Bone formation in GsαR201C hBMSCs

In order to relate significantly modulated genes and functional categories to FD pathological

traits, we further analyzed the modulated genes by Ingenuity Pathway Analysis (IPA), identi-

fied the top ten physiological functions given by IPA core analysis (S1 Fig), and reclustered the

identified genes into groups related to fundamental tissue changes that occur in FD, taking

into account known hBMSC autocrine and paracrine properties. FD tissue pathology includes

abnormal bone formation, adipocyte defects, hematopoiesis defects, undermineralized bone,

excess of bone resorption, excess of vascularization [1, 3]. These can be directly (in cis) or indi-

rectly (in trans) be related to hBMSCs [26], which have the potential of differentiating into

chondrocytes, osteoblasts, hematopoiesis-supportive stroma and adipocytes [27], and have

paracrine effects on angiogenesis, hematopoiesis and osteoclastogenesis [13, 28, 29].

With this perspective in mind, we observed that the FD mutation affected genes in the

WNT signaling pathway, known to regulate bone mass and development [30, 31]. WNT4 and

WNT5A were upregulated by the FD mutation, as well as the receptor, Frizzled Class Receptor
1 (FZD1), along with Secreted Frizzled Related Proteins (SFRP1, SFRP2 and SFRP4), which are

thought to be WNT inhibitors. The GsaR201C mutation also modulated matrix and mineraliza-

tion-related genes including Matrix Gla Protein (MGP), Stanniocalcin-1 (STC1), Matrix Metal-
loproteinases (MMPs such as MMP2, MMP13) and A Disintegrin and Metalloproteinase
Domain 12 (ADAM12) (Fig 5A). MGP is a potent inhibitor of extracellular matrix calcification

Fig 2. Modulated genes in alphabetical order. Under-expressed genes (in green) and over-expressed (in red) setting

the fold change (FC) threshold at 10. The full list of modulated genes is available in S1 Table.

https://doi.org/10.1371/journal.pone.0227279.g002

Fig 3. ENRICHR Gene Ontology and KEGG pathway analysis of significantly under-expressed genes of FD mutated cells.

Enrichment analysis was performed on significantly under-represented genes and ten most significant groups are represented

according to KEGG pathway analysis (A), Gene Ontology (GO) cellular component (B), GO biological process (C), and GO

molecular function (D). Enricher’s combined score combines z-score and p-value.

https://doi.org/10.1371/journal.pone.0227279.g003
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by sequestering Ca2+, and transgenic mice overexpressing it in osteoblasts exhibit a reduction

in bone mineral levels [32]. STC1, also induced by GsαR201C mutation, is linked with mineral-

ized ossification centers [33], and with calcium and phosphate transport [34]. MMP13, MMP2

and ADAM12 are expressed during skeletal development by chondrocytes, and by synovial

cells in arthritis and osteoarthritis [35]. Their activation by the GsαR201C mutation suggests an

induction of an intense extracellular remodeling activity in FD [35]. In line with this interpre-

tation, A Disintegrin and Metalloproteinase Domain with Thrombospondin Type 1 Motif 2
(ADAMTS2), was described as an FD biomarker [10], and MMP2 was defined by Kiss et al as

one out of eight upregulated discriminative genes in FD bone tissue [9]. Related to skeletal

development, we also observed that T-Box Protein 3 (TBX3) was upregulated. Its function has

been linked to stimulation of proliferation of osteogenic precursors and a block of differentia-

tion of cells into mature osteoblasts, which could add a further level of impairment of bone

development in FD bone [36].

Taken together, these data indicate that in the initial development of FD lesions, changes in

hBMSC transcription induced by the GsαR201C mutation influences bone formation by alter-

ation of WNTs, osteoblast formation and bone matrix remodeling.

GsαR201C effects on hBMSC adipogenic differentiation

In hBMSCs overexpressing GsαR201C, several factors involved in adipogenesis and adipose

metabolism were found upregulated (Fig 5B). Among these we found Lipoprotein Lipase
(LPL), an important adipocyte marker implicated in fatty acid accumulation [37]. The

Fig 4. ENRICHR Gene Ontology and KEGG pathways analysis of significantly over-represented genes of FD mutated cells. Enrichment analysis was performed on

significantly over-represented genes and ten most significant groups are represented according to KEGG pathway analysis (A), Gene Ontology (GO) cellular component

(B), GO biological process (C), and GO molecular function (D).

https://doi.org/10.1371/journal.pone.0227279.g004
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metabolic factors, Phosphatidic Acid Phosphatase 2a (PPAP2A), a negative regulator of

insulin signaling [38] and of lipolysis [39] were also upregulated in GsαR201C hBMSCs. These

modulations are typical of mature adipocytes suggesting an activation of adipocytic differenti-

ation of GsαR201C. However both in FD lesions and in GsαR201C-expressing mice, there is a

lack of adipocytes [11, 16]. These data taken together suggest a complex, non-linear, interplay

of factors involved in adipogenesis in the FD condition. Prolactin (PRL), a factor stimulated by

cAMP activators [40] was also induced. PRL promotes early pre-adipocyte differentiation [41]

via the activation of the adipogenic transcription factors such as CCAAT/Enhancer Binding

Protein Beta (C/EBPB) and Peroxisome Proliferator Activated Receptor Gamm (PPARG) [42,

43]. The C/EBPB/PPARG route of adipogenic modulation is also stimulated by LIF Receptor

Alpha (LIFR), which was upregulated in GsαR201C hBMSCs [44]. Although C/EBPB and

PPARG were not directly found to be significantly upregulated, PPARG Coactivator 1 Alpha
(PPARGC1A), a transcriptional co-activator of PPARG [45], was overexpressed by GsαR201C.

As indicated previously, GsαR201C induced the WNT non-canonical pathways. This leads to

enhanced osteoblastogenesis, but also to inhibition of adipogenesis [46]. Taken together, these

results suggest a complex alteration of the adipogenic program in GsαR201C transduced

hBMSCs.

Fig 5. Modulated genes organized according to hBMSC cis and trans properties. Modulated genes were analyzed by IPA, and the top ten physiological functions and

the relative genes given by IPA core analysis (S1 Fig) were clustered into groups related to fundamental tissue changes in FD, taking into account hBMSC autocrine and

paracrine properties (see also Fig 7). (A) Osteogenesis; (B) Adipogenesis; (C) Vascularity; (D) Hematopoiesis and immune regulation; (E) Osteoclastogenesis. Over-

expressed genes are indicated in red, under-expressed genes in green.

https://doi.org/10.1371/journal.pone.0227279.g005
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GsαR201C hBMSCs and browning of fat

Adipocytes are subdivided into different classes including white adipocytes, brown adipocytes,

inducible brown adipocytes referred to as “beige” or “brite” adipocytes [47, 48], and marrow

adipoctyes appear to represent a fourth class. Excess cAMP, the fundamental downstream

effector of Gsα activating mutations observed in GsαR201C hBMSCs mutant cells [16], is the

prime stimulator of beige fat induction. Beige fat develops from specific precursor cells that

may include pericyte-like cells [49]. Although limited information is available, bone marrow

fat has been noted to exhibit brown fat-like features [50]. Given this notion, we explored

whether the abnormal adipocytic differentiation program induced by the FD mutation in

hBMSC precursors would push the cells towards a specific fat subtype. We took as a reference

the transcriptional markers described for beige fat by Wu and coworkers [51]. We then ana-

lyzed the modulation of expression of these genes in GsαR201C hBMSCs array raw data. This

analysis indicated that GsαR201C hBMSCs displayed an expression profile with numerous ele-

ments that overlap with the beige fat profile, including the overexpression of CEBPA, Insulin
Like Growth Factor 1 Receptor (IGF1R) and PPARGC1A (Fig 6). We believe that this prelimi-

nary information suggests that the FD mutation could be involved in browning of white fat

and that this process deserves further investigation in the FD phenotype.

Vascularity in GsαR201C hBMSCs

A high number of genes correlated to vascularization in GsαR201C hBMSCs (Fig 5C), suggest-

ing that the mutation drives alteration of angiogenic processes through the activity of BM skel-

etal progenitors. Among the modulated genes, we observed high expression of Angiopoietin-
Like 2 (ANGPTL2). This gene encodes for a factor belonging to the angiopoietin-like family of

proteins, which are structurally related to angiopoietins but do not bind to Angiopoietin’s

receptor, TIE-2. This family of proteins has been linked to neoplastic transformation and met-

abolic disease [52]. In addition, it has been shown that ANGPTL2 may be involved in chronic

inflammatory conditions [53]. A second pro-angiogenic factor modulated in GsαR201C

hBMSCs was PGF (Placental Growth Factor) (Fig 7C), a member of the family of factors con-

trolling vascular endothelium formation normally observed at an embryonic stage. It is also

associated with pathological angiogenesis, through a phospholipase C-dependent pathway,

and protein kinase C via the activity of MAP kinases [54]. We also observed that GsαR201C

induced Sphingosine-1 Phosphate Receptor 1 (S1PR1) and 3 (S1PR3), two G protein coupled

receptors important for downstream stabilization of new vessels [55, 56]. Along with these fac-

tors, GsαR201C induced the chemokine gene, C-X-C Motif Chemokine Ligand 6 (CXCL6),

which acts as a chemoattractant for endothelial cells during angiogenesis [57]. On the other

hand, the under-expression of Krüppel Like Factor 2 (KLF2) by GsαR201C mutant cells further

underlines the proangiogenic effect of the mutation, since this is a factor identified as a potent

inhibitor of angiogenesis through the negative regulation of Hypoxia inducible Factor 1 Alpha

Subunit (HIF-1α), downstream of the proangiogenic factors, such as Interleukin 8 (IL-8),

Angiopoietin 2 (ANG2), and Vascular Endothelial Growth Factor (VEGF) [58].

Hematological and immune system in GsαR201C hBMSCs

The physical and molecular support of hBMSCs is essential to promote the differentiation of

cells in the hematopoietic lineage [14]. Genes belonging to the hematological and immune sys-

tems were modulated by GsαR201C mutation (Fig 5D), including factors involved in cell prolif-

eration (e.g., C-C Motif Chemokine Ligand 2 (CCL2) [59]), and in the balance between cell

survival and apoptotic processes (e.g., Transferrin (TF) [60], TNF Superfamily Member 11
(TNFSF11) [61]). The upregulation of genes with proliferation and anti-apoptotic activities
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suggest survival of transduced cells, but is presumably an acute early reaction to the presence

of the mutation, since an increase in apoptosis is observed in FD lesions [12]. Cytokines and

chemokines were also upregulated by GsαR201C (Fig 5D). This suggests a stimulating/signaling

activity involved in the chemotaxis of cells of the myeloid lineage (erythrocytes, monocytes,

basophils, eosinophils, neutrophils) and lymphocyte lineage (B and T cells). The activation of

chemotaxis proposes that GsαR201C hBMSCs could be involved in the activation of immune

Fig 6. In silico comparative analysis of beige fat properties and GsαR201C induced modulation. Taking as a

reference the transcription status of beige fat markers ([51], Beige fat, left column), we observed that GsαR201C

hBMSCs displayed an overlapping profile (GsαR201C hBMSCs, right column). Over-expressed genes are indicated in

red, under-expressed genes in green. Fold change observed in GsαR201C hBMSCs is indicated.

https://doi.org/10.1371/journal.pone.0227279.g006
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Fig 7. hBMSCs and FD-related processes. (A) Cartoon depicting the in cis differentiation properties of BMSCs into

osteoblasts and adipocytes, along with the in trans effects of BMSCs on hematopoiesis, osteoclastogenesis and

vascularity (ad, adipocyte; ob osteoblast, oc osteoclast. Hp, hematopoietic cells, bv blood vessel). (B) Venn diagram of

differentially expressed genes (under-expressed, in green; over-expressed, in red) identified by Zhou et al. [10] on

human FD craniofacial samples and those from GsαR201C hBMSCs microarray analysis described in this work. 28

genes were commonly regulated and those related to specific trans and cis FD related alterations are indicated. Red

over-expressed genes, green under-expressed genes. (C) Venn diagram of commonly expressed genes (over-expressed,

in red) by comparing data from this work to PTH treated samples described by [68, 69]. (D) Fold change comparison

of differentially expressed genes, analyzed by microarray and qPCR validated. Genes were chosen among the

commonly regulated and those related to specific trans and cis FD related alterations.

https://doi.org/10.1371/journal.pone.0227279.g007
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cell trafficking, humoral and cell-mediated immune responses and inflammatory phenomena

in FD. Also in this case, presumably this is an acute early reaction to the presence of the muta-

tion, since in FD lesions, which are the results of chronic expression of GsαR201C mutation,

lack of hematopoiesis and absence of inflammation was observed [1, 3].

Stimulated osteoclastogenesis in GsαR201C mutant hBMSCs

There is a tight connection between cells in the hematopoietic lineage and bone remodeling,

and many chemokines involved in inflammatory responses are also responsible for the regula-

tion of osteoclastogenesis. C-X-C Ligands (CXCLs) such as CXCL1, CXCL13 and CXCL2 are

highly over expressed in GsαR201C mutant hBMSCs (Fig 5B), are able to attract osteoclast pre-

cursors to the bone environment [62], to enhance the proliferation of osteoclast precursor cells

of bone marrow-derived macrophages [63] and to stimulate Tumor Necrosis Factor Ligand
Superfamily member 11 (TNFSF11, also known as RANKL) expression [64], which has recently

been shown to be over-expressed in human FD and in transgenic models of the disease [20,

65]. Prostaglandin E2 (PGE2) produced by osteoblasts is also a potent stimulator of bone

resorption, and Phospholipase A2 Group IVA (PLA2G4A), highly expressed in our system,

plays a key role in PGE2 production [66]. Altogether, these data suggest strong osteoclast acti-

vation, consistent with the pronounced osteoclastogenesis observed in FD lesions [67] and in

the FD mouse model [11].

Conclusions and comparison to FD samples

Multiple lines of evidence point to the complexity of the pathophysiology of FD, in which mul-

tiple factors have to be taken into account for understanding the disease and for designing suc-

cessful therapeutic strategies. The overall FD phenotype can be attributed to alterations of

skeletal stem/progenitors that develop into osteogenic or adipogenic cells (in cis), which are

also known to provide support to angiogenesis, hematopoiesis, and osteoclastogenesis (in
trans) (Fig 7A). We thus reasoned that the analyses of these processes upon introduction of the

FD mutation would offer a new perspective view of the development of the disease. Our data

suggest that the FD mutation profoundly alters the properties of skeletal stem/progenitor cells

by directing hBMSCs towards formation of disorganized bone with a concomitant altered fat

development. In addition, the mutation created an altered in trans environment that diverted

the overall system towards neovascularization and osteoclastogenesis.

It will be interesting to analyze in vivo how these observations correspond to the evolution

of the disease. In fact, we have already observed that specific aspects that were prospectively

defined through the data presented here were also observed in vivo. For example, increased

osteoclastogenesis is known to occur in human FD tissue and we observed that the same effect

was elicited by the mutation in the animal model of FD, and this could represent a targetable

pathway of treatment for FD patients [11]. The comparison with human samples will also be

of interest, however, keeping in mind a caveat based on the fact that studies on human FD

have been performed on samples obtained when the disease stage is overt. One such example

is the array analysis performed by Zhou and co-workers on craniofacial samples obtained

from FD patients. In particular, it was interesting to observe that some aspects that we

observed on skeletal stem/progenitors were also present in FD samples (Fig 7B). ADAM pro-

teins and other matrix-related factors were indeed upregulated in both experimental systems.

Along with this, in both systems Phosphodiesterase 7B (PDE7B) was over-expressed, which can

be considered as a buffering process, activated to compensate for excess cAMP as we already

observed in a previous study in human skeletal progenitors [16]. Moreover, we want to high-

light the over-expression of CEBPs in both systems, factors related to browning of white fat.
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Given the link between parathyroid hormone and the skeletal phenotype, we made a com-

parative analysis between our microarray data and those described by Li and co-workers on

rat samples treated with parathyroid hormone (PTH) [68, 69]. To compare the expression pro-

files we considered our microarray data for FD and the list of modulated genes corresponding

to human orthologues of rat regulated genes identified by Li and co-workers. This analysis

highlighted 7 genes which were over-expressed in both FD and PTH samples, including PLAU
and ANGPTL2, which can be associated with vascularity alterations, IGFBP5 with bone forma-

tion, and LIFR correlated with adipogenesis (Figs 7C and 5).

Finally, we tested differentially expressed genes by qPCR for validation (Fig 7D and S2 Fig).

The genes were chosen among the commonly regulated and those related to specific trans and

cis FD related alterations. Eight transcripts, corresponding to 6 upregulated and 2 downregu-

lated genes in the microarray analysis, were tested by qPCR. Tested genes were qualitatively

modulated as on microarray.

This is the first analysis of skeletal stem/progenitor cell responses to introduction of the FD

mutation and we believe it provides a useful background for further studies on the molecular

basis of the disease and for the identification of novel potential therapeutic targets.

Materials and methods

hBMSCs

hBMSCs were cultured in α-MEM, 2mM L-glutamine, 20% FBS, 100U/ml penicillin, 100μg/

ml streptomycin (Invitrogen, Carlsbad, CA) [13, 21–25]. 293T cells (ATCC CRL-11268) were

used for viral production and maintained in DMEM (Invitrogen), 10% FBS, 100U/ml penicil-

lin and 100μg/ml streptomycin.

Vectors

Lentiviral vectors (LV-GSαR201C and LV-ctr) were constructed, produced and titrated as previ-

ously described [16]. The LV-vector integrated copy number was calculated by qPCR as

described in [16] and was established as ~1 copy of integrated lentiviral sequence per trans-

duced cell. hBMSCs were transduced with LV-GSαR201C and LV-ctr or mock treated as previ-

ously described [16].

Western blotting

For Western blotting, ten days following infection protein extracts were obtained as previously

described [70]. Filters were then incubated with anti-Gsα (sc-823 Santa Cruz Biotechnology),

anti-actin-HRP conjugated (sc-1615, Santa Cruz Biotechnology) and anti-HA (sc-805 Santa

Cruz Biotechnology) antibodies. Anti-rabbit HRP-conjugated (sc-2357, Santa Cruz Biotech-

nology) has been used as secondary antibody.

qPCR, gene expression profiling and data analysis

Total cellular RNA was isolated from the cell populations using an RNeasy RNA isolation kit

(Qiagen) as described in [71]. Disposable RNA chips (Agilent RNA 6000 Nano LabChip kit)

were used to determine the concentration and purity/integrity of RNA samples using an Agi-

lent 2100 bioanalyzer. cDNA synthesis, biotin-labeled target synthesis, HG-U133 plus 2.0 Gen-

eChip (Affymetrix, Santa Clara, CA) array hybridization, staining and scanning were

performed as described in [71, 72]. The amount of a transcript mRNA (signal) was determined

by the Affymetrix GeneChip Operative Software (GCOS) 1.2 absolute analysis algorithm [73].

All expression values for the genes in the GCOS absolute analyses were determined using the
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global scaling option. Alternatively, probe level data were converted to expression values using

the Robust Multiarray Average (RMA) procedure [72, 74] or dChip procedure (invariant set)

[72, 75]. Data were then filtered and analyzed using dChip1, Partek GS1 and R (Bioconduc-

tor). In particular, the R-AffyQC Report, R-Affy-PLM, R-RNA Degradation Plot and dChip

QC were used to perform all quality controls. Under- and over-expressed genes were obtained

merging the overlapping genes coming from three approaches: 1) Paired pair-wise compari-

sons, between the LV-GsαR201C transduced hBMSCs and the two controls, mock and LV-ctr-

transduced hBMSCs, were performed using the Affymetrix GCOS comparison algorithm and

identifying probe sets showing an “increased” or “decreased” call and a signal log ratio greater

than 1 or less than -1 in comparison of all replicates of only LV-GsαR201C transduced hBMSCs

vs mock. 2) Alternatively, differentially expressed genes were obtained using the dChip Com-

pare Sample procedure. Briefly, the comparison criteria utilized in dChip requires the fold

change and the absolute difference between the paired sample means to exceed user defined

thresholds (in the present study, 2 and 200 respectively). The “Use lower 90% confidence

bound” was selected to use the lower confidence bound of fold changes for filtering. The lower

confidence limit is intended as a conservative estimate of the real underlying fold change. False

Discovery Rate (FDR) was used to adjust p-values for multiple comparisons by 100 random

permutations of the group labels. 3) Finally, a paired t-test was performed between transduced

and untreated groups using Partek GS1 selecting genes with a p-value less than 0.01 and a

contrast greater than 2-fold change. Partek GS1 was also used to manage the gene lists com-

ing from different analysis. The data set containing the Affymetrix probe identifiers selected as

under- and over-expressed in LV-GsαR201C transduced hBMSCs was uploaded into EnrichR

(http://amp.pharm.mssm.edu/Enrichr/) and Ingenuity Pathway Analysis (www.ingenuity.

com). Enrichment analysis of under- and over-expressed genes was performed with the pub-

licly available tool, EnrichR (http://amp.pharm.mssm.edu/Enrichr), that provides access to

various gene-set libraries [76, 77]. EnrichR currently contains annotated gene sets from 102

gene set libraries organized in 8 categories. We considered pathways and Gene Ontology

terms as enriched if their p-value was lower than 0.05 and ranked them Combined Score (CS).

The CS is a combination of the p-value and z-score calculated by multiplying the two scores as

follows: CS = log(p)�z where p is the p-value computed using Fisher’s exact test, and z is the z-

score computed to assess the deviation from the expected rank.

qPCR were performed as described in [70] using the following primers:

CRYAB F: 5’-CAGAGGAACTCAAAGTTAAGG
CRYAB R: 5’-ATGAAACCATGTTCATCCTG
LPL F: 5’-ACACAGAGGTAGATATTGGAG
LPL R: 5’-CTTTTTCTGAGTCTCTCCTG
MGP F: 5’-ATAAAAACCTCACAGCCTTC
MGP R: 5’-CCATAACACAAAGTTACTACCG
PGF F: 5’-AGCTCCTAAAGATCCGTTC
PGF R: 5’-GACGGTAATAAATACACGAGC
SFRP2 F: 5’-GACCTAGACGAGACCATC
SFRP2 R: 5’-ATACCTTTGGAGCTTCCTC
PPAP2A F: 5’-CACTTTATCTTCAAGCCAGG
PPAP2A R: 5’-ACTAATATTGCAACCAGAGC
BAMBI F: 5’-AAGGTGAAATTCGATGCTAC
BAMBI R: 5’-TCAAGAAGTCTAGAGAAGCAG
MMP13: 5’-AGGCTACAACTTGTTTCTTG
MMP13: 5’-AGGTGTAGATAGGAAACATGAG
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qPCR reactions were performed with the Applied Biosystems PRISM 7300 Real Time PCR

System with QuantiTect SYBR Green PCR Kit. To obtain quantification with respect to mock

cells, quantification cycle values (Cq) were exported and ansalysed with Excel, the data were

calculated with the 2–ΔΔCq method as described in [70]. LV-GsαR201C treated hBMSCs relative

fold change were then subtracted to mock relative fold change. Data are reported as means of

duplicates or more data obtained from two independent biological samples. For qPCR analysis

p is the p-value computed using Student’s t test (�p< .05, �� p< .01 ���p< .001).

Ethics approval

Established human bone marrow stromal cell line (hBMSCs) were obtained from healthy donors

with informed consent per institutionally approved protocols by the Ethical Committee of Sapienza

University of Rome, Policlinico Umberto I venue (Ref. 5313, version n 2.0–26.04.19) [13, 21–25].
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