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Abstract Invasive stink bugs (Hemiptera: Pentatomidae) are responsible for high economic losses to agricul-

ture on a global scale. The most important species, dating from recent to old invasions, include

Bagrada hilaris (Burmeister),Halyomorpha halys (St�al), Piezodorus guildinii (Westwood),Nezara vir-

idula (L.), and Murgantia histrionica (Hahn). Bagrada hilaris, H. halys, and N. viridula are now

almost globally distributed. Biological control of these pests faces a complex set of challenges that

must be addressed to maintain pest populations below the economic injury level. Several case studies

of classical and conservation biological control of invasive stink bugs are reported here. The most

common parasitoids in their geographical area of origin are egg parasitoids (Hymenoptera: Scelion-

idae, Encyrtidae, and Eupelmidae). Additionally, native parasitoids of adult stink bugs (Diptera:

Tachinidae) have in some cases adapted to the novel hosts in the invaded area and native predators

are known to prey on the various instars. Improving the efficacy of biocontrol agents is possible

through conservation biological control techniques and exploitation of their chemical ecology.

Moreover, integration of biological control with other techniques, such as behavioural manipulation

of adult stink bugs and plant resistance, may be a sustainable pest control method within organic

farming and integrated pest management programs. However, additional field studies are needed to

verify the efficacy of these novel methods and transfer them from research to application.
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Introduction
Invasive insect herbivores are responsible for an annual

loss of at least 70 billion USD globally (Bradshaw et al.,

2016), with the biggest agricultural producers, USA and

China, experiencing the highest costs and also representing

the main potential sources of invasive pests (Paini et al.,

2016). The economic loss caused by invasive insects is

growing, mostly due to market globalization and climate

change (Bradshaw et al., 2016). Herbivorous stink bugs

(Hemiptera: Pentatomidae) serve as a good example of

this, as many species are agricultural pests in their native

range as well as serious invasive pests with high economic

impact (Panizzi et al., 2000; McPherson, 2018). Stink bug

damage is due to the feeding punctures of adults and

nymphs on plant tissues, especially those of fruits and

seeds and sometimes leaves and stems, resulting in large

reductions in crop yield and/or quality (Panizzi et al.,

2000; McPherson, 2018). Additionally, several species

transmit plant pathogens (Mitchell et al., 2018).

At least two polyphagous pentatomid species, the brown

marmorated stink bug, Halyomorpha halys (St�al) (Hamil-

ton et al., 2018), and the southern green stink bug, Nezara

viridula (L.) (Esquivel et al., 2018), are globally important

pests. Halyomorpha halys is a temperate/subtropical spe-

cies native to eastern Asia that has established in North

America and Europe, where it damages many crops (re-

viewed by Leskey &Nielsen, 2018), has recently established

in Chile (Fa�undez & Rider, 2017), and has regularly been

intercepted at New Zealand’s border in recent years (Avila

& Charles, 2018; Charles et al., 2019). Unlike H. halys, the

native geographical range ofN. viridula (Africa, southwest

Asia, or Mediterranean region) is not yet clearly defined,

but this species has spread into tropical, subtropical, and

warm-temperate zones of five continents and might

expand further (Panizzi & Slansky, 1985; Todd, 1989;

Panizzi & Lucini, 2016; Esquivel et al., 2018).

The most recent widespread invasive pentatomid spe-

cies, the painted bug or Bagrada bug, Bagrada hilaris

(Burmeister), which has African and Asian origins, now

has an almost worldwide distribution and has recently

become a serious concern on brassicaceous crops in the

USA (Bundy et al., 2018b). To date, two additional stink

bugs, Murgantia histrionica (Hahn) and Piezodorus guil-

dinii (Westwood), are less widely distributed than B.

hilaris, having expanded their ranges only within the

American continent. Historically, M. histrionica, native to

Central America and Mexico, could be considered the first

recorded invasive stink bug, having invaded the southern

part of the USA during the 19th century where it is still

causing economic losses on brassicaceous crops (McPher-

son et al., 2018). Piezodorus guildinii, originally described

from the Caribbean, is now a major pest of soybean and

other Fabaceae in many parts of the American continent

(Bundy et al., 2018a).

Stink bug expansion into new areas, especially when

transported over long distances by global trade and tour-

ism, can often be attributed to the overwintering beha-

viour of adults (Panizzi et al., 2000; Musolin et al., 2018).

In autumn, several species aggregate in buildings and other

artificial shelters to hibernate. Overwintering H. halys

adults have been transported while hidden inside many

types of material (Maistrello et al., 2018; Nixon et al.,

2019). This has affected international trade due to the

mandatory phytosanitary importation measures required

by some countries (e.g., New Zealand and Australia).

These regulations impose treatments on any type of com-

modities imported from countries where H. halys is con-

firmed as present (MPI, 2020).

Following the introduction of exotic species into new

areas, native natural enemies sometimes adapt to the non-

coevolved species. Fortuitous biological control of invasive

stink bugs by native parasitoids and predators has been

observed, but in most cases, native parasitoids are not con-

sidered effective for biological control, especially when

compared with coevolved species from the native area

(McPherson, 2018). Because of a lack of effective natural

enemies, combined with stink bug biology, locally favour-

able ecological conditions, and their capacity to cause

direct damage to marketable produce, the impact of stink

bugs in invaded agroecosystems is often significant, both

in terms of crop loss and by disrupting established inte-

grated pest management (IPM) practices (Panizzi et al.,

2000; McPherson, 2018). It is therefore vital to develop

new sustainable control methods that can be included

within revised IPM strategies. In this paper, we review a

century of biological control programs for invasive stink

bugs and discuss the global biocontrol strategies developed

against them through six case studies. These strategies

include classical, augmentative, and conservation biologi-

cal control, as well as an innovative pre-emptive classical

biocontrol approach. Additionally, based on knowledge of

stink bug and parasitoid behaviour, biology, and chemical

ecology, we discuss the prospects of using semiochemical

and other novel approaches to increase natural enemy effi-

cacy and manage stink bug pests as part of sustainable,

integrated control strategies.

Management of invasive stink bugs over a century of
classical biological control

Recent stink bug invasions have renewed the interest in

classical biological control as a potential pest control strat-

egy. Evaluation of suitable candidates for classical

2 Conti et al.
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biological control of B. hilaris is underway in North Amer-

ica, with research focusing on egg parasitoids, as the tachi-

nid parasitoids of adult stink bugs (Diptera: Tachinidae)

that have been recorded in Asia are poorly known and do

not seem to have a significant impact on this host (Sforza

et al., 2017; Bundy et al., 2018b). Similarly, the most

important natural enemies of H. halys appear to be coe-

volved egg parasitoids in the native range of Eastern Asia

(Zhang et al., 2017; Buffington et al., 2018; Hamilton et al.,

2018; Leskey & Nielsen, 2018). The egg parasitoid Trissol-

cus japonicus (Ashmead) [Hymenoptera: Scelionidae (syn.

Platygastridae s.l.; Sharkey, 2007, but see Popovici et al.,

2017)] is the predominant natural enemy of H. halys in

Asia and is therefore considered a promising biocontrol

agent for this invasive pest (Zhang et al., 2017; Buffington

et al., 2018; Leskey & Nielsen, 2018). However, environ-

mental risk assessment ofT. japonicus as candidate biocon-

trol agent, conducted in the USA and in Europe, raised

ecological concerns due to the apparent low host speci-

ficity of T. japonicus and consequent risk that this species

might attack non-target species in the areas of introduc-

tion, including beneficial predatory stink bugs (Hedstrom

et al., 2017; Botch &Delfosse, 2018; Haye et al., 2020). Leg-

islative restrictions in Europe and the USA severely limit

the introduction of exotic species by focusing on perceived

risks for non-targets rather than the benefits of pest reduc-

tion (van Lenteren et al., 2006; Rondoni et al., 2020). Now

that the occurrence of T. japonicus has been reported in

northern Italy (Sabbatini Peverieri et al., 2018), in early

2020 the Italian government authorized the mass produc-

tion and release of this parasitoid in Italy, where H. halys

has caused the highest economic losses in Europe since its

arrival in 2012 (Maistrello et al., 2016, 2018). This is the

first officially authorized release of the parasitoid against

H. halys in Europe. As has occurred in Italy, constraints

are probably becoming less relevant in the USA because of

the recent finding of adventive populations of T. japonicus

in the invaded areas (Talamas et al., 2015).

About 1 century ago, the first attempts with biological

control of stink bugs started with N. viridula and they are

still in progress globally. Classical biological control mostly

involved the egg parasitoid Trissolcus basalis (Wollaston)

(Hymenoptera: Scelionidae), which was introduced and

released in nearly all geographical areas invaded byN. viri-

dula (Esquivel et al., 2018). Additionally, the native para-

sitoids of adults, Trichopoda pennipes (Fabricius) and

Trichopoda giacomellii (Blanchard) (Diptera: Tachinidae),

were found parasitizing this species in North and South

America, respectively, and were subsequently introduced

into Hawaii (USA) and Australia for classical biological

control of N. viridula (Liljesthr€om & Rabinovich, 2004;

Esquivel et al., 2018). Trichopoda pennipes, which attacks

adults and occasionally nymphs, was then accidentally

introduced in Italy (Colazza et al., 1996) from where it

spread to several countries in Europe and the Mediter-

ranean (Tschorsnig, 2017). Despite the numerous classical

biocontrol programs against N. viridula, this species is still

an economically important pest worldwide except in

South America (Panizzi & Lucini, 2016).

In contrast with other invasive stink bugs, no biocontrol

efforts have been made against M. histrionica in the USA.

However, several native natural enemies – the most com-

mon ones the parasitoids Trissolcus brochymenae (Ash-

mead), Trissolcus euschisti (Ashmead) (Hymenoptera:

Scelionidae), and Ooencyrtus johnsoni (Howard) (Hyme-

noptera: Encyrtidae) – have been recorded since the end of
the 19th century but generally with low reported efficacy

(McPherson et al., 2018).

Overall, naturally occurring and classical biological con-

trol of stink bugs, although useful in significantly reducing

the exotic pest populations, are often inadequate in main-

taining the pest below the economic injury level (McPher-

son, 2018). Therefore, additional approaches are being

evaluated and developed regularly to improve the efficacy

of parasitoids as biocontrol agents and to integrate biocon-

trol programs with other sustainable management meth-

ods, targeting adult stink bugs. In the following sections,

we report relevant case studies and discuss the potential

application of conservation biological control and other

sustainable control methods (Figure 1).

Case study 1: Selection of candidates for classical
biological control of Bagrada hilaris

History, invasion, and pest status

The painted or Bagrada bug, B. hilaris, is a worldwide

pest of brassicaceous crops (Bundy et al., 2018b). Like

other stink bugs, it can also be a nuisance pest for

humans by sheltering in homes (Fa�undez, 2018).

Bagrada hilaris is native to Africa, the Middle East, and

Asia where it sporadically damages local crops (Gunn,

1918; Ahuja et al., 2008). Since its first introduction in

California (USA) in 2008, it has become invasive in

southern states of the USA (Reed et al., 2013) and in

Hawaii (USA), Mexico, and Chile (Fa�undez et al.,

2016). In the Mediterranean basin, B. hilaris was acci-

dentally introduced into Italy and Malta. Pinpointing

the origin of invasive populations in the Americas will

enable an understanding of the invasion routes of B.

hilaris and ultimately help to find the parasitoid best

suited to control this pest. A preliminary phylogeo-

graphical study using the DNA barcode region COI

identified Pakistan as a source for the invasive B. hilaris

in North America (Sforza et al., 2017).

Biological control of stink bugs 3
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This pest is multivoltine with gregarious behaviour

(Reed et al., 2013; Bundy et al., 2018b). Unlike most of the

4 722 species of Pentatomidae (Rider, 2016) that glue eggs

together in clusters onto plant material, B. hilaris deposits

many of its eggs singly into the soil (Gunn, 1918; Taylor

et al., 2014), which may affect egg parasitism (see below).

Due to the economic impact of B. hilaris injury on crops in

southwestern USA, its control currently relies on pesticide

applications (Palumbo et al., 2016). Classical biological

control could provide sustainable and long-term control,

especially if implemented as part of an IPM program. To

date, no classical biocontrol program is in place in any of

the countries in the invaded range. However, the egg para-

sitoids Gryon myrmecophilum (Ashmead), Telenomus

podisi (Ashmead), and Tr. basalis (all Hymenoptera: Sce-

lionidae) were found parasitizing B. hilaris in Mexico

(Felipe-Victoriano et al., 2019), suggesting a possible role

for them in conservation biological control.

Exploration for natural enemies in the native range

Surveys for natural enemies began in countries where B.

hilaris is native, including South Africa and India. As for

other invasive stink bugs (see below), predators and resi-

dent North American parasitoids have been reported

(Bundy et al., 2018b). However, we present only data on

egg parasitoids from the native geographical range of the

pest. Gunn (1918) first recorded the presence of an egg

parasitoid emerging from artificially buried eggs of B.

hilaris in cabbage and cauliflower fields. Subsequently, egg

parasitoids in the scelionid genera Telenomus, Typhodytes

(Mani, 1942; Samuel, 1942), and Trissolcus (Chacko &

Katiyar, 1961) were collected from India. After the inva-

sion of B. hilaris in the Americas, surveys were conducted

in 2015 in Pakistan. Three species were collected, viz.,Tris-

solcus hyalinipennis Rajmohana & Narendran (syn. Allo-

phanurus indicus Subba Rao & Chacko), Gryon

gonikopalense Sharma (Scelionidae), and anOoencyrtus sp.

(Encyrtidae) (Mahmood et al., 2015). The latter was the

first report of an Ooencyrtus species on B. hilaris eggs.

These egg parasitoid candidates are currently under evalu-

ation in the USA and European quarantine facilities. Since

2016, new surveys for B. hilaris biocontrol candidates have

been conducted in Kenya and South Africa (Mason et al.,

2018). Various collecting protocols, including sentinel eggs

and Malaise trapping, are being used to study the native

biodiversity of egg parasitoids of B. hilaris (RFH Sforza,

MKasina, P Addison,MCBon & E Talamas, unpubl.).

Promising candidates

Among the parasitoid species collected in Pakistan in

2015, only two have been studied in the laboratory. The

basic biological traits of Tr. hyalinipennis were described

by Subba Rao & Chacko (1961). Their studies reported a

very high fecundity level of 158 progeny per female and a

longevity of over 1 month. Studies of G. gonikopalense at

the USDA-ARS European Biological Control Laboratory

(Montpellier, France) suggest this species is a promising

biocontrol candidate (Martel et al., 2019). Both the host

and parasitoid share the same thermal requirements for

their development and reproduction, suggesting that their

development will be synchronous in the field.

An important criterion for an effective candidate bio-

control agent is its foraging capacity for B. hilaris eggs bur-

ied in the soil, as was highlighted by Bundy et al. (2018b).

Recent investigations under laboratory conditions have

shown that Tr. hyalinipennis is unable to parasitize buried

eggs, whereas G. gonikopalense readily finds and parasitizes

B. hilaris eggs in the soil (G Martel & RFH Sforza,

unpubl.). This information provides a basis for investigat-

ing whether G. gonikopalense effectively parasitizes B.

hilaris eggs under natural conditions, especially consider-

ing that B. hilaris is able to oviposit both in the soil and on

Figure 1 Possible strategies for successful

stink bugmanagement based on the

integration of biological control (classical,

inundative, or conservation) with

manipulation of the natural enemy and/or

herbivore behaviour, or with additional

strategies.
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its host plant (Taylor et al., 2014). Another criterion is the

host specificity of the selected egg parasitoids, which is cur-

rently under investigation in USA quarantine facilities for

B. hilaris and several other stink bugs. If the above-men-

tioned criteria are met, the release of G. gonikopalense in

North America can be considered. In the meantime, for-

eign exploration in Africa will continue to search for other

coevolved parasitoids.

Case study 2: Biological control of Halyomorpha halys
in North America

History, invasion, and pest status

The brown marmorated stink bug, H. halys, was first

detected in the USA in the mid-1990s (Leskey & Nielsen,

2018) in Allentown, PA (Hoebeke & Carter, 2003), and

has since spread to more than 42 states (Leskey & Nielsen,

2018). In Canada, it was first detected in Ontario andQue-

bec in 2010 (Fogain & Graff, 2011) and subsequently in

British Columbia (Abram et al., 2017c). This species is a

polyphagous pest with a host range of more than 300 plant

species (Lee et al., 2013; Bergmann et al., 2016). In North

America, this includes over 170 plants from more than a

dozen families, and apples, peaches, nectarines, pears,

grapes, sweet corn, soybeans, and hazelnuts are among the

most susceptible cultivated hosts (Leskey &Nielsen, 2018).

Natural control by native parasitoids and predators

Early biological control research in North America focused

on identifying the indigenous natural enemies of H. halys.

These studies mainly concentrated on the egg stage, using

sentinel (fresh and frozen) H. halys egg masses to assess

predation and parasitism (Dieckhoff et al., 2017; Abram

et al., 2017b; Leskey & Nielsen, 2018). In general, control

by existing natural enemies has been considered ineffective

(Ogburn et al., 2016; Cornelius et al., 2016a; Abram et al.,

2017b). In agreement with the enemy release hypothesis

(Keane & Crawley, 2002 4), H. halys seems to have escaped

from its natural enemies in the invaded North American

areas. For example, in organic agro-ecosystems across the

eastern USA, maximum levels of natural biological control

were estimated at 20%, primarily caused by chewing

predators (Ogburn et al., 2016) whose efficacy is depen-

dent on the H. halys life stage (Morrison et al., 2016; Pote

& Nielsen, 2017). In the laboratory, late-instar Chrysoperla

carnea (Stephens) (Neuroptera: Chrysopidae), katydids

(Orthoptera: Tettigoniidae), earwigs (Dermaptera: Forfi-

culidae), jumping spiders (Araneae: Salticidae), crickets

(Orthoptera: Gryllidae), and ground beetles (Coleoptera:

Scarabaeidae) were effective predators of H. halys eggs

(Abram et al., 2015; Morrison et al., 2016). Grasshoppers

(Orthoptera: Acrididae), Coccinella septempunctata (L.)

(Coleoptera: Coccinellidae), and the spined soldier bug

Podisus maculiventris (Say) (Pentatomidae) also preyed on

eggs, whereas several hemipteran predators attacked

young nymphs (Pote & Nielsen, 2017). Using surveillance

cameras, Pote (2018) reported katydids feeding onH. halys

eggs in the field. Possibly, indigenous generalist predators

use pentatomid semiochemical cues to locate H. halys

(Fraga et al., 2017).

Mortality from parasitism of H. halys eggs by indige-

nous parasitoids in North America tends to be lower than

that from predation (Ogburn et al., 2016), accounting for

less than 5% of parasitoid emergence from eggs in 87% of

all surveys (Abram et al., 2017b). However, levels of para-

sitism and predation seem to vary depending on habitat

(Cornelius et al., 2016a; Tillman et al., 2020), with para-

sitism greater than predation in woody ornamental nurs-

eries (Jones et al., 2017), whereas the opposite is true for

organic agroecosystems (Ogburn et al., 2016). Three para-

sitoid families are commonly found attackingH. halys eggs

in the USA and Canada: Scelionidae (Telenomus, Trissol-

cus, and Gryon spp.), Eupelmidae (Anastatus spp.), and

Encyrtidae (Ooencyrtus spp.) (Abram et al., 2017b; Leskey

& Nielsen, 2018). According to Abram et al. (2017b),

Anastatus and Trissolcus tend to dominate ornamental,

semi-natural/urban, and forest habitats, whereas Te. podisi

dominates field/vegetable crops and orchard habitats (see

also Herlihy et al., 2016, and Tillman et al., 2020). One

explanation for the low parasitism rates observed of H.

halys eggs is that even when eggs are attacked, the native

parasitoids frequently fail to develop to emergence,

although they may still kill the host (Cornelius et al.,

2016b). Abram et al. (2014) showed that H. halys eggs are

attacked byTe. podisi at rates similar to indigenous P. mac-

uliventris eggs. However, successful development occurred

only in the latter species. They argued that H. halys acts as

an evolutionary trap for this parasitoid, which could result

in an increase in population levels of indigenous pentato-

mids. It is also worth noting that, although convenient,

studies using sentinel eggs may underestimate the levels of

parasitism (Jones et al., 2014; but see Herlihy et al., 2016,

and Dieckhoff et al., 2017). This reduced parasitism could

be due to the absence of cues used by indigenous para-

sitoids in host finding and recognition, i.e., host kairo-

mones (Conti et al., 2003; Laumann et al., 2009; Tognon

et al., 2016, 2017; Rondoni et al., 2017; Boyle et al., 2020)

and oviposition-induced plant synomones (Colazza et al.,

2004a; Conti & Colazza, 2012; Rondoni et al., 2017).

Exploration for natural enemies in the native range and biological
control

To improve H. halys biological control, efforts were initi-

ated in the late 2000s in the USA to introduce natural
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enemies from its native range. Classical biocontrol efforts

targeted egg parasitoids of the genus Trissolcus, including

Tr. japonicus, the predominant egg parasitoid and most

important natural enemy of H. halys in Asia capable of

inflicting high rates of parasitism in landscapes and orch-

ard crops (Zhang et al., 2017; Buffington et al., 2018; Les-

key & Nielsen, 2018). In 2014, although still under

evaluation in quarantine facilities in the USA, a population

of Tr. japonicus was found during routine sentinel egg sur-

veys in a wooded habitat in Beltsville, MD (Talamas et al.,

2015; Buffington et al., 2018). Molecular analyses revealed

that the Tr. japonicus specimens found were different than

those maintained in quarantine, indicating that it was

introduced into the USA by other means via an unknown

pathway (Buffington et al., 2018). Since then, Tr. japonicus

has been reported in at least 13 states across the USA (Mil-

nes et al., 2016; Hedstrom et al., 2017; Morrison et al.,

2018; Leskey & Nielsen, 2018; Jarrett et al., 2019) and two

provinces in Canada (Abram et al., 2019; Gariepy & Tala-

mas, 2019). They comprise three distinct haplotype popu-

lations, indicating that there have been several

independent introductions whose source regions have not

yet been clearly identified (MC Bon, pers. comm.).

Although Tr. japonicus has been reported mainly from

unmanaged landscape habitats, it has also been found in

peach orchards (Kaser et al., 2018).

Laboratory testing ofTr. japonicus against North Ameri-

can pentatomids has shown a marked preference for H.

halys but not complete host specificity (Hedstrom et al.,

2017; Botch & Delfosse, 2018; Lara et al., 2019). Potential

alternate hosts may be less physiologically suitable for

development thanH. halys if they are accepted for oviposi-

tion, producing smaller and less fit progeny (Botch & Del-

fosse, 2018). The first field study of a Tr. japonicus

population in North America appears to confirm these

laboratory studies, at least for several native pest stink bugs

in the Pacific Northwest (Milnes & Beers, 2019). A degree

of specificity is also conferred by chemicals associated with

H. halys that are used by Tr. japonicus in host finding and

recognition. In choice tests, Tr. japonicus remained longer

on surfaces with H. halys contact kairomones (Hedstrom

et al., 2017). Furthermore, they responded more strongly

to H. halys kairomone traces deposited on leaves of apple,

maple, and soybean than to traces of the predatory P. mac-

uliventris (Boyle et al., 2020), a non-target species that is an

important predator in agricultural habitats of several pests,

including H. halys (Pote & Nielsen, 2017). Parasitoid

females detected and responded in a similar manner to

kairomone traces on leaves of host plants, increasing their

search time in a Y-tube olfactometer, and femaleTr. japon-

icuswere attracted to n-tridecane but repelled by (E)-2-de-

cenal, two defensive compounds emitted from H. halys

males and females (Zhong et al., 2017). In other experi-

ments, Tr. japonicus females were attracted to volatiles

from gravid females and mature males of H. halys and to

volatiles induced in tomato plants by oviposition and feed-

ing of this coevolved host, but females did not respond to

similar cues associated with P. maculiventris (Bertoldi

et al., 2019).

Although Tr. japonicus is also capable of parasitizing P.

maculiventris (Hedstrom et al., 2017; Botch & Delfosse,

2018), the probability of Tr. japonicus locating and para-

sitizing P. maculiventris under field conditions is likely to

be lower than for encountering H. halys (Bertoldi et al.,

2019; Boyle et al., 2020). Trissolcus japonicus did not

appear to be attracted to the H. halys aggregation phero-

mone (Morrison et al., 2018), and it was never captured in

stink bug traps baited with H. halys and P. maculiventris

pheromones (Boyle, 2017). Whether populations of

indigenous pentatomids in North America will be nega-

tively impacted by Tr. japonicus and whether this foreign

parasitoid will provide better biological control ofH. halys

remain open questions thatmust be answeredwith contin-

ued field studies.

Case study 3: Biological control of Halyomorpha halys
in Europe

Invasion of Europe and pest status

The European invasion by H. halys started in Switzerland

in 2004 (Haye et al., 2015b) followed by the colonization

of neighbouring countries and interceptions at cus-

toms/ports/airports (Claerebout et al., 2018). Genetic

analyses demonstrate a high diversity of the invading H.

halys populations, especially in Italy (Cesari et al., 2017)

and Greece (Morrison et al., 2017), indicating multiple

introductions that are still ongoing from their native range

in Asia and other invaded countries. Serious damage in

Italy was observed on peach, pear, and hazelnut, starting

from 2013 (Maistrello et al., 2017; Bosco et al., 2018). Out-

breaks in northern Italy in 2019 caused more than € 356

million damage on pear, peach, and nectarine, with up to

80–100% yield losses (CSO, 2019). Damage was reported

also on apple, kiwi, and other fruit crops, as well as on hor-

ticultural and row crops (peppers, tomatoes, maize, and

beans). Following H. halys invasion, previous IPM pro-

grams were seriously disrupted and official IPM guidelines

had to be revised to allow for increased numbers of treat-

ments with broad-spectrum insecticides.

Natural control by native parasitoids and predators

Due to restrictions on the practice of classical biological

control in Europe, initial studies aimed to discover native

natural enemies that were able to adapt to the new invasive
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species. Field surveys were performed in Switzerland, Italy,

and Georgia, mainly to detect egg parasitoids and preda-

tors either using sentinel egg masses (frozen or fresh) or by

collecting naturally laid eggmasses. Overall, egg parasitism

ranged from 3 to 39% in Switzerland (using frozen sentinel

eggs), from 1 to 3% in Emilia Romagna, Italy (using fresh

sentinel eggs), and from 12 to 21% in Piedmont, Italy (col-

lecting naturally laid eggs). The generalist egg parasitoid

Anastatus bifasciatus (Geoffroy) (Eupelmidae) was the

predominant species in all surveys (Haye et al., 2015a;

Costi et al., 2018; Kereselidze et al., 2018; Moraglio et al.,

2020b), confirming its ability to develop in both frozen

and fresh eggs. Other species found included Trissolcus cul-

tratus (Mayr) (Scelionidae) in Switzerland (Haye et al.,

2015a), and Trissolcus kozlovi Rjachovsky, Trissolcus bele-

nus (Walker) [syn. Tr. semistriatus (Nees von Esenbeck)

sensu Talamas et al., 2017] (Tortorici et al., 2019), Tr.

basalis, Telenomus turesis Walker (Scelionidae) and the

hyperparasitoid Acroclisoides sinicus (Huang & Liao)

(Pteromalidae) in Piedmont (Sabbatini Peverieri et al.,

2019; Moraglio et al., 2020b). In these surveys, a wide

range of eggs were lost or showed symptoms of predation

(chewing or sucking): up to 31% in Switzerland (Haye

et al., 2015a), 2–5% in Emilia Romagna (Costi et al.,

2018), and 0.4–9% in Piedmont (Moraglio et al., 2020b).

Laboratory no-choice tests were carried out to evaluate

the potential of several parasitoid species to attack eggs of

European native pentatomids as well as some generalist

predators. Ooencyrtus telenomicida (Vassiliev) (Encyr-

tidae) achieved 36% parasitism of H. halys eggs, followed

by Ooencyrtus pityocampae (Mercet) (21%), A. bifasciatus

(20%), and Telenomus chloropus Thomson (6%) (Roversi

et al., 2016). In another study, seven scelionid species (six

Trissolcus spp. and Te. turesis) were tested onH. halys eggs.

All the Trissolcus spp. caused significantly higher egg abor-

tion compared with unexposed eggs, but only Tr. kozlovi

was able to produce offspring from fresh eggs (Moraglio

et al., 2020a), confirming what was observed in field sur-

veys in Piedmont (Moraglio et al., 2020b).

Several species of wild-collected native European gener-

alist predators were tested for their ability to feed on eggs

and nymphs ofH. halys in no-choice tests (Bulgarini et al.,

2019). Only the omnivorous Pholidoptera littoralis (Fieber)

(Orthoptera: Tettigoniidae) was capable of preying on eggs

and first and second instars. The other predators did not

feed on the eggs. Young H. halys nymphs were preyed on

by Nagusta goedelii (Kolenati), Rhynocoris iracundus

(Poda) (both Hemiptera: Reduviidae), and twoHimacerus

species (Hemiptera: Nabidae), and R. iracundus also fed

on the adults (Bulgarini et al., 2019.). In a laboratory study,

the arboreal ant Crematogaster scutellaris (Olivier) (Hyme-

noptera: Formicidae) did not prey on eggs but proved to

be effective at preying on all nymphal instars (Castracani

et al., 2017). In addition, the predatory potential of bats

(Chiroptera) was assessed by screening for the presence of

H. halys DNA (Piemontese et al., 2019) in guano samples

from nine Italian bat species collected in natural and agri-

cultural environments. Two genera of bats, Myotis and

Nyctalus (both Vespertilionidae), showed evidence of feed-

ing on H. halys (Piemontese et al., 2019). In a similar

approach, analysis of the gut contents of field-collected

arthropods identified H. halys DNA in predatory insects

and arachnids belonging to Dermaptera, Orthoptera,

Hemiptera, Opiliones, and Araneae (G Bulgarini, L.

Piemontese, M. Cesari, R. Guidetti, L. Maistrello,

unpubl.).

Control by exotic parasitoids and possible impact on native non-
target stink bugs

Recently, field surveys in Switzerland and Italy discovered

the presence of populations of Tr. japonicus and Trissolcus

mitsukurii (Ashmead), which are considered the most

effective egg parasitoids in China and Japan, respectively

(Arakawa & Namura, 2002; Zhang et al., 2017), although

the higher prevalence of Tr. mitsukurii over Tr. japonicus

in Japan is debated (KA Hoelmer, unpubl.). Trissolcus

japonicuswas found first in Canton Ticino, Switzerland, in

2017 and in Piedmont and Lombardy, Italy, in 2018 (Sab-

batini Peverieri et al., 2018; Stahl et al., 2019b; Moraglio

et al., 2020b). A genetic analysis using the barcode mito-

chondrial DNA determined the closest match of the

‘Ticino populations’ with Japanese populations, but the

pathways of entry into Switzerland remain unknown

(Stahl et al., 2019b).Trissolcusmitsukuriiwas first recorded

in northeastern Italy starting from 2016 (Scaccini et al.,

2020). After the discovery of populations of Tr. japonicus

andTr. mitsukurii in Italy, the situation has been changing,

as highlighted by the increased parasitism rate in the site in

Piedmont where, together with A. bifasciatus, Tr. japonicus

was detected in 2018 (Moraglio et al., 2020b). Given the

availability of their host, the distribution of these exotic

egg parasitoids is expected to expand, even in the absence

of human intervention.

The prospective host range of Tr. japonicus in Europe

was evaluated in no-choice tests, followed by large-arena

choice tests (Haye et al., 2020). The developmental suit-

ability of European non-target host species for Tr. japoni-

cus was demonstrated in no-choice tests by offspring

emergence from 11 out of 13 non-target species tested

(85%). In large-arena choice tests, the degree of non-target

parasitism was substantially reduced (three out of four

suitable species were parasitized), whereas parasitism of

Palomena prasina L. (Pentatomidae) eggs was comparable

to that of H. halys (Haye et al., 2020). Field data from the
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invaded areas in Switzerland and Italy can contribute to a

risk-benefit evaluation of releasing or re-locating Tr.

japonicus populations into other parts of Europe.

Augmentative releases and efficacy of native parasitoids

Given that A. bifasciatus is the most prevalent native egg

parasitoid of H. halys in field surveys (Haye et al., 2015a;

Costi et al., 2018; Moraglio et al., 2020b) and that it is cap-

able of developing in viable H. halys eggs (Roversi et al.,

2016; Abram et al., 2017b), this species was selected as a

candidate for augmentative releases. Anastatus bifasciatus

can exploit cues associated with the non-coevolved host

during its searching, as parasitoid females responded posi-

tively both to adultH. halysmale volatiles and toH. halys-

induced plant volatiles (Rondoni et al., 2017). Trials were

performed in four apple orchards in Switzerland for

3 years and in an organic pear orchard in northern Italy

for 1 year, releasing an equivalent of 11 000–26 000 A.

bifasciatus females per ha (Stahl et al., 2019a). Parasitism

averaged 6% (range: 2–16%) on frozen H. halys sentinel

egg masses and 8% on frozen egg masses of lepidopteran

non-target species. At the Italian site, parasitism on natu-

rally laid eggs was considerably higher (49%) than on fro-

zen sentinel eggs (16%). This suggests that although large

quantities of frozen eggs are easier to obtain for experi-

ments, data based upon their use in the field are likely to

underestimate the actual impact of parasitism.

In 2019, further trials were performed in Emilia

Romagna, Italy, where 10 000 A. bifasciatus females per ha

were released over 5 weeks from the beginning of egg lay-

ing by H. halys (June–early July) in a small wooded area

adjacent to a pear orchard. Parasitism averaged 9%on nat-

urally laid eggs and 2.5% on frozen sentinel egg masses

(Maistrello et al., 2020). However, these field trials under-

estimated the overall impact of A. bifasciatus, as they did

not account for host eggs killed due to host feeding.

According to previous laboratory trials, host feeding by A.

bifasciatusmay double the estimated host mortality (Stahl

et al., 2019a).

Case study 4: Pre-emptive biological control of
Halyomorpha halys in New Zealand – a world first

Risk of invasion, potential impact, and pre-emptive biocontrol
approach

In New Zealand,H. halys presents a major risk not only to

the sustainability and economics of food production but

also to conservation due to its biology and very broad host

range (Duthie, 2012; Lee et al., 2013; Bergmann et al.,

2016). A recent assessment of the potential economic

impact of H. halys in New Zealand found that if it estab-

lished, it could cost the horticulture and arable industries

4.2 billion NZD in 2038 (New Zealand Institute of Eco-

nomic Research, 2017). In addition, some New Zealand

native plant species may be at risk of attack by H. halys as

well (Duthie, 2012).

Although H. halys is not yet known to be present in

New Zealand, there is a high risk of entry and establish-

ment, with more than 212 live interceptions of H. halys

adults at New Zealand’s border during the latest high-risk

season (i.e., September 2018–April 2019), totalling more

than 1 500 adults. Invasive pests can sometimes be eradi-

cated on arrival, but if eradication attempts fail or are

deemed technically or economically unfeasible, then there

will be a need to undertake area-wide pest management. If

this is the case, classical biological control is expected to

become a key strategy for reducing H. halys populations

throughout New Zealand. The severity and imminent nat-

ure of H. halys incursion meant that there was an urgency

for developing a pre-emptive classical biocontrol approach

before the arrival of H. halys. Pre-emptive biological con-

trol is a novel approach that has the potential to enhance

preparedness for a possible invasion of pest species and

accelerate the response to invasive pests. With this

approach, natural enemies can be selected, risk assessment

studies carried out, and their potential release pre-ap-

proved by regulators for timely release after arrival of the

pest. This would significantly reduce pest densities and

rates of spread, ultimately reducing the economic or envi-

ronmental damage associated with the pest (Hoddle et al.,

2018). In preparation for a potential arrival/establishment

ofH. halys in NewZealand, a pre-emptive classical biocon-

trol program for this pest using the egg parasitoid Tr.

japonicus, themost promising biocontrol agent ofH. halys,

was initiated in December 2015. This program aimed to

determine the biosafety of Tr. japonicus to potential non-

target species in New Zealand and to pre-approve its

release to be ready for the anticipated arrival ofH. halys.

Risk assessment for biological control of Halyomorpha halys

The potential host range of Tr. japonicus in New Zealand

was investigated in quarantine using imported parasitized

H. halys eggs from USDA-ARS (Newark, DE, USA)

between November 2015 and December 2016. Egg masses

of seven species of New Zealand Pentatomidae, including

one sub-species, were individually exposed to naive mated

female Tr. japonicus in no-choice laboratory experiments.

All tested species were non-endemic but naturalised

species to New Zealand. The only Pentatomidae species

endemic to New Zealand, Hypsithocus hudsonae Bergroth,

was not available at the time and could not be tested

(Charles et al., 2019). Results from laboratory host-

specificity testing demonstrated that the predatory

Pentatomidae Cermatulus nasalis (Westwood) nasalis, C.
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nasalis hudsoni, and Oechalia schellenbergii (Gu�erin), and

the phytophagous Monteithiella humeralis (Walker), Dic-

tyotus caenosus (Westwood), Glaucias amyoti (Dallas), and

Cuspicona simplex Walker were all physiological hosts for

Tr. japonicus, although not all were equally susceptible to

parasitism (Charles et al., 2019). No development or emer-

gence of Tr. japonicus from eggs of N. viridula was

observed (Charles et al., 2019).

In addition, a CLIMEX bioclimatic model was devel-

oped to estimate the potential global distribution of

Tr. japonicuswith particular reference to New Zealand and

to investigate possible overlaps with the current distribu-

tion of potential non-target species (Avila & Charles,

2018). In the native range of Tr. japonicus, the model pre-

dicts its presence or potential expansion coinciding with

the native range of H. halys (confirmed by specimen col-

lection records that show it occurs throughout the entire

native range ofH. halys) into most humid-subtropical and

humid-continental areas (Avila & Charles, 2018). Globally,

the model projected that many temperate, Mediterranean,

and subtropical areas could be suitable for the establish-

ment of Tr. japonicus. Laboratory studies also demon-

strated that Tr. japonicus and Tr. cultratus could survive

periods of winter temperatures as cold or colder as toler-

ated by their host, H. halys (Nystrom et al., 2017). In New

Zealand, the north appears moderately to highly suitable

for Tr. japonicus, whereas southern regions are mostly

marginal. The risk posed by Tr. japonicus to non-target

species in New Zealand is predicted to vary between differ-

ent pentatomids (Avila & Charles, 2018). CLIMEX projec-

tions of the potential distribution of Tr. japonicus provide

useful guidance for selecting release sites if importation/re-

lease of this parasitoid needs to be carried out in New Zeal-

and or worldwide.

Approval to release Trissolcus japonicus in New Zealand

The importation, development, and release of new organ-

isms into New Zealand are under strict regulation and

must be approved by the Environmental Protection

Authority (EPA), which implements the Hazardous Sub-

stances and New Organisms (HSNO) Act 1996 (Ehlers

et al., 2019). An applicant seeking approval to release a

candidate biocontrol agent must submit an application

that includes a risk/benefit analysis providing evidence to

support the proposal for release and demonstrating that it

meets the minimum standards of the HSNO Act. The

application submitted to the EPA must provide informa-

tion about potential adverse effects and the expected eco-

nomic, social, and cultural benefits of the introduction.

The EPA then conducts a full evaluation and review of the

benefits and risks associated with the proposed biocontrol

agent (Barratt & Ehlers, 2017; Ehlers et al., 2019). If the

perceived benefits outweigh the risks, then EPA may grant

approval for release, subject (or not) to further conditions.

In March 2018, an application was submitted to the

EPA by a representative group from the horticultural

industries (BMSBCouncil) to seek pre-approval to import

and release Tr. japonicus into New Zealand in the event of

a H. halys incursion. The application included host range

testing, bioclimatic modelling, and substantial additional

information on economic and social benefits. As a result

of this application, in August 2018, the EPA granted

approval for a conditional release of Tr. japonicus in the

event that aH. halys incursion is detected in New Zealand,

and it is subject to the development of an appropriate

release plan (EPA, 2018). This is the first approval granted

to release a biocontrol agent into New Zealand prior to the

arrival of its target pest and the first example worldwide to

approve the future release of Tr. japonicus before the arri-

val of H. halys. The successful implementation of this

approach will provide New Zealand with the opportunity

for a quicker response against a H. halys invasion and a

greater chance of achieving an eradication or implement-

ing an early area-wide pest management plan. This novel

example of pre-emptive biological control might provide

the impetus for biocontrol practitioners to adopt such an

approach in the future for the early management of exotic

pest incursions.

Case study 5: Biological control of stink bugs in
South America

General overview of stink bugs as pests in South America

In South America, stink bugs are major pests primarily in

arable crops, such as soybean, beans, and maize (Panizzi &

Silva, 2012), which cover large agricultural areas. For

example, the total area planted with soybean in Brazil,

Paraguay, Uruguay, and Argentina is approximately 56

million ha (Trase, 2018 5). Since the start of soybean pro-

duction and its expansion in South America, increasing

problems with stink bugs have been reported. In general,

these are species complexes with the dominant species

varying among regions (Saluso et al., 2007; Ribeiro et al.,

2009; Panizzi & Lucini, 2016; Aquino et al., 2019). The first

serious pest mentioned in the literature was the cos-

mopolitan N. viridula (Panizzi & Lucini, 2016). Interest-

ingly, its importance has changed over time. Currently, N.

viridula is found at very low population levels in various

regions of Brazil and Argentina (Panizzi & Lucini, 2016).

This phenomenon could be due to adaptation to new

cropping systems, expansion of soybean culture to hotter

regions and broad adoption of non-tillage practices that

favour native species. As a result, the dominant stink bugs

in crops are currently native species such as Euschistus
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heros (Fabricius) (Pentatomidae) in hot regions (e.g., cen-

tral and north Brazil) (Aquino et al., 2019) and P. guildinii

in cold regions (e.g., southern Brazil, Paraguay, Uruguay,

and Argentina) (Panizzi & Lucini, 2016). Other than N.

viridula, no serious problems have been observed with

invasive stink bugs in South America. However, because in

recent years H. halys and B. hilaris have been reported in

Chile, both species represent a serious threat to South

American agriculture (Fa�undez et al., 2016; Fa�undez &

Rider, 2017).

Classical and inundative biological control

The use of parasitoids for stink bug management in Brazil

started in the 1990s with inundative biological control as

part of an IPM program developed in the southern region

of the country (Parana state). This biocontrol program

was based on the use of the exotic Tr. basalis, which was

already established in South America for the biological

control of N. viridula, the main soybean pest at that time,

and was shown to be especially useful for small to medium

cultured areas surrounded by rivers. After demonstrating

effective levels of control, the program was extended to

more than 18 000 ha (Corrêa-Ferreira et al., 2000;

Corr̂ea-Ferreira, 2002). In spite of its success, the program

was eventually abandoned by growers who adopted new

cropping systems with non-tillage practices, transgenic

cultivars, and pest management based on cheap insecti-

cides (Panizzi, 2013).

In Brazil, current efforts focus on E. heros control with

Te. podisi as its main natural enemy. Because of the high

dispersal capacity of this parasitoid, release of large num-

bers of individuals (ca. 5 000 individuals ha�1) is neces-

sary (Corrêa-Ferreira, 2002), requiring the rearing not

only of many wasps but also their host. Mass rearing sys-

tems for stink bugs, including the use of artificial diets,

have improved parasitoid production (Silva et al., 2008;

Mendoza et al., 2016; Hayashida et al., 2018; Silva et al.,

2018). This rearing system, together with new technologies

– such as the preservation of host eggs and parasitoids at

low temperatures until field release (Silva et al., 2018), pro-

tection of parasitized eggs in cardboard capsules, drone-

based deployment systems, and accurate spatio-temporal

field releases – could favour biocontrol programs in the

near future. The high susceptibility of egg parasitoids to

insecticides (Corrêa-Ferreira et al., 2010) is also important,

so the identification and use of selective products are criti-

cal for successful inundative biocontrol strategies (Stecca

et al., 2017). The commercial production of Te. podisi in

Brazil is currently under consideration for license

approval, which will allow a wider availability of para-

sitoids to growers.

In Argentina, a biocontrol program against N. viridula

was implemented in 1981 with the introduction of Tr.

basalis from Australia. A few years after the release of Tr.

basalis, N. viridula was reduced to low densities (Crouzel

& Saini, 1983). This was the only classical biocontrol effort

for stink bugs in Argentina, and no subsequent evaluations

were made regarding the success of the biocontrol pro-

gram in the regions of release (Molinari et al., 2008).

In Uruguay, a multi-institution project was launched in

2005 that combined public and private interests for mass

rearing and release of Te. podisi, with the aim of increasing

the levels of parasitism of P. guildinii and reducing the use

of insecticides. Releases were initially made of parasitized

eggs as a source of parasitoids, but because of high levels of

natural predation, adult wasps were released in the second

stage of the project. Post-release parasitism of P. guildinii

eggs by Te. podisi in two regions (Dolores and Paysand�u)

was 67 and 69%, respectively, which was higher than natu-

ral parasitism in areas without releases, i.e., 52 and 47%

respectively (Castiglioni et al., 2007).

Conservation biological control and semiochemical-based strategies
to enhance parasitoid efficacy

Because of the high diversity of natural enemies

(Cingolani, 2012), especially of egg parasitoids (Scelion-

idae), which can reach high natural parasitism rates of 60–
80% (Corrêa-Ferreira & Moscardi, 1995; Cingolani et al.,

2014a,b; Paz-Neto et al., 2015; Zerbino & Panizzi, 2019),

conservation biological control appears to be an effective

approach for stink bug management in South America.

However, due to the expansion of agricultural fields, land-

scape and habitat management may be necessary to

enhance the ecological services provided by parasitoids

(Aquino et al., 2019). Other tools that could improve con-

servation biological control of stink bugs include the

recruitment of parasitoids using semiochemicals (Vieira

et al., 2013, 2014) and the use of soybean cultivars produc-

ing volatiles attractive to parasitoids (Michereff et al.,

2014, 2016). Moreover, attract-and-reward (Simpson

et al., 2011) and push-pull (Khan et al., 2016) strategies

could increase parasitism rates of semiochemically or nat-

urally attracted parasitoids in the field. The potential of

flowering plants to improve Tr. basalis attraction and par-

asitism rates ofN. viridula eggs has also been demonstrated

(Foti et al., 2017, 2019). An attract-and-reward strategy for

Te. podisi and other species of South American scelionids

is under investigation (RA Laumann, MF Aquino, MC

Blassioli Moraes & M Borges, unpubl.). Conservation bio-

logical control of N. viridula and semiochemical-based

strategies against stink bugs are also discussed more in

detail below.
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Case study 6: Conservation biological control of
Nezara viridula

Global pest status of Nezara viridula

Perhaps as a result of climate warming, N. viridula seems

to be rapidly expanding its range in both hemispheres to

regions that were previously not warm enough to sustain

the survival of the species. For instance, in Japan, N. viri-

dulawas confined to the southwestern part of the archipe-

lago since its earliest record there in the late 19th century.

However, the species has recently expanded its range into

the warm-temperate zone and now reaches the central part

of the archipelago (Tougou et al., 2009). Similarly,N. viri-

dula is currently expanding its geographical range in Eur-

ope to the north (Salisbury et al., 2009; Marcu & Grozea,

2018). Reports of its occurrence have been documented in

Slovakia (Hemala & Kment, 2017) and in The Nether-

lands, where an estimated 10-15% of sweet pepper green-

houses were infested in 2019 (H Hoogerbrugge, pers.

comm.). Currently, N. viridula is considered a key pest in

only a limited number of agricultural crops, mainly toma-

toes and legumes (Esquivel et al., 2018). Changes in geo-

graphical distribution may profoundly affect its status as

agricultural pest, particularly in the newly invaded areas.

Given the need for sustainable management solutions, the

possibility of combining the release of natural enemies

with cost-effective approaches that involve habitat manip-

ulation as a conservation biocontrol measure can be a

valuable alternative to pesticides for controlling stink bug

populations (Tillman, 2017).

Conservation biological control: habitat manipulation and cultural
practices

Conservation biological control comprises a variety of

methods, including habitat manipulation and cultural

practices that aim at supporting natural enemy popula-

tions in the vicinity and within agricultural areas and thus

reducing herbivory on crops (Gontijo, 2019). A particu-

larly favoured measure is the planting of flower strips to

provide parasitoids and predators with sugar resources,

shelter, alternative prey, and a suitable microclimate

(Gonz�alez-Chang et al., 2019). Although increasing habitat

diversity per se may not lead to a consistent enhancement

of pest control (Karp et al., 2018), it has been advocated

that the ‘right kind of diversity’ is necessary, meaning that

the traits of selected flowering plants must match the

requirements of the targeted biocontrol agent (van Rijn &

W€ackers, 2016). For example, corolla length and floral

scent have been shown to be decisive features that confer a

certain degree of specificity in the interactions between

flowers and visiting insects (Tillman, 2017). In recent

years, conserving and enhancing natural enemies for

controlling phytophagous stink bugs by providing floral

resources have been receiving increased interest (Tillman,

2017). Several studies have demonstrated that a strategic

arrangement of flowering plants can attract and enhance

the efficacy of these parasitoids (Tillman, 2017). In the

southeastern USA, where peanuts and cotton are widely

grown, stink bugs such as N. viridula and Chinavia hilaris

(Say) (Pentatomidae) have become important pests in cot-

ton. Field experiments with potted milkweed, Asclepias

curassavica L. (Apocynaceae), placed at peanut-cotton

interfaces to serve as a nectar source for natural enemies,

showed that parasitism of both adult stink bug species was

significantly higher in the 2 years of the experiment. In this

case, parasitism was mainly due to the tachinid fly Tric.

pennipes (Tillman & Carpenter, 2014). Similarly, flowering

buckwheat, Fagopyrum esculentum Moench (Polygo-

naceae), was able to increase the efficacy of Tric. pennipes

parasitizingN. viridula in cotton (Tillman, 2017).

Studies conducted in Sicily, Italy, have shown differing

impacts of buckwheat floral nectar on the abundance of

Tr. basalis and O. telenomicida, two sympatric egg para-

sitoids ofN. viridula (Foti et al., 2017, 2019). In the case of

Tr. basalis, laboratory tests to screen for suitable non-crop

plants showed that buckwheat and basil flowers have a

positive effect on parasitoid longevity (Rahat et al., 2005;

Foti et al., 2017). Buckwheat was more attractive to Tr.

basalis than other companion plants because of character-

istic compounds in the floral scent (Foti et al., 2017).

When buckwheat margins were grown alongside tomato

plots, Tr. basalis located and parasitized more N. viridula

egg masses during the growing season (Foti et al., 2019).

However, such beneficial effects cannot be generalized and

may not apply to allN. viridula egg parasitoids. In fact, lab-

oratory tests showed that buckwheat scent repels femaleO.

telenomicida and flowering buckwheat margins fail to

increase stink bug parasitism under field conditions (Foti

et al., 2019). Although a beneficial effect overall can be

expected due to the dominance of Tr. basalis, the possibil-

ity that there may be contrasting effects of floral scent

within the parasitoid guild highlights the importance of

selecting appropriate companion plants on a case-by-case

basis. Researchers might even need to go one step further,

as it can be necessary to select not only a suitable species

but also the right cultivar of a given companion plant.

Field studies in Florida, USA, for instance, demonstrated

large differences between three sweet alyssum varieties,

Lobularia maritima (L.) Desv. (Brassicaceae), in attracting

predators of N. viridula when grown within tomato crops

(Haseeb et al., 2018). Another obstacle for conservation

biological control of N. viridula is the fact that parasitoids

such as Tr. basalis tend to stay within a limited range of the

flower margin, rather than moving deeper into the crop.
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Future work will need to focus on the question of how this

obstacle can be overcome. Parasitoid distribution could be

enhanced, e.g., by planting flower strips within fields and

using modern GPS technology to avoid accidental spray-

ing. Large-scale trials testing this concept are currently

underway in the UK (ASSIST programme; https://www.as

sist.ceh.ac.uk).

Future prospects for improving stink bug control

The role of biological control in reducing invasive pest

populations is widely recognized, although only a small

amount (around one-tenth) of past natural enemy intro-

ductions provided satisfactory control (Cock et al., 2016).

Therefore, because of the generally low economic injury

levels of stink bugs (McPherson, 2018), it is not surprising

that the efficacy of egg parasitoids alone is often insuffi-

cient to keep their populations under control; although it

could be improved through conservation biological con-

trol (see case study 6) and applied chemical ecology meth-

ods (see below). Additionally, the prospects for integrating

biological control with other sustainable control methods

could improve stink bug control efficacy (Figure 1).

Below, we review prospective methods for improving the

efficacy of egg parasitoids and, when available, parasitoids

attacking adults by using a chemical ecology approach.

Also, we evaluate their possible integration with other sus-

tainablemethods targeting stink bugs.

Chemical ecology for manipulating parasitoid behaviour

In recent years, the development of semiochemical-based

tactics has increased greatly, as they are considered effi-

cient tools for manipulating insect behaviour with the aim

of enhancing the biological control of crop pests (Wajn-

berg & Colazza, 2013). Feeding and/or oviposition by her-

bivorous insects induce changes in a plant’s

ecophysiological traits and their emission of volatile

organic compounds (VOCs), either as herbivore-induced

plant volatiles (HIPVs) or oviposition-induced plant vola-

tiles (OIPVs) (Hilker & Fatouros, 2015; Pashalidou et al.,

2015). Changes in VOC emission can occur locally and/or

systemically and at either quantitative or qualitative levels

(Dicke & van Loon, 2000; Martinez et al., 2013). Emission

of HIPVs or OIPVs might alert the neighbouring plants of

the same or other species (Baldwin & Schultz, 1983; Ari-

mura et al., 2000; Karban &Maron, 2002) and/or act as an

indirect plant defence by recruiting natural enemies of the

herbivorous insects (Meiners & Peri, 2013; Hilker &

Fatouros, 2015; Pashalidou et al., 2015). Many parasitoids

and predators are known to respond to HIPVs or OIPVs

during their host/prey location behaviour and can dis-

criminate between volatiles produced by undamaged or

infested plants (D’Alessandro & Turlings, 2006; Hare,

2011).

Egg parasitoids in systems involving stink bugs optimize

their foraging behaviour by efficiently exploiting OIPVs

(Conti & Colazza, 2012). OIPVs reliably indicate the pres-

ence of host eggmasses and are produced by plants in large

quantities, making them easily detectable (Fatouros et al.,

2008; Conti & Colazza, 2012). For example, Tr. basalis

(Colazza et al., 2004a,b; Frati et al., 2017; Salerno et al.,

2019) and Te. podisi (Blassioli Moraes et al., 2005, 2009;

Michereff et al., 2011) are attracted to leguminous plants

infested by N. viridula or E. heros respectively. By provid-

ing reliable information to female egg parasitoids on the

presence of suitable target hosts, OIPVs increase wasp

recruitment on the host-infested plants, likely increasing

parasitism rates.

Feeding and oviposition by the zoophytophagous

predator P. maculiventris also induce the emission of

VOCs in Vicia faba L. (Fabaceae) plants that attract Te.

podisi females (Martorana et al., 2019). Interestingly, both

Tr. basalis (Martorana et al., 2017; Rondoni et al., 2017)

and Te. podisi (Martorana et al., 2019) show specificity in

their response to OIPVs emitted by infested plants, as nei-

ther species are attracted by plants on which the alien H.

halys had fed and oviposited. This lack of response, proba-

bly due to the absence of a history of coevolution between

the interacting species, might allow egg parasitoids to opti-

mize their time and energy budgets by exploiting cues only

from suitable (coevolved) hosts (Martorana et al., 2017,

2019).

Stink bug activity may also leave short-range cues that

are exploited by egg parasitoids once they have landed on

plants. For instance, Tr. brochymenae shows an intense egg

foraging behaviour on the leaf surface, exploiting sub-

strate-borne chemical cues emitted by brassicaceous plants

as a consequence of feeding and oviposition ofM. histrion-

ica (Conti et al., 2010). Several egg parasitoids are also able

to detect chemical traces released by stink bugs and

retained by the plant epicuticular waxes (Conti et al., 2003;

Colazza et al., 2009; Frati et al., 2013; Boyle et al., 2020).

Trissolcus basalis females were shown to discriminate

traces left by N. viridula females from those left by males,

due to the absence of n-nonadecane, a cuticular hydrocar-

bon present in N. viridula males but absent in females

(Colazza et al., 2007). In doing so, wasps can restrict their

searching behaviour to an area of the plant where host eggs

aremore likely to be found.

Laboratory studies that demonstrated the role of HIPVs,

OIPVs, and contact cues inmediating host searching beha-

viour of egg parasitoids have opened up new opportunities

for developing strategies for herbivorous stink bug control.

However, the application of semiochemical-based

12 Conti et al.

1
2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25
26

27

28

29

30

31

32

33
34

35

36

37

38

39

40

41
42

43

44

45

46

47

48

49
50

51

52

https://www.assist.ceh.ac.uk
https://www.assist.ceh.ac.uk


techniques in the field is often difficult and provides results

that are sometimes inconsistent. Several potential limita-

tions and risks have been reported in the literature, includ-

ing a potential increase in intraguild predation on natural

enemies that in turn induces a reduction in the top-down

control of the pests (Poelman & Kos, 2016; Peri et al.,

2018). These techniques are applied in complex environ-

ments in which plants are subjected to various biotic and

abiotic stresses and in which several intra- and inter-speci-

fic interactions can occur simultaneously. For example,

the chewing damage from Sitona lineatus (L.) (Coleoptera:

Curculionidae), whose adults feed on leaves and larvae

feed on roots, induces a change in the OIPV profile emit-

ted by V. faba plants that are concurrently infested by N.

viridula, which in turn reduces the recruitment of the lat-

ter’s egg parasitoid Tr. basalis (Moujahed et al., 2014).

Similar disruptive effects on host egg location by para-

sitoids were observed in the presence of concurrent infes-

tations of both alien (H. halys) and local (N. viridula or P.

maculiventris) stink bugs (Martorana et al., 2017, 2019).

Moreover, changes in the volatile blend emitted by plants

infested by stink bugs that resulted in modification of egg

parasitoid searching behaviour were also observed as a

result of abiotic factors, such as water stress (Salerno et al.,

2017).

To manipulate parasitoid behaviour on crops, semio-

chemicals can be applied directly onto the plants by spray-

ing or by using slow-release dispensers, their emission can

be induced by applying elicitors such as plant hormones

(JA, methyl jasmonate, cis-jasmone, and SA) or plants

themselves could be genetically engineered to increase

their emission of HIPVs (Blassioli Moraes et al., 2013;

Colazza et al., 2013; Simpson et al., 2013; Peri et al., 2018).

However, few examples are reported in the literature on

parasitoids of stink bugs, and the results are somewhat

contradictory. Positive results were obtained in attracting

the tachinid parasitoid Gymnosoma rotundatum (L.) to

persimmon orchards using methyl (E,E,Z)-2,4,6-deca-

trienoate, the aggregation pheromone of the brown-

winged green stink bug Plautia stali Scott (Pentatomidae)

(Jang & Park, 2010; Jang et al., 2011). Positive results were

also obtained in soybean crops using the aggregation pher-

omone of Riptortus pedestris (= clavatus) (Fabricius)

(Hemiptera: Alydidae), which led to an increased abun-

dance of its egg parasitoids, Ooencyrtus nezarae Ishii

(Encyrtidae) and Gryon japonicum (Ashmead) (Scelion-

idae) (Lim & Mainali, 2013). Similarly, application of a

racemic mixture of methyl 2,6,10-trimethyltridecanoate, a

component of E. heros pheromone, attracted scelionid egg

parasitoids (Borges et al., 1998). Conversely, although an

increase in parasitoid recruitment in soybean fields was

observed by using slow-release dispensers impregnated

with (E)-2-hexenal, a compound present in the metatho-

racic glands of E. heros (Laumann et al., 2007), a more in-

depth study demonstrated only early parasitoid recruit-

ment but not a sustained increase in abundance (Vieira,

2010). Moreover, the application of cis-jasmone in soy-

bean plants had positive effects on the foraging behaviour

of scelionid stink bug egg parasitoids, leading to an

increase in their abundance (Blassioli Moraes et al., 2009;

Vieira, 2010), but this did not lead to an improvement of

parasitism rate (Vieira et al., 2013). Parasitoid recruitment

using semiochemicals can be affected by the experience of

the foraging females, for example when the hosts are scarce

or lacking. Without the reward of suitable host eggs, sce-

lionid parasitoid females were shown to reduce their

responses to semiochemicals due to habituation (Peri

et al., 2006, 2016; Abram et al., 2017a). Additionally, most

parasitoids are more dependent on other cues than those

from the host-plant complex, such as floral odours from

nectar plants. Therefore, manipulating the habitat by cre-

ating ecological infrastructures, e.g., using companion

flowering plants such as buckwheat that serve as feeding

sites for recruitment of stink bug egg parasitoids, might

increase parasitism efficacy (see case study 6). The integra-

tion of semiochemical-based manipulation of parasitoid

behaviour and habitat manipulation, e.g., the attract-and-

reward strategy (Khan et al., 2008; Simpson et al., 2011),

might limit the possible negative effects of parasitoid

recruitment in the absence of hosts.

Chemical ecology for manipulating stink bug behaviour

The use of semiochemicals against stink bugs might be

combined with biological control to increase pest control

efficacy within organic farming systems. The chemical

ecology of stink bugs is characterized by a wide array of

signals that drive their behaviour at both intra- and

inter-specific levels. Although sex and aggregation phero-

mones of stink bugs are commonly used as lures for

trapping (Borges et al., 1998, 2011; Leskey & Nielsen,

2018), few studies have reported the application of other

semiochemicals.

Stink bugs exploit host plant volatiles to find their feed-

ing and oviposition substrates (Martinez et al., 2013; Guar-

ino et al., 2017a; Weber et al., 2018). The types of

semiochemicals they use depend on their feeding habits

and their level of polyphagy. Polyphagous species respond

to blends of common plant volatiles in precise propor-

tions, whereas monophagous and oligophagous species

are more attracted by key plant-specific compounds

(Guarino et al., 2017a). For example, Eurydema pulchrum

Westwood (Pentatomidae) positively responds to volatiles

from host plants belonging to different families, such as

Brassica oleracea L., Raphanus sativus L. (Brassicaceae) and
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Solanum lycopersicum L. (Solanaceae) (Rather et al., 2010).

In contrast, B. hilaris, a specialist of Brassicaceae that exhi-

bits a strong preference for certain species at the seedling

stage (Huang et al., 2014; Guarino et al., 2017b), preferred

B. oleracea and B. napus over B. carinata. This behaviour

seems to be mediated by a novel diterpene hydrocarbon,

still uncharacterized, emitted by B. oleracea and B. napus

butmissing in B. carinata blends (Guarino et al., 2018).

Stink bug preference for certain host plant species could

be exploited for pest management using trap crops, which

rely on an attractive host plant to arrest the pest and/or to

concentrate it in certain zones of the field, where it can be

eliminated (Hokkanen, 1991). Trap crops have shown the

potential to effectively manage stink bugs in conventional

and organic crop production systems (Todd & Schumann,

1988; Tillman, 2006). For example, the use of sorghum as

a trap crop forN. viridula reduced insecticide applications

in cotton, and black mustard used as a trap in sweet corn

reduced pest damage by 22% (Rea et al., 2002; Tillman,

2006). Similarly, soybean and a mixture of triticale, sor-

ghum, and sunflower were successfully used as trap crops

in cotton fields for Euschistus servus (Say), C. hilaris, and

N. viridula (Mizell et al., 2008; Tillman et al., 2015). The

efficacy of the trap crop technique has also been demon-

strated by combining it with pheromone-baited traps for

suppressing E. servus attacking cotton. Such combinations

of attractant stimuli increased the trap crop effectiveness

in terms of numbers of attracted individuals and also con-

sistently reduced the dispersal of E. servus in cotton fields

(Tillman & Cottrell, 2012) and of P. stali in kaki persim-

mon orchards (Yamanaka et al., 2011). Recently, trap

crops have been used for the management of invasive stink

bug species. For example, H. halys has been controlled in

pepper fields by using sunflower alone or in combination

with sorghum as trap crops (Soergel et al., 2015; Mathews

et al., 2017).

The use of trap crops for stink bug control may be par-

ticularly useful because there are few biologically based

strategies that are available for the suppression of stink

bugs in small organic farms or homeowner gardens

(Mathews et al., 2017). Trap cropping might lead to (1)

reduction in the use of pesticides, thus reducing the cost of

pest control; (2) reduction in the selective pressure for

development of pest resistance; and (3) preservation of

natural enemies (Gordon et al., 2017). However, none of

the cases reported have yet led to commercial implementa-

tion (Weber et al., 2018).

In order to manipulate pest behaviour more effectively,

the trap crop technique can also be implemented by using

a stimulus that is deterrent or repellent in nature, applied

on the crop, leading to a push-pull strategy (Pickett et al.,

2014). Information on the successful application of this

strategy against stink bugs is scarce. However, a study car-

ried out by Zhang et al. (2014) showed that several plant

extracts obtained from clove, lemongrass, spearmint oil,

and ylang-ylang plants acted as repellents toward H. halys

and could be candidates as ‘push stimuli’ for this pest. The

repellent stimuli could be used as extracts in dispensers or

as intercropping plants to repel the pest that simultane-

ously could be attracted by a trap crop that serves as a ‘pull

stimulus’.

Intercropping with a non-host plant can directly reduce

the damage to cash crops by masking the host from the

pests, as some plantsmight have a repellent effect on herbi-

vores (Smith & McSorley, 2000). In stink bug manage-

ment, intercropping soybean with millet, cow pea, and

groundnut reduced damage by N. viridula by 50% com-

pared with a system containing soybean and millet only

(Sastawa et al., 2004).

Future research on behavioural manipulation of stink

bugs will be able to take advantage of new genomic and

transcriptomic technology (Sparks et al., 2014) to identify

the genes responsible for their pheromone production and

behavioural responses to various odours. The objective

will be, for example, to use plants or yeasts as ‘factories’ of

stink bug attractants that can be used as ‘dead end’ trap

crops (Møldrup et al., 2012).

Prospects for additional sustainable control methods

Additional sustainable control methods that could be con-

sidered in combination with parasitoids within organic

farming systems include implementation of vibratory cues

to disrupt stink bug sexual communication (Laumann

et al., 2017; �Cokl et al., 2019; Polajnar et al., 2019), direct

plant resistance (Rondoni et al., 2018; Serteyn et al., 2020),

exploitation of stink bug entomopathogens (Hajek et al.,

2018), exclusion netting for fruit orchards (Candian et al.,

2018), attract-and-kill methods (Morrison et al., 2019),

and a novel mode of application of the sterile insect tech-

nique that combines the release of sterilized stink bugs

with sterile parasitoids for pest eradication (Horrocks

et al., 2020). Several of these possible methods are dis-

cussed below.

The reproductive behaviour inmany stink bug species is

mediated by multimodal communication, based on long-

range attraction on a common substrate via chemical sig-

nals and the involvement of combinations of vibratory,

chemical, and visual cues during calling and courtship

behaviours (�Cokl et al., 2019). Vibratory signals have been

proposed as tools for mass trapping, using a bi-modal trap

based on the aggregation pheromone and vibratory signal

(Polajnar et al., 2019), and for mating disruption (Lau-

mann et al., 2017). Considering that females of Te. podisi

specifically respond to stink bug vibratory signals for
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spatial orientation, such signals might also be exploited for

parasitoid recruitment on infested crops (Laumann et al.,

2017).

Host plant (V. faba) resistance to stink bugs has been

investigated recently at the biological, molecular, and

behavioural level (Rondoni et al., 2018; Serteyn et al.,

2020). Rondoni et al. (2018) showed that plants recognize

H. halys oviposition as a warning signal and respond by

activating defences against H. halys nymphs, resulting in

reduced size of juvenile offspring. This is possibly related

to the priming of JA-dependent genes, including a cysteine

proteinase inhibitor. The use of proteinase inhibitors in

agriculture can be implemented through the development

of transgenic plants, the use of recombinant microorgan-

isms, or production of biopesticides (reviewed by

Rodr�ıguez-Sifuentes et al., 2020).

Conclusions

This review summarises more than a century of research

on the biological control of invasive stink bugs. Invasive

stink bugs are difficult to control, especially when they

have already colonized entire regions and population out-

breaks have occurred. A new pest often spreads rapidly

after its introduction, and effective management is often

subject to delays while available short-term tools are iden-

tified and a classical biological control program is initiated.

Pre-emptive biological control is an innovative strategy for

appropriate situations to reduce delays in research and

implementation, by preparing in advance for the arrival of

a pest.When a pest has already established in a new region,

classical biological control can be an effective means of

reducing the reservoir of populations in the wider land-

scape, thus reducing immigration to crops. However, clas-

sical biological control of stink bugs has limitations that

have been addressed here and have been recently analysed

by Abram et al. (2020). Using stage-structured matrix

models, these authors showed that stink bug mortality at

the adult stage would be expected to provide a greater

reduction of population growth than mortality at the egg

stage and that a multi-tactic approach targeting different

stages would be much more effective in reducing popula-

tions below the economic injury level. Here, we show that

egg parasitoids are the most common natural enemies of

stink bugs globally, and for this reason they have been the

most commonly studied parasitoids of stink bugs. How-

ever, parasitoids attacking adults also provide interesting

perspectives, although these are only known for a few inva-

sive stink bug species.

The combination of classical biological control fol-

lowed by conservation methods and integrated with

other sustainable control methods targeting the various

instars should provide interesting prospects for the

improvement of stink bug control efficacy (Figure 1).

Conservation biological control, through a provision of

suitable nectar-producing flowering plants, can attract

and improve the efficacy of both parasitoids attacking

adults (Tillman & Carpenter, 2014; Tillman, 2017) and

egg parasitoids (Foti et al., 2017, 2019). The application

of semiochemicals on crops or inducing them in plants

by applying elicitors might also facilitate recruitment of

parasitoid species attacking adults (Jang & Park, 2010;

Jang et al., 2011) or eggs (Borges et al., 1998; Lim &

Mainali, 2013), although a consequent improvement of

parasitism has yet to be demonstrated with these appli-

cations (Blassioli Moraes et al., 2009; Vieira, 2010;

Vieira et al., 2013). Th 6e attract-and-reward strategy,

which combines behavioural manipulation and habitat

manipulation, might further improve parasitoid effi-

cacy (Khan et al., 2008; Simpson et al., 2011). Semio-

chemicals can be used to manipulate not only natural

enemies but also stink bug behaviour by using either

trap crops (Todd & Schumann, 1988; Tillman, 2006;

Nielsen et al., 2016) or push-pull strategies (Pickett

et al., 2014). Moreover, future tactics might exploit

vibratory cues to disrupt stink bug sexual communica-

tion (Laumann et al., 2017; �Cokl et al., 2019; Polajnar

et al., 2019) or direct plant resistance (Rondoni et al.,

2018). Ultimately, as most research has been conducted

only under laboratory conditions, there is an urgent

need for field validation of these data before effective

implementation can become a reality.
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Corrêa-Ferreira BS, Alexandre TM, Pellizzaro EC, Moscard F &

Bueno AF (2010) Pr�aticas de manejo de pragas utilizadas na

soja e seu impacto sobre a cultura. Embrapa Soja Circular

T�ecnica 78: 16.

Corrêa-Ferreira BS, Domit LA, Morales L & Guimar~aes RC

(2000) Integrated soybean pest management in micro river

basins in Brazil. Integrated PestManagement Review 5: 75–80.
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We present a century of classical biological control of invasive stink bugs and review the biocontrol strategies on a global scale.

These strategies include classical, augmentative, and conservation BC, as well as innovative proactive classical biological control, all

of which are described through case studies. Based on information on stink bug and parasitoid chemical ecology, we discuss semio-

chemical-based approaches and other methods to increase natural enemy efficacy and to manage stink bug pests as part of sustain-

able control strategies.




