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Abstract: An overview of all the studies on high-pressure intrusion—extrusion of LiCl aqueous
solutions in hydrophobic pure silica zeolites (zeosils) for absorption and storage of mechanical
energy is presented. Operational principles of heterogeneous lyophobic systems and their possible
applications in the domains of mechanical energy storage, absorption, and generation are described.
The intrusion of LiCl aqueous solutions instead of water allows to considerably increase energetic
performance of zeosil-based systems by a strong rise of intrusion pressure. The intrusion pressure
increases with the salt concentration and depends considerably on zeosil framework. In the case
of channel-type zeosils, it rises with the decrease of pore opening diameter, whereas for cage-type
ones, no clear trend is observed. A relative increase of intrusion pressure in comparison with water
is particularly strong for the zeosils with narrow pore openings. The use of highly concentrated
LiCl aqueous solutions instead of water can lead to a change of system behavior. This effect seems
to be related to a lower formation of silanol defects under intrusion of solvated ions and a weaker
interaction of the ions with silanol groups of zeosil framework. The influence of zeosil nanostructure
on LiCl aqueous solutions intrusion–extrusion is also discussed.

Keywords: pure silica zeolites; zeosils; high-pressure intrusion; electrolyte aqueous solutions;
mechanical energy absorption and storage; heterogeneous lyophobic systems

1. Introduction

1.1. Heterogeneous Lyophobic Systems

Nowadays, an efficient energy transformation and storage is one of the main technological
challenges of the world. Heterogeneous lyophobic systems (HLSs), i.e., systems composed by a
nanoporous solid and a nonwetting liquid, have attracted much attention as promising candidates
for innovative mechanical energy storage and dissipation devices [1,2]. In these systems, mechanical
energy (i.e., an external pressure) is required to force the intrusion of a non-wetting liquid into
the pores of material. Indeed, the penetration of the liquid occurs only when the applied external
pressure is higher than the capillary pressure of the porous matrix, defined as Equation (1) by the
Laplace–Washburn relation [3]:

Pc = −4γLcosθ/D (1)

Molecules 2020, 25, 2145; doi:10.3390/molecules25092145 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0002-4535-9354
https://orcid.org/0000-0002-9973-3372
http://www.mdpi.com/1420-3049/25/9/2145?type=check_update&version=1
http://dx.doi.org/10.3390/molecules25092145
http://www.mdpi.com/journal/molecules


Molecules 2020, 25, 2145 2 of 18

where Pc is the capillary pressure, γL the liquid-gas surface tension, D the diameter of the pore, and θ
the contact angle between solid surface and liquid (θ > 90◦).

The penetration of the liquid inside the pores strongly increases the liquid–solid interface area
leading to a conversion of mechanical energy, supplied by pressure, into the breaking of intermolecular
bonds of the liquid and the interactions at the liquid–solid interface. In the case of microporous
materials, during the intrusion, the bulk liquid is transformed to molecular chains and clusters inside
the pores. Such a process can be described as capillary evaporation. The absorbed energy during the
intrusion process can be expressed as a work and described as Equation (2):

W =

∫ V f

V0

−P dV (2)

where P is the applied pressure, and V0 and Vf are respectively the initial and the final volume of
the system.

When the external pressure is released, the liquid can be extruded, completely or partially, or can
remain trapped in the solid. Therefore, the whole or a part of the initial energy is restored, or it is
entirely absorbed. Consequently, the system can display a spring or shock-absorber or bumper
behaviour or a combination of them. A schematic example of different behaviors of HLSs is shown in
Figure 1.
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1.2. Potential Applications of Heterogeneous Lyophobic Systems

Heterogeneous lyophobic systems with shock-absorber and bumper behavior can be used or
integrated in devices aiming to dissipate mechanical energy, for example, for new types of dampers
for the automotive and aerospace industries [2,4–8]. Their use as shock absorbers in cars and trucks
is very promising, since their energy absorption efficiency is much higher than the one of common
hydraulic dampers. Moreover, the shock absorbers based on lyophobic systems should provide a very
high comfort level because of their excellent damping coefficient and very long lifetime [4,7]. The HLS
can also be exploited for other energy dissipation applications in bumpers, anti-seismic, anti-vibration,
and blast protections [2,8–14].

The heterogeneous lyophobic systems with spring behavior are promising for applications in
mechanical energy storage. For example, they could be used in the field of transport (kinetic energy
recuperation), in the sources of renewable energy, and as an alternative to common springs, for example,
as self-contained actuators for space applications [8].

Due to the rapid decrease of intrusion pressure with temperature increase [15], the systems (porous
solid–non-wetting liquid) with spring behavior can also be used for the generation of mechanical
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energy from low potential (“waste”) heat. In this case, the system works as a heat engine (so-called
thermomolecular engine) with a specific thermodynamic cycle and becomes a source of renewable
energy [16–19]. HLS can also be used for other particular applications, such as volume-memory
materials [20] or as materials with extremely high negative expansion coefficient [21].

1.3. Heterogeneous Lyophobic Systems Based on Hydrophobic Zeolites

The first systems developed by V. Eroshenko in the mid-1980s were based on porous silica and
mercury or liquid metallic alloys as non-wetting liquids [22]. Later, water was found to be a more suitable
liquid for HLSs because of its nontoxicity, low cost as well as quite high liquid–vapor surface tension
and a small kinetic diameter of 2.8 Å which allows the penetration into tiny micropores. However,
such HLSs require highly hydrophobic porous materials. The first experiments were performed
on mesoporous silica grafted with alkyl and perfluoroalkyl chains [23–25]. In 2001, the first use of
pure-silica zeolites as hydrophobic solids for mechanical energy storage was reported [26]. Zeolites are
microporous crystalline solids with a framework composed by TO4 (T = Si, Al, Ge . . . ) tetrahedral
units that form channels or cavities. At the moment, 248 different zeolitic frameworks are known.
Each of them is identified by a three letter code assigned by the International Zeolite Association.
These materials are widely used in adsorption, catalysis, molecular sieving, and ion exchange [27].
Pure silica zeolites (zeosils), particularly the ones obtained in fluoride medium, are known to have
highly hydrophobic character and thus are of high interest for the use in heterogeneous lyophobic
systems. Many zeosils pertaining to different framework types were studied in high-pressure water
intrusion–extrusion experiments [28–40]. Due to the sub-nanometer pore diameter of these materials,
extremely high values of water intrusion pressure, up to 210 MPa, and, consequently, of stored energy,
up to 15 J/g [28,29], are achieved. It was observed that energetic performance depended strongly on
zeosil structure. Moreover, the intrusion–extrusion characteristics and, particularly, the behavior of the
system, are influenced by the presence of silanol defects or their formation under water intrusion.

According to Equation (2), the energetic performance of HLSs can be improved by an increase of
intrusion pressure. One of the promising ways to increase the intrusion pressure is the use of electrolyte
aqueous solutions as non-wetting liquid instead of water. The pressure rise with the increase of salt
concentration was observed for different salt solutions [41–43]. This effect is particularly pronounced
for highly concentrated solutions, where the number of water molecules becomes close or lower than
the coordination number of salt cations and anions [44]. In such solutions, the nature of anions and
cations has a considerable influence on intrusion–extrusion characteristics, whereas its influence is
much lower for the diluted solutions [45]. For instance, the highest increase of intrusion pressure,
by more than seven times, was observed for the intrusion of saturated LiCl aqueous solution in
LTA-type zeosil [46]. The case of LiCl electrolyte aqueous solutions is particularly interesting because
of very high solubility of this salt that makes it possible to achieve a very high molar concentration
(up to 20 M for the saturated aqueous solution) with a very low H2O/salt molar ratio (2.8). Due to
these reasons and to a particularly strong effect on intrusion pressure, the intrusion of LiCl aqueous
solutions was studied for different zeosils with various framework types [29,44,46–55], whereas the
aqueous solutions of other salts are quite poorly studied at the moment. In this paper, we focus only
on the intrusion—extrusion of LiCl aqueous solutions in zeosils and present an overview of all the
results reported in order to discuss the main relationships between zeolite structure and energetic
performance of corresponding HLS.

2. Water Intrusion in Zeosils

In order to introduce an overview of high-pressure intrusion of LiCl aqueous solutions, we describe
briefly the main results of intrusion–extrusion experiments for “zeosil–water” systems. For all
the frameworks considered, the average pore diameter values calculated from corresponding CIF
(Crystallographic Information File) files and maximal diameter of the sphere which can be included
in the microporosity are presented in Table 1 [56]. The studies of water intrusion—extrusion were
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performed for many zeosils with different framework types [26,28–40]. The results obtained for some
of these zeosils (lines for the concentration of 0 M) are summarized in Table 2 along with the results
obtained for intrusion of LiCl aqueous solutions. In this table, the zeosils are classified by type of
porous system (cages or channels) and its dimensionality (1D, 2D, 3D). This latter parameter is of
great importance. In fact, it has been observed that for the systems based on channel-type zeosils,
the intrusion pressure depends on the channel diameter, whereas for the cage-type ones, it does not
correlate with the diameter of pore openings but is related to the cage size (i.e., its maximal diameter)
or the size of the includible sphere [28,57,58]. For the cage-type zeosils, the water fills the porosity
at relatively low pressure values (20–60 MPa). Conversely, for the channel-type ones, the intrusion
pressure is generally higher—up to 210 MPa [28,29]. Overall, the intrusion pressure increases with the
decrease of channel/cage diameter.

Table 1. Characteristics of the frameworks of zeosils studied for water and LiCl solutions
intrusion—extrusion.

Framework
Type Pore System Ring Size

(T Atoms)
Average Free
Diameter (Å)

Max. Diam.
Includible Sphere (Å)

CDO Multichannel (2D) 8 3.971 5.78
CHA Cages 8 4.021 7.37
MTF 1D Channels with side pockets 8 4.113 6.25
DDR Cages 8 4.121 7.66
LTA Cages 8 4.157 11.05
FER Multichannel (2D) 10 and 8 5.242 6.31
MFI Multichannel (3D) 10 5.405 6.36
ITH Multichannel (3D) 10 and 9 5.502 6.72
STF 1D Channels with side pockets 10 5.762 7.63
BEC Multichannel (3D) 12 6.462 6.95
OKO Multichannel (2D) 12 and 10 6.638 6.70
*BEA Multichannel (3D) 12 6.709 6.68
CFI 1D Channels 14 7.976 7.47

DON 1D Channels 14 8.856 8.79

The highest water intrusion pressures have been obtained for 1D and 2D channel-type zeosils with
relatively small channel diameter. The maximal value (210 MPa) was observed for CDO-type zeosil
(two-dimensional channels, eight member-ring (MR) pore openings) [29]. For TON- and MTT-type
zeosils (1D channels, 10 MR), the intrusion pressure reaches 180 and 176 MPa, respectively [30,32].
Nevertheless, since the absorbed/stored energy depends not only on intrusion pressure, but also on
intruded volume, the highest value of absorbed energy (15 J/g) is obtained for AFI-type zeosil which
couples a quite high intrusion pressure (132 MPa) and a high intruded volume (0.12 mL/g) [30]. It should
be noticed that TON-, MTT-, and AFI-type zeosils have not been studied yet in intrusion—extrusion
experiments with LiCl solutions.

The presence of hydrophilic silanol defects (i.e., Si-OH) in zeosils leads to a lower value of intrusion
pressure. A difference of intrusion–extrusion pressure of MFI-type zeosil (silicalite-1) prepared in F−

and OH− medium was demonstrated in the works of Eroshenko et al. and Trzpit et al. [26,59]. In
fact, the synthesis in OH− medium, leding to higher silanol content, showed a decrease of intrusion
pressure with respect to that synthesized in F− (from 99 to 81 MPa) [26]. Another example is observed
for CFI- and DON-type zeosils. These zeosils have a close channel diameter (1D channels, 14 MR for
both), but show a strong difference of intruded pressure values (75 and 26 MPa, respectively), since the
DON-type zeosil has a higher content of silanol groups [50]. It is worth noting that if a high number
of hydrophilic sites is present in the cavities, water fills the pores spontaneously and no mechanical
energy is absorbed, as it occurs in OKO-type zeosil. The presence of hydrophilic defects can also
impact the intrusion reversibility and, thus, intrusion–extrusion behavior. This aspect is discussed
below in Section 4.
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Table 2. Intrusion–extrusion features of zeosils under intrusion of water (0 M) and LiCl aqueous solutions. Zeosils framework types are reported specifying their
porosities size R in terms of ring type (i.e., the number of T atoms constituting the ring). The following parameters are also reported: LiCl aqueous solution
concentration (C.), intrusion pressure (Pint), intruded volume (Vint), extrusion pressure (Pext), extruded volume (Vext), absorbed (Es = Vint × Pint) and restored
(Er = Vext × Pext) energies, energy yield (E.Y.) (Energy yield = Er/Es × 100%), and the behavior type (SI = Spontaneus Intrusion, S = Spring, SA = Shock Absorber,
B = Bumper).

R C (M) Pint (MPa) Vint (mLg−1) Pext (MPa) Vext (mLg−1) Eint (Jg−1) Eext (Jg−1) E.Y. (%) Beh.

1D Channels

CFI [50] 14 MR 0 75 0.08 75 0.08 6.0 6.0 100 S
10 147 0.09 143 0.09 13.2 12.9 97 S
20 162 0.09 158 0.09 14.6 14.2 97 S

DON [50] 14 MR 0 26 0.04 21 0.04 1.0 0.8 81 S
10 81 0.06 70 0.06 4.9 4.2 86 S
20 85 0.08 75 0.08 6.8 6.0 88 S

MTF [29] 8 MR 0 125 0.008 125 0.008 1.0 1.0 100 S
10 237 0.009 237 0.009 2.1 2.1 100 S
15 348 0.012 348 I/32 II 0.007 I/0.005 II 4.2 2.6 62 S + SA

STF [54] 10 MR 0 49 */26 ** 0.055 */0.025 ** 24 0.025 2.7 */0.7 ** 0.6 22 */86 ** B + SA */S **
5 120 */66 ** 0.07 */0.02 ** 48 0.02 8.4 */1.3 ** 1 11 */72 ** B + SA */SA **
10 180 */133 ** 0.08 */0.04 ** 109 */95 ** 0.04 14.4 */5.3 ** 4.4 */3.8 ** 30 */72 ** B + SA */SA **
20 322 */225–252 ** 0.125 */0.08 ** 115 0.08 40.2 */19.2 ** 9.2 23 */48 ** B + SA */SA **

Multichannels

2D

FER [48] 10 and 8 MR 0 150 0.056 143 0.056 8.4 8.2 97 S
5 189 0.052 184 0.052 9.8 9.6 98 S
10 243 0.052 231 0.052 12.6 12.0 91 S
13 321 0.055 300 0.055 17.7 16.5 93 S

OKO [55] 12 and 10 MR 0 / / / / / / / SI
20 162 */143 ** 0.12 */0.105 ** 131 0.105 19.4 */15.0 ** 13.7 70 */98 ** B + SA */ S **

CDO [29] 8 MR 0 210 0.03 180 0.03 6.3 5.4 84 S
5 294 0.035 251 0.035 10.3 8.8 85 S

3D

ITH [52] 10 and 9 MR 0 82 0.08 / / 6.6 / / B
5 119 0.08 / / 9.5 / / B

10 175 0.08 / / 14 / / B
20 280 */138 ** 0.11 */0.06 ** 117 0.06 30.8 */8.3 ** 7.0 22 */84 ** B + SA */ S **

MFI [47] 10 MR 0 96 0.1 95 0.1 9.6 9.5 99 S
5 133 0.10 128 0.10 13.3 12.8 96 S
10 193 0.10 179 0.10 19.3 17.9 93 S
20 285 0.11 273 0.10 31.3 27.3 87 S

*BEA [44] 12 MR 0 53 0.14 / / 8.3 / / B
10 95 0.12 / / 11.4 / / B
15 111 0.16 102 0.16 17.8 16.3 91 S
20 115 0.16 103 0.16 18.4 16.5 90 S

BEC [51] 12 MR 0 41 0.08 / / 3.3 / / B
20 124 */119 ** 0.11 82 0.11 13.6 */13.1 ** 9.02 66 */69 ** SA



Molecules 2020, 25, 2145 6 of 18

Table 2. Cont.

R C (M) Pint (MPa) Vint (mLg−1) Pext (MPa) Vext (mLg−1) Eint (Jg−1) Eext (Jg−1) E.Y. (%) Beh.

Cages

DDR [53] 8 MR 0 60 0.112 51 0.112 6.7 5.7 85 S
10 193 */166 ** 0.08 */0.07 ** 166 0.07 15.4 */11.6 ** 11.6 75 */100 ** B + SA */S **
20 357 */253 ** 0.26 */0.24 ** 130 0.24 92.8 */60.7 ** 31 33 */51 ** B + SA */SA **

CHA [49] 8 MR 0 29 */22 ** 0.15 */0.13 ** 22 */20 ** 0.13 4.4 */2.9 ** 2.9 */2.6 ** 65 */90 ** B + SA */S **
5 66 */63 ** 0.15 54 0.15 9.9 */9.4 ** 8.1 82 */86 ** S

10 90 */86 ** 0.15 79 0.15 13.5 */12.9 ** 11.8 */11.8
** 88 */92 ** S

20 162 */153 ** 0.15 137 0.15 24.3 */22.9 ** 20.5 85 */89 ** S

LTA [46] 8 MR 0 20 0.17 / / 3.4 / / B
10 53 */46 ** 0.20 */0.12 ** 39 0.12 10.6 */5.5 ** 4.7 42 */85 ** B + SA */S **
20 148 */133 ** 0.22 */0.12 ** 98 0.12 32.6 */16.0 ** 11.8 36 */74 ** B + SA */SA **

The results obtained in the first and the following cycles are indicated by * and ** respectively. The index I and II correspond to the 1st and 2nd extrusion steps in MTF-type zeosil.
The behaviors indicated in the table can be different from the ones of corresponding references, since the attribution of spring and shock-absorber behavior has been changed (S if
E.Y. > 80%, SA if E.Y. < 80%).
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3. Influence of LiCl Aqueous Solutions on Intrusion Pressure

Intrusion–extrusion characteristics of different zeosils intruded by LiCl aqueous solution at
different concentrations (0, 5, 10, and 20 M) are summarized in Table 2. A graphical comparison of their
intrusion pressure values is given in Figure 2. It can be observed that the values vary considerably
as a function of zeosil framework. Overall, independently from the type of pore system and pore
size, the intrusion pressure increases with increasing LiCl concentration. An example of the evolution
of intrusion–extrusion curves with the concentration is presented in Figure 3 for MFI-type zeosil.
The highest intrusion pressure is observed for “DDR-type zeosil—20 M LiCl aqueous solution” system
(357 MPa). High values were also obtained for the intrusion of 20 M LiCl aqueous solution in STF-,
MFI-, and ITH-type zeosils at 322, 285, and 280 MPa, respectively. No high pressure intrusion step
was found in the case of 20 M LiCl aqueous solution and FER-, MTF-, and CDO-type zeosils, whereas
it is well observed for the solutions with a lower concentration of LiCl. This phenomenon can be
explained by the limit of 400 MPa in the pressure that can be applied by the used device. Thus, it can
be reasonably supposed that for these materials, the intrusion pressure should be superior to 400 MPa.
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Figure 3. Intrusion–extrusion curves of “MFI-type zeosil–H2O” and “MFI-type zeosil–LiCl aqueous
solution” systems. The results are taken from [47].

On the basis of the data reported, the following hypotheses are proposed to explain the observed
increase of the intrusion pressure: (i) the rise of surface tension of aqueous electrolyte solution in
comparison with water according to Laplace–Washburn Equation (1); (ii) osmotic phenomena [60];
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(iii) the confinement effect of nanopore walls [61]; and (iv) the desolvation of solvated ions and the
deformation of their solvation sphere during the penetration into the pores [46]. The first hypothesis
alone cannot explain a strong rise of intrusion pressure in zeosils, since the increase of surface tension
is about 35% from water (72.8 mN/m) to 20 M LiCl aqueous solution (98 mN/m). Indeed, according
the studied systems, the pressure increase is more or less marked, but in any case, it is equal for all
the zeosils [62]. The second and the third ones seem to be valid only for diluted solutions. Thus, the
desolvation and the distortion of hydrated ions should mainly be responsible for the pressure increase.
The ions solvated by water molecules can penetrate inside sub-nanometer pores of zeosils only after a
partial desolvation and a deformation of their solvation sphere. Therefore, more energy is required
for this process in comparison with the intrusion of water. The penetration of solvated ions into the
pores after partial desolvation was demonstrated by in situ high pressure X-ray powder diffraction
(HP XRPD) studies on several “zeosil–salt aqueous solution” systems. The first structural study on
FER-type zeosil and MgCl2•21H2O solution demonstrated that the intruded liquid did not have the
composition of the initial solution but was more concentrated (MgCl2•10H2O), close to the maximal
salt solubility [63]. The intrusion—extrusion process of NaCl, NaBr, and CaCl2 aqueous solutions (2M
and 3M) was also studied in CHA- and LTA-type zeosils with the same technique and similar results
were obtained [63–65]. The concentrations of the intruded solutions were considerably higher with
respect to the initial ones, confirming the ion desolvation process as the key point of the intrusion of
salt aqueous solution in the zeosils. It can be supposed that a similar phenomenon occurs in the case of
LiCl aqueous solutions. Unfortunately, because of the low electron density of lithium ion and, thus, its
weak atomic scattering power, in situ HP XRPD experiments cannot be performed for “zeosil–LiCl
solution” systems.

The increase of intrusion pressure with LiCl concentration is not the same for all the zeosils
studied as it is shown in Figure 4. It seems that the zeosils with narrow pore openings (8, 9, 10 MR
(Figure 4a)) underwent a stronger enhancement of the intrusion pressure with respect to those with
larger pores (*BEA, CFI, DON, 12 or 14 MR (Figure 4b)). Moreover, the evolution as a function of
the LiCl concentration has a linear or a parabolic trend for narrow pore openings, whereas for the
zeosils with large pores after a first linear increase (from 0 to 10 or 15 M), a plateau is almost reached.
It could be supposed that under penetration in large pores, the ions should be less desolvated and
their hydration sphere less distorted.Molecules 2020, 25, x FOR PEER REVIEW 9 of 18 
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Figure 4. Evolution of the intrusion pressure values with LiCl concentration for (a) zeosils with narrow
pore openings (8, 9, and 10 MR), (b) zeosils with large pore openings (12 and 14 MR). Only the intrusion
of samples investigated with at least three different concentrations are considered.

It can be concluded that the intrusion pressure of LiCl aqueous solutions depends considerably
on the zeosil framework, particularly on the pore size. The evolution of intrusion pressure of saturated
LiCl aqueous solution (20 M) as a function of the inverse of pore size (average diameter of pore opening
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for channel-type zeosils, average diameter of pore opening, and maximal diameter of sphere that can
be included in pores for cage-type ones) is presented in Figure 5. As it was mentioned above, in the case
of water intrusion, the intrusion pressure is proportional to the inverse of the average pore diameter
for channel-type zeosils and of the cage diameter for the cage-type ones. In the case of LiCl aqueous
solutions, the situation is not always the same. Firstly, it was difficult to find a correlation between all
the zeosils, but some trends can be distinguished when the zeosils of the same type of porosity are
considered: 1D channel systems, multichannel (2D and 3D) pore systems, and the cage-type ones.
For the channel-type zeosils, the intrusion pressure of 20 M LiCl aqueous solution increases with the
decrease of pore opening diameter according to Laplace–Washburn Equation (1) as well as in the
case of water. On the contrary, no clear dependence was found, neither for pore opening size nor for
the included sphere diameter, for the cage-type zeosils. In spite of a similar size of pore openings,
DDR-type zeosil demonstrates a considerably higher intrusion pressure than the LTA- and CHA-type
ones. Moreover, no correlation with the maximal diameter of included sphere is observed. LTA- and
CHA-type zeosils show similar values of intrusion pressure (148 and 162 MPa, respectively) despite
different includible sphere diameter, the DDR-type one demonstrates a much higher intrusion pressure
(357 MPa) having a cage size similar to that of the chabazite (CHA).
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Figure 5. Intrusion pressure of 20 M LiCl aqueous solution versus the inverse of the average diameter
of the pores: for 1D and multichannel zeolites as the average of the diameter opening; for cage like
zeolites as the maximum diameter of the sphere that can be included in the pores (empty symbol), and
as the average dimeter of the pore opening.

As well as the absolute intrusion pressure of 20 M LiCl aqueous solution, it is also interesting
to compare these values with those obtained with water. The values of relative increase (Pint (20 M
LiCl)/Pint (H2O)) for different zeosils are presented in Figure 6. In general, three different tendencies
can be observed, respectively, for the zeosils with 1D channels, multidimensional channels, and cage
pore systems. The cage-type zeosils show a very high relative increase of intrusion pressure: 7.4 for
LTA-, 5.95 for DDR-, and 5.6 for CHA-type, indicating that the relative increase is particularly high for
the zeosils with small pore openings (8 MR) and that the size of maximum diameter includible sphere
has no impact on the rise of the intrusion pressure
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Figure 6. The relative increase of intrusion pressure of 20 M LiCl aqueous solution in comparison with
water (Pint (20M LiCl)/Pint (H2O)) versus the inverse of the average diameter of the pore openings for
channel-type zeosils and the diameter of pore openings and the maximal diameter of included sphere
for cage-type ones.

Generally, for the zeosils with larger pore openings (10, 12, and 14 MR), the relative increase
is quite low (2.0–3.4) except for the STF-type one (1D channels with side pockets, 10 MR). For this
material, the increase by 6.3 times can be related to its unidimensional structure.

It should be noticed that the increase of intrusion pressure is determined not only by a pore
diameter, but also by higher non-wetting properties of LiCl aqueous solutions which interact less with
the silanol defects of the framework with respect to water. Thus, the zeosils with a higher content of
silanol groups can demonstrate a higher relative increase of intrusion pressure. This seems to be the
case of DON-type zeosil (1D channels, 14 MR), which shows a higher increase (3.3) in comparison with
the similar CFI-type one (2.2), having an even slightly lower pore diameter [50]. In comparison with the
latter, DON-type zeosil has a higher content of silanol defects, and thus, it demonstrates a considerably
lower water intrusion pressure (26 and 75 MPa, respectively). Probably, this effect takes place also
when BEC- and *BEA-type zeosils are compared (the relative increase of 3.0 and 2.2, respectively),
where the first one contains a higher number of silanol groups. A more detailed discussion of the role
of defects is given in the next section.

4. Influence of LiCl Aqueous Solutions on Intrusion–Extrusion Behavior

As it was mentioned above, most of the “zeosil–water” systems demonstrate a fully reversible
spring behavior. Nevertheless, some of them show a fully or a partially irreversible intrusion, that
corresponds to a bumper behavior or to a combination of the bumper and shock-absorber ones,
respectively. The irreversible intrusion is related to a presence of hydrophilic silanol groups in the zeosil
framework or to their formation, when the intruded water molecules damage the framework breaking
siloxane bridges. ITH- [52], *BEA- [26], BEC- [51], IFR- [33], and LTA-type [46] zeosils demonstrate
a fully irreversible bumper behavior under water intrusion, whereas the intrusion is only partially
irreversible in the case of CHA- [49] and STF-type [32] zeosils. In the latter cases, a part of the water
remains inside the pores adsorbed on hydrophilic silanol groups after the first intrusion, but another
part is extruded and can be intruded reversibly in the following cycles.
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Generally, the use of highly concentrated LiCl aqueous solutions instead of water leads to a
change of system behavior; specifically, the intrusion becomes more reversible with the rise of LiCl
concentration. For the first time, this effect was observed for *BEA-type zeosil [44]. The intrusion of
water and LiCl aqueous solutions up to 10 M is fully irreversible (bumper behavior) as it is presented
in Figure 7a. Starting from the concentration of 15 M, the intrusion becomes fully reversible, thus,
the system demonstrates a spring behavior. This effect is explained by thermogravimetric (TG) analysis
and 29Si solid-state NMR MAS spectroscopy, which evidenced that silanol groups are not formed under
intrusion of highly concentrated solutions. Figure 7b shows the TG curves obtained after drying the
powder after the porosimetric experiments. They clearly indicate that in the case of 15 and 20 M LiCl
aqueous solutions, the TG weight loss is very low and close to that observed for a non-intruded sample,
whereas it is much stronger for the samples intruded with water and 10 M LiCl aqueous solution.
The results of NMR spectroscopy confirm this conclusion: the resonances at −100 and −103.5 ppm
corresponding to Q3 sites ((SiO3)SiOH or (SiO3)SiO− groups) are clearly observed for the samples after
water and 10 M LiCl aqueous solution intrusion, but they are absent on the spectra of the samples
intruded with highly concentrated solutions (Figure 7c). The same effect was observed for LTA-type
zeosil: a bumper behavior in the case of water intrusion becomes partially reversible (combination of
bumper and shock-absorber behavior) in the first cycle and fully reversible (shock-absorber behavior)
in the following ones for 10 and 20 M LiCl aqueous solutions [46]. In the case of BEC-, CHA-, and
ITH-type zeosils, the intrusion of concentrated LiCl aqueous solutions leads to the formation of a lower
number of defects, but the effect is less pronounced [49,51,52]. Nevertheless, the increase of intrusion
reversibility is still observed: from bumper to shock-absorber behavior for BEC-type zeosil, from
bumper to a combination of bumper and shock-absorber behavior for the ITH-type one and from a
combination of bumper and shock-absorber to spring behavior for pure silica chabazite. The formation
of a lower amount of silanol groups under intrusion of highly concentrated LiCl aqueous solutions
seems to be related to lower reactivity of intruded species towards zeosil framework. As it was
discussed above, in the case of salt aqueous solutions, the intruded liquid is not more water, but
solutions with low H2O/salt molar ratio. In such solutions, most of the water molecules are included in
solvation shells of lithium and chloride ions; thus, they become less reactive in the breaking of siloxane
bridges of zeosil framework.

However, in some cases, this explanation is not sufficient. For example, in the case of CHA-type
zeosil, as well as for the ITH type, silanol groups are already present in the initial samples, and
the difference between silanol content after water and LiCl aqueous solutions intrusion is quite low.
Nevertheless, the intrusion reversibility increases for these materials. It can be supposed that the
intruded concentrated solutions interact less with the hydrophilic defects and become “less wetting
liquid”. Water molecules are already bounded with the ions; thus, they are not adsorbed on silanol
groups and expelled from the pores under pressure release.

This effect is particularly strong for OKO-type zeosil [55]. Due to a considerably high number of
silanol defects, this zeosil is quite hydrophilic, the water intrudes spontaneously at ambient pressure.
However, high-pressure intrusion–extrusion steps are observed when using 20 M LiCl aqueous
solution [55]. The same effect is also observed in the case of aluminosilica FAU- and *BEA-type zeolites
with high Si/Al ratio [66]: the intrusion of water is spontaneous, whereas reversible intrusion–extrusion
of the LiCl aqueous solutions is observed at high pressure with shock-absorber and spring behavior of
corresponding systems.

Another example is a strong increase of intruded volume with LiCl concentration in DON-type
zeosil [50]. This zeosil contains a significant amount of silanol defects and demonstrates a quite low
volume of intruded water (0.04 mL/g) compared to its micropore volume. It can be supposed that a part
of the pores is filled spontaneously by water and only the filling of the hydrophobic part of the pores at
high pressure is observed. When the LiCl aqueous solutions are used, the intruded volume strongly
increases—up to 0.08 mL/g for 20 M LiCl aqueous solution. This phenomenon is also explained by
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lower interactions of the ions with the framework; the LiCl solutions become non-wetting liquids for
this hydrophilic part of porosity, and the filling of the total pore volume is observed at high pressure.Molecules 2020, 25, x FOR PEER REVIEW 12 of 18 
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Figure 7. (a) Intrusion–extrusion curves for “*BEA-type zeosil–H2O” and “*BEA-type zeosil–LiCl
aqueous solution” systems. (b) Thermogravimetric curves of *BEA-type zeosil samples before and
after intrusion–extrusion of water and LiCl aqueous solutions. (c) 29Si MAS NMR spectra of *BEA-type
zeosil samples before and after intrusion–extrusion experiments with water and LiCl aqueous solutions.
The results are taken from [44].

A slight increase in the volume of intruded LiCl aqueous solutions (+10%–20%) in comparison
with water is observed for all the zeosils studied. It should be noticed that the intruded water volume
is generally about 60% of the total micropore volume [57]. It can be supposed that this volume increase
for the salt solutions is due to a denser organization of solvated ions inside the pores or to a higher
capacity of the ions to better fill the pore volume.

In the cases of STF-type (1D channels with side pockets) [54] and DDR-type (2D cages) [53] zeosils,
the intruded volume increase is much more pronounced (by 2.3–3.2 times) in spite of the hydrophobic
character of both materials. The intruded volume becomes close to the total available micropore volume
of the zeosils. The nature of such volume increase remains unclear at the moment. It should be noticed
that these two zeosils demonstrate other particularities under intrusion of LiCl aqueous solutions.
In the both cases, a shock-absorber behavior with a very large hysteresis between intrusion and
extrusion curves (energy yield of ~50%) is observed in the case of 20 M LiCl aqueous solution. A similar
effect is found in the case of MTF-type zeosil, where a two-step extrusion with a large hysteresis is
observed for 15 M LiCl aqueous solution, whereas in the case of water and 10 M LiCl solution, the
zeosil demonstrates a spring behavior [29]. It should be noticed that three above-mentionned zeosils
with unusual behavior (strong increase of intruded volume, large hysteresis . . . ) have a cage or a
cage-like (channels with side pockets) pore structure.

A slight increase of the intrusion–extrusion hysteresis with increasing LiCl concentration is
observed for most of the zeosils that can be seen through the decreasing energy yield values (see Table 2).
The nature of this phenomenon remains unclear, but it could be supposed that it is related to the
interactions of solvated ions with zeosil framework.

5. Influence of Particle Size and Morphology on Intrusion of LiCl Aqueous Solutions

Some studies on the influence of size and shape of zeosil nanostructures on high-pressure
intrusion–extrusion characteristics were performed [67,68]. The intrusion–extrusion of water and 20 M
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LiCl aqueous solution was realized in the nanosheets (2 nm in thickness and 20 nm in length), the
nanocrystals (70 nm) and the hierarchically organized honeycomb-like structures (45–50 nm in thickness
and 1–2 µm in length) of MFI-type zeosil (silicalite-1) [67]. The main parameter influencing the intrusion
process in these materials seems to be a content of silanol groups which varies considerably from one
nanostructure to another. Silicalite-1 nanosheets had a hydrophilic character; thus, a spontaneous
intrusion of water and LiCl aqueous solution is observed. In the case of nanocrystals and honeycomb-like
structures with lower defect content, the intrusion–extrusion characteristics were very close to the ones
of micrometric conventional MFI crystals (15–25 µm). Only a slight decrease of intrusion pressure of
20 M LiCl aqueous solution—from 285 MPa (microcrystals) to 281 and 280 MPa for the nanocrystals
and the honeycomb-like structures, respectively—was observed.

The role of nanostructure on LiCl aqueous solutions intrusion was more pronounced in the
case of silicalite-1 hollow nanoboxes obtained by dissolution–recrystallization of nanocrystals [68].
Such nanoboxes possess large cavities with a size of 100–250 nm as well as regular walls of 15–20 nm
of thickness. They were studied in order to improve a stored energy by the increase of intruded volume
due to the presence of the mesoporous cavities. In the case of water intrusion, the cavities were filled
spontaneously, whereas the micropores of zeosil walls were filled at the pressure similar to the one
of microcrystals. However, a drastic effect of the cavities on the behavior and intrusion–extrusion
characteristics was observed in the case of 20 M LiCl aqueous solution. In contrast to the microcrystals,
the intrusion of LiCl aqueous solution in silicalite-1 nanoboxes is only partially reversible, and the
intruded volume increases in the first intrusion–extrusion cycle (0.11 vs. 0.15 mL/g, respectively).
The intrusion phase occurs in two steps. The first one (0.07 mL/g), with an intrusion pressure of
98 MPa, is irreversible and corresponds to the filling of mesoporous cavities through the small cracks
in the walls. The second intrusion step (0.08 mL/g) corresponds to the reversible intrusion in the
micropores of zeosil walls at the intrusion pressure slightly lower than in the microcrystals (273 against
285 MPa). Unfortunately, the stored energy was not improved in this way because of relatively low
pressure values and the intrusion irreversibility in the cavities of nanoboxes.

6. Energetic Performance of “Zeosil–LiCl Aqueous Solution” Systems

One of the most promising applications of heterogeneous lyophobic systems is a storage of
mechanical energy. Due to a strong rise of intrusion pressure and a smaller increase of intruded
volume, the use of highly concentrated LiCl aqueous solutions allows to considerably improve the
energetic performance of zeosil-based systems. However, the energy storage applications require a
spring behavior of “zeosil–non-wetting liquid” systems with small hysteresis between intrusion and
extrusion curves, when the absorbed mechanical energy is almost completely restored. Thus, the ability
of LiCl aqueous solutions to improve the intrusion reversibility in comparison with water is of high
interest for the development of new systems for mechanical energy storage. However, in some cases,
the intrusion of the LiCl aqueous solutions leads to a considerable increase of the intrusion–extrusion
hysteresis, thus involving the heterogeneous lyophobic systems to evolve from a spring behavior
to a shock-absorber one. Nevertheless, the systems with bumper and shock-absorber behavior are
promising for the applications in energy dissipation

The highest absorbed energy of 92.8 J/g was obtained for DDR-type zeosil for the first intrusion,
but in this case, a combination of bumper and shock-absorber behavior is observed and the restored
energy is considerably lower (31.2 J/g) [53]. Moreover, the absorbed energy value decreases strongly
in 2d and following cycles (60.7 J/g), even if the restored energy remains stable. For these cycles, the
DDR-type zeosil presents a shock-absorber behavior. Thus, DDR-type zeosil based systems are not
suitable for mechanical energy storage devices. A similar case is observed for several other systems
with the highest absorbed energy values. The systems based on STF- [54] and LTA-type [46] zeosils
with an absorbed energy of 40.2 and 32.6 J/g, respectively, demonstrate a combination of bumper and
shock-absorber behavior in the first cycle (energy yield of 23% and 36%, respectively). In the following
cycles they show a shock-absorber behavior with considerably lower absorbed energy (19.2 and 16 J/g).
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The best value of stored energy among the systems with spring behavior was obtained for the
“MFI-type zeosil–20 M LiCl aqueous solution” (31.3 J/g). It was tripled in comparison with water
intrusion–extrusion (9.6 J/g). In order to attain systems with higher stored energy, a high energy yield,
and thus a spring behavior, a study of new zeosils with a significant pore volume but low pore diameter
will be of high interest for applications in the energy storage field.

7. Conclusions

High pressure intrusion–extrusion of LiCl aqueous solutions in hydrophobic pure silica zeolites
(zeosils) were overviewed in this work. The use of lithium chloride, as well as of other salt aqueous
solutions, leads to a considerable increase of intrusion pressure in comparison with water. The pressure
rises with the increase of salt concentration. It was observed that the intrusion pressure of saturated LiCl
aqueous solution (20 M) depends considerably on the zeosil framework. In the case of channel-type
zeosils, it increases with the decrease of pore opening diameter according to the Laplace—Washburn
equation, as well as in the case of water. On the contrary, no clear dependence was found, neither for
pore opening size nor for the cage diameter, for the cage-type zeosils. The relative increase of intrusion
pressure (Pint (20 M LiCl)/Pint (H2O)) is particularly strong for the cage-type zeosils with narrow
pore openings (8 MR), such as LTA-, DDR-, and CHA-type zeosils (7.4, 5.95, and 5.6, respectively).
Nevertheless, a strong increase (by 6.3 times) was also observed for STF-type zeosil (1D channels with
side pockets, 10 MR), whereas for other zeosils with larger pore openings (10–14 MR), the relative
increase is relatively low (2.0–3.3).

In several zeosils, a fully and/or partially irreversible intrusion of water is observed that corresponds
to a bumper behavior or a combination of bumper and shock-absorber ones. This is related to the
presence of hydrophilic silanol groups in the zeosil framework or to their formation when intruded
water molecules damage the zeosil framework by breaking of siloxane bridges. The use of highly
concentrated LiCl aqueous solutions instead of water leads to an increase of intrusion reversibility:
the systems show a spring or a shock-absorber behavior instead of a bumper one. Depending on
the zeosil structure, this effect seems to be related to two reasons. The first one is that in the case
of highly concentrated solutions, most of the water molecules are included in solvation shells of
lithium and chloride ions; thus, they damage the zeosil framework less, and a lower number of silanol
groups is formed. The second reason is probably related to lower interactions of intruded solvated
ions with silanol defects of the framework; thus, they do not remain inside the pores, when the
pressure is released. For the same reason, for several zeolites which demonstrate a fully or a partially
spontaneous water intrusion, high-pressure intrusion–extrusion steps appear using a concentrated
LiCl aqueous solution. This increase of intrusion reversibility with LiCl aqueous solutions is of high
interest for mechanical energy storage applications. However, in some cases, a considerable increase of
the hysteresis between intrusion and extrusion curves is observed for highly concentrated LiCl aqueous
solutions that corresponds to the transition from a spring to a bumper behavior. The highest value of
absorbed energy (92.8 J/g) was obtained for the “DDR-type zeosil–20 M LiCl solution” system, but this
system, as well as several other ones with the highest absorbed energy values, show a shock-absorber
behavior. Thus, they are more appropriate for mechanical energy dissipation applications than for the
energy storage ones. The best value of stored energy among the systems with spring behavior was
obtained for the “MFI-type zeosil–20 M LiCl aqueous solution” one (31.3 J/g), where it was tripled in
comparison with water. A study of new zeosils combining a significant pore volume and low pore
diameter is of high interest for the applications in energy storage but also for a better understanding of
the relationships between the zeosil framework and intrusion–extrusion process.
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