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Abstract: Poisson point processes are widely used to model the consumption of spare parts. However, 

when the items have very low consumption rates, the historical sample sizes are too small. This paper 

presents a modelling technique for spare parts policies in the case of items with a low consumption rate. 

We propose the use of chaotic models derived from the well-known chaotic processes logistic map and 

Hénon attractor to assess the behaviour of a set of five medium voltage motors supplying four drives in 

the rolling mill of a steelmaking plant. Supported by the chaotic models, we conclude that the company 

needs an additional motor to ensure full protection against shortages. 
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1. INTRODUCTION 

Manufacturing operations management includes the 

management of the materials needed for machine 

maintenance (Marquez and Gupta, 2006). Common 

maintenance materials used by various maintenance crews, 

such as paints, grinding wheels, or welding, usually follow 

predictable consumption patterns. Crews can also share 

technical materials, such as bearings, circuit breakers, and 

lamps, whose consumption, although lower, is still 

predictable. Finally, spare parts are specific to certain 

machines and usually have erratic, unpredictable 

consumption patterns (Huiskonen, 2001; Lengu et al., 2014). 

Common maintenance and technical materials have regular 

consumption patterns modelled by exponential, normal, 

lognormal distribution or other well-fitted distributions (Rego 

and Mesquita, 2015). Logistics techniques, such as demand 

forecasting, reorder point (i.e. the level of inventory that 

triggers the replenishment) and the management of the 

replenishment time can increase the likelihood of success in 

their purchasing and replenishment operations (Guajardo et 

al., 2015; Garg and Deshmukh, 2006). 

Maintenance procedures and the management of spare parts 

require a specific type of human-machine interaction. 

Maintenance crews interact with industrial machinery by 

breakdown interventions, when the production runs into 

unscheduled stoppages, solved as quickly as possible by 

replacing the damaged parts. Maintenance crews also interact 

by means of preventive procedures, scheduled by 

probabilistic methods, to be implemented before the next 

stoppage. Finally, by predictive procedures, maintenance 

crews monitor the evolution of the main failure modes and 

gather data to forecast, the time up to the next stoppage. 

Spare parts policies play an important role in these three 

types of human-machine interaction (Tsang, 2002; Sherwin, 

2000).  

Regarding spare parts, due to the erratic behavior 

characterized by the low consumption rate (Lengu et al., 

2014), the reorder point and management of the 

replenishment time may not suffice. The low consumption of 

parts leads to major difficulties in the management process 

(Cavalieri et al., 2008). In fact, sometimes, the consumption 

is zero, because the spare part may be stored for long periods, 

without being required, as the original part remains fully 

functioning. In advanced manufacturing, the obsolescence of 

spare parts, even before their employment, is not uncommon 

(Luxhøj et al., 1997). 

The application of logistic techniques such as Poisson 

processes, appropriate for predictable, high consumption 

rates, may fail with erratically performing items. Due to small 

samples, confidence intervals are excessively large, 

weakening the power of the technique. Moreover, 

manufacturing has recently incorporated features from 

complex adaptive systems (CAS), with non-linearities and 

mutual interactions among components leading to 

unpredictability. This complexity justifies using machine 

learning tools for predicting spare parts consumption (e.g. 

Lolli et al., 2017). Logistic techniques relying on complex or 

chaotic models, rather than on predictable and high 

consumption patterns, are also effective in such cases 

(Efthymiou et al., 2014). 

This paper presents a modelling technique for the analysis of 

spare parts policies of items with a low consumption rate. 

The research method relies on chaotic models. The research 

object is a set of four 1,500 HP AC motors that drive rolling 

mills in a steelmaking plant. The modelled variable is the 

time between failures that require changing one of the four 

Proceedings,16th IFAC Symposium on
Information Control Problems in Manufacturing
Bergamo, Italy, June 11-13, 2018

Copyright © 2018 IFAC 964

     

Spare Parts Replacement Policy Based on Chaotic Models 
 

Miguel A. Sellitto*. Elia Balugani**. Francesco Lolli*** 
 

*Production and Systems Engineering Graduate Program, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS 

93022750, Brazil (Tel: 55 51 35911122; e-mail: sellitto@ unisinos.br) 

** Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Via Amendola 2, 

Padiglione Morselli, 42122 Reggio Emilia, Italy (e-mail: elia.balugani@unimore.it) 

*** Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Via Amendola 2, 

Padiglione Morselli, 42122 Reggio Emilia, Italy (e-mail: francesco.lolli@unimore.it) 

Abstract: Poisson point processes are widely used to model the consumption of spare parts. However, 

when the items have very low consumption rates, the historical sample sizes are too small. This paper 

presents a modelling technique for spare parts policies in the case of items with a low consumption rate. 

We propose the use of chaotic models derived from the well-known chaotic processes logistic map and 

Hénon attractor to assess the behaviour of a set of five medium voltage motors supplying four drives in 

the rolling mill of a steelmaking plant. Supported by the chaotic models, we conclude that the company 

needs an additional motor to ensure full protection against shortages. 

Keywords: Maintenance; Reliability; Safety; Complex Adaptive Systems; Maintenance Strategy, Spare 

Parts; Poisson Processes; Chaos; Steelmaking; Rolling Mills. 

 

1. INTRODUCTION 

Manufacturing operations management includes the 

management of the materials needed for machine 

maintenance (Marquez and Gupta, 2006). Common 

maintenance materials used by various maintenance crews, 

such as paints, grinding wheels, or welding, usually follow 

predictable consumption patterns. Crews can also share 

technical materials, such as bearings, circuit breakers, and 

lamps, whose consumption, although lower, is still 

predictable. Finally, spare parts are specific to certain 

machines and usually have erratic, unpredictable 

consumption patterns (Huiskonen, 2001; Lengu et al., 2014). 

Common maintenance and technical materials have regular 

consumption patterns modelled by exponential, normal, 

lognormal distribution or other well-fitted distributions (Rego 

and Mesquita, 2015). Logistics techniques, such as demand 

forecasting, reorder point (i.e. the level of inventory that 

triggers the replenishment) and the management of the 

replenishment time can increase the likelihood of success in 

their purchasing and replenishment operations (Guajardo et 

al., 2015; Garg and Deshmukh, 2006). 

Maintenance procedures and the management of spare parts 

require a specific type of human-machine interaction. 

Maintenance crews interact with industrial machinery by 

breakdown interventions, when the production runs into 

unscheduled stoppages, solved as quickly as possible by 

replacing the damaged parts. Maintenance crews also interact 

by means of preventive procedures, scheduled by 

probabilistic methods, to be implemented before the next 

stoppage. Finally, by predictive procedures, maintenance 

crews monitor the evolution of the main failure modes and 

gather data to forecast, the time up to the next stoppage. 

Spare parts policies play an important role in these three 

types of human-machine interaction (Tsang, 2002; Sherwin, 

2000).  

Regarding spare parts, due to the erratic behavior 

characterized by the low consumption rate (Lengu et al., 

2014), the reorder point and management of the 

replenishment time may not suffice. The low consumption of 

parts leads to major difficulties in the management process 

(Cavalieri et al., 2008). In fact, sometimes, the consumption 

is zero, because the spare part may be stored for long periods, 

without being required, as the original part remains fully 

functioning. In advanced manufacturing, the obsolescence of 

spare parts, even before their employment, is not uncommon 

(Luxhøj et al., 1997). 

The application of logistic techniques such as Poisson 

processes, appropriate for predictable, high consumption 

rates, may fail with erratically performing items. Due to small 

samples, confidence intervals are excessively large, 

weakening the power of the technique. Moreover, 

manufacturing has recently incorporated features from 

complex adaptive systems (CAS), with non-linearities and 

mutual interactions among components leading to 

unpredictability. This complexity justifies using machine 

learning tools for predicting spare parts consumption (e.g. 

Lolli et al., 2017). Logistic techniques relying on complex or 

chaotic models, rather than on predictable and high 

consumption patterns, are also effective in such cases 

(Efthymiou et al., 2014). 

This paper presents a modelling technique for the analysis of 

spare parts policies of items with a low consumption rate. 

The research method relies on chaotic models. The research 

object is a set of four 1,500 HP AC motors that drive rolling 

mills in a steelmaking plant. The modelled variable is the 

time between failures that require changing one of the four 

Proceedings,16th IFAC Symposium on
Information Control Problems in Manufacturing
Bergamo, Italy, June 11-13, 2018

Copyright © 2018 IFAC 964
     

Spare Parts Replacement Policy Based on Chaotic Models 
 

Miguel A. Sellitto*. Elia Balugani**. Francesco Lolli*** 
 

*Production and Systems Engineering Graduate Program, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS 

93022750, Brazil (Tel: 55 51 35911122; e-mail: sellitto@ unisinos.br) 

** Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Via Amendola 2, 

Padiglione Morselli, 42122 Reggio Emilia, Italy (e-mail: elia.balugani@unimore.it) 

*** Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Via Amendola 2, 

Padiglione Morselli, 42122 Reggio Emilia, Italy (e-mail: francesco.lolli@unimore.it) 

Abstract: Poisson point processes are widely used to model the consumption of spare parts. However, 

when the items have very low consumption rates, the historical sample sizes are too small. This paper 

presents a modelling technique for spare parts policies in the case of items with a low consumption rate. 

We propose the use of chaotic models derived from the well-known chaotic processes logistic map and 

Hénon attractor to assess the behaviour of a set of five medium voltage motors supplying four drives in 

the rolling mill of a steelmaking plant. Supported by the chaotic models, we conclude that the company 

needs an additional motor to ensure full protection against shortages. 

Keywords: Maintenance; Reliability; Safety; Complex Adaptive Systems; Maintenance Strategy, Spare 

Parts; Poisson Processes; Chaos; Steelmaking; Rolling Mills. 

 

1. INTRODUCTION 

Manufacturing operations management includes the 

management of the materials needed for machine 

maintenance (Marquez and Gupta, 2006). Common 

maintenance materials used by various maintenance crews, 

such as paints, grinding wheels, or welding, usually follow 

predictable consumption patterns. Crews can also share 

technical materials, such as bearings, circuit breakers, and 

lamps, whose consumption, although lower, is still 

predictable. Finally, spare parts are specific to certain 

machines and usually have erratic, unpredictable 

consumption patterns (Huiskonen, 2001; Lengu et al., 2014). 

Common maintenance and technical materials have regular 

consumption patterns modelled by exponential, normal, 

lognormal distribution or other well-fitted distributions (Rego 

and Mesquita, 2015). Logistics techniques, such as demand 

forecasting, reorder point (i.e. the level of inventory that 

triggers the replenishment) and the management of the 

replenishment time can increase the likelihood of success in 

their purchasing and replenishment operations (Guajardo et 

al., 2015; Garg and Deshmukh, 2006). 

Maintenance procedures and the management of spare parts 

require a specific type of human-machine interaction. 

Maintenance crews interact with industrial machinery by 

breakdown interventions, when the production runs into 

unscheduled stoppages, solved as quickly as possible by 

replacing the damaged parts. Maintenance crews also interact 

by means of preventive procedures, scheduled by 

probabilistic methods, to be implemented before the next 

stoppage. Finally, by predictive procedures, maintenance 

crews monitor the evolution of the main failure modes and 

gather data to forecast, the time up to the next stoppage. 

Spare parts policies play an important role in these three 

types of human-machine interaction (Tsang, 2002; Sherwin, 

2000).  

Regarding spare parts, due to the erratic behavior 

characterized by the low consumption rate (Lengu et al., 

2014), the reorder point and management of the 

replenishment time may not suffice. The low consumption of 

parts leads to major difficulties in the management process 

(Cavalieri et al., 2008). In fact, sometimes, the consumption 

is zero, because the spare part may be stored for long periods, 

without being required, as the original part remains fully 

functioning. In advanced manufacturing, the obsolescence of 

spare parts, even before their employment, is not uncommon 

(Luxhøj et al., 1997). 

The application of logistic techniques such as Poisson 

processes, appropriate for predictable, high consumption 

rates, may fail with erratically performing items. Due to small 

samples, confidence intervals are excessively large, 

weakening the power of the technique. Moreover, 

manufacturing has recently incorporated features from 

complex adaptive systems (CAS), with non-linearities and 

mutual interactions among components leading to 

unpredictability. This complexity justifies using machine 

learning tools for predicting spare parts consumption (e.g. 

Lolli et al., 2017). Logistic techniques relying on complex or 

chaotic models, rather than on predictable and high 

consumption patterns, are also effective in such cases 

(Efthymiou et al., 2014). 

This paper presents a modelling technique for the analysis of 

spare parts policies of items with a low consumption rate. 

The research method relies on chaotic models. The research 

object is a set of four 1,500 HP AC motors that drive rolling 

mills in a steelmaking plant. The modelled variable is the 

time between failures that require changing one of the four 

Proceedings,16th IFAC Symposium on
Information Control Problems in Manufacturing
Bergamo, Italy, June 11-13, 2018

Copyright © 2018 IFAC 964

     

Spare Parts Replacement Policy Based on Chaotic Models 
 

Miguel A. Sellitto*. Elia Balugani**. Francesco Lolli*** 
 

*Production and Systems Engineering Graduate Program, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS 

93022750, Brazil (Tel: 55 51 35911122; e-mail: sellitto@ unisinos.br) 

** Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Via Amendola 2, 

Padiglione Morselli, 42122 Reggio Emilia, Italy (e-mail: elia.balugani@unimore.it) 

*** Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Via Amendola 2, 

Padiglione Morselli, 42122 Reggio Emilia, Italy (e-mail: francesco.lolli@unimore.it) 

Abstract: Poisson point processes are widely used to model the consumption of spare parts. However, 

when the items have very low consumption rates, the historical sample sizes are too small. This paper 

presents a modelling technique for spare parts policies in the case of items with a low consumption rate. 

We propose the use of chaotic models derived from the well-known chaotic processes logistic map and 

Hénon attractor to assess the behaviour of a set of five medium voltage motors supplying four drives in 

the rolling mill of a steelmaking plant. Supported by the chaotic models, we conclude that the company 

needs an additional motor to ensure full protection against shortages. 

Keywords: Maintenance; Reliability; Safety; Complex Adaptive Systems; Maintenance Strategy, Spare 

Parts; Poisson Processes; Chaos; Steelmaking; Rolling Mills. 

 

1. INTRODUCTION 

Manufacturing operations management includes the 

management of the materials needed for machine 

maintenance (Marquez and Gupta, 2006). Common 

maintenance materials used by various maintenance crews, 

such as paints, grinding wheels, or welding, usually follow 

predictable consumption patterns. Crews can also share 

technical materials, such as bearings, circuit breakers, and 

lamps, whose consumption, although lower, is still 

predictable. Finally, spare parts are specific to certain 

machines and usually have erratic, unpredictable 

consumption patterns (Huiskonen, 2001; Lengu et al., 2014). 

Common maintenance and technical materials have regular 

consumption patterns modelled by exponential, normal, 

lognormal distribution or other well-fitted distributions (Rego 

and Mesquita, 2015). Logistics techniques, such as demand 

forecasting, reorder point (i.e. the level of inventory that 

triggers the replenishment) and the management of the 

replenishment time can increase the likelihood of success in 

their purchasing and replenishment operations (Guajardo et 

al., 2015; Garg and Deshmukh, 2006). 

Maintenance procedures and the management of spare parts 

require a specific type of human-machine interaction. 

Maintenance crews interact with industrial machinery by 

breakdown interventions, when the production runs into 

unscheduled stoppages, solved as quickly as possible by 

replacing the damaged parts. Maintenance crews also interact 

by means of preventive procedures, scheduled by 

probabilistic methods, to be implemented before the next 

stoppage. Finally, by predictive procedures, maintenance 

crews monitor the evolution of the main failure modes and 

gather data to forecast, the time up to the next stoppage. 

Spare parts policies play an important role in these three 

types of human-machine interaction (Tsang, 2002; Sherwin, 

2000).  

Regarding spare parts, due to the erratic behavior 

characterized by the low consumption rate (Lengu et al., 

2014), the reorder point and management of the 

replenishment time may not suffice. The low consumption of 

parts leads to major difficulties in the management process 

(Cavalieri et al., 2008). In fact, sometimes, the consumption 

is zero, because the spare part may be stored for long periods, 

without being required, as the original part remains fully 

functioning. In advanced manufacturing, the obsolescence of 

spare parts, even before their employment, is not uncommon 

(Luxhøj et al., 1997). 

The application of logistic techniques such as Poisson 

processes, appropriate for predictable, high consumption 

rates, may fail with erratically performing items. Due to small 

samples, confidence intervals are excessively large, 

weakening the power of the technique. Moreover, 

manufacturing has recently incorporated features from 

complex adaptive systems (CAS), with non-linearities and 

mutual interactions among components leading to 

unpredictability. This complexity justifies using machine 

learning tools for predicting spare parts consumption (e.g. 

Lolli et al., 2017). Logistic techniques relying on complex or 

chaotic models, rather than on predictable and high 

consumption patterns, are also effective in such cases 

(Efthymiou et al., 2014). 

This paper presents a modelling technique for the analysis of 

spare parts policies of items with a low consumption rate. 

The research method relies on chaotic models. The research 

object is a set of four 1,500 HP AC motors that drive rolling 

mills in a steelmaking plant. The modelled variable is the 

time between failures that require changing one of the four 

Proceedings,16th IFAC Symposium on
Information Control Problems in Manufacturing
Bergamo, Italy, June 11-13, 2018

Copyright © 2018 IFAC 964

     

Spare Parts Replacement Policy Based on Chaotic Models 
 

Miguel A. Sellitto*. Elia Balugani**. Francesco Lolli*** 
 

*Production and Systems Engineering Graduate Program, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS 

93022750, Brazil (Tel: 55 51 35911122; e-mail: sellitto@ unisinos.br) 

** Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Via Amendola 2, 

Padiglione Morselli, 42122 Reggio Emilia, Italy (e-mail: elia.balugani@unimore.it) 

*** Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Via Amendola 2, 

Padiglione Morselli, 42122 Reggio Emilia, Italy (e-mail: francesco.lolli@unimore.it) 

Abstract: Poisson point processes are widely used to model the consumption of spare parts. However, 

when the items have very low consumption rates, the historical sample sizes are too small. This paper 

presents a modelling technique for spare parts policies in the case of items with a low consumption rate. 

We propose the use of chaotic models derived from the well-known chaotic processes logistic map and 

Hénon attractor to assess the behaviour of a set of five medium voltage motors supplying four drives in 

the rolling mill of a steelmaking plant. Supported by the chaotic models, we conclude that the company 

needs an additional motor to ensure full protection against shortages. 

Keywords: Maintenance; Reliability; Safety; Complex Adaptive Systems; Maintenance Strategy, Spare 

Parts; Poisson Processes; Chaos; Steelmaking; Rolling Mills. 

 

1. INTRODUCTION 

Manufacturing operations management includes the 

management of the materials needed for machine 

maintenance (Marquez and Gupta, 2006). Common 

maintenance materials used by various maintenance crews, 

such as paints, grinding wheels, or welding, usually follow 

predictable consumption patterns. Crews can also share 

technical materials, such as bearings, circuit breakers, and 

lamps, whose consumption, although lower, is still 

predictable. Finally, spare parts are specific to certain 

machines and usually have erratic, unpredictable 

consumption patterns (Huiskonen, 2001; Lengu et al., 2014). 

Common maintenance and technical materials have regular 

consumption patterns modelled by exponential, normal, 

lognormal distribution or other well-fitted distributions (Rego 

and Mesquita, 2015). Logistics techniques, such as demand 

forecasting, reorder point (i.e. the level of inventory that 

triggers the replenishment) and the management of the 

replenishment time can increase the likelihood of success in 

their purchasing and replenishment operations (Guajardo et 

al., 2015; Garg and Deshmukh, 2006). 

Maintenance procedures and the management of spare parts 

require a specific type of human-machine interaction. 

Maintenance crews interact with industrial machinery by 

breakdown interventions, when the production runs into 

unscheduled stoppages, solved as quickly as possible by 

replacing the damaged parts. Maintenance crews also interact 

by means of preventive procedures, scheduled by 

probabilistic methods, to be implemented before the next 

stoppage. Finally, by predictive procedures, maintenance 

crews monitor the evolution of the main failure modes and 

gather data to forecast, the time up to the next stoppage. 

Spare parts policies play an important role in these three 

types of human-machine interaction (Tsang, 2002; Sherwin, 

2000).  

Regarding spare parts, due to the erratic behavior 

characterized by the low consumption rate (Lengu et al., 

2014), the reorder point and management of the 

replenishment time may not suffice. The low consumption of 

parts leads to major difficulties in the management process 

(Cavalieri et al., 2008). In fact, sometimes, the consumption 

is zero, because the spare part may be stored for long periods, 

without being required, as the original part remains fully 

functioning. In advanced manufacturing, the obsolescence of 

spare parts, even before their employment, is not uncommon 

(Luxhøj et al., 1997). 

The application of logistic techniques such as Poisson 

processes, appropriate for predictable, high consumption 

rates, may fail with erratically performing items. Due to small 

samples, confidence intervals are excessively large, 

weakening the power of the technique. Moreover, 

manufacturing has recently incorporated features from 

complex adaptive systems (CAS), with non-linearities and 

mutual interactions among components leading to 

unpredictability. This complexity justifies using machine 

learning tools for predicting spare parts consumption (e.g. 

Lolli et al., 2017). Logistic techniques relying on complex or 

chaotic models, rather than on predictable and high 

consumption patterns, are also effective in such cases 

(Efthymiou et al., 2014). 

This paper presents a modelling technique for the analysis of 

spare parts policies of items with a low consumption rate. 

The research method relies on chaotic models. The research 

object is a set of four 1,500 HP AC motors that drive rolling 

mills in a steelmaking plant. The modelled variable is the 

time between failures that require changing one of the four 

Proceedings,16th IFAC Symposium on
Information Control Problems in Manufacturing
Bergamo, Italy, June 11-13, 2018

Copyright © 2018 IFAC 964

     

Spare Parts Replacement Policy Based on Chaotic Models 
 

Miguel A. Sellitto*. Elia Balugani**. Francesco Lolli*** 
 

*Production and Systems Engineering Graduate Program, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS 

93022750, Brazil (Tel: 55 51 35911122; e-mail: sellitto@ unisinos.br) 

** Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Via Amendola 2, 

Padiglione Morselli, 42122 Reggio Emilia, Italy (e-mail: elia.balugani@unimore.it) 

*** Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Via Amendola 2, 

Padiglione Morselli, 42122 Reggio Emilia, Italy (e-mail: francesco.lolli@unimore.it) 

Abstract: Poisson point processes are widely used to model the consumption of spare parts. However, 

when the items have very low consumption rates, the historical sample sizes are too small. This paper 

presents a modelling technique for spare parts policies in the case of items with a low consumption rate. 

We propose the use of chaotic models derived from the well-known chaotic processes logistic map and 

Hénon attractor to assess the behaviour of a set of five medium voltage motors supplying four drives in 

the rolling mill of a steelmaking plant. Supported by the chaotic models, we conclude that the company 

needs an additional motor to ensure full protection against shortages. 

Keywords: Maintenance; Reliability; Safety; Complex Adaptive Systems; Maintenance Strategy, Spare 

Parts; Poisson Processes; Chaos; Steelmaking; Rolling Mills. 

 

1. INTRODUCTION 

Manufacturing operations management includes the 

management of the materials needed for machine 

maintenance (Marquez and Gupta, 2006). Common 

maintenance materials used by various maintenance crews, 

such as paints, grinding wheels, or welding, usually follow 

predictable consumption patterns. Crews can also share 

technical materials, such as bearings, circuit breakers, and 

lamps, whose consumption, although lower, is still 

predictable. Finally, spare parts are specific to certain 

machines and usually have erratic, unpredictable 

consumption patterns (Huiskonen, 2001; Lengu et al., 2014). 

Common maintenance and technical materials have regular 

consumption patterns modelled by exponential, normal, 

lognormal distribution or other well-fitted distributions (Rego 

and Mesquita, 2015). Logistics techniques, such as demand 

forecasting, reorder point (i.e. the level of inventory that 

triggers the replenishment) and the management of the 

replenishment time can increase the likelihood of success in 

their purchasing and replenishment operations (Guajardo et 

al., 2015; Garg and Deshmukh, 2006). 

Maintenance procedures and the management of spare parts 

require a specific type of human-machine interaction. 

Maintenance crews interact with industrial machinery by 

breakdown interventions, when the production runs into 

unscheduled stoppages, solved as quickly as possible by 

replacing the damaged parts. Maintenance crews also interact 

by means of preventive procedures, scheduled by 

probabilistic methods, to be implemented before the next 

stoppage. Finally, by predictive procedures, maintenance 

crews monitor the evolution of the main failure modes and 

gather data to forecast, the time up to the next stoppage. 

Spare parts policies play an important role in these three 

types of human-machine interaction (Tsang, 2002; Sherwin, 

2000).  

Regarding spare parts, due to the erratic behavior 

characterized by the low consumption rate (Lengu et al., 

2014), the reorder point and management of the 

replenishment time may not suffice. The low consumption of 

parts leads to major difficulties in the management process 

(Cavalieri et al., 2008). In fact, sometimes, the consumption 

is zero, because the spare part may be stored for long periods, 

without being required, as the original part remains fully 

functioning. In advanced manufacturing, the obsolescence of 

spare parts, even before their employment, is not uncommon 

(Luxhøj et al., 1997). 

The application of logistic techniques such as Poisson 

processes, appropriate for predictable, high consumption 

rates, may fail with erratically performing items. Due to small 

samples, confidence intervals are excessively large, 

weakening the power of the technique. Moreover, 

manufacturing has recently incorporated features from 

complex adaptive systems (CAS), with non-linearities and 

mutual interactions among components leading to 

unpredictability. This complexity justifies using machine 

learning tools for predicting spare parts consumption (e.g. 

Lolli et al., 2017). Logistic techniques relying on complex or 

chaotic models, rather than on predictable and high 

consumption patterns, are also effective in such cases 

(Efthymiou et al., 2014). 

This paper presents a modelling technique for the analysis of 

spare parts policies of items with a low consumption rate. 

The research method relies on chaotic models. The research 

object is a set of four 1,500 HP AC motors that drive rolling 

mills in a steelmaking plant. The modelled variable is the 

time between failures that require changing one of the four 

Proceedings,16th IFAC Symposium on
Information Control Problems in Manufacturing
Bergamo, Italy, June 11-13, 2018

Copyright © 2018 IFAC 964



946 Miguel A. Sellitto et al. / IFAC PapersOnLine 51-11 (2018) 945–950 

 

     

 

motors. The research technique relies on two chaotic models, 

i.e. a logistic map with a single dimension, and a Hénon map 

with two dimensions. The specific objectives are to: (i) 

analyse the spare parts situation of the set of motors by 

nonhomogeneous Poisson processes; (ii) repeat the analysis 

supported by chaotic models; and (iii) compare the results. 

2. POISSON POINT PROCESSES AND SPARE PARTS 

REPLACEMENT POLICIES 

Spare parts consumption behaves usually like counting 

processes (Louit et al., 2009). A counting process is a type of 

Poisson point process, or simply a Poisson process (PP). A 

PP consists of points randomly located in a numerical space, 

and can model random events in stochastic processes. PP has 

an intensity parameter λ related to the expected number of 

points in a given bounded region of the numerical space 

(Leemis, 1991). Four types of counting processes are useful 

for analysing spare parts policies: homogeneous Poisson 

processes (HPP), renewal processes, nonhomogeneous 

Poisson processes (NHPP), and imperfect repair processes. 

Renewal and imperfect processes involve, respectively, a 

complete overhaul (“as good as new” repair) and partial 

modifications in machines along with the spare part 

replacement. We focus on HPP and NHPP, which more 

realistically describe the “as bad as old” repair policy 

prevalent in manufacturing activities. In manufacturing, a 

system consisting of a large number of sub-systems fails 

when a single part fails and the crew replaces it after a 

negligible downtime (Rausand and Hoyland, 2004). 

Therefore, it is reasonable to assume that the overall 

reliability remains the same after the repair, thus 

characterizing the minimal repair policy (Kahle, 2007). 

For our purposes, the numerical space of a PP is a 

unidimensional timeline, where individual numbers 

correspond to time intervals between zero and infinity. HPP 

has a constant intensity λ and NHPP has a power-law 

intensity λ(t). Hereafter, we will refer to λ(t) as the failure 

rate function. In spare part consumption processes, an HPP 

acts as a counting process and models times to failure 

according to a constant failure rate λ. From the properties of 

HPP, we highlight that N(0) = 0, times to failure are 

independent, and the number of failures in any interval T is a 

Poisson random variable with mean λT. E[N(T)] = λT and 

that the probability of N(T) being equal to x is given by the 

Poisson model (Rausand and Hoyland, 2004).  The main 

implication is that if the consumption of a spare part follows 

a certain constant failure rate λ, the probability of x events in 

the time interval T is given by: 

    

         (1) 

If the failure rate of a certain part is not constant, which 

means that the part has improved or deteriorated, then a 

NHPP should model the failure sequence and consequently 

the spare part consumption. Such an NHPP is a 

generalization of an HPP, relaxing the stationary pattern of 

failures and assuming a power-law pattern, which can be 

positive or negative. If the power-law has a unitary exponent, 

the NHPP turns into an HPP (Rausand and Hoyland, 2004). 

The main implication of an NHPP is that if the consumption 

of a spare part follows a power-law failure rate function λ(t) 

with shape factor γ and scale factor θ, the probability of x 

events in the time interval T is as follows: 

    

        (2) 

Modelling the failure data by a maximum likelihood 

estimation (MLE) and fitting a Weibull distribution provide 

the shape and scale factors. On occasions, there may also be a 

shift parameter t0, the failure free time. The cumulative 

intensity function provides the expected number of failures 

by time T (3). Equations (4) and (5) provide the mean time 

between failures (MTBF) and the reliable lifetime (TR) with a 

confidence level of 95%, respectively. 

   
       (3) 

    
          (4) 

    

        (5) 

If a maintenance crew knows about the failure rate function 

and can estimate the time to the next failure, they can provide 

a spare part replacement policy (Park, 1979). The simplest 

policy is to predict the probabilities of the next failure over 

time, or calculate the reliable life and then define a certain 

number of spare parts. However, a problem arises in the case 

of a very low failure rate. As the MTBF is very large, the 

sample size is low, thus producing large confidence intervals 

for the parameters. Moreover, even if a distribution fits a 

small sample size, it is not possible to ensure that the 

assumptions that characterize HPP and NHPP remain over 

time (Efthymiou et al., 2014). For example, it is not possible 

to ensure that there has been no change in the requirement of 

the manufacturing process or the required workload. To help 

solve this problem, we propose a method to manage spare 

parts with a low consumption rate based on chaotic models. 

3. CHAOTIC MODELS 

Chaotic models describe phenomena with deterministic 

formation laws, but which, at first glance, seem to be random. 

Such behaviour originates from the interactions among 

internal parts of complex and dynamic systems, with a 

fundamental instability, i.e. the sensitivity to the initial 

conditions. Although they originate from deterministic rules, 

the recurrence of the application of the rule, under certain 

circumstances, makes chaotic phenomena unpredictable in 

the long term. The extreme dependence on the initial 

conditions of the parameters determines that the output of a 

chaotic phenomenon will become unstable over time 

(Thietart and Forgues, 1995). The consequence of this 

instability is that the results of deterministic systems, even 

with definite evolution laws, are extremely sensitive to 

disturbances and noise, thus making them unpredictable. 

Even in the absence of noise, non-linearities and interactions 

among components amplify minimal errors in parameters, 

generating deterministic chaos (Capeáns et al., 2017). 
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Positive feedback generates chaotic situations, which lead to 

points of inflection and rupture, i.e. bifurcation points. The 

simplest chaotic model is possibly the logistic map, which is 

a positive feedback process involving a quadratic function of 

itself. The logistic map is a recurrence relation that 

exemplifies how complex and chaotic behaviours arise from 

the application of a simple and deterministic rule (Yang and 

Cheng, 2007). The transition from order to chaos justifies the 

use of the expression ‘deterministic chaos’ for such models 

(Phatak and Rao, 1995). The logistic map model is given by: 

              (6)  

with     . 

If   , the process converges to a fixed value. If   , the 

process converges to zero. If     , the process 

converges to       , i.e. a fixed attractor. If    
, the process becomes cyclic, with bifurcations that lead 

to multiple values, a cyclic attractor. If   , the 

outcome is nearly unpredictable with oscillating behaviour, a 

strange attractor. This region is the chaos edge. In the chaos 

edge, at first glance, the time series of the logistic map does 

not differ from a random time series. Instead, by plotting 

[; ], a regular pattern arises, which reinforces the 

notion of chaos out of the order or deterministic chaos. 

Finally, if   , the outcome is chaotic (Capeáns et al., 

2016; Yang and Cheng, 2007). 

Figure 1 illustrates fifty executions of the logistic map under 

different parameters, as well as the difference between the 

subjacent relationships in random execution and chaotic 

execution, which illustrates the notion of deterministic chaos. 

The figure shows executions of the logistic map with  
 and (a)   ; (b)   ; and (c)   . The figure 

also shows a series generated by a random generator (d), a 

dispersion graph of a random execution [n x (n-1)] (e), 

without a noticeable pattern, and a dispersion graph of a 

logistic map execution [n x (n-1)] (f), with an almost linear 

pattern. The two last windows of the figure illustrate the 

difference of a random process, without a subjacent 

formation law, and a chaotic process, with a subjacent, 

deterministic formation law. 

The other chaotic model of interest is the Hénon map. This 

map takes a point (x, y) and maps it to a new point (x´, y´). 

Equations (7) and (8) support the mapping process as 

follows:  

               (7) 

                                     (8) 

For     , the map approaches the Hénon 

attractor. For other values, the map may be also chaotic, but it 

may also be intermittent, or converge to a periodic orbit 

(Capeáns et al., 2016). Figure 2 illustrates one thousand 

executions of the Hénon map, forming the Hénon attractor, 

with    and   . 

 

  

a) b) 

  

c) d) 

  

e) f) 

Figure 1 – Elements of the logistic map model  

 

 

Figure 2 – The Hénon attractor 

 

4. THE SUBJECT AND THE RESEARCH

The focus of our research is the rolling mill plant of a semi-

integrated steelmaking plant. There are two technological 

routes for steel production, with iron ore (integrated plants) 

and with metallic scrap and pig iron (semi-integrated plants). 

Semi-integrated plants operate the steel refining stage in melt 

shops, and the conformation stage in rolling mill shops. 
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Usually, the main drivers of rolling mills are medium voltage 

alternate current squirrel-cage induction motors. The project 

studied a set of five 1,500 HP motors that drive four hot 

rolling mills plus a spare motor. Each time a motor fails, the 

spare motor replaces it. Once repaired, the damaged motor 

returns to the warehouse until a new failure occurs, and so on. 

As a typical capital good, the motors have a long lifespan, 

overcoming several decades (Hekimoglu et al., 2018). 

Large equipment failures follow a degradation path that 

might take up to several months or even years until the 

occurrence of a breakdown event (Gebraeel et al., 2009). 

Two components represent the time to failure (TTF). The 

first component is the time elapsing between the last repair 

and the beginning of a potential failure, the initial event of 

the degradation process that will cause the failure. The 

second is the time between the beginning of the potential 

failure and the functional failure, the breakdown event that 

requires maintenance actions (Jardine et al., 2006). Christer 

(1999), Ahmadi et al. (2009), and Bazovski (2004) state that 

the TTF follows an exponential model for random failures 

and a normal distribution can approach TTF for wear-out 

failures. As the focus is in the wear-out phase, the normal 

distribution is used in the calculation of the reliable life. 

The research has limitations. The optimization of the chaotic 

models relied on the excel software solver optimizer. A more 

powerful package would lead to more robust models, 

including other chaotic models, such as the Lorenz attractor. 

Although a stochastic variable, the time to repair (TTR) 

considered is deterministic, which requires the use of 

simulation techniques. The research assumed normality for 

the determination of the variability in forecasting. Although 

this last assumption is supported in the literature, future 

research could include methodologies to bridge both gaps. 

4. RESULTS AND DISCUSSION

The typical times to repair (TTR) are eight and twelve 

months if the damage requires major repairs and the 

construction of new subsystems, respectively. Table 1 shows 

the cumulative time of the process, the time between failures 

(tbf) of the motors in months and the normalized tbf, a more 

useful form for the analysis. 

Table 1 – TBF (in months) 

# 
Cumulative 

time 
tbf 

Normalized 

tbf 

1 - 11 0.275 

2 36 25 0.625 

3 76 40 1 

4 99 23 0.575 

5 119 20 0.5 

6 152 33 0.825 

7 178 26 0.65 

8 210 32 0.8 

9 228 18 0.45 

 

An MLE fitted a Weibull distribution with t0 = 3.01, γ = 2.51, 

and θ = 24.51, with a significance level of 23% (χ2 test) and 

14% (Kolmogorov-Smirnoff test), while MTBF = 24.76 and 

TR|95% = 10.52 months ((4) and (5)). Confidence intervals 

(95%) for γ and θ are respectively [1.20 - 3.69] and [17.50 - 

34.14]. Applying (3) to the MLE values of γ and θ, and 

considering eight and twelve months for TTR, the model 

leads to the results reported in Table 2. 

Table 2 - NHPP of the replacement of motors 

x 

Probability of x 

failures in 12 

months 

Cumulative 

probability 

Probability 

of x failures 

in 8 months 

Cumulative 

probability 

0 0.923 0.923 0.95599 0.956 

1 0.074 0.997 0.04302 0.999 

2 0.003 1.000 0.00097 1.000 

 

As TR|95% = 10.52 months, maintaining no spare parts other 

than the five motors is a safe policy for major repair, but is 

not for subsystem manufacturing. Maintaining one spare part, 

the probabilities of a shortage are [1 – 0.997] and [1 – 0.999] 

respectively, which is a safe policy. In any case, it is 

necessary to consider that TR|95% = 10.52 months results from 

the adoption of MLE parameters. Considering uncertainty, 

the extreme situations are: (i) γ, θ = [3.69, 34.14], TR|95% = 

18.27 months; (ii) γ, θ = [1.20, 17.50], TR|95% = 4.48 months. 

The observations lasted for more than twenty years, in which 

the manufacturing evolved, approaching CAS. Among other 

transformations, there was a learning period and the 

technological development of maintenance techniques, with 

the introduction of remote sensing, predictive analysis, and 

corrective maintenance procedures. In the first instance, such 

evolutions reduced the downtime, which encouraged the 

company to increase production, which increased downtime 

further, in a feedback loop. Another example is the use of 

multiple fuels in the reheating furnace, which changed the 

billet temperature and reduced the load on the drives. The 

company then increased production, increasing the load on 

the same drives. Such feedback loops, characteristic of CAS, 

may violate a premise of PP, i.e. the independence between 

failure events, opening up the possibility of using complex, 

alternative methods. 

We propose an alternative method to analyse the spare part 

policy. Table 3 shows the time evolution, with a step of five 

positions, of the logistic map with s(0) = 0.896316 and  a = 

3.698554. A commercial solver finds the values minimizing 

the minimum square error (MSE) of the regression formed by 

the map and the normalized tbf. 

Table 3 – Time evolution for the logistic map 

# s(#) tbf norm SE 

1 0.344 0.275 0.005 

6 0.710 0.625 0.007 

11 0.912 1.000 0.008 

16 0.505 0.575 0.005 

21 0.666 0.500 0.027 

26 0.736 0.825 0.008 

31 0.626 0.650 0.001 

36 0.797 0.800 0.000 

41 0.450 0.450 0.000 

forecast 0.802 MSE = 0.087 
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The model provides the most likely normalized time to the 

next failure, that is s(48) = 0.802. As σ = 0.219 and assuming 

a normal distribution (one-tailed test), the new TR|95% = 

40*(0.802-1.64*0.219) = 17.71 months.  

Table 4 shows the time evolution, with a step of three 

positions, of the Hénon map with x(0) = 0.027266 and y(0) = 

0.281145 for outcome x and x(0) = -0.33122 and y(0) = -

1.48856 for outcome y. The solver finds these values 

minimizing the minimum square error (MSE) of the 

regression formed by the map evolution and the normalized 

tbf. 

Table 4 – Time evolution for the Hénon map 

# 
x(#) 

norm 

y(#) 

norm 

tbf 

norm 

SE 

x(t) 

SE 

y(t) 

2 0.000 0.000 0.28 0,076 0,076 

5 0.624 0.596 0.63 0,000 0,001 

8 1.000 1.000 1.00 0,000 0,000 

11 0.601 0.497 0.58 0,001 0,006 

14 0.674 0.526 0.50 0,030 0,001 

17 0.796 0.905 0.83 0,001 0,006 

20 0.788 0.502 0.65 0,019 0,022 

23 0.846 0.897 0.80 0,002 0,009 

26 0.376 0.443 0.45 0,005 0,000 

forecast 0.682 0.610 MSE = 0.129 0.123 

 

The two models provide the normalized time to the next 

failure, x(48) = 0.682 and y(26) = 0.610, which are then used 

to calculate TR|95% = 40*(0.682-1.64*0.219) = 12.71 months 

and TR|95% = 40*(0.610-1.64*0.219) = 10.03 months. 

Table 5 summarizes the results of the study and evaluates the 

two spare parts policies. 

Table 5 – Analysis of spare parts policies  

Process and policy NHPP Logistic 

Map 

Hénon 

x 

Hénon 

y 

TR|95% (months) = 10.52 17.71 12.71 10.03 

No spare part     

Major repairs (10 months) safe safe safe safe 

New part (12 months) unsafe safe safe unsafe 

One spare part     

Major repairs (10 months) safe safe safe safe 

New part (12 months) safe safe safe safe 

 

The first policy is to have no spare part, meaning that the 

company rotates five motors around four positions. The 

second policy is with one spare part, meaning that the 

company maintains an additional motor in the warehouse, 

thus being able to rely on six motors to provide four drives. 

The table shows that only the second policy is entirely safe. 

This conclusion does not necessarily imply the purchase of 

new equipment. For very short periods, the company can 

manufacture with only three drives. In this case, one of the 

two rolling mills must operate with only one drive, producing 

only heavy, rough sections. 

Finally, regarding accuracy, Figure 3 shows the relationship 

between the models (logistic map, Hénon x, and Hénon y 

respectively) and the set of life data. All R2 are near to 1, 

which means that the forecasting provided by the models can 

be reasonably considered for decisions on spare parts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – Relationship between lifedata and the three models 

(logistic, Hènon x, Hènon y) 

5.  CONCLUSIONS 

We have presented a modelling technique for the analysis of 

spare parts policies of items with a low consumption rate, 

specifically a set of five medium voltage motors that drive 

four rolling mills in a steelmaking plant. We found that, 

according to all the tested models, in addition to the five 

motors appropriated for the four drives, to ensure full safety 

the company needs an additional spare part. Alternatively, the 

company could reduce production for short periods with only 

three drives. 

The study focused on the evaluation of a few policies in a 

system involving a few large parts that fail with low 

frequency. Larger and complex systems with imbricated 















     

 

 















     

 

 















     

 

 

IFAC INCOM 2018
Bergamo, Italy, June 11-13, 2018

968



950 Miguel A. Sellitto et al. / IFAC PapersOnLine 51-11 (2018) 945–950 

 

     

 

mutual relationships usually provide much more lifedata. 

Therefore, the solution for the spare part problems by 

stochastic methods usually satisfies. Anyway, even a spare 

part replacement policy for larger, imbricated systems could 

benefit with chaotic methods, when the lifedata amount is not 

enough to produce suitable confidence intervals. It would be 

necessary to identify the main relationships among parts 

within the system and to produce a simulation model to 

verify the efficacy of different policies.    

Further research shall bridge the gaps of this study, the use of 

a more robust optimizer, the use of more chaotic model, other 

models than the normal for the forecasting, and taking into 

account the stochastic nature of the TTR variable. 
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