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Abstract

The objective of this work is the condition monitoring of Independent Carts System
with particular attention to bearings. The Independent Cart Conveyor System is a
promising technology that could replace rotary driven chains and belts in the �eld
of automatic machines. This system combines the bene�ts of servomotors with the
advantages of linear motors. It consists of a close path made up of modular linear
motors having a curved or a straight shape that control a �eet of carts independently.
Each cart is placed along the motors and it is connected, through bearings, to a rail
set on the motors themselves. A possible problem can rise with the use of this
technology: with the demand of a high production rate, the number of movers
necessary in the machine increases and consequently even the number of bearings
increases. In this way the high number of rolling bearings reduces the Mean Time
Before Failure (MTBF) of the whole machine, but at the same time, thanks to the
independent control and the independent monitoring of each cart, it is possible to
implement condition monitoring strategies for each cart. The condition monitoring
of these elements is challenging for the non-stationary working conditions of variable
load and speed pro�les. The thesis deals with the problem of the development of a
condition monitoring framework for this system from di�erent points of view. About
hardware, a new technique for the synchronization between PLCs of di�erent vendors
used for the control of this system has been developed. Moreover, bearing sti�ness
has been evaluated through experimental campaigns and advance computational
methods. In order to get a 360-degree view of the possible solutions of this problem,
data-driven and model-based condition monitoring techniques have been applied.
As regards data-driven, machine learning techniques for fault detection have been
used on the basis of an experimental campaign on a speci�c machine application, as
well as a new feature for the prediction of bearing faults has been studied.
As regards model-based, a model of the vibration signals produced by the carts with
an arbitrary motion pro�le has been carried out. Moreover, the whole dynamics of
the system has been taken into account by means of a multibody modelling of the
cart, the bearings and the rail.
Both models consider the variable motion pro�le, the shape of the conveyor path,
the mechanical design of the cart, the load variation and the type of fault on the
groove ball bearings. The models are scalable and modular in order to test di�erent
con�gurations of the system with di�erent working parameters and both models
have been validated by means of the comparison between the simulation results and
the system variables recorded during experimental campaigns.
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Sommario

L'obiettivo di questo lavoro è la diagnostica di Sistemi a Carrelli Indipendenti con
particolare attenzione ai cuscinetti. Il Sistema a Carrelli Indipendenti è una tecnolo-
gia innovativa e promettente nell'ambito delle macchine automatiche, che in alcuni
casi può sostiture i tipici sistemi di trasporto basati su catene e cinghie guidate da
motori rotativi. Il Sistema a Carrelli Indipendenti combina i vantaggi dei servomo-
tori rotativi con quelli dei motori lineari. Esso consiste in una serie di motori lineari
modulari di forma curva o rettilinea, che, combinati insieme, realizzano un circuito
chiuso. I motori controllano una �otta di carrelli che sono tra loro indipendenti e
questa caratteristica rende il sistema �essibile ad ogni tipo di prodotto e compito.
Ognuno di questi carrelli è posizionato lungo i motori ed è collegato ad un binario
�sso attraverso una serie di cuscinetti. Questo sistema può presentare un problema
nel caso in cui vengano utilizzati numerosi carrelli, poiché in questo caso anche il
numero dei cuscinetti aumenterebbe. L'elevato numero di cuscinetti riduce il Mean
Time Before Failure (MTBF) dell'intera macchina, ma allo stesso tempo, grazie al
fatto che ogni carrello è svincolato l'uno dall'altro, è possibile monitorare lo stato
di salute di ogni carrello in maniera indipendente. La realizzazione di un sistema
di condition monitoring per questi macchinari risulta stimolante anche se impegna-
tivo, in quanto le condizioni di lavoro dei carrelli sono altamente non stazionarie
per la variabilità dei pro�li di carico e velocità. Tale studio tratta il problema dello
sviluppo di un sistema di condition monitoring per questa tecnologia, che viene af-
frontato da diversi punti di vista.
Per quanto riguarda l'hardware, è stata realizzata una nuova tecnica per la sincroniz-
zazione dei motion task fra i PLC di di�erenti costruttori, che vengono usati per il
controllo dei Sistemi a Carrelli Indipendenti. Inoltre, sono stati eseguiti esperimenti
ed usati metodi di calcolo avanzati per la valutazione della rigidezza dei cuscinetti.
Per avere una panoramica completa dei possibili metodi di monitoraggio, sono state
utilizzate sia tecniche data-driven che model-based per il rilevamento di guasti nel
sistema.
Per quanto riguarda i metodi data-driven, sono stati utilizzati algoritmi di machine
learning per la identi�cazione di danni, così come sono state studiate nuove feature
per la prognostica. Per quanto si riferisce al model-based, è stato sviluppato un
modello che simula i segnali vibratori prodotti dai Sistemi a Carrelli Indipendenti
con pro�lo di moto arbitrario.
Per considerare l'intera dinamica del sistema, è stato realizzato un modello multi-
body del carrello, dei cuscinetti e del binario. Entrambi i modelli realizzati prendono
in considerazione pro�li di moto variabili, varie forme del circuito su cui i carrelli
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possono muoversi, la meccanica dei carrelli, la variazione dei carichi agenti e dif-
ferenti tipi di danno nei cuscinetti. Per poter considerare diverse con�gurazioni
del sistema, entrambi i modelli sono scalabili e modulari. Essi sono stati validati
attraverso la comparazione tra i dati simulati e i dati reali rilevati attraverso una
campagna sperimentale.
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Chapter 1

Motivation and objectives

1.1 Introduction

This work is focused on the development of a condition monitoring framework for
a manufacturing machine called Independent Carts System. The aim is to identify
the healthy conditions of the machine and the damages on the bearings placed in
the machine itself.
Independent Cart Conveyor System is one of the most promising technology in
automation industries. It combines the bene�ts of servomotors with the advantages
of linear motors. It consists of a close path made up of modular linear motors
having a curved or a straight shape that control a �eet of carts independently. Each
cart is placed along the motors and it is connected, through rolling bearings, to
a rail set on the motors themselves. A possible problem can rise with the use of
this technology: with the demand of a high production rate, the number of movers
necessary in the machine increases and consequently even the number of bearings
increases. In this way, the high number of rolling bearings reduces the Mean Time
Before Failure (MTBF) of the whole machine, but at the same time, thanks to the
independent control and the independent monitoring of each cart, it is possible to
implement condition monitoring strategies for each cart. Several are the producers
of Independent Carts System but each of them uses a di�erent PLC for the control
of the internal tasks. This fact can reduce the �exibility in the machine architecture,
which is a great limitation from the point of view of a designer. Moreover, even the
possible condition monitoring architectures are limited, for example as regards the
data acquisition and the integration of sensors in the machine. In order to overcome
this problem, new methods for the synchronization of axes between PLCs and iPCs
of di�erent vendors has been analysed and developed.
Another problem that has been considered is the di�culty in having a large amount
of historical data on Independent Carts System.
This is due to the fact that the machines can have di�erent shapes, di�erent cart
geometry, di�erent load pro�les and, what is more, the carts of the same machine
can be subject to very di�erent working conditions; moreover, there is no data
available on Independent Cart System used in manufacturing plants. In order to
overcome this problem, di�erent experimental campaigns have been carried out by
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1.2. OUTLINE OF THE THESIS

simulating possible bearing damages and physical models have been developed to
simulate the behaviour of the system in di�erent working conditions and for di�erent
con�gurations of the Independent Cart System.

1.2 Outline of the thesis

This paper is organized as follows:

• In Chapter 2 the condition monitoring methodologies, techniques and philos-
ophy are investigated. A global architecture of a condition monitoring system
in a packaging plant is presented considering the creation of a new condition
monitoring framework for Independent Cart System. Independent Cart Sys-
tem is described in details focusing on the crucial aspects regarding condition
monitoring.

• In Chapter 3 the interfacing problem between Independent Carts System and
di�erent industrial controllers is faced. In order to overcome the interconnec-
tivity problem, two methods are designed, developed and veri�ed.

• Chapter 4 presents a methodology work�ow for the development of a fault
detection system for Independent Cart System by means of a Data-driven
approach.

• Chapter 5 deals with a Model-based approach for the development of a fault
detection system. Two di�erent models are presented, the former consists in a
signal formulation of the system, while the latter is a multibody model. Both
the models have been tested and validated.

• In Chapter 6 the di�erent condition monitoring methodologies taken into ac-
count are illustrated and the prospective for future improvements is presented.

2



Chapter 2

Introduction

2.1 Maintenance

Good product design is a key factor for product reliability, but also correctly de-
signed products deteriorate in time because of normal wear and use in the working
environment. For this reason, maintenance strategies are essential for assuring sat-
isfactory reliability levels and improving the productivity of machines through the
reduction in �nancial costs [1] .
Maintenance is de�ned as �the combination of all technical, administrative and man-
agerial actions during the life cycle of an item intended to retain it in, or restore it
to, a state in which it can perform the required function� [2].
In process industries, which are more vulnerable to plant downtime and to produc-
tion maximization, maintenance has ever had a remarkable in�uence on the cost
reduction and on the reliability and continuity of the process. For example, as re-
gards the Nigerian electric-power industry, the costs of maintenance are over 70 %
of the total spending [3].
In manufacturing industries, maintenance has been de�ned as a key factor for the
reduction in the process costs only in the last decade. This is due to the rise of
lean production that increases the requirement of more e�cient and reliable ma-
chines with a higher productivity and a lower vulnerability to disturbance. In order
to maximize the machine productivity, companies have to guarantee both the cost
reduction, such as downtime, spare parts and machine waste, and the minimization
of maintenance activities. To achieve the new targets, prognostic and health man-
agement (PHM) has acquired a key role in the machine design and logistic support.
PHM combines the use of methods for predicting the time a device or a system
no longer performs as desired with maintenance planning and decision-making sup-
port. This chapter describes the most used typologies of maintenance strategies,
their di�erences and the advantages and disadvantages of each typology.

2.1.1 Corrective Maintenance

Corrective maintenance, also called breakdown maintenance, is the earliest mainte-
nance technique used in industries. According to this strategy, the equipment runs
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2.1. MAINTENANCE

until a failure occurs, subsequently the damaged part is changed or repaired [4].
The advantages of this type of maintenance are that each component is used for its
complete life, maintenance is serviced only in a period of time and not during the
working of machine, the cost of labour is low. The disadvantages are that mainte-
nance is unplanned so the continuity of the process is not reliable; moreover, if a
catastrophic failure occurs, the damage of one of the components can compromise
the entire machine lifetime or can provoke the failure of a second equipment. In this
case, the repair costs are higher and even the cost of labour can be higher.

2.1.2 Predicted Maintenance

Predicted maintenance, also called time-based maintenance, requires that mainte-
nance operations are performed at regular intervals of time independently of the
equipment health conditions [5].
In this case, it is important to highlight that the time between failures (TBF) is a
statistical variable and it can be estimated through a population of machines. In
order to have great con�dence in predicted maintenance, a large population of ma-
chines is necessary.
This maintenance strategy is very conservative because, when maintenance is ser-
viced, there is no certainty about the failure of a component. The advantages of
this approach are the reduction in unplanned stops and the increase of the machine
lifetime. The disadvantages are that the �infant mortality failure� is not predicted,
the service equipment is not used for its complete life and it is necessary to stop the
production at regular intervals.

2.1.3 Condition Based Maintenance

Condition Based Maintenance (CBM), also called preventive maintenance, is based
on the constant monitoring of critical functions or components; it allows to predict
machine failures and to initiate maintenance before the failure occurs [6]. The key
features of this methodology are diagnostics and prognostics. Diagnostics consists
in the detection, isolation and identi�cation of a fault, while prognostics consists in
the prediction of a fault before its occurrence. The advantages of this strategy are
the maximization of performances with the reduction of the machine downtime, the
reduction of the waste due to unplanned stops and the optimization of the warehouse
for the spare parts. In the last years, CBM has also focused on the prognostics of
remaining useful life (RUL) of the equipment and on the optimization of mainte-
nance strategy for the failure of each component or functional failures. This type of
strategy is called CBM+ [7] and it is used in combination with maintenance meth-
ods as reliability, availability, maintainability and safety (RAMS) [8] or reliability
centered maintenance (RCM) [9].
In order to use CBM/CBM+, several sensors are necessary to monitor the state of
the equipment and this makes the initial investment cost increase. This strategy
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2.2. CONDITION BASED MAINTENANCE ARCHITECTURE FOR
MANUFACTURING PLANTS

uses a new decision architecture for the maintenance policy that needs an improve-
ment in human-machine skills to carry out collaborative actions between condition
monitoring system and human operators, which involves a socio-cyber-physical sys-
tem (SCPS)[7].
For this reason, a high training level from the top (i.e., management) to the base
(i.e., stakeholders, service engineers) and a very e�cient communication network are
necessary. The drawback of this strategy is the high initial investment necessary to
build a CBM framework in which di�erent company sectors are involved.
Worden and Dulieu-Barton [10] describe the identi�cation problem as a hierarchical
structure where each stage represents a higher level of the damage knowledge. The
levels are the following:

1. Detection: the method gives a qualitative indication that a damage might
be present in the structure.

2. Localisation: the method gives information about the probable position of
the damage.

3. Classi�cation (or identi�cation): the method gives information about the
type of damage.

4. Assessment: the method gives an estimate of the extent of the damage.

5. Prediction (or prognostics): the method o�ers information about the
safety of the structure, for example it estimates the residual life.

The �rst four levels are included in CBM, while the last one is related to prog-
nostics. Prognostics is the engineering discipline that studies the methods for the
estimation of the remaining useful life (RUL) of a component.

2.1.3.1 Condition Based Maintenance in manufacturing plants

This chapter describes general condition monitoring techniques applicable for the di-
agnostics in industrial plants. In order to be more pragmatic, a packaging industrial
plant has been taken into consideration in order to show a real architecture with
more details. This work focuses on the study and the implementation of a condition
monitoring framework for Independent Carts System inside the above-mentioned
packaging industrial plant.

2.2 Condition Based Maintenance architecture for

manufacturing plants

The purpose of the condition monitoring application to manufacturing plants is
to reduce unexpected breakdowns in order to, in turn, increase machine up-time
(avoiding unplanned stoppages by predicting failures), reduce waste (for the same
reason) and optimize operational costs (with optimal maintenance tactics based on
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2.2. CONDITION BASED MAINTENANCE ARCHITECTURE FOR
MANUFACTURING PLANTS

prediction). This is achieved through a constant monitoring of critical functions
to predict failures with the possibility of initiating maintenance before the failure
occurs, through regular alerts and inspections. With preventive maintenance, the
commitment to reliability is taken to the next level by predicting failures before
they occur. Real-time monitoring of critical areas of the equipment is used to �nd
deviations in machine functions that could lead to pauses in machine activity or
breakdowns. In this process, the knowledge of critical functions, expert analyses,
alerts and a skilled sta� are instrumental and fundamental. The design of the con-
dition monitoring system (CMS) directly depends on the plant and the functions of
each system since the causes and e�ects of a failure are di�erent.
Nevertheless, the high-level architecture of the condition monitoring system dealt
with in this work can be extended to any manufacturing company. At the basis of an
e�ective condition-based monitoring system there is an initial failure mode, e�ects
and criticality analysis (FMECA). FMECA analysis is a critical and powerful tool,
developed by reliability engineers in the late 1950s, to highlight failure modes with
relatively high probability and severity of consequences, allowing remedial e�orts to
be directed to the point where they will produce the greatest bene�ts. These ben-
e�ts are precisely quanti�ed in terms of saved costs and they are the best incentive
to introduce condition monitoring systems in industries. This thesis does not cover
FMECA analysis, since it should have already been performed in order to identify
the most critical components. The aim of this chapter is to give hints to the reader
in order to build condition monitoring systems. This process ideally starts after
FMECA analysis. All the mechanical components shown in the remaining part of
the chapter are the results of an in-depth FMECA analysis that took more than one
year to be completed. Several books on reliability cover the foundations of FMECA
analysis. The interested reader could start, for example, with the work by Birolini
[11].
At the end of the condition monitoring process, every industrial plant must have a
performance management center, i.e., a team of data-scientists, managers, reliability
engineers and skilled service technicians, constantly updated on the status of the
�eet of monitored components. The team schedule the interventions on the basis of
a preventive maintenance policy, building a database of all the service actions and
computing statistics on the reliability of the components. The team are ready to in-
tervene in the event of an alarm by the monitoring system and condition monitoring
algorithms based on the new data from the �eld, which are constantly updated. The
performance management center implements everything is necessary for the correct
management of the reliability of the system. For example, the uncertainty quanti�-
cation is fundamental to properly plan (preventive) maintenance policies. A list of
these actions is out of the scope of the present work. The interested reader could
�nd details, for example, in the work by O'Connor and Kleyner [12]. The process-
ing of the collected data is divided into three parts: pre-processing that is carried
out in the customer's factory, cloud-processing that is performed in the cloud, and
post-processing for the management of the critical states. The �owchart of data and
information throughout the process is outlined in Fig. 2.1.

6



2.2. CONDITION BASED MAINTENANCE ARCHITECTURE FOR
MANUFACTURING PLANTS

Figure 2.1: Outline of condition monitoring architecture.

2.2.1 Data acquisition

The data acquisition (DAQ) step involves the setup of the sensors on the machine,
the acquisition device and a central unit that manages the data logging. The sam-
pling of the data can be implemented in two ways:

• Continuous Condition Monitoring: sensors are recorded continuously. This
sampling policy is recommended for those critical components with a high
impact on the costs and a short time-to-failure.

• Periodic Condition Monitoring: sensors are recorded at scheduled time inter-
vals. This policy is particularly suitable for components with a medium�high
time-to-failure.

In a condition monitoring system with large-scale applications there are in-
evitable delays related to information management: the acquisition of data, the
local pre-processing, the transfer to the cloud, the subsequent post-processing, the
feedback from the data analysts and the service support in �xing the problem. As a
consequence, a robust condition monitoring project should work mainly on periodic
sampled data, keeping a margin of time for the task processing. Nevertheless, criti-
cal components can be taken into account reserving computational slots, priorities,
or managing the data collection on the spot for the prompt feedback of the service
engineer. The periodic condition monitoring gives a margin of time to collect data
from a �eet of sensors, one-by-one, limiting the stream of data and the computa-
tional resources. This architecture of the sampling policy allows to easily update
the extension of the number of sensors. The acquisition setup �i.e., the sampling
frequency and the acquisition time� depends on a speci�c sensor and must be de-
termined on the basis of the speci�c processing de�ned in the development stage of
the condition monitoring system. For example, temperature changes at intervals of
minutes, while vibrations need to be acquired thousands of times per second. The
data can be divided into two main classes: on-line data and o�-line data as detailed
below.
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2.2. CONDITION BASED MAINTENANCE ARCHITECTURE FOR
MANUFACTURING PLANTS

2.2.1.1 On-Line Data

In this work, the term �on-line data� refers to informative data acquired in the
working conditions of the machine. This is in contrast with �o�-line data�, which
are collected during events independent of the working conditions. For our purposes,
the �on-line data� are data collected by speci�c sensors in order to measure the state
variables of the system. The choice of the type of sensors, their placement and the
schedule of the data collection require the knowledge of the process, a bibliographic
survey and an analysis of the impact of sensor costs on the process. Generally, the
sensors can be divided into three main classes:

• Multi-purpose external sensors: they are the most used sensors for condition
monitoring. They can be applied to di�erent components (multi-purpose),
measuring the e�ects of impacts or events in time domain and include, for
example, accelerometers or external temperature sensors. These sensors are
not usually present in the machine and represent an extra cost for maintenance.

• Speci�c external sensors: they are used for speci�c measurements in speci�c
parts of the machine. Sometimes multi-purpose sensors cannot be used be-
cause of the impossibility of installation, such as environmental conditions or
some possible mechanical interference with moving parts during the process.
Sometimes a speci�c measurement is needed in a very limited but critical part
of the plant, for example chemical analysis. These sensors are not usually
present in the machine and represent an extra cost for maintenance. More-
over, the speci�city of the measurement implies a higher cost of the sensor
with respect to a multi-purpose sensor.

• Embedded sensors: they are already present in speci�c components of the
machine, since they are used by control logics for the correct operation of
the machinery. They do not represent an extra cost for maintenance. For
example, in modern servo-motors there are always an encoder for position
measurements, an embedded ammeter (often by means of two simple Hall
sensors) for the measurement of the current absorbed by the mains and a
temperature sensor (often embedded in the encoder) for the measurement of
the heat inside the motor (or at least a positive temperature coe�cient (PTC)
thermistor in the coils for detection of over temperature).

The main sensors used in the real case taken into consideration are listed below:

• Accelerometers: they measure the vibrations of the mechanical components
(e.g., rotating shafts), giving a picture of the inner health of the machine.
Every month hundreds of scienti�c papers on the use of accelerometers for
diagnostic purposes are published (multi-purpose external sensors) [13, 14, 15,
16].

• Encoders: they measure the position of rotating parts (e.g., shafts), providing a
�ag at each complete rotation. In particular, encoders are increasingly present
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in electric motors, embedded in any servo-motor with a high angular resolution
(e.g., 4096 ticks per revolution).Together with accelerometers, they allow the
diagnostics of the components in the angle-domain, that is a reconstruction of
the vibration signal based on the actual rotation of the component, providing
immunity to speed �uctuation which can make the noise-to-signal ratio worse
[17, 18, 19] (embedded sensors).

• Current/torque sensors: they are embedded sensors necessary for the correct
operation of an electric motor. The current absorbed by the motor is propor-
tional to the torque load applied to the motor shaft. It is straightforward that
any change in the working conditions of the motor (e.g., an increase in wear)
increases the torque load and consequently the current requested (embedded
sensors).

• Pressure sensors: in order to avoid any possible interference between the mov-
ing parts of the package forming line and the cables of the sensors, it is nec-
essary to introduce pressure sensors for the indirect measurement of the wear
on cutting knives (speci�c external sensors).

• Temperature sensors: they measure the temperature of speci�c components.
In particular, servo-motors can have an embedded temperature sensor to mea-
sure the heat inside the motor (embedded sensors).

The total number of the sensors depends on the size of the machine under control,
the critical key points and the budget available for the condition monitoring area.

2.2.1.2 O�-Line Data

In this work, the term �o�-line data� refers to informative data asynchronous to the
working conditions of the machine. This is the opposite of �on-line data�, which are
collected during events synchronous to the working conditions. For our purposes,
the �o�-line data� are event data, i.e., the list of all the technical interventions per-
formed by service engineers. These events cover scheduled service interventions, un-
expected service interventions and production conditions of the machine. Examples
of scheduled service interventions are �rmware and software updating and preventive
maintenance of speci�c components. Examples of unexpected service interventions
are breakdowns of mechanical or electronic components. De facto, the minimiza-
tion of this type of interventions is the target of every condition monitoring system.
Examples of production condition events are the starting and the stopping of pro-
duction and the substitution of consumables. Some o�-line data can be acquired and
stored automatically, for example the stopping or starting up of the machine, but
most o�-line data are manually inserted by the service engineers that perform the
technical interventions or by the after-sales department which de�nes the scheduled
operations. O�-line data are essential to condition-based maintenance and much
more in the development step of the data-driven processing, showing the di�erence
between supervised and unsupervised methods (for more details see [20, 21]). The
collection of the o�-line data can be hardly demanded from an automated system.
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Consequently, proper training of the service engineers is fundamental to all the com-
panies that want to service maintenance. By experience, not all events are declared
for di�erent reasons (the periodicity of an event may not be of concern or it is
not recorded), although greater awareness of the consequences of one's work can
minimize the missing events.

2.2.1.3 Data Pre-Processing

The data collected from a single machine must be pre-processed locally, before data
are sent to a high-level storage structure that will be described in 2.2.1.5. The
main reasons are to reduce the amount of data to be sent to the cloud platform and
to decrease the latency in the decision-making process. The cloud platform costs
depend on the amount of data processed, therefore aggregated data are preferable
for cost reduction. Moreover, quick pre-processing can give fast alarms, since it is
possible to detect the problem before the entire row of data is logged in the cloud,
and send the alert to the machine promptly. The local architecture of the condition
monitoring system is made up of:

• An industrial PC (iPC) for data manipulation;

• Data logger hardware for the acquisition of external sensors;

• Fieldbus (IEC 61158) network for data communication between the iPC and
motor drives (or other embedded sensors).

The main functions of the pre-processing step are the following:

• Removal of empty or incomplete �les: the condition monitoring system records
data regularly. Only a few sensors collect data in a period of time so as to
reduce computational e�orts. It could be that speci�c parts of the system are
not working during the time frame when the corresponding sensor is acquired,
generating empty or incomplete �les. These �les must be removed to free
memory space on the storage device.

• Checking of the sensors: the measurement �les are checked for inconsistency of
data. Especially in manufacturing machines, processes are repeated cyclically
and the expected data from sensors must contain cyclic components too (e.g.,
at the productivity frequency of the machine). If the data recorded by a given
sensor do not show cyclic components in the spectrum, it is due to a problem
on the measurement chain: the sensor, the cable or the acquisition system.
The inconsistency of the data must generate an alarm to the service engineer
that will schedule a check of the sensor.

• Calculation of statistics: the computational capacity of modern industrial per-
sonal computers allows statistical analyses of the acquired data, such as the
root mean square (RMS) value, variance, kurtosis, quartiles, etc. The main
advantage is data reduction; each statistic is a single scalar value compared to
the thousands of points acquired by each sensor. Statistics are the features that
the data-driven diagnostic method uses to make the post-processing analysis.
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• Selection of speci�c data: if the post-processing based on data-driven analysis
reports an incipient fault, a more detailed model-based analysis is performed.
The performance management center can ask the local unit for speci�c data
useful for a targeted analysis. The local unit sends those speci�c raw data to
the cloud.

• Storage of data: the data are locally stored for a limited period of time with a
backup policy (when the storage space ends the new �le overwrites the oldest
one). The storage is necessary to provide selected raw data if asked.

• Sending of the data to the cloud: all relevant data, i.e., the statistics and the
o�-line data, are sent to the cloud for the post-processing step.

2.2.1.4 Data Cloud Processing

The data cloud processing mainly consists of cloud-computing data management.
The statistics and o�-line data for di�erent machines are collected on the cloud and
plotted with respect to time in order to monitor the evolution of the data constantly.
Today, cloud-computation providers assure su�cient computational power to run
complex algorithms and most of them already implement a Python or R-language
console. De facto, these free programming languages are common languages to data
scientists for statistical computing. More recently, some cloud providers have o�ered
integration with well-known commercial software for mathematical computing. The
main functions of the cloud-processing step are the following:

• Data-driven analysis: statistical data from every monitored subsystem of the
machine are analysed by means of data-driven machine learning techniques,
such as neural-networks, support vector machines and clustering. The machine
learning system generates alarms to the performance management center, i.e.,
the data-scientists, who can query the local system for a more detailed analysis
on speci�c data.

• Data transfer: the o�-line data do not need further processing. In this case,
the cloud acts as a simple storage device; the analysts pick up the o�-line
data collected from di�erent machines for the o�-line development of condition
monitoring techniques.

It should be noted that the development and the training of the machine learning
techniques are not performed on the cloud, but at the performance management
center. The software implemented in the data cloud-processing must be ready-to-
run in order to avoid interruptions of the servers.

2.2.1.5 Data Post Processing

The data post-processing mainly consists in reporting, decision support and detailed
analysis of the data. In particular, the main functions of the post-processing step
are the following:
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• Reporting: the condition monitoring outputs are divided into several reports
on the state of the sub-system components. The stakeholders of condition mon-
itoring reports are various: service engineers, managers, consultants, external
service providers etc., and each of them needs di�erent pieces of information.

• Decision support: the reports are used by the performance management cen-
ter, i.e., a structured support service, in order to update historical data for
modelling upgrade development, to analyse criticality, to query advance failure
analysis of speci�c components and to manage the technical service.

• Model-based analysis: once an alarm is received by the cloud-processing, more
advanced signal processing tools can be used to provide more details on the
fault, for example, if there is a fault in the inner or outer ring of a bearing.

• Service: if some problems are identi�ed, a report of the situation is sent to
the service engineers through a IoT device. In this way, the service engineers
can monitor the state of the plant at any time and in case of alarm they are
warned promptly. Thanks to the analysis service, the service engineers are not
only warned about an incipient failure but they are also informed about the
procedure necessary for the maintenance, whether it is necessary to order the
broken part or it is available in the warehouse.

A web platform with a custom-driven application programming interface (API)
must be developed as an infrastructure in order to satisfy di�erent requirements of
both data scientists and service engineers. They can retrieve data by using query
methods or read reports through PCs or smart-phones.

2.2.1.6 Condition Monitoring Algorithms

Condition monitoring algorithms are the foundations of the maintenance policy,
since they allow a reliable and fast response to incipient faults. They can create,
in the customer, a feeling of con�dence in condition monitoring or destroy it com-
pletely in the case of missing or false alarms. The de�nition of a proper algorithm
requires a lot of time and its value cannot be underestimated. Several algorithms
are suggested in the scienti�c literature every day. Each component under test has
its own fault modes, i.e., a characteristic type of fault is one due to wear and based
on its geometry and dynamic conditions. For example, ball bearings are one of the
most common components in mechanical design and their fault modes are related
to working conditions. In particular, the bearing is made up of an outer ring, an
inner ring, rolling elements and a cage. Each part of the bearing can be subject to
damage, which can di�er in the periodicities of impacts. These di�erences allow the
recognition of the damaged components. Despite the number of possible customized
components, the most common components in mechanical design are the standard
ones, such as bearings, gears, shafts and electric motors, regardless of the speci�c in-
dustrial �eld. As a consequence, an initial bibliographic survey on scienti�c journals
is the starting point for the development of a proper condition monitoring algorithm
for the data processing.
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The data �ow starts from the raw data acquired by sensors to the �nal output,
usually in limited dimensionality, such as binary output or low-dimensional output.
The data �ow can be divided into three main classes:

• Data cleaning: it includes all the procedures activated to remove inconsistent
data, for example, empty measurement �les, corrupted �les, disconnected sen-
sors, broken cables etc. This is not a proper condition monitoring technique
but it is a preparation process.

• Fault detection: it includes all the procedures suitable to recognize a fault in
the system. It does not specify the causes of the fault, but it only speci�es
its presence. In most cases, anomaly detection techniques are su�cient for
industrial purposes. If there is a faulty bearing in an electric motor, the motor
must be completely replaced whether the fault is in the outer ring or it is in
the inner one.

• Fault diagnostics: it includes all the procedures suitable to characterize the
fault of a speci�c component and the level of the damage of the component. It
is also the starting point for the estimation of the residual life of the component
(prognostics) [22]. Fault diagnostic techniques are useful for redesigning a
component: the detailed knowledge of the fault can suggest a better design
to reduce the loads in working conditions, extending the expected life of the
component.

Focusing on the fault detection and fault diagnostic techniques, the scienti�c
literature can be divided into data-driven techniques and model-based techniques.

2.2.1.7 Data-Driven Techniques

Data-driven techniques are not related to the physical system they model, but only
to the input data, independently of the type of sensors. These techniques basically
provide a metric of similarity among data. Common metrics are Euclidean and
Mahalanobis distances. Machine learning techniques are an example of data-driven
techniques. They require a training step and a testing step. The training step de�nes
the expected dataset for faulty and healthy components. In this step, the o�-line
data de�ned in 2.2.1.2 have great importance since they determine time instants
corresponding to the breakage of a component. Data before and after that time
instant can provide a good example of faulty and healthy conditions to be used in
training. The testing step is the application of the machine learning techniques to
the new input data. A greater similarity between the recorded data and the faulty
or healthy datasets determines the actual health status of the component. The
machine learning techniques that need a training step are also known as �supervised�
learning techniques. Conversely, �unsupervised� learning techniques may not need
a training step, depending on the method that used: for instance, one-class SVM
needs a training phase [23], while arti�cial immune systems do not [24]. These
techniques try to describe the data distribution of a healthy state (or a faulty one)
in a complete way, so that any metric variation is an indicator of a faulty state (or a
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healthy one). It should be noted that machine learning techniques need a su�cient
amount of historical data for training, but they also need training datasets that cover
all possible fault events. Hundreds of data-driven techniques have been developed
in literature and an exhaustive list is out of the scope of this thesis. Relevant
review papers have already been reported so far [25, 26, 27, 28], demonstrating the
capability of these techniques in di�erent �elds of application. Based on the direct
experience of the authors, three machine learning techniques are presented below:

• Arti�cial neural networks (ANN): this technique tries to mimic the biological
neural networks and the way in which the pieces of information are managed by
the human brain. It builds a weight matrix trying to reward or penalize input
features based on the error output in the training step. One or more layers,
i.e., weighting matrices, can be chosen. The key component of the ANN is the
backpropagation algorithm that distributes the error term back up through
the layers by modifying the weights at each node. The ANN technique has
been used in several research �elds [29, 30, 31, 32, 33, 34, 35].

• Support vector machine (SVM): the SVM technique [36] computes a hyper-
plane that divides faulty and healthy data by maximizing the distance of the
hyperplane to the datasets. The dimension of the hyperplane depends on the
dimension of the input data features. The key component of the SVM is the
choice of kernel function, the purpose of which is to project data in a high-
dimensional space where the data can be separated by the hyperplane. Once
de�ned, the hyperplane acts as a threshold, classifying new input data into
the two classes. Examples of the application of SVM to condition monitoring
can be found in [16, 36, 37, 38, 39].

• Auto associative kernel regression (AAKR): this technique predicts the health
status of a component thanks to the historical data deriving from a healthy
dataset. New inputs are compared to the prediction of the healthy state. The
di�erence between the two signals, i.e., the residual, is used as a metric to
provide the health status of the component. Examples of AAKR applications
to condition monitoring can be found in [40, 41, 42, 43, 44].

All the machine learning techniques need, as input, a subset of the acquired
data. Since sampling frequencies of some sensors could exceed 10 kHz for more
than 10 s, it is unthinkable to work with weighting matrices of 100.000x100.000 size.
Statistics are usually computed on the input data, reducing the weighting matrices
to 10x10 size (as an order of magnitude). The type of statistics and their number
are the results of a trial-and-error process, depending also on the speci�c system
under testing. Nevertheless, basic statistics, which describe the probability density
function of a variable, are good attempt values, and include:

• RMS: it is de�ned as the square root of mean square;

• Variance: it is the second central moment of a real-valued random variable;
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• Skewness: it is the third central moment of a real-valued random variable;

• Kurtosis: it is the fourth central moment of a real-valued random variable;

• Quartiles: they are the 25th, 50th and 75th percentiles of the input variable.

In some cases, even parameters linked to the dynamics of the machine are relevant,
for example the hourly capacity of the machine during the acquisition of the sensors.
Once trained, machine learning techniques do not require high computational e�orts
and return a fast classi�cation of the new input data. For these reasons, they are
particularly suitable for cloud computing and can be used for the cloud-processing
described in Section 2.2.1.4.

2.2.1.8 Model-Based Techniques

In the introduction of their three-part papers on process fault detection and diag-
nostics, Venkatasubramanian et al. [45] give a clear and exhaustive description of
model-based approaches. Model-based techniques require a priori knowledge of the
set of failures and the relationship between experimental data (observations) and
failures (causes). This relationship is developed by using frequency-response models
or dynamic models. Venkatasubramanian et al. divide the model-based methods
into two classes: qualitative or quantitative. �The model is usually developed based
on some fundamental understanding of the physics of the process. In quantitative
models this understanding is expressed in terms of mathematical functional rela-
tionships between the inputs and outputs of the system. In contrast, in qualitative
model equations these relationships are expressed in terms of qualitative functions
centered on di�erent units in a process [45]�. In automatic control, the quantitative
modelling of physical system is the core part of the so-called system identi�cation.
This research �eld uses statistical methods to build mathematical models of dynam-
ical systems from measured data. De facto, the system identi�cation determines the
transfer function between input and output. By abstraction, the model of the sys-
tem can be represented as a box connecting inputs (working conditions) and outputs
(measured data). This box can be classi�ed into three main classes:

• White-box model: it is a model based on �rst principles, e.g., Newton�Lagrange
equations. It requires a deep knowledge of the system: the geometry, external
loads and torques, characteristics of the materials, the type of interactions
among components (e.g., friction, or impacts), masses, etc. In many cases
such models will be overly complex due to the complex nature of many sys-
tems and processes. It should be noted that the development of a white-box
model is not a one-shot activity but it must be continuously developed, adding
more details if necessary. Examples of white-box modelling can be found in
[46, 47, 48].

• Black-box model: no a priori model is available. The input/output relation
of the system is statistically computed without considering the physics of the
process at all. Most system identi�cation algorithms focus on this type. The
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black-box model is similar to data-driven approaches, which are not further
considered in this work.

• Grey-box model: this model is between the white-box model and the black-box
model. Although the peculiarities of what is going on inside the system are
not entirely known, a certain model based on both insight into the system and
experimental data is constructed [49]. The resulting model still has a number
of unknown free parameters, which can be estimated by using the system iden-
ti�cation. An example of a grey-box is the modelling of the expected signal
produced by a faulty system (i.e., the output signal of the system). In this par-
ticular case, the grey-box model has been studied in depth in literature (e.g., a
ball-bearing) and it is used to simulate the expected output signal in di�erent
working conditions. The condition monitoring analyst can use the simulated
signal to develop and validate signal processing techniques. Examples of fault
modelling can be found in [50, 51, 52, 53, 54, 55, 56, 57].

Figure 2.2: Black and white box architecture.

Based on the level of details required, the development of a model-based tech-
nique needs more time than a data-driven model. The model of a physical system
depends on the characteristics of the system itself. Consequently, it is not pos-
sible to indicate a common development methodology that could be extended to
a general physical system. The analysis of scienti�c literature is the �rst step of
modelling. Further assistance could come from speci�c commercial software for the
modelling of physical systems, but the analysis of the physical process that takes
place is unavoidable. Due to the complexity and the demanding computational time,
model-based techniques are particularly suitable for o�-line computation of speci�c
subsets of data. The results are generally better than the ones obtained by means
of data-driven techniques, since the description of the fault causes is identi�ed bet-
ter. As mentioned in Section 2.2.1.5, the analysis of data in advance is useful for
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Figure 2.3: Grey box architecture.

the technical development of the redesign of components, in order to optimize the
geometry and to maximize the expected life of the component.

2.3 Independent Carts System

This chapter describes the techniques used in automation industries to produce
and transmit mechanical power in order to contextualize the Independent Carts
Systems in their �eld. The �rst part of this chapter focuses on the most commonly
used methods, chain and belt drives, while the second part explains the technology
of linear motors focusing on the Independent Carts Systems.

2.3.1 Progress report on electrical motor technology in au-
tomation �eld

In automation industries, electrical rotary motors are used to produce mechanical
motion necessary for production. In order to produce useful work, it is necessary
to have a method to transmit the power of the motors to other components and
mechanisms. The most used methods in automation industries are chain and belt
drives.
These systems are used for transmission of power, conveyance of materials and
purposes of timing.
Belt Drive is used when high speed and low torque are requested.

The advantages of this system are:

• Low costs,

• Quiet.

The disadvantages of this system are:
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Figure 2.4: Belt drive.

• It can not work in a corrosive environment,

• It can not work with high temperatures,

• It can have slipping problems.

Chain drive is used when low speed and high torque are requested.

Figure 2.5: Chain drive.

The advantages of this system are:

• Strength,

• It can be used with high temperatures,

• It can be used under adverse atmospheric conditions.

The disadvantages of this system are:

• It needs lubri�cation

• Noise

• Weight

• Vibration

• High costs.
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Belt and Chain drives have low �exibility because their characteristics directly
depend on the work they have to execute. De facto, these systems are designed for
a speci�c work and they cannot be used for di�erent tasks. For this reason, it is
di�cult to build �exible machines using these systems.
In order to produce di�erent motions with the use of Chain or Belt drives, it is
necessary to have di�erent chains with di�erent rotary motors. Consequently, more
complex the desired motion, more complex the mechanical design of the machines.
In order to overcome these problems, some new products have been put on the
market. These products use the Independence Carts System, which is based on
electric linear motors.
There are many di�erences between the Independent Carts System and the chain
and belt drives. The most relevant di�erence lies on the type of the motor used.
Chain and belt drives use rotary motors and gearboxes in order to transmit power.
The Independent Carts System uses linear motors, which do not need any gearbox;
in this way the contact among the mechanical parts is reduced. In order to explain
how this di�erence changes the characteristics and the performances of the machine,
the inner features of the two types of motors will be explained.

2.3.2 Linear motors

Linear motors are di�erent from rotary motors because the stator and the rotor are
"unrolled". This di�erence in the construction design also determines a di�erence in
the generated force: rotary motors generate torque and linear motors generate linear
force. Linear motors consist of two parts, a coil assembly and a magnet assembly.
The coil assembly consists of copper windings within a core, which can be made up
of di�erent materials. The magnet assembly consists of a set of rare-earth magnets
mounted on a steel plate with alternating polarity.
The magnetic �eld produced by the magnets and the electrical �eld produced by
current generate a force that is called Lorentz force:

F = q(E + V XB) (2.1)

Figure 2.6: Direction of electrical and magnetic �elds.

The current crossing the coil windings is controlled by a driver, which imposes
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a magnitude and a direction such that the resultant Lorentz force drives the rotor
to the desired position.

Figure 2.7: Representation of the electromagnetic behaviour of the system.

In this case, the rotor as well as the stator can be made up either of coils or of
magnets. Linear motors can be divided into di�erent families, the most important
of which are:

1. Iron core

2. Ironless core

3. Slotless

2.3.2.1 Iron core

Coils are wounded by foils made up of steel. Laminations are insulated from each
other in the same way as in rotary motors. In this way eddy currents, which reduce
e�ciency, decrease.

Advantages

1. Lower costs

2. More e�cient cooling as cooling tubes can be set around laminations

3. Higher force available per unit volume as laminations concentrate �ux �eld

Disadvantages

1. Cogging torque e�ect

2. High attractive forces between iron foils and magnets
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Figure 2.8: Iron core.

2.3.2.2 Ironless Core

Coils are not wounded by laminar iron, but they are inserted into a plate made up
of epoxy. Magnets are generally set on two tracks having a typical �U� shape. The
mover contains the coil windings, which are exposed to the magnets. The ratio of
peak power to continuous force is generally high and these motors are typically used
in highly dynamic applications.

Advantages

1. No cogging e�ect due to the lack of iron foils

2. No attractive forces thanks to the lack of iron foils

3. Higher acceleration

Disadvantages

1. Cooling problems due to poor heat dissipation,

2. Peak power range is limited to a few thousand Newton.

2.3.2.3 Slotless Core

It is a hybrid between an iron core design and an ironless linear motor design. It
consists in coils with back iron contained within aluminium housing over a single
magnet rail. By means of this structure, it is possible to cool the coils.

Advantages

1. Good heat dissipation

2. Structurally stronger forces
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Figure 2.9: Ironless core.

3. Low weight with respect to the iron core architecture

4. Lower cogging with respect to the iron core architecture

Disadvantages

1. Some cogging e�ects

2. Some attractive forces

3. Lower e�ciency

The improvement of technology, especially as regards logic controllers, has en-
abled linear motors to perform tasks, which were not possible before. In this way,
mechanical complexity is reduced while software complexity is improved. In order
to control the movers and to produce relative motions among them, it is necessary
to improve control complexity.
The Independent Carts System uses linear motors in order to control one or more
movers that are constrained by rollers to follow a track. The track can have di�erent
shapes with curved and straight parts and it has a �exible architecture in order to
build modular con�gurations. In this way, a high performance �exible system can
be produced, with this technology each mover can be controlled independently. The
movers can accelerate, decelerate, take an absolute position and produce forces. The
velocity of the movers can be very high with respect to rotary motors, each mover
can move with a velocity of 4m/s.
Thanks to the reduction of moving parts, the maintenance of the components is
reduced with respect to the technology of Chain and Belt drives. Actually only
the rollers are in contact with the track and the wear of these parts can be easily
monitored. The architecture of the machine is modular and for this reason it is
possible to change the shape of the track and the numbers of the movers. Another
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Figure 2.10: Slotless core.

advantage is that the system is very compact with respect to Chain and Belt drives
and it is integrated. Di�erent types of carts and motors exist for the Independent
Carts System, the bigger di�erence among them lies on the possibility of having a
�Moving Coil� or a �Dynamic Moving Magnet�.

2.3.2.4 Dynamic Moving Magnet

Coils and drivers are set in the track and magnetic plates are placed on the carriers.
In this way, the weight of the mover is reduced. There are no moving cables and it
is possible to operate inside a vacuum, where there is no convection to e�ectively
dissipate heat, but it is not necessary because the coil units can be set outside the
vacuum.
The most relevant disadvantage of this system is the possibility of the heating of
coils especially when the machine has to produce high forces on the same motors.
Consequently, it is necessary to improve the cooling of the machine.

2.3.2.5 Moving Coil

Coil windings and a driver are set in each mover and magnets are placed on the
track. The sensors are set on the rail (absolute encoders are usually used). With
this architecture, the weight of the moving parts is high.
Most Independent Carts Systems are of the dynamic moving magnet type. On the
market there are di�erent companies that produce this technology and each company
di�ers from the other one in mover design, feedback methods, coil position, control
protocols etc. The most important Independent Carts Systems are:

• ACOPOStrak of B and R [58]
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Figure 2.11: Beckho� XTS: a) linear motors with straight shape stator b) linear
motors with curved shape stator.

• Itrak of Rockwell Automation [59]

• XTS of Beckho� [60]

• Multi carrier system of Siemens [61]

Each of them uses a di�erent PLC for the control of the internal tasks. This fact
can reduce the �exibility in the machine architecture, which is a great limitation
from the point of view of a designer. In this way, even the possible condition
monitoring architectures are limited, for example as regards the data acquisition
and the integration of sensors in the machine. In order to overcome this problem,
new methods for the synchronization of axes between PLCs and iPCs of di�erent
vendors will be introduced in Chapter 3.

The most important advantages of the system are basically its high �exibility
and dynamics. As a matter of fact, this system is based on modular linear motors
that can have either a curved or a straight shape as shown in Fig. 2.11. The di�erent
stators can be assembled in di�erent con�gurations in order to have the best path
shape with respect to the function. They contain coils that produce a controlled
magnetic �eld which moves the carts.

The encoder is placed on each cart and it can be a Hall sensor or a radio �ag
which allows the position feedback and the velocity feedback. The carts, which
can have di�erent geometry, are connected to the rail (the stator) through rolling
bearings (Fig. 4.8 (a) (b)), the number of the bearings can vary according to the
function. The carts can be freely moved along the rail since they are controlled
independently, it is possible to change the distance and the velocity among the carts
during the execution of the task and they can be moved back and forth. The inde-
pendent control of each cart allows a high �exibility of the system with respect to the
traditional automatic machines, since the use of the Independent Cart System makes
possible to dynamically adapt the functionality of the system to the process only by
means of the software variation and without any mechanical changes. For example,
the Independent Cart System can work with products that have di�erent shapes,
since it is possible to de�ne a di�erent motion pro�le for each cart. Thanks to this
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system, it is also possible to build a machine with a variable rate of production as
the Independent Cart System can change its velocity dynamically. These activities
are not possible with the traditional motor-driven chains, belts and gears because,
in order to change the functionality of the machine, it is necessary to design di�erent
mechanical links for every type of product and every rate of production. Another
important advantage of the use of the Independent Cart System is the reduction in
the downtime of the machine. De facto, when there is a variation in the product,
it is not necessary to stop the machine for mechanical changes as the end-e�ector
is �xed to each cart and so it is only necessary to change the motion pro�les of the
carts. On the contrary, with the chain, belt and gear system it is necessary to stop
the machine for the change of mechanical parts and consequently the downtime of
the system increases.
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Chapter 3

Condition Monitoring for

Independent Carts System

3.1 Introduction

This chapter will deal with the integration of a Condition Monitoring Framework
for Independent Carts Systems in a pre-established condition monitoring architec-
ture. The integration is quite complex because so far only some companies produce
these systems and each of them has its own control system. As regards Condition
Monitoring, the problem is quite serious because the diagnostics of the system could
be impracticable without any integration of the working parameters of the Indepen-
dent Carts System with the process variables of the machine. For this reason, the
�rst part of this chapter will illustrate two new methods for the synchronization of
axes between PLCs and iPCs of di�erent vendors. The most important and basic
part of integration is the synchronization of the motion tasks among multivendors
programmable controllers. This is so important because in automation applications
the motion task synchronizes all the motions of the machine, therefore with its syn-
chronization and control, it is possible to manage the system and to have all the
operational data of the machine.
In order to �nd a global solution to this problem, particular attention has been
focused on programmable controllers, which can manage axes by means of point-by-
point control or motion instructions.
Two synchronization algorithms have been developed and validated for real and
virtual axes; they di�er in computational load so that they can be used with pro-
grammable controllers having high or low computational performances.

3.2 Distributed real-time system

Distributed solutions for real-time system architectures are more and more used
for the improvement of the industrial process and the development of smart facto-
ries in order to follow the new wave of Industry 4.0 [62]. In comparison with the
centralized architecture, these systems improve the dependability, compensability,

27



3.2. DISTRIBUTED REAL-TIME SYSTEM

scalability and extensibility of the products [63]. They are also called networked
motion control systems (NMCS) and they consist of a set of di�erent nodes such
as controllers, sensors, drive controllers, regulators, HMIs and actuators, spatially
distributed and interconnected by a communication network [64, 65]. In the au-
tomation �eld [66], there are several communication networks and protocols, which
answer di�erent requirements for di�erent applications. Real-time Ethernet (RTE),
which is a �eldbus technology, is commonly used for the communication of data
among nodes of distributed real-time systems thanks to its security and reliability
[67, 68, 69]. Several Ethernet applications exist such as ControlNet [70], PROFIBUS
[71], EtherCAT [72] and Ethernet/IP [71].
The new challenges of distributed control system have been presented by Dripke
et al. [73]. The most important challenges, which have been identi�ed by them,
are communication among multi-agent systems, time and synchronization due to
the parallel computing nature of distributed systems, control tasks, capacity and
scalability. In this direction, a lot of new communication protocols for IoT and time
synchronization systems, such as OPC UA [74, 75] and TSN [76, 77, 78], are being
developed and standardized in order to overcome the existing problems. While in
the industrial �eld there are some examples of the use of the OPC UA protocol
for communication [79], in the case of motion synchronization, this protocol is used
together with another protocol (EtherCAT) in order to achieve the synchronization
of multiple axes [80]. As regards Time-Sensitive Networking (TSN), it is a new com-
munication protocol, which is focused on the simultaneous motion synchronization
of axes and data exchange [81]. Several companies are developing new devices in
order to implement this new protocol [82] and to increase its reliability, security and
performances for industrial applications. A milestone of motion control is synchro-
nization among multiple axes [83, 84, 85, 86] that is fundamental in di�erent �elds
such as Computer Numerical Control (CNC), Surface Mounting Technology (SMT)
[87, 88] and automated factories [89]. It is acknowledged that a new step towards the
development of distributed control systems is represented by integration and inter-
operability among industrial programmable controllers of di�erent producers [89].
Some applications already use communication between PLCs or iPCs of di�erent
vendors [90] but only for the exchange of information and not for the motion control
of motors. Several studies have been carried out to implement distributed controls
for motion axes [91, 92, 93]. In all these cases, the master control directly commands
drivers of the same vendor or drivers directly compatible with the communication
network of the master control. This is due to the fact that di�erent vendors use dif-
ferent methods for the control of the dynamics of motors; moreover, motion control
is a hard real-time task, which requires a high level of accuracy and reliability. The
advantages of a distributed motion control system, which can be used with drives
and motors of di�erent vendors, are the increase of re-usability, re-con�gurability
and extension of distributed systems. The novel approach of this work consists in the
implementation of a distributed motion control in which a master iPC commands
incompatible drivers and motors through a slave PLC. This method di�ers from the
actual ones in which the motion control between di�erent PLCs/iPCs of di�erent
vendors is possible only if the two systems use the same protocol for communication
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and synchronization. An example of accurate time synchronization among multiple
devices is presented by Shiying et al. [94]. They use the IEEE 1588 protocol for the
design of a time synchronization network of experimental advanced superconducting
tokamak (EAST) poloidal �eld (PF) power supply control system. In this case, they
synchronize the time among a control system of PFPS on EAST, local controllers,
coordination operations of several sets of power supply and DAQ systems (DAS)
with the maximum time o�set from the master node that never exceeds 50 ns. This
chapter is focused on the development of a general master-slave real-time interface
between di�erent programmable controllers for the synchronization of motion con-
trol by the use of real-time Ethernet communication networks with the IEEE 1588
V2 Time Synchronization protocol [95, 96] and the Ethernet/IP protocol [97]. The
hardware architecture, the used communication network and the algorithms, which
will be subsequently shown, represent a global solution for motion control among
industrial programmable controllers of di�erent vendors. This solution can be used
for any type of distributed real-time control systems that include both PLC and iPC
devices. The tests have been performed with di�erent PLCs and iPCs. The general
solution illustrated in this chapter will be also used with the latest protocols, such
as TSN, when they are introduced into the automation �eld as standard protocols.
Following the method shown in the chapter, it is possible to overcome the problem
of connectivity between PLCs and iPCs of di�erent vendors without the reduction
of the function of one of the two systems. De facto, it is also possible to control func-
tions that require high accuracy and safety such as the motion control of di�erent
motors.

3.3 Notations

ClM Clock Master
ClS Clock Slave
MotM Motion Master CPU
MotS Motion Slave CPU
pi i-th Set position
vi i-th Set velocity
ai i-th Set acceleration
ji i-th Set jerk
Tad Actuation delay
Tstt Motion task time of the MotS
CUP Coarse update
Di i-th Time di�erence
Tmci i-th Time instant in whichMotM imposes the set values on its axes
Tsci i-th Time instant in which MotS imposes the set values on its axes
Tt Total time
pfi i-th extrapolated future position
vfi i-th extrapolated future velocity
afi i-th extrapolated future acceleration
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Ta Acceleration time
Tr Time at constant velocity
p0 Actual position
v0 Actual velocity
vjog The input velocity given to the jog
ajog The input acceleration given to the jog
ep Position error
ev Velocity error

3.3.1 Hardware architecture

In order to generalize the architecture of the system, the hardware components used
are typical of every programmable controller vendor. The only constraints are:

• the Ethernet communication network for the exchange of the kinematic data
of motors with a velocity of at least 100Mbps. For some vendors it is directly
integrated in the controller card while other vendors need an appropriate card

• an Ethernet card that allows the use of the IEEE 1588 V2 protocol. In some
cases it is the Ethernet communication card itself if the system uses a CIP
Sync protocol, or in other cases an appropriate card is necessary.

Furthermore, the programmable controller that moves the main motors is called
Motion Master CPU (MotM), while the one that synchronizes its motors with the
master is called Slave Motion CPU (MotS). With this method it is possible to
synchronize both real and virtual axes. This is very important because in the au-
tomation �eld the main axis of the machine is often virtual and all the other axes,
both real and virtual, move synchronously with it.
If the system needs to synchronize real motors, the hardware architecture includes
drivers and motors.
If the system synchronizes only virtual axes, drivers and motors are not included in
the hardware architecture.
Other studies relating to motor synchronization have been carried out by means of
the use of the IEEE 1588 synchronization protocol and Ethernet connections [91].
Even they consider a master-slave architecture, but the main di�erence lies on the
fact that they use only a master controller and some slave drivers of the same vendor
as in Fig. 3.1.
On the contrary, this study aims to develop an interface between programmable
controllers of di�erent vendors, which control drivers and motors. In this case a
master CPU controls di�erent slave CPUs that send the set values to the drive in
order to control several motors as represented in Fig. 3.2.

3.4 Problem de�nition

The synchronization of several axes between programmable controllers of di�erent
vendors can be divided into four parts:
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Figure 3.1: The system architecture analysed in literature
.

Figure 3.2: System architecture.

1. time synchronization of the system

2. exchange of kinematic data

3. computation of trajectory

4. driver actuation.

3.4.1 Time synchronization

First of all programmable controllers need to have the same time reference so that
they can evaluate the kinematic values of the system properly. The clocks of pro-
grammable controllers can be very di�erent in accuracy and reliability, consequently
it is necessary to use a method which is oriented to �nd a common clock between the
controllers. In order to obtain a high accuracy in motion synchronization, a high
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accuracy of the global time of CPUs is required. Therefore, the synchronization
protocol used is the IEEE 1588 V2 (Precision Time Protocol), because it is one of
the most used, it is based on Ethernet communication network and it achieves a
clock accuracy < 100 ns [95].
This protocol uses a Clock master(ClM) that is the source of the synchronization
reference and a Clock slave(ClS) that is the destination of the synchronization mes-
sage. In order to synchronize the ClS with the ClM , the former computes the time
di�erence between its clock and the synchronization message. If the delay is higher
than 100 ns, the ClS overwrites its time in order to ensure synchronization, this
means that there are some gaps in the time reference of ClS. Therefore, it is very
important to understand which CPU between MotM and MotS will be the ClM or
the ClS. The ClM chosen between the two di�erent programmable controllers has
to be the MotS, because it is not possible to control the dynamics of an axis in an
accurate way if the reference time is overwritten during the computation of motion.

3.4.2 Exchange of kinematic data (Communication con�gu-
ration)

The communication network between the two programmable controllers is based on
Ethernet/IP with a Produced/Consumed tag method. This type of communication
allows to broadcast and to receive system-shared tags. The choice of this method
for the exchange of data is due to the fact that it can be used with typical control
networks, it is reliable and it is real-time communication.
The MotM can send the synchronization data for multiple axes within a data path.
For each axis the shortest data path necessary for the synchronization of the i-th
axis (Fig. 3.3) consists of: Time of master commands (Tmci(i)) and Set Position,
Velocity, Acceleration, Jerk (pi(i + Tstt), vi(i + Tstt), ai(i + Tstt), ji(i + Tstt)) of the
axis with a look ahead equal to the Motion Task Time of the MotS (Tstt).

Figure 3.3: Data path sent to the MotS by the MotM
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3.4.3 Computation of trajectory

Di�erent vendors use di�erent methods for the motion of axes. Some of them can
directly move an axis point-by-point de�ning its pi, vi and ai at each motion task.
Other vendors, who cannot control a motor point-by-point, use motion instructions
in order to impose the desired trajectory. This case is the most interesting because
it requires to impose the desired trajectory by using a prede�ned motion pro�le. If
the axes to be moved are real, the programmable controller computes their pi, vi
and ai and sends them to the drivers. In order to synchronize two or more virtual
or real axes between two programmable controllers, the MotS needs to take into
account the pi, vi, ai and ji of theMotM with respect to the instant of time in which
the MotM will actuate these commands. Thanks to the time synchronization, the
two CPUs have the same clock reference and so it is possible to correlate the time
instant in both CPUs. Both in the case of the point-by-point control and in the case
of the control obtained by means of motion instructions, the coarse update (CUP)
of the motion task and the coarse update of the data sending task of the MotM
must be shorter than the ones of the MotS. This choice reduces the possibility
of receiving the same data of motion twice because of the jitter of the tasks that
di�erent CPUs have. Moreover, the task in which the motion algorithm is com-
puted must be synchronous with the motion task of the CPU to be sure that the
actuation delay (Tad) with which the CPU sends the pi, vi and ai of the system is
constant and equal to one CUP of the motion task. To compensate the actuation
delay that is equal to one CUP of the motion task of the MotS (Tad = Tstt), the
kinematic values sent by the MotM have a look ahead in time equal to Tstt and they
are (pi(i+ Tstt), vi(i+ Tstt), ai(i+ Tstt), ji(i+ Tstt)).
The main idea for the synchronization of the two systems is based on the deter-
mination of the time di�erence (Di) between the time instant in which the MotM
imposes the set values on its axes (Tmci) and the time instant in which the MotS
will impose the set values on its axes (Tsci).
With the computation of this delay and thanks to the kinematic data of the MotM ,
it is possible to extrapolate the future set position (pfi), future set velocity (vfi)
and future set acceleration (afi) that the master axes will achieve after the total
time (Tti = (Di + Tad)). The computation of Tti is a�icted by the jitter of the
motion task because the MotS can only compute the previous instant of time in
which it imposes the commands and not the next one. However, the motion task of
the MotS is scheduled and so it is almost constant except for the jitter of the task
(Tti = Tadi + Di + jitteri). PLCs and iPCs de�ne a maximum level of the jitter
of the task that is di�erent among di�erent vendors and di�erent controllers. The
communication jitter does not in�uence the computation because it is included in
the Di value and so it is determined for each calculation accurately.
In order to synchronize the axes of MotS with the axes of MotM , the MotS has to
impose on its axes a trajectory congruent to their actual kinematic values to achieve,
at the future time instant, the same pfi , vfi and afi as the MotM reaches.
The extrapolated formulas are the following:

pfi = pi(i+ Tstt) + vi(i+ Tstt)Di +
1

2
ai(i+ Tstt)D

2
i +

1

6
ji(i+ Tstt)D

3
i (3.1)

33



3.5. SIMULATIONS

vfi = vi(i+ Tstt) + ai(i+ Tstt)Di +
1

2
ji(i+ Tstt)D

2
i (3.2)

afi = ai(i+ Tstt) +
1

2
ji(i+ Tstt)Di (3.3)

For each motion task the MotS has to move its axes satisfying the constraints
pfi , vfi , afi with respect to their actual positions (pai), actual velocities (vai) and
actual accelerations (aai).

3.4.4 Drive actuation

The driver can have di�erent control strategies to perform the best control of mo-
tors, but it generally uses only the set positions and the set velocities given by the
controller. The driver interpolates the set values with a frequency of about 8 kHz
and computes the current necessary to impose the de�ned motion. For this reason
all the synchronization algorithms that have been developed have the aim of gener-
ating the correct set positions and set velocities required to synchronize two or more
axes.

3.5 Simulations

Several simulations have been performed in order to demonstrate the correctness of
this architecture. The tests consist in the evaluation of the synchronization error
between a MotM axis and a MotS axis with the trajectories shown in Fig. 3.13 and
Fig. 3.17. The method used to synchronize the two axes is the aforementioned one.
The task time chosen for the motion task of the MotM is 2ms and the one of MotS
is 4ms. The MotM sends the data path to the MotS every 1ms, while the MotS
reads the data path every 2ms. A random jitter has been imposed on di�erent tasks
as follows:

• ±5µs Master Send Data Task

• ±40µs Slave Read Data Task

• ±40µs Slave Read Data Task

• ±40µs Slave Actuation Task

The timing model is shown in Fig. 3.4. The simulation results are shown in Fig.
3.5 and Fig. 3.6.

The simulations lead to the following deductions:

• synchronization errors are bounded

• jitter causes noise on the synchronization error

• it is possible to have few points with a high synchronization error of velocity
and acceleration in the case in which the motion task of the MotM does not
sample the punctual variations of the dynamic variables.
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Figure 3.4: Timing model of the system

Figure 3.5: Synchronization error with the �rst trajectory

3.6 Point-by-point control

In case in which the MotS uses a point-by-point control, it is possible to directly
impose pfi , vfi and afi on the axes so synchronization is insured except for the jitter
of the task.

3.7 Motion instruction control

In case in which the programmable controller can not directly impose the kinematic
values on the axes by means of point-to-point control but it can only use motion
instructions, it is necessary to use di�erent algorithms to respect the kinematic
constraints. In order to develop a global method for the motion synchronization
between two di�erent controllers, the motion instruction used to move the axes of
the MotS is a jog.
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Figure 3.6: Synchronization error with the second trajectory

The choice of this type of motion instruction depends on the fact that the jog is a
trapezoidal velocity pro�le and it is used in any type of automation PLCs or iPCs.
Di�erent vendors give di�erent names to this instruction but, independently from
the name, its behaviour is the same. The jog instruction allows to carry out a
trapezoidal velocity pro�le (Fig. 3.7) by de�ning the velocity that the axis has to
reach and the acceleration with which it has to obtain the desired velocity.

Figure 3.7: Velocity shape of a jog in which the �nal velocity vf of the axis is higher
than the actual velocity v0.

In this case it is necessary to divide the problem into three di�erent scenarios
that depend on the value of the actual velocity(v0) of the MotS axis with respect to
the extrapolated velocity(vf ) which the axis has to reach at the next motion task
time: (vf < v0), (vf = v0), (vf > v0).

In case vf > v0, the equations describing the problem are:

pf = p0 + v0Tt +
1

2
aT 2

a + (vf − v0)Tr (3.4)

vf = v0 + aTa (3.5)

Tt = Ta + Tr (3.6)
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Figure 3.8: Problem scenarios (vf < v0), (vf = v0), (vf > v0).

where Ta is the time of acceleration, Tr is the time in which the axis has the desired
velocity and Tt is the total time. So the solution is the following:

Ta = 2
(pf − p0)− vfTt

v0 − vf
(3.7)

a =
(vf − v0)

Tt
(3.8)

In case vf < v0, the solution is similar to the previous one. In the case in which
vf = v0, the unique solution is the following:

pf = p0 + v0Tt (3.9)

a =
vf − v0
Tt

(3.10)

The solutions, which also depend on the values of Ta and Tt, lead to four di�erent
cases:

• 0 < Ta < Tt, the solution always exsists;

• Ta = 0, one and only one solution exists and it is not implementable:

(pf − p0) = vfTt (3.11)

∆p

Tt
= vf (3.12)

• Ta < 0, it is impossible to satisfy the position and the velocity constraints at
the same time:

(pf − p0)− vfTt < 0 (3.13)

∆p

Tt
< vf (3.14)
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• Ta > Tt, it is impossible to satisfy the position and the velocity constraints at
the same time:

(pf − p0) > v0Tt (3.15)

∆p

Tt
> v0 (3.16)

Only in the �rst case there is always a solution. In the second case there are no
implementable solutions because it is necessary to give a new velocity to the axis
without any variation of acceleration. In the third case and in the fourth case it is not
possible to respect all the constraints so it is necessary to develop an approximated
solution. In order to achieve the best synchronization performances with respect to
the computational e�ort, two di�erent algorithms have been developed:

• Discrete approximation

• Linear approximation

3.7.1 Discrete approximation

With this algorithm, in case Ta = 0, the input velocity and acceleration given to
the jog are the same as in the previous task. In this way the MotM and the MotS
axes increase their synchronization di�erence and in the next task Ta will be di�erent
from 0. The synchronization error is not high if the time of the motion task is shorter
than the dynamics of the MotM axes. In the third case (Ta < 0), the acceleration
time is negative. In the fourth case (Ta > T ) the acceleration time is higher than the
motion task of the system, the inputs of the jog instruction are de�ned as follows:

vjog =
pf − p0
Tt

(3.17)

ajog =
vf − v0
Tt

(3.18)

This approximation involves a position error and a velocity error (Fig. 3.9).
To understand if the approximation error is bounded and small enough to al-

low the application of the algorithm, the position error and the velocity error are
computed in the following three cases:

• vf < v0

ep = ∆p− vf + v0
2

T (3.19)

ev = 0 (3.20)

• vf = v0

ep = ∆p− vf + v0
2

T (3.21)

ev = 0 (3.22)
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Figure 3.9: Position error due to the approximation in the cases (vf < v0), (vf = v0),
(vf > v0).

• vf > v0

ep =
v20

2∆v
T +

∆p2

2T∆v
− v0

∆p

∆v
(3.23)

ev = vf −
∆p

T
(3.24)

Di�erent simulations have been carried out in order to evaluate the position error
with respect to Delta position (pf − p0) and the �nal velocity vf .
The function is computed in the neighbourhood of the work point with a velocity
of about 133,33 deg/sec (Fig. 3.10).

It presents a saddle point in the working point with a position error of about
zero, in the other parts the position error is close to zero. The highest position error
can be achieved only if Delta velocity and Delta position are not congruent to each
other, consequently only if the kinematic values of the MotM axes received by the
MotS are corrupted.
Another possible problem can be present if the extrapolated velocity is perfectly
equal to the actual velocity. In this case the algorithm does not correct any velocity
error and the two axes have the same velocity but a very high position error.
In order to solve this problem, a very little reduction in velocity is imposed with
an acceleration equal to 1% of the actual acceleration of the system. In this way
a di�erence between the extrapolated velocity and the actual velocity of the axes
appears in the next motion task. This solution does not produce a high position
error if the system has a short motion task time. Fig. 3.11 represents the complete
algorithm.
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Figure 3.10: Surface of the synchronization error.

This algorithm has to be computed at each motion task time for each axis to
be synchronized. Not all PLCs have a good performance with complex calculations,
therefore a simpli�ed algorithm has been developed.

3.7.2 Linear approximation

The target of this algorithm is to reduce the complexity of computation maintain-
ing good synchronization performances. For each task time this algorithm computes
the time di�erence (Di), it extrapolates pf ,vf and af and it calculates, by means of
Eq. 3.17 and Eq. 3.18, the input velocity and acceleration to be given to the jog
instruction.
The algorithm corrects the position error and the velocity error existing between
the actual kinematic values and the extrapolated kinematic values in order to syn-
chronize with the master axis.
However, the algorithm does not distinguish the di�erent kinematic scenarios con-
sequently there is always an approximation error. But, as seen before, the position
error is very small if Delta position and Delta velocity are congruent and the com-
putational e�ort is reduced. This algorithm can be a good trade o� between the
synchronization performances and the computational e�orts if the computational
power of the CPU is not too high.

3.8 Experimental results

The tests have been performed only with PLCs and iPCs that cannot control the
kinematics of the axes point-by-point. This choice is due to the fact that in the case
of point-by-point control it is possible to synchronize the axes by directly imposing
the extrapolated position and velocity of the MotM axes. In the case taken into
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Figure 3.11: Discrete approximation algorithm �ow chart.
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Figure 3.12: Linear approximation algorithm �ow chart.
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consideration by this study, the time di�erence between the two systems has to be
computed in order to extrapolate pf ,vf and af and to use the Discrete Approxi-
mation Algorithm or the Linear Approximation Algorithm required to compute the
input velocity (vjog) and the input acceleration (ajog) for the jog instruction and to
synchronize the axes.
The tests have been run on virtual and real axes.
The tests on real axes have been conducted in order to understand if the synchro-
nization error can in�uence the position error or produce vibrations on real motors.
The tests on virtual axes have been performed in order to evaluate the synchroniza-
tion position error and the velocity position error with respect to di�erent motion
pro�les. Other tests on virtual axes have been run in order to determine how the
variation of the task time of the two CPUs can in�uence the performances of the
algorithms.

3.8.1 Tests on real motors

In order to understand if the algorithms can generate noise on real motors, the
position error and the velocity error of the distributed hybrid system have been
evaluated by comparing them with the position error and the velocity error of the
same motor commanded only by one CPU. The motion pro�le chosen for the test is
shown in Fig. 3.13; it consists of a hard dynamics with several parts of accelerating
zones and constant velocity zones. The position error and the velocity error are the
same both in the normal case and in the hybrid case.

3.8.2 Tests on position and velocity synchronization errors

In order to evaluate the synchronization performances of the two algorithms at dif-
ferent velocities and with virtual axes, two motion pro�les have been used: the �rst
one is represented in Fig. 3.13, while the second one is represented in Fig. 3.17.
For the sake of brevity, Fig. 3.15 and Fig. 3.16 show only one test; the variables
represent the position synchronization error and the velocity synchronization error.
However, the data of all the tests are listed in Tab 3.1.

Figure 3.13: First motion pro�le.
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Figure 3.14: Position error and velocity error in the normal and hybrid con�gura-
tions.

• First motion pro�le

Figure 3.15: Synchronization error with the Discrete Approximation Algorithm for
the �rst motion pro�le.

Figure 3.16: Synchronization error with the Linear Approximation Algorithm for
the �rst motion pro�le.

• Second motion pro�le
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Figure 3.17: Second motion pro�le.

Figure 3.18: Synchronization error with the Discrete Approximation Algorithm for
the second motion pro�le.

Figure 3.19: Synchronization error with the Linear Approximation Algorithm for
the second motion pro�le.

3.8.3 In�uence of the task time

An important factor for the motion control is the task time of the motion planner
of CPUs. The following experiments have been conducted in order to understand if
the variation of the task time in�uences the performances of the algorithms. The
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tests have been performed for three di�erent task times of the motion planner of the
MotS:

• 8 ms

• 4 ms

• 2 ms

The task time of the MotM is always half of the task time of the MotS. The pro�le
used is the same as in Fig. 3.13 at three di�erent velocities:

• 67 deg/sec

• 133.33 deg/sec

• 200 deg/sec

The data of all the tests are shown in Tab. 3.2.

3.9 General Results

To solve the synchronization problem two possible cases have been taken into ac-
count:

• point-by-point control

• axis control by means of motion instructions

In the �rst case it is possible to synchronize the axes by means of a simple com-
pensation of the time delay between the time in which the MotM commands its
axes and the time in which the MotS performs the same operation. In the second
case a trapezoidal velocity pro�le called jog instruction has been chosen in order to
control the MotS axes and to synchronize them with the MotM axes. This choice
has been made because in any PLC or iPC used for the motion control it is possible
to de�ne a trapezoidal velocity trajectory by imposing on the axis the velocity and
the acceleration to be reached.
Therefore, two di�erent algorithms have been developed for the solution of the syn-
chronization problem. The main di�erence between the two algorithms depends on
the fact that the Discrete Approximation Algorithm takes into account all the pos-
sible kinematic cases of the axes, but it involves a higher computational e�ort.
On the contrary, even if the Linear Approximation Algorithm has the same behavior
in any kinematic case, it requires a lower computational e�ort.
In order to optimize the algorithms, some tests have been conducted with di�erent
task times of the motion planner as the task time is an important factor for the
synchronization accuracy. De facto, the shorter the motion task time is, the faster
the generation of the command values sent to the axes is. Consequently, the system
is more reactive to the correction of the synchronization error and the decrease of

46



3.10. CONLUSIONS

the task time reduces the mean and especially the standard deviation of the syn-
chronization error.
These tests have brought to light another parameter that in�uences the perfor-
mances. It is the jitter of the motion task of the MotS; in order to evaluate its
in�uence, several tests have been conducted on virtual axes following the pro�le of
Fig. 3.13. The data are shown in Fig. 3.20.

Figure 3.20: Comparison between the synchronization error and the jitter of the
MotS motion task.

Actually a high variation of the jitter involves a higher synchronization error.
Even the magnitude of the jitter in�uences the system: for a high magnitude of the
jitter there is an increase in the synchronization error. The problem is that it is
not possible to forecast the jitter and to compensate it because it has a randomic
behaviour. Therefore, in order to reduce its e�ects, there are two possibilities:

• to choose a CPU with a very low jitter

• to reduce the task time of the motion planner of the Mots so that the magni-
tude of the jitter can be reduced.

3.10 Conlusions

The �rst step of this work has involved a wide research on the most used systems
of real-time communication and synchronization. For the time synchronization of
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di�erent CPUs it has been necessary to individualize the hardware and software
tools adopted by most vendors of programmable controllers. The second step has
regarded a research aimed to de�ne the communication method to be used for the
exchange of the kinematic data of the axes between two CPUs.
Two synchronization algorithms have been developed in order to solve the syn-
chronization problem. Several simulations have been carried out with a de�ned
trajectory of the axes in order to evaluate the synchronization performances of the
system. They have shown a position error close to zero along the working point.
Subsequently, the two algorithms have been tested with real and virtual axes. As
regards real axes, it emerges that the use of synchronization algorithms does not
in�uence the position error and the velocity error of real motors. As regards virtual
axes, several synchronization tests have been run with di�erent motion pro�les and
at di�erent velocities in order to evaluate the �exibility of the algorithms. They
have shown that the synchronization error is bounded; it depends on the velocity
of the axes and on the motion pro�le; magnitude is one or two orders lower than
a common position error of a real motor and it has a tight standard deviation. It
means that the algorithms reach good performances and in case of real motors, the
synchronization error is neglectable.
In the tests conducted with the second trajectory, the synchronization position error
of the axes is close to the synchronization position error of the simulations performed
with the same pro�le. Furthermore, a good model of the system has been developed.
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Table 3.2: In�uence of the task time on the motion synchronization
Discrete approx. Linear approx.
Mean Std. Dev. Mean Std. Dev.

2 ms
67 deg/s 4.329E-2 4.140E-2 4.885E-2 4.939E-2
133 deg/s -2.00E-3 4.068E-2 9.372E-2 1.001E-1
200 deg/s -9.905E-4 6.273E-2 7.839E-2 1.255E-1

4 ms
67 deg/s 1.289E-2 4.029E-2 1.860E-2 4.353E-2
133 deg/s 2.437E-2 8.316E-2 3.337E-2 9.599E-2
200 deg/s 3.397E-2 1.318E-1 4.562E-2 1.644E-1

8 ms
67 deg/s -1.057E-4 3.135E-2 -6.308E-3 5.928E-2
133 deg/s -4.168E-2 2.342E-1 -3.671E-2 2.321E-1
200 deg/s -1.064E-2 5.615E-1 3.634E-2 6.542E-1
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Chapter 4

Data-driven approach for

Independent Carts System

4.1 Introduction

This chapter deals with a methodology for the training of two Machine Learning
algorithms for fault detection and identi�cation in Independent Carts System. This
study veri�es the feasibility of using a CBM data-driven approach instead of a time-
based maintenance method. De facto, the current method of maintenance used in
the Independent Carts System under examination is based on the replacement of
all the bearings of all the carts every 10.000 hours of production and, in case of
unexpected problems, the machine stops and the faulty cart has to be changed.
The system taken into account is an XTS Becko� System and the use of Machine
Learning algorithms aims to predict the time when a single cart has to be replaced
because of a damage on one of the three bearings mounted on it. Therefore, the aim
of the algorithms used is to classify the healthy and the faulty state of the system
and in some cases to classify also the type of damages in the bearings. The training is
supervised, in fact all the training data are labelled. The Machine Learning models
used are:

1. Random Forest;

2. Support Vector Machine.

The metrics used for the evaluation of the two models are accuracy, precision and
recall, they are the most used criteria for the comparison of machine/deep learning
algorithms. The classical nomenclature is described in the confusion matrix here
below.

The metrics used are the following:

1. Accuracy: it is the total number of the examples of the entire confusion matrix
that are classi�ed as correct, divided by the total number of examples. It
identi�es the response of the algorithm both to healthy cases and to faulty
cases.
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Figure 4.1: Confusion Matrix.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

2. Faulty Recall: it is the number of the fault examples that are classi�ed as
correct, divided by the total number of fault examples. It identi�es how good
the algorithm is to detect damages in its presence.

Recall =
TP

TP + FN
(4.2)

3. Faulty Precision: it is the number of the fault examples that are classi�ed as
correct, divided by the total number of fault examples, which are classi�ed
as faulty. It identi�es how good the algorithm is to identify damages without
giving false alarms.

Precision =
TP

TP + FP
(4.3)

4. Receiver Operating Characteristic Curve (ROC Curve Fig. 4.2): it is a graph
showing the performances of a classi�cation model at all classi�cation thresh-
olds. It is based on two parameters:

True Positive Rate (TPR)

TPR =
TP

TP + FN
(4.4)

False Positive Rate (FPR)

FPR =
FP

FP + TN
(4.5)
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Figure 4.2: ROC and AUC score graphs.

Figure 4.3: Confusion Matrix in Condition Monitoring analysis .

In fault detection, the nomenclature can change as described in Fig. 4.3.
In this case, H0 corresponds to the healthy state of the machine that the al-

gorithm identi�es as healthy; Alarm corresponds to the case in which there is a
damage in the machine that is detected; Missed Alarm (MA) corresponds to the
case in which there is a damage in the machine but it is not detected and False
Alarm (FA) corresponds to the case in which the machine is healthy but the algo-
rithm detects a damage.
This type of nomenclature is used in order to identify the operational cases better.
Moreover, an operational cost is de�ned for each class in industrial plants. For ex-
ample, in the case taken into consideration in this chapter the operational cost of a
missed alarm and a downtime of the machine is very high, while the cost of a false
alarm is lower due to the possibility of maintenance control during the normal stop
of the machine.

4.2 Random Forest

The Random Forest (RF) algorithm was developed by Breiman [98] in 2001. The
Random Forest is a machine learning model based on tree bagging. Bagging is a
machine learning ensemble meta-algorithm designed to improve stability and accu-
racy; it is used in statistical classi�cation and regression. It also reduces variance
and helps to avoid over�tting. The Random Forest consists of an ensemble of sim-
ple decision-tree predictors, each of which gives a class prediction as output and the
class that has the largest number of votes becomes the prediction of the model (see
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Fig. 4.4).

Figure 4.4: Graphical representation of Random forest from [99].

In the nodes of the trees there are thresholds based on one or more features
that decide if the data must proceed to the left or to the right of the tree. On the
contrary, as regards the leaves, the probabilities are calculated on the basis of the
elements of each class that end up in a given leaf. As regards classi�cation problems,
the ensemble of simple trees vote for the most popular class. As regards regression
problems, the responses of the trees are averaged to obtain an estimate of the de-
pendent variables. Using tree ensembles can lead to a signi�cant improvement in
prediction accuracy.

Pros:

• The use of multiple decision trees reduces the problem of over�tting by aver-
aging or combining the results,

• It has a smaller variance than a single decision tree,

• Flexibility and accuracy,

• It maintains accuracy even with missing data.

Cons:

• The construction of Random Forest is harder and more time-consuming than
the construction of a decision tree,

• More computational resources are required and they are even less intuitive.
With a large collection of decision trees it is hard to have an intuitive grasp
of the relationship existing in the input data,
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• The prediction process using Random Forests is more time-consuming than
other algorithms.

4.3 Support Vector Machine

Support Vector Machine (SVM) is a supervised machine learning algorithm that
can be used for regression or classi�cation. If it is used as a classi�er, it �nds
a separation line in the feature domain that has the maximum distance from the
prede�ned classes. Fig. 4.5 illustrates an example of how SVM works for a linear
classi�cation. It shows the case in which a dot has to be classi�ed into two di�erent
classes (black or white) on the basis of two input features (X1, X2). SVM computes
the separation line by maximizing the distance of the closest elements of the two
classes and by minimizing the possibility of choosing a separation line that is more
favourable to one of the two classes.

Figure 4.5: Support Vector Machine from [100].

SVM classi�er can be extended to a non-linear separation hyperplane by means
of kernel functions, multi-dimensional feature arrays and multi-class classi�cation.
Detailed information can be found in several books on SVM, for example in [101,
102, 103]. The core part of a machine learning tool is the de�nition of the input
feature array. The number of features has to be reduced in order to avoid com-
putational burden, but it has to be signi�cant to characterize the di�erent classes
which the data should be divided into. In literature, several parameters have been
proposed for the condition monitoring of ball bearings [104, 27, 105].

Pros:

• Good accuracy
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• It works on smaller and cleaner data sets well

• It can be more e�cient by using a subset of training points

• It can be visually interpreted.

Cons:

• It �nds di�culties in working with large datasets

• It is less e�ective on noisier datasets with overlapping classes.

The Random Forest and Support Vector Machine algorithms have been trained
for the fault monitoring of two di�erent test rigs that are:

1. Rotary motor test rig

2. Independent Carts XTS Becko� rig.

4.4 Rotary motor test rig

This test rig consists in a Hepco bearing, with the dimensions showed in Tab.
5.1, mounted on a rotary Becko� servomotor AM8022-0D20-0000. The bearing
is preloaded with a pneumatic jack Festo ADVC-25-10-I-P-A. All the tests executed
with this test rig have been run at constant velocity and with three di�erent preloads
(0.2 bar 0.4 bar 0.6 bar). Fig. 4.6 shows the system. The system has two accelerom-
eters IFM VSP001 placed on a �ange of the test rig at 90deg from each other with
a sampling frequency of 20 kHz. The velocity and the current of the servomotor are
recorded.

Figure 4.6: Rotary motor test rig.
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4.5 XTS Beckho� test rig

The test rig is made up of Beckho� XTS system (Fig. 4.9) with GXF Hepco guidance
and the cart shown in Fig. 4.8. The system taken into account consists of two
circular paths that are 0.500 m long and an upper linear path and a lower linear
path, each of which is 1m long. For the length of the machine, 8 straight motors
and 2 curved motors are necessary. Twelve carts have been mounted on the track
and in every test they follow the motion pro�le shown in Fig. 4.7.

Figure 4.7: Cart motion pro�le

Their motion pro�le highlights that the carts vary their velocities along the whole
path but they move from 1500 mm to 2000 mm at a constant velocity.

4.5.1 Method work�ow

The machine under test is not yet in the �eld, consequently no case of faults is
known at the moment. As regards Machine Learning, this could be a big obstacle
because these algorithms need a lot of data referring to health and fault states to
be trained. On the other hand, the market requires a native CMB system in the
machine. The idea is to train these algorithms with arti�cial fault data in order to
have a basic CMB system that will be improved in time thanks to the new data
produced by the machines in the �eld. For the development of the CBM system for
Independent Carts Systems, a standard procedure has been designed respecting the
previous hypotheses and restrictions. It consists of the following steps:

1. De�ne the most probable damages that can a�ect the bearings under consid-
eration and replicate the damages arti�cially.

2. De�ne the system variables to be recorded for fault detection and identi�ca-
tion.

3. Verify the observability of the arti�cially damaged bearings by using a rotary
motor test rig highly monitored and try to understand if the arti�cial damages
are hazardous for the Independent Carts Beckho� test rig.
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(a) Bearings of the mover (b) Mover connected to
stator and rail

(c) Mover with coordinates

Figure 4.8: XTS system with mover rail connection.

Figure 4.9: XTS Beckho� test rig.
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4. Use the arti�cially damaged bearings in the Independent Carts System in order
to create a data training set.

5. Build Machine Learning models by using the data training set.

6. Create a test set on Independent Carts System with the arti�cially damaged
bearings.

7. Validation Loop 1: validate the Machine Learning models with the test set.

8. Validation Loop 2: re-train and validate the Machine Learning models with
the know-how extracted from Validation Loop 1.

4.6 De�nition and creation of damages

Because of the newness of the Independent Carts Systems and the absence of these
machines in a real production plant, there is not yet any knowledge of real damages
of the bearings for the XTS system.
For this reason, in order to develop a data-driven monitoring system, �ctitious dam-
ages have been created. They are as similar as possible to real damages that can
occur in the �eld. The damages created are the following:

• Rusty damage: it is created by immersing the bearing into a solution of water
and salt for one week. It is considered as a distributed damage.

• Inner race damage: it is created by drilling the inner ring with a tip of 0.2
mm. It is the lightest damage and it is punctual.

• Outer race damage: it is created by cutting the outer ring of the bearing. It
is a serious damage and it is punctual.

• Blockage damage: it is created by blocking the sphere of the bearing with rust
and metals. It is the most serious damage; it is also very dangerous for the
rail, if it is not recognized quickly.

Figure 4.10: Damaged bearing images, from the left to the right: (1) Rusty bearing,
(2) Bearing with an inner ring damage, (3) Bearing with an outer ring damage, (4)
Blocked bearing.
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After the creation of these four types of damages, it has been observed that the
rusty bearing could not rotate. For this reason, rust has been removed and the
bearing has been lubricated in order to give it the possibility of spinning. In the
image below, it is possible to see the transformation.

Figure 4.11: From the left to the right: (1) Bearing during water treatment (2)
Rusty bearing after the removal of the rust.

4.6.1 De�nition of the system variables under control

This chapter de�nes which variables have been taken into account for the two test
rigs where the arti�cially damaged bearings have been tested. In the Rotary Test
Rig the variables recorded are:

1. The vibrations of the lateral and upper accelerometers recorded with a sam-
pling frequency of 20 kHz each.

2. The current of the servomotors recorded with a sampling frequency of 4 kHz.

In the XTS Beckho� Test Rig the variables recorded are:

1. The vibrations given by the two accelerometers, one of which is placed on the
top part of the frame and the other one on the bottom part. The piece of
information is not linked to each mover and the sampling frequency for each
sensor is 20 kHz.

2. The current referred to each cart with a sampling frequency of 4 kHz.

3. The velocity referred to each cart with a sampling frequency of 4 kHz.

4. The position error referred to each cart with a sampling frequency of 4 kHz.

5. The actual position referred to each cart with a sampling frequency of 4 kHz.

6. Beckho� state parameters Q1, Q2 Q3 referred to each cart. They are black-
box parameters given by Beckho� for the monitoring of the healthy carts, each
parameter is generated every seven minutes of the machine running.
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Figure 4.12: Signal of vibrations from upper and bottom accelerometers.

Figure 4.13: Signals of actual position, position error, current, Q1, Q2, Q3 and
velocity error.
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4.6.2 Veri�cation of the observability of damages by using
Rotary Motor Test Rig

The aim of this phase is to guarantee the correctness of the arti�cial damages in
a simpli�ed test rig. The term correctness means the possibility of observing the
damages with machine learning algorithms in a simpler case. This stage also helps
to check if the arti�cially damaged bearings are too dangerous for the entire Inde-
pendent Carts System. In this case, the simpli�ed tests consist in the analysis of
the inner and outer damaged bearings and of the healthy one in the aforementioned
rotary motor test rig. The tests carried out are the following:

• Healthy bearing with a load imposed of 2 bar.

• Healthy bearing with a load imposed of 4 bar.

• Damage on the outer ring with a load of 2 bar imposed on the bearing.

• Damage on the outer ring with a load of 4 bar imposed on the bearing.

• Damage on the inner ring with a load of 2 bar imposed on the bearing.

• Damage on the inner ring with a load of 4 bar imposed on the bearing.

For each type of damage, three data records have been made. Each test has
followed the implementation procedure explained below:

1. Setting of the damaged bearing in the test rig.

2. Warming-up of the test rig for twenty minutes without any logging.

3. Forty-second recording of vibrations and current values for three times.

All data obtained from the tests have been combined to create two datasets, they
have the same records but they are labelled in two di�erent ways:

• Binary dataset: the records of the tests have been labelled with 0, if a healthy
bearing has been used and they have been labelled with 1, if a faulty bearing
has been used.

• Ternary dataset: the records of the tests have been labelled with 0, if the test
has been carried out on a healthy bearing; they have been labelled with 1,
if the test has been performed on the inner damaged bearing; and they have
been labelled with 2, if the test has been conducted on the outer damaged
bearing.

The use of the binary dataset aims to develop algorithms for fault detection in
order to determine if the bearings are damaged or they are healthy. The use of the
ternary dataset aims to create algorithms for fault identi�cation. The two datasets
have been utilized to create the training set and the test set, binary and ternary
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respectively, by using 70% of data for the training set and 30% of data for the test
set. In the training set, the same number of records has been made from each class,
but in a random way (healthy and faulty for the binary dataset; healthy, inner and
outer ring faulted for the ternary dataset), while the remaining data have been used
for the test set. Several features in time domain and frequency domain have been
computed for each record, they have been used for the development of Random
Forest. The computed features are the following:

Time-domain features (Appendix A)

• RMS

• Kurtosis

• Mean

• Standard Deviation

• Variance

• Max Amplitude

• Min Amplitude

• Peak to Peak

• Square Root of Amplitude

• Skewness

• Kurtosis Factor

• Skewness Factor

• Clearance Factor

• Impulse Factor

• Crest Factor

• Total Sum

• Entropy

• Mobility

• Complexity

• Histogram Upper Bound

• Histogram Lower Bound
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• Envelope

• Negentropy

Frequency-domain features (Appendix A)

• Max Power Spectrum

• Frequency Center

• Root Variance Frequency

• Spectral Kurtosis

• Spectral Skewness

• Shape Factor.

The two algorithms, which have been taken into consideration, need input fea-
tures in order to produce a prediction as output. For the Random Forest it is more
convenient to use a lot of features as input because, thanks to the random com-
bination of decision trees, the algorithm can directly separate the most important
features from the other ones in order to have the best prediction. As regards the
scarcely meaningful features, the algorithm gives them a very low weight, so they are
directly discarded. As far as the SVM is concerned, the use of a set of meaningful
and scarcely meaningful features can reduce the precision of the prediction. It is
due to the fact that SVM gives the same weight to all the input features without
any distinction. Therefore the three variables for fault detection, which are the most
used in literature, have been chosen as input variables of SVM: RMS, Kurtosis and
Skewness.

4.6.3 Random Forest model for rotary test rig

In this case, the Random Forest model has been created by using all the pre-
processed features, calculated on the basis of all the vibration and current values. In
order to improve the knowledge about the di�erent importance of the features used,
several random forest models have been trained by selecting di�erent features. By
using all the pre-processed features created by the values of vibration and current,
the following results on the importance of the features for fault detection have been
obtained:

In Fig. 4.14, Fig. 4.15, Fig. 4.16, Fig. 4.17 it is possible to observe the
importance given to the features by the models. The Random Forest gives a lot
of importance to pre-processed features of the vibration, in fact only one feature of
current is used and its importance is very low. The results of these Random Forest
models can be summarized by using the confusion matrix and accuracy, precision
and recall. To con�rm this observation, a Random Forest model has been trained
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Figure 4.14: Importance of features evaluated through the Binary Random Forest
algorithm.

Figure 4.15: Confusion Matrix of the Binary Random Forest algorithm trained with
all the features.

Figure 4.16: Importance of all the features evaluated by the Ternary Random Forest
algorithm.
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Figure 4.17: Matrix of the Ternary Random Forest algorithm trained with all the
features.

Figure 4.18: Importance evaluated by the Binary Random Forest algorithm trained
only with vibration features.

Figure 4.19: Confusion Matrix of the Binary Random Forest algorithm trained only
with vibration features.
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Figure 4.20: Importance evaluated by the Ternary Random Forest algorithm trained
with only vibration features.

Figure 4.21: Confusion Matrix of the Ternary Random Forest algorithm trained
only with vibration features.

Figure 4.22: Importance evaluated by the Binary Random Forest algorithm trained
only with current features.
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Figure 4.23: Confusion Matrix of the Binary Random Forest algorithm trained only
with current features.

Figure 4.24: Importance evaluated by the Ternary Random Forest algorithm trained
only with current features.

Figure 4.25: Confusion Matrix of the Ternary Random Forest algorithm trained
only with current features.

68



4.6. DEFINITION AND CREATION OF DAMAGES

only with the features of vibration and another one has been trained only with the
features of current.

From these results, it is possible to deduce that the arti�cially damaged bearings
are detectable by means of the Random Forest model trained with the vibration vari-
ables or with the current variables. The tests show that the current signal gives less
information about the state of the bearing, most probably for its sampling rate that
is lower in comparison with the sampling rate of vibrations, but it allows to identify,
even if with less accuracy, the state of the bearings. Furthermore, it is possible to
observe that, regardless of the pre-processed signals, all the trained Random Forest
models give more importance to Skewness, RMS, Kurtosis in comparison with the
other features. These three features are already used in the literature on condition
monitoring and this is a further proof of the correct implementation of the Random
Forest models.

4.6.3.1 Support Vector Machine for rotary test rig

In this case, four di�erent SVMs have been trained and tested:

1. Binary SVM with the features of Current RMS, Current Kurtosis and Current
Skewness.

2. Ternary SVM with the features of Current RMS, Current Kurtosis and Current
Skewness.

3. Binary SVM with the features of Vibration RMS, Vibration Kurtosis and
Vibration Skewness.

4. Ternary SVM with the features of Vibration RMS, Vibration Kurtosis and
Vibration Skewness.

The vibration signals taken into consideration are the ones of the accelerometer
placed in the same direction as the bearing preload. This choice has been made
because the information on the load direction is the most meaningful. Even in this
case, a balanced training set consisting in 70% of the data and a test set consisting in
30% of the data have been used. The SVM has been trained and tested with several
kernels: Linear, Quadratic, Cubic, Fine Gaussian, Medium Gaussian and Course
Gaussian. Cubic and Medium Gaussian kernels have given the best performances,
Fig.4.26, Fig.4.27 show the results of each one.

As regards prediction, these �gures show a precision of 100% in case of binary
and ternary predictors. The data highlight that the use of Cubic kernel or Medium
Gaussian kernel is quite the same. In this speci�c case, even the use of current data
or of vibration data is the same In conclusion, it is possible to see that the state
of the damage tested is actually visible both using vibration and current. It is also
possible to notice that the damaged bearings have not given any problem to the
rotary motor, consequently the deduction is that it is not dangerous to mount them
on the XTS test rig.
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Figure 4.26: RMS-Kurtosis plot of the SVM prediction.

Figure 4.27: Skewness-RMS plot of the SVM prediction.
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4.6.4 Use of the arti�cially damaged bearings in XTS Beck-
ho� test rig for the creation of a dataset

With the certainty that the arti�cial damages are visible and cannot cause damages
on the Independent Carts System, a test procedure has been de�ned in order to
develop a dataset with the aforementioned damaged bearings in the XTS test rig.
The number of the movers used to test the faulty bearings and the sequence of tests
have been decided randomly in order to reduce the possible environmental variations
in the tests and to improve the repeatability of the tests. The total number of tests
is 12 and for each test the system variables have been recorded for four times. The
test table is shown in Fig. 4.28.

Figure 4.28: Training tables with the di�erent tests for all the types of damages.

Each test has been run following this standard procedure:

1. Setting of the faulty bearing on the mover indicated by the test.

2. Twenty-minute warming-up of the test rig without any data record.

3. Start of calculation of Q1, Q2, Q3 for each data sample.

4. Forty-second recording of all variables taken into account.

5. Repetition of the procedure from point three to point �ve for six times.

4.6.5 Building of machine learning models by using the data
training set

After the development of the training dataset, several operations have been per-
formed to create di�erent machine learning models.

First of all, the data have been pre-processed. The dataset has been divided into
12 sets, each of which represents a test with six records. Two di�erent pre-processing
methods have been tested in order to �nd the best approach. The two approaches
are the following:
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Figure 4.29: Test procedure diagram.
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Figure 4.30: Test procedure diagram.
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1. Cut the row signals into laps considering mover 1 as the main mover. The cut
is made whenever mover 1 has an actual position equal to zero.(Fig. 4.31)

2. Cut the row signals into laps considering the actual position of each mover and
eliminating the signals recorded along the curved parts. In this case, only the
signals recorded along the straight parts of the rig are taken into account.(Fig.
4.31)

In the second case, the signals recorded in the curved parts are eliminated because
the signals show a very high level of noise along these parts. In both cases, the
vibrations, which are not referable to the actual position since the sensors are placed
on the frame and not on each cart, are cut into di�erent laps considering position 0
of mover 1 as starting point and ending point.

Figure 4.31: Signal cut with respect to the mover position.

Carrying out di�erent tests on these data, it has been noticed that the features
of vibrations are not considered by the random-forest algorithm because they are
not referred to each mover but to the general system.
It has also been noticed that the algorithm, trained with signals recorded in the
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upper part of the rig, tend to over�t the prediction on each mover. This can be
explained considering that the carts have variable velocities in the upper part of the
rig, while they have a constant velocity in the bottom part.
To avoid the aforementioned problems, the vibration data are not taken into account,
but only the other signals recorded in the bottom zone of the test rig are considered.
Fig.4.32 shows the part of the recorded signals considered after the pre-processing.

Figure 4.32: Signal cut in the constant velocity part with respect to the mover
position.

4.6.6 Machine Learning pre-processing

For the two machine learning algorithms, the routine followed for the data pre-
processing is very similar and is explained in the �owcharts (Fig. ??).

After the general pre-processing part highlighted in the image with a dashed
red line (Fig. 4.33), all the time-domain and frequency-domain features have been
computed for each lap. Consequently the number of records for each test are in Fig.
4.34.

After the creation of the new pre-processed datasets, the data have been z-
normalized, subtracting the mean value from each value and dividing the result by
the standard deviation of the feature considered. In order to contain the values of the
approximate thresholds in the same order of magnitude, the number of the examples
given for the two classes to be predicted have also been balanced. The balance is
based on the random extraction of the same number of movers in healthy and faulty
conditions from the general dataset. At this point the two machine learning models
have been trained.
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Figure 4.33: Signal pre-processing procedure for the dataset creation.
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Figure 4.34: Number of records.

4.6.6.1 Random Forest

Di�erent types of Random Forest models have been created by training them with
di�erent sets of pre-processed features: binary (able to classify healthy and faulty
states) and quaternary (able to classify also the di�erent types of damages: healthy,
inner, outer, rusty).

Figure 4.35: Importance of features.

Fig. 4.35 shows of the importance features evaluated by the Random Forest. It
is possible to notice that the features referred to vibrations are not considered, while
the ones referred to current are the most considered for prediction.
A Random Forest model has also been trained by using only the ten most impor-
tant features chosen among the ones provided. As regards accuracy, the comparison
between the Random Forest model based on the ten most important features and
the Random Forest model that uses all the features, except vibrations, shows better
outcomes for the second model.
Furthermore, after several evaluations and the creation of di�erent models, the fol-
lowing two models of Random Forest have been taken into consideration:

• Binary Random Forest trained with all the features, except vibrations.

• Quaternary Random Forest trained with all the features, except vibrations.
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4.6.6.2 Support Vector Machine

The features used in the training of SVMs are: Current RMS, Current Skewness,
Current Kurtosis. Even in this case a balanced training dataset is used. In the
following �gures, it is possible to see the distribution of the points in two dimensions.

Figure 4.36: RMS and Kurtosis values of the dataset. Green: Blocked bearing, Blue:
Healthy bearing, Orange: Outer ring damage, Violet: Inner ring damage, Yellow:
Rusty damage.

As you can see in Fig. 4.36 and Fig. 4.37, the points that identify the rusty
bearing are superimposed on the points that identify the healthy one, since the
rusty bearing has been cleared before the beginning of the test, otherwise the bearing
could not roll. The cleaning of the bearing makes it very similar to the healthy ones.
For the outer ring damaged bearing and the blocked one, the separation is evident,
while, for the inner ring damaged bearing, the �gures show some points overlapping
the healthy ones and other points separated.

4.6.6.3 Creation of a validation dataset referring to XTS Beckho� test
rig

The procedure for creating the validation dataset is the same procedure used for the
training set as shown in Fig. 4.28, the table of the validation dataset is in Fig. 4.38.

During the training phase, the tests with the blocked bearings have not been
carried out because this type of damage is so dangerous that it can irreversibly
damage the system. Unlike the training set table (Fig. 4.28), it can be observed
that the blocked bearings have been used in the tests for the validation dataset.
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Figure 4.37: Skewness and RMS values of the dataset. Green: Blocked bearing,
Blue: Healthy bearing, Orange: Outer ring damage, Violet: Inner ring damage,
Yellow: Rusty damage.

Figure 4.38: Test table for the creation of the validation dataset.
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4.6.7 Validation Loop 1

In this phase, the test set has been used to validate the models created. The models
have been evaluated by using the metrics speci�ed at the beginning of the chapter.

4.6.7.1 Validation Loop 1 for machine learning models

Before the validation, a rule was established in order to de�ne when the models
identify a fault or a healthy bearing. The rule can be explained in this way:

• In the binary classi�cation, if the model classi�es as faulty more than 25% of
the records regarding a mover in a given test, the global prediction is considered
faulty.

• In the case of quaternary classi�ers, the damages have been considered to be
detected, even if the predicted type of damage given in the classi�cation is not
the same as the real one.

This rule was de�ned because fault detection is the basic target and it allows to
use even quaternary models. The tables below show the prediction of the binary and
quaternary Random Forest and SVM models. Fig. 4.39, Fig. 4.40, Fig. 4.41 and
Fig. 4.42 describe the outcomes of each mover for each test and the corresponding
Confusion Matrices (Fig. 4.43 and Fig.4.44). Observing the results of Random
Forest models, it can be noticed that the binary models are more stable than the
quaternary ones. De facto, as regards the Random Forest quaternary model, it is
possible to observe an increase in false positives, while the SVM quaternary model
over�ts the healthy state. Furthermore, it is possible to notice that mover 2 has
some anomalies with respect to the other movers; in fact it is often classi�ed as
faulty although it is healthy in many cases. By means of the observation of the
confusion matrices, it is possible to notice that the recall is lower for quaternary
models. Actually, the recall expresses the number of times a damage is detected; in
manufacturing �elds it is preferable to have false alarms than missed alarms, because
the miss of a true alarm involves the risk of damaging other parts of the machine.

Of course, the results are not excellent because of the high number of false pos-
itives, which involves high costs of maintenance for the high number of controls of
healthy components. A good indication is that the blocked bearings, which could
irreversibly damage the machine, are correctly classi�ed at least by the binary mod-
els. In Fig. 4.45, it is possible to see the test classi�cation divided into di�erent
diagrams referred to each type of damages.

As regards prediction, accuracy is high for block damages and outer ring dam-
ages, while for inner ring damages, which are very light, the classi�ers �nd it hard
to give a de�nite prediction, confusing some records of the mover as healthy. In
the case of rusty damages, it is possible to notice a high error in their classi�cation
because their performances are very similar to the healthy cases.
To increase the performance of the models created, a logical disjunction (logical OR)
between the output predictions of the Random Forest models and the ones of the
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Figure 4.39: Test table with the results of classi�cation of the model Random Forest
Binary Classi�er.

Figure 4.40: Test table with the results of classi�cation of the model SVM Binary
Classi�er.
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Figure 4.41: Test table with the results of classi�cation of the model Random Forest
Quaternary Classi�er.

Figure 4.42: Test table with the results of classi�cation of the model SVM Quater-
nary Classi�er.
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Figure 4.43: Confusion Matrix Binary Random Forest and SVM.

Figure 4.44: Confusion Matrix Quaternary Random Forest and SVM
.
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Figure 4.45: Tests with lower prediction accuracy in details.

SVM models has been implemented. In this case, if at least one of the four machine
learning models identi�es a mover as damaged, the output will predict a fault. This
approach has been carried out to improve the faulty recall.

Observing Fig. 4.46 carefully, it is possible to see that the results of SVM
quaternary and Random Forest quaternary models overlap the ones of the binary
models; therefore, since the binary classi�ers have given better performances, the
study has been carried out only with binary models. Fig. 4.47describes the outcomes
of each mover for each test and the corresponding Confusion Matrices (Fig. 4.48)
in the case of the use of the logical disjunction.

The confusion matrix con�rms the forecasts; in fact the faulty recall has increased
while precision and accuracy have decreased because of the increase of false faulty.

At the end of this �rst validation cycle, the conclusions are the following:

1. The rusty bearing behaviour is very similar to the healthy one because it has
been cleaned before the test.

2. The SVM and RF quaternary algorithms present worse performances than the
binary ones.

3. The data training set of the two algorithms does not include blocked bearings.

4. The threshold for fault detection is equal to 25% of the mover data. It intro-
duces several false negatives (false alarms).
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Figure 4.46: Results of the four Machine Learning algorithms.

Figure 4.47: Results of the "OR " prediction between Random Forest Binary Clas-
si�er and SVM Binary Classi�er.
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Figure 4.48: Confusion Matrix of "OR" prediction between Random Forest Binary
Classi�er and SVM Binary Classi�er.

5. The merge (through an OR function) of the SVM and Random Forest algo-
rithms improves the faulty recall and reduces accuracy.

4.6.7.2 Validation Loop 2

In this validation cycle, di�erent test speci�cations are used in order to increase the
accuracy of the machine learning models. They derive from the results of Validation
Loop 1.

Figure 4.49: Outcomes of Validation Loop 1 and test speci�cation of Validation
Loop 2

For Validation Loop 2, the training set and the validation set have been created
following some rules, which have been established with the aim of using the previous
datasets without any model bias:

1. The rusty tests have been eliminated. Without any rusty test, 14 validation
tests (they will be indicated with the pre�x TVAL) and 7 training tests (they
will be indicated with the pre�x TTR) are present. Consequently, the total
number of tests is equal to 21.
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2. 7 random tests, including 3 outer ring faults, 3 inner ring faults and 1 blocked
bearing, are chosen among the 21 tests.

3. The randomized training dataset consists in: TVAL8, TVAL10, TVAL14,
TVAL17, TTR2, TTR3, TTR8.

4. The randomized validation dataset consists in: TVAL1, TVAL3, TVAL4,
TVAL5, TVAL7, TVAL9, TVAL12, TVAL13, TVAL16, TVAL18, TTR5, TTR6,
TTR9, TTR11.

Three cases of inner and outer damages have been used for keeping the training
set balanced. Fig. 4.50 and Fig. 4.51 show the results of the tests conducted with
the two binary machine learning classi�ers.

Figure 4.50: Test table with the results of classi�cation of the Random Forest Binary
Classi�er in Validation Loop 2.

Figure 4.51: Test table with the results of classi�cation of the SVM Binary Classi�er
in Validation Loop 2.

It is possible to observe (Fig. 4.52) a decrease in false faulty, this is due to the
elimination of rusty damages and an increase of the threshold from 25% to 35% for

87



4.6. DEFINITION AND CREATION OF DAMAGES

the prediction of faulty bearings. Rusty bearings confuse the classi�ers because they
are very similar to the healthy state.

Figure 4.52: Confusion Matrix of Random Forest and SVM in Validation Loop 2.

In the confusion matrix it is possible to see an increase in the performance of
the algorithms, thanks to the new conditions of Validation Loop 2 deduced from the
outcomes of Validation Loop 1. Moreover, the metrics highlight the improvement
of the two models with the expedients of this validation phase. Even in this case,
as in Validation Loop 1, the two models are combined with an "OR" policy in
order to maximize the faulty recall with a little detriment of accuracy and faulty
precision. This occurs because it is essential to classify the greatest number of
damages correctly.

Fig. 4.53 and Fig. 4.54 describe the outcomes of each mover in each test while
Fig. 4.55 is the confusion matrix.

In this case, as in Validation Loop 1, the confusion matrix con�rms the forecasts,
in fact faulty recall has increased, while precision and accuracy have decreased be-
cause of the increase of false faulty. False faulty remains concentrated mainly on
mover 1 and 2, this could be due to a peculiar behaviour of these two movers. To
solve this problem, it is enough to increase the number of training tests in such a
way as to cover all the possible varieties of the movers with the healthy state and to
normalize each mover with respect to its mean and standard deviation. In Valida-
tion Loop 2, more than 90% of the damages are detected and all the most invasive
damages are correctly classi�ed. This is a good result: it is actually presumable that
in future these models could increase their performances in a still more considerable
way, by adding a less rudimentary algorithm of post-processing than "OR" policy,
such as a soft-voting or a time variable.
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Figure 4.53: Results of the two Machine Learning Classi�ers with the "OR" dis-
junction in Validation Loop 2.

Figure 4.54: Results of the Machine Learning Classi�ers with the "OR" disjunction
in Validation Loop 2.

Figure 4.55: Confusion Matrix of the two Machine Learning Classi�ers with the
"OR" disjunction in Validation Loop 2.
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4.7 Conclusions

By means of this data-driven approach based on the use of two machine learning
models, the following conclusions are reached.
Granted that the system taken into account in this speci�c case is technologically
recent, there is not yet any case of real damaged bearings. In order to overcome the
problem, a methodology, which uses arti�cial damages, was created; it allows to ex-
plore data-driven solutions even in the early stages of the development of condition
monitoring infrastructures. The machine learning models can classify the di�erent
types of damages and the healthy state of the bearings correctly, with good preci-
sion, recall and accuracy. It is possible to improve the performances of the single
algorithm by means of a scoring method of the forecasts.
Even if literature often shows that deep learning algorithms have better perfor-
mances than normal machine learning algorithms, they were not taken into consid-
eration in this thesis because they need very large datasets for high performances.
Since the test datasets used in this study are not very big, the machine learning
algorithms show better performances than deep learning algorithms. The �gure be-
low shows a comparison between the performances of deep learning models and the
ones of machine learning models on the basis of the size of the datasets.

Figure 4.56: Performance comparison among neural networks and machine learning
(from [106]).
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Chapter 5

Model-based approach for

Independent Carts System

This chapter deals with a model-based approach for Condition Monitoring System.
In order to use this approach for an Independent Carts System, it is necessary
to highlight the complexity of this mechatronic system, which merges mechanics,
electronics and control system. Two models have been developed; both of them
take into account the geometry of the carts, their variable motion pro�les, their
variable load pro�les and di�erent shapes of the track and of the bearings. The �rst
model uses a signal formulation for the simulation of the vibration signals produced
by the carts in case of healthy and faulty bearings, while the second one uses a
multibody model. The simulated data help to reduce the complexity of the system
by simulating only the most important phenomena; moreover, they can be used to
develop condition monitoring thresholds and to train machine learning and deep
learning algorithms [107]. Many studies are focused on dynamic models of bearing
faults, especially for rotary motors that use di�erent modelling techniques [108].

5.1 Vibration signal model

As regards the vibration signal model, McFadden and Smith [109, 110] proposed to
model a bearing as an epicyclic gear where the outer ring is the annular gear, the
cage is the planet carrier, the rolling elements are the planet gears and the inner ring
is the sun gear. Sawalhi and Randall [111] simulated the bearing fault as a train
of impulsive signals. The amplitude of these fault impulses is related to di�erent
factors such as the contact point, the load and the angular velocity of the bearing
[112]. Malhi [113], Kiral and Karaglle [114] modelled the damage as a force function
in FEM models. The vibration signal model proposed in this chapter is based on
the work by D'Elia [115] and it is the extension of the theoretic one[116]. The
model has been extended to multiple bearings with localized faults. Furthermore, a
more accurate load modulation based on Tomovic [117] and lubricant and slipping
e�ects have been taken into consideration together with the dynamic load variation
of the Independent Cart System [118]. The models have been tuned and validated
by means of a campaign of experimental tests performed in di�erent operational
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Figure 5.1: Ball bearing structure and possible damage locations: a) rail, b) external
bearing, c) outer ring, d) inner ring, e) rolling element and f) cage.

conditions.

5.1.0.1 Vibration signal formulation

The incipient fault of a rolling bearing is commonly caused by fatigue and wear. In
this case, the elements of the bearing are characterized by a local loss of material
(spalling, pitting, etc...). Whenever an element of the bearing impacts on a damaged
part, it is possible to detect a load �uctuation that excites the structural resonance of
the bearing and of the accelerometer sensor. The repetition of the impacts produces
a series of impulses that depends on the rotational velocity and the geometry of the
bearing [112]. The amplitude of the vibration signals depends on the wear state of
the damaged part, on the load applied to the bearing and the position of the internal
components of the bearing itself. As shown below, the vibration signal of a localized
fault is modelled on the basis of the reading of a sensor placed on the bearing.

x(t) =
∞∑

i=−∞

h(t− iT − τi)q(iT ) + n(t) (5.1)

Let h(t) be the impulse response to the impact on the damage point, T the
interval between two consecutive impacts due to a speci�c type of damage, q(iT)
the modulation of the signal produced by the load distribution, τ the uncertainties
due to the random slipping of the roller on the track, n(t) the background noise and
i is the integration time step.
Fig. 5.1 shows the areas of the possible faults of rolling bearings, namely on the outer
ring (c), the inner ring (d), the rolling element (e) and the cage (f). Furthermore,
the bearing rolls on a rail and consequently two other faults may take place: a fault
on the rail (a) and a fault on the external surface of the bearing (b).

Each type of fault has a unique fault frequency that depends on the rotational
speed and the geometry of the bearing. By means of the fault frequency it is possible
to de�ne the T interval between two consecutive impulses. Typically, in the case of
a �xed inner race and in the presence of a radial load, an inner race fault (d) will
produce a uniform amplitude modulation; in the case of an outer race (c), a periodic
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amplitude modulation at the period of the outer race rotation; �nally, in the case
of a rolling-element fault (e), a periodic amplitude modulation at the period of the
cage rotation. As regards a �xed inner race, the fault frequencies are the following:

fouter =
Z

2
fr(1− λcosβ) (5.2)

finner =
Z

2
fr(1 + λcosβ) (5.3)

fball =
fr
2

1− (λcosβ)2

λ
(5.4)

fcage =
fr
2

(1 + λcosβ) (5.5)

where λ = d
D
is the ratio between the ball diameter d and the pitch diameter D

of the bearing, Z is the number of rolling elements, β is the ball contact angle and
fr is the rolling frequency of the outer ring.

The resulting modulation frequencies [119] are:

Modulationouter = fr (5.6)

Modulationcage =
fr
2

(1 + λcosβ) (5.7)

As regards linear motors, two other types of fault frequencies are to be taken into
consideration: the damage on the external surface of the bearing and the damage
on the rail:

• Damage on the external surface of the bearing, its characteristic frequency is
equal to:

fsurface =
v

πDout

(5.8)

where Dout is the external surface diameter and v is the linear velocity, this is
the governing parameter of the cyclic properties of the excitation due to faults.

• Damage on the rail, its characteristic frequency is equal to:

frail =
v

l
(5.9)

where l is the distance between the damages along the rail and v is the linear
velocity of the bearing. If multiple bearings are installed on the same rail, the
signal will be repeated according to the number of moving components and
the distance among them. The model simulates the bearing vibration as an
accelerometer is placed on the top of the mover. In this thesis, the variability
of transfer path from one mover to another is not taken into consideration.
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5.1.1 Vibration model implementation

The input parameters of the model are:

• Motion pro�le of the cart moving along the track (constant or variable velocity
pro�les)

• Characteristics of the cart, for example the centre of gravity (COG) and the
distance among the bearings

• Characteristics of the track such as length, shape, mechanical cams and me-
chanical misalignment

• Load pro�les depending on the machine functions

• Geometry of bearings

The implementation of the model is based on Eq. 5.1, where the T interval
between consecutive faults is considered as a distance of positions along the motion
pro�le.

This formulation allows to transpose the fault frequency as a position variation
of the bearing. In this way the damage of an element of the bearing is directly
correlated with the position of the bearing itself along the motion pro�le. In order
to do that, all the fault frequencies have been rewritten as a projection of two
consecutive faults along the external surface of the bearing. All the aforementioned
fault frequencies can be rewritten as shown below:

∆pouter =
2π

Z
Dout

1

1− dcosβ
D

(5.10)

∆pinner =
2π

Z
Dout

1

1 + dcosβ
D

(5.11)

∆pball = 2πλDout
1

1− (λcosβ)2
(5.12)

∆pcage = 2πDout
1

1 + λβ
(5.13)

where ∆p is the distance between two damages of the same type, projected on
the external surface of the bearing. De�ning T interval according to the position
and not to time has the bene�t of making simpler the correlation between the
position distances along the motion pro�les at variable velocities with respect to the
correlation between the time intervals along the motion pro�les at variable velocities.

With this formulation, the fault vibration signal is represented by a series of eq-
uispaced impulses. Actually, the fault signals are not equispaced because of di�erent
phenomena: for example, the rolling elements can slightly move with respect to the
cage because of the clearance between them. As a consequence, the contact angle of
the rolling elements varies according to the fact that they are inside or outside the
load zone [120]. Another phenomenon is the slipping of the rollers on the lubricated
rail.
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5.1. VIBRATION SIGNAL MODEL

In order to model these uncertainties of the system for each ∆p, a random slipping
factor r(t) with a mean equal to zero and with a standard deviation equal to 1%
[119] of ∆p is summed. This factor is represented by τ , which is the element of
uncertainty, in Eq. 5.1. The load modulation q(t) of the bearings consists of two
elements. The �rst element is the variation of load on the rolling elements of the
bearing because of the rotation of the bearing itself. It depends on the azimuth
position of the rolling element and it can be computed by analyzing the contact
de�ection of the bearing and its geometry. Sjovall [121] modelled this phenomenon
as a modulating factor multiplied by the radial load on the bearing. The modulating
factor is computed by means of Sjovall integrals Jr(t) and Ja(t); the computation
of the load zone parameter ε, the axial load Fa and radial load Fr are computed as
follows:

W (Ψ) = Wmax

[
1− 1

2ε
(1− cos(Ψ))

]p
(5.14)

where W (Ψ) is the load distribution, ε is the load distribution factor that takes
into consideration the in�uence of the ball sti�ness on the total bearing sti�ness,
p = 3/2 for ball bearings (p = 40/37 or 10/9 for roll bearings) and Ψ is the half
load-zone angle and it is equal to:

Ψ(ε)

{
cos−1(1− 2ε) ε ≤ 1

π ε ≥ 1
(5.15)

While the maximum load of a rolling element Wmax is equal to:

Wmax =
1

Z

√√√√(Fr
Jr

)2

+

(
Fa
Ja

)2

(5.16)

where Z is the number of spheres. The exact formulation of Jr and Ja could
be �nd in [121]. In this way for each angle it is possible to compute the load
on the rolling element. The second element is the variation of load on the whole
cart computed at the contact point of each bearing. The modulation is due to the
mechanical cams, which are used in order to move the end-e�ector placed on the
cart, to the variation of acceleration during the process and to the inertia of the
cart. This contribution is calculated for each bearing with respect to the position of
the cart along the motion pro�le.

The implementation of the model can be divided into 5 steps:

1. De�ne a vector S �lled with zeroes that represents the expected vibration
signal recorded by a sensor placed on the moving cart. The length of the
vector is equal to L. Each cell of the vector corresponds to a period of time
equal to t = 1

fs
where fs is the sampling frequency of the sensor in Hertz.

2. Resample the de�ned motion pro�le M(t) and the load vector q(t) at the same
sampling frequency fs as the one of the sensor.
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3. Place 1 in the cells of vector S with index values de�ned by dividing M(t)
by ∆pe + r(ti) where r(ti) is a random factor. In this way the phenomenon
of slipping is taken into account along the whole motion pro�le. The factor
∆pe + r(ti) is a rational number and its value may be between two samples
of the motion pro�le. Therefore an error is introduced and it depends on the
sampling frequency fs (the greater fs, the lower the error), but it is possible
to compute for each division the correlate error as below:

E(ti) = |M(ti)−∆pe,i| (5.17)

4. Weight vector S by means of the vector of the load q(t) computed at the
contact point between the bearing and the rail.

5. Filter the generated vector S by means of the FFT-based model with overlap-
add method, which has a �lter coe�cient equal to the acceleration of the
impulse response of a SDOF system. This type of �ltering is based on the
principle that the multiplication in the frequency domain is equal to the con-
volution in the time domain. It consists in the following operations:

• transformation of the input signal (in this case vector S) into the fre-
quency domain through the FFT,

• multiplication of the result obtained from the previous operation by the
frequency response of the �lter (in this case the impulse response of the
SDOF),

• transformation of the result into the time domain by using the inverse
FFT.

The generated response of the SDOF system to a unit impulse in time domain
is:

xSDOF (t) = h(t) =
1

mωd
e−ζωntsin(ωdt) (5.18)

where m is the system mass, ζ is the damping coe�cient, ωn is the natural
frequency in rad/s and ωd = ωn

√
1− ζ2.

In the case of simulation of multiple faults on the same bearing, step 3 has to be
repeated for each fault. When the model simulates multiple bearings, the �ve steps
have to be repeated for each bearing.

5.1.2 Mathematical validation

In this section the proposed model is used for the simulation of the expected vibra-
tion signal for a faulted bearing. The geometry of the bearing and the direction of
the axes are shown in Fig. 4.8 (c), while the complete system, where the length
of the stators is indicated, is illustrated in Fig. 5.6. In this simulation, the cart is
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Table 5.1: Model data for localized outer ring fault in bearings A & B

Bearings A & B parameters Constant velocity
Dout (mm) 21.2
d (mm) 2.75
D (mm) 14.48
β(◦) 9
Number of spheres 7
Velocity (m/s) 1
Rotational frequency fr (Hz) 15.05
Sampling frequency fs (Hz) 20E3
Outer-ring fault frequency (Hz) 42.79
SDOF spring sti�ness k (N/m) [122] 6E7
SDOF damping coe�cient ζ 5%
SDOF natural frequency fn (Hz) 333

connected to the elliptic rail by means of three bearings. The system is made up of
two circular stators 0.5 m long, an upper stator and a lower stator, each of which
is 1 m long. The rail has the same shape of the stators. The model simulates the
expected vibration signal of the right upper bearing (called bearing B) for a single
cart moving along the rail. Table 5.1 lists the characteristics of the bearing taken
into account and the fault frequency computed by the use of Equations 5.2-5.9 in
the case of constant speed.

The radial load pro�le of q(t), which acts on the bearing, has been computed by
means of the knowledge of the motion pro�le M(t) and the equations of dynamics.
The radial load is the load orthogonal to the point of contact between the roller and
the rail. The direction of the load is taken with reference to the local reference system
on the cart as in Fig. 4.8 (c)). The forces taken into account are the following:

• Gravity force

• Fictitious forces (e.g. centrifugal forces)

• Preload of the bearing

The sum of the above-listed forces with respect to the position of the cart is
drawn in Fig. 5.2. In the simulation, the noise is equal to zero to make the output
data more readable. But it is possible to include also Gaussian noise (n(t)) to
output signal as in Eq. 5.1. All the aforementioned possible damages have been
taken into account and validated, but, for sake of brevity, only the results of the
outer ring damage with the modulation of the radial load are shown. The next
section describes a simulation of an outer ring fault on a single bearing of the cart
with a constant velocity motion pro�le.
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Figure 5.2: Load along the path.

Figure 5.3: Simulated vibration signal.

5.1.3 Constant velocity

In the simulation the aforementioned data of the track and of the bearing are used,
the cart has a constant velocity of 1 m/s and it executes a single round of the path
starting from 0 m point to the end point, as shown in Fig. 5.6.

Fig. 5.4 illustrates the FFT of the vibration signal in the constant load zone, it
shows the resonance of the system at 6 kHz clearly. The resulting vibration signal
(Fig. 5.3) shows a variation of the load pro�le due to the change of orientation of
the mover along the track and the two curves of the rail. Fig. 5.5 illustrates the
envelope of the vibration signal after a �ltering between 5500 Hz and 6500 Hz when
the rotational frequency of the bearing (fr) and the outer ring damage frequency
(fouter) are clear.
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Figure 5.4: FFT of the vibration signal.

Figure 5.5: Envelope of the simulated signal.
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Figure 5.6: Beckho� XTS Independent Cart System with 12 carts.

5.2 Experimental validation

In this chapter the experimental validation of the model is explained. The �rst part
describes the experimental setup, the second section shows the experimental and
simulated data in the case of healthy bearings and misalignment of the rail and the
third section illustrates the experiments with a bearing damaged on the outer ring.

5.2.1 Experimental setup

The experimental activity has been carried out on a speci�c test rig made up of
Beckho� XTS system (Fig. 5.6) with GXF Hepco guidance and the cart shown in
Fig. 4.8 in order to verify and validate the proposed model. The system taken into
account consists of two circular paths that are 0.500 m long and an upper and a
lower linear paths, each of which is 1.750 m long. For the length of the machine
14 straight motors and 2 curved motors are necessary. The length of the track
is di�erent from the theoretical one used in the mathematical validation, but the
geometry of the mover is the same. A cart, connected to a lubricated straight rail
by means of three rolling bearings (A-B-C), as in Fig. 5.8 and Fig. 4.8, moves
along the motors. Bearings B and A have the geometrical dimensions described in
Table 5.1; the dimensions of bearing C are listed in Table 5.2. The SDOF system,
which represents the response of the bearings to a damage, has a spring sti�ness
k = 6E7 N/m, a damping coe�cient ζ = 5% and a natural frequency fn=333 Hz
for the bearings A, B and C. An accelerometer 356A02 - placed on the top of the
cart - measures all the vibrations along the vertical direction with the sampling
frequency of 20 kHz. The tests have been performed with two motion pro�les: in
the former the cart follows a trapezoidal motion pro�le consisting of three zones:
an acceleration zone, a constant velocity zone and a deceleration zone, along the
straight upper part of the track; in the latter the cart executes a complete round
along the ellipsoid track at constant velocity.

In the �rst case the motion pro�le is produced by the cart moving from the right
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Figure 5.7: Actual position pro�le (red), actual velocity pro�le (green) and vibration
signal (blue) of the cart.

Figure 5.8: Test rig: A) picture of the side of the mover along the straight motor
B) picture of the upper part of the mover on the rail. The axes of the accelerometer
correspond to the reference system considered on the cart: X-axis along the moving
direction, Z-axis orthogonal to the rail (load axis), Y-axis in accordance with the
other axes.

to the left side and then from the left to the right side (Fig. 5.7).
In this case the test has been run at four di�erent velocities of the cart along the

constant velocity zone:

• 500 mm/s,
• 1000 mm/s,
• 1500 mm/s,
• 2000 mm/s.

The target of the �rst case is to validate the model at a constant velocity. For
this reason the vibration signal is windowed in the constant velocity zone through
the cutting and the reassemblage of the signal in the region where the cart is moving
at the constant velocity. In the second case, the mover executes three rounds along
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Table 5.2: Vibration signal model data of bearing C

Bearing C parameters Constant velocity
Dout (mm) 31.1
d (mm) 4.3
D (mm) 20.06
β(◦) 9
Number of spheres 7
Velocity (m/s) 1
Sampling frequency fs (Hz) 20000
Rotational frequency fr(Hz) 10.24
SDOF spring sti�ness k (N/m) [122] 6E7
SDOF damping coe�cient ζ 5%
SDOF natural frequency fn (Hz) 333

Figure 5.9: Bearing with the arti�cial damage on the outer ring a) bearing B b)
zoom on the outer ring fault of bearing B.

the ellipsoid track at the velocity of 500 mm/s. In this case the velocity is not
perfectly constant since it varies along the curves because of the dynamics of the
mover and the control system of the motors.

The tests have been carried out at the aforementioned velocities with two dif-
ferent con�gurations of the mover (Fig. 4.8 (c)). In the �rst con�guration all the
bearings of the mover are healthy, in the second con�guration bearing B is dam-
aged on the outer ring surface. The outer ring of the bearing has been arti�cially
damaged by hand with a drill (Dremel 3000) having an engraving cutter (Dremel
106, 1.6 mm head). Fig. 5.9 shows the damage of the bearing. With reference to
the bearing main axis, the damage results in a longitudinal engraving. The width
in circumferential direction is about 1 mm, the length in axial direction is about 2
mm.

The actual position of the mover and the vibration signal recorded along the
vertical direction have been used for the veri�cation and validation of the model.
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Figure 5.10: Vibration signal along constant velocity section at 500mm/s and 1500
mm/s.

5.2.2 Healthy bearings

Fig. 5.10 shows the raw vibration data in the case of a cart endowed with healthy
bearings and moving along the straight upper part of the rail at the speed of 500
mm/s with respect to the absolute position of the cart. The vibrations recorded
show that there are some vibration hits along the rail. The vibration hits are in the
same positions even at di�erent velocities. Some of them depend on the transition
between two di�erent motors, while the other ones depend on the con�guration of
the rail that presents some discontinuities due to the assembly of the mechanical
system. The positions correlated to the vibration hits are shown in Fig. 5.11 and
the following ones are the most important:

• Rail discontinuity: 122mm, 1500mm, 1624mm
• Motor-to-motor transition: 700mm.

For each position of the rail discontinuity there are three vibration peaks: the
highest two are due to the two bearings (A and B) placed on the upper part of the
cart, while the other one is due to the bearing (C) placed on the lower part of the
mover. The time distance between the highest peaks is correlated to the distance
between bearing A and bearing B that is equal to 26 mm, while the time distance
between the �rst high peak and the low peak is correlated to the distance between
bearing A and bearing C that is equal to 13 mm. The di�erent amplitude depends
on the position of the accelerometer placed on the top of the cart.
Fig. 5.12 shows the simulated signal produced by the model with the computation
of the three rail discontinuities and the motor-to-motor transition in the same po-
sitions as the real ones. The amplitude of the real signal and the amplitude of the
simulated signals are di�erent, this study focuses on frequency response more than
on magnitude.

5.2.2.1 Faulty bearing

The �rst case takes into account the cart endowed with the faulted bearing B; the
cart follows the aforementioned trapezoidal motion pro�le.
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Figure 5.11: Vibration correlated to rail discontinuity and motor-to-motor transi-
tion.

Figure 5.12: Simulated vibration signal with rail discontinuity and motor-to-motor
transition.
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Figure 5.13: Real vibration signal at 1500 mm/s with the faulted bearing B.

Fig. 5.13 shows the raw vibration data when the cart has a trapezoidal motion
pro�le with a peak velocity of 1500 mm/s and the bearing B has a fault on the
outer ring. Even in this case the vibrations due to the rail variation and the motor-
to-motor transition are evident. Through FFT transformation of the signal along
the constant velocity zone of the motion pro�le (Fig. 5.14) it is possible to �nd the
frequency of the fault on the outer ring of the bearing.

The model takes into consideration the rail variation, the motor-to-motor tran-
sition, the fault frequency of bearing B, the random slipping and it uses the real
motion pro�le and the pre-computed load pro�le of the cart as inputs. In the time
domain, the real signal and the simulated signal have a very similar periodicity, while
there is a di�erence in the amplitude. However, the principal goal of the model is
to simulate the frequency components of the experimental signal correctly.
The FFT of the simulated vibration without the random slipping is compared with
the FFT of the real one in Fig. 5.14.The acquired signal consists of 20 runs of the
cart, lasting 1 second each. In order to increase the frequency resolution, the 20
runs are windowed and concatenated together to get a unique vibration signal of 20
seconds (∆ f= 0.05 Hz). In Fig. 5.14, the theoretical fault frequency of the outer
ring is equal to 64.18 Hz, but it is equal to 60.4 Hz in the real data. The frequency
shift is caused by the slipping between the roller and the lubricated rail. As a mat-
ter of fact, if the random slipping is enabled in the simulation, the spectrum of the
simulated signal is not anymore discrete and the fault frequency is reduced to 60.76
Hz as in Fig. 5.15. The FFT of the real vibration signal presents a component at
1Hz and its harmonics due to the windowing of the signal in the constant velocity
zone.

Fig. 5.16 illustrates the second case: the cart, which has the faulty bearing,
performs three complete rounds along the ellipsoid track at the constant velocity
of 500 mm/s. It also shows the comparison between the raw and the simulated
vibration data. It could be recognizable the presence of synchronous impacts in
both experimental and simulated data. In the experimental case a high level of
noise along all the signal is present, while in the simulated case the impacts are
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Figure 5.14: Comparison between the FFT of the real data and the FFT of the
simulated data.

Figure 5.15: FFT of the simulated data with random slipping.
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Figure 5.16: Experimental and simulated vibration signals for three rounds of the
cart along the path.

more evident and clearly distinguishable from noise.
Fig. 5.17 shows the spectra of the real and simulated vibration signal and the

comparison between them in the range below 150 Hz through which it is possible
to appreciate the presence of numerous components. Indeed, the proposed model
can only predict a small number of the numerous components present in the real
spectrum. Each spectrum has been normalized by the energy in the band 0-150 Hz
to foster the comparison.

With reference to the Tab. 5.1, the value of outer race fault frequency (42.79
Hz) is related to a speed of the cart of 1 m/s. In this case, the speed is 0.5 m/s,
that is the outer race fault frequency decreases to 21.36 Hz. At low frequency
the fault-related components are evident in the simulated data, while the e�ect
of slipping overtakes the fault components at high frequency. In the experimental
data, there are also components related to the fault frequency, in particular the
�rst four harmonics. Both signals show a local resonance close to 330 Hz, that is
the natural frequency of the bearing. The experimental data contains di�erent high
amplitude components that are probably related to the non-stationary application
studied. The non-stationarity increases dynamic e�ects due to clearance, magnetic
e�ects between cart and rail, inertia contribution of the cart, etc. These e�ects
are not taken into consideration in the actual model but they will be studied and
introduced in future works.

5.2.2.2 Conclusions referring vibration signal model

This section details a �exible model for the simulation of the expected fault vibration
signal for Independent Cart Conveyor System.

The model allows to:

• Choose any shape of the rail track

• Use variable velocity and constant velocity pro�les
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Figure 5.17: Spectra of the experimental and simulated vibration signal at 500 mm/s
speed.

• Use variable load pro�les

• Simulate the most common damage of a rolling bearing along a linear rail

• Consider the resonance of the system

• Consider random contributions

• Consider the modulation of the load on the bearings.

The resulting model has been used to simulate the expected vibration signal of
the faulted cart moving along a short track. This track is a loop made up of two
linear tracks 1.750 m long and two circular tracks 0.500 m long. The speed of the
cart is kept constant along the test and a fault is made on one of the three bear-
ings of the cart. The resulting signal has been compared with experimental data
on hand-made faulted bearing. So far, the model can only foresee bearing fault
components and resonances of the mechanical systems. The model could be used to
simulate the vibration signal produced by a de�nite fault for a de�nite system con-
�guration. The spectrum of experimental data reveals several high-energy frequency
components that are not present in the proposed model. The characterization of
these components will be investigated in future works, extending the functionality
of the present model that is a preliminary but promising foundation.

5.3 Multibody model

This section will show another approach for modelling a faulty bearing of an Inde-
pendent Carts System. In this case, a multibody model of a cart with healthy and
faulty bearings has been developed. The �rst part of the study is focused on the
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bearing modelling, while the second part presents the model of the entire cart. The
last part illustrates the comparison between the simulation data and the real data.

5.3.1 Multibody dynamics

Multibody Dynamics (MBD) studies the dynamic behaviour of interconnected �ex-
ible/rigid bodies. The bodies are interconnected by using joints that allow large
translational or rotational displacements. The joints can have some properties such
as friction, sti�ness and damping. The motion of the bodies is computed by means
of the boundary conditions and the applied loads. There are several formulations to
generate and assembly the equations of motion, which can be classi�ed according to
the type of the coordinates adopted (relative, natural or reference point Cartesian)
and to the use of the redundant or minimum number of coordinates. In these mod-
els it is possible to consider the �exibility of the bodies, consequently it is possible
to simulate the body deformations that can have a signi�cant e�ect on the prob-
lem. Multibody models are used in di�erent engineering areas from automotive to
aerospace industries. They are principally used for:

• Parametric design to optimize complex mechanical systems.

• Simulation of the kinematic and dynamic behaviour of mechanical systems.

• Simulation of control loops that includes mechanisms.

• Analysis of coupled system frequencies and time responses.

The multibody dynamic models are used both in the �rst stages of the mechan-
ical system design and in the optimization phase. The advantages of this technique
are the short computational times, the very high e�ciency of the simulation for
parametric studies and the optimization of complex mechanical systems. The dis-
advantage is the lower accuracy of solution with respect to Finite Element Methods
(FEM). Furthermore, some simulation software can also include FEM models with
an increase of the simulation time and of the solution accuracy.

5.3.2 Multibody bearing simulation

As regards multibody bearing modelling, Harris and Kotzalas [123, 124] gave a whole
description of the most relevant phenomena concerning bearings such as sti�ness
distribution, skewing, load etc. Xiangyang and Wanqiang [125] used a two-degree-
of-freedom model that considers horizontal and vertical motions of the inner ring.
With this model they developed a one-class SVM for the fault detection of bearing
damages. As regards the modelling of the defects of bearings, Sopanen and Mikkola
[126, 127], formulated a complete model that considers ElastoHydrodynamic Lubri-
cation (EHL), localized defects and waviness of the bearing elements. In Modelica
Leturiondo et al. [128] implemented a generic model for ball and roller bearings that
considers revolute elements, cages, rings and damages as a geometric change of the
di�erent elements. The multibody model of the Independent Cart System proposed
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Figure 5.18: DGB6202 Bearing Model.

in this chapter consists in 96 DOF, while the bearing model that has been validated
with the work by Scurria at al. [129] has 54 DOF.

5.3.2.1 Ball bearing model

The bearing model has been developed by means of Simcenter 3D Motion, a multi-
body software by Siemens Digital Industry Software. The model is made up of rigid
bodies that are outer rings, inner rings and rolling elements. For the healthy bear-
ing model, all the bodies are assumed to have the theoretical shape. For the cage
modelling, a simpli�cation has been used in order to reduce the simulation time.
In this case, the cage is modelled as a series of springs with high sti�ness, which
connect the centre of each rolling element to the follower. This method was used
also by Jain and Hunt [130] in order to simplify the model and, at the same time, to
determine the cage force by the computation of the compression/elongation of the
single spring.

In the bearing simulation, one of the most important elements is the contact
model. In the model, which has been developed, only dry contact has been taken
into consideration, therefore no Elastohydrodynamic Lubrication (EHL) formula-
tion has been considered. The possible contact formulations allowed by Simcenter
3D Motion are 3D Contact Formulation and Analytical Contact Formulation. 3D
Contact Formulation uses a mesh for the determination of the contact points and
the direction of the Normal and Tangential Hertzian forces. This algorithm is very
accurate in the computation of contact force, but it requires a very big computa-
tional e�ort due to the need for a �ne mesh to obtain a good accuracy. This type
of contact formulation is suited to conformal contact. The conformal contact takes
place when two surfaces come into contact along a line, a curve or an area. On the
contrary, the Analytical Contact formulation directly considers the CAD geometry
of the bodies, it uses an analytical formulation that it is suited to noncoformal con-
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tact. With this formulation, if the contact becomes nearly conformal, the solution
can become slow. In the case of the bearing modelling, the choice has fallen upon the
use of the Analytical Contact formulation because of its velocity in comparison with
the one of 3D Contact and its accuracy that is suitable for the application. With
Simcenter 3D Motion it is possible to impose an Analytical Contact between each
rolling element and each ring. This formulation uses a penalty method to generate
both impact forces perpendicular to the plane of contact and friction forces lying on
this plane [131]. All the parameters are list in Fig. 5.20

The normal force perpendicular to the plane is de�ned as follows:

Fnormal(δ, vpen) = FHertzian(δ, vpen) + Flinear + Fvariable(δ, vpen) (5.19)

Flinear and Fvariable can be enable in the case there are more information about
the contact behaviour, in this case their value as been de�ne as zero. For the two
bodies that come into contact, it is necessary to de�ne Young Modulus and Poisson
ratio.

Figure 5.19: Surface contact (from [132]) .

At the point of contact the algorithm computes the minimum and the maximum
radii of curvature for Body 1 and Body 2 that are: R1, R1′ for Body 1 and R2, R2′ for
Body 2 (Fig. 5.19).The principal curvatures in each body (1/R1, 1/R1′ for Body 1
and 1/R2 and 1/R2′ for Body 2) are mutually perpendicular. For the formalism, the
radii are positive, if they lie on the given body. The plane containing the curvature
1/R1 makes with the plane that contains the curvature 1/R2 the angle φ.

The normal contact force is de�ned as follows:

FHertian(δ, vpen) =| δ |1.5 Kstsgn(δ) (5.20)

where

Kst = K(1− 1− e2

1 + e2
tanh

2.5vpen
ve

) (5.21)
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Figure 5.20: Table with the meaning of parameters (from [131]).

As regards the sti�ness parameter of the force [132], models are de�ned by a
look-up table, in the Analytical Contact formulation the look-up table has been
replaced by λ. In formula 5.21, the hyperbolic tangent is used for smoothing the
force function as the velocity is transitioning through zero. The restitution coe�cient
e and the transition velocity Ve are two parameters that can be tuned by the user.
Fig. 5.21 shows the variation of Hertzian force with respect to the penetration
depth with three di�erent restitution coe�cients and a constant transition velocity
of 0.001m/s. The �gure shows that for δ > 0 the contact force is zero because there
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is no contact, while when δ < 0 the force is generated. The red curve represents the
case in which e = 1, in this case the damping contribution to the contact can be
considered 0, while in the other two cases with lower e it is possible to notice the
hysteresis area that represents the energy dissipated in the impact.

Figure 5.21: Analysis of the restitution factor from([131])

Fig. 5.22 represents Hertzian force with respect to the transition velocity with a
constant value of the restitution factor. In this �gure, it is possible to notice that,
with an increasing value of transient velocity, the hysteresis curve tends to have
smoother angles, but with high values the force tends to a line.

Figure 5.22: Analysis of the transition velocity from ([131]).

After the evaluation of the contact formulation, the model constrains have been
imposed.

5.3.2.2 Bearing Model Constrains

The outer ring is �xed by means of a bracket joint, while the inner ring is con-
nected to the outer one by means of a bushing. The bushing connector allows to
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de�ne sti�ness and damping values along the translation (x, y, z) and the rotation
(Ax,Ay,Az). The total number of degree of freedom of the model is 54. In this
case all the sti�ness values have been de�ned as 0N/mm, because the sti�ness of
the bearing is de�ned by the contact sti�ness of each rolling element. For the damp-
ing factor the following values (x = 100Ns/m, y = 100Ns/m, z = 100Ns/m) and
(Ax = 0.01Nms/rad,Ay = 0.01Nms/rad,Az = 0.01Nms/rad) have been used
because the use of damping coe�cient in the bushing is helpful for the reduction of
the simulation time since it makes the problem smoother for the solver.

5.3.3 Model Validation

In order to validate the multibody model, it has been compared with a state-of-the-
use solution called Bearing Element already implemented in Simcenter 3D Motion.

5.3.3.1 Bearing Element in Simcenter 3D Motion

The Bearing Element can be used for modelling angular-contact ball bearings, and
deep groove ball bearings. The model requires as input the displacement in 6-dof of
the inner ring with respect to the outer ring. Starting from the global displacement
of the inner ring, the local displacement in the position of each rolling element is
computed. Therefore, the local displacement is used to compute the equilibrium
of each rolling element accounting for the centrifugal load. The equilibrium of the
rolling element returns the contact forces and the contact angles, which are subse-
quently used to compute the total reaction forces on the bearing center due to the
sti�ness contribution. To model the contact, two di�erent contact models can be
selected: a Hertz-based contact model referred to as Dry and a lubricated contact
model accounting for the EHL regime referred to as EHL Steady. As far as the
damping contribution is concerned, a damping matrix describing the global energy
dissipation of the bearing is used. This model is based on the following assumptions:

• Steady-state conditions: the solution is computed in a time independent way.
This assumption remains true if the bearing is excited with frequencies below
the natural frequencies;

• The lubricated contact is considered as fully �ooded (e.g. no starvation);

• The rolling elements have a pure rolling contact with the raceways, without
any slipping;

• The bearing tilts of small angles;

• The cage is not modelled. The rolling elements can only displace on the radial
plane;

• The contacts are considered to be frictionless.
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The main advantage of this element lies on the fact that the use of few parameters
characterizing the internal geometry of the bearing makes it possible to quickly
create the model in an automatic manner involving a minimal e�ort. The element
behaves as a force element ensuring an accurate and yet fast solution thanks to the
dedicated solution method. The disadvantage lies on the fact that it can consider
only the theoretical geometry of the bearing and consequently it is not possible to
model damages.

5.3.3.2 Comparative study

A DGB6202 deep groove ball bearing has been modelled for the comparison (Fig.
5.23 shows the geometry of the bearing used for the comparison.)

Figure 5.23: DGB6202 ball groove bearing geometry parameters.

Subsequently the two models have been tested by introducing either a force or a
moment or both together along all the directions while the bearing was rotating at
relatively high speed. The results have been compared in terms of the displacement
and/or tilting associated to the load and in terms of computing time.
If a bearing is loading while it is rotating, the displacement response associated to
the bearing can be split into two main contributions: a constant displacement due
to the average bearing sti�ness for that given load; and a variable displacement
due to the rolling elements rotating about the bearing axis. The frequency of the
variable contribution corresponds to the ball passing frequency either of the inner
or outer ring depending on the constraints. In this case, being the outer ring �xed,
the variable part of the displacement will correspond to the outer ring ball passing
frequency. It is of great importance to accurately estimate both contributions since
the constant contribution � usually greater than the variable one � will in�uence the
position of the components connected to the bearing and the modes of the structure.
Instead the variable contribution introduces excitation frequencies that can excite
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the surrounding structure with consequent increase in noise levels. In this study the
two contributions are split and compared separately to assess their accuracy.

5.3.3.3 Test scenarios

To compare the two bearing models, the following test scenarios are used:

• 4 radial loads along x and y: 0.5kN , 1.5kN , 2kN , 5kN ;

• 3 axial loads along z: 0.5kN , 1.5kN , 2kN ;

• 3 tilting moments along x and y: 1Nm, 3Nm, 5Nm;

• 2 mix loads:

� Radial force along x of 2kN and a tilting moment along y of 1Nm;

� Radial force along y of 0.5kN , an axial load along x of 2kN and a tilting
moment along x of 1Nm.

When the bearing is rotating on its own axis, the response to a load � force or
moment � in x and y directions is equivalent and it presents only a di�erent phase.
This symmetry has been tested and con�rmed. Hence only the results concerning
the loading along x are shown. The cases under study including their own numbers
are reported in Fig. 5.24

Figure 5.24: Cases studied for the comparison.

The cases 1-10 are meant to evaluate the displacements directly associated with
the applied load, while the cases 11-12 are meant to evaluate the coupling terms
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among di�erent loading directions. The models are running at 3000RPM in order
to have the centrifugal loads playing a role in the behaviour of the bearings.

As regards the damping values used in both models, the following damping
constants are used:

• Radial and axial damping coe�cient: 100Ns/m;

• Rotational damping along the radial directions: 0.01Nms/rad.

5.3.3.4 Comparison of the mean displacements

The mean values of the displacement are calculated by averaging the displacement
over the time of simulation making sure to truncate the simulation, in precise spots in
order to remove the initial transient and the initial run-up. Moreover, it is truncated
in a way that preserves the natural periodicity of the signal. The results are shown
in Fig. 5.25 that collects the cases with radial and axial load, Fig 5.26 that collects
the cases with tilting moments and Fig. 5.27 that collects the results from the cases
with combined loads, where dq indicates the displacement in q direction (q = x, z)
and daq the tilting in q direction (q = x, z).

Figure 5.25: Comparison of cases 1-7, radial and axial loads.

Fig. 5.25 shows how the constant contribution of the displacement due to radial
or axial load is very similar in the two models. This leads to a very small error (< 1%)
between the multibody model � considered as reference � and the Analytical Model.
Furthermore, with the increase of loads, the error seems to become stable at about
0.7% for radial loads and 0.45% for axial loads. Moreover, the sti�ening e�ect due
to the nonlinear contact formulation is underlined in the �gures. The dependency
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of the sti�ness on the load is one of the main advantages of using a physic-based
model for the bearing rather than a sti�ness matrix. The cases, where the force or
the moment is applied to Y direction, are equivalent to the cases where the force or
the moment is applied to X direction. This is due to the symmetry of the problem
with respect to Z axis. In fact, these cases only di�er in the phase of the variable
term, while the constant part of the displacement is equivalent.

Figure 5.26: Comparison of cases 8-10, tilting along radial direction.

Fig. 5.26 reports the results regarding the tilting moments. As in the previous
cases, the error remains lower than 1%, converging to a value close to 0.7%. Here
the increment of secant sti�ness is even more pronounced since the increment of the
contact angle between the rolling elements and the raceways adds sti�ening to the
components.

Figure 5.27: Comparison of cases 11-12, combined loads.

Fig. 5.27 shows the results regarding the last two cases, where a combination
of radial, axial and tilting loads is applied. This case is of great importance since
the Analytical Model is designed to accurately capture the coupling terms between
di�erent directions. Even in these cases, the error remains small also considering
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the complex loading condition of the bearing. In this case the sti�ening cannot be
taken into consideration since the two cases involve di�erent loaded directions. A
summary of the error in the di�erent cases is reported in Fig. 5.28 where it is clear
how the error always remains small in all the studied cases.

Figure 5.28: Absolute value of the error in % between the Bearing Element and the
multibody model.

5.3.3.5 Comparison of the variable displacements

This section compares the two models to assess the accuracy of the Analytical Model
in predicting the sti�ness �uctuations due to the ball passing phenomena. In order to
pursue the object, the mean value of the displacement is removed from the responses
of the bearings and the curves of the two models are overlaid on the same plot. In
order to reduce the number of plots reported, the comparison is shown only for
the case with the greatest error in the constant part. Instead, for cases 11-12 the
variable part is not reported since it follows the accuracy of the cases with single
load.

Fig. 5.29 shows the comparison regarding Case 2 where a radial load of 1500N
is applied. The curves of the Bearing Element and the Multibody Model are almost
overlapping, which con�rms that the contact models are equivalent. In addition to it,
the curves show the same frequency, which con�rms that the assumptions introduced
in the Bearing Element do not present signi�cant errors and in particular the no-slip
hypothesis and the steady state solution of the equilibrium for the Bearing Element.
In Fig. 5.29 it is also clear how the �uctuation of the displacement is smaller than
the mean displacement showed in the previous section. For NVH studies, instead,
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Figure 5.29: Displacement comparison: Case 2 Fx = 1500N .

the displacement �uctuations are of great importance since they are transmitted
and potentially ampli�ed by the surrounding structure, generating vibrations and
noises.

Figure 5.30: Displacement comparison: Case 9 Tx = 3Nm.

The two curves show a greater deviation with respect to the case with radial
load. This can be due to the di�erent contact detection algorithm used in the two
models. However, even if a small deviation is observed, the two curves are still
very close to each other. Moreover, the multibody model shows a transient at low
frequency that obviously cannot be captured by the Bearing Model. As regards the
cases where the bearing is loaded with only axial load, the displacement does not
show any �uctuation since, due to the axial load, all the rolling elements are equally
loaded, hence no sti�ness variation is observed.

To conclude the multibody model shows a good accuracy with respect to the
dedicated Bearing Element of Simcenter 3D Motion.
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5.3.3.6 Comparison of computational time

This section compares the computing time between the two solutions. The main
advantage of the Bearing Element is the minimal amount of bodies that have to be
de�ned in the multibody environment. This guarantees a minimal number of de-
grees of freedom of the system. Moreover, the contact detection between the rolling
elements and the raceways is based on the nominal geometry of the rolling elements
and the raceways and allow a fast de�nition of the contact point. The multibody
model, instead, intrinsically involves a larger amount of degrees of freedom, for this
reason it requires a more expensive algorithm for the contact detection. The advan-
tage, instead, of using the full multibody model rather than the Bearing Element, is
that the geometry can di�er from the nominal one � e.g. ovalization of the raceways
or defects of the raceways can be modeled. This makes the full multibody model
more suitable for the purpose of the simulation of damaged bearings. Fig. 5.31
reports the improvement of computing time when using the Bearing Element rather
than the full multibody model. The improvement is good even on such a simple
model. The Bearing Element is up to 16 times faster for complex cases, while for
the easier cases � with radial load � it shows to be from 3 to 6 times faster.

Figure 5.31: Computational velocity di�erence between the Bearing Element and
the full Multibody model.

Fig. 5.32 reports the details regarding the computing time for the two models
when a radial or axial load is applied. From the reported times, it is clear how the
Bearing Element has a more stable computing time with respect to the multibody
Bearing, which is faster for higher loads.

Fig. 5.33 reports the computing time for the cases where a tilting moment is
applied. Here, due to the complex trajectory of the rolling elements, the Bearing
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Figure 5.32: CPU time comparison in cases 1-7, radial and axial loads.

Element shows to be around one order of magnitude faster than the multibody
model of the full bearing.

Figure 5.33: CPU time comparison in cases 8-10, tilting along radial direction.

The reduction in computational time becomes greater when loads are combined,
as reported in Fig. 5.34 and in particular, in Case 12 where the bearing is loaded
radially, axially and with a tilting moment.

5.3.3.7 Damaged model

After the validation of the healthy bearing, the damage case has been taken into
consideration. In order to model the damage along one of the two rings with Simcen-
ter 3D motion, the healthy surface of the ring has been created without an angular
piece. In the place of the missing angular piece, a new surface has been built, it
represents the damage. The damage surface has been created by increasing the
radius of the ring. With this type of damage modelling, it is possible to simulate
a brinelling/pitting damage on the inner and/or the outer ring. It can also have
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Figure 5.34: CPU time comparison in cases 11-12, tilting along radial direction.

di�erent dimensions, for example di�erent depth or width. An �analytical contact�
has been de�ned between the damage surface and each ball.

Figure 5.35: Damage surface.

With this type of modelling, it is possible to simulate both the decompression of
the sphere at the entrance to the damage area, because the damage surface has a
larger radius than the healthy one, and the compression on the way out of the ball
from the damaged part to the healthy one.

5.3.3.8 Cart bearing model

The bearings of the cart are double row deep-groove ball bearings. For each cart
there are two di�erent types of bearings that di�er only in dimensions. The dimen-
sions of the bearings are in Tab. 5.2. The bearings have a V shape (Fig. 5.36)
in order to be in contact with the guide. The contact between the external rolling
surface and the rail has been modelled as an analytical contact between the revolu-
tion surface of the bearing and the extrusion surface of the roller with the following
parameters:

• Restitution coe�cient: 0.7

• Friction coe�cient: 0.2
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• Transition velocity: 10/ms

Figure 5.36: Bearing rail contact.

5.3.3.9 Cart Model

In the simulation, the geometry of the cart has been simpli�ed with respect to the
real one, but it maintains all the inertia and mass properties of the real one. The
cart consists of three double row ball bearings, a frame body and a slider body (Fig.
5.37).

Figure 5.37: Complete cart rail model.

The top bearings are of the same type and they are smaller than the one in the
bottom. Each top bearing is connected to the frame body by means of a bushing
connector. The bottom bearing is connected to the slider by means of a bushing
connector with the same damping values of the other two bearings. The slider body
is used in order to maintain a constant preload on the three bearings when the cart
is connected to the rail. As showed in Fig. 5.38, the slider is connected to the frame
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body by two slider joints. Each slider joint has its direction in the center of the
corresponding guide rail. For each guide rail a preload spring with a length of 2.525
and a sti�ness of 20N/mm has been de�ned.

Figure 5.38: Bottom bearing housing with preload system (orange).

5.3.4 Model tuning and validation

5.3.4.1 Experimental Setup

The experimental activity has been carried out using a speci�c test rig made up
of Beckho� XTS system (Fig. 5.6) with GXF Hepco guidance and the cart shown
in Fig. 4.8 in order to verify and validate the proposed model. The system taken
into account consists of a straight rail 1.750 m long. For the length of the machine,
7 straight motors have been used. A single cart has been sensorized with an ac-
celerometer PCB 356A02 SN 40918 placed on the top surface. The sensor has been
connected to the EL3632 analog input IEPE terminal with a sampling frequency of
20 kHz.
During the test the mover goes from the left to the right and from the right to the
left following a trapezoidal motion pro�le (Fig. 5.40). The pro�le consists in an
acceleration phase, a constant velocity zone and a deceleration zone. The four tests
have been conducted with four di�erent constant velocity peaks of 500 mm/s, 1000
mm/s, 1500 mm/s, 2000 mm/s . Each test consists in a forty-second record of the
system variables while the mover is executing the motion pro�le. The tests have
been performed at the aforementioned velocities with two di�erent con�gurations
In the �rst con�guration, all the bearings of the mover are healthy (Fig. 5.39), in
the second con�guration the bearing placed on the top left is damaged on the outer
ring surface. The damaged bearing is the same bearing used for the test in Chapter
5.2, Fig. 5.9 shows the damage of the bearing.
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Figure 5.39: Comparison of experimental and simulated vibration response of the
cart at 1500 mm/s.

Figure 5.40: Cart Motion pro�le at 2000 mm/s.
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5.3.4.2 Data Pre-Processing

The pre-processing of the vibration data has been executed as follows:

• The vibration data has been cut with respect to the velocity in order to have
only the vibration signal in the constant velocity zones of the motion pro�les.

• The cut vibration signals have been windowed with a Hanning window and
connected one after the other in order to have a constant velocity vibration
signal.

• In order to identify the frequency of the bearings an envelope spectrum has
been computed for the constant velocity vibration signal.

The pre-processing of the data has been implemented both for the real data and
for the simulated ones.

Several tests have been carried out with healthy bearings in order to tune the
bushing connector damping values between the bearings and the cart. A good
correlation between the simulation and the real values has been found with these
parameters (x= 200 Ns/m, y=200 Ns/m, z=200 Ns/m) and (Ax=0.01 Nms/rad,
Ay=0.01 Nms/rad, Az=0 Nms/rad).

5.3.5 Model validation

After the tuning of the damping parameters, even the damage surface of the model
has been tuned. In this case, di�erent radii of the damaged surface have been
considered in order to have a good correlation between the simulation data and the
real data. For the damage tuning, only the case of 500 mm/s has been used and a
good data correlation has been de�ned with a radius of the damaged surface equal
to 0.001 mm, higher than the theoretical one. All the other cases have been used
for validation.
Fig. 5.41 and Fig. 5.42 show the envelope spectrum of the real and simulated
vibration data at 1500 mm/s and 2000 mm/s.
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Figure 5.41: Frequency comparison 1500 mm/s.

In the experiment at 1500 mm/s, the BPFO of the damaged top bearing is visible
in the experimental and real data. Even the BPFO of the bottom roller bearing is
visible in both cases and they are comparable both in frequency and in amplitude.

Figure 5.42: Frequency comparison 2000 mm/s.

5.3.6 Conclusions referring to multibody model

This chapter has shown the feasibility of the use of a commercial multibody soft-
ware for the simulation of an Independent Cart System for condition monitoring
application. The model has a good accuracy in the simulation of brinelling/pitting
damages with a very high computational e�ciency. With this model it is possible:

• To simulate the behaviour of healthy bearings.

• To simulate brinelling/pitting damages.

128



5.3. MULTIBODY MODEL

• To consider variable motion pro�les.

• To choose any shape of the rail track.

The results of the simulation can be used in order to evaluate the response of
the system under incipient damages of bearings. The model can be generalized by
assembling several carts with di�erent conditions of bearings and using the simulated
vibrations such as training data of machine learning algorithms or testing model-
based techniques for fault detection and identi�cation.
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Chapter 6

Conclusions and future work

The thesis shows the implementation of condition monitoring methods for Indepen-
dent Carts System. It describes the advantages of using this technology for high
speed and high �exible manufacturing applications, but, at the same time, it high-
lights the complexity of the use of this system in the condition monitoring �eld.
The �rst part deals with the problem of the integration of this system with di�erent
vendors' controllers. Two methods (Linear Approximation and Discrete Approxima-
tion) of integration and synchronization of the motion task are explained. They are
useful not only for the control of the Independent Carts System, but they also allow
the record and the analysis of the work parameters of the system for the implemen-
tation of Condition Monitoring System. The Linear Approximation method allows
to reduce the complexity of computation maintaining good synchronization perfor-
mances, while the Discrete Approximation shows better performances but with a
higher computational e�ort. The �rst algorithm is more suitable for PLCs with low
computational power, while the second one for more expensive and high performance
PLCs. The second part of the thesis considers a Data-driven approach for the imple-
mentation of a monitoring system for Independent Carts Technology. It consists in
a preliminary Data-driven implementation since there is no previous case of bearing
faults concerning this machine. For this reason, a methodology based on the use of
arti�cial damages is proposed such as to reproduce the most similar fault behaviour
of the machine. This procedure can be extended to the cases in which it is necessary
to implement a condition monitoring system before the release of a machine on the
market. The aim of the data-driven model developed with this procedure is to carry
out a condition monitoring system that can identify the most dangerous or probable
failures. At the same time, the models will be updated with all the new datasets
coming from the �eld in order to increase the type of detectable failures and the
accuracy of prediction. The procedure consists in the use of pre-processed healthy
and faulty data for training random forest and support vector machine algorithms
with the aim of fault detection and fault identi�cation. A logical disjunction (log-
ical OR) between the output predictions of the two algorithms is used in order to
improve the accuracy in detecting inner/outer ring bearing damages and blocked
bearings. The third part of the thesis considers a model-based approach for the de-
velopment of condition monitoring system. In this case, two di�erent methods are

131



6.1. FUTURE WORK

used for the simulation of the system: a signal-based formulation and a multi-body
formulation. Both formulations take into consideration the geometry of the bear-
ings and of the cart, the variable motion pro�les and load pro�les. As regards the
signal-based formulation, the vibration signal produced by the cart is represented
by a series of impulses modulated by the load variation, the motion pro�le and a
one DOF system. In this case, it is possible to simulate di�erent types of fault
bearings by including a pulse train of the same frequency as that of the fault, the
impulse train is de�ned with respect to the position of the cart and not with respect
to the time. This is due to the variable velocity of the system. The multi-body
model consists in rigid bodies representing the cart, bearings and rail. In this case,
the study has been focused on the modelling of the bearings in the healthy and
damaged state. An analytical formulation is used for the simulation of the contact
between the rolling elements and the rails of the bearings. This formulation allows
to use not only the theoretical shape of the bearings but also di�erent shapes for the
simulation of damaged surfaces. The healthy bearing model has been validated by
the comparison with a Bearing Element of Simcenter 3D Motion. The comparison
shows the responses of the two models, which are comparable with each other with
an error in the bearing displacement lower than 2%. Both the signal-based model
and the multi-body model have been validated in healthy and faulty cases through
an experimental campaign carried out with a cart sensorized by an accelerometer.
With the simulated data coming from the two models, it is possible to reduce the
complexity of the system by simulating only the most important phenomena of the
system; it is also possible to use the simulated data to develop condition monitoring
thresholds and to train machine learning and deep learning algorithms.

6.1 Future Work

This thesis is a preliminary study for the development of a global condition moni-
toring framework for Independent Carts System. Di�erent aspects, such as control
systems, data transfer, data-driven and model-based approaches have been taken
into account in order to establish a fault detection system. Concerning the data-
driven approach and the model- based approach, attention has been concentrated
only on the most probable faults of the system that are bearing faults. In future,
it will be also necessary to consider other types of faults, for example electrical fail-
ures, mechanical failures of the cart or functional failures of the machine. This study
has been carried out only with data coming from experimental campaigns because
the product is not yet in production. When it starts to be in the �eld, more data
will be available and even neural network algorithms could be trained with good
performances. With a larger number of healthy data, it will be also possible to
train anomaly detection algorithms in order to verify every variation in the global
performance of the system and to detect possible failures. All the data-driven mod-
els developed for this application will need to be retrain with the new data coming
from the �eld. For this reason, it will be also necessary to de�ne a policy for the
automatic retrain of all the machine learning algorithms and for their release in the
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�eld. As regards the model-based approach, the next step will be the use of the
simulated healthy and faulty data as inputs for the training of the fault detection
algorithms. The models can be generalized by simulating several carts moving at the
same time. Furthermore, the models can be improved by the transfer path analysis
of the system, which is useful for the identi�cation of the vibration energy �ow from
the bearings to the cart and for the implementation of the �ow itself in the models.
For the multi-body model, it will be possible to de�ne the cart as a �exible body
in order to consider the frequency response of the cart during the simulation. The
last step of this study will regard the carrying out of a complete Prognostic and
Health Management framework. In order to achieve the aim, prognostic algorithms
have to be developed, they will be useful for identifying the RUL of the di�erent
components of the system.
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Appendix

Let S be a signal composed of K points of amplitude xi:

1. Mean:Average of all values of the signal/sample

xm =
1

K
∗

K∑
i=1

x(i) (A.1)

2. Standard Deviation: Deviation from the mean of the signal/sample.

xstd =

√∑K
i=1(x(i)− xm)2

K − 1
(A.2)

3. Variance: Square of Standard Deviation.

xvar =

∑K
i=1(x(i)− xm)2

K − 1
(A.3)

4. Root Mean Square: Square root of the mean of squares of a signal/sample.

xrms =

√√√√ K∑
i=1

x(i)2

K − 1
(A.4)

5. Maximum Amplitude: Value of the maximum amplitude of the signal/sample.

xmax = max(x(i)) (A.5)

6. Minimum Amplitude: Value of the minimum amplitude of the signal/sample.

xmin = min(x(i)) (A.6)
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7. Peak to Peak Value:Di�erence between maximum and minimun peak values.

xppv = xmax − xmin (A.7)

8. Square Root of Amplitude: Value of the root of Amplitude.

xsra = (
1

K

K∑
i=1

√
|x(i)|)2 (A.8)

9. Skewness: Measure of lack of symmetry.

xskew =

∑K
i=1(x(i)− xm)3

(K − 1)x3std
(A.9)

10. Kurtosis: Measure of the spikiness of the signal/sample relative to a normal
distribution.

xkurt =

∑K
i=1(x(i)− xm)4

(K − 1)x4std
(A.10)

11. Kurtosis Factor: It is Kurtosis value divided by the square of the mean of
squares of amplitudes.

xkurtFactor =

∑K
i=1(x(i)−xm)4

(K−1)x4std
(1/K

∑
i=1Kx(i)2)2

(A.11)

12. Clearance Factor: Ratio of maximum amplitude value to square of mean of
root of absolute values.

xclf =
xmax

(1/K
∑K

i=1

√
|x(i)|)2

(A.12)

13. Shape Factor: Value of how much the shape of a signal is a�ected, other
than shifting or scaling.

xsf =
xrms

(1/K
∑K

i=1

√
|x(i)|)

(A.13)

14. Impulse Factor: Ratio of maximum amplitude value to mean of absolute
values.

xif =
xmax

1/K
∑K

i=1|x(i)|)
(A.14)
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15. Crest Factor: Ratio of the maximum amplitude to the RMS value of the
signal/sample.

xcf =
xmax
xmin

(A.15)

16. Sum Sum of all signal point values in a sample/signal.

xsum =
K∑
i=1

x(i) (A.16)

17. Entropy:Is a calculation of the uncertainty and randomness of a sampled
signal.Given a set of probabilities, (p1, p2, ..., pn), the entropy can be calculated
as:

e(p) = −
K∑
i=1

p(zi)log2p(zi) (A.17)

18. Activity is the variance of the signal.

Activity = σ2
x (A.18)

19. Mobility: is the square root of the ratio of the activity of the �rst derivative
and the activity of the vibration signal.

Mobility =
σ

′
x

σx
(A.19)

where σ
′
x is the standard deviation of the �rst derivative of the vibration signal.

20. Complexity: is calculated as the ratio of mobility of the �rst derivative and
the mobility of the vibration signal.

Complexity =

σ
′′
x

σ′
x

σ′
x

σx

(A.20)

21. Max Power Spectrum: Value of the maximum power of the frequency
spectrum.

xfmax = max(Power(n)) (A.21)

22. Max Envelope: Maximum value of the envelope of the signal/sample.

xenv = max(Env) (A.22)
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23. Frequency Center: Average of all values of spectrum of the signal/sample.

fc =

∑K
i=1 f ∗ S(n)∑K
i=1 S(n)

(A.23)

24. Root Mean Square Frequency: Square root of the mean of squares of
spectrum of a signal/sample.

frms =

√∑K
i=1 f

2 ∗ S(n)∑
i=1KS(n)

(A.24)

25. Root Variance Frequency: Deviation from the center of the frequency of
the signal/sample.

fstd =

√∑K
i=1(f − fc)2 ∗ S(n)∑K

i=1 S(n)
(A.25)
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