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Abstract 
The purpose of the research is to study cognitive aspects of how geometric 

predictions are produced during problem-solving activities in Euclidean 

geometry. The process of geometric prediction is seen as a specific visuo-spatial 

process involved in geometrical reasoning. Indeed, when solvers engage in solving 

a geometrical problem, they can imagine the consequences of transformations of 

the figure; such transformations can be more or less coherent with the theoretical 

constraints given by the problem, and the products of such transformations can 

hinder or promote the problem-solving process. 

Previous research has stressed the dual nature of geometrical objects, intertwining 

a conceptual component and a figural component. Interpreting geometrical 

reasoning in terms of a dialectic between these two aspects (Fischbein, 1993), this 

study aims at gaining insight into the cognitive process of geometric prediction, a 

process through which a figure is manipulated, and its change is imagined, while 

certain properties are maintained invariant. 

This process is described through a model of prediction-generation elaborated 

cyclically by observing, analyzing through a microgenetic approach, and re-

analyzing solvers’ resolution of prediction open problems in a paper-and-pencil 

environment and in a Dynamic Geometry Environment (DGE).  

The prediction open problems designed were proposed during task-based 

interviews to participants selected on a voluntary basis. Participants were a total of 

37 Italian high school students and undergraduate, graduate and PhD students in 

mathematics. Data are composed of video and audio recordings, transcriptions, 

solvers’ drawings.  

The final version of the model provides a description of the prediction processes 

accomplished by a solver who engages in the resolution of prediction open problems 

proposed in this study; it provides a lens through which solvers’ productions can 

be analyzed and it provides insight into prediction processes. In particular, it sheds 

light onto the key role played by theoretical elements that are introduced by the 

solvers during the resolution process and the key role played by the solver’s 

theoretical control. 
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The study has implications for the design of activities, especially at the high school 

level, with the educational objective of fostering students’ geometrical reasoning 

and in particular their theoretical control over the geometrical figures.  
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Breve descrizione  
La ricerca mira a studiare gli aspetti cognitivi coinvolti nella produzione di 

previsioni geometriche durante la risoluzione di problemi nell’ambito della 

Geometria Euclidea.  

Si può considerare il processo di previsione geometrica come uno specifico 

processo visuo-spaziale coinvolto nel pensiero geometrico. Infatti, durante il 

processo di risoluzione di un problema geometrico, un solutore può immaginare 

diverse trasformazioni della figura e i loro effetti; tali trasformazioni possono 

essere più o meno coerenti con i vincoli teorici dati dal problema. Inoltre, i prodotti 

di tali trasformazioni possono inibire o supportare il processo risolutivo.  

Ricerche precedenti hanno evidenziato e posto l’attenzione sulla natura degli 

oggetti geometrici, considerando sia la componente concettuale che la componente 

figurale. Interpretando il pensiero geometrico in termini di dialettica tra questi due 

aspetti (Fischbein, 1993), lo studio mira a comprendere il processo di previsione 

geometrica, inteso come un processo attraverso il quale una figura viene 

manipolata, i suoi cambiamenti immaginati, mentre alcune proprietà vengono 

mantenute invarianti.  

Il processo di previsione geometrica verrà descritto attraverso un modello di 

generazione di previsioni elaborato ciclicamente: osservando e analizzando a più 

riprese, secondo un approccio microgenetico, il comportamento di diversi solutori 

durante la risoluzione di problemi aperti di previsione proposti sia in ambiente carta 

e penna che in un Ambiente di Geometria Dinamica (AGD).  

I problemi aperti di previsione progettati per lo studio sono stati proposti durante 

interviste task-based a solutori coinvolti su base volontaria. Hanno preso parte allo 

studio un totale di 37 solutori italiani tra studenti di scuola secondaria di secondo 

grado, studenti di laurea magistrale e di dottorato in Matematica. I dati constano 

di registrazioni video e audio, trascrizioni delle interviste, disegni dei solutori.  

La versione finale del modello descrive i processi di previsione di un solutore 

coinvolto nella risoluzione dei problemi aperti di previsione proposti nello studio. 

Inoltre, il modello fornisce una lente teorica utile per analizzare le produzioni dei 

solutori e comprendere più profondamente i processi di previsione. In particolare, 

il modello chiarisce il ruolo cruciale sia degli elementi teorici introdotti dal solutore 

durante il processo risolutivo, sia del controllo teorico che i solutori esercitano. 
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Lo studio ha implicazioni didattiche utili in particolar modo per la scuola 

secondaria di secondo grado, per la progettazione di attività volte a promuovere il 

pensiero geometrico degli studenti e il loro controllo teorico sulle figure 

geometriche.  
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1. Introduction  
This study focuses on cognitive aspects involved in the generation of predictions 

within the specific domain of geometrical reasoning, when the reasoning is carried 

out within the context of Euclidean Geometry on the plane. 

When a solver engages in a geometrical problem on a geometrical figure, she can 

imagine the consequences of transformations of the figure before they were 

physically accomplished; such transformations can be more or less coherent with 

the theoretical constraints depending on the expertise of the solver. We seek to 

gain insight into this process. 

Producing and transforming images seems to be a common behavior among 

mathematicians. Indeed, Polya himself described how an image can have a 

heuristic role when it is sketched out in a drawing (1957):   

Figures are not only the object of geometric problems but also an important help for 

all sorts of problems in which there is nothing geometric at the outset. Thus, we have 

two good reasons to consider the role of figures in solving problems. (ibid., p. 103)  

Other mathematicians like Hadamard (1945) and Poincaré (1952) describe how 

imagining images seems to be a typical activity of many mathematicians. This is 

widely documented, for example, by Hadamard (1945) who describes a personal 

anecdotical example of how he uses mental pictures, even in mathematical 

contexts other than geometry. He considers the following task: “we have to prove 

that there is a prime greater than 11” (ibid., p. 76). He describes the steps of the 

proof and the corresponding images that he produced along the way (Figure 1). 

 

Figure 1 Steps of the proof and Hadamard’s images used for proving that there is a prime 

greater than 11 (Hadamard, 1945, pp. 76-77) 
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Although there exist individual differences, Hadamard (1945) highlights that 

mathematicians use images and that these images very often are of a geometric 

nature; when immersed in thought, mathematicians often avoid using words or 

symbols (algebraic or others), as they prefer instead to focus on images. Moreover, 

Einstein wrote to Hadamard:  

Words and language, written or oral, seem not to play any role in my thinking. The 

psychological constructs which are the elements of thought are certain signs or 

pictures, more or less clear, which can be reproduced and combined at liberty. (ibid., 

p. 82).  

More recently, in interviews with mathematicians, Sfard (1994, 2008) found that 

they all relied heavily on imagery. 

As an aside, let me remark that one of my studies produced much evidence in 

support of Jacques Hadamard’s claim that the majority of mathematicians use visual 

imagery even in the most advanced and abstract of discourses. These pictures are 

sometimes actually drawn and sometimes just imagined. (Sfard, 2008, p. 150) 

According to Wheatley (1997), images also play a central role in students’ 

mathematical reasoning:  

Students who used images in their reasoning were more successful in solving 

nonroutine mathematics problems than those who approached the task 

procedurally […] The difference between good and poor problem solvers is often 

the extent to which they use imagery (ibid., p. 281-295). 

The competence of treating images in a way that supports problem-solving in 

Geometry has recently been referred to as having a mathematical eye by Mariotti 

and Baccaglini-Frank (2016). The skills which support the mathematical eye 

include the ability to predict, i.e. the identification of particular properties or 

configurations of a new figure, arising from a manipulation process.  

Other researchers talk about anticipation. Borrowing and adapting Boero’s 

definition given in a different mathematical domain but very suitable here as well, 

we can say that anticipating means imagining the consequences of certain choices 

operated on mathematical objects (Boero, 2001). Moreover, imagining the 

consequence of a set of transformations of a figure has a fundamental heuristic role 

within the geometrical problem-solving.  

In order to direct the transformation in an efficient way, the subject needs to foresee 

some aspects of the final shape of the object to be transformed related to the goal to 

be reached, and some possibilities of transformation. (ibid., p. 12) 
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Manipulation of images is a topic that has been addressed also by the research on 

visuo-spatial abilities carried out by cognitive psychologists (see, for example, 

Cornoldi & Vecchi, 2004). In a previous study (Miragliotta & Baccaglini-Frank, 

2017; Miragliotta, Baccaglini-Frank & Tomasi, 2017), we tried to analyze students’ 

geometrical thinking starting from theoretical constructs which belong to the 

research field of Cognitive Psychology. However, this approach revealed to be 

unsuitable to understand students’ predictions during the geometrical problem 

solving. We believe that the main reason of such unsuitability resides in the key 

role played by theoretical elements during the transformation of a geometrical 

figure. However, the reference to a mathematical theory (there Euclidean 

Geometry) is not acknowledged within the psychological research on visuo-spatial 

abilities. In line with our findings, the strong involvement of the reference to a 

precise theoretical domain (described below as "rigorous analytical thought 

processes") in prediction processes is also highlighted by Presmeg (1986):   

Especially if it is vague, imagery which is not coupled with rigorous analytical 

thought processes may be unhelpful. (ibid., p. 45)  

So, besides the transformations that a solver can imagine on the figural or spatial 

domain, we need to consider the theoretical constraints given by the mathematical 

theory of reference. Indeed, processes of anticipation have a particular nature, that 

is different from both deduction and induction. These processes rely on 

transformational reasoning (Simon, 1996).  

Transformational reasoning involves envisioning the transformation of a 

mathematical situation and the results of that transformation. (ibid., p. 207) 

These are the kinds of processes that we want to study.  

More specifically, restricting our focus on the Theory of Euclidean Geometry on 

the plane, our aim is to gain insight into the processes of prediction within the 

domain of the geometrical reasoning. Starting from explaining both the potential 

and the limits of a pure psychological perspective, applying the categories of 

visuo-spatial abilities, in the description of the geometric prediction process, the 

study aims at achieving an integration between well-established results and 

categories developed within the research field of neurosciences and a long 

standing tradition of research in mathematics education concerning geometrical 

reasoning and visualization. Our goal is to: 

- describe a general process of prediction within the domain of geometrical 

reasoning; 
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- propose a model of geometric prediction which highlights the cognitive 

aspects involved in the process;  

- develop analytical tools that provide access to the figural and the theoretical 

components of the solvers’ products of prediction.  

In Chapter 2 we situate the study within the literature on visualization and spatial 

reasoning in Geometry; we present an overview of the main definitions provided 

by researchers that address these two topics; we introduce the notion of imagery 

and describe how it was approached by researchers in Mathematics Education. 

Moreover, we present the semiotic approach provided by Duval. Finally, we touch 

on Fischbein’s Theory of Figural Concepts and on the possible role of a Dynamic 

Geometry Environment (DGE) in studying prediction processes; these last two 

aspects will be described in greater depth in the next chapter. 

The theoretical framework of the study is presented in Chapter 3. Initially we 

introduce the  theoretical framework of visuo-spatial abilities from a cognitive point 

of view (Cornoldi & Vecchi, 2004), that was developed by cognitive psychologists 

for explaining the interaction between solvers and images of different kinds, 

including those that address geometric figures. Then, we focus on the theoretical 

constructs that belong to the field of research in Mathematics Education, 

explaining how the Theory of Figural Concepts (Fischbein, 1993) well describes the 

specific nature of geometrical objects. Since this perspective constitutes our main 

interpretative lens, we describe in greater depth the theoretical constructs that we 

borrow from it and adapt their definitions to this study. In this chapter we also 

provide a first definition of geometric prediction (GP) and describe how this 

theoretical construct could interact with anticipatory intuitions. Moreover, starting 

from the notion of open problem (Arsac et al., 1998; Silver, 1995), we present a kind 

of geometric problems that are suitable for stimulating productive thinking: 

prediction open problems. Finally, we focus on the role of the exploration of a 

geometrical task within a Dynamic Geometry Environment (DGE) regarded as a 

source of additional windows onto the processes of prediction and onto its 

products.  

In Chapter 4, we summarize our working hypotheses and theoretical assumptions. 

Moreover, in light of the theoretical framework, we list our three research 

questions.  

Chapter 5 is devoted to the description of our methodological choices. We 

introduce the methodological tools of clinical interviews (Ginsburg, 1981) and task-

based interviews (Goldin, 2000), explaining the rationale for our choices; we describe 
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the methodological approach for collecting and analyzing data, introducing in 

particular the microgenetic methods. Moreover, we illustrate the experimental 

design of our study and explain how our data were collected; we also provide an 

a priori analysis of the prediction open problems proposed during the interviews. 

Finally, we introduce the tools that we developed for the analyses, according to a 

microgenetic approach, and describe in greater depth how they will be used 

according to our research aims.  

In the four subsequent chapters, we present our findings emerging from data 

analyses. In particular, in Chapter 6 we describe the observable characteristics of 

processes and products of GP. In Chapter 7 we focus on the findings emerging 

from the "funnel" tool of analysis. More specifically, we use the funnels to highlight 

the role that the theoretical elements recalled or introduced by the solvers play 

within the processes of GP. Chapter 8 is devoted to second level of findings, 

focusing on how several GP processes, or their products, can interact within the 

resolution of the given tasks. Moreover, we describe the general and local obstacles 

that could inhibit the solvers in accomplishing prediction processes or that lead 

them to coherent products. In Chapter 9 we analyze what happens when a solver 

who has undertaken GP processes in a paper-and-pencil environment moves to 

the DGE GeoGebra. 

In the concluding chapter, we summarize our results and answer the research 

questions, providing a final version of the model of geometric prediction processes. 

This model describes the prediction processes accomplished by a solver who 

engages in the resolution of prediction open problems proposed in this study. 

Moreover, it provides a lens through which we can analyze solvers’ productions 

and gain further insight into the prediction processes. More specifically, it sheds 

light onto the role of theoretical elements introduced by the solvers. After 

answering the research questions, highlighting the theoretical contributions that 

this study offers, we contextualize our findings within the existing literature, and 

finally we describe possible educational implications and directions for further 

research.  
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2. Literature review 
In this chapter we contextualize our study within the literature, describing how it 

is situated within the wide domain of research on visualization and spatial reasoning 

in Geometry.  

Because of the huge number of research studies on these two topics, we discuss 

only the most significant ones with respect to our aims, presenting an overview of 

the main definitions provided that address visualization and spatial reasoning.  

Because of the connection between visualization and mental imagery that has been 

established in several studies, we introduce the notion of imagery and describe 

how it has been approached by in Mathematics Education.  

The topic of visualization has addressed from different points of view. Since it was 

widely used within the research on visualization, we present the semiotic 

approach provided by Duval. We also introduce Fischbein’s theory of figural 

concepts and the role of the Dynamic Geometry Environment. These last two 

aspects will be described in greater depth in the next chapter.  

2.1 Visualization and spatial reasoning 

Despite the long hegemony of Psychology (e.g. Kosslyn, 1980; McGee, 1979; 

Lohman, 1979; Paivio, 1971; Piaget & Inhelder, 1971; Pylyshyn, 1973; Richardson, 

1977; Shepard & Metzler, 1971; Thomas, 1989; Thurstone, 1938), today visualization 

and spatial reasoning have become two important topics within research in 

Mathematics Education. According to Presmeg (2006), the seminal work of Alan 

Bishop (1980) provided a foundation for research on visualization in Mathematics 

Education.  

Recently interest on this topic has grown, mainly for two reasons: on the one hand, 

it has been recognized as an important part in studies and careers which involved 

Sciences, Technology, Engineering, and Mathematics (STEM) (Wai, Lubinski, & 

Benbow, 2009; Newcombe & Shipley, 2015); on the other, there has been increasing 

evidence that spatial reasoning is learnable, it is related skills that are malleable at 

any age, and that are strongly correlated to achievement not only in STEM but in 

all subject areas (Newcombe, 2010). Furthermore, researchers believe that skills 

related to spatial reasoning could be useful also for everyday life (Mulligan, 2015). 

Despite a general scientific interest on these topics, the terms visualization and 

spatial reasoning have been used in various ways within the literature. We clarify 
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the definitions that have been advanced that are the most significant with respect 

to this study.  

Below are definitions of visualization given in the field of research in Mathematics 

Education. 

According to Gutiérrez (1996) visualization in mathematics is “the kind of reasoning 

activity based on the use of visual or spatial elements, either mental or 

physical”(ibid., p. 9), and it is used to solve a problem or prove properties. It is 

composed of four elements: mental images, external representations, processes of 

visualization, and abilities of visualization. A mental image is  

a mental representation of a mathematical concept or property containing 

information based upon pictorial, graphical or diagrammatic elements. 

“Visualisation”, or visual thinking, is a kind of reasoning based on the use of mental 

images”. (Gutierrez, 1996, p. 6)  

Mental images are considered as the basic elements in visualization: 

A “process” of visualization is a mental or physical action where mental images are 

involved. (ibid., p. 10, italics in the original) 

The involvement of mental images is also stressed by Clement (2014): 

visualization is something which someone does in one’s mind—it is a personal 

process that assumes that the person involved is developing or using a mental 

image. (ibid., p. 181) 

According to Presmeg (2006),  

[…] visualization is taken to include processes of constructing and transforming 

both visual mental imagery and all of the inscriptions of a spatial nature that may 

be implicated in doing mathematics (ibid, p. 206) 

We can notice that, in this perspective, visualization is considered explicitly linked 

to mathematical activity and could involve mental images.  

Zimmermann and Cunningham (1991) use the term visualization for referring to a 

process of both producing and using  

representations of mathematical concepts, principles or problems, whether hand 

drawn or computer generated. (ibid., p. 3)  

According to Hershkowitz et al. (1989), it is considered an  

ability to represent, transform, generalize, communicate, document, and reflect on 

visual information (ibid., p. 75).  
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Arcavi (2003) blends and paraphrases the definitions given by other authors 

(Zimmermann and Cunningham, 1991; Hershkowitz et al., 1989). He provides a 

wide definition which considers visualization both as an ability and as a process: 

Visualization is the ability, the process and the product of creation, interpretation, 

use of and reflection upon pictures, images, diagrams, in our minds, on paper or 

with technological tools, with the purpose of depicting and communicating 

information, thinking about and developing previously unknown ideas and 

advancing understandings. (Arcavi, 2003, p. 217) 

Visualization is also considered a product of the thought activity on images (even 

mental) for several purposes, including their reproduction and on developing new 

understandings. 

Duval (1998) highlights the connection between visualization and mathematical 

activities, according to a semiotic perspective. He includes visualization among 

cognitive processes involved in Geometry. Visualization is based on the 

production of a semiotic representation and it makes visible all that is not accessible 

to vision (Duval, 1999). He claims:   

Visualization is the recognition, more or less spontaneous and quick, of what is 

mathematically relevant in any visual representation given or produced (Duval, 

2014, p. 160)  

Based on actions and cognitive operations that can be performed with or within a 

visual representation, he distinguishes two kinds of visualization: visualization 

based on perception and visualization based on the construction of configurations using 

tools. 

Concerning the several definitions of spatial reasoning, we find a similar 

heterogeneity. According to researchers of the group called Spatial Reasoning Study 

Group, spatial reasoning includes visualization and is  

the ability to recognize and (mentally) manipulate the spatial properties of objects 

and the spatial relations among objects (Bruce et al., 2017, p. 146)  

Dindyal (2015) speaks of spatial visualization which includes 

building and manipulating mental representations of two-and three-dimensional 

objects and perceiving an object from different perspectives (ibid., p. 521) 

Kinach (2012) adds on the definition also the use of representations:  

Spatial thinking takes a variety of forms, including building and manipulating two- 

and-three-dimensional objects; perceiving an object from different perspectives; and 

using diagrams, drawings, graphs, models, and other concrete means to explore, 
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investigate, and understand abstract concepts such as algebraic formulas or models 

of the physical world. (ibid., p. 535)  

In general, researchers have used several terms for referring to theoretical 

constructs similar to visualization and spatial reasoning; moreover, they used 

several definitions. Nevertheless, almost invariably, the definitions: 

- are related to the construct of imagery  

- have in common the activity of imagining objects and interacting with them 

through mental transformations (for example, rotation, stretch, reflection). 

In this study, we will refer to visualization as defined by Presmeg (2006) and spatial 

reasoning as defined by (Bruce et al., 2017).  

As stressed by Gal and Linchevski (2010), the resolution of geometrical tasks 

involves, explicitly or implicitly, a “seeing” process which includes several 

successive phases, beginning with perception and ending with “higher cognitive 

processes”. Mental imagery seems to play a role in this process. According to Finke 

(1989): 

"Mental imagery" is defined as the mental invention or recreation of an experience 

that in at least some respects resembles the experience of actually perceiving an 

object or an event, either in conjunction with, or in the absence of, direct sensory 

stimulation. (ibid., p. 2) 

Following this perspective, we can consider mental images as inner figural 

representations that possess similar features of inner representations generated by 

the cognitive process of perception (Mariotti, 2015). 

2.2 Bishop’s IFI and VP 

Processes of manipulation of visual images have been widely explored. Bishop 

(1983) separates the knowledge required to represent the problem from the 

abilities required to solve it in its context. With this aim, he proposes two very 

different kinds of abilities in what he calls the spatial-mathematical interface: the 

ability for interpreting figural information (IFI) and the ability for visual processing 

(VP). 

He describes these abilities as follows: 

IFI involves knowledge of the visual conventions and spatial "vocabulary" used in 

geometric work, graphs, charts, and diagrams of all types. Mathematics abounds 

with such forms and IFI includes the "reading" and interpreting of these. […] VP, on 

the other hand, involves the ideas of visualisation, the translation of abstract 

relationships and non-figural data into visual terms, the manipulation and 
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extrapolation of visual imagery, and the transformation of one visual image into 

another. (ibid., p. 177) 

So, IFI refers to the interpretations of images involved in a geometrical activity. It 

relies on the interpretation of content and context and is connected to the particular 

form of the stimulus;  whereas VP refers to the creation and manipulation of visual 

images, it is “an ability of process”, and is a more dynamic ability than IFI 

(Presmeg, 2008, p. 85). Furthermore, Bishop (1983) stresses that VP is the most 

difficult ability to test, and the most important to emphasize in teaching 

mathematics, because it is an ability that is difficult to develop. Indeed, according 

to Bishop (1983) and Krutetskii (1976), VP is teachable although individual 

preferences remain.  

IFI seems related to the ability to see and interpret, whereas VP seems to address 

visualization, defined as “the ability to interpret, transform, generalize, 

communicate, document, and reflect on visual information” (Gal & Linchevski, 

2010).  

2.3 Imagery strategies  

A large contribution to the research on visualization is provided by Presmeg’s 

works. Presmeg’s research was influenced by other works (Suwarsono, 1982; 

Krutetskii, 1976) about learners’ preferences for using visualization in a problem-

solving situation. Individuals differ in their preferred mode of reasoning 

(Krutetskii, 1976; Premeg, 1986): some preferring logical reasoning and others 

spatial reasoning. In particular, in pupils at school levels who are especially gifted 

in mathematics, Krutetskii (1976) identifies three mathematical casts of mind: a 

tendency to interpret the world mathematically. Here is the list of mathematical 

casts of mind, as reported by Presmeg (1997, p. 307). 

Analytic: very strong verbal-logical component predominating over weak visual-

pictorial one; spatial concepts weak; they operate easily with abstract schemes; they 

have no need for visual supports for visualizing objects or patterns in problem-

solving. 

Geometric: very strong visual-pictorial component, predominating over an above 

average verbal-logical component; spatial concepts very good; they use visual 

supports in problem solving; they feel a need to interpret visually an expression of 

an abstract mathematical relationship. 
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Harmonic: relative equilibrium of strong verbal-logical and visual-pictorial 

components; spatial concepts well developed. This type seems to have two 

subtypes: 

Subtype A (abstract harmonic): inclination for mental operations without the use of 

visual-pictorial; they can use visual supports in problem solving, but prefers not to. 

Subtype B (pictorial harmonic): inclination for mental operations with the use of 

visual-pictorial schemes; they can use visual supports in problem solving and 

prefers to do so. 

Even if this classification is based on studies with mathematically talented 

individuals, Presmeg’s  research (1986, 1997) confirms that it would extend to all 

ability levels.  

She was very interested in characterizing students’ preferred mode in solving 

given tasks and how the teacher facilitates this or otherwise. In particular, Presmeg 

(1994) examined the mathematical use of imagery. The definition is the following: 

A visual image is a mental construct depicting visual or spatial information. 

(Presmeg, 1997, p. 303)  

At the end of her research, she classifies teachers and students into two categories: 

visualizers and non-visualizers.   

Visualisers are individuals who prefer to use visual methods when attempting 

mathematical problems which may be solved by both visual and nonvisual 

methods. Nonvisualisers are individuals who prefer not to use visual methods when 

attempting such problems. (Presmeg, 1986, p. 42) 

Visual imagery used by visualizers were classified (ibid., p. 43) as follows:  

- Concrete, pictorial imagery (pictures-in-the-mind) 

- Pattern imagery 

- Memory images of formulae  

- Kinesthetic imagery  

- Dynamic imagery  

In particular, the solvers who made use of dynamic imagery manifest a mental 

manipulation of the figure: 

Paul explained that after seeing that the rectangle would be two, he "slid" the 

parallelogram up into the rectangle, using a moving image. (ibid., p. 44) 
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Among the interviews, Presmeg (1997) did not find a large number of instances of 

dynamic imagery. Nevertheless, she stresses: 

[...] these dynamic forms were especially powerful in facilitating the mathematical 

problem solving of the students who used them (ibid., p. 305). 

However, the imagery alone is not sufficient in problem solving:  

[…] imagery was marked by an interplay between concrete perceptual visualization, 

on the one hand, and a relentless drive toward abstract, aesthetic principles of 

symmetry or invariance on the other. […] If imagery is to be useful in problem 

solving, it needs to be controllable. (Presmeg, 1997, p. 301-306) 

The classification of imagery provided by Presmeg (1986) was recalled and 

adapted by Owens (1999) in her studies on children’s visualization in the specific 

domain of Geometry. In particular, she finds several instances of dynamic imagery 

in young children’s actions and words.  

For example, one child imagined a square becoming a rectangle and then becoming 

thinner as he developed his rectangle concept. Another dynamically changed a 

trapezium into a parallelogram (ibid., p. 221) 

Moreover, she identifies five groupings of strategies. These include:  

- Perceptual strategies, used by solvers who attend to spatial features, relying 

on what they can see or do; 

- Pictorial imagery strategies, which involves pictorial imagery, developing 

mental images associated with concepts; 

- Pattern and dynamic imagery strategies used by solvers who make use of 

“pattern and movement in their mental imagery and developing conceptual 

relationship”. (ibid., p. 224)  

In particular, this last strategy is explicitly connected with predictions. Indeed, one 

of the descriptions is the following: 

predicts changes by mentally modifying shapes and their attributes using motion or 

pattern analysis (ibid., p. 225) 

All these contributions stress the existence of a dynamic dimension of the visual 

imagery and that it can be particularly helpful in problem-solving.  

2.4 Cognitive apprehensions 

A wide contribution in the field research on visualization was given by Duval, who 

followed a different approach. Duval (1999) considers vision as a psychological 
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construct connected to visual perception. As perception, it involves two cognitive 

functions: epistemological function and synoptic function. The first one consists in 

giving “direct access” to any physical object. According to Duval, “nothing is more 

convincing than what is seen” (ibid., p. 10). The second one concerns the 

simultaneous and immediate apprehension of several objects. In this perspective, 

according to its first function, vision is different from representation.  

Paraphrasing Peirce’s definition of sign or representamen (Peirce, CP, 2.228), Duval 

(1999) defines representation as “something which stands instead of something 

else” (ibid., p. 10). Because of the second function, vision is opposite to discourse 

and deduction “which requires a sequence of focusing acts on a string of 

statements” (ibid., p. 10), neither immediate nor simultaneous. 

Furthermore, visual perception provides a direct access to objects. For this reason, 

it is different from visualization. Indeed, visualization is based on the production of 

semiotic representations (Duval, 1999), which show relations and organization of 

relations between representational units. Visualization is one of the three strictly 

connected cognitive processes involved in doing geometry: visualization, 

construction, reasoning (Duval, 1998). Visualization is the intrinsically semiotic one 

and it allows to grasp at once a complete apprehension of any organization of 

relations. Elsewhere, Duval (2014) stresses:  

Visualization is the recognition, more or less spontaneous and quick, of what is 

mathematically relevant in any visual representation given or produced. […] 

Visualization, like understanding is always a jump that corresponds to a new 

awareness in which everything is completely reorganized in an obvious way (ibid., 

p. 160).  

Duval (1999) considers visualization as an intentional process which “bring[s] into 

play a semiotic system”, different from automatic processes (ibid., p. 6).  

In order to explain interactions with a geometrical representation, Duval (1995) 

talks about cognitive apprehensions, rather than abilities or skills, as other authors 

do. His key idea is that there exist several ways of looking at a drawing or at a 

visual stimulus. For functioning as a geometrical figure, a drawing must evoke one 

or more cognitive apprehension. Indeed, a geometric figure “always associates 

both discursive and visual representations” (Duval, 2006). Duval (1994, 1995) 

distinguishes four cognitive apprehensions whose fusion is involved in the use of 

geometrical figures. He characterizes each one separately but stresses that the 

solution of a geometrical problem frequently requires their interaction.  
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Perceptual apprehension is the most immediate one (Duval, 1994); it allows us to 

identify and immediately recognize and “at first glance” a form or an object, on a 

plane or in depth. It happens by means of cognitive processes performed 

automatically and therefore unconsciously (ibid., p. 124). Indeed, what we 

perceive depends on figural organization laws and pictorial cues. The first one refers 

to the Gestalt principles of perceptual organization. Citing Coren et al. (1979), 

Duval stresses what he means by cue: 

[…] a cue is a signal that prompts an action from an actor automatically […] a clues 

suggests conscious consideration that leads to the detection of the correct response. 

(Duval, 1995, p. 145, emphasis in original) 

Sequential apprehension is involved when we construct a figure or describe its 

geometrical construction. In this case, the organization of elementary figural units 

depends on technical constraints of the tools used to construct the figure and on 

the mathematical properties of the figure. Cues and perceptual laws are not 

involved in this process.  

Furthermore, Duval highlights that a drawing without a denomination or explicit 

hypothesis is an ambiguous representation. Indeed, without discursive elements, 

different perceivers who see the same drawing could observe different properties. 

Perceptual apprehension is not enough to recognize mathematical properties:  

some must first [be] given through speech (denomination and hypothesis) and 

others can be derived from the given properties (Duval, 1995, p. 146).  

This is the domain of discursive apprehension. Indeed, what the figure shows could 

be different from what it represents. Perceptual apprehension allows us to perceive 

a figure without conscious analysis, by recognizing shapes and objects; it consists 

of the speech acts (denomination, definition, primitive commands in a software) 

which determine what the perceived figure represents.      

The fourth one is operative apprehension; it has a heuristic function, which means it 

allows to gain an insight into a solution of a geometrical problem looking at a 

figure. Through operative apprehension we can transform (mentally or physically) 

the given figure in different ways:  

- we can divide up the whole figure into parts and combine them in another 

figure (mereologic way);  

- we can make the figure larger or narrower or slanted (optic way);  

- we can change its position or its orientation (place way).  
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These modifications could be accomplished using different operations, 

respectively: reconfiguration; size variation and plane variation; variation of 

orientation, like rotation or translation.  

Moreover, Duval (1995) talks about the “operative apprehension of a given figure” 

(ibid., p. 147). He seems to argue that a figure can or cannot offer heuristic help to 

solve a geometric problem, because of its particular representation or because of 

the particular task design. Consequently, possible operations could be more or less 

visible and natural for a solver.  

Duval (1994) explains that operative apprehension is different from discursive 

apprehension, because the latter is subordinate to the use of definitions and 

theorems and the former concerns operations which could be accomplished freely, 

without theoretical or technical constraints. For this reason, operative 

apprehension is also different from sequential apprehension, because it is free 

from constraints related to any construction tools.  

The operations used to transform a figure could be accomplished only in the 

register of the figure. Thus mathematical knowledge is not involved in operative 

apprehension, even if some transformations could be congruent with 

mathematical ones. For this reason, operative apprehension is close to perceptual 

apprehension. They share the same figural organization laws, but at a different 

level: in the second case it is an automatic and immediate process, in the first one 

it is a conscious process and could require a long time.  

2.5 Fischbein’s perspective 

According to Fischbein geometrical objects are completely described and controlled 

by an axiomatic system of definition and theorems, but at the same time they 

maintain certain figural aspects of images. We will not devote a long discussion on 

the Fischbein’s perspective on visualization and geometrical reasoning because the 

Theory of Figural Concepts (Fischbein, 1993) will be widely described in the next 

chapter.  

In this chapter we only want to present what is relevant for our review of 

Fischbein’s main paper on the figural concepts in order to draw from his claims how 

he conceives the following notions: images, images in geometry, geometrical 

figure and figural concepts (Table 1).  
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Claims within the paper “The theory of 

figural concepts” (Fischbein, 1993) 

pp. Our review 

Concepts and mental images are usually 

distinguished in current psychological theories 

139 An image: 

- is a mental 

entity; 

- is different from 

concepts; 

- is a sensorial 

representation 

of an object;  

- could be turned 

and moved; 

- is a picture in 

the head; 

- interacts with 

concepts; 

- is based on the 

perceptive-

sensorial 

experience; 

- could be 

perceptive or 

mental. 

In all the actual cognitive theories, concepts and 

images are considered two basically distinct 

categories of mental entities. […] The image of a 

metallic object is the sensorial representation of 

the respective object (including color, 

magnitude, etc.). 

139 

In contrast [respect to concept], an image (we 

refer here to mental images) is a sensorial 

representation of an object or phenomenon.  

139 

Concepts do not turn, do not move, and images, 

as such, do not possess the perfection, the 

generalization, the abstractness, the purity 

which are supposed when performing the 

calculations. 

141 

We are so used to distinguishing between 

images, as "pictures in the head", and concepts, 

i.e., general, non-sensorial ideas, that it is very 

difficult to accept a construct which would 

have, simultaneously, conceptual and 

imaginative spatial qualities. 

143 

[…] images and concepts interact intimately. 144 

There is extensive experimental evidence 

concerning the reciprocal role played by images 

and concepts in learning and solving activities 

[…] But in this interplay, images and concepts 

are considered distinct categories of mental 

entities. 

144 
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It [a real cube] is a sensorial image like so many 

images which come into mind as an effect of our 

practical experience: the house in which I live, 

the room in which I use to work, 

representations of relatives, friends, students, 

etc. Beyond that image there is another image 

not sensorially perceived but thought, the 

genuine object of our geometrical reasoning. 

This is the image to which we refer when 

performing a mathematical operation. 

143 In geometry, an image: 

- is a spatial 

representation 

under the 

control of a 

definition; 

- may be 

exhaustively 

controlled by 

concepts; 

- could be 

mentally 

manipulated; 

- could be 

thought, not 

only perceived 

by senses, and 

this is specific of 

mathematics.  

 

 

 

 

 

 

 

 

 

 

 

As a matter of fact, the triangle to which we 

refer and its elements cannot be considered 

either pure concepts or mere common images. 

140 

[…] mathematical-logical operations 

manipulate only a purified version of the 

image, the spatial-figural content of the image. 

148 

It [the meaning of circle] is an image entirely 

controlled by a definition. Without this type of 

spatial images, geometry would not exist as a 

branch of mathematics. 

148 

[…] the considered figure is, from the beginning, 

not an ordinary image but an already logically 

controlled structure. 

143 

[…] a geometrical figure is not a mere concept. 

It is an image, a visual image. It possesses a 

property which usual concepts do not possess, 

namely, it includes the mental representation 

of space property. 

141 

(a) a geometrical figure is a mental image, the 

properties of which are completely controlled 

by a definition; 

148 
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[…] (c) the mental image of a geometrical figure 

is, usually, the representation of the 

materialized model of it.  

Geometrical figure: 

- is a mental 

representation 

of space 

properties;  

- is a mental image, 

the properties of 

which are 

completely 

controlled by a 

definition; 

- could be 

mentally 

manipulated;  

The mental image of a 

geometrical figure is 

the representation of 

the materialized model 

of it. 

One has, then, to consider three categories of 

mental entities when referring to geometrical 

figures: the definition, the image (based on the 

perceptive-sensorial experience, like the image 

of a drawing) and the figural concept. 

148 

[…] the scientist manipulates the images 

according to the respective concepts. The 

difference between empirical sciences and 

geometry, in this respect, is that in geometry the 

images may be exhaustively controlled by 

concepts while in empirical sciences they are 

not. 

148 

To manipulate an image, a spatial 

representation under the strict but also 

intrinsic control of a definition would not be 

possible if only two independent processing 

codes would exist. When solving a geometrical 

problem we manipulate geometrical figures as if they 

were homogeneous mental entities, not combinations 

of two categories of heterogeneous mental constructs.  

153 

[…] the student has to learn to mentally 

manipulate geometrical objects by resorting 

simultaneously to operations with figures and 

to logical conditions and operations. Such a 

type of activities, already referred to in the 

present paper, consists of (a) asking the 

students to draw the image obtained by 

unfolding a geometrical body (actually 

perceived or mentally represented); … 

158 

Though the circle is an image, a spatial 

representation, its existence and its properties 

156 
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are entirely imposed by an abstract, formal 

definition. 

We deal here with figural concepts because 

every part of the image (angles, sides, points, 

the circle, the arc) are simultaneously images 

and concepts, the images being controlled by 

the respective definitions. But, in the dynamics 

of the reasoning process, the image by itself 

seems to be unable to answer the question. 

157 

The term "figural concept", introduced by us, is 

intended to emphasize the fact that we deal 

with a particular type of mental entities which 

are not reducible, neither to usual images - 

perceptive or entencephalic - nor to genuine 

concepts.  

160 A figural concept: 

- is an image 

intrinsically 

controlled by 

concepts; 

- could be 

manipulated 

during the 

process of  

mathematical 

invention.  

But, usually in the process of mathematical 

invention we try, we experiment, we resort to 

analogies and inductive processes by 

manipulating not crude images or pure, formal 

axiomatic constraints, but figural concepts, 

images intrinsically controlled by concepts. 

160 

In particular, Table 1 shows that Fischbein talks about the “mental manipulation” 

of several objects: images, geometrical figures, and figural concepts. 

Moreover, such manipulation can be considered as an anticipatory device during 

geometrical problem-solving (Fischbein, 1993, p. 159). Nevertheless, he does not 

clarify how a solver can accomplish manipulations during the resolution of a 

geometrical task.  

Table 1 A review of the paper “The theory of figural concepts” (Fischbein, 1993). The first 

column contains the main claims about images, geometrical figures, and figural concepts; 

the corresponding page is shown in the second column; the last column contains the 

critical features of each theoretical construct that can be inferred from the paper. 
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2.6 The Dynamic Geometry Environment  

The role of the modern digital technologies as powerful tools in supporting the 

teaching and learning of Geometry is widely recognized (Battista, 2008; Bruce et 

al, 2011; Clements & Sarama, 2011; Highfield & Mulligan, 2007; Sinclair, de Freitas 

& Ferrara, 2013; Sinclair & Moss, 2012). In particular, research stresses the 

importance of the visual and kinetic interaction that a student can accomplish 

within a Dynamic Geometry Environment. Indeed, the use of a DGE is particularly 

relevant because of the specificity of the interaction between the user and the 

microworld. 

The interaction between a learner and a computer is based on a symbolic 

interpretation and computation of the learner's input, and the feedback of the 

environment is provided in the proper register allowing its reading as a 

mathematical phenomenon. (Balacheff & Kaput, 1996, p. 470).  

Moreover, Noss and Hoyles (1996) conceive the interaction between a solver and 

the microworld as a window on processes of meaning-making. They stress that the 

computer can be a channel through which communication can happen and a 

window through which this can be seen. In the next chapter we will illustrate how 

a DGE can be conceived as a microworld and how the solver’s interaction with a 

DGE is integrated into our study.  

Within the wide pool of research on the role of DGE, we want to focus on two 

findings:   

- the transformational-saliency hypothesis advanced by Battista (2007) 

- the maintaining dragging modality as a psychological tool (Mariotti & 

Baccaglini-Frank, 2011; Baccaglini-Frank & Antonini, 2016) 

The dynamism of the figure is actually recognized as one of the main features of 

the DGE. In particular, dragging is the function that allows direct manipulation of 

the figure on the screen (Laborde & Strässer, 1990), inducing transformations that 

can be perceived as a movement of the figure. In this context, geometrical 

properties are interpreted as invariants (Laborde, 2005) and exploring a dynamic 

figure can become a search for such invariants (Laborde et al., 2006; Ho ̈lzl, 1996; 

Arzarello et al., 2002; Healy & Hoyles, 2001; Baccaglini-Frank et al., 2009). 

An interesting point of view on the effectiveness of dragging within the 

exploration of a geometrical figure is provided by Battista (2007). He starts from 

two assumptions. First, “the relationships are established with unconscious visual 

transformations” (Battista, 2007, p. 860).  
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For example in a parallelogram, seeing the relationship that opposite sides are 

parallel might be based on mentally (but unconsciously) translating one side onto 

the opposite side. Similarly, seeing that opposite angles in a parallelogram are 

congruent may be based on an unconscious 180° rotation. (ibid., p. 860) 

The second assumption, which he called the transformational-saliency hypothesis is 

closely connected to dragging. This hypothesis essentially states that people notice 

invariance. For Battista (2008), it is not just that one might see invariance in dragging 

but that one cannot help but notice it.  

He thus conjectured that investigating shapes through the transformations of a 

dynamic figure in a DGE “make the essence of the properties more psychologically 

salient to students than simple comparing examples of shapes as in traditional 

instruction” (Battista, 2008, p. 152). 

Dragging thus changes the way shapes are perceived, moving from a static visual 

apprehension to that of a temporal attention on what remains invariant.  

From an educational point of view:  

Because of the nature of this kind of digital technology, which enables continuous 

transformation through dragging in which only non-critical attributes of a shape can 

change, but critical ones are preserved, an a priori analysis of DGE affordances 

suggests that they could both (1) help learners see and make a large example space 

of geometric shapes such as long, skinny triangles, and (2) help learners appreciate 

aspects of the inclusive relations in the sense that it is possible to transform a 

constructed parallelogram, for example, into a rectangle. (Sinclair & Bruce, 2015, p. 

325) 

The analyses on the use of dragging from a cognitive point of view is documented 

by several research studies (Arzarello et al., 2002; Olivero, 2002), which focused on 

the ways in which dragging may affect students' reasoning process and led to a 

first classification of dragging modalities that students might use in solving open 

problems.  

A new insight into the first classification was provided by Baccaglini-Frank (2010) 

who, focusing on dragging for conjecture-generation, added a new category: 

maintaining dragging, i.e. dragging a base point so that the dynamic figure 

maintains a certain property.  
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More specifically,  

we consider maintaining dragging (MD) the mode in which a base point is dragged, 

not necessarily along a pre-conceived path, with the specific intention of the user to 

maintain a particular property. (Baccaglini-Frank and Mariotti, 2010, p. 230) 

This dragging modality is used when a solver, who has recognized a configuration 

of the dynamic figure as interesting, attempts to induce a particular recognized 

property to become an invariant under dragging.  

Indeed, as stressed by Leung et al. (2013), “a figure can be seen as a set of 

affordances that the dragger perceives” (ibid., p. 441) through interaction with the 

figure, which allows her to discover invariants. In this perspective, the notion of 

affordance is “the possibility of actions we have not actually undertaken.” 

(Neisser, 1989 p. 12) 

Moreover, researchers (Mariotti & Baccaglini-Frank, 2011; Baccaglini-Frank & 

Antonini, 2016) advance the hypothesis that the scheme of maintaining dragging can 

be internalized, leading to a phycological tool (in the perspective of Vygotsky, 1978), 

freed from the physical support of the DGE.  

Once it becomes a psychological tool, internalized maintain dragging seems to 

support the process of discovery of geometrical properties (Mariotti & Baccaglini-

Frank, 2011; Baccaglini-Frank & Antonini, 2016). 
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3. Theoretical framework 
In this chapter we will present the fundamental theoretical constructs that other 

researchers in Mathematics Education have developed and that will be used in this 

study as theoretical lenses to analyze solvers' thinking during the resolution of 

geometrical tasks. Moreover, we build on a subset of these constructs to develop 

tools that are more suitable for this study.  

First, we describe a theoretical framework used within research in Cognitive 

Psychology for explaining the interaction between solvers and images of different 

kinds, including those that address geometric figures (Section 3.1). We highlight 

the shortcomings that we found in the effort of applying this cognitive theoretical 

framework to the domain of geometrical reasoning.  

From Section 3.2 on, we focus on the theoretical constructs that belong to the field 

of research in Mathematics Education. In Section 3.2, we explain how the Theory of 

Figural Concepts well describes the specific nature of the geometrical objects. Since 

this perspective constitutes the main interpretative lens of this study, we describe 

in greater depth the theoretical constructs that we will use in this study. 

Section 3.2.1 contains the definition of the figural concept, followed by the 

introduction of the notion of geometric figure in Section 3.2.2.  

In Section 3.2.3 we distinguish between the figural component and the conceptual 

component of a figural concept and interpret geometrical reasoning in terms of a 

dialectic between these two aspects. In Section 3.2.4 we explain the role that 

conceptual control and the prototype effect can have within the resolution of a 

geometrical task. Finally, we provide some definitions of theoretical constructs 

that belong to the Theory of Figural Concept in a formulation that is more suitable 

for this study (Section 3.2.5).  

A preliminary definition of geometric prediction is proposed in Section 3.3. In 

particular, we refer to geometric prediction as mental processes that interacts with 

the following constructs: the theoretical elements and the figural elements of a 

geometric configuration, the solver’s theoretical control, the figural 

transformations of the figural components. All the fundamental notions and 

terminology are explained. 

Having provided an initial formulation of geometric prediction, we touch on another 

related theoretical construct: intuition. In Section 3.4, we introduce and describe 
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features of intuitive knowledge. In particular, we highlight the connections with 

processes of prediction, focusing mostly on anticipatory intuition.  

In Section 3.5, we describe open problems as a kind of geometric problems that are 

suitable for stimulating productive thinking and we introduce prediction open 

problems as useful tools for eliciting prediction processes. Moreover, we highlight 

the theoretical perspective following which we will analyze solvers’ productions, 

in particular focusing on the role of gestures as a window onto the process.  

In Section 3.6, we focus on the exploration of a geometrical task within a Dynamic 

Geometry Environment (DGE) regarded as a source of additional windows onto the 

processes of prediction and onto its products. More specifically, we advance 

hypotheses on the possible role of surprise in processes of prediction. 

3.1 Visuo-spatial abilities 

From the perspective of Cognitive Psychology, generating and processing mental 

images take place within a complex process of acquisition and use of abilities, 

including those denoted visuo-spatial abilities.  

An analysis of the literature on this topic reveals that a shared definition of these 

abilities does not exist yet. Nevertheless, a list of visuo-spatial abilities appears in 

(Cornoldi & Vecchi, 2004, p. 16):  

- visual organization, the ability to organize incomplete, not perfectly visible 

or fragmented patterns;  

- planned visual scanning, the ability to scan a visual configuration rapidly and 

efficiently to reach a particular goal;  

- spatial orientation, the ability to perceive and recall a particular spatial 

orientation or be able to orient oneself generally in space;  

- visual reconstructive ability, the ability to reconstruct a pattern (by drawing 

or using elements provided) on the basis of a given model;  

- imagery generation ability, the ability to generate vivid visuo-spatial mental 

images quickly;  

- imagery manipulation ability, the ability to manipulate a visuospatial mental 

image in order to transform or evaluate it;  

- spatial sequential short-term memory, the ability to remember a sequence of 

different locations;  
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- visuo-spatial simultaneous short-term memory, the ability to remember 

different locations presented simultaneously;  

- visual memory, the ability to remember visual information;  

- long-term spatial memory, the ability to maintain spatial information over 

long periods of time.  

As we can guess, these abilities are also related to geometrical activities, and, 

indeed, clinicians evaluate students’ performances in visuo-spatial tasks to assess 

their possible difficulties in learning school geometry. 

A previous study (Miragliotta & Baccaglini-Frank, 2017) focused on these 

cognitive abilities: we tried to give an operational definition of some visuo-spatial 

abilities in the specific domain of geometrical reasoning.  

Our findings revealed that two of the visuo-spatial abilities were particularly 

relevant in geometrical reasoning; these were described as: imagery generation and 

imagery manipulation.  

However, providing operational definitions of the abilities within the domain of 

geometry and using them to analyze student's reasoning reveled to be quite 

difficult. In particular, we reached the conclusion that visuo-spatial abilities alone 

as listed above are not enough to explain the complex processes involved in 

geometrical problem solving. In particular, a process that seems to be often carried 

out by the solvers is to imagine the consequence of their (mental) manipulation on 

a figure consistently with given theoretical constraints. The reference to a 

mathematical theory (there Euclidean Geometry), to which the constraints belong, 

is neglected within the psychological research on visuo-spatial abilities.  

However, a frequent process for mathematicians involves imagining consequences 

of transformations on a geometrical object which are consistent with a set of 

theoretical constraints (given or induced by a step-by-step construction).  

Moreover, we observed some instances of this kind of process in verbal and 

gesture productions of students involved in solving a geometrical task. Such a 

process can be carried out through the use of certain abilities listed above, but there 

is more to it. Let us consider an explanatory example to further argue this point.  

During a previous study (Miragliotta, Baccaglini-Frank & Tomasi, 2017), the 

students were shown a figure that was constructed ahead of time in a DGE (Figure 

2). The construction in Figure 2 below is that of a robust parallelogram 

accomplished starting from three points on the screen (E, F, G), connected by 
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segments. Vertex H is constructed as the intersection point between two lines: the 

first is parallel to EF (through G); the second is parallel to FG (through E).  

 

The students had previously discovered the properties of several quadrilaterals, 

including the parallelogram. The solvers were asked whether the given 

quadrilateral could become a square by moving one of its sides. When the 

interviewer asked the question and while the solvers were talking, the figure was 

static on the screen. Here is an interesting excerpt. 

Interviewer:  Do you think the parallelogram could become a square by moving 

just side EF? 

Elena:  I think so, because I said [before] that the angles can vary.  

Domenico:  I say no. Because I don’t see how the square could come out by 

moving EF. I mean, if I move it [he refers to EF] I don’t see the 

square being born. 

We tried to analyze this excerpt using some of visuo-spatial abilities listed before.  

Domenico appears to only be using the imagery generation ability. The term “to be 

born” (the Italian “nascere” in the original) suggests just something that is 

generated. It seems that such “generation” happens only in his mind because the 

student speaks about the transformation while the figure is static on the screen. 

Moreover, the linguistic expression used suggests that he is observing (in his 

mind) a generative process, and therefore that he is using his imagery manipulation 

ability. Nevertheless, the student’s discourse reveals not only a transformation of 

the figure as it appears, but also a transformation that is strictly connected with the 

theoretical constraints. It seems that he (mentally) transforms the figure in order 

to observe whether he can give it properties which he considers necessary for it to 

become a square (eventually according to what he considers a square). At the end 

Figure 2 An instance of the dynamic figure of a robust parallelogram used within a 

previous study (Miragliotta, Baccaglini-Frank & Tomasi, 2017) 
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of or during the manipulation, he seems to know whether the figure has the 

properties of a square. This point is hard to be explained if we can use only the 

visuo-spatial abilities proposed in psychology.  

In solving the task, Elena also appears to be using theoretical elements (“the angles 

can vary”), which also guide her answer. Elena’s answer cannot be explained at all 

if we are to use only the visuo-spatial abilities in psychology, because of her 

theoretical considerations.  

Other examples like these suggested that visuo-spatial abilities are not sufficient 

for explaining what happens in these kinds of situations, mainly because we need 

to be able to see how theoretical elements come into play.  

The main shortcomings in the use of visuo-spatial abilities listed above for 

interpreting students’ behaviors in geometrical problem solving are the following:  

- a lot of interpretation is frequently involved in establishing which abilities 

are used during each process analyzed; 

- none of them explicitly deal with a geometrical theory of reference (e.g., 

Euclidean Geometry) when the reasoning is carried out in this context. 

What could explain the solvers’ behaviors during the resolution of a geomatical 

tasks such as the one shown above is a model that considers elements that belong 

both to the solvers’ visual experience and to their theoretical awareness of the 

geomatical objects. Indeed, when we are using representations of geometrical 

objects a conceptual component is strongly involved. This point will be widely 

explained in the next section.  

3.2 The Theory of Figural Concepts 

Among the theoretical perspectives which address the topic of spatial reasoning 

within the domain of geometry, we have chosen the Theory of Figural Concepts 

(Fischbein, 1993). It carefully considers and well describes the multifaced nature of 

the geometrical objects and stresses how the different components of it are strongly 

intertwined. It seems to be the most suitable theoretical perspective for 

investigating how different elements of thinking and perception intervene during 

a prediction process within the domain of geometry.  

As other mathematical domains, geometry is a logical system made up of 

definitions and theorems, and whose objects are ideal. However, geometry 

maintains a strong connection with material objects (solids or drawings), at least 

at an initial stage of learning. Geometry as a mathematical theory is a cultural 



 30 

artifact that, at the beginning, relies on a more natural conceptualization of space. 

At a more advanced stage, geometry as a logical structure acquires a broader sense, 

without the necessity of “a real environment” as a basis (Hershkowitz et al., 1989), 

but its objects can continue sharing attributes of both conceptions of geometry.  

3.2.1 The figural concept 

This point is a key issue within the Theory of Figural Concepts, which considers 

geometrical objects as having a dual nature. Geometrical objects are completely 

described and controlled by an axiomatic system of definition and theorems, but 

at the same time they maintain certain figural aspects of images. This is a specific 

characteristic of geometry. Let us describe in more detail the crucial elements of 

this theory.  

Starting from the main findings of research in Cognitive Psychology (see, for 

example, Kosslyn, 1996), Fischbein makes a distinction between images and 

concepts. 

What then characterizes a concept is the fact that it expresses an idea, a general, ideal 

representation of a class of objects, based on their common features. In contrast, an 

image (we refer here to mental images) is a sensorial representation of an object or 

phenomenon. (Fischbein, 1993, p. 139, italics in the original) 

In contrast to an image that is used as a synonym of “picture in the head”, what 

Fischbein calls concept is ideal, abstract, perfect and universal (idib., p. 141). 

Although he recognizes the interaction between images and concepts in problem-

solving activities, he considers the distinct category of mental entities. The 

resolution of geometrical tasks is considered to be a very special case, where the 

distinction between images and concepts is not so clear cut. The main assumption 

of Fischbein’s theory is reported below.  

What we assume is that, in the special case of geometrical reasoning, one has to do 

with a third type of mental objects which simultaneously possess both conceptual 

and figural properties. (Fischbein, p. 144) 

This third multifaced object, different from pure concepts and pure images, is 

called the figural concept. It realizes the fusion between the conceptual and the 

figural component of a geometrical object.  

For the sake of clarity, let us consider the following task (Fischbein, 1993, p. 139): 

Consider an isosceles triangle ABC, with AB = AC (Figure 2). We want to prove that 

B = C. 
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Although for the sake of accuracy here we propose a revised version of a possible 

resolution of the task, we maintain the author’s same approach. We can consider 

an additional line through A and perpendicular to BC. We name the intersection 

point H and consider the triangles ACH and ABH. A solver can imagine 

overlapping ACH on ABH with a rotation around the line within the space; the 

rotation is similar to what can be obtained through paper folding. 

AC will coincide perfectly with AB on the left side. […] As a consequence, the angle 

B and C must be equal. (ibid., pp. 139-140) 

Although the resolution proposed by Fischbein is not a rigorous geometrical proof, 

it can be considered a possible first idea of the solution that has to be followed by 

an analytical approach. A possible rigorous proof can make use of the triangles 

criteria of congruence.  

The example was shown in order to stress that the objects to which we refer during 

the resolution process are points, sides, angles and the operations with them. They 

have a conceptual nature and an ideal existence. Nevertheless, they share a figural 

nature, without which we cannot conceive operations like detaching, reversing or 

superposing. So, the triangle and its elements cannot be considered either pure 

concepts or mere images, but they share a two-fold nature: conceptual and figural.  

Manipulability is a fundamental characteristic of Fischbein’s figural concepts: 

But, usually in the process of mathematical invention we try, we experiment, we resort 

to analogies and inductive processes by manipulating not crude images or pure, 

formal axiomatic constraints, but figural concepts, images intrinsically controlled by 

concepts. (Fischbein, 1993, p. 160, italics in the original) 

Figural concepts “reflect spatial properties (shape, position, magnitude), and at the 

same time, possess conceptual qualities – like ideality, abstractness, generality, 

perfection” (ibid., p. 143). From the developmental point of view, initially the 

visual aspect is dominant, and gradually the role of formal constraints becomes 

Figure 3 The drawing of an isosceles triangle 
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more important, until the construction of the figural concept is reached (Mariotti, 

2005). Now, it is clear that the figural concepts are not natural or innate, but their 

construction is a learning achievement that has to be carefully supported by 

adequate geometrical learning experiences (Fischbein & Mariotti, 1997).  

Although the analysis of the developmental aspects of the figural concept is not 

the focus of our study, this is an important point because it highlights the 

malleability of the construct that can change during the time and, consequently, 

can be supported by an effective teaching and learning activity.  

3.2.2 Figural concepts and geometrical figures 

The issue of giving a working definition of geometrical figure is addressed twice in 

(Fischbein, 1993). A first attempt is reported below.  

A geometrical figure may, then, be described as having intrinsically conceptual 

properties. Nevertheless, a geometrical figure is not a mere concept. It is an image, a 

visual image. It possesses a property which usual concepts do not possess, namely, 

it includes the mental representation of space property. (ibid., p. 141, italics in the 

original). 

A complete characterization of the geometrical figure is provided by the following 

list. 

(a) a geometrical figure is a mental image, the properties of which are completely 

controlled by a definition;  

(b) a drawing is not the geometrical figure itself, but a graphical or a concrete, 

material embodiment of it;  

(c) the mental image of a geometrical figure is, usually, the representation of the 

materialized model of it.  

The geometrical figure itself is only the corresponding idea that is the abstract, 

idealized, purified figural entity, strictly determined by its definition.  

(ibid., p. 149, italics in the original) 

The difference between geometrical figure and figural concept is not so clearly 

stressed. Nevertheless, the last sentence allows us to infer a small difference. It 

seems that the geometrical figure is strictly connected with the definition of a 

particular figure that is shared by the community of mathematicians; acquiring a 

corresponding figural concept that mirrors the properties of the geometrical figure 

becomes a goal of the teaching and learning process.  
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Indeed, the figural concept is individually constructed during the learning 

experiences; it evolves simultaneously, and it does not necessarily coincide with 

the corresponding geometrical figure, at least at an initial stage.  

This interpretation is supported by another definition of geometrical figure: 

elsewhere it is considered as a triadic structure composed by “the definition, the 

image (based on the perceptive-sensorial experience, like the image of a drawing) 

and the figural concept” (ibid., p. 148).  

So, it seems that the geometrical figure and the figural concept interact, but they 

are different. The important point for this study is that figural concepts and 

geometric figures have a conceptual and a figural nature.  

3.2.3 Conceptual components and figural components 

A geometrical figure and a figural concept are made up of two fundamental 

components: the figural component and the conceptual component. 

The conceptual components refer to the theoretical status of a figural concept: the 

definition, the properties, the theorems. They may be affected by logical fallacies 

(Fischbein, 1993, p. 145). In the present study, the conceptual components are part 

of the Theory of Euclidean Geometry (TEG).  

The figural components refer to the spatial properties of a figural concept. They may 

be influenced by the Gestalt theory of perception (ibidem). 

In principles, the two aspects are strongly intertwined and blended. When the 

fusion is complete, we talk about a harmony between the two components. 

However, the fusion between the conceptual and the figural components is not 

always complete, and the two components can be in contrast. A conflict between 

the conceptual and the figural component or an erroneous interpretation of one of 

them may cause a break of the harmony between these two aspects.  

This is an important point for interpreting solvers’ mistakes or incoherent 

interpretations of a geometrical task. Indeed, the correctness and the effectiveness 

of reasoning reveal the harmony between the two components; instead, the 

mistakes may be interpreted as a break of the harmony (Mariotti, 1995).  

Operationally, the geometrical reasoning can be interpreted in terms of a dialectic 

between these two aspects (Mariotti, 1995).  

Let us consider the following example proposed by Fischbein (1993). 
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In a circle with its center at O we draw two perpendicular diameters AB and CD. 

We chose arbitrary a point M and we draw the perpendiculars MN and MP on the 

two diameters. What is the length of PN?  

 

At a first glance, the problem seems quite complex and difficult to be solved. 

Indeed, the length of the segments MP and MN changes and functionally depends 

on the particular position of M. However, a solver can focus on MPON and observe 

that it is a rectangle; the segment MO is a diagonal of that rectangle, as is MP. 

Consequently, PN has the same length of MO which is the radius of the circle. So, 

the length of PN is the same of the radius of the circle; if we know the length of the 

radius, we can easily find an answer to the question. The fundamental point is 

stressed by Fischbein: 

The equality of the diagonals is not questioned, the equality of the radiuses is not 

questioned. These relationships do not depend on the drawing itself. They are 

imposed by definitions and theorems. (ibid., p. 142) 

The key point is that the solver does not find a solution by considering separately 

the figural aspects and the theoretical constraints, but by accomplishing a process 

in which “a distilled figure is considered, revealing logical relationship” (ibid., p. 

142). In this case, the fusion between figure and concept is complete.  

Nevertheless, not all solvers have harmonically fused the two components and one 

of the two can dominate the solution process.  

3.2.4 Conceptual control 

As highlighted, the rules which control and influence the figural components and 

the conceptual components have a different nature. Mariotti (1992) explains this 

difference talking about two different systems of control: 

Figure 4 A possible drawing sketching the problem of the circle  
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The figural control system suggests transforming the drawing, moving (translating, 

rotating, reflecting, …) the pieces, changing their places […] But, only the conceptual 

control system can affirm the possibility and the correctness of this procedure. Thus 

only a dialectic interaction between these two systems can make it possible to reach 

the solution through this way. (ibid., p. 15) 

So, during the resolution of a geometric task, the harmony between the conceptual 

and the figural components of a figural concept is reflected in an effective dialogue 

between the figural control and the conceptual control.  

The visuo-spatial abilities defined in the domain of cognitive psychology (e.g. 

Cornoldi & Vecchi, 2004) can play a role within the first system. However, during 

the resolution of a geometric task, the figural transformations are also controlled 

by the conceptual control system. This is a huge difference between the 

transformation that we can imagine in a general spatial domain and in the figural 

domain of Euclidean Geometry.  

The researchers (e. g., Fischbein, 1993; Mariotti, 1995; Mariotti & Fischbein, 1997; 

Mariotti & Baccaglini-Frank, 2018) stressed the fundamental role of the latter 

system of control, in particular when a solver needs to rearrange the figural 

components of a given drawing coherently with respect to a reference 

mathematical theory. More specifically: 

It is under the conceptual control that the solver may imagine certain properties as 

logically dependent upon others. […] Furthermore, in the paper-and-pencil 

environment, no element of the figure is privileged with respect to others, and 

reasoning on a specific unique drawing that represents a class of figures requires a 

high harmonization between the figural component and the conceptual component. 

(Baccaglini-Frank, 2010, p. 28) 

So, conceptual control system becomes fundamental during all the phases of the 

resolution of a geometric task.  

However, very often the figural components may escape the conceptual control 

and they can dominate the interpretation of a drawing of a geometrical figure. This 

could lead to an interpretation that is consistent within the figural control system, 

but completely incoherent with the conceptual constraints within the reference 

mathematical theory. Indeed: 

The figural component tends to liberate itself from the formal control and to behave 

autonomously in conformity with Gestalt pattern. (Fischbein, 1993, p. 154) 

This is recognized as one of the main obstacles in geometrical reasoning.  
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Nevertheless, there is another phenomenon connected with the figural 

components of the figural concepts that could affect an effective resolution of a 

geometrical task: the prototype effect (Mariotti, 1993, 1995) or prototype phenomenon 

(Hershkowitz, 1989).  

There exist some figural components connected to a specific figural concept that 

are very common among students. For example, usually an isosceles triangle is 

sketched as “standing on its base” and a right triangle is shown with the legs in 

the vertical-horizontal position on a sheet of paper (ibid., p. 68); the height of a 

triangle is only the perpendicular segment that is “inside” the triangle. The 

features of a prototype depend on the geometrical experience of the students.  

The prototype effect arises when a stereotyped image of a figural concept is 

assimilated or becomes the concept itself. This influences the resolution of a 

geometrical task. Indeed, Mariotti (1995) stresses that not only there are figural 

components of a geometric figure that are “more popular” or common than others 

among students, but their influence during the resolution process can be so strong 

that it overcomes any conceptual control. So, for analyzing student reasoning 

during the resolution of a geometrical task, the existence of standard or 

stereotyped figural arrangement of a geometrical figure and the consequent 

prototype effect have been considered.  

3.2.5 The Theory of Figural Concept within the present study 

Summarizing, Fischbein’s Theory of Figural Concept gives us an adequate theoretical 

lens for analyzing the components of the geometrical reasoning that can interact 

with the prediction processes, which will be described in detail in the next section.  

It provides an operational definition of geometrical reasoning in terms of harmony 

between conceptual and figural components and of interaction between two 

different systems of control.  

According to the aim of this study, the operational distinction between figural 

components and conceptual components of a figural concept is useful in order to 

unveil the role that they play during a process of prediction.  

However, we prefer to use a "softer" definition of the two components. Indeed, 

possibly the figural concept that the solvers are referring may not be so 

transparent, while they are involved in the resolution of a geometric task. This is 

particularly evident when the solvers perform a step-by-step construction which 

produces a not necessarily known or defined geometrical figure.  
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Let us consider the following situation (Figure 5): 

On the plane there is a point A and a line r; another point B is constructed as the 

symmetric point of A with respect to the line r.  

 

 

In this case, there is not a proper geometrical figure to which we can refer; it is 

more likely an arrangement of geometrical objects (like points, segments, lines) 

that are connected by some given theoretical constraints. In such an arrangement 

the solvers may or may not elaborate a particular figural concept, but we cannot 

be sure. In any case, it is a geometrical object itself, so it has the same twofold 

nature of figural concepts. According to the Fischbein’s distinction, we can 

identify: 

- figural elements of a geometrical configuration; 

- theoretical elements of a geometrical configuration.  

These are definitions that could refer both to a geometrical figure and to a simpler 

geometrical configuration. We make use of the term theoretical in order to stress the 

connection of these elements with the properties and the constraints given within 

a particular mathematical reference theory. In this study, the reference theory is 

always the Theory of Euclidean Geometry (TEG) conceived as an axiomatic system of 

definition and theorems. So, “theoretical” stands for “given by or deduced from 

the TEG”. 

For referring to the control that the solvers can use on a geometrical arrangement 

or figure in the specific domain of the TEG, we will use the expression theoretical 

control intending 

[the act of] mentally imposing on a figure theoretical elements that are coherent in 

the theory of Euclidean geometry” (Mariotti & Baccaglini-Frank, 2018, p. 156). 

Figure 5 A possible drawing sketching out the given problem 
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We will say that the solvers show good theoretical control over a figure if, during the 

resolution of a geometrical task, they are able to consider all the theoretical 

constraints of the figure at any time. Otherwise, we will identify a lack of theoretical 

control over the figure. We can observe these two constructs only by looking at the 

solvers’ productions and explanations.  

The key idea of this theoretical lens and one of our assumptions is that the 

interaction between solvers and geometrical objects cannot be reduced to a figural 

transformation of a figure sketched in a drawing. 

3.3 A preliminary definition of GP as a process 

The main goal of this study is to describe, from a cognitive point of view, a process 

of generation of prediction during the resolution of particular geometrical tasks 

within the context of Euclidean Geometry. The elaboration of a preliminary 

definition of the process and the subsequent observation of instances of 

predictions, if possible, seemed to be the best way of finding an answer to 

accomplish this. In this section, we introduce a first definition of the process we 

intend to focus on, and we present our working hypothesis and theoretical 

assumptions.  

Let us consider a problem presented in (Fischbein, 1999, p. 51) that addresses a 

well-known result of the TEG (i.e. the Varignon’s Theorem on quadrilaterals). A 

possible drawing is sketched below (Figure 6).  

Consider the quadrilateral ABCD and the midpoints of its sides PQRS.  

Prove that the quadrilateral PQRS is a parallelogram. 

 

The resolution of a task like this requires the solvers to recall their figural concepts 

of quadrilateral, parallelogram, midpoints. To reach a first idea of the solution they 

need to dominate the conceptual components of all these figural concepts, but also 

Figure 6 A possible drawing of the two quadrilaterals presented in the task  
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their figural counterparts. The author makes a comment on the resolution as 

follows:  

To solve such a problem, the student has to learn to manipulate the figural concepts 

freely, imaginatively, and constructively – but the student must do so under the 

strict control of formal constraints. The symbiosis between rigor and constructive 

liberty is specifically mathematical. (ibid., p. 51) 

The author stresses the important role that the handling of figural concepts plays 

in the resolution process. In this formulation of the task, the goal is explicitly given: 

the solver has only to find why the quadrilateral PQRS is always a parallelogram. 

Nevertheless, in order to be aware of the truth of the conclusion, the solver can 

operate figural changes of the configuration, strictly guided by the conceptual 

control. The transformation of a geometrical figure that a solver can perform is 

considered a specific feature of the resolution of a geometrical task. This point is 

also stressed by other authors (e. g. Mariotti, 1992; Presmeg, 1997). 

Let us consider a different formulation of the problem, as follows: 

Consider the quadrilateral ABCD and the midpoints of its sides PQRS.  

What can you say about the quadrilateral PQRS? 

We have simply changed the question: in this formulation there is the only 

information that PQRS is a quadrilateral. With a small change, we have obtained 

a completely different task. The property of PQRS of being a parallelogram is itself 

a finding to be reached by the solver. To do so the solver has to evaluate several 

dispositions of the quadrilateral ABCD, even when considering the most general 

quadrilateral. The solver can accomplish the process of evaluation discretely, 

which means considering several instances (possibly different cases) of the same 

geometrical situation;  otherwise, the solver can continuously figurally transform 

the figure, considering the several cases as instances of the same dynamic object. 

The latter case is very close to the transformation of a dynamic figure under 

dragging in a Dynamic Geometry Environment (Baccaglini-Frank & Antonini, 

2016).  

The solution of the problem evidently involves figural transformations of the 

figure that the solver is able to perform under the control of the conceptual 

component (i.e. theoretical control). Indeed, the solvers can imagine or perform 

figural changes of the quadrilateral ABCD, and therefore they have to properly 

consider the effect of this changing on the quadrilateral PQRS. In this way, the 

conceptual components that define the figural concept of “parallelogram” arise as 
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invariant properties which can lead the solver to recognize PQRS as a 

parallelogram1.  

We notice that this process is complex but very close to the discovery experiences 

of mathematicians. Clearly for a solver who knows and recalls Varignon’s Theorem 

on quadrilaterals the task is quite simple, and the problem can resort to the problem 

of proving that PQRS is a parallelogram.  

We consider the figural changings of a geometrical figure that the solver can 

consider and accomplish under the theoretical control as a prediction on the 

possible behavior of the figural concept. The corresponding drawing represents a 

possible outcome of the prediction, used by the solvers for communicating their 

findings.  

The term prediction was chosen in order to intend the feeling or belief that 

something will go in a certain way. We started from the definition of “to forecast” 

as contained in the Oxford Dictionary: 

to say what you think will happen in the future based on information that you have 

now.  

Since this verb is generally used in association with the weather forecast, we 

preferred to use one of its synonyms: to predict or to make a prediction.  

Fischbein (1993) also addresses the issue of making predictions in solving 

geometrical tasks, referring to prediction as an ability to be improved in order to 

make the students more capable of handling figural concepts in geometrical 

reasoning (ibid., p. 159). At the moment we prefer to talk about prediction as a 

process that could be supported by abilities or approaches that belong specifically 

to the figural control system and/or to the conceptual control system.  

A first attempt to define the construct was made in a previous study (Miragliotta 

& Baccaglini-Frank, 2017), where a geometric prediction was defined as  

the identification of certain properties or configurations of a new figure, arising from 

a process of manipulation. 

 
1 It is known that another way to solve the problem is to use the well-established heuristic of adding 

auxiliary lines (the diagonals of the quadrilateral ABCD); then the Midpoint Theorem can be used 

for several subfigures of the given one. However, this is a useful approach when the solver already 

has a first idea of the solution and she wants to prove it. Instead, we are more interested in 

analyzing how such a first idea could or could not arise and how the theoretical elements, that the 

solver recalls, could influence this process.    
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With the expression manipulation of a geometrical figure we intend the figural 

transformation of its figural components. Possible transformations are translating, 

rotating, reflecting, lengthening, shortening. The action of manipulation can be 

only imagined or accomplished on a physical support (for example a drawing on 

a sheet of paper or a dynamic figure in a DGE). This is consistent with the 

constructs of dynamic imagery (Presmeg, 1986) and visual processing (Bishop, 1983). 

In the following, the term manipulation will be used according to this interpretation.  

The manipulations can be coherent or incoherent with respect to the TEG. The 

solvers may or may not be aware of such coherence and be able to perform 

coherent manipulations, according to their theoretical control. 

From the start, one of our hypotheses was that the transformation of the figural 

components of a figural concept is strictly connected with the generation of a 

prediction. Indeed, while the transformation is accomplished, the solvers seem to 

generate figural expectations on the final figure and they constitute a product of 

the prediction process.  

Because of the strict connection we hypothesized between manipulation and 

prediction, we use the notion of invariant of a figure from the literature on research 

in DGEs. The terms “invariants”, “geometrical invariants”,  “invariant properties” 

of a figure have been used to refer to certain properties that are maintained when 

some transformations on the figure are performed (e.g. Yerushalmy et al., 1993; 

Goldenberg et al., 1998; Hadas et al., 2000). Indeed:  

A geometric property is an invariant satisfied by a variable object as soon as this 

object varies in a set of objects satisfying some common conditions. (Laborde, 2005, 

p. 22). 

Our assumption is that, also outside the DGE, the solvers can perform 

manipulations on a drawing or imagine manipulations that allow them to 

maintain and perceive some geometrical properties as invariants. Preliminary 

observations and the pilot study seemed to confirm our hypothesis. 

Referring to Varignon’s problem described above, while a solver is manipulating 

the figure or after a manipulation, the parallelism of the opposite sides can be 

recognized as an invariant property of the figure.  

Now we can provide the first formulation of geometric prediction (GP): 

[Geometric prediction is] a mental process through which a figure is manipulated, and 

its change imagined, while certain properties are maintained invariant. (Mariotti & 

Baccaglini-Frank, 2018, p.157).  
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The outcome of such a process will be called in the following a product of GP. We 

expected that it is a geometrical object and therefore has a twofold nature. Products 

of GP may or may not be coherent with theoretical constraints, as well. So the 

construct of GP interacts with the two components of a geometrical figure and with 

the theoretical control.  

Operationally, we identify instances of GP when we can recognize in or infer from 

the solvers’ productions: 

- the existence of figural expectations over the figure; 

- a set of theoretical constraints that the solvers are maintaining over the 

figure.  

Since the term “prediction”, by definition, refers both to a statement that expresses 

a forecast and the act of making such a statement, in the following we make a 

distinction.  

- We use the expression “geometric prediction” or briefly “GP”, when we refer 

to the process of predicting something.  

- We use the expression “product of geometric prediction” or “product of GP”, 

when the focus is on the outcome of the process. 

Because of the explorative nature of our study, in the following, we prefer to talk 

about GP processes because a priori we do not know whether there can be different 

processes of GP with certain commonalities (this is what we expect) or a single 

common process. 

Let us consider another example.  

Read and perform the following step-by-step construction: 

- segment AB; 

- a point C on the plane; 

- the triangle ABC.  

If C has to stay on a line r parallel to AB, what can you say about the configuration? 
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A possible sequence of coherent answers is reported below2. 

Solver: I have a triangle, its base [AB] and a point C. 

Solver: Ok, if C has to stay on a parallel line, I can imagine moving C back 

and forth on this line [r]. In this way, I will obtain several triangles. 

Solver:  Also right triangles and an isosceles triangle.  

Solver:  And…I can consider a hypothetical height which is moved according 

to the point [C]. 

Solver:  Through all of these and other triangles… 

Solver:  Ok, in this way, it could be always the same. I mean, the height has 

always the same length. 

Looking at the solver’s utterances and drawings (Figure 8) we infer that: 

- several instances of the given geometrical configuration (a triangle and a 

line) are considered;  

- the instances of the triangle are obtained considering the figure as a 

dynamic object upon which the solver can perform several figural 

transformations (i.e. manipulations); 

- during such manipulations, the height of the triangle and its length, which 

are spontaneously introduced by the solver, arise as invariant properties; 

 
2 Although the discourse is artificially constructed, it is constructed by trying to make explicit the 

resolution process of the researchers’ who work on this study. Moreover, we have borrowed some 

expressions (for example “hypothetical”) that the students usually use during the resolution of 

tasks like the reported one.  

Figure 7 The picture of a possible drawing obtained following the given step-by-step 

construction 
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- the resolution process shows the figural transformation, eventually 

imagined and then sketched out in a drawing, that the solver theoretically 

controls strongly.  

 

According to our interpretation, in this excerpt we identify instances of several 

prediction processes; they lead the solver to communicate some products of GP, 

among which the one that implies advanced theoretical control is the invariance of 

the height.  

Since the definition of GP refers to a mental process, it is clear that we want to 

study a process that is not step-by-step observable by the researcher. Our 

assumption is that the features of the process could be inferred and then described 

looking at the products of a solver who is placed in a situation that elicits the GP 

processes. In our case, we choose to observe the solvers while they are solving a 

geometric task. This point will be presented in Section 3.5.1 and described in 

greater depth in Chapter 5. 

In the next section, we will introduce another theoretical construct that could play 

an important role during the prediction processes.  

3.4 The theoretical construct of intuition 

A construct that seems very close to GP is intuition. In most of his work on this 

topic, Fischbein (1987) highlights that “intuition” is a controversial term that is 

used with several meanings in the literature. So, he stresses that he will use 

intuition as a synonymous of intuitive knowledge. In this perspective, intuition is a 

kind of cognition, characterized by self-evidence and immediacy, different from 

Figure 8 The picture of the drawings that the solver performs during the resolution of the 

given task 
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perception. It implies an extrapolation beyond the directly accessible information. 

Indeed: 

[…] intuitions refer to self-evident statements which exceed the observable facts. 

(ibid., p. 14) 

It is a form of immediate knowledge, i.e. “a form of cognition which seems to present 

itself to a person as being self-evident” (ibid., p. 6). Moreover, it is not a pure 

theory: 

[…] it is a theory expressed in a particular representation using a model: a paradigm, 

an analogy, a diagram, a behavioral construct etc. (ibid., p. 50)  

In sum, intuitive knowledge is 

[…] a kind of knowledge which is not based on sufficient empirical evidence or on 

rigorous logical arguments and, despite all this, one tends to accept it as certain and 

evident. (ibid., p. 26)  

The characteristics of intuition are listed below. 

- Self-evidence: the feeling that some statements or a relationship “are true by 

themselves without the need for any justification”.  

- Intrinsic certainty: the intuitive facts are accepted as certain. It implies that 

robust intuitions (correct or not) “tend to survive even when contradicted 

by systematic formal instruction.” 

- Perseverance: intuition could be so robust that erroneous intuitions could 

coexist with correct interpretations.  

- Coerciveness: an intuition imposes itself as an absolute and unique 

interpretation. 

- Theory status: an intuition is not a skill or a particular perception, it is a 

theory because it expresses an invariant property guessed through a certain 

experience.  

- Extrapolativeness: intuition exceeds the given facts. 

- Globality: intuition is a global and synthetic view of a situation, opposed to 

analytical thinking. Intuition could be more or less structured and then 

more or less stable. 

- Implicitness: intuition could be the surface of tacit and subjacent processes. 

(ibid., pp. 43-56) 
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Intuition is also related to the construct of overconfidence. It is a selection activity 

aimed to preserve “those data which seem to support a certain conception and at 

the same time, to ignore those contradicting it.” (ibid., p. 33). This implies another 

feature of intuition: its resistance to change and its reluctance to admit alternatives.  

Fischbein describes intuition as a natural attitude of human beings that is used in 

order to avoid uncertainty. Moreover, he stresses that intuitions can be a potential 

source of errors. This suggests that humans are induced to make mistakes because 

of their intuition. Fischbein clarifies this point, highlighting that expert solvers are 

able to follow a control stage once the entire sequence of thoughts has been 

accomplished.  

They know in principle that they may be wrong but they go on reasoning as if they 

were convinced that they are correct at every step. (ibid., p. 37, italics in the original) 

Instead, young students are not equipped for this kind of intellectual duplicity. 

This clarifies that, according to Fischbein, intuitions are not innate, they are 

[…] learned cognitive capacities in the sense that they are always the product of an 

ample and lasting practice in some field of activity. (ibid., p. 69) 

From a developmental point of view, our basic intuitions will never disappear, but 

they become less influential thanks to the individual conceptual control (ibid., p. 172; 

ibid., p. 174).  

Our interest in intuition lies in the resonance that this theoretical construct shows 

with the construct of geometric prediction.  

- They share the reference to objects that, at a certain moment, are not actually 

present and to relationships that are not ever empirically evident.  

- The products of intuition and GP go beyond the directly accessible 

information and contain theoretical elements.  

- Both are connected with the activity of recognizing a property as an 

invariant.  

- They interact with the construct of theoretical control.  

Following our research aims, another interesting element is the role of intuition 

within the problem-solving process. Indeed, intuition can have an anticipatory 

role. Considering the relationship between intuitions and solutions, intuitions may 

be grouped into affirmatory, conjectural, anticipatory and conclusive intuitions. 
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Affirmatory intuitions are representations or interpretations of facts accepted as 

certain, self-evident, and self-consistent.  

They are classified into:  

- semantic (referring to the meaning of concepts);  

- relational (expressed in an apparently self-evident statement, referring to the 

meaning of a relationship or a statement);  

- inferential or logical (with an inductive or deductive structure).  

Generalization is a type of inferential affirmatory intuition. Making use of this kind 

of intuition, one affirms or claims something.  

Conjectural intuitions are assumptions about future events or the course of a certain 

phenomenon. 

Such a conjecture is an intuition only if it is associated with a feeling of confidence 

(ibid., p. 60) 

They could be lay or expert conjectural intuitions.  

Anticipatory and conclusive intuition are grouped as problem-solving intuitions. 

During the solving endeavor itself, they may appear as, subjectively, as moments of 

illumination, as certain, evident, definitive, globally grasped truths. These are 

anticipatory intuitions. (ibid., p. 62, italic in the original) 

Anticipatory intuition is different from affirmatory. Due to the latter, we accept as 

evident a certain notion or a certain statement; instead, anticipatory intuition: 

[…] appears as a discovery, as a solution to a problem and the (apparently) sudden 

result of a previous solving endeavor. (ibid., p. 61) 

What distinguishes conjectural and anticipatory intuition is that 

Figure 9 Original picture from (Fischbein, 1987, p. 64) that describes the classification of 

intuitions based on roles 
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[…] anticipatory intuitions represent a phase in the process of solving a problem 

(necessarily followed by an analytical endeavor), while conjectural intuitions are, 

more or less, ad hoc evaluations and predictions generally not included in a 

systematic solving activity. (ibid., p. 61) 

Anticipatory intuition and conjectural intuition are classified separately in order 

to stress that the first one belongs explicitly to a problem-solving activity. Indeed, 

it is a global view of a solution, which precedes the analytical solution. 

Nevertheless, there is not a clear-cut distinction:  

In fact, we have to consider a continuum from affirmatory to anticipatory intuitions 

passing through conjectural ones. (ibid., p. 61) 

Moreover, anticipatory intuitions seem to be inspired, directed, stimulated or 

blocked by existing affirmatory intuitions, more related to semantic processes. 

Conclusive intuitions sum in a global and structured vision the global solution to a 

problem previously reasoned upon. The global view could be expressed in verbal 

terms, in an image, in a gesture or in a combination of these.  

The table summarizes some examples of intuitions reported in (Fischbein, 1987). 

Affirmatory intuition Sentence like: 

- Two points determine a straight line  

- The whole is bigger than each of its parts 

Affirmatory semantic 

intuition 

Concepts like “point” or “straight line” have a non-

intuitive axiomatic meaning, but several intuitive 

meanings. 

Affirmatory relational 

intuition 

Sentence like: 

- Through a point outside a line one may draw one and 

only one parallel to that line 

- The whole is bigger than each of its parts 

- A heavier object falls faster than a lighter one 

Affirmatory inferential 

intuition 

From A=B and B=C one deduces directly as a self-evident 

conclusion that A=C. 

In a syllogism, the conclusion is determined by the 

premises. But the validity of the syllogism as a method 

of deducing a truth from previously accepted premises 

cannot be proved. 

Conjectural intuition  Lay: “I will invest my money in that business, I am sure that 

it will be successful.” 

Experts are able to make decisions in their domain on the 

ground of an apparently minimal amount of information    

Table 2 Some categories of intuitions and examples, as presented in Fischbein (1987) 
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We do not find explicit examples of anticipatory and conclusive intuitions, 

probably because they are more likely to be possible phases or moments of a 

resolution process. Indeed, Fischbein (1999) explains that when the solvers 

accroach a problem, they can invest much effort in trying various strategies. These 

strategies can be ineffective but, at a certain point, something happens.  

Suddenly, he has the feeling that he has found the solution. He does not possess, yet, 

all the elements of the solution, that is, the formal, analytical, deductively justified 

steps of the solution. What he has in mind, during the first moment, is a global idea, 

a global representation of the main direction leading to the solution. This is also an 

intuition, an anticipatory intuition, called, sometimes, the ‘illumination’ moment. 

What characterizes such an intuition is, first of all, the fact that it represents a moment 

in a solving endeavor. Secondly, such an intuition is associated with a feeling of deep 

conviction, a feeling of certitude, before the entire chain of the formal – analytical 

basis of the solution has been established by the solver. For a mathematician, the 

solving process is not concluded before he is able to invoke explicitly all the 

arguments supporting the initially guessed solution. (ibid., p. 34, italic in the 

original) 

So, an anticipatory intuition: 

- arises suddenly during the resolution process, usually but not ever after the 

solver has investigated the problem for a while; 

- reveals a global view of the solution; 

- are perceived by the solver as certain, even if a detailed justification or proof 

is yet to be found; 

- precedes a more analytical phase. 

We are not interested in all these groups of intuitions, but only in those that are 

directly involved in problem-solving where GP processes are supposed to occur. 

In particular, anticipatory intuition seems to be strongly connected with the process 

of GP. Indeed, anticipatory intuitions, as GP processes, can intervene during the 

solver’s investigation and can suddenly give a new insight into the solution.  

Furthermore, Fischbein (1987) recognizes that intuition could produce some 

intuitive representations which could be mathematically correct or not. Indeed, the 

role of intuitive knowledge  

[…] is to offer behaviorally meaningful representations, internally structured, of 

intrinsic credibility, even if these qualities do not, in fact, exist in the given situation. It is 

highly possible that the process of rendering intuitive will produce a distorted 
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representation of the original reality and the predictions made could be totally or 

partially wrong. (ibid., p. 12, italic in the original) 

In this quotation we find a connection with the products of GP.  

3.5 Looking for windows onto the GP processes  

Consistently with our objectives and starting from the assumption that the features 

of the processes of GP could be inferred looking at the solvers’ productions, we 

have chosen the particular situations that can elicit the processes. In this section, 

we describe the kind of geometrical tasks that will be used in the study and present 

the theoretical perspective that has allowed us to construct our tools of analysis. 

How we use such tools will be described in greater depth in Section 5.4.  

Within the field of research in Mathematics Education, the analysis of discourse is 

well documented (see for example, Pimm, 1987; Sfard, 2008) and analysis of 

drawings also has a long tradition (see, for example, Polya, 1988; Mesquita, 1998; 

Duval, 2000, 2006). Since our intention is not to conduct an exhaustive analysis of 

solvers’ discourse, drawings and gestures exclusively but instead use them as 

channels to get access to solvers’ thinking during the resolution of prediction open 

problems, in the following sections we present only a few essential theoretical 

elements that allow us to make use of these as windows onto GP. 

3.5.1 Open problems in Geometry 

The examples of geometric problems reported in the previous sections suggest that 

the particular formulation of the task can elicit, more easily than others, the 

communication of products of GP. For this reason, we carefully look at the 

literature in order to find the best kind and formulation of problems that can help 

us trigger processes of GP. 

We are not interested in observing if the solvers reach the solution of a geometric 

problem or if they succeed in proving a given statement. Instead, we are interested 

in observing: 

- the processes that lead the solvers to their solution of the task; 

- if and when the solvers are able to communicate a solution; 

- which is the role of the prediction process.  

Following these premises, the most suitable problem in the literature is the open 

problem. Indeed, open problems within the geometry domain are suitable to 



 51 

stimulate productive thinking (Mogetta et al., 1992) and useful for analyzing how 

the students produce a result.  

The expression open problem (Arsac et al., 1998; Silver, 1995) refers to a task stated 

in a form such that the solvers have not specific instructions to be followed: they 

are left free to explore the problem and draw their own conclusions. The question 

does not suggest, reveal or anticipate the solution or a possible answer. 

In particular in Geometry, the general structure of an open problem is 

characterized as follows: 

The statement is short, and does not suggest any particular solution methods or the 

solution itself. It usually consists of a simple description of a configuration and a 

generic request of a statement about relationships between elements of the 

configuration or properties of the configuration.  

The questions are expressed in the form “which configuration does…assume 

when…?” “which relationship can you find between…?” “What kind of figure 

can…be transformed into?". These requests are different from traditional closed 

expressions such as "prove that…", which present students with an already 

established result. (Mogetta et al., 1999, pp. 91-92) 

It is not a problem reduced to a mere implementation of an already known 

procedure or routine. The solvers have to carefully choose a solution path and they 

could have a real discovery experience. Moreover, the result may not be unique.  

Often the resolution process could lead the solver to the formulation of a 

conditional statement after a (physical or mental) exploration of the situation 

(Mariotti et al., 1997). Otherwise, the production of conjectures could be an explicit 

request (Boero et al., 1996, 2007; Olivero, 2000; Arzarello et al., 2002). In these cases, 

literature talks about conjecturing open problems, to make a distinction between 

them and other types of open problems.  

When a conjecturing open problem is proposed to the solvers, they communicate 

one or more sentences with a premise, a conclusion and a relationship between 

them. The sentence may express some conditionality and, if it is the case, the 

conditional statement constitutes the formulation of a conjecture. The production 

of a conjecture may lead to the production of a theorem, conceived as the system 

of statement, proof and mathematical theory (Mariotti et al., 1997).  

Concerning open problems, our assumptions is that: 

- the prediction process could, but not necessarily, lead the solvers to the 

communication of a conditional statement; 
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- the prediction processes can intervene at an initial stage of the resolution 

process; 

- a careful formulation of the task can expand this initial stage, allowing us 

to observe what happens.  

Consistently with our aims and considering these assumptions, we designed 

another kind of open problems: prediction open problems. These are a particular kind 

of open problem in which the solver is asked to describe possible alternative 

arrangements of a geometric configuration (imagined, given by a drawing and/or 

by a step-by-step construction) maintaining given properties. Predictions could be 

asked for explicitly or not.  

We added the adjective “prediction” because, among the set of open problems, we 

want to make a distinction with respect to other kinds of open problems.  

A first example of prediction open problem is provided by the task reported in Section 

3.2 (see the second formulation of the Varignon’s problem); another is reported in 

Section 3.3. Other typical questions are the following: 

- What can you say about…(the point, the segment, the configuration)? 

- Make a prediction: what can you say about the obtained configuration? 

- Make a prediction: which …(quadrilaterals)… could it become? 

A complete list of the questions proposed in this kind of problem is reported in 

Chapter 5. 

During the resolution of a geometrical task and for communicating their reasoning 

the solvers are allowed to speak, make drawings and gestures. We have considered 

all of these forms of communication as windows onto the solvers’ solution 

trajectories and prediction processes. 

3.5.2 Gestures 

During the last two decades, there has been increasing interest in analyzing 

gestures and their role in shaping and communicating thinking. Indeed, according 

to McNeill (1992), gestures also play a role in human thought:  

gestures do not just reflect thought but have an impact on thought. Gestures, 

together with language, help constitute thought. (ibid., p. 245) 

This topic is addressed by the works of McNeill (1992; 2005) and Kendon (1988; 

2004), where the authors analyze the close relationship between thoughts, 

gestures, and speech. Based on these studies also researchers in Mathematics 
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Education (for example, Arzarello et al., 2009; Arzarello et al., 2015; Chen & Herbst, 

2013) decided to investigate relationships between gestures and mathematical 

thinking, pointing out how gestures can be analyzed in order to gain insight into 

cognitive processes. Indeed:  

By virtue of idiosyncrasy, co-expressive, speech-synchronized gestures open a 

“window” onto thinking that is otherwise curtained. (McNeill & Duncan., 2000, p. 

143) 

In this perspective, gesture and speech are considered jointly as an enhanced 

window onto the cognitive process. Goldin-Meadow (2003) also highlights a 

strong connection between speech and gestures. Empirical evidence shows that 

speech and gesture are co-expressive (McNeill & Duncan, 2000, p. 142-143): they 

express the same idea but do not necessarily highlight the same aspects of it.  

Each modality, because of its unique semiotic properties, can go beyond the 

meaning possibilities of the other, and this is the foundation of our use of gesture as 

an enhanced window into mental processes. (ibid., pp. 143-144) 

So, looking jointly at both we can infer the features of an idea better than if we only 

observe one of them.  

Then, in order to gain insight into the cognitive process of GP without neglecting 

any important information, the analysis of gestures becomes a fundamental step. 

Moreover, since gesture and speech are tightly connected, it is important to study 

the gestures coupled with the speech performed by the solver.  

3.5.3 Kinds of gestures considered in the present study 

Among the several definitions of gestures, in this study use the following: gestures 

are “idiosyncratic spontaneous movement[s] of the hands and arms accompanying 

speech” (McNeill, 1992, p. 37). However, we are not interested in all the gestures 

produced by the solvers. For example, practical gestures like taking a pen from the 

desk or playing with a necklace are not relevant for our purposes. We are 

interested in those gestures “being done for the purposes of expression” (Kendon, 

2004, p. 15).  

In order to clarify which kinds of gestures we will consider, we refer to the Kendon’s 

Continuum: 

Gesticulation –> Language-like Gestures –> Pantomimes –> Emblems –> Sign Language 
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Looking at the drawing from left to right, the continuum shows how the presence 

of speech declines and idiosyncratic gestures are replaced by conventional signs. 

In this study we will consider: 

- gesticulations, gestures that occur with speech;  

- language-like gestures, gestures that complete a verbal utterance; 

- pantomimes, gestures that do not accompany speech. 

We are particularly interested in the gestures produced by solvers during the 

resolution of geometrical tasks. So, we focus especially on gesture that address a 

geometrical semantic content.  

In the following sections, we will use the term gesture to talk about: spontaneous 

movements of the hands and arms that accompanying speech and are used in 

order to communicate geometrical meanings. 

Moreover, depending on the semantic content of speech, there are several 

dimensions of gestures (McNeill, 1992, pp. 38-39). The most relevant for our study 

are the following: 

- Iconic: are gestures that embodied picturable aspects of semantic content 

which refers to a concrete object, event or action.  

- Metaphoric: are quite similar to iconic gestures, but the semantic content 

refers to an abstract object, event or action. 

- Deictic: are used to indicate a concrete or abstract object. The most common 

are the pointing gestures.  

These categories are not clear-cut. Although the corresponding utterance can 

clarify the most prominent dimension, a gesture can simultaneously have more 

than one dimension.  

Since we move within a mathematical field, the identification of metaphoric 

gestures could be difficult. Although the geometrical objects share some aspects of 

image and could have a physical embodiment, they are defined within an 

axiomatic system of definition and theorems. So, their nature is not concrete: 

strictly speaking, it is not possible for a gesture to refer to a mathematical object, 

so an iconic gesture does not exist. For this reason, Edwards (2009) distinguishes 

between iconic-physical and iconic-symbolic gestures. 
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Rather than referring to a concrete object in and of itself, the [iconic-symbolic] 

gesture refers to a symbolic, written inscription, which in turn represents a specific 

mathematical entity or procedure. (ibid., p. 138)  

The iconic-physical gestures refer to a concrete object, so its use is replied by 

gestures. Moreover, we take Krause’s perspective (2016) and consider metaphoric 

those gestures that represent a mathematical idea but are not iconic, neither 

physical nor symbolic.  

We also make use of a phenomenon and of a theoretical construct defined within 

the literature on gestures: mismatch and catchment.  

A speech-gesture mismatch is identified when the gesture conveys a meaning that 

is different from that expressed in speech (Goldin-Meadow, 2003, pp. 25-29). 

Research reveals that in this case the students rely on gestures rather than on 

speech (McNeill, 2005, p. 137; Krause, 2016). 

When a feature of the gesture recurs in at least two gestures, not necessarily 

performed closely spaced, McNeill (2005) talks of a catchment. It is defined as 

“thematic discourse unit realized in an observable thread of recurring gestural 

imagery” (McNeill, 2005, p. 18). It shows a cohesion within the discourse and 

reveals a recurrence in solver’s thinking.  

By discovering the catchments created by a given speaker, we can see what this 

speaker is combining into larger discourse units – what meanings are being 

regarded as similar or related and grouped together, and what meanings are being 

put into different catchments or are being isolated, and thus are seen by the speaker 

as having distinct or less related meanings. (McNeill et al., 2001, p. 10) 

Summarizing, according to the aim of shedding light onto the GP processes and 

starting from the hypothesis that elements which belong to the TEG play a role 

within the processes, we will construct tools for analyses that allow us to identify 

and isolate the main interacting elements: the theoretical elements, the figural 

elements and the solvers’ theoretical control.  

The tasks will be designed in order to elicit the GP processes and to allow us to 

observe the role of these components within the GP processes. The tools for 

analyses will be conceived in order to highlight the products of GP, the theoretical 

and the figural elements, the theoretical control, and their interactions. To this aim, 

they must be constructed to easily conduct both a diachronic and synchronic 

analysis of all the solvers’ productions. The task design and the operative tools for 

analyses will be presented and discussed in Chapter 5.  



 56 

3.6 The role of the DGEs within the present study 

The crucial role that the interaction between the students and a dynamic figure in 

a DGE plays in developing and supporting mathematical thinking is widely 

recognized (see, for example, Laborde & Strässer, 1990; Hadas et al., 2000; Mariotti, 

2005; Baccaglini-Frank, 2010; Leung et al., 2013). Moreover, studies have well 

documented the use of DGE for the exploration of open problems within the 

domain of the TEG (see, for example, Goldenberg et al., 1998; Laborde, 2000; 

Olivero, 2000; Arzarello, 2002; Mariotti, 2005; Baccaglini-Frank, 2019). 

We are not interested in the processes of prediction that a solver can undertake 

within a DGE, but in a particular interaction. We focus on what happens when a 

solver who has undertaken GP processes outside the DGE (for example but not 

only, in a paper-and-pencil environment) moves to the resolution of the same task 

in a DGE. 

A Dynamic Geometry Environment is a particular kind of microworld.  

A microworld consists of the following interrelated essential features: a set of 

primitive objects, and rules expressing the ways the operations can be performed 

and associated, which is the usual structure in the formal system in the mathematical 

sense; a domain of phenomenology that relates objects and actions on the underlying 

objects to phenomena at the 'surface of the screen'. This domain of phenomenology 

determines the type of feedback the microworld produces as a consequence of user 

actions and decisions. (Balacheff & Kaput, 1996, p. 471) 

In the case of a DGE like Cabri Géomètre or GeoGebra the “objects” are the 

geometrical objects (like points, lines, circles, and so on) that can be constructed 

and transformed according to the “rules” of the Theory of Euclidean Geometry3. 

A geometrical figure within these microworlds is called dynamic figure.  

3.6.1 Dynamic figures 

A dynamic figure has the following feature: 

- it satisfies the set of theoretical conditions used for constructing the figure 

within the DGE; 

- it satisfies and maintains all the theoretical constraints that logically derive 

from the given ones. 

 
3 For the sake of completeness, we stress that a DGE like GeoGebra allows the user to explore also 

other mathematical domains, but in this study our focus is restricted on the TEG.  
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Moreover, all those properties remain invariant under dragging. In other words, 

the theoretical constraints are maintained invariant also when the solver figurally 

changes the dynamic figure using the drag modality.  

The dynamism of the figure is actually recognized as one of the main features of 

the DGE. Speaking of a specific DGE (Cabri Géomètre), but potentially referring to 

other DGEs with the same rational, Laborde (1993) states: 

The nature of the graphical experiment is entirely new because it entails movement. 

The movement produced by the drag mode is the way of externalising the set of 

relations defining a figure. The novelty here is that the variability inherent in a figure 

is expressed in graphical means of representation and not only in language. A 

further dimension is added to the graphical space as a medium of geometry: the 

movement. (p. 56). 

In this context, geometrical properties are interpreted as invariants (Laborde, 2005). 

Dynamism is not only a “nice feature” of the DGE, but it can influence the students’ 

interaction and construction of figural concepts. Indeed, dynamic figures are 

considered as scaffolding the drawing-figure gap: 

in the sense that it remains a material object (albeit virtual on the screen), but the 

invariance it carries in dragging can represent the basic properties. (Sinclair & 

Robutti, 2013, p. 574) 

Moreover, the possibility of acting on a dynamic figure shifted the idea of a 

geometrical figure “from something that is, to something that can 

become”(Sinclair & Moss, 2012, p. 43).  

In this sense, the tool allows quick and precise changes, changes in the nature of 

objects the students are talking about, promoting each such object from the status of 

a specific concrete thing (e.g. a drawing) to that of a class of discursive objects. (ibid., 

p. 43) 

Since dragging changes the figural components of the dynamic figure but not the 

conceptual components, it can foster students’ access to the world of the theory of 

reference, in our case the Theory of Euclidean Geometry (Mariotti, 2006), and it 

can help the solver maintain the set of given theoretical constraints.  

According to this perspective, the interaction between the solvers and a dynamic 

figure can be viewed as an additional window onto the GP processes because:  

- the manipulations imagined by the solvers can be actualized and seen on 

the screen also for the researcher; 
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- the dynamic figure on the screen has the same theoretical constraints for the 

solver and for the researcher even if these may be interpreted differently;  

- if the solvers have accomplished a GP process before moving the figure, 

they can have figural expectations. The way in which the solvers describe 

the possible behavior of the dynamic figure can make the product of GP 

more understandable for the researchers. This allows them to confirm, reject 

or refine the inferences on the solvers’ products of GP.  

3.6.2 DGE and paper-and-pencil environment 

When the solvers explore a geometrical problem within a DGE, the context is 

different from the paper-and-pencil environment.  

As stressed in the previous sections, in a paper-and-pencil environment when the 

solvers explore a geometrical situation sketched out in a drawing, they can 

manipulate the figure, consider a particular figural change and perform another 

drawing of this situation. During this process, for maintaining the theoretical 

elements of the geometrical configuration as invariants, the solvers must keep 

track of them and make sure that these are all present in the new drawing 

(Baccaglini-Frank, 2010). In other words, they have to exercise theoretical control 

over the figure. Eventually, the solvers can manipulate the figure continuously, as 

if they were using maintaining dragging in a DGE (Baccaglini-Frank & Antonini, 

2016; Baccaglini-Frank & Sinclair, 2017). Nevertheless, whether the solvers 

conceive the figure dynamically or discretely, the interaction with the drawing 

follows the path described above.  

On the other hand, in a DGE, the transformation can be easily performed 

continuously and  

each new figure will automatically exhibit all the properties according to which the 

original figure was constructed. In this manner the solver does not have to keep 

track of all the conceptual components and reconstruct the figure after each move. 

Instead s/he can observe change and invariance through small perturbations of the 

figure, that is, dragging a base point "only a little" to explore the figure. (Baccaglini-

Frank, 2010, p. 30)  

Furthermore, as stated by Laborde,  

the computer not only enlarges the scope of both possible experimentation and 

visualization but modifies the nature of the feedback. The feedback is visual on the 

surface, but it is controlled by the theory underlying the environment (Laborde, 

2002). 
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The different nature of the interaction with a static drawing and a DGE is clear. 

The coherence of the figural transformations to the TEG is a solvers’ responsibility 

to check; the transformations of a dynamic figure are always coherent with the 

given theoretical constraints and the theoretical control can be transferred onto the 

software.  

3.6.3 The possible role of surprise  

What activates human sense-making is the disturbance that can be experienced as 

surprise (Mason, 2004). More specifically: 

A person is surprised when something occurs unexpectedly, when it is in 

contradiction to expectations. […] In the study of mathematics we are dealing with 

intellectual surprise: that is the discovery that of some unforeseen truth. (Moshovits-

Hadar, 1988, p. 34) 

Surprise can also play a role in doing mathematics, to the extent that researchers 

(Moshovits-Hadar, 1988; Nunokawa, 2001; Mason, 2004) suggest the teachers to 

provoke surprise during the mathematical activity in order to support students’ 

learning. Indeed, intellectual surprise usually gives us “a drive to find some more” 

(Moshovits-Hadar, 1988, p. 35).  

Generally speaking, surprise occurs when facts do not fit with their expectations 

(Nunokawa, 2001). More specifically, there are several recognized sources of 

surprise. Among others there are three that seem strictly connected with the 

interaction with a DGE and with predictions: “A common property in a random 

collection of objects”, “Unexpected existence, and non-existence of the expected”, 

“Refutation of a conjecture obtained inductively” (Moshovits-Hadar, 1988, p. 35). 

Since a source of surprise is the contrast between the expected and the unexpected, 

a priori we glimpse a connection between surprise and solver figural expectations, 

and therefore predictions. Since the interaction with a dynamic figure can reveal 

the alignment or the misalignment between a product of GP and the DGE 

feedbacks, DGE seems to be a powerful tool for inducing surprise.  

We hypothesize that having an idea of the possible figural behavior of the 

configuration under dragging (i.e. having accomplished GP processes), that are 

supported by figural expectations, may induce the solver to be surprised if such 

expectations are not aligned with the DGE’s feedbacks.  

The surprise can induce the necessity to discover why or to explore again the 

situation, activating a new resolution process. Otherwise, if the figural 
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expectations are aligned with the DGE feedbacks, the solver can refine and explore 

the situation further.  

In both cases, the solvers have the opportunity to demand part of the theoretical 

control over the figure to the DGE logical system. In this way, they can discover 

invariants that they have not grasped before.  

Since it is not the DGE on its own that necessarily elicits surprise but a careful 

design of the geometrical problems, we pay attention to this aspect during the task-

design (see Chapter 5). In particular, tasks that concern impossible constructions 

and locus constructions seem to be particularly fruitful (Baccaglini-Frank & 

Sinclair, 2017) and can be formulated as open problems.  

Summarizing, the solvers’ interaction with a dynamic figure within the analyses 

of prediction processes seems to be useful both for solvers and for researchers. 

From the solvers’ point of view, the interaction with a dynamic figure: 

- is useful for refuting or confirming a product of GP; 

- can support further undertaking of processes of GP; 

- allow them to carry out the process transferring onto the software part of 

the theoretical control.  

From the researchers’ point of view, the solvers’ interaction with and description 

of a dynamic figure: 

- reveals the features of the products of GP previously communicated and 

inferred by the researcher; 

- reveals a possible misalignment between the products of GP and the actual 

behavior of the figure. 



 61 

4. Research questions 
In this chapter we will summarize the theoretical assumptions derived from the 

theoretical framework and our working hypothesis. Moreover, we list the research 

questions of this study. 

4.1 Theoretical assumptions, working hypotheses, and 

research questions  

Summarizing, in the present study we take the theoretical assumptions listed 

below.  

- The geometrical objects have a dual nature that is both conceptual and 

figural. 

- The Theory of Figural Concepts gives us an adequate theoretical lens and 

operational tools for analyzing students’ thinking in geometrical problem 

solving. In particular, the operational tools that belong to this theory can 

allow us to explain the processes of prediction that a solver can accomplish 

during the resolution of a geometrical task. 

- A figural concept is not a stable construct, but it has a developmental nature 

and a personal status. 

- The expression geometrical figure is used with the meaning it has within the 

Theory of Figural concept; 

- In this perspective, geometrical reasoning can be interpreted in terms of a 

dialectic between conceptual components and figural components. 

- A drawing is not a geometrical figure and the interaction between solvers 

and geometrical objects cannot be reduced to the manipulation of the figure 

as it is sketched out in a drawing.  

Operationally, we start from the working hypothesis listed below.  

- During the resolution of a geometrical task and according to their theoretical 

control, the solvers can interact with figural concepts accomplishing figural 

transformations. We are interested in learning more about these sorts of 

processes.  
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- In some cases, such transformations may have a dynamic nature that is 

quite close to the continuous transformations of a dynamic figure within a 

DGE.  

- The transformations of the figural components of a geometrical figure are 

strictly connected with the generation of a prediction; indeed, while the 

transformation is accomplished, the solvers can generate figural 

expectations on the final figure that constitute a product of the prediction 

process. 

- The features of the process could be inferred and then described looking at 

the products of a solver who is placed in a situation that elicits the GP 

processes.  

- Prediction open problems elicit processes of GP.  

- The theoretical construct of intuition, and in particular of anticipatory 

intuition, can interact with the processes of GP during the resolution of the 

given prediction open problems.  

- The elaboration of a preliminary definition of the GP processes and the 

subsequent observation of instances of predictions, if possible, seemed to be 

the best way of gaining insight into the GP processes.  

- The GP process can be observed looking at the solvers’ productions like 

utterances, gestures, and drawings.  

- The dual nature of the geometrical objects plays a role within the prediction 

process. 

- When the solvers who have undertaken GP processes outside the DGE 

move to the resolution of the same task in a DGE, the presence or the 

absence of solvers’ surprise during the exploration can be an additional way 

for shedding light into the features of the products of GP.  
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4.2 Research questions 

The theoretical framework presented in the previous chapter allows us to 

formulate the research questions of this study, that are reported below.  

When a solver engages in the resolution of prediction open problems proposed in this 

study, she seems to go through certain processes that lead to the production of 

figural expectations.  

1. How can these processes be modeled?  

2. What insight into students’ actual processes of GP can be gained when our 

model is used for analyzing solvers' figural expectations? 

3. In particular, what are the roles of the theoretical elements, of the figural 

elements, and of theoretical control? 

Moreover, based on our model, we will revise the definition of geometric prediction. 
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5. Methodology 
In this chapter we will describe our methodological choices for the study. In 

particular, in Section 5.1 we will briefly introduce the methodological tools of 

clinical interviews and task-based interviews, explaining the rationale for our choice. 

In this section we will also describe the methodological approach used for our data 

analyses, discussing how we used a microgenetic method. In this section we will also 

illustrate the research design.  

In Section 5.2, we will explain how our data were collected, describing in detail 

how we made use of the chosen methodological tools. In this section, we describe 

how we carried out the semi-structured task-based interviews in the pilot study 

and in the final study.  

In Section 5.3, we provide an a priori analysis of the four tasks proposed during 

the interviews. 

Finally, in Section 5.4 we describe the data collected and how they were analyzed, 

focusing on the outcomes of the different ways in which they were analyzed.  

5.1 The qualitative approach  

Our study aims at investigating and describing particular cognitive processes that 

lead to the production of figural expectations. The explorative nature of our aim 

and the research questions led us to use a qualitative approach. In particular, we 

needed to be able to observe solvers during an activity that could elicit GP 

processes. Moreover, when the observation did not give sufficient insight, we 

needed to also be able to interact with the solver. Such an interaction could depend 

on the solver’s answers and therefore it must be modeled depending on the 

particular situation. This motivated our choice of using clinical interviews 

(Ginsburg, 1981). 

Since literature has stressed how open problems within the domain of geometry are 

suitable to stimulate productive thinking, we have chosen the open problem (Arsac 

et al., 1998; Silver, 1995) as a kind of task that can elicit processes of prediction and 

we designed a particular kind of open problem: the prediction open problem. The 

prominent role of this task leads us to use a particular kind of clinical interview: 

the task-based interview (Goldin, 2000). 

Finally, since we aim at investigating cognitive processes, we needed to be able to 

observe each process as it occurs and to analyze it in fine grain. This motivated our 
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choice of using microgenetic methods (Schoenfeld, Smith & Arcavi, 1993; Chinn & 

Sherin, 2014; Lewis, 2017) for the analysis of our data. 

5.1.1 Clinical interviews 

The clinical interview is a research methodology that was originally developed by 

Piaget (1929) as an instrument for psychological research; it is “a flexible method 

of questioning intended to explore the richness of children’s thought, to capture 

its fundamental activities, and to establish the child’s cognitive competence” 

(Ginsburg, 1981, p. 4). The clinical interview was used in order to gain a deeper 

understanding of children’s mathematical thinking (Goldin, 2000). It is aimed at 

describing a local process, that is what might be going on in the child’s mind at the 

specific time of the interview.  

A clinical interview can be described as “a one-to-one encounter between an 

interviewer, who has a particular research agenda, and a subject” (diSessa, 2007, 

p. 525). It is designed to allow the interviewee to expose her “natural” ways of 

thinking about the situation at hand (Ginsburg, 1981). The topic of a clinical 

interview could be of various kinds, indeed: 

The interviewer proposes usually problematic situations or issues to think about and 

the interviewee is encouraged to engage these as best he/she can. The focal issue 

may be a problem to solve, something to explain, or merely something to think 

about. An interviewer may encourage the subject to talk aloud while thinking and 

to use whatever materials may be at hand to explore the issue or explain his/her 

thinking. (diSessa, 2007, p. 525)  

The role of the interviewer is that of an “active observer”: since she does not have a 

direct access to what happens in the subject’s mind, she can observe the subject’s 

outcomes and try to make inferences about the subject’s thinking; she may ask for 

clarification, elaboration, and confirmation in order to make accurate inferences. It 

is important to stress that, during a clinical interview, the interviewer may attempt 

to perform minimal interventions, trying to avoid affecting the subjects’ answers. 

Moreover, the interviewer may intervene in a flexible way, adapting the inquiry to 

the interviewee’s answers (Ginsburg, 1981; diSessa, 2007).  

For these reasons, the interviewer needs to prepare in advance a set of questions 

and possible prompts. Indeed, if a researcher intends to observe as much as 

possible and infer what she cannot directly observe about the interviewee’s 

cognitive processes, she needs to interact with the interviewee. This is in line with 
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one of the underlying assumptions concerning clinical interviews: human 

knowledge and activity patterns are generative (diSessa, 2007).  

Generativity emphasizes that knowledge is only useful if it is adaptive. People learn 

much of the time, and a significant part of the knowledge that they have will be 

directed toward generating new knowledge and new ways of behaving. 

Generativity may show in short-term adaptation to a particular problem or even to 

a particular prompt from the interviewer, and it will most certainly show in longer-

term adaptive patterns of development. (ibid., p. 530) 

The clinical interview is developed to investigate and describe precisely the 

thought processes by drawing a “clear description of mind” (Ginsburg, 1981, p. 6), 

so it is appropriate for discovering and analyzing particular cognitive processes 

(Clement, 2000). Our aim is to construct a cognitive model describing processes 

that might go on in the mind of a solver who is engaging in a particular kind of 

open problems. Therefore we chose a particular kind of clinical interview as the 

main methodological tool for our study: the task-based interview (Goldin, 2000).  

5.1.2 Task-based interviews 

The task-based interviews are a kind of clinical interviews and they have been used 

in qualitative research in mathematics education to observe, interpret and, in 

general, gain knowledge about students’ mathematical behaviors. Since task-

based interviews can serve as research instruments for making systematic 

observations in the psychology of doing mathematics and solving mathematical 

problems, they provide a suitable context for observing GP processes. 

Indeed, as stressed by Goldin (2000): 

[…] task-based interviews make it possible to focus research attention more directly 

on the subjects’ processes of addressing mathematical tasks, rather than just on the 

patterns of correct and incorrect answers in the results they produce. Thus, there is 

the possibility of delving into a variety of important topics more deeply than is 

possible by other experimental means. (ibid., 520) 

An underlying assumption of the use of the task-based interview is the following:  

[we] cannot observe subjects’ thinking, reasoning, cognitive processes, internal 

representations, meanings, knowledge structures, schemata, affective or emotional 

states, and the like. […] Through research one can hope (at best) to make inferences 

about them, using what can be observed to infer what cannot. (ibid., p. 527) 

According to Goldin (2000), there are three main elements that characterize a task-

based interview: a solver, a researcher, and a task environment.  
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The task-based interviews for the study of mathematical behavior involve 

minimally a subject (the problem solver) and an interviewer (the clinician), 

interacting in relation to one or more tasks (questions, problems, or activities) 

introduced to the subject by the clinician in a preplanned way. The latter component 

justifies the term task-based, so that the subjects’ interactions are not merely with 

the interviewers, but with the task environments. (ibid., p. 519) 

In our case, the task environment is composed of a set of given prediction open 

problems to be solved making use of a sheet of paper and a pen or a DGE or just 

imaging the solution. The details of the tasks will be presented and discussed in 

Section 5.3.  

Although group interviews with two or more solvers can also be conducted, we 

preferred to conduct one-to-one interviews because this seemed to be more 

suitable for the purpose of gaining insight into processes that might present 

individual differences (Shoenfeld, 1985). 

Generally, the task-based interviews are video recorded, and the solvers’ 

productions are collected in order to later analyze what takes place during the 

interview.  

By analyzing verbal and nonverbal behavior or interactions, the researcher hopes to 

make inferences about the mathematical thinking, learning, and/or problem solving 

of the subjects. From these inferences, we hope to deepen our understanding of 

various aspects of mathematics education. We may aim to test one or more explicit 

hypotheses, using qualitative analyses of the data; we may seek merely to obtain 

descriptive reports about the subjects’ learning and/or problem solving; or we may 

hope to achieve an intermediate goal, such as refining or elaborating a conjecture. 

(Goldin, 2000, p. 519) 

Moreover, the design of the task-based interviews is strictly intertwined with the 

research purposes: in our case, it is describing and gaining deeper insight into a 

cognitive process.   

A variety of techniques are used within a task-based interview. Among the others 

there are thinking aloud and open-ended prompting (Clement, 2000). Moreover, 

the interview can be structured, with a detailed protocol determining in advance 

the interviewer’s interaction and questions; other interviews are semi-structured, 

with a protocol that can be modified depending on the researcher’s judgment. 

Since we want to observe GP processes both spontaneous and prompted, we opt 

for the latter structure for having the opportunity to provide previously planned 

prompts and interventions depending on the solvers’ approach to the task. We will 
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describe questions and prompts used during the interviews in Section 5.2. The 

specificity of the task-based interview is that hints, prompts, or new questions 

should be provided only after ample opportunity has been given for free problem 

solving (Goldin, 2000).  

Data collected using a clinical semi-structured task-based interview will be analyzed 

in fine grain following to a microgenetic approach (Schoenfeld, Smith & Arcavi, 1993; 

Chinn & Sherin, 2014; Lewis, 2017) that will be presented in the next section. 

5.1.3 Microgenetic methods 

As reported by Chinn and Sherin (2014), the microgenetic methods were originally 

developed by Gestalt psychologists; then were used for the first time for 

investigating the learning process by Soviet psychologists including Vygotskij and 

Luria, as well as by Piaget and scholars influenced by Piaget. Theorists such as 

Werner (1948, 1957) and Vygotskij (1962, 1978) viewed short-term change as a 

miniature version of long-term change, generated by similar underlying processes. 

Recently an approach to microgenetic work has been formulated by 

developmental psychologists like Robert Siegler (2006). Even if microgenetic 

methods originally come from disciplines different from mathematics education, 

it has been adapted to the learning sciences by Schoenfeld et al. (1993) and diSessa 

(2014). 

The main underlying assumptions of microgenetic methods (Chinn & Sherin, 2014, 

p. 171) are that: 

- learning “occurs continuously, and in small steps, with every moment of 

thought”; 

- “learning does not occur in a straight line, from lesser to greater 

understanding; it occurs parallel on multiple fronts”; 

- “there are multiple kinds of learning, each requires its own study”; 

- finally, “we learn from our environment, which includes, most critically, the 

cultural tools other individuals provide to us”. 

The main goal of microgenetic methods is to gain insight into the processes as they 

occur and to do so in such a way as to permit strong inferences about the process. 

This method provides detailed information about an individual over a period of 

transition.  

According to Siegel (2006), the microgenetic method has three essential features: 



 70 

- Observations span the period of rapidly changing competence.  

- Within this period, the density of observations is high, relative to the rate of 

change.  

- Observations are analysed intensively, with the goal of inferring the 

representations and processes that gave rise to them.  

(ibid., p. 469) 

The last feature implies that the researcher should try to make inferences about the 

solvers’ cognitive processes involved, going beyond the superficial behaviors. This 

supports our choice of using this method for the present study.  

Moreover, Parnafes and diSessa (2013) highlighted several characteristics of the 

microgenetic analysis: 

- Theory-focused: the main aim is to generate and improve theories concerning 

learning. 

- Fine-grained: the standard is having a moment-by-moment explanatory 

account of learning in a particular context. 

- Open consideration of relevant aspect of data: any feature of the process might 

be potentially relevant.  

These characteristics imply that verbal language is important as well as gestures. 

For this reason, video recording is a minimal requirement. Because of the density 

of the observation and the complexity of the analysis, a study that follows the 

microgenetic method is not long-lasting and it cannot include too many 

participants. Indeed, most microgenetic studies have examined individual 

learning, typically in interview settings. Although it is also possible to examine 

collaborative groups, the larger the group, the more likely it is that observations 

will miss critical events.  

Our methodological choices have their roots in the microgenetic method, which is: 

1) theory-focused. The analyses use the existing Theory of Figural Concepts 

(Fischbein, 1993) and improve it by applying it to the generation of 

geometric predictions. 

2) fine-grained. The data consist of 37 sessions of about 1 hour each of which 

a small number of hours were analyzed in detail. However, the close 

examination of short sequences (2 or 3 minutes) contains huge amounts of 

relevant detail to be accounted for and provided opportunities for unveiling 

the prediction processes. 
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3) involving open considerations of data. In observing solvers while they were 

solving a prediction open problem, solvers’ verbal expressions were central, 

but also their gestures and interaction with drawings.  

Moreover, following the Vygotskian perspective, in the present study we consider 

speech, drawings and gestures as signs that supported the human thinking and 

communication. 

The following can serve as examples of psychological tools and their complex 

systems: language; various systems for counting; mnemonic techniques; algebraic 

symbol systems; works of art; writing; schemes, diagrams, maps, and mechanical 

drawings; all sorts of conventional signs; etc. (Vygotskij 1981, p. 137) 

Indeed,  

The invention and use of signs as auxiliary means of solving a given psychological 

problem (to remember, compare something, report, choose, and so on) is analogous 

to the invention and use of tools in one psychological respect. The sign acts as an 

instrument of psychological activity in a manner analogous to the role of a tool in 

labour. (Vygotskij, 1978, p. 52) 

Our tools for analyses will be described in greater depth in Section 5.4. 

5.1.4 The research design  

We first conceived a preliminary definition and model of GP processes to test and 

refine during a pilot study, using semi-structured task-based interviews 

(Ginsburg, 1981; Goldin, 2000; diSessa, 2007) which proposed several formulations 

of prediction open problems.  

The pilot study was conducted interviewing 18 Italian high school students (ages 

14-18), undergraduates and graduate students majoring in mathematics (ages 19-

33), during the months of November and December 2017. We set out to investigate 

the effectiveness in terms of eliciting GP processes and providing windows onto 

the processes of 15 geometrical open problems. Each problem was proposed and 

tested in three or four formulations, varying the dominance of the text or of the 

pictures and the exploration environment (paper-and-pencil or DGE).  

We used every interview to test and refine our definitions and our model of GP 

processes as well as prompts and formulations of the tasks. This cyclic and 

continuous process of refinement has been successfully used by other research that 

adopted a qualitative approach and involved the construction and refinement of a 

theoretical framework or of a model (Hadas et al., 2000; Steffe & Thompson, 2000). 
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The interviews were video recorded and subsequently analyzed through the lens 

of our theoretical framework under refinement.  

After the pilot study, we chose and reformulated 6 tasks for the final data 

collection. We chose to use the DGE GeoGebra, developed by Markus Hohenwarter 

(2001-2002), because it is quite common to find it in Italian middle and high 

schools. 

5.2 How data were collected 

As described in Section 5.1.2, the problems proposed were open-ended tasks (we 

will discuss our specific open problem in Section 5.3). This form of problem was 

designed to give the solver the opportunity to display her “natural inclination” 

(Piaget, 1929) and it seems to provide windows onto the solver’s thinking by 

maximizing the opportunity for observing, reflecting upon, discussing, and testing 

alternative interpretations of a student’s response (Hunting, 1997). In the next 

sections, we will describe the researcher’s preparation for the interviews and how 

they were conducted. 

5.2.1 Semi-structured task-based interview 

At the very beginning of each session with a solver, the interviewer provided some 

introductory indications listed below.  

- The interviewer (that is the researcher) said that she would give the solver 

some tasks; she explained that the solver could solve each task as she 

believed appropriate. Moreover, the interviewer explicitly stated that there 

are no “right or wrong” answers but only “the solver’s own” answers.  

- The interviewer specified that she could repeat the question as much as the 

solver liked or needed and that, if necessary, the solver could make use of 

sheets of paper and colored pens. Moreover, she stated that the solver was 

allowed to ask for explanations about unknown words or forgotten 

meanings.    

- The interviewer explained that any time she would ask “why?” it did not 

mean that the solver was wrong (Hunting, 1997; diSessa, 2007), but that she 

was seeking for an explanation.  

- The solver is only asked to explain out aloud as much as possible what she 

is thinking for solving the task (Schoenfeld, 1985a).  
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This introductory phase was refined after the pilot study for putting the 

interviewee at more ease (Ginsburg, 1981; diSessa, 2007).  

Each interview followed a common structure. After the interviewer introduced the 

session, she proposed several prediction open problems to the solver. Each task 

had to be accomplished first in a paper-and-pencil environment and then within 

the GeoGebra environment. So, the material supports given to the solver were: 

- sheets of paper and colored pens, during the first part of the interview; 

- the DGE GeoGebra, during the second part of the interview.  

Typical requests to a solver were to explain an action, to describe what she was 

looking at or trying to accomplish, to provide clarification or elaboration of a 

statement she made (diSessa, 2007). However subsequent prompts and requests 

would be formulated using the solvers’ language, in an attempt to confirm an 

interpretation or test an alternative one (Ginsburg, 1981). 

Moreover, we elaborated some questions and prompts that we would use when a 

solver seemed to “get stuck”. We were aware of the fact that certain prompts might 

change the solver's thought processes and actions (diSessa, 2007), however we 

wanted to be able to observe certain types of processes even if they did not occur 

spontaneously.  

Taking into account the possible difficulties that the solvers had encountered 

during the pilot study we prepared general questions and prompts for the 

interviews. We also developed a series of prompts that could be used 

interchangeably when the solvers seemed to have trouble in making a prediction.  

The questions and prompts are the following (Table 3). 

Question Function 

“What are you thinking about?” used for inducing the solvers to make 

explicit their thinking 

“Make a prediction: do you think that [a 

certain point] can occupy other 

positions?” 

used for triggering GP processes, if 

they were not spontaneously 

undertaken 

“Imagine moving…[the point]… and 

make a prediction: …” and then the 

used for triggering GP processes 
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interview repeats the question of the 

task.  

The first and main question of the task. the question can be repeated in the 

same or another formulation, after a 

long exploration of the problem that 

does not conduct to the communication 

of a product of GP 

“Show me how” or “Why?” used for inducing the solvers to make 

explicit their predictions 

“Make a drawing of what you have 

imagined” 

used for making explicit the solver’s 

figural expectations when the GP 

processes are carried out only 

imagining the outcomes 

“Would you like to change your previous 

answers?” 

used for observing if the solvers change 

their mind at a certain point (e.g., after 

they have performed a drawing or 

dragged a point of a dynamic figure in 

the DGE) 

“Does the configuration behave as you 

expected?”  

 

used in the DGE for testing the 

coherence between the behavior of the 

dynamic figure and the solver’s 

expectation 

“Before moving [a point of the dynamic 

figure], what do you expect to see on the 

screen?” 

used in the DGE for making explicit the 

predictions on a dynamic figure 

Other questions related to the specificity of the tasks will be presented in Section 

5.3. Moreover, the interviewer can rephrase some questions using the solver’s 

words as she has made explicit in previous answers (Ginsburg, 1981; Hunting, 

1997). 

Table 3 List of questions that the interviewer may use during the interviews and their 

function 
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In preparing for the interviews, we took into consideration the issue of the length 

of each interview (Hunting, 1997; diSessa, 2007). After the pilot study, we decided 

that the ideal time in order to optimize the collection of significant data with the 

participants of this study and the type of activities used was one hour per solver.  

5.2.2 Data collection 

The final data collection had involved a convenience sample of 37 Italian solvers 

who took part in the study as volunteers. Among them there are: 

- high school students (ages 14-18); 

- undergraduate, graduate and PhD students in mathematics (ages 23-35). 

For design, we decided to interview solvers with a mathematical background: all 

the solvers of our sample are supposed to have been exposed – even if in different 

levels of depth because of the different ages – to the geometrical knowledge that is 

important to manage for solving the given tasks. These inferences were drawn 

looking at the list of achievements that should be developed by students attending 

Italian schools as reported in the government’s document Indicazioni Nazionali 

(MIUR, 2010). Only for the high school students, we interviewed their mathematics 

teachers about the mathematical knowledge that her students of a certain grade 

were supposed to know. This way we could check that all the underlying 

mathematics facts (Schoenfeld, 1985b) of the proposed prediction open problems 

had been introduced to the solvers. 

Data were collected during the months of February and May 2018. The problems 

were designed to elicit processes of GP and they were used within task-based 

interviews (Goldin, 2000). So, the first question was always the same; then there was 

a sequence of questions defined a priori and a set of stimuli in order to stimulate 

solvers’ comments.  

The tasks of the final set have a common structure, composed of two parts as 

described below. 

- The interviewer explained the geometrical situation, showing a paper with 

the text of the task. The task had to be performed imagining or drawing the 

geometrical configuration in a paper-and-pencil environment. In the 

following, we will refer to this part as “the first part of the interview”.  

- Once the solver had proposed a solution or stated that she was not able to 

find one, the interviewer opened a DGE file and asked the solver to move 

some points of the dynamic figure, consistently with her prediction, and to 
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explore it in order to reach another or more complete solution. In the 

following, we will refer to this part as “the second part of the interview”. 

All interviews were carried out in a quiet room and each solver spends 60 minutes 

with the interviewer and works through as many tasks as she can. Interviews are 

video recorded using a camera next to the solver and a screen capturing software 

when the computer is used. Data are composed of video recordings, audio 

recordings, transcriptions, solvers’ drawings.  

Before the interviews, the interviewees (or their parents or guardians in the case of 

minors) signed a consent form concerning the use of data for scientific purposes 

(see Appendix A). 

For the screen capturing we used an open-source software called Open Broadcaster 

Software (OBS); for the transcriptions, we used the digital media transcription 

software InqScribe.  

The order of the tasks to be proposed was decided during the interview depending 

on the time constraints and the solver’s attitude. In retrospect, we decided to 

conduct a detailed analysis only of four tasks, which are the ones that were 

proposed the most during the interviews: Task 2, Task 4, Task 5, and Task 6. In the 

following we will maintain these labels.  

5.3 Prediction open problems for the interviews and a 

priori analyses 

As described in Chapter 3, the expression open problem (Arsac et al., 1998; Silver, 

1995) refers to a task stated in a form such that the solvers are not given specific 

instructions to follow: they are left free to explore the problem and draw their own 

conclusions. The question does not suggest, reveal or anticipate the solution or a 

possible answer. We designed a particular kind of open problems: prediction open 

problems. These are a particular kind of open problem in which the solver is asked 

to describe possible alternative arrangements of a geometric configuration 

(imagined, given by a drawing and/or by a step-by-step construction) maintaining 

given properties. We added the adjective “prediction” because, among the set of 

open problems, we wanted to make a distinction with respect to other kinds of 

open problems.  

More specifically, we decided to construct prediction open problems that provide a 

step-by-step construction to be imagined or accomplished on a sheet of paper. This 

design choice was made because we wanted to make explicit to the solvers the 
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theoretical elements that characterized the geometrical configuration to be 

reasoned upon. As mentioned in Chapter 3, tasks that concern impossible 

constructions and locus constructions seem to be particularly fruitful for observing 

prediction processes and possible instances of surprise. Moreover, the use of locus 

problems as resources for observing and fostering the geometrical reasoning is 

suggested also by other authors, like Fischbein (1993) and de Finetti (1967). 

Moreover, we designed the step-by-step constructions so that the dynamic figure, 

that the solvers would use during the exploration of the problem within the DGE, 

corresponded to the given or sketched out figure, and therefore it was constructed 

following the same step-by-step contrition. For this reason the step-by-step 

constructions were designed in order to robustly (Healy, 2000) maintain the given 

constraints when accomplished in a DGE, and softly the constraints that the solver 

must recognize and maintain for coherently solving the problem.  

The list of instructions was made available throughout the interview so that the 

solver did not have to memorize or remember it, but rather so that she could make 

use of it whenever necessary. 

Since we set out to focus on prediction processes, we did not push the solvers to 

produce conditional statements or proofs. Nevertheless, if the conjecture-

generation or the proof processes were undertaken spontaneously, we left the 

solvers free to explore further in these directions. 

In general, we adopted a non-interventionist position: when the solvers 

communicated contradictory answers or products of GP that were incoherent with 

respect to the formal Theory of Euclidean Geometry (TEG), we did not point out 

to the solvers the contradictions of their answers.  

In the next sections we describe the text of the four tasks that were analyzed (each 

is in a box), followed by the specific preplanned script that the interviewer could 

use during the interview. Moreover, we a priori analyzed each task, highlighting 

the possible trajectory that the solver might follow in order to reach a solution that 

is coherent with respect to the reference mathematical theory (in our case the 

Theory of Euclidean Geometry). We developed the problems for the study so that 

the generation of predictions would potentially lead to coherent solutions in the 

most direct and simple way.  
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5.3.1 Task 2 

First part of the interview (paper and pencil) 

Task 2 

Read and perform the following step-by-step construction:  

- fix two points A and B;  

- connect them with a segment AB;  

- choose a point P on the plane;  

- connect A and P with a segment AP;  

- construct M as the midpoint of AP;  

- construct the segment MB and name its length d.  

A and B are fixed, and the length of MB must always be d. 

First question: What can you say about the point P? 

Possible further questions: 

a) Make a prediction: do you think that P can occupy other positions?  

b) Make a prediction: do you think that P can occupy other positions so that MB 

remains of length d? 

c) Imagine moving P and make a prediction: do you think that P can occupy other 

positions so that MB remains of length d?4 

For each of these questions: 

- if the solver’s answer is “Yes”, the interviewer asks “Which?” or “How?”  

- if the solver’s answer is “No”, the interviewer asks “Why?”  

Finally, if the solver has trouble because of the label “d”, the interviewer can ask: 

Imagine you have measured the length of MB and it is 3 cm. Make a prediction: do you 

think that P can occupy other positions so that MB remains of length 3 cm? 

 
4 Question (b) and Question (c) are examples of the prompts that the interviewer might use when a 

solver seemed to “get stuck” or to have trouble in making a prediction. This is the reason why 

Question (c) is so focused on a particular investigation: what happens after a possible movement of 

P. In this way, the interviewer tries to prompt a prediction and suggests an exploration that the 

solver might not have imagined or taken into account. This is a useful strategy in order to observe 

whether the suggestion influences the prediction generation process.     
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5.3.2 Task 2: a priori analysis 

In order to provide an answer to the task, the following theoretical elements are 

important to be noticed: 

- MB must always have the same length, so the locus of M is a circle centered 

at B and with radius BM; 

- M is the midpoint of AP, so the length of AM is always equal to 1/2 of the 

length of AP or the length of AP is equal to 2*AM. 

The theoretical element “fixed length”, which is expressed in the statement “the 

length of the segment MB must always be d”, is crucial information in order to reach 

a solution. The solvers could use this information almost in two ways.  

The solvers could use the fixed length of MB for drawing several positions of M: 

these are positions for which the length of MB remains constant. In particular, the 

solvers could use a new theoretical element in order to find other positions of M: 

line symmetry of the point M with respect to AB. The solvers might start looking 

at the position of M only after having traced some positions of P which maintain 

MB of the same length. Then, looking at the positions of M, they could recognize 

that M traces out a circle (see Figure 10).  

Otherwise, the theoretical element “fixed length” may foster recollection of the 

definition of circle, leading to immediate recognition of the locus of M as a circle.  

In both cases, we expected that solvers produce a first product of GP, like this: “the 

locus of M is a circle centered at B and with radius d”. 

 

Using the theoretical element “M is the midpoint”, the solvers can imagine moving 

M along the circle, or draw it, and observe different positions of P, discovering that 

also P lies on a circle. Here the solvers may produce another product of GP, like 

this: “the locus of P is a circle”. 

Figure 10 An instance of a possible drawing produced by the solvers during the resolution 

of Task 2 
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Using the relationship AP = 2*AM, they can view the locus of P as the circle 

corresponding to the locus of M through a homogenous dilation of factor 2. 

Furthermore, this theoretical element may also help the solvers find the center and 

the radius of the locus of P: the center is a point O on the line through A and B, 

satisfying the relationship AO=2*AB; the radius has length 2*MB (see Figure 11). 

Otherwise, the solvers can trace the center O only intersecting a line through P 

parallel to MB and a line through AB.  

Depending on the kind of theoretical elements that the solvers recalled, they may 

communicate more or less mathematical detailed products of GP.   

 

 

5.3.3 Task 4 

First part of the interview (paper and pencil) 

Task 4 

Consider the right triangle in the figure, with the hypotenuse of fixed length.  

A and B are fixed.  

The length of AB has to always be the same. 

 

 

Figure 11 An instance of a possible drawing that shows the solution of Task 2 
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First question: What can you say about the vertex with the right angle? 

Possible further questions: 

a) Make a prediction: do you think that it (or point C or the vertex with the right 

angle) can occupy other positions?  

b) Make a prediction: do you think that it (or point C or the vertex with the right 

angle) can occupy other positions so that the angle stays right? 

c) Imagine moving the vertex C and make a prediction: do you think that it can occupy 

other positions so that the angle stays right? 

For each of these questions: 

- if the solver’s answer is “Yes”, the interviewer asks “Which?” or “How?”  

- if the solver’s answer is “No”, the interviewer asks “Why not?”  

The interviewer can refer to the vertex with the right angle as “it” or “C” or “the 

vertex with the right angle” depending on the solver’s answers.  

5.3.4 Task 4: a priori analyses 

In order to provide an answer to the task, the following theoretical elements are 

important to be considered: 

- the hypotenuse of the triangle is AB; 

- the given theoretical constraints are the length of the hypotenuse and the 

right angle at C;  

- there are no constraints on the lengths of the legs.  

So, first of all, the solvers need to correctly recognize the hypotenuse of the triangle 

in the provided non-stereotyped drawing of the right triangle ABC. 

Coherently considering all the theoretical constraints and applying several line 

symmetries, the solvers can generate several predictions about the possible 

positions of C and consequently they can consider other triangles that are right at 

C. For example, the solvers can imagine a line symmetry with respect to AB (see 

Figure 12a) and a line symmetry with respect to the axis of AB (see Figure 12b).  

These positions address two different products of GP: “C at a symmetric position 

with respect to AB” and “C at a symmetric position with respect to the axis of AB”. By 

combining the two symmetries, the solvers may consider four possible positions 

of C that maintain all the given constraints (see Figure 12c). Placing C at these 

positions, the solvers maintain not only the given constraints but also the length of 

the two legs.  
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(a) (b) 

 

 

 

(c) (d) 

Recalling another new theoretical element (the isosceles triangle) the solvers may 

consider another position for C. Indeed, a triangle can be right and isosceles at the 

same time and the solvers can consider the position of C that realizes these two 

conditions (see Figure 12d). In this way, the solvers can generate another product 

of GP. Combining the new position with the theoretical element “line symmetry 

with respect to AB”, the solver can obtain another position for C.  

Approaching the task in this way, the solvers will obtain six possible positions for 

C (Figure 13).  

Figure 12 Several instances of possible drawings that report the solvers’ products of GP 

concerning Task 4 
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Now, the solvers can investigate what happens when they imagine moving C 

between these six positions and reach the locus of C as a circle.  

 

 

One of the possible ways to identify the circle looking at the six positions is 

recognizing the invariance of the distance between C and the midpoint of AB. This 

could be another product of GP.  

Otherwise, right after the first question the solvers can recall an already known 

Theorem: a right triangle is inscribable in a circle with its hypotenuse as its 

diameter. Recalling this Theorem allows the solvers to immediately recognize a 

circle as the locus of C. This is a realistic possibility in the interviews of the students 

from high school up: during the pilot study indeed it happened that 9th-grade 

students recalled such a mathematical result, even though not always in a formal 

way.  

Figure 13 An instance of a possible drawing that reports the investigated positions of C  

Figure 14 An instance of a possible drawing that sketches a complete solution of Task 4 
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5.3.5 Task 5 

First part of the interview (paper and pencil) 

Imagine a triangle ABC. 

Consider the midpoint of the side AB and name it M. 

Imagine tracing the segment CM.  

Imagine that A and B are fixed. 

First question: Make a prediction: is it possible that CM is congruent to CB? 

- if the solver’s answer is “Yes”, the interviewer asks “How?”  

- if the solver’s answer is “No”, the interviewer asks “Why not?” 

If the solvers are not able to answer the first question, the interviewer can suggest 

that they draw only the segment AB and its midpoint. Then the first question is 

repeated.  

Further questions: 

1) Make a drawing of what you imagined. 

2) Would you like to change your previous answer? 

3) If the answer to the first question was “Yes” without any other details, the 

interviewer asks: Show me in the drawing how CM could be congruent to CB. 

If the answer to the first question was “No”, the interviewer asks: why not? 

4) Are there other ways in which CM can be congruent to CB? 

5) Imagine moving point C. Do you think that there are other positions for point C so 

that CM is congruent to CB? 

5.3.6 Task 5: a priori analyses 

The first part of this task is composed of two subparts. In the beginning the 

situation has to be only imagined; then the solver is offered the opportunity to 

make a drawing. Depending on the solvers’ theoretical control, they may solve the 

task with or without making use of drawings. 

In both cases, the main theoretical elements to be identified and recalled are the 

following: 

- ABC is a general triangle, there are no particular theoretical constraints on 

the triangle; 

- since M is the midpoint of AB, CM is a median of the triangle ABC.  
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First of all it is important to consider ABC as the most general kind of triangle, in 

order to avoid adding new theoretical constraints that are not logical consequences 

of the given theoretical elements. Then the solvers may focus on the sub-

configuration composed of the segments CM, CB, and MB; they may recognize a 

triangle in this sub-configuration; they may consider the theoretical element “CM 

is congruent to CB” and translate it into the constraint “CMB is an isosceles triangle”.  

If they have considered ABC as the most general triangle, it is quite easy to realize 

that, starting from the given constraints, CMB can always be an isosceles triangle. 

In this way, they can communicate a first product of GP like “C at the vertex of an 

isosceles triangle” and show the corresponding position of C (see Figure 15). 

 

 

 

Otherwise, the solvers can first recognize an interesting position for C so that CM 

is equal to CB and only later recognize that the triangle CMB is isosceles.  

Starting from this first position of C, the solvers may explore further 

configurations. For example, they can introduce the theoretical element “line 

symmetry” and find another position for C (see Figure 17) that is the symmetric 

position of C with respect to AB. Moreover, they may restrict the exploration on 

one of the half-planes marked by the segment AB and investigate other positions 

of C that maintain the given constraints (see Figure 16). These are additional 

products of GP.  

Figure 15 An instance of a possible drawing that shows a product of GP on C concerning 

Task 5 
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Imagining moving C between these positions, the solvers can recognize an entire 

locus for C (see Figure 17) and communicate a corresponding product of GP, like 

this: “C on a line perpendicular to AB and passing through the midpoint of MB”. 

Depending on the solver’s theoretical control, the midpoint can be recognized using 

both a top-down or a bottom-up process.   

 

 

Otherwise, the solvers may directly recall a more mathematical advanced 

theoretical element, that is “the axis of a segment”, and its definition as the locus of 

points equidistant from two given points (i.e. M and B).  

Figure 16 Two instances of possible drawings that show the solvers’ products of GP 

concerning Task 5 

Figure 17 A possible drawing which shows the locus of C performed during the resolution 

of Task 5  
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5.3.7 Task 6 

First part of the interview (paper and pencil) 

Read and perform the following step-by-step construction:  

- two points A and P; 

- construct the symmetric point of P with respect to A and name it Q.  

1) Imagine moving the point P and make a prediction: what happens to the 

configuration?  

2) Imagine moving the point P along a line and make a prediction: what happens to 

the configuration?  

3) Imagine moving the point A along a line and make a prediction: what happens to 

the configuration?  

4) Imagine moving the point P along a circle and make a prediction: what happens to 

the configuration?  

If the solver does not draw anything more than A and P, the interviewer can 

suggest “Make a drawing of….” and then asks “Would you like to change your previous 

answers?” 

5.3.8 Task 6: a priori analyses 

Task 6 can be considered as composed of four sub-tasks that the solver may 

perceive as connected or disconnected problems.  

The underlying theoretical element is always the same: the point symmetry 

centered at A. Each question adds an additional theoretical constraint to the 

configuration: P on a line, P on a circle, A on a line. Since A and P are points on the 

plane and Q is constructed as the symmetric point of P with respect to A, the point 

symmetry affects only the behavior of Q. After the short step-by-step construction, 

the solvers have drawn on the sheet of paper three points (Figure 18).  

 

Figure 18 An instance of the configuration obtained following the given step-by-step 

construction (Task 6) 
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Let us consider separately the questions about P and about A. In all cases, the 

solvers may imagine continuous movements of a certain point and consequently 

they can construct continuously the loci of the other points; otherwise, they may 

imagine several discrete positions of the point on a particular path and construct 

discretely the symmetric points. The loci that the solvers obtain are products of 

GP, as well as the different positions of the points.  

Questions 1 – 2 – 4 

Answering the first question, the solvers may spontaneously consider several 

trajectories for P. If it is not the case, Question 2 and Question 3 should help the 

solvers to focus on particular loci.  

For example, the solvers may imagine moving P on lines that are oriented 

differently on the plane. In this case, point A is fixed, because it is the center of the 

point symmetry; since Q depends on P through a point symmetry, Q will describe 

the same trajectory of P but following an opposite direction of the movement 

(Figure 19a). A coherent product of GP with respect to the given constraints could 

be “Q on a line parallel to the line of P”.  

Moreover, the solvers may imagine moving P on several circles that leave A 

outside the path. In this case, point A is fixed, and Q will describe the same 

trajectory of P in the same direction (Figure 19b). The solvers may consider moving 

P on circles centered at A and with radius AP. In this case, while P describes a 

semicircle, Q will describe a symmetric semicircle (Figure 19c). Coherent products 

of GP could be “Q on a circle congruent to the circle of P” or “P and Q on a circle 

centered at A”. 

  
 

(a) (b) (c) 

The solvers may also consider curvilinear paths different from circles.  

 

Figure 19 Three instances of the possible loci described by P and Q during the resolution 

of Task 6 
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Question 3 

This question shifts the focus onto A. Taking into account how the configuration 

composed of the three points was obtained, when the solvers imagine moving A 

they can realize that the point P is fixed on the plane and Q follows the movement 

of A according to a point symmetry. If A is moving on a line, Q traces a line in the 

same direction (Figure 20).  

 

A coherent product of GP could be “Q on a line parallel to the line of A”.  

5.3.9 Second part of the interview (GeoGebra file) 

The second part of the interview follows a common structure. The interviewer 

invites the solvers to open a previously prepared GeoGebra file and explains that 

they will find a configuration that was constructed in advance following the same 

provided step-by-step construction.  

Then the interviewer asks which points the solver thinks that can be moved. The 

answer to this question could be a window onto the solvers’ theoretical control 

over the dynamic figure.  

The interviewer invites the solver to move the points of the dynamic figure, 

according to her predictions. Eventually unexpected feedback of the DGE should 

induce solver’s surprise. 

After the solver has tried to move some points, the interviewer asks if the dynamic 

figure behaves as she expected. The answers to this question provide additional 

Figure 20 An instance of a possible configuration obtained moving A on a line (Task 6) 
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windows onto the solver’s products of GP because they can better reveal what she 

was expecting. 

Then the interviewer asks if the solver wants to change the previously stated 

answers or to say something more about the configuration.  

If the solver was not able to provide an answer during the first part of the 

interview, the dynamic exploration can trigger a new resolution process and 

eventually new processes of GP. Also an unexpected behavior of the dynamic 

figure under dragging could induce the solver to change her mind and undertake 

a new resolution process. In these cases, the interviewer can propose again the very 

first question of the task.  

We expected that, during the exploration of the dynamic figure, the solvers would 

make use of different dragging modalities (Arzarello et al., 2002; Olivero, 2002; 

Baccaglini-Frank & Mariotti, 2010) and in particular maintaining dragging 

(Baccaglini-Frank, 2010) in order to maintain certain predicted properties.  

As highlighted in Chapter 3, dragging changes the figural components of the 

dynamic figure but not the conceptual components. So, it can help the solver 

maintain the set of given theoretical constraints. Moreover, since the 

transformations of a dynamic figure under dragging are always coherent with the 

given theoretical constraints, the solver’s theoretical control can be transferred 

onto the software. For these reasons, during the exploration of the dynamic figure 

the solver can reach new solutions to the problem, refine or reject their products of 

GP previously communicated.  

5.4 Data analyses 

In this section, we will explain how data were analyzed. More specifically, we 

describe the tools for analysis that we have developed and provided the “rules” 

for the transcription coding.   

According with our research aims, in order to gain insight and describe the GP 

process, we set out to analyze solvers’ interviews at several levels of depth, as 

described in the next sections.  

5.4.1 Level 0 

The first step was to transcribe the interview from the videos, using the digital 

media transcription software InqScribe. In particular, it allowed to easily annotate 

timecodes and speakers’ information.  
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The second step was to organize the transcription in a table structured as follows: 

Time Who What is said What is done Comment 

In the first column we show the exact instant (from the beginning of the video it is 

part of) when an utterance was produced. The time format is [minutes : seconds . 

tenths].  

The second column shows who is speaking: the interviewer (i.e. Int) or the solver 

(i.e. Stud).  

In the third column we list the solver and interviewer’s spoken words as they were 

produced. Sometimes solvers do not repeat or explicitly explain the subject or the 

object of the sentence and the researcher needs to infer these elements watching at 

the video. In order to make a distinction between spoken words and inferred ones, 

we used square brackets for the latter.  

The interviews were conducted in Italian and then translated into English to be 

reported in the present study.  

We start transcribing the spoken words produced by a speaker in a box, and we 

switch to a new box in the following cases: 

- if the speaker changes; 

- if the speaker is the same, but there is a long pause; 

- if the speaker does not pronounce words (empty box), but meanwhile 

performs a gesture or a drawing or simply she is looking at a particular 

object.  

We use the punctuation using the criteria listed above: 

- we use ellipses (i.e. “…”) in the same box between two words when there is 

a short pause into the same sentence;  

- we use a full stop when the pause is longer and divides two periods;  

- we distinguish two sentences depending on the meaning and on the tone of 

the voice;  

- we use ellipses at the end of a sentence if it seems that the speaker would 

continue to talk, but did not complete the sentence;  

- we use a comma to show a different tone of the voice in the same sentence;  

Table 4 Structure of the table used for transcription 
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- we use ellipses at the beginning of the sentence, if the utterance is connected 

with the previous one of the same speaker. We infer this connection based 

on the tone of the voice.  

The fourth column contains a description of the solver’s behavior and productions 

that are different from the discursive ones: gestures, drawings, long silences and 

so on. Moreover, these boxes contain snapshots of the solver’s gestures and 

drawings. Sometimes, in order to give the idea of movement, red arrows or 

trajectories are added on snapshots. 

The last column is devoted to our comments. At this level of analysis, it remains 

empty.  

5.4.2 Level 1 

After the transcription phase, we start the first round of analysis, aimed at 

identifying instances of GP in the solvers’ productions. To this end, we created a 

list of labels, useful for recognizing instances of GP processes in the solvers’ 

discourse, gestures, and drawings. The list of labels is reported below. 

• Product of GP 

In the paper and pencil environment, we recognize the product of a 

prediction process: 

- if the solver refers to elements (a geometrical object or part of it) which 

are not present in the drawing; 

- if the solver describes the behavior of elements which are not present in 

the drawing; 

- if the solver refers to a new arrangement of the configuration without 

drawing anything. 

In the DGE, we recognize the product of a prediction process: 

- if the solver refers to elements (a geometrical object or part of it) which 

are not present on the screen at that moment;  

- if the solver refers to a new arrangement of the configuration without 

dragging anything. 

We give a progressive number to the products of GP and we assign a 

number from 0 to 2 which refers to the degree of interpretation that the 

researcher has to use in order to describe the product of GP in detail. 0-effort 

is assigned if the product is well described by the solver and clear to the 
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researcher. 2-effort if the product is ambiguous or fuzzy5 and if it is not 

described clearly, in which case the researcher identifies the product of the 

GP only through considerable interpretation. A new product of GP appears 

in the following format: “GP_Number_(0-1-2)”.  

For example, let us compare two sentences like these: 

1. But another circle will be created with point P, because, that’s it, it is not fixed, 

so... 

2. That is, therefore I could have this circle – now I don’t do it for not making a 

mess, but – a circle centered at P with this, at C with this radius AB over 2 

multiplied by d.   

The first one is an example of a 1-effort product of GP, because the locus of 

P is named (a circle) but it is not described in detail. The second is an 

example of 0-effort product of GP, because the solver gives the essential 

details in order to describe a circle: the center and the radius.  

Furthermore, we marked in round brackets whether the solver 

communicates a new product of GP in a gestural and/or discursive way. 

The order of the adjectives replaces the chronological order. For example, if 

we find first a discursive instance of GP and then a gestural one, we write 

in brackets: “discursive – gestural”.  

• Window discourse  

This is a statement or the use of certain words to communicate a product of 

GP. We do not use this as a label in the last column, but only mark it with 

bold type in the words in the third column.  

Using the previous example, we mark words in this way: 

1. But another circle will be created with point P, because, that’s it, it is not 

fixed, so... 

 
5 The “fuzziness” is a useful category in order to see at a glance (a number) the amount of details 

that an observer can grasp looking at the solver’s productions; in this perspective, a fuzzy product 

of GP is opposite to a detailed product of GP. Since this is an interpretative category, a product of GP 

could be fuzzy for the observer and not necessarily for the solver; in this case, it means that the solver 

did not make explicit all the details that are useful to communicate her prediction. The more a 

product of GP is detailed, the more the observer is able to encode the product of GP without too 

much interpretation.  
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2. That is, therefore I could have this circle – now I don’t do it for not making a 

mess, but – a circle centered at P with this, at C with this radius AB over 

2 multiplied by d.   

• Window gesture 

This is a gesture that communicates a product of GP. Gestures may or may 

not be coupled with discursive elements. 

For example, the following are window gestures related to the process of 

prediction of a particular circle:   

 

The classification of gestures used in this study was provided in Section 

3.5.3.  

• Theoretical element  

Elements that belong to the formal Theory of Euclidean Geometry. They 

include: all the properties that a solver gives to the configuration or that she 

gives to part of it; theorems and mathematical results.  

• Figural element 

Elements that belong to the figural domain in a specific moment (seen on 

the drawings or on the screen), related to the configuration in front of the 

solver.  

• Anticipatory Intuition 

According to Fischbein’s definition (1987), we label anticipatory intuition 

moments in which a solver produces a sentence or a gesture suddenly 

without an explicit link to the previous process of solution and which led to 

new insight into the problem. At such a moment, we infer that an intuition 

has occurred, and we can observe an evidence of it. 

• Instance of surprise 

Gestural or discursive expressions which reveal a surprise.  

Figure 21 Instances of gestures which communicate a product of GP  
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For the sake of completeness, it is important to clarify that in this study the term 

“window” is used metaphorically, borrowing this use from Noss and Hoyles 

(1996). The term was chosen to highlight a twofold issue: since the study is focused 

on observing a personal cognitive process, the researchers can indirectly access this 

process only looking through particular windows (for example, gestures or 

statements that communicate a product of GP); consequently, the open-ended 

tasks are designed to open windows onto the processes of GP.  

We need to make a concluding remark on the transcription analyses. Since the 

communicated products of GP can be more or less convincing for the solvers, they 

could make use of linguistic expressions that communicate “plausibility rather 

than certainty” (Rowland, 1995, p. 332). Literature refers to these expressions as 

hedges, 

examples of which include about, around, maybe, think, normally, suppose, (not) sure, 

(not) exactly. (ibid., p. 333) 

Our aim is not to conduct a wide analysis of the possible hedges in solvers’ 

utterances according to the taxonomy of hedges; we are only interested in making 

use of this theoretical construct as a marker of fuzziness into the solvers’ discursive 

productions.  

5.4.3 Labels: an example 

As an example of how we use the labels listed before, we report some excerpts of 

Tiziana’s interview (Task_2). 

Excerpt: Tiziana_MD_T2_P1_(01:17-05:15) 

Time Who What is said What is done Comment 

01:17.10 Int What can you say 

about P? 

  

01:23.05 Stud So, in the meantime 

the first thing that I 

thought is that I 

decided to draw it 

externally with 

respect to the 

segment AB, but 

actually I could have 

also chosen it inside 

segment AB. 

 
Drawing 1a 

 

01:35.21 Stud Because it says 

“Choose a point P on 

the plane” and…so, 

 She recalls a 

theoretical element 
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let’s say, it’s up to 

me.  

01:44.08 Stud Ok.   

01:47.13 Stud So…can I… She moves her hand 

to ask if she can 

continue talking 

 

01:48.17 Int Yes yes, tell me all 

that you are thinking 

about regarding P. 

  

01:53.05 Stud So based on where I 

will choose P, the 

position of M 

changes and 

consequently also 

the  distance of M 

from B. 

 Theoretical elements 

It seems that M 

depends on P as a 

functional relation: 

M(P) 

02:01.09 Int Ok. Make a 

prediction: do you 

think that P can 

occupy other 

positions so that MB 

remains with length 

d? 

  

02:14.05 Stud Yes.   

02:15.05 Int Which?   

02:16.11 Stud For example if I take 

the symmetric point 

with respect to AB, I 

expect to have the 

same distance 

between... uhm... 

She moves the pen 

quickly on the 

drawing to indicate 

an axial symmetry 

with respect to AB, 

moving P along a 

segment 

perpendicular to AB 

 

GP_1_(0) 

(discursive – 

gestural):  

the symmetric point 

of P with respect to 

AB 

She uses the pen as 

an extension of her 

hand.  

She dynamically 

constructs the new 

point.  

 

02:28.17 Stud So now I was 

thinking something, 

but I do not actually 

know if it is the 

correct one, I mean I 

was thinking of 

She is pointing with 

the pen in the place 

where she expected to 

see the symmetric 

point of P and then 

It seems that she 

recalls the step-by-

step construction, 

but starting from 

another position of 

the point P (the 
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constructing the 

symmetric part on 

the other side, but I 

don’t...uhm... 

the symmetric point 

of M.  

symmetrical one 

with respect to AB): 

she points to the 

symmetric point and 

then to the 

corresponding 

midpoint. 

02:41.06 Stud Yes, let’s say another 

point M', would that 

work? 

 

Window gesture 

02:44.04 Int Yes, yes.    

02:45.17 Stud Ok. Yes, for example 

if I take the 

symmetric point P 

with respect to AB 

on this other side…I 

will have again…I 

will find a midpoint 

M’ that will be 

symmetric to M 

with respect to AB, 

so I expect  that then 

the distance from B 

to this point M’ will 

coincide with d.  

She is pointing the 

pen where she wants 

to put the symmetric 

point.  

GP_2_(0) 

(discursive – 

gestural):  

the symmetric point 

of M with respect to 

AB 

 

Window gesture 

03:05.12 Int Do you think that 

there are other 

positions for point P, 

so that MB remains 

of length d? 

  

03:13.07 Stud  She is looking at the 

Drawing 1a 

 

03:22.14 Stud So…uhm…ok… She is pointing at B  

03:29.21 Stud What am I thinking? 

The problem could 

be this: starting 

from…from this MB 

and creating others 

within the plane, I 

mean…can I? I will 

use a different color.  

She is pointing at MB 

and movers two 

fingers as a compass:  

 

GP_3_(1) (gestural):  

M on an arc of a 

circle 

 

Window gesture 

The gesture suggests 

that the point M is 

on an arc of a circle.  
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03:43.04 Int Yeah, you can do 

whatever you want. 

Also how many you 

want. 

  

03:47.16 Stud So what I was 

thinking is more 

intuitive, but if I for 

example measure it. 

She adds graphic 

elements on her 

drawing using 

orange.  

GP3 is a product of 

GP: she seems to 

perceive her answer 

more as an intuition 

than as an analytical 

solution.  

03:48.29 Int Yes.   

03:55.00 Stud This is always d. Ok.  

 

Drawing 1b 

 

03:58.21 Stud This could be 

another point M', 

then whenever I 

draw AM' I can 

attach here the other 

seg...the other half 

M'P. At this point, P 

can also be in 

another position, 

any other position 

in the plane that 

verifies this 

condition. 

She is pointing at the 

endpoints of AM’, 

without tracing the 

segment. Then she 

mimics with a gesture 

the segment M’P: 

 

Window gesture  

She constructs the 

point P starting from 

the position of the 

point M’.  

GP_4_(2) (gestural – 

discursive):  

P on the plane 

constructed using 

AM=MP   

04:24.06 Stud Now here I chose it 

too…too far to be 

able to create it 

again, but maybe if I 

do something like 

this.  

She draws a new 

segment MB with 

another orientation  

She predicts that the 

drawing will not fit 

on the sheet of 

paper.  

This suggests that 

the GP4 is actually a 

product of GP and it 

is not only a vague 

answer recalling the 

theoretical 

condition, in which 

figural elements are 

unclear.  

04:32.23  There are other 

sheets of paper as 
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you want. Take as 

many as you want. 

04:34.17 Stud Alright.    

04:37.24 Stud They are always, I 

don’t know…let’s 

say this is always d, 

a little bit closer.  

  

04:42.22 Stud Then in the moment 

at which... 

She traces the 

segment AM 

 

04:47.22 Stud ...this turns into the 

new M, it is enough 

to take P at this 

position and... 

She traces the 

segment MP 

 

Drawing 1c 

 

04:56.14 Stud ...I will mark P again, 

I will mark M and I 

could have the same 

distance d. 

  

05:00.28 Stud This is when, say, I 

don’t have a 

criterion to define it 

in any case, in the 

sense that I can’t say 

ahead of time where 

to put P, but I can 

start from B and... 

  

05:15.05 Stud ...create the circle, so, 

basically: I use d as a 

sort of radius and all 

the points that are on 

the circle with 

center B and radius 

d are points M that 

can be...that can 

verify this property. 

She moves her finger 

as a compass: 

 

She moves a finger in 

a circle: 

 

She conjectures a 

circle as the locus of 

M, only having 

drawn two instances 

of the possible 

positions of the 

point M. So, the 

circle seems to 

appear as an 

Anticipatory 

Intuition  

 

GP_5_(0) 

(discursive – 

gestural): M on a 

circle C(B, d) 
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Each drawing is labeled using a number and a letter. The number is an ordinal 

number which shows the chronological order in which the drawings are produced. 

The letter marks the various subsequent snapshots of the same drawing. In this 

example, when the solver adds a segment BM’ on the Drawing 1a, we label the new 

picture Drawing 1b, because it is the same drawing (number 1) with a new 

graphical element.  

Solvers can interact with a drawing making use of two different processes that the 

literature (Anderson, 1995; Gal & Linchevski, 2010) distinguishes into: top-down 

and bottom-up processes.  

Bottom-up processing uses information from the sensory physical stimulus for 

pattern recognition […]. Top-down processing occurs when context or general 

world knowledge guides perception. (ibid., p. 170) 

Analyzing the transcriptions, we can also observe and mark instances of these two 

approaches to the drawings.  

5.4.4 Level 2 

In order to analyze in greater depth the prediction processes one by one during the 

same interview, we created another tool of analysis. 

During the interview, the solvers usually elaborate several configurations of the 

geometrical object in focus. Generally, the first configuration is the given one or 

the constructed one following a geometrical step-by-step construction. The 

subsequent configurations are produced by the solver using a drawing and/or a 

gesture.  

We defined configuration an instance of a geometrical figure (according to 

Fischbein’s definition) expressed by a drawing and/or a gesture.  

A new configuration may be:  

a) a new drawing; 

b) new details on the same drawing; 

c) a gesture related to a drawing which communicates a new geometrical 

object or a new relationship between the objects seen on the drawing; 

d) a combination of a drawing and a gesture.  

In the following table, we show some examples of possible new configurations, 

starting from the same first configuration.  
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Example of a starting 

configuration: 

Example of a new configuration (Type a): 

 

 

Example of a new configuration (Type b): 

 

Example of a new configuration (Type c): 

 

Example of a new configuration (Type d): 

  and    

After the transcription phase and the labelling phase, we read through each 

transcription again in order to mark the configurations that the solver has 

elaborated. Then we divide the transcription into segments. A segment starts from 

one configuration and ends with the subsequent configuration. We take into 

account only the segments in which one or more products of GP are communicated 

by the solver. Practically, we look at the transcription and see whether between 

two subsequent configurations there are any “products of GP” (these were labelled 

before). Then, we analyze each segment with another tool, trying to identify 

elements that belong to the students’ conceptual component and to their figural 

component of the geometrical objects in focus. We collect these elements in a sort 
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of “funnel”6 which shows the previously recognized products of GP in gestural 

and/or discursive form. 

The general diagram of the tool is the following. 

Configuration 1 (Drawing 1a): 

 
Theoretical elements 1 Figural elements 

(01:23)    [P]  

   AB 

Point on the plane   P 

   P 

   M 

Distance    MB 

Line symmetry   P and AB 

Constant/fixed distance     

 GP_1_0 (discursive – gestural): the symmetric point of P with 

respect to AB 

 

Configuration 2 (Gesture): 

 
 

We start with the initial configuration: in this case (Configuration 1 in Figure 22) it 

is the first drawing produced by the solver following a step-by-step construction. 

At the end we list the new configuration produced by the solver: in this case 

(Configuration 2 in Figure 22) it is a gesture that communicates a new position of 

the point P.  

In the middle there is the actual funnel, composed of 3 columns. In the first and in 

the third there are, respectively, theoretical elements and figural elements, that the 

solver referred to in a gestural or discursive way, or that were inferred by us (in 

square brackets in this case). As stressed in Chapter 3, theoretical elements and 

 
6 The term “funnel” is metaphorically used. It was chosen to highlight that several elements flow 

into a GP process; these elements belong to different categories (figural and theoretical), but they 

interact dynamically, like two fluids in a funnel; such an interaction produces a new object that is 

more condensed than the sum of the original elements, but it maintains some traces of both of them.  

Figure 22 An example of solvers’ funnel 
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figural elements are two constructs defined according to Fischbein’s (1993) 

distinction between conceptual and figural components of geometrical objects. We 

identify these elements, using the description given above in the list of labels. In 

the central column, we write the funnel number and we use two different colors to 

highlight which element of the two columns is expressed by the solver at a specific 

moment: time proceeds from top to bottom; the vertical order of boxes follows the 

chronological sequence in which solvers made elements explicit. Furthermore, we 

added an “X” when the element was mathematically incorrect or incoherent with 

respect to the given geometrical construction. At the end of the funnel, there is the 

product of the GP. Each funnel represents the sequence of the observable steps that 

produce a new product of GP. 

The funnel in Figure 22 is constructed using a part of the excerpt 

Tiziana_MD_T2_P1_(01:17-05:15) shown in the previous section. In particular, it is 

constructed looking at what happens from time 01:23 to time 02:16 of the interview. 

As an example, here we show the construction of the funnel in Figure 22. We 

selected the solver’s utterance and gestures; then we marked figural elements 

(blue) and theoretical elements (green), as follows. 

01:23.05 Stud So, meanwhile, the first thing I thought was that I decided to draw it 

outside the  segment AB, but actually, I could have chosen it even 

within the segment AB. 

01:35.21 Stud Because it says “Choose a point P on the plane” and…so, let’s say 

that it is up to my discretion.  

[…] 

01:53.05 Stud So, based on where I choose P it changes the position of M and 

consequently also varies the distance of M from B. 

[…] 

02:16.11 Stud For example, if I take the symmetric point of P with respect to AB, I 

expect to get the same distance between ... um ... 

We also look at the gestures, in order to make our inferences as close as possible to 

the solver’s intention.  

In this excerpt, we recognize some figural elements (blue), like the segment AB, 

the point P, the segment MB, the point M. The first figural element (point P) is 

inferred, because the solver uses “it” in the utterance, but looking at the 

transcription we can see that the subject (the point P) was already expressed in the 

question by the interviewer. We use green to highlight the identifiable theoretical 

elements, like point on the plane, distance, line symmetry. We recognize a product 

of a GP in the last statement of the student: “I take the symmetric point of P with 
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respect to AB”. The gesture confirms that the product of GP is another point P’ 

constructed as the symmetric point of P with respect to the line through AB.  

Furthermore, in the first and in the third column of the funnel, we use colors (green 

and blue) in order to highlight new theoretical elements or new figural elements. 

A new theoretical element is a theoretical element that is not explicitly reported in 

the given step-by-step construction and therefore it is inferred, deduced or 

generally introduced by the solver. For example, the line symmetry transforming 

the point P is a new element which allows the solver to reach another position for 

the point P. A new figural element is a figural element introduced by the solver 

which is not included in a certain initial configuration of a funnel. 

Summarizing, we have four categories of theoretical elements, expressed by two 

dichotomies. A theoretical element could be: 

- mathematically coherent or incoherent with respect to the given geometrical 

construction, within the formal Theory of Euclidean Geometry (TEG); 

- new or already-known.   

Here are some examples of hypothetical utterances that contain theoretical 

elements of each category. The utterances are referred to Task 2.   

Already-know New 

P is a point on the plane 

M is the midpoint of AP 

I take P symmetric with respect to AB 

AP is equal to twice AM 

The utterances in the first column contain theoretical elements reported in the 

given step-by-step construction, so we can say that the solver should know these 

properties. They do not add more information about the geometrical situation. In 

the second column the opposite happens: in the first utterance, the new point is 

constructed as the symmetric point of P, because the solver decides to do so. She 

introduces for the first time the line symmetry into the solution process.  So, we 

define as “new” the theoretical element “line symmetry” referred to the point P 

and the segment AB. Also the second utterance contains the new theoretical 

elements “double length”. This is new because the solver had to deduce this 

relation from the given property “M is the midpoint of AP”.  

Coherent Incoherent 

I take P symmetric with respect to AB 

M is on a circle centered at B  

I take P symmetric with respect to A 

MP is a radius and M a center  

The utterances in the first column contain theoretical elements like: the line 

symmetry, the circle, the center of a circle. They are referred to the suitable figural 



 105 

elements and are coherent with the geometrical situation within the TEG. Indeed, 

they respect the given constraints: AB is fixed, the length of MB is invariant. 

Instead, the first utterance in the second column contains an incoherent theoretical 

element: the point symmetry of P. Indeed, if P is placed at a symmetric position 

with respect to A, it does not maintain the given constraints. We can say the same 

for the second utterance: if MP is the radius of a circle centered at M, MB does not 

maintain the same length.  

Thus, the theoretical elements are not coherent or incoherent in an absolute way, 

but they are coherent or not with respect to (1) the invariance of the given 

constraints, (2) the figural elements they are referred to, (3) the compliance with 

laws of the Theory of Euclidean Geometry.   

Sometimes the product of a GP seems to be related to a previous one. For example, 

in the excerpt we are looking at, after the GP_1 the solver undertakes another GP, 

strictly connected with the theoretical elements identified before. Indeed, she starts 

talking about another position for the point M, only using the line symmetry and 

without the interviewer’s prompts. We highlight this connection using a blue 

arrow between the two funnels, as follows. 

Configuration 1 (Drawing 1a): 

 
 

Theoretical elements 1 Figural elements 

(01:23)    [P]  

   AB 

Point on the plane   P 

   P 

   M 

Distance    MB 

Line symmetry   P and AB 

Constant/fixed distance     

 GP_1_0 (discursive – gestural): the symmetric point of P with 

respect to AB 

 

 

Configuration 2 (Gesture): 
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Theoretical elements 2 Figural elements 

(02:28) [Line] symmetry      

Symmetric point   M’ 

Symmetric point   P’ 

Line symmetry   AB 

Line symmetry   M’ and AB 

Distance   BM’=d 

 GP_2_0 (discursive – gestural): the symmetric point of M with 

respect to AB 

 

Configuration 3 (Gesture): 

 

Finally, we summarize the funnels’ connections between one another in a diagram, 

as follows. 

 

Figure 23 An example of two connected funnels 

Figure 24 An example of the diagram which summarizes the connections between funnels 
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We label “Cn” the configurations produced by the solver. The label “GP_N” 

identifies the products of GP communicated by the solvers when they pass form 

the configuration Cn to the configuration Cn+1. The vertical blue arrows show the 

funnels’ connection.  

We recognize a connection between funnels in the cases described below.  

a) If a product of GP adds some details to a previously communicated product.  

For example, the following products of GP belong to two connected funnels: 

GP_1_(0) (discursive – gestural): the locus of C is a semicircle 

GP_2_(0) (discursive – gestural): the locus of C is a semicircle centered at the 

midpoint of AB 

Using the GP_1 the solver communicates that the point C is on a semicircle. 

Then, in the GP_2 she describes in detail the features of the locus, making 

explicit the center of the circle.  

b) If a product of GP or some part of it is recalled during a new GP process, in 

a gestural or discursive way.  

For example, Tiziana’s Funnel 3 and Funnel 5 are connected also because she 

repeats the same gesture which is referred to the arc of a circle traced by the 

point M (see Figure 25). 

   

c) If the solver makes use of theoretical elements already introduced in a 

previous GP.  

In the previous excerpt, Tiziana uses for the first time the line symmetry for 

obtaining a new position of the point P (see Funnel 1). Then she recalls the 

theoretical element “line symmetry” in order to predict a new position for 

the point M. So, Funnel 1 and Funnel 2 are connected.  

d) If we find linguistic expressions that reveal that the solver was referring to 

a product of GP or theoretical/figural elements previously communicated.  

Examples of such a kind of linking words are: “like before”, “once again”, “as 

I said before”. 

Figure 25 Two instances of the same gesture, respectively at time 03:36 and 05:15 of the 

excerpt Tiziana_T2_P1_(01:17-05:15) 
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Sometimes the linking words are only a single expression. Looking at 

Tiziana’s excerpt and in particular at the utterances at time 05:00 and 05:15, 

we can see that the conjunction “but” underlies the connection between 

Funnel 4 and Funnel 5.  

Finally, we clarify how we labelled the excerpts that we will report in the 

following. The format is the following: 

Name of the solver_Grade_Number of the task_Part of the interview_(from time:till time) 

So, an excerpt from the first part of the interview of a 9th-grade solver named Lucy 

while she is solving Task 4 looking at what happen from time 00:01 till time 02:00, 

will be label like “Lucy_G9_T4_P1_(00:01 – 02:00)”.  

In the excerpt reported in Section 5.4.3, the solver is named Tiziana and, when the 

interview was video recorded, she has already reached a master’s degree in 

mathematics. So, we labelled the excerpt from her interview in this way: 

Tiziana_MD_T2_P1_(01:17-05:15). 

In general, we used the following labelling: 

- Name of the solver_GNumber: when the interview was video recorded, the 

solver was a “Number”th-grade student;  

- Name of the solver_MS: when the interview was video recorded, the solver 

has already reached a bachelor’s degree (the Italian “Laurea Triennale”) and 

was attending the postgraduate classes in Mathematics (the Italian “Laurea 

Magistrale”); 

- Name of the solver_MD: when the interview was video recorded, the solver 

has already reached a master’s degree in mathematics (the Italian “Laurea 

Magistrale”); 

- Name of the solver_PhD: when the interview was video recorded, the solver 

was a PhD student in Mathematics. 

5.5 Concluding remarks 

From the analyses of solver’s productions we observed emerging characteristics of 

the process and the products of GP; then we reached a characterization of the 

features that was later refined through further rounds of analysis of the excerpts.  

Overall the next chapters allow us to answer the research questions, providing 

both the elements needed to reach a model of the GP processes and the description 

of the complex interaction between these elements.  
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In particular, Chapter 6 contains the description of the characteristics of the 

products of GP, it explains how motion, immediacy and intuitions could be 

integrated into the GP processes. Chapter 7 focuses on the role of theoretical 

elements recalled by the solver and how they are strongly involved in the 

processes of GP. Chapter 8 describes some additional characteristics of the 

processes of GP that only the second level of analyses revealed. Chapter 9 reports 

on the preliminary findings concerning a line of research that was not widely 

explored: what happens when a solver who has undertaken GP processes in a 

paper-and-pencil environment moves to a Dynamic Geometry Environment 

(DGE); nevertheless, it was included in this study because these preliminary 

findings provide additional windows onto the process of GP and integrate the 

observer's inferences about the products of GP.  

Each chapter contains some “telling” example from data analyses. Among the 

analyzed excerpts, we chose the excerpts that, in a quite short time-span, show a 

certain feature or a subset of certain features of the GP process in the most 

meaningful way in terms of number and clarity of the windows (gesture and/or 

discourse) onto the processes. 
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6. Characteristics of GP 
In this chapter, we will describe several features of processes and products of GP, 

emerging from data analysis.  

In particular, in Section 6.1 and Section 6.2 we describe the characteristics of the 

products of GP. In Section 6.1, we explain the emerging dichotomy between 

coherent and incoherent products of GP. The criterion of coherence is determined 

according to the compliance with the reference mathematical theory: the Theory 

of Euclidean Geometry (TEG) on the plane, in our case. Moreover, we provide 

examples of the process that led to incoherent products of GP and we explain why 

they are incoherent. In Section 6.2, we describe the difference between detailed and 

fuzzy products of GP and explain how this dichotomy is reflected in a different 

interplay between solvers and drawings during the GP processes.  

In Section 6.3, we focused on how motion could be integrated into the GP 

processes. Indeed, the solvers could explore alternative arrangements of the 

configuration making use of motion or not. Depending on how motion is 

integrated into the process of GP, a process of GP may or may not have a dynamic 

dimension. We explain how we can observe dynamism within the solvers’ 

exploration and provide several examples from data of processes of GP with and 

without an observable dynamic dimension.  

In Section 6.4, we analyze the kinds of gestures that the solvers perform during GP 

processes. Moreover, we describe the role of gestures within the prediction 

processes and what we can infer about solvers’ predictions looking at gestures.  

Section 6.5 address the topic of immediacy. It is the quality of a process of GP that 

is undertaken without a strong intervention of the interviewer. We consider 

immediacy as an indication of the naturalness of the GP processes. Data reveals a 

process of GP can be carried out in an immediate way, but not all the processes of 

GP are immediate; immediacy seems to be a feature of the GP processes that are 

undertaken by expert solvers. 

Finally, in Section 6.6 we report about the possible intervention within the 

resolution process of anticipatory intuitions that can interact with the processes of 

GP. Moreover, we highlight the commonalities and differences between the 

theoretical construct of intuition and geometric prediction.  
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6.1 Coherent and incoherent products of GP 

As highlighted in the Chapter 5, there are not correct or wrong answers to the 

given tasks. Solvers can describe whatever they know, imagine, infer or deduce 

about the given geometrical configuration. However, each step-by-step 

construction lists several geometrical constraints that characterize the problem. So 

the solvers’ answer could be more or less coherent to these constraints. 

Consequently, during the solution process, when the solver communicates a 

product of GP, it could be coherent or incoherent with respect to the geometrical 

figures that are actually possible within the TEG given the specific set of 

constraints.  

The criterion of coherence is determined according to the compliance with the 

reference Theory: the Theory of Euclidean Geometry (TEG) on the plane, in our 

case.  

In order to be coherent a product of GP must respect: 

- the given properties and theoretical constraints; 

- the theorems of the Theory of Euclidean Geometry.  

Otherwise, if the given constraints are not preserved within the reference Theory, 

the product is incoherent.  

In our sample, according to how the solver makes use of the given constraints, we 

find several cases of incoherent products of GP: 

a) the given constraints are modified, and the solver obtains one or more new 

constraints; 

b) the given constraints are maintained, but the solver adds one or more 

constraints; 

c) one of the given constraints is completely removed or neglected.  

In all cases, the incoherence is evident to the researcher only: the solvers do not 

seem to be aware of such an inconsistency, or at least in their productions we do 

not find instances that suggest such an awareness; sometimes, they simply show 

some uncertainties.  

In the subsequent sections, we provide examples of the process that led to 

incoherent products of GP and we explain why they are incoherent. For the sake 

of clarity, we show excerpts which belong to the same open problem: Task 4.  
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6.1.1 Case (a): the given constraints are modified  

The following excerpt is the whole first part of Ilaria’s interview: Ilaria_G9_T4_P1. 

Time Who What is said What is done Comment 

00:01.02 Int Consider the right 

triangle in the figure. 

With hypotenuse... 

  

00:07.11 Stud Of a given length. She is reading the 

step-by-step 

construction. 

 

00:08.19 Int Mm.   

00:09.17 Stud A and B are fixed, the 

length of AB has to 

always be the same.  

Given drawing 

 

00:17.25 Stud Hypotenu...well, then...   

00:23.20 Stud So...given...so no point 

of this triangle can be 

moved. 

  

00:29.06 Stud Because...if A and B are 

fixed...if A B are fixed 

and then C and B are 

fixed, too. 

She is pointing to the 

points she mentioned 

 

She seems to see 

the configuration 

as a right triangle 

with hypotenuse 

CB.  

00:41.25 Stud Eh, no the length, the 

hypotenuse CB is 

fixed, also the length of 

AB is fixed and this is a 

right triangle, also 

moving C so 

that…that…CB has the 

same length, it will no 

longer remain a right 

triangle. 

“it is a right triangle”: 

she is pointing at the 

angle C.  

 

Starting from C, she is 

moving the pen on a 

small curve trajectory: 

 

She confirms that 

our inference 

about the 

hypotenuse is 

right. 

GP_1_(1) 

(discursive): if C 

is moving, the 

triangle is not 

right 

GP_1 is 

spontaneously 

communicated:  

the interviewer 

did not ask the 

question.  

 

Window gesture 

The gesture 

seems quite 

fuzzy. It is not so 
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clear where she 

intends to move 

point C. It seems 

that she only tries 

to move C in a 

position such that 

BC is equal in 

length.   

01:02.28 Stud And it is as if 

everything were fixed, 

I mean, I practically 

cannot do anything. 

  

01:08.01 Int Ok. Which do you 

think is the hypotenuse 

of the triangle? 

  

01:11.21 Stud Hypotenuse...ah, this 

one! 

She is pointing at AB  

01:14.09 Int Ok.   

01:15.04 Stud  She laughs.   

01:15.23 Int So consider the 

hypotenuse with a 

fixed length. A and B 

fixed.  

  

01:21.28 Stud Ok. She rotates the sheet of 

paper:  

 

It seems that she 

places the 

triangle in an 

orientation that is 

more suitable for 

her.  

01:22.04 Int The question I ask you 

is: what can you say 

about the vertex with 

the right angle? 

  

01:26.20 Stud The vertex with the 

right angle. 

  

01:29.09 Stud If this...this is fi...is the 

fixed one…  

She is pointing at AB 

and looking at the 

step-by-step 

construction 

 

01:33.01 Int Yes...   
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01:35.19 Stud So, I can’t move it 

anyway, so...so nothing 

changes. 

 GP_1 (discursive)  

01:42.08 Stud Because if... She is pointing to the 

segment AB 

 

01:47.19 Stud Because to obtain the 

hypotenuse usually 

you use a theorem. 

 She recalls a 

theoretical 

element  

01:52.12 Stud In which the length 

C...C and B and A and 

B is calculated, is used. 

So if this moves, if the 

length of C and A or C 

and B is changed, also 

the length of the 

hypotenuse changes 

according to this 

Theorem. 

She is pointing to AC 

and CB 

She recalls the 

Pythagorean 

Theorem in order 

to justify GP_1. 

02:10.28 Int Ok. Make a prediction.    

02:15.13 Stud Mm, let’s see.   

02:17.08 Int Think...mmm...imagine 

to move this vertex C. 

  

02:21.29 Stud C, ok.   

02:22.24 Int Do you think that it can 

occupy other positions 

so that the right angle 

remains? 

  

02:28.11 Stud Yes.  Anticipatory 

Intuition  

(C was a fixed 

point till now) 

02:29.08 Int Which?   

02:30.14 Stud Because if... there is... 

mmm... a 

perpendicular line to 

AB, a line. 

She is moving the pen 

describing a trajectory 

parallel to the 

segment AB and 

passing through the 

point C: 

 
 

GP_2_(0) 

(gestural): C on a 

straight line 

parallel to the 

segment AB  

Perpendicularity 

and parallelism 

are confused.  

Window gesture 

The gesture 

comes before the 

locus description. 
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02:39.02 Stud Ehm, I can move C 

along all the points of 

this line without it 

stopping from 

being…right. If I am 

not mistaken. 

 GP2 (discursive) 

 

02:52.08 Int Ok, show me which.   

02:56.07 Stud Can I?   

02:56.23 Int Certainly.   

02:59.25 Stud  She draws a line that is 

parallel to AB and 

passes through C:   

 
Drawing 1a 

 

03:04.01 Stud Yes, more or less 

straight… 

  

03:05.25 Int Mm mm.   

03:06.22 Stud I can move C here, it 

should come out 

always right. 

She is pointing to a 

position on the line: 

 
Using the pen 

(without drawing 

anything) she traces 

the connection 

segments between the 

new point C and A 

and between the new 

points C and B. 

GP2 (discursive – 

gestural) 

03:12.19 Stud Except when I move it 

too far away. 

She is pointing to a 

position on the line:  

 

She refines the 

GP_2 and 

restricts the 

movements of C 

within a segment 

on the line.  

03:16.01 Stud Like this length and 

this length I can move it 

She deaws two 

segments:  

She refines the 

GP_2 
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practically where I 

want. 

 

03:24.20 Stud It should be 

perpendicular but 

these are...are details 

that I am not good at 

drawing. 

She points to the line She seems to be 

inverting  

perpendicularity 

and parallelism.  

03:31.19 Stud Moving it along this r, 

on this line r. 

  

03:35.12 Int Mm mm.   

03:37.08 Stud r...ehm...C...I can move 

on any point of this 

line r...between the 

projections of...of B 

and of A on this line 

...and it should 

remain...C...and the 

angle C always right. 

 

Drawing 1b 

GP_3_(0) 

(discursive): C on 

a line parallel to 

AB and between 

two projections 

of A and B on 

this line 

As usual, the interviewer starts presenting the task. Immediately Ilaria continues 

to read the step-by-step construction by herself. At time 00:23 she starts talking 

about the possible new arrangement of the configuration without an interviewer’s 

hint. It seems that she is wondering about the possible motions of the points A, B, 

and C. Even if the interviewer did not intervene, we cannot be sure that the implicit 

question about the motion of the points arises spontaneously for the solver. Ilaria 

approaches Task 4 after Task 2, so she was already exposed to questions about 

possible new positions for the given points. Anyway, we can say that the first 

impression about the configuration is that the whole triangle is fixed: she 

concludes that it is not possible to move its vertexes. We will see how this first idea 

will affect and inform Ilaria’s predictions.  

She explains her claim. The subsequent utterance (at 00:29) starts with “because” 

and it clarifies that there is a misunderstanding about the properties of the triangle. 

While she is pointing to the given drawing, Ilaria states that C and B are fixed as 

well as A and B. This reveals that she is seeing CB as the hypotenuse. Our inference 

is confirmed by the utterance at time 00:41, where she explicitly talks about CB as 

the hypotenuse. Here we find the first product of GP, which is communicated in a 

discursive way:  
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GP_1: if C is moving, the triangle is not right. 

The window gesture associated with the GP_1 is quite fuzzy: it is not clear how 

she intends to move C in order to verify if the triangle could remain right or not.  

GP_1 is a first simple example of incoherent product of GP. It is incoherent 

because: point C is not fixed; there exists more than one position for C in order for 

the hypotenuse to be fixed and the triangle to be right. Probably an imprecise 

interpretation of the constraints causes this incoherent product of GP. We can 

explain the solver’s mistaken interpretation recalling one of the typical drawings 

of a right triangle in many Italian textbooks (Figure 26) that may have become a 

prototype for Ilaria.  

 

Often in Italian mathematical textbooks, a right triangle is represented as follows: 

one of the legs is drawn as a horizontal segment; the other leg is placed 

perpendicularly to the first one as a vertical segment; generally, the hypotenuse is 

a segment that is neither horizontal nor vertical. In particular, this last feature of a 

prototypical right triangle could explain why the solver considers the segment CB 

as a hypotenuse: CB is placed where she is expected to find the hypotenuse.  

The interviewer guesses the mistaken interpretation, so at time 01:08 she asks the 

solver to explicitly identify the hypotenuse. Driven by the question, Ilaria correctly 

points to the segment AB and laughs. The laughing could reveal an emergent 

awareness of the mistake. When the interviewer invites the solver to consider the 

hypotenuse fixed (time 01:15), as reported in the step-by-step construction, she 

turns the sheet of paper around. Probably in this way, she can see the drawing in 

a more suitable orientation and recognize the hypotenuse. This gesture confirms 

our hypothesis on the influence of a prototypical drawing on her process of GP.  

Figure 26 An instance of a prototypical drawing of a right triangle 
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Finally, at time 01:22 the interviewer asks the first question: “what can you say about 

the vertex with the right angle?”. From this moment a new GP is undertaken, and it 

leads to another incoherent product of GP. 

At time 01:35, Ilaria repeats that the whole triangle is fixed. Later, at time 01:47 and 

01:52 she explains why she is so convinced that it is so. She starts her utterance 

with “because” and recalls a theoretical element: the Pythagorean Theorem. She does 

not explicitly recall the name of the Theorem but looking at her utterances we can 

infer that she is using this mathematical result. Paraphrasing what she claims at 

time 01:52, we can say that: it is impossible to move C and consequently to change 

the positions of AC and BC, because the movement will change the length of AC 

and BC; according to the Pythagorean Theorem, if the length of the squared sides 

changes, also the length of the hypotenuse changes; so the constraint “hypotenuse 

is fixed” is no longer maintained. It seems that, recalling the Theorem, she provides 

only a theoretical answer which is not connected with a particular new 

configuration. For this reason, we did not label the utterance as a product of GP. 

Furthermore, she does not produce gestures or new drawings.  

Then, following the list of questions for the interview, the interviewer asks 

explicitly to imagine point C moving. It seems that this question triggers an 

anticipatory intuition about the solution: so far C was considered as a fixed point; 

after the question, Ilaria finds an entire locus for C; it happens suddenly without 

mentioning any other figural or theoretical elements. At time 02:30 and 02:39 she 

communicates an incoherent product of GP: 

GP_2: C on a straight line parallel to the segment AB. 

She performs a gesture and then she claims that, if the point C is moving on a line, 

the triangle is still right. We can easily observe that there is lack of clarity in the 

gesture and the utterances: she is talking about a perpendicular line, but she is 

moving the pen on a line parallel to AB. GP_2 is incoherent because if we consider 

a position of C within the drawn line (see Drawing 1a) and we imagine to trace AC 

and BC, then the triangle obtained is no longer right. So, the GP_2 maintains the 

constraint “fixed hypotenuse”, but leaves out the property of being a right triangle 

at C. The corresponding new configuration (Drawing 1a) seems to be quite fuzzy: 

it does not show where the solver intends to place the point C in order to construct 

a new right-angled triangle. It is also evident at time 03:06, looking at the gesture. 

In addition, she seems a little bit uncertain at time 02:39, indeed she says “if I am 

not mistaken”.  
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At time 03:06 a new GP process is undertaken and it leads the solver to yet another 

incoherent product: GP_3. Ilaria engages a sort of dialogue with the drawing. She 

is pointing to a possible new position for C on the line, but she does not seem really 

sure of her claim: she uses the modal verb “should”. Then, looking at the drawing 

she says that not all positions on the line are such that they maintain the triangle 

right. She says that if C is too far, the triangle is not right. So, she draws the two 

imagined extreme positions for the point C (Drawing 1b). Finally, she 

communicates her prediction:  

GP_3: C is on a line parallel to AB and between two projections of A and B on this line. 

The GP_3 is incoherent for the same reason why GP_2 is incoherent: if C is moving 

along the line and between the two projections, the constraint on ABC of being a 

right triangle at C is no longer maintained for any position of C. Probably this 

incoherent GP could be explained looking at the last drawing. In this picture there 

are two possible right-angled triangles: one is right at A and the other at B. We 

redrew (in red) the first one in Figure 27. If this were the case, we could claim that 

this GP is still influenced by the initial mistake on the hypotenuse. Moreover, it 

seems that in both cases the solver changes the constraints as follows: 

- “C is the vertex with the right angle” turns into “ABC has a right angle”; 

- the length of AB is maintained fixed, but AB is not ever the hypothenuse. 

 

We can notice that, in this case, the incoherent products of GP are probably 

produced because of a mistaken interpretation of the given configuration. The 

interviewer’s effort to fix the mistake was not successful.  

Figure 27 An instance of a right triangle recognized into the solver’s drawing 
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The three products of GP are incoherent because, within the reference Theory, the 

given constraints are not preserved. More specifically, in all cases the given 

constraints are modified by the solver as follows:  

- GP_1 is produced changing the constraint “hypotenuse is fixed” into the 

constraint “CB is fixed”; 

- GP_2 and GP_3 are produced considering ABC as a generic right triangle 

that could be right indifferently at A, B or C.  

6.1.2 Case (b): the solver adds constraints  

In other cases, the product of GP is incoherent because, even if the given 

constraints are preserved, the communicated new configuration maintains other 

constraints that are arbitrarily added by the solver. We show an example of this 

kind of incoherent product of GP. The excerpt belongs to Laura’s interview: 

Laura_G10_T4_P1_(00:00 – 01:16). 

Time Who What is said What is done Comment 

00:00.22 Int Consider the right 

triangle in the figure 

with the hypotenuse 

of a fixed length. 

 
Given drawing 

 

00:06.10 Stud Ok.   

00:06.25 Int A and B are fixed and 

the length of AB has 

to always remain the 

same. 

  

00:12.05 Stud Yes.   

00:13.00 Int What can you say 

about the vertex with 

the right angle? 

  

00:16.29 Stud Mmm... She rotates the sheet 

of paper. Now the 

smaller side is the 

base of the triangle: 

 

It seems that she 

orients the triangle 

in a more suitable 

way for her.  

00:26.13 Stud If...I mean does the 

vertex C  not have to 

always remain with a 

right angle can it 

change size of the 

She is pointing at C  
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angle or does it have 

to always stay right? 

00:34.00 Int What you can say 

about the vertex 

WITH the right 

angle. 

She puts emphasis on 

the “with”.  

 

00:38.06 Stud That if AB has to 

remain...fixed, the 

vertex C can move 

...well like it wants, 

in the end...[I don’t 

think] there are 

many 

limitations....for the 

vertex C. 

She is pointing to AB.  

She is pointing to C.  

She rotates the sheet 

of paper and she 

restores the original 

orientation. 

 

00:52.12 Stud And obviously if it 

moves it will no 

longer be right. 

  

00:56.01 Stud Instead if maybe you 

move it in a certain 

way, it could 

also...yes, it could 

also be right, if 

maybe...it moves a 

bit upwards so that 

...it becomes an 

equilateral 

triangle...with also, I 

mean, well, all 

sides...of 90 degrees. 

She points to C and 

moves the pen, 

tracing once a straight 

trajectory (a small 

segment) and 

repeatedly a curved 

path (a small arc of a 

circle):  

 

GP_1_(0) (gestural – 

discursive): C is the 

vertex of a right and 

equilateral triangle 

 

Window gesture 

 

Incorrect wording: 

side of 90 degrees. 

01:16.08 Stud It could become 

again a right angle, 

but you would have 

to do some 

movements, I mean 

do a movement that 

is...precise. 

She repeats the curve 

gesture: 

 

Window gesture 

In this short excerpt, we can see the process that leads Laura to communicate an 

incoherent product of GP. We see her first impression about the geometrical 



 123 

configuration at time (00:38) and (00:52). She says that is possible to move C within 

the plane, but if C is moved the triangle is no longer right. So, she takes into account 

that there exist some positions where C is no longer the vertex of a right triangle. 

Then at time (00:56), it seems that she shifts the focus onto possible positions of C 

that maintain the constraint “being a right triangle”. The two window gestures 

suggest that, in order to find other positions for C, she is trying to move C on a line 

and on an arc of a circle. In particular, the second path seems to be suitable for her 

intention, because she repeats twice the gesture and then she claims that she 

obtains an equilateral triangle. Here she communicates her incoherent product of 

GP: 

GP_1: C is the vertex of a right and equilateral triangle 

It contains two mismatched constraints on a triangle: 

- being a right triangle; 

- being an equilateral triangle. 

The first constraint is given by the task, the second is added by the solver. 

Moreover, using a mistaken wording (i.e. “sides” in place of “angles”), she stresses 

that the imagined new configuration is a triangle with three right angles. So, for 

the solver the two mismatched properties have the consequence that the triangle 

has three right angles. As is well known, an equilateral triangle with three right 

angles is an inconsistent geometrical object within the TEG. Probably, it exists only 

in the solver’s figural domain and reveals a lack of harmony between figural and 

conceptual components. So, we can easily see why the GP_1 is incoherent. 

6.1.3 Case (c): the solver removes one or more constraints 

The third case of incoherent GP occurs when the solver discards (eventually 

unconsciously) one or more properties within the set of the given constraints. Here 

an example of this kind of incoherent product of GP: Sabrina_G9_T4_P1_(00:15 – 

01:00). 

Time Who What is said What is done Comment 

00:15.22 Int What can you say 

about the vertex with 

the right angle? 

  

00:22.05 Stud That…it can be 

moved, in such a 

way that CB is…the 

length of CB is 

 She regards CB as 

the hypotenuse.  
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fixed…that is it is 

always the same. 

00:34.25 Int How?   

00:36.23 Stud I imagine 

by…lowering. That 

is, I imagine that it is 

moving along a 

circle. 

She is pointing at C and 

she moves on a curve 

trajectory: 

 

She moves the pen 

above the drawing, 

tracing a circle. 

GP_1_(2) 

(discursive – 

gestural):  

C on a circle 

[centered at B and 

with radius BC] 

 

Window gesture 

00:44.12 Int Mm. How?   

00:47.24 Stud Like this. She is pointing at C and 

traces a circular 

trajectory that intersects 

AB and ends at C:  

 

Window gesture 

00:49.12 Stud Depending on where 

I move it. 

  

00:56.26 Int Ok, show me this 

circle you imagine. 

  

01:00.24 Stud  She draws the circle: 

 
Drawing 1a 

 

The excerpt begins when the interviewer asks the first question and the solver has 

already seen the given drawing, as in the excerpts previously reported.  

Sabrina answers that the vertex with the right angle can be moved in order to 

maintain CB equal in length. The utterance reveals that she conceives CB as the 

hypotenuse of the triangle ABC and that she wants to maintain its length fixed. 
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When the interviewer asks her to explain how she intends to move the point, she 

replies she imagines to move C on a circle. The two subsequent window gestures 

allow the researcher to infer the center and the radius of the circle. So, we can 

formulate Sabrina’s product of GP: 

GP_1: C on a circle [centered at B and with radius BC] 

Finally, the drawing (see Drawing 1a) confirms the researcher’s inference about the 

center and the radius of the circle. The product of GP is incoherent because if C is 

moving on that circle, the triangle is no longer right for any position of C. In 

particular, it seems that the solver removes the constraint “C is a right angle” and 

she takes into account only the constraint upon the length of CB, which is regarded 

as the given hypotenuse.  

6.1.4 Coherent product of GP 

We show an example of a coherent product of GP looking further forward in 

Laura’s interview. The excerpt Laura_G10_T4_P1_(01:24-01:52) comes after the 

previous one. 

Time Who What is said What is done Comment 

01:24.16 Stud Both maybe towards 

the center, 

towards...towards 

more to the right. 

She is pointing to 

another point on the 

plane:  

 

Window gesture 

 

 

01:31.15 Stud If it moves... in a 

parallel way till it 

reaches …can I draw 

a figure? 

She is tracing a straight 

trajectory:  

 

GP_2_(2) 

(gestural – 

discursive):  

C at a symmetric 

position [with 

respect to the axis 

of AB] 

 

Window gesture 

01:38.01 Int  She is nodding  

01:38.13 Stud Ok, if maybe here 

[AH]...there is...I 

don’t know H. If the 

length of AH were 

equal to...ehm...BK... 

She draws a segment 

through C and 

perpendicular to AB; 

she names the point of 

intersection H. 

She starts 

constructing the 

new predicted 

point: C’. 
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Then, she puts a sign on 

AH.  

Finally, chooses a point 

K on AB and puts the 

same mark on BK.  

01:52.10 Stud ...I could move C so 

that it was 

perpendicular AB 

and it followed the 

trajectory of CH and, 

in this case, I mean to 

go back to a 

triangle...ehm... a 

right triangle, more 

or less, yes. 

She repeats the gesture 

at time (01:31) and 

draws a point.  

She connects K and this 

point with a segment; 

she connects  the point 

to A and to B with two 

segments.  

She obtains the 

following drawing: 

 
Drawing 1a 

GP_2 (gestural) 

As previously reported, the excerpt starts when the first question was already 

asked by the interviewer and the solver had produced a first GP.  

In the first line of the table, we can observe a window gesture that shows a new 

position for C found by the solver in a figural way: she only points to the new 

position without adding any theoretical elements. At time 01:31 she explains how 

she intends to move C in order to find such a position. Here we find a first instance 

of a new product of GP, which is communicated in a discursive and gestural way: 

GP_2:  C at a symmetric position [with respect to the axis of AB] 

The GP_2 is coherent with the given constraints: in that position, C is still a vertex 

of a right triangle; the length of AB does not change.  

The product needs a certain amount of interpretation because the solver only 

describes and performs her movements. She does not use theoretical elements for 

describing the product of GP, so we cannot infer exactly how she intends to find 

the new point geometrically.  

The subsequent instances of GP will clarify what the solver intends to do. Indeed, 

at time 01:38 the solver starts to construct geometrically the new position for the 

point: C’. First of all, she draws the height of the triangle passing through C. In that 

way she finds H and the length AH; she uses the length AH to find the segment 

BK in a figural way; then she repeats the window gesture and stops moving when 

the pen is at a position corresponding to K; in this way she draws the point C’. 
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Now, she connects C’ and K using a perpendicular segment. The perpendicularity 

is explicitly mentioned by the solver. Connecting C’ with A and B, she obtains the 

new configuration (Drawing 1a). 

So, Laura’s second product of GP is coherent with the given constraints within the 

TEG. Moreover, the new configuration is in line with the GP_2 and shows in a very 

clear way how the solver plans to find C’.  

6.2 Detailed and fuzzy products of GP  

When solvers communicate a product of GP, their utterances and their gestures 

can contain different amounts of details. These details can be of conceptual or 

figural nature and they can help the researcher understand and they may or may 

not be properly reported in a statement the product of GP. So, a product of GP can 

be communicated in a precise and detailed form or not. We have already 

highlighted that the fuzziness is connected with the degree of interpretation (0-1-

2) that the researcher has to use in order to describe the product of GP in detail.  

According to this perspective, we can distinguish the products of GP into: 

- detailed product of GP; 

- fuzzy or vague product of GP. 

Moreover, our data reveal that this dichotomy is reflected in a different interplay 

between solvers and drawings during the GP processes.  

In the next sections, we provide examples of several detailed and fuzzy products 

of GP and we analyze the solvers’ different interactions with the drawings. For the 

sake of clarity, we chose excerpts which belong to the same open problem: Task 4.  

6.2.1 Detailed products of GP and top-down processes 

In this section, we report two examples of detailed products of GP and we 

highlight how the solvers’ interaction with the drawing is mainly a top-down 

process. 

The first excerpt is from Filippo’s interview and it constitutes the whole first part 

of his interview: Filippo_PhD_T4_P1.  

Time Who What is said What is done Comment 

00:00.28 Int Consider the right 

triangle in the figure. 

  

00:04.06 Stud Yes...with the 

hypotenuse of a 

He is reading the task.  
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given length. A and B 

are fixed, the length 

of AB has to always 

be the same. 

00:12.19 Stud Ok. So I fixed two 

points, I construct the 

right triangle on 

them above which 

the right angle is 

opposite. 

 
Given drawing 

 

00:21.01 Int What can you say 

about the vertex with 

the right angle? 

  

00:24.15 Stud What can I say about 

the vertex with the 

right angle? 

  

00:27.14 Stud So, I can say that it is 

forced, though it 

doesn’t want to, to 

vary on a circle. With 

diameter AB. 

He keeps talking 

without producing 

gestures or drawings  

GP_1_(0) 

(discursive): the 

locus of C is a 

circle with 

diameter AB 

00:38.17 Stud What can I say about 

this vertex? 

  

00:47.13 Stud Yes, it has to stay 

there, it can’t come 

too close, it can’t go 

too far, its distance 

from the midpoint of 

AB is fixed. 

He points at C and 

moves the finger 

bringing it closer or 

taking it away from 

AB. He is pointing at a 

point within AB: 

 

GP_1 is 

reformulated in 

terms of the locus 

of the points that 

are equidistant to a 

given point.   

01:00.22 Stud What else can I 

say...about this here? 

  

This excerpt shows the very beginning of Filippo’s interview. He is a very expert 

solver: a solver who was exposed for a long time to the mathematical knowledge 

and, by virtue of this, is supposed to be expert. He answers to the interviewer’s 

question very quickly. His answer at time 00:27 contains a discursive product of 

GP: 

GP_1: the locus of C is a circle with diameter AB 
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This is a detailed product of GP, indeed the locus is described as a circle and the 

solver makes the diameter explicit. After a few seconds he also declares and shows 

through a gesture the center of the circle: the midpoint of AB.  

This is an extreme example of the interplay between the solver and the drawing: 

Filippo interacts with the drawing only in order to impose upon particular 

properties on the figure. To do this he only describes or shows through gestures 

the figural elements he was predicting; he does not draw anything; it seems that 

he controls very carefully both conceptual and figural components of the predicted 

configuration. This is an example of a top-down process because it seems that the 

solver does not need to get confirmation from the drawing.  

For the sake of completeness, we provide another example of a detailed product 

of GP produced during an interview that was longer than Filippo’s. The following 

excerpt is taken from Fiorella’s interview and it constitutes the whole first part of 

her interview: Fiorella_MD_T4_P1.  

Time Who What is said What is done Comment 

00:00.14 Int This is the next 

question. 

  

00:05.25 Int Consider the right 

triangle in the 

figure, with a 

hypotenuse of fixed 

length. A and B are 

fixed. 

  

00:14.11 Stud Mm mm.   

00:15.09 Int The length of AB 

has to always be the 

same. 

  

00:18.20 Stud Ok. 

 

Given drawing 

 

00:19.10 Int What can you say 

about the vertex 

with the right 

angle? 

  

00:31.01 Stud That I can move C 

so that it makes...a 

half circle. 

She is pointing at 

point C. She traces a 

semicircle using her 

finger: she starts from 

A, passes through C 

and ends at B. During 

She quickly 

communicates the 

product of GP: 

GP_1_(0) (discursive 

– gestural): the locus 

of C is a semicircle 
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the process she does 

not talk: 

 
She repeats the 

gesture at the end of 

the utterance. 

 

Window gesture 

00:40.19 Stud Where does this 

semicircle have its 

center...at the 

midpoint of AB. 

She is pointing at a 

point on AB:   

 

Window gesture 

GP_2_(0) (discursive 

– gestural): the locus 

of C is a semicircle 

centered at the 

midpoint of AB 

00:47.04 Stud There, the 

hypotenuse AB 

always has a fixed 

length, because I 

am only moving C. 

  

00:53.14 Stud Since C is...the 

vertex of a triangle 

that lies on a 

semicircle 

circumscribed to 

the triangle, it is 

always right, so the 

triangle always 

stays... right. In any 

place I move C. 

 Theorem  

She uses the 

Theorem in order to 

explain and support 

her GP. 

01:14.08 Int Are there other 

positions for point 

C? 

  

01:16.17 Stud So that it maintains 

this configuration? 

  

01:21.12 Stud If I 

draw...the...point 

transformed from 

C with respect to 

AB [according to 

line symmetry], so I 

send the 

perpendicular from 

Suddenly, she is 

pointing at a point: 

 
She is pointing at C 

and then at AB. She 

GP_3_(0) (gestural – 

discursive):  

C symmetric point 

with respect to AB 
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C to AB, that is I 

draw a segment 

that is always 

perpendicular to 

AB of the same 

length of the one 

that I drew before. 

So, C can…can also 

stay on the opposite 

side. 

traces with her finger a 

segment 

perpendicular to AB 

and through C. 

She is pointing at the 

segment “of the same   

length”:  

 
She repeats the first 

gesture.  

01:53.18 Stud And so, in the end C 

can be on the...can 

be, yes, lies on a 

circle with center at 

the midpoint of 

AB. 

She traces a circular 

path: 

 
She is pointing at the 

midpoint of AB.  

GP_4_(0) (discursive 

– gestural): C on a 

circle centered at the 

midpoint of AB 

 

Window gesture 

 

During the first part of the interview, Fiorella communicates four products of GP. 

Each product is carefully described. Let’s look at them in detail. 

Right after the first question, Fiorella communicates her first GP: GP_1. She 

explains verbally that C is moving on a semicircle and she produces a gesture that 

is consistent with her utterance: she traces a curvilinear path with her finger 

starting from A, passing through C, and ending at B. She performs this gesture 

twice. 

At time 00:40 she communicates a product of GP that adds some details to the first 

one (GP_2). Indeed, she explains that the semicircle is centered at the midpoint of 

AB. Moreover, she points to the drawing and in the center. At time 00:47 she 

stresses that the given constraints are maintained: if C is moving on this path, AB 

is of a fixed length and it is still a hypotenuse. She recalls a geometrical result, 

probably in order to provide evidence of her prediction: the angle C is right 

because it is a vertex of a triangle that is inscribed in a semicircle. 



 132 

During her prediction process, she uses the drawing only for tracing the figural 

elements with her finger she was predicting; she does not draw anything. In this 

case, it seems that the prediction process is supported by top-down processes: the 

solver is imagining some properties or figural elements and she shows them to the 

interviewer on the drawing. 

At time 01:14 the interviewer prompts Fiorella to explore further the configuration 

and at time 01:21 the solver communicates another GP: GP_3. She points to the 

drawing showing a new position for C and verbally describes how she intends to 

find it. Indeed, she explains she could use a geometrical transformation and she 

lists a sort of geometrical step-by-step construction. Finally, at time 01:53, she 

collects the first three products of prediction in another one: 

GP_4: C on a circle centered at the midpoint of AB 

The product of GP is detailed. As we can see looking at the utterance and at the 

corresponding gestures, the locus is clearly named (a circle) and its center is made 

explicit. 

Even during these processes of GP, nothing is drawn; the solver seems to imagine 

the new configurations and she uses the drawing only for showing to the 

interviewer what she is imagining. 

6.2.2 Fuzzy product of GP and bottom-up processes 

This excerpt is taken from Laura’s interview: Laura_G10_T4_P1_(02:11 – 05:13). It 

shows an example of a fuzzy product of GP and the solver’s interaction with the 

drawing.  

Time Who What is said What is done Comment 

02:11.28 Int Make a prediction: 

do you think that 

point C can occupy 

other positions so 

that the angle stays 

right? 

  

02:18.20 Stud Yes.   

02:19.06 Int Which?   

02:20.15 Stud Exactly, this one 

here that I just drew. 

Figure on the sheet of 

paper: 

 
Drawing 1a 

GP_2 
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02:22.12 Int Mm mm.   

02:22.25 Stud Or ... ehm ... moving 

... I don’t know, 

ehm... 

  

02:31.26 Stud  She is pointing at a 

point on the plane: 

 

Window gesture 

02:36.22 Stud It could form a... 

triangle... ehm... 

isosceles triangle, I 

don’t know if it’s also 

equilateral.  

Yes, an equilateral 

triangle with also... 

ah, no... no, nothing. 

She is moving the pen 

on AC:  she starts from 

A and she goes towards 

C.  

Then she is points at 

the angle A.  

GP_1 

It seems that she 

considers other 

kinds of triangles: 

equilateral and 

isosceles. She 

seems to be guided 

by the figural 

elements. She 

changes her mind 

very quickly. 

02:52.23 Int What are you 

thinking? 

  

02:53.21 Stud No, I was thinking 

that it has all right 

angles but that  is 

impossible...or not? 

 It seems that she 

imagines that it is 

possible to obtain 

a triangle with 

three right angles.  

Contrast between 

figural and 

theoretical 

elements.  

03:00.21 Stud Is it possible that in a 

triangle there are all 

right angles? 

  

03:04.01 Int You tell me.   

03:05.05 Stud Ehm...no, it’s not 

possible. No, then 

nothing. 

 She rejects the 

GP_1 

03:08.06 Stud I would say only...   

03:14.27 Stud Or maybe there will 

be a point in any case 

a...a point towards 

the center such 

She is pointing at a 

position on the sheet of 

paper: 

Window gesture 

 

GP_3_(1) (gestural 

– discursive):  
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that...C will be a right 

angle. 

 

C at a centered 

position [between 

C and C’] 

03:26.27 Stud Yes, the initial point 

could be here, C 

towards the center 

and A towards here. 

But I would say that 

there is nothing else... 

I don’t think there is 

anything else. 

She is pointing at the 

found three positions 

of C: 

 
Drawing 1b 

GP_2 and GP_3 

03:46.17 Int What are you 

thinking? 

  

03:48.23 Stud No, I was thinking 

about... yes, well the 

positions in the end I 

think I have only 3. 

But I was thinking 

that if maybe moving 

it in an intermediate 

way I could... 

She is pointing at the 

three points C on the 

sheet of paper.  

She is wondering 

about other 

positions between 

the three points 

she already found.  

04:00.21 Int Mm.   

04:01.21 Stud ...try finding 

another...another 

point with...  so that 

C were a…right 

angle. 

  

04:08.28 Int Mm.   

04:09.21 Stud But... I mean this one 

and this one I’m sure, 

the I also think a 

point…at the center? 

There should be a 

position in which... 

C...I mean, stays 

right. 

She is pointing at two 

of the three positions of 

C: the given one and C’. 

GP_3 

04:20.18 Int Mm mm.   

04:22.08 Stud And...or maybe not, I 

don’t know. 

  

04:35.00 Int What are you 

thinking? 

  

04:36.11 Stud Eh, I was thinking in 

what position I had 

 GP_3 
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to put C towards the 

center so that it…it is 

a right angle. 

04:50.03 Int What do you 

imagine? 

  

04:53.07 Stud Mmm... wait if I 

maybe use a piece of 

paper to do another 

right angle. 

She turns the sheet of 

paper. 

She uses the corner of 

another sheet of paper 

in order to trace the 

right angle: 

 

 

05:03.11 Stud Yes, if it were here I 

could...another right 

angle could be 

formed. 

She connects the new 

point C with A and B:  

 
Drawing 1c 

GP_3 

05:13.13 Stud So, I think there are 3 

positions.  

Yes, necessarily. 

  

As mentioned previously, when the excerpt begins Laura has already 

communicated two products of GP: GP_1 “C is the vertex of a triangle right-angled 

and equilateral”; GP_2 “C at a symmetric position [with respect to the axis of AB]”. 

Moreover, she has made explicit a new position for the point C (Drawing 1a).  

At time 02:36 she seems a little bit uncertain about her first GP and she starts 

evaluating other triangles. It seems that she is imagining a position for point C 

such that the triangle will be isosceles or equilateral. At time 02:53 she says that, in 

the latter case, the triangle has three right angles, but she seems to be uncertain. 

Probably, the conflict between the figural elements of her prediction and the 

theoretical elements “three right angles” cause her uncertainty to the extent that 

she asks the interviewer if it is possible for a triangle to have three right angles. 

Finally, at time 03:05 she rejects her first prediction. 

Although she did not succeed in describing the triangle obtained by placing C at 

the imagined position, she seems to be confident that such a position exists and 

consequently she communicates her product of GP: 
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GP_3 : C at a centered position [between C and C’] 

We can notice the fuzziness of GP_3, looking at its instances: 

- the utterance does not explain where she intends to place C (how far from 

AB); 

- the drawing (Drawing 1b) shows the new position of C, but it does not show 

either the right angle or the new triangle; 

- the gesture also does not show how she intends to construct the triangle.  

The fuzziness is confirmed by the utterance at time 04:09. Laura states that she is 

quite sure about two positions: the given one and the one named C’. Moreover, 

she conjectures the existence of the position at the center, but she is uncertain: her 

uncertainty becomes manifest at time 04:22.  

At 03:36 it seems that she is wondering where she can place point C in order to 

obtain a right angle. Its existence is no longer in doubt. She is engaging in a 

dialogue with the drawing: from time 03:26 to time 04:53 she is only looking at the 

drawing. We can infer that a bottom-up process is taking place and, in the end, 

Laura seems quite sure that another position exists for C, even if she is not able to 

draw the new triangle.  

Finally, at time 04:53, in order to cope with this difficulty, she uses an improvised 

tool: the corner of the sheet of paper. We infer that, because of the fuzziness of her 

GP, she is not able to dominate the figural elements of the configuration and she 

resorts to a physical tool. Only after she makes use of this tool, she writes the letter 

“C” near the point at the center. We can interpret this last action as the end of the 

bottom-up process: only now that she draws out the right triangle, she seems more 

confident that by placing C in her selected position the triangle is really still right.  

Nevertheless, even if she is tracing another triangle, the fuzziness of her GP still 

persists: at time 05:13 she states that there are three positions, but she uses “it 

seems”. So, she is still not sure and she only interprets what is shown in the 

drawing.   

In excerpts like this, we can notice that the products of GP appear to be fuzzy: the 

solver heavily relies on the drawing to confirm, refine and talk about these 

products. Moreover, solvers, like in the case of Laura, do not seem to be confident 

about their predictions until the drawing confirms them in a figural way.  
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6.2.3 Fuzzy product of GP: an example from Task 2 

For the sake of completeness, here is an example of a fuzzy product of GP 

produced during the resolution of another task: Task_2. The excerpt come from an 

interview with a 10th grade student: Flavia_G10_T2_P1_(03:06 – 06:07). 

Time Who What is said What is done Comment 

03:06.22 Int Ok. Do you think that 

there are other 

positions? 

  

03:11.10 Stud Ehm...there are 

other... 

She is looking at the 

drawing produced at 

time 02:45: 

 
Drawing 1b 

 

03:13.27 Int For point P.   

03:15.05 Stud Yes…   

03:21.22 Stud It could be, because 

maybe making it 

longer and changing 

the inclination, I 

could find length d, 

say it is  10 and if I 

make it even longer, 

and therefor make 

the angle BAP bigger, 

d should get longer. 

She points at P and 

traces a straight 

trajectory on AP 

moving the pen away 

from A.  

She points at M and 

traces a straight 

trajectory on MB.  

 

 

 

 

 

 

 

  

She is talking about 

possible 

movements of P and 

M on two straight 

lines. She explains 

that these 

movements change 

some features of the 

geometrical figure. 

She seems to control 

the figural 

components of the 

geometrical figure.  

GP_2_(2) 

(discursive – 

gestural): moving P 

or M, MB changes 

its length 

03:46.20 Stud Buti f I decrease P, 

also the length 

should decrease, so it 

is likely that there are 

...more than two 

She points at P and 

traces a straight 

trajectory on AP bring 

the pen closer to A. 

GP_3_(2) 

(discursive): P can 

occupy more than 

two positions in 

order for the length 

of MB is the same 



 138 

points to make d of 

this length. 

04:00.23 Int Do you want to show 

me some? 

  

04:02.26 Stud Ehm...what I said 

before, I think, it is ... 

  

04:06.06 Stud Possibly with a color, 

so you can see the 

steps I did after and 

[otherwise] I myself 

forget the main 

figure. 

She adds figural 

elements to the 

Drawing 1b.  

 

04:13.03 Int Yes. She is laughing   

04:16.13 Stud I’ll get... She points at P, 

moves the pen on a 

straight line, and 

stops, showing where 

she intends to place P:  

 

Window gesture 

04:20.04 Stud ...about this. If I take 

this here M2 and P2, 

... theoretically. 

She draws the 

symmetric segment of 

AP with respect to 

AB; she traces the 

midpoint M’: she 

traces M’B.   

 

04:34.22 Stud Very much so… the 

length we find here 

should be d2. 

She writes “D2” on 

M’B.  

 

04:46.08 Stud And another 

possibility could be, 

as I said before, one... 

 She is looking for 

another position. 

04:54.01 Stud No, but if I make it 

bigger, it stays bigger 

in any case. Because... 

  

05:02.02 Stud Or I could...I could 

also do it here. So d, 

being here, would 

obviously be shorter. 

She draws a new 

segment [AM] 

 

05:12.15 Stud And...I bring it up to 

here. 

She extends the 

drawn segment and 

connects it with B. 
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She obtains the 

following drawing:  

 
Drawing 1c 

05:17.10 Stud Or also higher, so 

that after d it goes to 

coincide, BM goes to 

coincide with our 

measure of d. 

She points at the new 

point M and rotates 

the pen towards the 

first position of M:  

 

GP_3 

Window gesture 

05:27.08 Stud But...I don’t know, I 

should try having 

exactly the measures 

set up and being able 

to move them. 

  

05:34.04 Int How do you imagine 

it? 

  

05:36.02 Stud Mmm...   

05:37.07 Int Do, like...ehm...you 

said probably there is 

another position of P. 

How do you imagine 

it beyond the 

drawing? 

  

05:44.09 Stud Ehm... I imagine it 

with an inclination of 

the angle that is 

formed BAP either 

greater or less than it, 

and based on that, 

the length of P 

changes. 

  

05:58.06 Stud I think that it would 

be enough to have it 

at any angle and then 

make P  longer or 

 GP_3 

She describes the 

method by which 

other positions of P 
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shorter till you get 

the measure you 

want. 

can be found. It 

involves only the 

figural components 

of the geometrical 

figure.  

GP_4_(2) 

(discursive):   

other positions of P 

could be found 

combining a 

translation and a 

rotation 

06:07.18 Int Ok.   

Previously during the interview, the solver had already communicated a first 

detailed product of GP: 

GP_1: P at a symmetric position [with respect to AB] 

The excerpt begins with the interviewer asking for possible other positions of the 

point P and Flavia says that there exist other positions. After 11 seconds of silence 

while she was looking at the drawing, she claims that P can occupy more than two 

positions because P could be moved back and forth along a line through AP, and 

M could be moved in order to change the angle at A. These two consecutive 

movements allow her to obtain a new position for P. The GP_2 and the GP_3 

reported in the transcription table are quite fuzzy and, indeed, the solver is not 

able to show or describe the actual position of P. In addition, we notice some 

uncertainty in her utterance: she uses “it could” and “maybe”. Nevertheless, she 

shows good figural control over the figure: she seems to be aware that the 

movement of P and M changes the length of MB, and that the described changing 

is coherent with the showed movement. 

At time 04:00 the interviewer asks the solver to show on the drawing some of these 

new positions for P. Flavia starts drawing the symmetric position of P 

communicated in GP_1: she shows approximately where P will be placed; then, 

she directly draws AP and its midpoint M’; she connects M’ and B. Then at time 

04:46 she starts drawing a new position for M. We are more interested in the latter 

process, because she proceeds differently. It seems that she finds the point through 

“trial and error”: at the beginning (time 04:54) she decides to increase the angle at 

A and she sketches the corresponding segment; she is looking at the drawing and 

she estimates that the segment AM is too short for obtaining the fixed length of 

MB; so, she extends the segment and, at a certain point, she stops drawing. At time 
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05:17 it becomes clear why: she stops because the new segment MB is such that it 

could overlap the first one through a rotation. After this dialogue with the 

drawing, Flavia explains how she intends to find the new positions of P and we 

find a new fuzzy product of GP: 

GP_4: other positions of P could be found combining a translation and a rotation 

In this example, we can also see that the same solver could communicate both 

detailed and fuzzy products of GP. Each kind of product corresponds to different 

usage of the drawing. We can claim that if the product is quite detailed the solver 

has used mainly top-down processes; on the contrary, if the product is fuzzy the 

solver has heavily used the drawing in order to support the prediction process. In 

the latter case, the solvers seem to mainly use a bottom-up process to the extent 

that they resort to physical tools. 

6.2.4 Concluding remarks on detailed and fuzzy products of GP 

The analyses of gestures, utterances and drawings allow the researcher to interpret 

the solvers’ products of GP and report them in a sentence. Depending on the 

easiness of the interpretation we distinguish the products into detailed and fuzzy.  

The following table summarizes our findings about this dichotomy.  

Detailed product of GP Fuzzy product of GP 

The researcher can easily restate the 

product.  

The formulation of the product in a 

statement requires a lot of effort. 

The statement refers mostly to the 

theoretical components of the figure.  

The statement refers mostly to the 

figural components of the figure. 

The process that leads to the product is 

mainly a top-down process.  

The process that leads to the product is 

mainly a bottom-up process. 

During the process that leads to a 

detailed product of GP, the solver 

shows theoretical control over the 

figure.  

During the process that leads to a 

fuzzy product of GP, the solver mainly 

shows a lack of theoretical control over 

the figure. 

Usually during the process, the solver 

does not make other drawings.  

The solver can produce several 

drawings or can add other details on 

the same drawing.  
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The drawings are used only for making 

an already communicated product of 

GP explicit. 

The drawings play a key role, guiding 

the process.  

6.3 The role of motion within GP processes 

In order to describe the features of the GP process, in this section we will explore 

the relationship between motion and GP processes.  

We start from the following working hypothesis: 

- when the solvers are engaged in a GP process, they could generate figural 

expectations about the given configuration; 

- the solvers can consider several figural expectations about the same 

configuration, changing some figural elements and eventually making use 

of motion; 

- the request for possible other positions of a part of the configuration can, 

but not necessarily, support the use of motion during the GP processes.  

So, the solvers could explore alternative arrangements of the configuration making 

use of motion or not. Depending on how motion is integrated into the process of 

GP, a process of GP may or may not have a dynamic dimension. So now we can 

make the distinction between products of GP that are produced: 

- dynamically or continuously, using a continuous motion;  

- statically or discretely, reconstructing the configuration starting from a new 

position of one of its parts.  

Indeed, solvers can imagine, perform or mimic a continuous movement of one or 

more parts of the configuration (i.e. points, segments); otherwise, they can locate 

these parts at a specific position on the plane and reconstruct the corresponding 

configuration.  

The first and the second point of the list represent two different approaches to the 

task, which reveal two different ways of looking at the geometrical object. In the 

former case, the configuration seems to be considered as a continuously changing 

object and the interaction with diagrams seems to be similar to the interaction that 

a solver could perform in a DGE when a point is dragged. In the latter case, the 

configuration is considered as a series of examples of the same object as if the 

solver were taking several snapshots of it. Moreover, these examples can be 
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overlapped and appear in the same drawing, or they can be drawn in several 

places on the sheet of paper. We can investigate these different approaches by 

observing the presence of motion in solvers’ productions.  

Moreover, since the dynamic dimension can affect the GP processes, we will 

discuss this point in this chapter and, in particular, we will stress how the dynamic 

dimension can intervene into a process of GP that leads the solver to a coherent 

product of GP which support a complete solution to the problem.   

As an example, here are two solvers’ final productions that were accomplished 

during their resolution of Task 4.  

 

The two productions are clearly different in nature: one is a drawing and the other 

one is a gesture. Nevertheless, as we will clarify shortly, we can compare these 

productions because our focus is on how they were produced. In both cases the 

solver is looking for other positions of C. In the first case (Figure 28 on the left), the 

solver tries to find the solution in a static way: she points at a position where she 

intends to place C; then she traces CA and CB. Her utterance confirms our 

inference about the process. While she is pointing at a specific position, she states: 

Sofia:  I was thinking of...I mean if I put it like here...I was thinking whether 

there were other points. 

Then she connects the point with A and B; she repeats this procedure many times. 

The utterance confirms a static view of the configuration. Only when she obtains 

the drawing in Figure 28 with several positions for C which respect the given 

constraints she tries to identify the locus of C. Looking at the interview, we know 

that she does not succeed in reaching the locus.  

In the second case (Figure 28 on the right), the solver continuously traces the locus 

of C and reveals that she intends to construct such locus dynamically. Her 

utterance, as well, contains dynamic elements:  

Fiorella:  I can move C so that it forms...a half circle. 

Figure 28 Instances of static (on the left) and dynamic (on the right) solvers’ productions 
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We note that the interviewer only asks what Fiorella can say about the point C. So, 

Fiorella spontaneously mentions motion in her answer. 

In the following section, we collected some illustrative instances of solvers’ 

productions which show dynamic or static components.  

6.3.1 Observing dynamism 

We can recognize several instances of dynamism in gestures, utterances, drawings, 

that are listed in the transcription table. In some cases, the dynamic component can 

be easily caught only looking at one solver’s production.  

In Table 5 we collect instances of dynamic and static gestures produced during the 

resolution of each task; it is not a complete list of all the gestures found in our data, 

because we only wish to show, for each task, some possible kinds of gestures. We 

divided the table into two categories. We will discuss in greater depth the role of 

gestures in another section (Section 6.4). 

Looking at the table we notice that the gestures can have a dynamic component 

that can be captured. Dynamic components are used during the prediction process 

with several aims:  

- to trace particular loci: (e), (i), (j), (n);  

- to mimic the use of tools (i.e. the compass): (a), (b), (f); 

- to trace imagined paths during their construction: (q), (r); 

- to manipulate a given configuration: (m).  

Dynamic Static 

Task 2 

    

(a) (b) (c) (d) 

 
   

(e) (f) (g) (h) 
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Task 4 

   
 

(i) (j) (k) (l) 

Task 5 

 
 

 
 

(m) (n) (o) (p) 

Task 6 

  
 

 

 

(q) (r) (s) (t) 

 

The static gestures are used during the prediction process with the following aims: 

- to mimic the use of tools (i.e. the ruler): (c), (d), (k); 

- to point at a particular position of one part of the configuration: (g), (h), (l), 

(o), (p), (t);  

- to show paths: (s). 

We can also recognize dynamism in the utterances. In Table 6 there are some 

examples of utterances with dynamic and static components taken from the 

interviews. In Table 6 we use bolt type to highlight the dynamic and static 

components. In our data, we identify dynamism in the following cases: when the 

Table 5 Some instances of dynamic and static gestures that were performed during the 

resolution of the given tasks 
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solvers use verbs that communicate motions; when they talk about events that will 

take place in the future. Otherwise, we find position, location and existence verbs. 

Utterances with dynamic components Utterances with static components 

I can rotate MB. If the length has to always be d, M is on 

the other side.  

If I move point M to maintain the length 

d, a circle will be created. 

Point M is always at the same distance 

from A and from P. 

If I put it closer, we could have CM 

congruent to CB. 

It’s enough to put C on the perpendicular 

bisector of the segment.  

I move C perpendicularly to AB. If I draw the image of C with respect to 

AB, C can be on the other side. 

In Task 6, we have few examples of utterances with static elements, because right 

from the beginning the questions themselves ask for possible movements of the 

points within the configuration. Indeed, the interviewer explicitly asks what 

happens if one of the points is moving along particular loci and, inevitably, the 

solvers mostly use dynamic elements to answer, frequently using the same verbs 

used by the interviewer.  

Finally, we can also observe dynamism within drawings. The “paper and pencil” 

is a static environment: drawings cannot be moved, and points cannot be dragged 

continuously as a solver can in a DGE. Nevertheless, we can find an intention of 

motion also in drawing. A feature that communicates dynamism is the use of 

arrows (see Figure 29).  

 

However, in our sample, this is not the only marker of dynamism in drawings. 

Indeed, in some cases, looking only at one solvers’ production (i.e. drawing, 

gesture, utterance) is not enough to capture dynamism; moreover, an isolate 

product could be misleading. Instead, we can capture dynamism by looking at the 

Table 6 Some instances of utterances with dynamic and static components inspired by the 

actual solvers 

Figure 29 Examples of drawings which communicate a dynamic dimension 
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interaction between the solver and the drawing. Since the drawing has a static 

nature (it is actually a picture), the final drawing alone could not reveal how it was 

constructed. Instead, we can conceive the figure as being made up of dynamic 

components or of static components. For example, looking only at the picture in 

Figure 28 (on the left) an observer could think that it is a drawing with a dynamic 

component, because we see many triangles in the same picture and this is a 

different situation with respect to drawing a lot of sketches of the same figure in 

several positions on the plane. However, analyzing the whole interview we 

discover that the solver was trying to find a locus by investigating many discrete 

positions of C. So dynamism can be captured also by analyzing drawings together 

with the gestures and the utterances that accompanied the construction of it. This 

point will be further clarified in the following section.  

In summary, the production and communication of new possible arrangements 

seem to be a complex process, where gestures, words, and drawings interact step 

by step. So, in order to study the dynamic components of GPs, it is more useful to 

conduct both synchronic and diachronic analyses. We did this by using the 

transcription table, where we can see at a glance what is said and done; moment 

by moment, dynamism could be recognized in all solvers’ productions at the same 

time, only by looking at a line of the table. Indeed, in each column we can see how 

utterances and gestures are developed by the solver during the interview.  

In the following section, we will describe in greater depth how we recognize 

dynamism looking at the interaction between solvers’ productions. Moreover, we 

will provide examples of both processes of GP with and without a dynamic 

dimension. More specifically, our intention is to analyze the possible role of the 

dynamic dimension within a GP process, including also how dynamism could 

affect the solvers’ reaching of a complete or coherent solution to the problem.  

6.3.2 Dynamic and static approach: examples from Task 5 

The first two examples come from solvers’ resolutions of Task 5. Unlike the other 

tasks, this task requires the solver to undertake, for as long as possible, prediction 

processes without a given or sketched drawing. In this case it seems that 

dynamism plays an important role. Indeed, it seems that the ability of the solvers 

to imagine continuous transformations of the figural elements leads them to 

express a product of GP without using any drawings.  

The following excerpt provides examples of GP processes with a strong dynamic 

dimension. The first is from Marta’s interview: Marta_MS_T5_P1_(00:23 – 02:44). 
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Time Who What is said What is done Comment 

00:23.16 Int Make a prediction: is 

it possible that CM is 

congruent to CB? 

  

00:31.04 Stud Is it possible that CM 

is congruent to CB? 

  

00:34.23 Int Mm mm.   

00:35.15 Stud So...I have a 

triangle...M 

midpoint, perfect. 

CM...great, so it is a 

median. Ok. 

She is looking at the 

step-by-step 

construction. 

 

She recalls some 

theoretical elements 

(the triangle, the 

midpoint) and 

introduces a new one 

(the median). 

00:45.06 Stud CM can be 

congruent to CB...I 

think so, I mean 

that…ehm... 

She is looking up 

and ahead. 

 

00:52.27 Stud If CM is congruent 

to CB, I have a 

triangle BCM that is 

isosceles and, just a 

bit big, I have 

another triangle 

ABC that was my 

initial triangle, I 

mean. So…eh… 

While she is talking 

about the triangle 

ABC, she rotates the 

right hand: 

 
While she is talking 

about the initial 

triangle:  

 

She reconstructs the 

configuration starting 

from an isosceles 

triangle (CMB) and 

manipulating one of 

its sides in order to 

obtain the triangle 

ABC. 

 

Window gesture 

 

GP_1_(0) (discursive): 

BCM is an isosceles 

triangle 

 

 

01:11.27 Stud Yes, I think that it is 

possible. 

  

01:15.07 Int Ok. Make a drawing 

of what you 

imagined. 

  

01:20.27 Int So, I have a 

triangle... 

She draws a triangle  
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01:29.09 Int So I have a midpoint 

M and now I need to 

draw CM. 

 
Drawing 1 

 

01:36.22 Stud Perfect. And...no, I 

don’t like it like this. 

I’ll try more... 

  

01:40.21 Stud  She starts a new 

drawing 

 

01:43.01 Stud So let’s say I start 

with CB and CM, 

like, the same. 

First of all, she 

draws the triangle 

BCM 

It seems that she 

repeats the 

construction 

previously described.  

01:48.20 Stud I made a mistake, 

this is equal to this 

one. 

She marks two hash 

marks on CB and 

CM  

 

01:51.23 Stud To this one 

extended...by 

another 

segment...and this 

one here. Makes a 

triangle.  

She extends BM 

 

 

02:01.01 Int Mm mm.   

02:01.23 Stud This is what I 

imagined. 

 
Drawing 2a 

She marks on the 

drawing the property 

“M is the midpoint of 

AB”: she adds the 

same mark on BM and 

MA in order to 

highlight the 

congruence. 

02:03.22 Int Ok.   

02:12.11 Int Are there other ways 

in which CM can be 

congruent to CB? 

  

02:17.02 Stud CM can be 

congruent to CB? 

So... 

  

02:23.03 Stud In what sense? I 

don’t understand. 

  

02:24.18 Int Imagine moving 

point C. 

  

02:26.16 Stud Ok.   
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02:27.26 Int Do you think that 

there are other 

positions for point C 

so that CM is 

congruent to CB? 

  

02:33.29 Stud Ok, so any 

translation of C 

downwards  or 

upwards, parallel to 

BA, maintains this 

property. So... 

She draws two 

arrows:  

 
Drawing 2b 

“downwards or 

upwards”: 

 
“parallel”: 

 

She says “parallel”, 

but the gesture 

communicates the 

property of 

perpendicularity.  

Window gesture 

The gesture is more 

coherent than the 

words.  

 

GP_2_(1) (discursive 

– gestural): C on a line 

perpendicular to AB  

 

She does not mention 

the point where the 

perpendicular line 

intersects the segment 

BM. She does not seem 

to conceive the 

perpendicular line as 

the axis of BM. 

02:44.20 Stud CB will always be 

congruent to CM, 

therefore yes! 

  

The excerpt is from the very beginning of Marta’s interview and it shows what 

happens right after the first interviewer’s question. 

At time 00:52 we observe that the solver uses the theoretical element “CM equal to 

CB” for communicating a conditional statement about the triangle BCM, using an 

expression that is quite similar to an “if…then” statement. She deduces that if CM 

needs to be congruent to CB, then BCM is an isosceles triangle. It seems that the 

theoretical element given in the problem leads the solver to think of a specific 

configuration. Here we identify a product of GP, GP_1: at time 00:45 the solver 

says that it is possible to have CB congruent to CM and then she explains why and 

how it is possible. So, our inference is that the GP process has started before, and 

it ends when the solver communicates the detailed product. Finally at time 01:11 

the product of GP is confirmed. It seems that the dynamic component plays a role 
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in this process: starting from the specific configuration of the triangle CBM 

(isosceles triangle), Marta dynamically constructs a new configuration for the 

given triangle ABC. She joins her hands, mimicking the two equal sides; she leaves 

the left hand fixed and moves the right hand continuously, maintaining the fingers 

of the two hands connected. So, ABC is obtained by a dynamic transformation of 

an isosceles triangle.  

This particular construction is reflected in the second drawing she approaches at 

time 01:40. First of all, she draws an isosceles triangle and uses a sign to highlight 

that the sides are equal; then she extends the segment BM, until she constructs a 

segment with the same length; she uses another sign to stress that AM is equal to 

BM; finally, she connects C and A with a segment. So, the initial configuration is 

the isosceles triangle CBM.  

When the interviewer asks for other possible positions of C, she communicates a 

new product of GP (GP_2) and her productions show a large use of dynamism. 

Indeed, in her utterance she explains that she intends to move C using a translation 

along a straight path; she also stresses the use of motion within the drawing, 

sketching two arrows. Finally, the first gesture shows the motion that she is talking 

about. The second gesture does not seem to be coherent with the corresponding 

utterance, but we will discuss this topic in another section (Section 6.4). 

So, at time 02:33, the dynamic dimension is evident in Marta’s utterances, gestures, 

and even in her drawing. Then, at time 02:44, she eliminates the dynamic 

dimension to move to a conditional statement. Paraphrasing what she said, we can 

formulate it like this: if C is on the described straight line, CB will be congruent to 

CM. We can see that in the last utterance there is no mention of movements, the 

verb does not reveal uncertainty, and she does not produce gestures.  

This excerpt shows the steps of a process of prediction which has a dynamic 

dimension: 

- the solver imagines a specific position for C in order to respect the given 

constraints; 

- then she predicts and describes an entire locus such that, moving C on it, 

the configuration maintains the constraints; 

- finally, she crystallizes the property into a statement.  

Moreover, it shows how we can find instances of dynamism both in gestures and 

in utterances. In this case, the drawing also reveals the presence of a dynamic 

dimension.  
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Agnese uses a quite different approach to the task. During her resolution process, 

she produces several instances of the configuration which respect the given 

constraints. Her prediction processes are undertaken without an evident dynamic 

dimension. Let us analyze this in detail.  

All the following excerpts are taken from the first part of Agnese’s interview. Since 

it is quite long, we analyze only some relevant sequences. The first one is 

Agnese_MS_T5_P1_(03:12 – 04:56).  

Time Who What is said What is done Comment 

03:12.01 Stud AB and the midpoint. She starts drawing C:  

 

 

03:12.23 Int Then imagine... 

imagine only the third 

vertex. 

   

03:17.26 Stud Ok. I want that CM 

is... 

 

 

03:21.17 Int If it is possible that 

CM is congruent to 

CB. 

  

03:29.03 Stud CB yes, because no.  GP_1_(2) 

(discursive): CM 

could be 

congruent to CB  

03:32.24 Int How?   

03:36.04 Stud CM CB. So!   

03:40.24 Stud Can I draw?   

03:42.01 Int Of course.   

03:46.04 Stud Or maybe...CM...CB   

03:47.19 Int Mm.   

03:50.00 Stud No, no no.   

03:53.24 Stud This is CB.  She draws CB   

03:55.26 Int Mm mm.   

03:56.22 Stud So I have this triangle. She connects C and A  

04:02.01 Stud And CM. She connects C and M. 

She obtains the 

following drawing:  
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Drawing 1a 

04:04.14 Int Mm mm.   

04:05.28 Stud I want that CM is 

congruent to CB. 

She writes the 

mathematical 

relationship of 

congruence between 

CM and CB. 

 

04:13.22 Stud So...   

04:19.16 Stud It goes...one side is 

always shorter than 

the sum of the other 

two. 

 Theoretical 

element  

04:29.20 Stud For sure. I mean...   

04:35.25 Stud ...CB is always less 

than CM plus MB. 

 The theoretical 

element applied to 

the configuration.  

04:39.09 Int Mm mm.   

04:40.13 Stud Right away!   

04:44.01 Int Yes, I was asking you 

to predict whether it 

is possible for CM to 

be congruent to CB. 

  

04:49.17 Stud  She writes the 

mathematical 

relationship: 

CB<CM+MB 

 

04:56.17 Stud CB plus MB. That is 

you would like for 

this triangle here to 

be isosceles. 

 GP_2_(0) 

(discursive): CMB 

is an isosceles 

triangle  

She does not seem 

to be aware that 

GP_2 is a coherent 

answer to the 

question.  

Before the excerpt, Agnese has attempted twice to describe the configuration that 

she was thinking about, but she was having trouble and asked if she could draw 

something. The excerpt starts when the interviewer allows her to draw.  
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Looking at Agnese’s first two gestures we can notice the absence of a dynamic 

component. At time 03:12 and 03:17 she is pointing at a possible position of C and 

she is mimicking the corresponding side of the triangle. Then she says that CM 

could be congruent to CB and we recognize a product of GP: GP_1. Probably the 

position of C that she pointed to leads her to the solution, coupled with the fact 

that, as she said, she does not see any reason why the two segments cannot be 

equal.  

She completes the drawing starting from CB and then constructing CM. In Drawing 

1a CM and CB seem to be congruent, but this does not seem to satisfy her. She is 

wondering why the two segments could be congruent and, indeed, she introduces 

two mathematically advanced theoretical elements at time 04:19 and 04:35.  

Finally, at time 04:56 she communicates a product of GP: 

GP_2: CMB is an isosceles triangle 

This is a coherent answer to the task, but she does not seem to be aware of it: it 

seems to be more like a rephrasing of the given question because in the utterance 

she stresses that is the interviewer who wants the triangle to be isosceles. What 

happens in the following excerpt confirms this inference: 

Agnese_MS_T5_P1_(05:53 – 07:37).  

Time Who What is said What is done Comment 

05:53.15 Stud So, I should 

construct an 

isosceles triangle. 

 GP_2 

05:57.10 Int Ok.   

05:59.07 Stud Here and so...or have 

the...I mean I should 

show, I mean that I 

want the sides. If I 

consider the triangle 

CMB. 

She marks the 

congruence of the 

angles.  

 
Drawing 1b 

 

06:13.24 Stud And...I want it to be 

isosceles. 

 GP_2 

06:16.23 Int Mm mm.   

06:17.01 Stud I have to necessarily 

prove that in this 

case, the base angles 

are congruent. So, 

 She is looking for a 

mathematical 

proof of GP_2. 
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that CMB is 

congruent to CB... eh 

so that the angles, eh! 

06:35.16 Stud CBA. Can I?   

06:38.14 Int Yes.    

06:41.05 Stud A, B and I get M. She starts a new 

drawing. 

 

06:57.17 Stud I want that the angles 

at the base are 

congruent. I mean... 

She is pointing at a 

position for the point 

C:  

 

 

07:02.29 Stud Eh, I want that the 

angles at the base...so 

this. 

She draws a segment 

starting from B. 

 

07:12.10 Stud This [angle at M] is 

equal to this [angle at 

B]. So considering 

that it is a free-hand 

drawing, so it is 

quite limited. 

She connects C to M 

and B; she marks the 

angles at M and B 

within the triangle 

CMB.  

She only constructs 

the triangle CMB 

and she focuses on 

it. 

07:16.17 Int Yes.    

07:20.15 Stud I drew...the two...the 

two  congruent 

angles. 

  

07:29.22 Stud I mean the angle 

CBA and the angle 

BMC I drew them 

congruent. 

  

07:37.13 Stud Ehm...the 

intersection of the 

...of C... that is the 

intersection, the 

intersection, yes,  I 

called the point of 

intersection of the 

sides and so... I 

constructed the 

triangle ABC in 

which CB is 

congruent to CM. 

She connects A and C: 

 
Drawing 2 
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At times 05:53 and 06:13 she repeats the GP_2, respectively as a goal and to 

rephrase a constraint upon the figure. Then she focuses on the angles and she tries 

to obtain a position of C such that the two angles of the triangle CMB are 

congruent. At time 06:57, she places C at a specific position and draws CB, forming 

a specific angle with AB; she constructs CM as a side such that the angle CMB is 

congruent to the angle CBM; finally, she connects C and A.  

In this excerpt we do not find any dynamic dimensions. After few seconds Agnese 

sketches another drawing using the same approach (see Figure 30): starting from 

AB and the midpoint, she draws CB with a fixed angle; she traces the 

corresponding side CM; she connects A and C with a segment.  

 

The lack of dynamism leads the solver to investigate some extreme configurations 

as a different case of the problem, as we can see in the following excerpt: 

Agnese_MS_T5_P1_(08:56 – 11:24). 

Time Who What is said What is done Comment 

08:56.10 Stud Let’s try another... 

obtuse. 

She starts a new 

drawing.  

The procedure is 

the same as 

before: first of all, 

she draws CB; 

then she tries to 

draw CM in such 

a way that it 

forms the same 

angle with AB.  

09:01.08 Stud With this...I only need 

to see if it fits. 

  

09:05.03 Stud This is the point M, I 

want this angle. 

She draws an angle at B 

greater than 90° 

 

09:12.14 Stud Wow!  

 

 

 

09:18.15 Stud This [B] is an obtuse 

angle, so...I need to 

put some restrictions 

 Theoretical 

elements 

Figure 30 A picture of Drawing 2 sketched by Agnese during the resolution of Task 5 
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on the...that has to be 

between 0 and 90. 

09:32.11 Stud I mean it cannot be an 

obtuse angle because 

the angle in... BMC is 

not...I mean has to... 

then I couldn’t 

construct the triangle 

that has to have the 

sum of its internal 

angles to be 180. 

 Theoretical 

elements  

 

09:53.28 Int Mm mm.   

09:55.05 Stud I mean if I wanted to 

construct an obtuse 

angle... 

  

10:01.27 Stud ...congruent to this 

[B]. 

She is pointing at B.  

10:09.16 Stud And that has a side in 

common with MBC. I 

mean that the side MB 

is in common. 

She is pointing at M.  

10:18.13 Stud I mean this has to be 

like this [segment 

AB], and for this one 

to be obtuse ... I mean 

for it to be equal to 

this [angle at B] it 

should have been this 

[MC]. 

She draws MC starting 

from BC: 

 

 

10:35.16 Stud So in this way, I mean 

here I did not 

construct the triangle, 

I mean I do not have 

points of intersection, 

because... 

 
Drawing 4 

 

11:02.20 Int Ok. Where would you 

say it is...say, based 

on... where would you 

say... ehm... 

  

11:08.05 Int What positions can C 

take in order for CM 

to be congruent to CB? 

  

11:14.22 Stud So...CM...   
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11:24.17 Stud C can be from A, I 

mean...C has to be 

such that the angle 

ABC can be between 

0 and 90. 

 She restricts the 

exploration to the 

half plane above 

AB.  

She recalls the 

theoretical 

element 

introduced at 

time 09:18. 

She starts exploring a configuration where the angle at B is greater than 90°. She 

draws the segment AB, the midpoint M and a segment that forms with AB such an 

angle. Then she starts wondering how the configuration can be completed in order 

to obtain a triangle and she draws a figure which maintains the rephrased 

constraint “two equal angles”. Looking at Drawing 4, she concludes that the angle 

at B must to be smaller than 90°. We observe that she restricts her exploration to 

the half plane above AB, and that she does not seem to be aware that Drawing 4 

contains a possible new arrangement of the configuration: the one obtained by a 

line symmetry of C. We believe that possibly a stereotyped image of the triangle is 

influencing Agnese’s exploration.  

In Agnese’s interview, we are not able to find any dynamic dimension: the 

utterances do not contain any words which refer to movement or motion; she 

produces few gestures and only for pointing at particular positions of a point or of 

a segment. Even the interaction with drawings shows a static dimension. Indeed, 

whenever she explores the problem, she produces a new drawing (see Figure 31).  

 

Possibly, the use of different drawings does not allow her to reach a more complete 

solution. After GP_2, she does not make explicit other products of GP. It seems 

that she sees the configurations shown in her drawings as several disconnected 

instances of the figure and the lack of dynamism restricts the possibilities that the 

solver is willing to explore. 

Figure 31 Pictures of the several drawings produced by Agnese during the first part of the 

interview 
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Moreover, we can notice that the two solvers find that the isosceles triangle is one 

of the useful properties for reaching a complete solution. So, we expected that 

Agnese would find the locus of C, but she did not. So, what made the difference 

could be actually the different dynamic dimension of the undertaken processes. 

Indeed, in both cases, the configuration is considered to be composed of a triangle 

ABC that contains an isosceles triangle CMB. However, Marta seems to conceive 

ABC as a triangle obtained through a dynamic transformation of CMB; instead, in 

Agnese’s interview, we only recognize a static approach to the task. Even the locus 

of C is dynamically described by Marta and it seems to be conceived as a dynamic 

transformation of the same vertex of the triangle CMB; instead, Agnese explores 

discretely the configuration, sketching several drawings which seem to impede the 

solver to find the locus.  

6.3.3 Dynamic and static approach: example from Task 2 

The second two examples come from the resolutions of Task 2, a complex task 

where the two loci must be constructed carefully to reach a complete solution. In 

this task also the dynamic component seems to play a role in leading quite quickly 

the solver to a first impression of the solution.  

The following excerpt provides examples of GP processes with a strong dynamic 

dimension. It is from Marta’s interview: Marta_MS_T2_P1_(01:04 – 03:13). 

Time Who What is said What is done Comment 

01:04.19 Int What can you say 

about the point P? 

  

01:08.06 Stud What can I say 

about P, ehm... 

  

01:16.10 Stud Ok. So if A and B 

are fixed, it means 

that also this 

distance here [AB] 

will be fixed. 

She adds “c” on the 

drawing:  

 
Drawing 1b 

Theoretical 

element 

01:25.24 Stud So.   

01:27.29 Stud So this distance... 

So this distance. I 

mean, I want to 

understand if 

point P can move 

or not. 

 She spontaneously 

decides to explore 

the configuration 

dynamically, 

considering 

whether the point 

P is fixed or not. 
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01:34.20 Stud So, the distance d 

is fixed, A and B 

are fixed, so... 

 Theoretical 

element 

01:41.23 Stud Their distance is 

fixed, perfect, but 

obviously d could, 

although it’s fixed, 

it could... move 

let’s say. 

She fixes her left hand and 

moves the right hand, 

moving away and tracing 

an arc of a circle:  

 

Then she only moves her 

right hand, tracing an arc 

of a circle: 

 

Window gesture 

Using two 

different gestures, 

she mimics the 

movement of M on 

an arc of a circle. 

 

GP_1_(2) (gestural 

– discursive): 

several positions 

of MB  

 

Anticipatory 

Intuition 

01:49.12 Stud And so AM can 

change length, 

therefore also MP 

and so also AP, so 

P can move within 

certain limits 

obviously. 

 GP_2_(2) 

(discursive): 

several positions 

of P  

02:05.13 Stud I guess I need to be 

precise. So ehm... 

  

02:11.15 Stud  She puts her right hand 

open on the drawing: 

 

 

02:15.07 Stud  She moves her right hand 

as before: 

 

Window gesture 

(GP_2) 
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02:18.03 Stud  She starts a new drawing, 

following these steps: 

segment AB, labeled “c”; 

segment with an endpoint 

at B, labelled “d”; segment 

AP; point M.  

 

02:22.02 Stud B, like this. So here 

we have a d, I’ll 

draw it like this. 

 
Drawing 2 

 

02:32.10 Stud So.   

02:35.25 Stud This could be...M 

here. 

  

02:47.29 Stud  She puts the pen on the 

drawing at a position 

parallel to MB.  

She still uses the 

first drawing. 

02:49.18 Stud Ok, basically d 

can move. 

She rotates the pen. 

 

Window gesture 

It seems that the 

pen (or MB) 

represents the 

radius of a circle 

with center at B. 

02:54.02 Stud It is as if B were 

the center of a 

circle and d can 

move... 

She leaves the pen and 

rotates her hand as at time 

(02:15).  

GP_3_(0) 

(discursive – 

gestural): [M on a] 

circle C(B,d) 

Window gesture 

02:58.10 Stud It is a kind of 

radius for this 

circle, and so it can 

move. 

 GP_3  

03:02.13 Stud Since A, B are 

fixed and we leave 

them there 

therefore the 

segment AM and 

that is the 

segment AP will 

follow that... the 

movement of d I 

mean. 

She is pointing at a point 

on the drawing with her 

index finger of the left-

hand and at P with the 

index finger of her right-

hand.  

While the index finger of 

the left-hand is fixed, she 

is moving the other index 

finger tracing a 

curvilinear path:  

Window gesture 
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03:13.14 Stud So also P actually 

will be able to 

move, it will 

move along a 

circle. 

She moves her finger 

along a curvilinear path:  

 

GP_4_(1) 

(discursive – 

gestural): P on a 

circle 

 

Window gesture 

 

The excerpt is from the beginning of Marta’s interview. At time 01:27 the dynamic 

dimension is spontaneously introduced by the solver. After the interviewer’s 

question about the point P, she decides to investigate whether P could move. We 

stress that the interviewer’s question does not contain any reference to motion. At 

time 01:41, the solver focuses on MB and communicates her first product of GP: 

GP_1. Here we find two instances of dynamism: the utterance contains verbs that 

express motion and the gesture is dynamic. The solver mimics the rotation of the 

segment MB, which is used as a radius of a circle. Initially, the two hands are close 

as if they are the same segment MB; then, while the fingers of the two hands are 

touching, the left-hand stays fixed and the right-hand rotates, describing a small 

arc of a circle. 

The second GP is produced as a consequence of the first one. The logical 

connection is evident if we consider the very beginning of the utterance at time 

01:49: the solver uses “and so” and “therefore”. This utterance also contains a 

reference to motion.  

In order to reach a more complete solution, the solver keeps on moving her hand 

on the drawing, mimicking a rotation. The gesture shows a dynamic component.  

At time 02:49, a rich sequence of utterances and gestures starts, ending with two 

consecutive products of GP. Initially, the solver says that MB could be moved, and 

we infer from her gesture that she intends to rotate the segment. The gesture is 

continuous, and we infer that she conceives MB as a radius. The following 

utterance, at time 02:54, contains a product of GP that confirms our inference: 

GP_3: [M on a] circle centered at B and with radius d 



 163 

Then she also communicates a new product of GP, GP_4, addressing the positions 

of P, which are found as a consequence of the movement of M. We find evidence 

of this connection looking at what happens at times 03:02 and 03:13. The solver 

says that the segment AP will follow the movement of MB and she shows the 

motion using a gesture. Both the utterance and the gesture have a dynamic 

component. Then, she says that also P could be moved on a circle; looking at the 

words at the beginning of the utterance, we infer that this is considered a 

consequence of the movement of MP. In this case, as well, the utterance and the 

gesture have dynamic features.  

Marta undertakes several processes of GP which lead her to communicate four 

products. Each process has a strong dynamic component, which is evident in her 

utterances and mostly in her gestures. We notice that the possibility of motion is 

not introduced or pushed by the interviewer, but it seems to be a spontaneous 

direction of investigation undertaken by the solver. Moreover, in the entire 

excerpt, we do not find any hints by the interviewer.  

Dynamism seems to play a role in helping reach a first idea of the solution. Indeed, 

the supposed movement of M induces Marta to investigate the possible motion of 

P, which leads her to infer the locus of P. Obviously, this is only a first impression 

of the solution. Indeed, GP_4 is not very detailed, but it is coherent enough to 

become a starting point for further investigations. 

The following excerpt is different in that it provides an example of a prediction 

process that does not contain any evident dynamic dimension. We will see that 

neither gestures nor utterances contain dynamic elements, and this seems to lead 

the solver to a very rigid final configuration. The excerpt is from the first part of 

Margherita’s interviews: Margherita_G13_T2_P1_(02:16 – 06:05). 

Time Who What is said What is done Comment 

02:16.29 Int So I will read the last 

sentence over again. 

A and B are fixed and 

the length MB has to 

always be d. What 

can you say about P? 

 

 

 

02:29.20 Stud So... point P is as 

distant from M as A 

is distant from M. 

Ehm... 

 Theoretical element: 

equidistance  
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02:54.05 Stud And it is also always 

distant from B. No?! 

Because... 

  

03:01.24 Stud Because if d is always 

...is constant. No, it 

can’t be moved...and 

A and B are fixed. If d 

can’t change, M 

cannot move along 

AP...so is the distance 

of P from B always 

the same? 

The figure was 

already drawn and 

is the following: 

 

Drawing 1a 

 

03:28.00 Int Is it a question?   

03:29.08 Stud I don’t know. Ehm... I 

can only think of this. 

  

03:34.17 Int Ok.   

03:36.11 Stud Even though…also 

all of the segment AB 

is always the same. 

  

03:39.27 Int Show me how.   

03:43.24 Stud Mm...what do you 

mean? 

  

03:47.05 Int Don’t worry. 

So...Make a 

prediction. 

  

03:50.27 Stud Yes.   

03:52.10 Int Do you think that 

point P can occupy 

other positions? 

  

04:01.11 Stud I don’t think so!   

04:03.00 Int Why?   

04:04.03 Stud Because if A and B 

are...have to always 

be here...and distance 

d is fixed... 

She is pointing at A 

with a finger and at 

B with a pen.  

 
She is pointing at A 

with a finger and at 

M with a pen.  

 

04:17.18 Stud Point M has to 

always be this. 

She is pointing at A 

with a finger and at 

M with a pen.  

 

04:22.03 Stud Well, it could be on 

the other side, it 

She is pointing at a 

point on the plane:  

GP_1_(1) (discursive 

– gestural):  
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could be the mirror 

image. 

 
She is pointing at B. 

The she is turning 

over the pen with a 

circular movement 

towards herself:  

 

P symmetric point 

[with respect to AB]  

 

Initially she points at a 

position where she 

expected to find the 

point P.  

Then she produces a 

Window gesture: she 

performs line 

symmetry of P as a 

rotation around AB. 

Anticipatory 

Intuition 

04:26.21 Int What?   

04:28.05 Stud For example...I don’t 

do it very well, but 

more or less...If I put 

P here. 

She draws a second 

point P:  

 
She draws AP 

GP1 (gestural) 

 

Window gesture 

 

She draws the point P 

as the symmetric point 

with respect to AB.  

04:44.26 Stud And then there will 

be point M...here. 

She draws the point 

M 

 

04:54.11 Stud And here the 

distance d will 

always be the same. 

She draws the 

segment MB:  

 
Drawing 1b 

 

05:02.29 Stud Otherwise...it could 

also be... 

  

05:15.23 Stud It could also be over 

here! No, well, 

absolutely not! 

Mmm...Also because 

it needed to start 

form A, right? So it 

can’t...does it have to 

start from A? Yes. 

She points at B and 

moves along a path 

from B to a certain 

position (of M):  

Window gesture 

(about the possible 

position of M), but it is 

quickly rejected. 
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No, I think this is the 

only one. 

 

05:36.12 Stud Because if d has to 

always be that. I 

think... 

 It seems that she 

interprets “the same 

length” as “the same 

position on the plane”.  

05:40.27 Int Make a prediction: 

imagine...mmm...do 

you think that P can 

occupy other 

positions so that MB 

stays of the same 

length d? 

  

06:00.06 Stud I think it is this one. 

This is the only 

solution. 

  

06:05.11 Int Ok.   

This excerpt starts with the same prompt from the interviewer about the point P. 

Nevertheless, the two solvers’ approaches are different. Margherita answers with 

several utterances (at times 02:39, 02:54, 03:01, 03:36) which do not contain any 

dynamic features. They only show some crystallized properties, communicated 

through static verbs (i.e. is distant, is constant) and adverbs (i.e. always). Verbs 

that communicate motion are used only for denying the possibility of movement. 

We can notice that also the gestures communicate the absence of motion: she keeps 

on talking without performing any gestures.  

At time 03:52, when it seems that her solution process is finished, the interviewer 

tries to trigger another one. She asks if there exist other possible positions for P. 

The solver says that she does not think so and she explains why. Utterances at time 

04:04 and 04:17 show the same usage of verbs and adverbs of the previous 

utterances. In this case, she produces gestures, but only for pointing at specific 

points of the configuration. 

So, until now the whole configuration, as well as each part of it, is fixed for 

Margherita. Suddenly, at time 04:22 a new solution arises and the solver 

communicates a product of GP: P could be at a symmetric position with respect to 

AB. Looking at the gesture, we can see that Margherita first points at the new 
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position of P and then she shows how she can reproduce the configuration starting 

from this position. The gesture provides a window onto her process: it seems that 

she is able to find a new configuration by imagining a rigid transformation of the 

whole drawing. At time 04:28 she starts drawing a new sketch: she traces the new 

P and, starting from it, she completes the drawing tracing out the other segments. 

Similarly to Agnese, the solver places a part of the configuration (point P) in a 

position such that the given constraints are maintained and then she reconstructs 

the whole configuration. 

At time 05:15 she tries to find another solution and she places P at a particular 

position on the plane. She quickly rejects this possibility and at time 05:36 she 

explains that the position communicated in GP_1 is the only one, right because “d 

is fixed”. Even in this sequence we can notice a strong static dimension.  

Finally, at time 06:00 Margherita repeats that the position included in GP_1 is the 

only one possible. One could conclude that Margherita makes a mistake on the 

constraints and she changes the invariance of the length of MB into the fixedness 

of the segment. However, this does not seem to be the case, because otherwise she 

would not have been able to find the symmetric position of MB, which she did. 

More likely, she conceives the configuration as very static and is not able to 

communicate other possible positions for P (her attempt in this direction fails). 

Possibly, she feels the necessity to give the interviewer an answer because she 

pushed her in this direction. So, she chooses a symmetric position for P.  

This excerpt provides an example of processes of prediction, undertaken during 

the resolution of another task, without an evident dynamic dimension. The 

utterances make use of static verbs and communicate some general properties of 

the figure; the gestures are static and rare. Even the drawing does not reveal any 

dynamic dimension. Margherita’s drawings appear to be different from Agnese’s: 

Margherita uses the same drawing to show the solution, on the contrary Agnese 

uses several drawings of the same geometrical problem. Nevertheless, the two 

solvers show the same interaction with drawings: they start from a particular 

position of one part of the configuration (respectively a point and a segment) and 

reconstruct the configuration starting from there. 

In particular during the resolution of this task, it seems that the dynamic 

dimension plays a very important role. The first solver reaches a solution really 

because she is able to conceive MB as a turning segment and, consequently, to 

become aware of the effect of this movement on P. The second solver is fixed in 

her static view of the configuration and is not able to further explore the situation.  
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6.3.4 Concluding remarks on the role of motion 

Data analyses revealed that the solvers of our sample show two different 

approaches to the tasks, which are connected to the presence or lack of a dynamic 

dimension. Motion can be or can be not integrated into the GP processes.  

We have analyzed the dynamic dimension looking both at: 

- the singular solvers’ productions; 

- the interaction between the solvers’ productions.  

The dynamic dimension seems to play a role in reaching a product of GP that can 

lead the solver to a complete solution to the problem, rather than in 

communicating only a coherent product of GP. Indeed, also a static approach can 

lead to a coherent product of GP, but it cannot be the most complete.  

We notice that considering the possibility of motion becomes crucial when the 

solver wants or is asked to undertake prediction processes without a given or 

sketched drawing. It seems that the solvers’ ability to imagine continuous 

transformations of the figural elements leads them to express a product of GP 

without using any drawings. 

The dynamic component plays a role also when the process is carried out with the 

support of a sketched drawing. In the reported excerpts, we have seen that, even 

when the solvers have reached an effective configuration, the dynamic dimension 

made the difference between a process that actually leads to a complete solution 

or a process that leads only to a partial solution.  

The lack of dynamism is reflected also in the use of drawings. Some solvers who 

show a static approach tend to perform several drawings of the same problem. 

This seems to impede them to reach a complete solution. Generally speaking, the 

lack of dynamism seems to restrict the possibilities that the solvers are willing to 

explore. 

Moreover, we stress that dynamism plays a role during the process of prediction. 

Indeed, when the process is over the solvers can crystallize the predicted property 

into a statement.  

For the sake of clarity, we stress that a dynamic approach can be more effective or 

fundamental in particular cases that depend also on the task. For example, to be 

completely solved, Task 2 requires more than other tasks considering dynamically 

the locus of M and, consequently, the locus of P. Otherwise, the solvers can reach 

only some part of the solution (for example the locus of M). 
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6.4 Gestures as windows onto the prediction processes 

During the resolution of the given prediction open problems, we observed that the 

solvers spontaneously perform gestures of different types. The solvers seem to use 

gestures for two aims: 

- as a complement of speech, in order to communicate a product of GP; 

- as a tool that supports thinking, in order to reach a solution of the problem.  

In this section we will describe: the kinds of gestures performed by solvers; the 

role of gestures within the prediction process; what we can infer about solvers’ 

predictions looking at gestures.  

6.4.1 Kinds of gestures performed by the solvers 

Referring to the dimensions of gestures described in Chapter 3, in our data we 

found different numbers of occurrences of each of them. We infer the prevalent 

dimension looking at the corresponding utterances or considering the context. In 

this section, we include five tables that describe utterances and gestures. These 

tables are not intended to be exhaustive. Below we collected some typical gestures 

performed by the solvers during the resolution of each task. We use bold type in 

the presence of long sentences in order to stress exactly when the gesture is 

performed. 

Among the most frequent gestures we identified are the deictic or pointing gestures, 

generally used by the solvers to locate objects and events. In our data, the solvers 

use gestures deictically for different purposes. The first aim is to focus on 

particular properties of the geometrical objects. Here are some examples. 

Utterance Gesture Task Comment 

A and B are fixed. 

 

2 She focuses on A and B 

and repeats the given 

theoretical element. The 

gesture emphasizes the 

fixedness of the points.  

Because if A and B are...have to 

always be here... 

 

2 She focuses on A and B 

and rephrases the given 

theoretical element.  

The gesture 

communicates the 

fixedness of the points. 
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Only that point... only that 

point...can...C is a right angle. 

Then the degrees change. 

 

4 He repeats the given 

theoretical element 

which refers to the angle 

at C.  

I think...well it will be a bit longer. 

 

5 He focuses on CB. We 

infer from the context 

that he compares the 

length of CB with the 

length of CM. 

On the contrary if the diagonal 

is...like this. 

 

6 She shows the orientation 

of a line. The gesture 

clarifies what she intends 

with “diagonal”. It is not 

an instance of GP, 

because the interviewer 

explicitly asks to consider 

a line, so it is a given 

figural element. 

These deictic gestures reveal the figural components of the geometrical objects in 

focus and the corresponding utterances explain their supposed properties or 

theoretical components. In our sample, these kinds of deictic gestures are not 

interpreted as instances of GP, because they are used only to repeat or stress an 

already known theoretical element.  

Deictic gestures are also used to show objects or locations that are not present at 

that moment and that are predicted by the solver. Here some examples. 

Utterance Gesture Task Comment 

But in this triangle...and indeed I 

imagine also with my hands I drew 

the triangle ...I mean side PB, but... 

 

2 The utterance comes 

after the gesture. She 

uses a deictic gesture 

to complete the 

drawing of the 

triangle PMA.  

 

[No utterance] 

 

2 The gesture is 

performed without 

any utterances. We 

infer from the context 

that the solver is 

referring to a position 

Table 7 Instances of deictic gestures used to communicate properties and their 

corresponding utterances 
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of P. It is an instance of 

GP. 

Yes, let’s say another point M', 

would that work? 

 

2 The solver is referring 

to a possible position 

of the point M. 

It is an instance of GP.  

Because if we move it here it 

becomes an isosceles triangle. So... 

 

4 The solver performs 

the gesture right after 

she says “here”.  

It is an instance of GP. 

[No utterance] 

 

4 The gesture is 

performed without 

any utterances. We 

infer from the context 

that the solver is 

referring to a position 

of C. It is an instance of 

GP. 

And… CM. 

 

5 The gesture mimics 

the segment CM. In 

this case the gesture 

reveals what happens 

during the resolution 

of a task without the 

use of drawings.  

Well, obviously on the other side. 

 

5 The gesture shows 

where the solver 

intends to place C. 

It is an instance of GP. 

Ehm...also if I move it much closer 

always at this height...we could 

always have CM and CB be 

equidistant, so, yes I could do it, 

actually, also here.  

5 The gesture is 

performed when the 

solver says “here”, and 

it reveals where he 

intends to place C.  

It is an instance of GP. 

[No utterance] 

 

6 The solver uses the 

gesture to show a 

path.  
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That if I move it...that if I move P up 

Q stays, the distance QA stays QA 

or PA stays the same. 

 

6 The solver uses the 

gesture to show a new 

position of P.  

It is an instance of GP. 

In these cases, the gestures are mostly instances of GP and, in particular, they are 

part of the communication of a product of GP. In some cases, the solvers do not 

show the necessity to add speech to their gestures. All deictic gestures performed 

by solvers are particularly helpful when they are performed without speech 

because they allow the researcher to infer the figural elements in focus. 

Iconicity is a very frequent dimension of gestures found in our data. In particular, 

iconic-symbolic gestures are used to describe loci or geometric transformations. We 

stress how these gestures also show a prominent dynamic dimension.  

Utterance Gesture Task Comment 

But another circle will be 

created with point P, 

because, that’s it, it is not 

fixed, so... 
 

2 The gesture shows the 

predicted locus.  

I mean I take P and I put it at 

the same...let’s say like a 

mirror… like this. 

 

2 The gesture shows that the 

solver intends to find a 

position of C by a 

symmetric transformation. 

The one mirroring C where it 

is now. 

 

4 The gesture shows that the 

solver imagines 

constructing a new 

configuration through a 

symmetric transformation. 

The gesture is performed 

before the utterance.  

Like this. 

 

4 The gesture shows the 

predicted circle. 

Table 8 Instances of deictic gestures used to communicate a new figural element and their 

corresponding utterances 
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...I only want to move C 

along, say, a line that is 

perpendicular to BA and 

this way it maintains the same 

property.  

5 The gesture shows the 

locus of C. 

Here, too, I think you need to 

see a diagonal and...based on 

whether P moves up, Q moves 

down and vice versa. 

 

6 The solver uses the gesture 

to communicate the 

symmetric position of the 

new locus of Q.  

Iconic-physical gestures are mostly used during the process of GP. It seems that they 

allow the solver to reach a prediction. In our data, these gestures are used to mimic 

tools like the ruler and compass. 

Utterance Gesture Task Comment 

Well, it could be projected again, 

I mean...to the other side of A, so 

I’ll do it on this side, MB takes on 

the same distance only that it 

takes it from, well, here it would 

be its distance, it should be like 

this. 

 

2 She mimics the use of 

a ruler for drawing a 

segment with the 

same length of MB.  

Wait, I...can rotate d. 

 

2 She uses her fingers as 

a compass. 

Ok, basically d can move. 

 

2 She uses the pen for 

fixing the distance and 

she constructs the 

locus of M by the 

radius rotation. 

What am I thinking? The 

problem could be this: starting 

from…from this MB and 

creating others within the plane, 

I mean…  

2 She fixes the length 

with two fingers and 

she mimics the use of a 

compass. 

If I draw...the...point 

transformed from C with respect 

to AB [according to line 

symmetry], so I send the 

perpendicular from C to AB, 

that is I draw a segment that  

4 She mimics the use of 

a ruler that is placed at 

a specific point on AB, 

is perpendicular to 

AB, and replaces a 

specific length.  

Table 9 Instances of iconic-symbolic gestures 
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is always perpendicular to 

AB of the same length of the 

one that I drew before. So, C 

can…can also stay on the 

opposite side. 

So I was thinking: at this 

moment CM and AB are not 

congruent, but if: AB, midpoint. 

 

5 She uses her fingers as 

a compass in order to 

construct the height 

with the same length 

of the base. 

[No utterance] 

 

6 We infer from the 

context that he uses 

his fingers as a ruler 

with a fixed length to 

carry over the distance 

AP and find the point 

Q.  

In our sample, the gestures that mimic the use of a compass have a dynamic 

dimension; on the contrary, the gestures that mimic the use of a rule have a more 

static dimension7. Moreover, we notice several gestures used for mimicking the 

use of a compass: they seem to reveal a different construction of a circle. Solvers 

who use the pen as a radius seem to see the circle constructed as an effect of the 

physical rotation of the radius. Instead, the solvers who use their fingers seem to 

construct the circle following the definition: the locus of points that are equidistant 

from a fixed one. So, in some sense, iconic-physical gestures do not only show us 

how a solver mimics the use of a tool, but they also allow us to infer how the solver 

was constructing the product of GP.  

Finally, metaphoric gestures are the last type that we identified in our data. These 

gestures are used to construct several instances of the same configuration, to 

manipulate a geometric figure, to perform a geometric transformation. Also in this 

case, the dynamic dimension is dominant.  

 

 
7 This is a particular feature of the data we have collected, and it could be provoked by the kind of 

tasks that have been proposed to the solvers. Generally speaking, using a ruler presumes the act of 

tracing a line, thus a movement; in retrospect, a line can be conceived both a process and a product, 

that is as a trajectory (Bartolini Bussi & Mariotti, 2008, p. 747).   

Table 10 Instances of iconic-physical gestures 
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Utterance Gesture Task Comment 

So I always have M defined and 

the distance AM...MP. 

 

2 The underlying 

metaphor is the 

equidistance.  

Ok. As P varies... 

 

2 The gesture reveals 

how the solver 

intends to move the 

point P. 

It is an instance of 

GP.  

That I can move C so that it 

makes...a half circle. 

 

4 The solver shows 

how she intends to 

dynamically 

construct several 

instances of the 

triangle moving C on 

a semi-circle. 

If CM is congruent to CB, I have 

a triangle BCM that is isosceles 

and, just a bit big, I have another 

triangle ABC that was my initial 

triangle, I mean. So…eh… 

 

5 She mimics the 

reconstruction of the 

configuration 

starting from an 

isosceles triangle 

and manipulating 

one of its sides in 

order to obtain the 

initial triangle. 

So they make... a...a circle that... P 

does it in one direction and Q does 

it in the other. 

 

6 The underlying 

metaphor is the 

symmetry, which is 

dynamically and 

synchronically 

performed. 

If I move it here it moves on the 

other side. 

 

6 The underlying 

metaphor is the 

symmetry, which is 

dynamically and 

synchronically 

performed. 

Table 11 Instances of metaphoric gestures 
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6.4.2 The role of gestures within the process of GP 

The solvers’ use of gestures seems to be useful both for solvers and for researchers. 

From the solvers’ point of view, the gestures: 

- support the process of GP; 

- allow them to carry out the process without adding other details to the 

drawing;  

- help them to explain in a more effective form the products of GP. 

From the researchers’ point of view, the gestures: 

- reveal the features of the figure that the solver is reasoning upon; 

- reveal some details of the products of GP in a more accurate or complete 

way than the speech; 

- anticipate an upcoming product of GP.  

In the following sections, we provide examples from the transcription tables which 

show evidence of the listed claims about gestures. 

6.4.3 The use of gestures for communicating the products of GP 

Looking jointly at gesture and speech we can discover the features of the products 

of GP. In many cases, the gestures communicate more effectively to the researcher 

what the solver has predicted. In particular, it can happen that:  

- the utterances are quite vague or unclear and the gestures clarify the 

meaning;  

- the utterances seem to communicate a coherent product of GP, but the 

gestures clarify that the product is incoherent and vice versa.  

We find an example of the first case in Sergio’s resolution of Task 4: 

Sergio_G10_T4_P1_(00:27 – 01:50). 

Time Who What is said What is done Comment 

00:27.06 Int What can you say 

about the vertex with 

the right angle? 

  

00:46.18 Stud That...since A and B 

are fixed and the 

length of AB has to 

always be the same, 

in order for the 

triangle to remain 

Long silence. 

He is pointing at C.  

He is pointing at a 

new position for C:  

GP_1_(1) 

(discursive – 

gestural):  

C symmetric point 

with respect to [the 

axis of] AB 
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right I cannot move 

the angle  C...I mean 

I can move it, but 

only putting it at the 

opposite point with 

respect to AB, 

moving P [C] to the 

other side and 

putting it in the 

same...at the same 

inclination with 

respect to A. Putting 

it at the same 

inclination bit with 

respect to B. 

 

He is pointing at the 

angle at B.  

 

Window gesture 

 

Speech and gesture 

have mismatched 

features. For 

example, he uses 

“opposite point 

with respect to AB”, 

but the gesture 

suggests that he 

does not intend a 

line symmetry with 

respect to AB. 

01:14.13 Int Make a prediction: 

imagine moving C, 

do you think it can 

occupy other 

positions so that this 

angle remains right? 

  

01:25.01 Stud Yes   

01:25.22 Int Which?   

01:27.21 Stud Eh...  that is had 

with... with respect 

to angle A, putting 

the same inclination 

with respect to angle 

A from angle B and 

putting the point 

there. 

He is pointing at the 

angle at B.  

He is pointing at the 

new position of C: 

 

GP_1 

We infer that he 

intends to perform a 

new construction of 

the triangle: the 

angle at A and at B 

are switched.  

01:42.21 Int Do you think that 

there are other 

positions? 

  

01:50.19 Stud There are two other 

positions if we 

calculate that we can 

move C on the 

opposite side and 

therefore put it on 

the opposite side 

with respect to A 

and then do the same 

thing first with 

He points at two 

positions of C:  

 

 

GP_2_(1) 

(discursive – 

gestural): 

C symmetric point 

[with respect to AB] 

Window gestures 

It is a new GP 

because the gesture 

is not the same one 

used for 
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respect to B, that is 

with the same 

inclination.  

 

 

communicating the 

GP_1. In the case of 

GP_1 it seems that 

he intends to 

reconstruct the 

figure; now he 

obtains C using a 

transformation 

within the plane. 

Window gesture 

He combines the 

GP_1 and the GP_2 

into: 

GP_3_(1) (gestural): 

C symmetric point 

[with respect to AB 

and the axis of AB] 

In the first utterance of the solver, at time 00:46, he talks about an opposite position 

of the point C “with respect to AB”. So, looking only at the speech, one might think 

that he was talking about a line symmetry of C such that AB represents the axis of 

symmetry. However, the gesture clarifies that he is considering a different 

geometrical transformation. We cannot be sure that he is aware of the geometrical 

features of such a transformation, nevertheless we infer through the gesture that 

he is performing a line symmetry where the axis is a line perpendicular to AB. The 

utterances are useful to discover that he intends to construct the new configuration 

reproducing the two angles in opposite positions. 

After the interviewer’s hint, at time 01:50, the solver uses a similar word expression 

to communicate another product of GP. Now he talks about the opposite position 

of C with respect to a point. Following the utterance, one can expect that the solver 

refers to a point symmetry centered at A, which would be an incoherent product 

of GP. However, looking at the gesture we discover that he was referring to a 

position of C that can be found through symmetry about the line AB.  

Finally, he says that he will apply the same procedure used before with respect to 

B in order to obtain the fourth position of C. The utterance alone is quite vague, 

but the gesture clarifies its meaning: the solver wants to use the same procedure 

used to find GP_1 to obtain the final predicted position.  

In all cases, the gestures play a fundamental role in clarifying the solver’s products 

of GP and in making them more communicable. Also the solver seems quite 
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satisfied with his answers, to the extent that he does not add any other explanatory 

utterances.  

Moreover, from the researcher’s point of view, the gestures coupled with speech 

are useful to make a distinction between two different GPs: GP_1 and GP_2. 

Looking at the gestures corresponding to the two products of prediction, we can 

identify two different approaches. In the first case, the solver intends to reconstruct 

the figure shifting the role of the angles at A and at B; in the latter, he seems to 

perform a geometrical transformation of C.  

In some cases, different solvers use similar utterances to communicate products of 

GP, and these  reveal their coherence with the given constraints only if we look at 

them jointly with gestures. Here we show two solvers’ answers to a question about 

the possible position of P within the resolution of Task 2. The first is from 

Margherita’s interview (also presented in Section 6.3.3).  

Time Who What is said What is done Comment 

04:22.03 Stud Well, it could be on 

the other side, it 

could be the mirror 

image. 

She is pointing at a 

point on the plane:  

 

She is pointing at P and 

turns the pen, bringing 

it close to her with a 

circular movement 

(rotation around AB):  

 

GP_1_(1) 

(discursive – 

gestural):  

P symmetric point 

[with respect to 

AB]  

 

Window gesture 

The second is from Carolina’s interview: Carolina_9G_T2_P1_(08:49). 

Time Who What is said What is done Comment 

08:49.20 Stud Well, it could be 

projected  again 

…that is... on the 

other side of A, so 

I’ll do it on this side, 

MB takes on the 

same distance only 

it takes it on from I 

She points at a position 

for P:  

 

GP_4_(1) 

(discursive – 

gestural):  

P symmetric point 

with respect to A  
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mean here would be 

its distance, it 

should be like this. 

Then she points at the 

new position of MB: 

 

As we can notice, the solvers use the same verbal expression to describe their 

products of GP: “on the other side”. This description is quite vague; the researcher 

can interpret it in several ways (for example, a line symmetry, a point symmetry, 

a rotation). The gesture is what better clarifies the content of the two products and 

their coherence with the given constraints. In the first case, we can see that the 

“other side” refers to the segment AB and the solver intends to construct the point 

using a line symmetry. This is a coherent product of GP. In the second case, the 

same vague utterance leads us to infer that the solver intends to do the same thing. 

However, looking at the gesture, we can see that she intends to construct the 

symmetric point of P through a point symmetry centered at A; this is an incoherent 

product of GP. Considering the gestures in addition to the utterances, the 

researcher is able to make a distinction between the two products of GP (reported 

in the transcription table) and re-formulate them.  

As a special occurrence of this case, we identify the mismatch phenomenon: the 

conveying of different (eventually opposite) information in speech and in gesture. 

This phenomenon is also evident during the GP process; we find that the meaning 

communicated through gesture becomes dominant within the process. Let us 

consider the following two examples of mismatch found in our data.  

The first example has already been presented in the previous section (see Section 

6.3.2) and it is a part of the Marta’s resolution of Task 5: Marta_MS_T5_P1_(00:23 

– 02:44). The excerpt shows a gesture that communicates a coherent product of GP 

coupled with an utterance that contains an incoherent description. At time 02:33 

she says that she intends to move C up and down on a path parallel to BA. This is 

an utterance that is incoherent with respect to the given constraints, but also with 

respect to the drawing: BA is actually a horizontal segment. While she is talking, 

she produces a gesture that, instead, is coherent: she moves one hand forward from 

her position. Looking at the drawing (Drawing2b) we can claim that the dominant 

meaning is that  expressed through the gesture.  

The second example has already been presented in another section (see Section 

6.1.1) and it is part of Ilaria’s resolution of Task 4: Ilaria_G9_T4_P1. At time 02:30, 
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Ilaria talks about the locus of C as a line perpendicular to AB. However, looking at 

the gesture, we notice that she mimics twice a line parallel to AB. Moreover, as we 

highlighted in the transcription table, the gesture comes before the description of 

the locus. So, the solver performs a gesture accompanied later by a mismatched 

utterance. Also in this case the meaning communicated through the gesture 

becomes dominant within the prediction process, to the extent that she reproduced 

the parallel line on the drawing.  

6.4.4 The use of gesture for undertaking a GP  

Another role of the gestures is to help the solver undertake a GP. This is quite 

evident in Marta’s resolution of Task 2 presented in the previous section. We can 

notice how the dynamic gestures, performed in order to control the possible 

positions of MB, lead the solver to several GPs.  

Moreover, gestures are so fundamental within the process that they can anticipate 

or replace the utterances. In the five tables below, we mark several gestures 

performed without any utterances. In many cases they communicate by 

themselves a product of GP, but generally the solver later communicates by speech 

the corresponding product of GP.  

Here we provide examples of gestures that come before the corresponding 

utterance. The two examples are part of the resolution of Task 4. The fist is already 

reported in another section (see Section 6.1.4) and is from  Laura’s interview: 

Laura_G10_T4_P1_(01:24-01:52). At time 01:24 the solver seems to be a bit uncertain 

about the description of another position for C. We infer the uncertainty looking 

at the pause in the utterances, stressed by the ellipsis. During the pause Laura 

performs the deictic gesture that communicates a possible position of C. The 

gesture allows the researcher to infer that the question actually triggers a 

prediction process: only after she has performed the gesture, she seems to be able 

to describe how to move the point C in order to find another right angle. In this 

case, it seems that the process follows these phases: firstly, the solver finds a 

possible configuration that could be an answer to the problem; meanwhile, she 

checks the position using gestures; then, she communicates the product of GP 

through speech. So, when the sentence is pronounced, the process seems to be over 

and speech is useful only for communicating its product. Instead, the gesture 

constitutes a genuine step of the process.  

We find another example in the first part of Giorgio’s interview: 

Giorgio_G13_T4_P1_(00:46 – 02:38). 
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Time Who What is said What is done Comment 

00:46.29 Int Ok. What can you say 

about the vertex with 

the right angle? 

  

00:53.26 Stud With the right angle. 

This [C] can be moved, 

right? 

He points at C.  

00:58.02 Int You tell me.   

00:59.04 Stud I mean, I think this can, 

it can be moved 

because in any case 

this segment here, AB, 

that can’t be moved, 

then moving the 

segment AC at 

most...the side CB or 

the side CA change. 

He is pointing at A and 

B: 

 
He points at C. 

 

01:14.04 Stud So... yes, CB can be 

moved... it can make 

different 

configurations and it 

can become a… an 

isosceles triangle like 

in this case or…no, 

what is this? Yes, 

isosceles, right? Yes. 

Equilateral and so on. 

 He seems to have 

some difficulties 

in classifying the 

triangles.  

  

01:31.08 Int Ok. Make a prediction: 

do you think that point 

C can occupy other 

positions so that the 

angle stays right? 

  

01:45.10 Stud M m m m. He is looking at the 

given drawing. 

 

01:53.21 Stud That C...that C remains 

always right, right? 

  

01:56.17 Int The angle in C, yes, so 

that it stays right. I’m 

asking you if C can 

occupy other positions 

so that the angle in C 

remains right. 

  

02:04.16 Stud I think so. But only one 

position. 

  

02:08.11 Int Mm. Which?    
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02:10.05 Stud  He rotates the palm of 

his hand:  

 

Window gesture 

The gesture 

comes right 

before the 

utterance.  

 

02:11.00 Stud The one that mirrors 

where C dis now. 

 GP_1_(1) 

(gestural – 

discursive):  

C symmetric 

[with respect to 

the axis of AB] 

02:13.09 Int Show me.   

02:14.13 Stud In the sense that this 

AB does not...does not 

move, it does not get 

smaller, they are 

fixed… 

  

02:19.20 Int Yes.    

02:21.04 Stud ...and this CB... He draws a new 

segment CB. It seems to 

have the same length of 

AB. Then he connects 

the new point C with A. 

 

02:30.07 Stud I take this here and I 

move it over here...C1, 

this will be right. 

He points at C and then 

on C’:  

 
Drawing 1 

 

02:38.10 Int Ok.    

The excerpt begins right after the interviewer has asked the first question about C. 

At times 00:59 and 01:14, the solver repeats some given properties and talks about 

several static arrangements of the given configuration, like an isosceles triangle 

and an equilateral triangle. We cannot be sure that in these arrangements he 

maintains all the given constraints. Probably he forgets the constraint on the right 

angle. At time 01:31, the interviewer seems to perceive the lack of a constraint and, 

in order to be sure that this is not the case, she asks another question. Giorgio 

rephrases the constraint, making explicit which is the vertex with the right angle.  
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At time 02:04, we find a first instance of GP: the solver states that there exists a 

single position for C in order for the triangle to be right. Almost simultaneously 

with the interviewer’s question at time 02:08, the solver starts performing a gesture 

in order to communicate what he has predicted. We infer that he finds the new 

position of C by a geometrical transformation of the initial point. Only after 

making the gesture, he communicates verbally the product of GP. Gestures and 

utterances are coherent with a final position of C that is symmetric with respect to 

the axis of AB. The drawing performed at time 02:30 confirms our inference. 

As we observed, in this case the gesture comes before the utterance and, probably, 

it would replace the verbal expression if the interviewer had not asked for further 

explanations. The sequence of utterances and gestures makes the phases of the 

process more explicit. It seems that the questions activate the prediction process, a 

first instance of which we find at time 02:04. The gesture confirms to the solver his 

prediction and is used to communicate the product in a first formulation. Finally, 

the utterance is used to describe in greater detail the product of GP. At this point, 

looking at the transcription table, the drawing could be perceived almost as a 

redundant explanation. 

The last example is from Fiorella’s resolution of Task 5: Fiorella_MD_T5_P1_(03:41 

– 05:07).  

Time Who What is said What is done Comment 

03:41.18 Stud C…CB...   

03:45.00 Stud  

 

Window gesture 

03:47.15 Stud Maybe if I try to 

draw C... 

She is resolutely 

pointing at a position 

for C:  

 

Window gesture 

03:55.14 Stud ...on the... 

perpendicular  

line to MB at the 

midpoint. 

She is moving the pen 

on a trajectory 

perpendicular to AB 

GP_1_(0) (gestural 

– discursive):  

C on a line 

perpendicular to 



 185 

and passing through the 

midpoint of MB:  

 

MB, which passes 

through the 

midpoint [of MB] 

 

Window gesture 

04:06.28 Stud Can I try?   

04:07.26 Int Mm mm.   

04:10.04 Stud  She draws: a dotted line, 

the segments CA and 

CB, two right angles. 

 

04:35.06 Stud I mean, if this is the 

initial triangle ACB. 

  

04:41.17 Int Yes.   

04:44.17 Stud  She draws the segments 

CM and a hashmark on 

CM and CB.  

She moves the pen 

tracing a curvilinear 

trajectory. 

 

04:59.17 Int What are you 

thinking? 

  

05:07.05 Stud I mean that if I move 

C along this 

perpendicular line 

through the 

midpoint K of the 

segment MB...this 

way I construct an 

isosceles triangle 

and so CM and CB 

will always be of the 

same length. 

She labels “K” the 

midpoint of MB and 

obtains the following 

drawing: 

 
Drawing 1b 

GP_1 (discursive) 

 

“I move”:  

the dynamic 

component is 

spontaneously 

introduced, it is 

not pushed by the 

interviewer.  

When the excerpt starts the solver has drawn the segment AB and its midpoint, 

and she is wondering if there exist some positions for C so that the median of the 

given triangle is congruent to the side CB.  

At the beginning of the excerpt, the utterance reveals that she focuses on CB. Then, 

at time 03:45, she points at a particular position on the sheet of paper and she stays 
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in that position for a while. The gesture without utterance reveals an instance of 

GP: the solver seems to be considering the pointed-to position as a possible 

solution.  

At time 03:47, the solver decisively repeats the gesture and says that she could 

draw C in that position. Finally, at time 03:55, she performs a dynamic gesture and 

explains it: she intends to move C on a line that is perpendicular to AB and that 

passes through the midpoint of MB. The gesture coupled with the utterance 

communicates in a detailed form the product of solver’s prediction. At the end of 

the excerpt, Fiorella shows her product of GP on the drawing.  

In this case, the first gesture not only comes before the verbal explanation but, in 

some sense, it anticipates a well-structured product of GP: GP_1.  

In the examples below we recognize a common approach:  

- the solvers communicate by a deictic or iconic gesture a possible 

configuration;  

- they communicate the product of GP by speech; 

- they reproduce it on the drawing. 

In some sense, it seems that in these cases the gesture is more useful during the 

process of GP, while the speech is used only for communicating the products.  

Gestures can anticipate an incoming product of GP, but they can also help the 

solver shape it during the process. More specifically, this is the case of iconic-

physical gestures. One of the best examples is provided by an excerpt from 

Agnese’s interview during the resolution of Task 2: Agnese_MS_T2_P1_(03:55 – 

05:14).  

Time Who What is said What is done Comment 

03:55.17 Stud Can P take on other 

positions? And I 

always want that A 

and B are these, that 

this is d. 

She points at A and 

B with two fingers. 

She points at MB 

with one finger.  

 

04:03.09 Stud I am looking for a 

theorem, something... 

  

04:09.25 Int Yes, you want that A 

and B are fixed and 

that the length of MB 

remains d. 
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04:15.01 Stud Wait, I... can rotate d. She puts two fingers 

of the same hand at 

M and B: 

 
Starting from that 

position, she leaves 

the thumb fixed at B 

and rotates 

clockwise the other 

finger: 

 

Window gesture 

 

 

 

 

 

 

 

 

 

 

Window gesture 

04:21.21 Stud I mean, so rotating d, 

I mean...no instead... 

She performs the 

same gesture, 

occupying a greater 

space.  

GP_3_(1) (gestural – 

discursive):  

MB rotates  

Window gesture 

04:29.00 Stud Drawing, I mean do 

you want me to 

formalize it or...? 

  

04:32.03 Int However it comes to 

you. 

  

04:33.13 Stud Ok. So...   

04:34.03 Int Say it however you, 

however you are 

thinking about it. 

  

04:36.10 Stud Ok. Ehm...   

04:39.20 Stud So if I want that ehm...   

04:43.21 Stud I want to keep the 

distance MB fixed, 

that it stays d. 

 Theoretical element 

04:47.02 Stud So all the points on 

the...circle... 

 Theoretical element 

04:56.00 Stud ...of ra...of center B 

and of radius MB 

they are all points 

that... 

She points at B.  

She repeats the same 

circular movement.  

Theoretical element 

05:08.20 Stud Ta ta ta. She repeats the same 

circular motion.  

Window gesture 
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05:10.22 Stud They are all points 

with distance d, bon*. 

* This has the 

meaning of “good, 

I’m done”. 

GP_4_(0) 

(discursive): points 

of the circle C(B, 

MB) are distant d 

from B 

05:14.15 Stud And so P has to 

be...ehm...has to have 

...ehm...has to be such 

that MA is equal to 

MP, so I can choose a 

different P, yes I can 

change P.  

She changes her 

mind about GP_2.  

The gesture is quite 

fuzzy.  

GP_5_(0) 

(discursive): P in a 

position such that 

MA=MP 

The excerpt starts when the solver repeats the interviewer’s question: she is 

wondering if the point P can occupy other positions. At the beginning, she tries to 

find a theoretical element (a theorem) to answer the question, but she does not 

succeed. At time 04:15 she resorts to figural elements. She notices that a rigid 

rotation of the segment MB allows her to maintain the given constraints. Even if 

she keeps talking about “d”, we infer from the gesture that she is focusing on MB. 

She performs two connected gestures: a first deictic gesture, pointing at MB; a 

second, iconic-physical gesture, mimicking with two fingers of the same hand the 

use of a compass. She also repeats the gesture at time 04:21. We interpret the 

gesture as an instance of the process of GP that leads the solver to GP_3, but it also 

provides notice of a more detailed product of GP. Indeed, GP_3 is quite vague; on 

the contrary, GP_4 is very detailed.  

There is a short pause; then at time 04:39, the prediction process is resumed when 

the student recalls the theoretical element “MB must be constant”. According to the 

aim of this section, the most interesting sequence starts at time 04:47 and ends at 

time 05:08: we find an interplay between gestures and utterances, where gestures 

help the solver to shape a product of GP. Indeed, probably inspired by the first 

gesture (time 04:15), she introduces the theoretical element “circle”; she starts 

communicating through speech the center and the radius, but she hesitates and 

repeats the circular gesture; at time 05:08, she performs again the same gesture and 

we infer that she does so without speech because the utterance does not have really 
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a meaningful content. Finally, at time 05:10, she is able to communicate a 

discursive product of GP without performing any gestures. In particular, a word 

in the utterance reveals that the process is over: she uses the word “bon” that we 

can translate as “good” or “great”. This particular slang is used in the North of Italy 

to say that something works, is fine or is over.  

It seems that, in this case, the first gesture announces a new process of GP. Since 

the solver probably has not produced all the details of the product of GP 

immediately, she uses the same gesture for finding and better communicating 

these details. We observe a strong interplay between gestures and speech within 

this process.  

6.4.5 Gestures that replace or do not use the drawing  

As elsewhere highlighted, we finally want to observe how a process of GP could 

be carried out when the solver is not allowed to produce or use any physical 

supports, like drawings or dynamic figures in a DGE. This is why, by design, the 

very beginning of Task 5 pushes the solver to solve the problem only imagining 

the configuration. In this case, much more than in others, the gestures can clarify 

what happens.  

Generally speaking, for the solvers of our sample it was not so easy to make 

predictions in this particular situation. Many solvers seemed to hesitate for a long 

time, and in this case the interviewer allows them to draw something. However, 

when the solver starts to undertake a prediction process without the use of 

drawing, the gestures allow the researcher to identify the details of the product of 

GP.  

An excerpt of Andrea’s interview shows how the gestures help in inferring the 

products of GP: Andrea_G9_T5_P1_(01:07 – 02:03). 

Time Who What is said What is done Comment 

01:07.10 Int Is it possible that CM 

has the same length 

of CB? This is the 

question. 

  

01:13.24 Stud Mmm...I don’t think 

so. 

  

01:17.19 Int Why?   

01:18.22 Stud Because I imagined 

the...the segment CM 

as the height of the 

He moves his hand 

up and down: 

Window gesture 



 190 

triangle I imagined it, 

to make life easier. 

 

01:29.26 Stud In this sense: I 

imagined the 

triangle, I imagined 

point C as the tip 

that...that the 

segment CM was the 

height of the 

triangle. So I don’t 

think that it is equal 

or congruent.  

But the question is 

"can" it be congruent? 

“triangle”: 

 
“the tip”: 

 
When he talks about 

the height, he moves 

one finger from the 

top: 

 

He imagines CM as 

the height of the 

triangle ABC. In this 

case CM cannot be 

congruent to CB. He 

seems to be aware 

that this is only one 

instance and the 

question asks for 

possible 

configurations 

where CM is 

congruent to CB.  

Window gesture  

 

GP_1_(1) (discursive 

– gestural): the 

height CM of the 

triangle [ABC] is not 

congruent to the 

side CB 

 

 

01:47.24 Stud In theory it can 

because if, I can 

change the sides, then 

I could also make 

them the same. My 

prediction is that if I 

changed the shape 

like we did before for 

the quadrilaterals I 

could have made 

them the same. 

 Theoretical answer: 

changing the initial 

data, the segments 

could be congruent. 

02:00.13 Int In what sense to they 

change shape? 

  

02:03.03 Stud If I had...for example 

made longer...ah, no 

it’s true A and B are 

fixed. If I could have 

He moves two 

connected fingers in 

front of him: 

Window gesture 

 

GP_2_(1) (discursive 

– gestural): moving 
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made C longer, that 

is make it put it 

further up or down I 

could have modified 

the shape, I could 

have made them the 

same. 
 

C [along the height 

of the triangle] CM 

becomes congruent 

to CB 

 

The excerpt starts with the interviewer’s question. She needs to rephrase the usual 

first question because the solver asks for an explanation about the meaning of “CM 

congruent to CB”. The solver answers that CM is not equal to CB. After the 

interviewer’s hint, at time 01:18, he explains that CM is not congruent to CB 

because he imagines CM as the height of the triangle. The verb “to imagine” is 

actually used by the solver. The gesture makes explicit that he was reasoning about 

a triangle with a vertical height and, probably, with AB as a horizontal base.  

At time 01:29 the gestures that accompanied the utterance clarify the figural 

components of the imagined figure: he uses two hands for mimicking the whole 

triangle; then, he leaves the right hand fixed and uses one finger for pointing at the 

supposed vertex C; he moves the finger up and down to show the height of the 

triangle. So, we infer that he is considering a triangle: the base is AB and one height 

is a vertical segment CM. Even if we cannot infer whether the triangle ABC has 

other properties, the theoretical and figural elements expressed by the solver are 

detailed enough to formulate the first product of GP: 

GP_1: the height CM of the triangle [ABC] is not congruent to the side CB 

At time 01:47 he seems to be aware that the answer is not general: he stresses that 

he can reconstruct the configuration with different lengths, and in such a way he 

could obtain two congruent segments. However, the answer is quite vague, and 

we do not recognize instances of GP. So, the interviewer asks the solver to clarify 

his last utterance. At time 02:03, the gesture shows how he intends to manipulate 

the figure in order to obtain two congruent segments: we infer that Andrea wants 

to move C on a vertical path. We notice that the corresponding product of GP is 

incoherent: if at the beginning CM and CB are not congruent, moving C in such a 

way they maintain this property.  

In this excerpt, we can see the fundamental role of gesture in inferring the solver’s 

products of GP. In particular, without any other support, gestures make the figural 

elements of the considered figure more communicable for the solver and 

understandable for the researcher.  
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Another example of this specific role of gesture is provided by Marta’s interview: 

Marta_MS_T5_P1_(00:23 – 02:44). In particular, we look at what happens at time 

00:52 of the excerpt previously presented (see Section 6.3.2). Also in this case, the 

gesture reveals the figural elements of the figure the solver was reasoning upon. 

At the end of this analysis of gestures within our data, we want to stress one last 

finding: in some cases the use of gestures can replace the use of drawing. In this 

sense, gestures diminish the usefulness of the act of drawing. This phenomenon is 

related to two of the characteristics of GP already discussed: the dynamic 

dimension and the degree of detail.  

As shown in the excerpt reported in Section 6.3.3, during the resolution of Task 2, 

Marta carries on her prediction process and communicates the corresponding 

products without adding other graphical elements on the drawing. She talks about 

loci and movements of some figural elements but using only gestures for 

embodying them.  

As shown in the excerpt reported in Section 6.2.1, during the resolution of Task 4, 

Filippo and Fiorella produce detailed products of GP. Moreover, they use the 

given drawing only for pointing at particular positions or for highlighting figural 

elements in an iconic or metaphoric way.  

These examples share a common feature: the solvers use gestures upon an already 

sketched out or given drawing without adding anything to the sketch.  

6.4.6 Concluding remarks on gestures 

At the end of our analyses on gestures performed by the solvers of our sample, we 

can claim that the prediction process is accompanied by the production of several 

gestures that support the process of GP and clarify the content of solvers’ 

productions.  

In particular, during the process of prediction, solvers can perform several kinds 

of gestures, but not all the gestures are instances of GP. For example, deictic gestures 

that refer to an already drawn element are used mostly for focusing on particular 

figural elements or for stressing their corresponding theoretical elements. Instead, 

when the solver introduces a new figural element that is not drawn, we interpret 

the deictic gesture as an instance of GP: actually, a product of GP.  

Iconic-symbolic, iconic-physical and metaphoric gestures are mostly used during the 

prediction process and present a prominent dynamic dimension.  

We identify two major roles of the gestures: 
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- at the end of the process, the gestures clarify the details of a product of GP; 

- during the prediction process, the gestures shape the products of GP. 

In particular, our findings on gesture within the prediction process are listed 

below: 

- gestures clarify the meaning of solvers utterances; 

- gestures are useful to make a distinction between similar utterances; 

- in the case of mismatch between gesture and utterance, the gesture reveals 

what the solver intends to communicate; 

- gestures coupled with speech are useful to make a distinction between two 

processes of GP with two different products; 

- gestures can anticipate or replace an utterance that contains an instance of 

GP; 

- gestures can announce the beginning of a new process of GP; 

- a gesture can help the solver in constructing a more accurate product of GP.  

6.5 Immediacy 

As highlighted in Chapter 5, the interviewer makes use of a list of questions to get 

the solver more involved in the prediction process. Usually, the first question is 

quite general, and then questions ask for particular configurations suggested by 

the interviewer. In this way, we can make inferences about the extent to which the 

prediction process is undertaken naturally by the solver.  

Analyzing the transcription table, we can notice that sometimes the solvers answer 

the interviewer’s questions very quickly and that the answers contain instances of 

GP that are more or less detailed and well-structured. In particular, we look at: 

- how much time elapses between the question and the first evidence of GP; 

- how many questions the interviewer has to ask before the communication 

of a product of GP. 

When the solver answers right after the first question with an evidence of GP, we 

can say that the GP process was undertaken in an immediate way. 

We refer to immediacy as the quality of a result or reaction that is provided without 

any delay. In our perspective, immediacy is not only a synonym of speed, but it is 
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also the quality of a process of GP that is undertaken without a strong intervention 

of the interviewer. 

So, immediacy can be a characteristic of GP processes and we consider it as an 

indication of the naturalness of the process. More specifically, our data reveals that: 

- a process of GP can be carried out in an immediate way, but not all the 

processes of GP are immediate; 

- immediacy seems to be a feature of the GP processes that are undertaken 

by expert solvers. 

With the term expert solver we intend a solver who was exposed for a long time to 

the mathematical knowledge and, by virtue of this, is supposed to be expert. 

In the following section we provide four examples and one non-example of 

immediate processes of GP. The last example is provided for the sake of clarity, 

just to show when immediacy is lacking. 

6.5.1 Immediacy: an example from the resolution of Task 2 

The best example within the high school students’ population in our sample is 

provided by the Emilio’s interview. He is a 13th-degree student and was 

interviewed in the middle of his last year of high school. So, we can say that he had 

been exposed to mathematical knowledge for as much as possible within the 

school system. The excerpt is part of the resolution of Task 2 and it starts when the 

interviewer asks the first question: Emilio_G13_T2_P1_(01:44 – 03:32). 

Time Who What is said What is done Comment 

01:35.05 Int The question is: 

what can you say 

about the point P? 

  

01:38.25 Stud P?? The drawing was 

already sketched out:  

 

Drawing 1a 

 

01:39.26 Int Yes!   

01:41.03 Stud Ah ok, then no.   

01:44.02 Elia Um…so…A and B 

are fixed. The 

length of MB must 

always be d.  

 Theoretical elements 

01:50.22 Elia Eh…   
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01:54.06 Elia Well…If we move 

the point M to 

maintain the 

distance d, a circle 

around the point B 

will be created… 

He points at M and 

moves the pencil on a 

segment: 

 

Still pointing at M, he 

describes an arc: 

 

GP_1_(0) 

(discursive – 

gestural):  

the locus of M is a 

circle centered at B 

Window gesture 

Gestures and verbs 

express the 

construction process 

of a circle. They both 

have strong 

dynamic features: M 

is moving; the circle 

is being created; B is 

a fixed point 

compared to M 

which is moving 

around it.  

02:07.10 Elia But another circle 

will be created 

with point P, 

because, that’s it, it 

is not fixed, so... 

He points at P and 

describes a 

circumference: 

 

GP_2_(1) 

(discursive – 

gestural): the locus 

of P is a circle 

 

Window gesture 

 

02:21.16 Stud ...it should 

follow...Ah no! 

That's not true! 

Because... 

 Dynamism 

02:27.18 Stud Point P has to 

remain always 

equidistant from A 

...with respect to M, 

so if we... 

He points at: P, A and 

M. 

Theoretical element: 

equidistance 

02:35.08 Stud can I draw?   

02:35.23 Int Of course!   

02:37.04 Stud If we put, for 

example, a 

distance... we put 

here more or less... 

He draws a new 

position of M within 

the same drawing:  

 

He starts drawing M 

and then he finds the 

corresponding 

position of P.  

It seems that the 

position of P 

depends on the 

position of M.  
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02:44.29 Stud So d is fixed...   

02:50.16 Stud M...   

02:52.16 Stud Instead here this 

distance here... 

He connects A and 

with the new point M. 

 

03:00.03 Stud ...has to be...   

03:05.09 Stud ...here. He draws the point P  

03:09.29 Stud So? So? So? So? So?   

03:12.24 Stud So...then if...   

03:18.04 Stud ...instead we accept 

a situation like 

this... M… d…and 

this has to always 

be... 

He draws a new 

position of M.  

This construction 

confirm that he finds 

P depending on M.  

03:30.04 Stud Ok, yes! 

 

Drawing 1b 

From the left to the 

right we can see the 

three points he has 

constructed.  

03:32.27 Stud It comes to create 

another circle also 

P ...maybe... 

 GP2 (discursive) 

Dynamism.  

He talks about a 

circle, which is not 

drawn. 

The interviewer asks for whatever the solver is able to or wants to observe about 

P. Emilio starts recalling some of the given theoretical elements: A and B are fixed 

points; MB always has the same length. At time 01:54 the solver starts 

communicating the first product of GP: GP_1. It takes approximately 20 seconds 

from the question (time 01:35) to the discursive instance of GP (01:54) and 10 

seconds from the utterance which refers to the given theoretical elements. 

Moreover, GP_1 is detailed and dynamically communicated. Looking at the 

utterances and at the gesture, we infer that the solver dynamically constructs a 

circle centered at B and with radius d. 

Right after GP_1 and smoothly, the solver communicates another product of GP: 

GP_2. This is less detailed then GP_1: we cannot infer the center and the radius of 

the circle. However, it is very immediate: it seems to be constructed almost at the 

same time as the first product of GP. Moreover, the two products of GP share the 

same genesis: they are communicated starting from the recalled theoretical 

elements at time 01:44.  
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As we stressed, GP_2 is not very detailed and Emilio also seems to be aware of 

this. Indeed, at time 02:21, he uses the modal verb “should” which stresses that he 

is not so sure about his prediction. Probably in order to clarify and to provide 

evidence of GP_2, at time 02:27 he tries to introduce a theoretical component (the 

equidistance) and at time 02:35 he restores to the figural components. Starting from 

this moment, he performs several sketches of the points M and P within the same 

drawing. The technique is always the same: he points at a specific position of M; 

he connects the new M with A; he finds the corresponding position of P. Looking 

at the geometrical construction, we can make two inferences. First, the drawing 

reveals that the solver conceives P and M as connected points; in particular, P 

depends on M. Then, the construction seems to mirror the theoretical control over 

the figure: probably, the solver is able to control the locus of M, and GP_1 is 

actually detailed, but he is not so confident about the locus of P; for this reason, he 

first constructs the positions that he can easily control and then the corresponding 

positions of P. 

At time 03:30, the solver has obtained Drawing 1b and he seems to be quite satisfied. 

Moreover, at time 03:32, he repeats more assertively that the locus of P is a circle. 

The uncertainty still remains at the end of the utterance, probably because he was 

not able to provide a better description of the circle. However, we notice that, while 

he is looking at the drawing, he keeps talking about a circle even though it is not 

drawn. So, the GP_2 is quite evident for the solver to the extent that he talks about 

a circle that is not present on the sheet of paper. 

The excerpt provides two examples of coherent products of GP characterized by 

immediacy. We recognize the immediate quality of the process looking at the time, 

but also at the number of hints of the interviewer. Indeed, except for the first 

question, she does not need to intervene during the process to help or push the 

solver towards a prediction process. In this case, it seems that the products of GP 

give the solver a first idea of the solution, which has to be followed by a more 

analytical one. 

6.5.2 Immediacy: an example from the resolution of Task 4 

The best example within the part of the sample composed by undergraduate and 

graduate students is provided by Filippo’s interview. He is a mathematician and, 

when the interview was videotaped, he was soon to defend his Ph.D. thesis in 

Algebraic Geometry. So, we can undoubtedly say that he is an expert solver. The 
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excerpt reports on the whole first part of the resolution of Task 4 and has already 

been presented in Section 6.2.1 (Filippo_PhD_T4_P1). 

First of all, we can notice that the whole first part of the interview lasts only one 

minute: the solver goes straight to the solution. Let’s see in detail. 

At time 00:21, the solver rephrases the task: 

Filippo:  So, I fixed two points, I construct the right triangle on them above 

which the right angle is opposite. 

We notice that he recalls some of the given theoretical elements, but he does not 

mention that ABC is a triangle. Actually, it may not be necessarily useful for 

reaching a solution. 

At time 00:21 the interviewer asks about the vertex with the right angle. Right after, 

the solver considers the question and repeats it as if he is talking with himself. 

Only after 3 seconds he answers: 

Filippo: So, I can say that it is forced, though it doesn’t want to, to vary on a 

circle. With diameter AB. 

The answer is immediate and contains a product of GP that is: detailed, complete 

and completely verbally communicated. 

Moreover, at time 00.47 the solver shows the center of the circle. This is the only 

information that was not explicitly communicated before but that could be easily 

inferred through the description of GP_1. 

Comparing Filippo’s utterances with Emilio’s, we can observe that Filippo speaks 

in a more assertive form. This reveals to what extent the solver is sure of his 

product of GP. 

This excerpt and, in general, all of Filippo’s interviews show immediate processes 

that leave the researcher out from what happens during the time frame that goes 

from the question to the answer. Indeed, the process is undertaken so quickly that 

the solver is not able or does not need to use gestures, utterances or drawings to 

communicate its phases. 

6.5.3 Predictions without any explicit hints 

In some cases, the process of GP is undertaken spontaneously, without any 

question from the interviewer. Here we show two examples. The first example is 

from the initial part of Agnese’s interview during the resolution of Task 2: 

Agnese_MS_T2_P1_(01:54 – 02:08). 
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Time Who What is said What is done Comment 

01:54.09 Stud A and B are fixed, 

and the length of MB 

has to always be d. 

  

02:01.23 Stud A and B are fixed. She uses two fingers 

for pointing at A and B 

on the drawing:  

 

 

02:08.01 Stud Ok. As P varies…  She points at A with a 

finger and at P with 

another. Then, she 

starts moving the 

finger that is pointed at 

P back and forth on a 

curvilinear path: 

 

GP_1_(2) 

(gestural): P is 

moving on an arc 

of a circle 

 

Window gesture 

At the beginning of the interview, Agnese performs the drawing and the 

interviewer intervenes only for giving reading out the task and for supporting the 

solver during the drawing, for example bringing another sheet of paper. The 

excerpt starts when the solver is recalling the given constraints. At time 02:08 we 

find a gestural instance of GP naturally performed by the solver. The reported 

product is strongly inferred, but it reveals that the solver is wondering about 

possible positions for the point P. It is important to stress that the interviewer does 

not ask anything. So, we guess that the prediction process, that shows a strong 

dynamic dimension, is undertaken spontaneously by the solver. 

Another example is provided by one excerpt from Ilaria’s interview during the 

resolution of Task 4, which was already presented in Section 6.1.1 

(Ilaria_G9_T4_P1). 

The excerpt from the whole first part of the interview shows that the first question 

about C is introduced only at time 01:22. Nevertheless, even before this moment, 

we find some instances and a product of GP. At time 00:23, right after Ilaria has 

finished reading the list of constraints, we recognize in her utterance an instance 

of GP: she verbally communicates that the points cannot be moved. At time 00:41 

we find a product of GP. Although it is incoherent, probably because of an 

imprecise interpretation of the constraints, it is communicated without any hint 
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from the interviewer. At time 01:02, we find a second discursive instance of GP 

which stresses that each part of the configuration is fixed. 

We are not discussing here the coherence of the products of GP communicated by 

these two solvers, but the spontaneous way in which they undertake the prediction 

process. In both cases, the exploration of other arrangements of the configuration 

starts naturally, without any explicit prompts. This is noteworthy because it 

reveals that in certain cases and for certain solvers the prediction process could be 

undertaken in such a spontaneous way that it can take place even when it is not 

explicitly requested. 

6.5.4 Non-example of immediacy 

For sake of clarity, we want to provide an example of a quite long process of 

prediction that is neither spontaneous nor immediate. The excerpt is part of the 

interview with a 10th-grade student: Carlo_G10_T2_P1_(01:22 – 04:52).  

Time Who What is said What is done Comment 

01:22.26 Int What can you say 

about the point P? 

  

01:26.17 Stud Mmm, point P? The solver has 

already performed a 

drawing: 

 
Drawing 1a 

 

01:28.05 Int Mm mm.   

01:33.17 Stud Maybe...I don't know 

if I need this, ehm... 

  

01:35.23 Int Mm.   

01:38.06 Stud This was used to find 

the center of AP and 

to connect it with M 

and make the right 

triangle. 

He points at M. Figural elements. 

He refers only to the 

figural elements that 

are present in the 

drawing. 

He focuses on the 

triangle AMB, which 

is considered a right 

triangle.  
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The segment MP 

seems not to be 

relevant. 

01:45.05 Int Mm mm.   

01:47.19 Stud Eh...at least it is right, 

I got a right one.  

He is laughing. He guessed that the 

Drawing 1a is a 

particular 

arrangement of the 

given configuration.  

01:51.14 Stud and...it is any 

extension of AM. 

 The triangle and the 

segment MP seem 

again to be 

disconnected.  

01:57.25 Stud Ah no! it is the 

extension of AM and 

it is...AP is twice AM, 

so... 

 He changes his mind 

and recognizes that 

AP is twice AM. 

02:06.02 Stud It is the extension of 

AM of the same 

length of AM, so AM 

is congruent to MP. 

 He seems to be 

aware that AM is 

equal to MP just 

now. It is a discovery 

for the solver.  

02:16.10 Stud Ok.   

02:17.05 Int Ok. Make a 

prediction: do you 

think that point P can 

occupy other 

positions? 

  

02:24.02 Stud Uhm! He looks at the step-

by-step 

construction.  

 

02:32.22 Stud Yes, any because 

"choose a point P on 

the plane". 

 Theoretical element 

02:36.18 Int Make a prediction…   

02:38.01 Stud Let's say...   

02:38.16 Int Mm mm.   

02:39.03 Stud Let's put P here...I'm 

coming. 

He adds a point on 

the same drawing:  

 
Drawing 1b 
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02:44.17 Stud I'll try to quickly do it 

over. 

He starts sketching a 

new drawing.  

 

02:45.29 Int Yes.   

02:48.13 Stud P. So it says...   

02:51.11 Stud If I choose a point P 

on the plane and I 

connect it with A. 

  

02:59.17 Stud Midpoint M. 

 
Drawing 2 

 

03:09.19 Int Mm mm.   

03:12.01 Stud I always get a right 

one. 

He looks at the last 

drawing. 

  

Figural elements.  

The figural elements 

seem to drive his 

exploration. He does 

not seem to control 

theoretically the 

configuration. 

03:16.27 Stud In any case yes, it 

could occupy any 

region of the plane, 

because it says so. 

He moves the finger 

on the whole sheet 

of paper.  

Recalled theoretical 

element. 

03:21.11 Int Ok. make a 

prediction: do you 

think that P can 

occupy other 

positions in the... 

other positions so that 

MB remains of length 

d? 

  

03:33.11 Stud Yes.   

03:34.06 Int Which?   

03:37.19 Stud Do I have to make it 

so that MD 

corresponds to d? 

He points at M, then 

at B and then on d. 

He does not seem to 

make a distinction 

between MB and d. 

03:41.17 Int Mm mm.   

03:42.05 Stud In any case, it's 

always like this, 

because... d is its 

length, of MB and 

they are connected, 

 He does not seem to 

distinguish between 

MB and its length.  
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therefore...it's like, it's 

saying the same thing 

with different words I 

think. 

The length and the 

segment are not 

distinct. 

03:57.01 Int Ok, concentrate on 

the first drawing, for 

example, that you 

made. 

She refers to 

Drawing 1a. 

 

03:59.02 Stud Mm mm.   

04:02.14 Int In this configuration 

it is possible... 

mmm... let's say, 

suppose that you 

have measured MB. 

You found that this 

distance is 4 

centimeters for 

example. 

  

04:12.29 Stud Yes.    

04:13.22 Int Is it possible that P 

occupies other 

positions so that d 

remains of length 4? 

  

04:21.04 Stud Eh, no! Because say 

that we had put P 

here, at this point... 

He traces a point on 

the sheet of paper 

and labels it P:  

 

 

04:30.02 Stud ...and we connected 

...do you say "we 

connected"? 

He moves the pen 

from A to the new 

point P. He hesitates 

on the tense of the 

verb. 

 

04:34.00 Stud And BM would have 

become longer. 

He moves the pen 

back and forth from 

A to the new point P. 

 

04:37.10 Int Mm mm.   

04:38.21 Stud And so...the lengths 

would, would 

change. 

  

04:42.29 Stud So only...one other 

way in which B is 

He points at a new 

position of P:  

GP_1_(0) (discursive 

– gestural): P at a 
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congruent to d I think 

it is the opposite. 

 

symmetric position 

with respect to A 

 

Window gesture 

04:52.06 Stud That P would be on 

this side. 

  

The excerpt starts with the question about P. Looking at what happens until time 

02:16, we notice that the question does not activate a process of GP. The solver 

simply describes the configuration sketched in Drawing 1a. We notice that the 

characteristics of the configuration are driven by the drawing or in general by the 

figural components. Indeed, the solver speaks about P as a point used to find M, 

which is described as the “center” of the segment AP; he focuses on the shape that 

is made up of the segments and he describes it as a right triangle. We stress that 

the triangle is right not as a logical consequence of the particular step-by-step 

construction but only because it seems so in the solver’s drawing. Moreover, at the 

beginning the solver describes AP as any extension of AM; then, he recognizes that 

AP is twice AM and therefore that AM is congruent to MP. The tone of the last 

utterance (time 02:06) reveals that the solver perceives the property as a discovery 

as if he did not know before. In fact, we know that it is only an immediate 

consequence of the theoretical element “M is the midpoint”.  

So, we notice that the most natural reaction of the solver to the question is to 

describe the configuration obtained following the step-by-step construction. The 

description is carried out without any dynamic dimension and we cannot 

recognize any product of GP. 

At time 02:17 the interviewer introduces the second question, asking explicitly for 

a prediction on the possible positions of P. The solver’s answer recalls a theoretical 

element given at the beginning: P is a point on the plane. So, he does not seem to 

be aware of the theoretical constraints that the configuration must maintain. The 

theoretical element leads the solver to consider another position for P, which is 

pointed to, at time 02:39. The solver does not seem able to add other information 

about this position. So, he restores to a figural approach: at time 02:44, he starts 

making a new drawing. At time 03:13, in order to describe the configuration, the 

solver again refers to a right triangle. The figural elements seem to drive the 

exploration of the problem. Moreover, at time 03:16, he tries again to introduce a 

theoretical element that justifies his answer. 

Within this sequence we do not find any instances of GP. 
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At time 03:21, in order to trigger a GP process and to recall the given constraints, 

the interviewer asks the third question about P. The solver says that it is possible 

to find other positions of P, but still the solver does not succeed to describe them. 

The utterance at time 03:42 reveals that the solver does not distinguish between 

the segment MB and its length d. Moreover, probably “d” is only a label for him 

and not the indication of a fixed length.  

Then, the interviewer makes the last attempt to trigger a GP process. She asks the 

solver to focus on the first drawing and to suppose that MB is 4 centimeters long. 

At time 04:13, she asks for possible positions of P that maintain this length. Since 

the interviewer makes explicit one of the crucial constraints, the solver says that if 

he chose another position for P, the lengths would change. In order to provide this 

answer, the solver focuses on a particular P that he points at time 04:21.  

Finally, at time 04:42 we find the first product of GP verbally and gesturally 

communicated: GP_1. We infer that Carlo wants to construct the point P as the 

symmetric point with respect to A. This is a detailed but incoherent product of GP. 

Indeed, placing P in that position the configuration does not maintain the given 

constraint on the length of MB.  

Summarizing, the first question is asked at time 01:22 and we find the first product 

of GP at time 04:42. So, more than 3 minutes pass until we recognize an evidence 

of GP. Moreover, the first question induces the solver only to describe the 

configuration that he sketched before; one process of GP is undertaken only after 

three explicitly interventions of the interviewer, the last of which is strongly 

oriented making a prediction. The process that leads the solver to communicate 

GP_1 is not immediate at all. We would add that GP_1 is incoherent and is the only 

product of GP communicated by the solver during the first part of the interview.  

6.5.5 Concluding remarks about immediacy 

Our tasks are designed in order to also catch spontaneous features of prediction 

processes. The first question is generally open also for this reason. The data reveals 

that immediacy can actually be a characteristic of GP processes.  

In some cases, the process is so natural for the solver that it is triggered without 

any support from the interviewer. In other cases, the first question is sufficient to 

induce a prediction process.  

In particular, immediacy seems to be mostly a quality of the process of GP 

undertaken by a solver who was exposed for a long time to the mathematical 

knowledge and, by virtue of this, is supposed to be expert. In a certain sense, 
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communicating a coherent and detailed product of GP in an immediate way seems 

to be a habit of mind of the expert solvers. We infer that, if the solver can produce 

an evidence of GP in an immediate way, the product is quite evident for the solver 

and, therefore, well communicable. For expert solvers, the product of GP seems to 

constitute a first idea of the solution that needs to be followed by a more analytical 

discussion in order to provide evidence of it. 

However, not all the prediction processes are immediate. There are several cases 

of GP processes undertaken only after several explicit and strong interviewer’s 

requests for a prediction.  

Obviously, between the non-immediate and the immediate processes there is a 

range of occurrences in which the process can be gently supported by the 

interviewer and the solvers construct their products of GP step-by-step.  

6.6 Intuition  

Immediacy is directly connected with a theoretical construct that is often involved 

in the mathematical activity of intuition. 

A priori we have conjectured that intuition can have a role within the prediction 

process. Our data reveals that in some cases the GP process is actually 

accompanied by evidences of intuition. As previously highlighted (see Chapter 3), 

we are particularly interested in anticipatory intuition, a kind of intuition 

specifically involved in problem-solving activities.  

We have found several evidences that an anticipatory intuition occurred right 

before or combined with the communication of a product of GP. We can recognize 

evidences of anticipatory intuition when the solver communicates a new piece of 

mathematical knowledge about the solution:  

- suddenly; 

- without an explicit or recognizable connection with the processes 

previously undertaken; 

- after a long silence. 

An evidence of anticipatory intuition can have one or more of the features listed 

above. The context, the tone of the voice, the way the solver performs the 

utterances are additional markers of anticipatory intuition.  

Emilio’s interview previously analyzed offers a good example of a product of GP 

reached through an anticipatory intuition. Indeed, GP_1 and GP_2 are 
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communicated suddenly after a descriptive sentence (time 01:44). The subsequent 

meaningless utterance (time 01:50) denotes a pause while we can infer that he is 

thinking about the configuration. Looking at the subsequent utterance, and more 

specifically at its tone and incipit (“well”), we identify evidences of anticipatory 

intuition. In particular, we recognize that GP_1 is communicated suddenly; it 

reveals a global view of the solution; it is quite evident for the solver to the extent 

that it is not questioned later; it seems not to be directly connected with the content 

of the previous utterances. So, it has several features that also characterize an 

intuition.  

Even if Filippo's process is immediate, we cannot recognize instances of intuition 

within the excerpt. The process is carried out so quickly that we did not find any 

elements that suggest that there are instances of intuition. The solution is more 

likely from an analytical process than from a global view or a guess at the solution.  

In the next sections we provide examples of GP processes during which we can 

recognize instances of anticipatory intuition.  

6.6.1 Anticipatory intuition within the resolution of Task 5: an 

example.  

The first example is a part of Sergio’s interview and shows how an anticipatory 

intuition can lead to a detailed product of GP: Sergio_G10_T5_P1_(01:44 – 03:35). 

Time Who What is said What is done Comment 

01:44.21 Int So make a drawing of 

what you imagined. 

  

01:48.25 Stud  He draws: the 

triangle ABC; the 

midpoint of AB; the 

segment CM. 

 

Drawing 1a 

 

02:13.20 Stud Ok.   

02:14.10 Int Ok. Is it possible that 

CM is congruent to 

CB? 
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02:19.18 Stud With...A and B that are 

fixed points no. 

  

02:25.14 Stud No, no in any case, no 

it is impossible. 

 GP_1 (discursive) 

02:27.09 Int Why?   

02:28.11 Stud Because the side CM, 

that represents the 

height, is in any case... 

since it is 

perpendicular to the 

sides AB that are fixed 

points, it is shorter 

than the side CB since 

it is slanted instead 

with respect to the 

side AB. 

He points at CM and 

AB. 

He is points at CB  

while he is saying: 

“slanted” 

CM is considered a 

height of the 

triangle. This 

recalls the 

properties of the 

height.  

 

02:45.15 Int Ok. Do you think you 

could move C so that 

CM is congruent to 

CB? 

  

02:51.18 Stud No.  GP_1 

02:52.13 Int Why?   

02:54.15 Stud Because moving point 

C, the length of CM 

would increase, but 

consequently also the 

length of CB would 

increase and since 

they are not congruent 

in this case any 

position I could 

choose ... 

  

03:09.00 Stud  Suddenly, after the 

last sentence, he stops 

talking.  

 

03:17.12 Stud No! No, no, there 

would be one point. 

After 8 seconds of 

silence, he claims: 

“No!” 

He suddenly seems 

to discover a new 

configuration: 

Anticipatory 

Intuition 

03:21.03 Stud I should....I should 

move C 

perpendicularly to 

the midpoint of 

segment MB and 

therefore these two, 

He points at a specific 

position: 

GP_2_(0) 

(discursive – 

gestural): C on a 

perpendicular line 

through the 

midpoint of MB 
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these two sides would 

be identical. 

 
He points at a 

position between M 

and B.  

03:31.26 Int Show me how.   

03:35.15 Stud If here...if I moved C 

to the midpoint of 

MB, so here, this side 

MC would become 

like this and 

M...MB...CB would 

become like this. So 

consequently they 

would be...identical. 

First, he marks the 

midpoint of MB; then 

he traces another 

point placed above it; 

finally, he draws the 

sides.  

 
Drawing 1b 

 

For the sake of completeness, we briefly report what happens before the excerpt. 

The solver was asked to solve the task without using any supports; he 

communicates the first product of GP, highlighting that CM cannot be congruent 

to CB; he explains that he thinks so because CM is a height of the triangle. The 

excerpt starts when the solver is asked to draw what he has imagined. Looking at 

Drawing 1a, we can see that actually CM is drawn as a height of the triangle and 

CM is not congruent to CB in this particular arrangement.  

Now the solver has the support of a drawing, so the context is different, and the 

interviewer can ask again if it is possible for CM to be congruent to CB. He repeats 

that it is impossible, and after the interviewer’s prompt he explains why: he thinks 

so because CM is the height of the triangle. The theoretical element “height” also 

activates the properties or the definition of the height that the solver uses to justify 

its first prediction. The solver uses a very assertive tone in which we do not find 

any uncertainty.  

At time (02:45) the interviewer changes the question a little and asks if he thinks 

that C could be moved in order to have CM congruent to CB. He repeats the same 

answer and starts explaining why. He supposes to place C in another position and 

starts describing what he will obtain, but suddenly he stops. After a few seconds 
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of silence, suddenly and with an exciting tone, he claims that there exists a position. 

The pause, the tone and the meaning of the sentence lead us to recognize an 

anticipatory intuition and, at time 03:21, a new product of GP: GP_2. This is 

communicated through gesture and discourse and is detailed: the solver clearly 

described the new position of C as located on a perpendicular line passing through 

the midpoint of MB. After the interviewer’s prompt, the solver draws the new 

configuration. The details contained in the utterance and the clarity of the drawing 

reveal that for the solver this solution is quite evident. 

In this excerpt, we notice how an anticipatory intuition can lead to a coherent 

product of GP that is communicated in a detailed way and that contains a good 

number of theoretical elements introduced by the solver for the first time, like the 

perpendicularity and the midpoint. Until time 03:13, the solver seems quite 

convinced about his first prediction but suddenly he changes his mind. Looking at 

what happens before, we cannot be sure about what triggers the GP process that 

leads to GP_2. A plausible explanation is the sudden intervention of an intuition 

with an anticipatory role. Moreover, what happens at time 03:17 and 03:21 has the 

features of an anticipatory intuition.  

- Suddenness: all at once, the solver stops talking and silently keeps looking 

at the drawing.  

- Evidence: the solver confidently points at the new position of C and draws 

the new configuration.  

- The new insight into the solution comes after other attempts.  

- We cannot find an explicit connection with what happens before. In fact, 

GP_2 seems to be in sharp contrast with the fixedness of C and of the whole 

configuration, previously supposed by the solver.  

6.6.2 Anticipatory intuition within the resolution of Task 2: an 

example. 

As elsewhere highlighted, the resolution of Task 2 can be quite long and require 

the generation of several products of GP in order for a complete and detailed 

solution to be reached. So, this task, more than others, gives us the opportunity to 

observe several instances of anticipatory intuition within the interviews. In this 

section, we provide two examples of GP processes accompanied by an evidence of 

anticipatory intuition: the first one leads to a coherent product of GP and the 

second one to an incoherent product. 
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The first example is from Giacomo’s interview: Giacomo_G9_T2_P2_(01:38 – 05:55).  

Time Who What is said What is done Comment 

01:38.09 Int Are you with me, 

great. So the 

question is: what can 

you say about point 

P? 

 

 

 

01:47.04 Stud That it is external to 

the figure ABM. 

He moves the pen over 

the figure: 

 
Drawing 1a 

Figural elements 

01:55.00 Stud It is half of AM.  Incorrect wording: 

the length of a 

point.  

We infer that he 

refers to MP. 

01:57.15 Stud No, of...it is equal to 

AM. 

  

02:02.20 Stud and it is half of AP. After the utterance he 

remains silent. 

 

02:27.07 Int Ok, can I ask you 

something else? 

  

02:28.11 Stud Yes.   

02:29.05 Int Ok. Make a 

prediction: do you 

think that point P can 

occupy other 

positions? 

  

02:37.23 Stud Well, yes, it can, it 

could occupy 

infinitely many 

positions on the 

plane. 

 GP_1_(2) 

(discursive): 

countless position 

of P 

He does not seem 

to have a precise 

idea of the 

positions of P. 

02:44.29 Int Which?   

02:48.13 Stud I mean considering 

that it is there still on 

the figure or that 

before making the 

whole figure, having 

He points at another 

point on the plane: 

GP_1 shows a lack 

of the given 

constraints.  
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only side A and B 

and then be able to 

construct [by 

pointing a compass] 

the segment P? 
 

03:02.28 Int Do you think that the 

point P can occupy 

other positions so 

that MB remains of 

length d? 

  

03:11.00 Stud  He looks in silence at 

the drawing. 

 

03:21.15 Int When you told me 

"infinitely many 

positions"... 

  

03:23.13 Stud Yes.   

03:23.24 Int ...what were you 

thinking about? 

  

03:24.28 Stud I was thinking about 

when I did not yet 

have the figure... 

He points at AB  GP_1 refers to the 

construction of the 

configuration, 

rather than to the 

maintaining of the 

given properties.  

03:27.07 Int Mm mm.    

03:27.27 Stud ...AM...ABM with 

the...with d like MB 

and so if I had only 

the point... 

  

03:35.05 Int Mm mm.   

03:35.23 Stud ...I could have 

positioned it 

anywhere. 

 Theoretical 

element 

03:37.19 Int Of course. Now 

imagine that MB has 

to remain of length d. 

  

03:43.07 Stud Ok.   

03:44.07 Int Make a prediction: 

do you think that 

point P can occupy 

other positions? 

  

03:51.25 Stud  He points at a position 

with certainty:  

Window gesture 

We infer that he is 

considering a new 

configuration 
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He stays in silence at 

that position for a 

while. 

starting from this 

position of P.  

04:00.24 Stud No, it cannot occupy 

other positions. 

 GP_2_(1) 

(discursive):  

P is fixed 

04:05.19 Stud Because it has to 

always remain fixed 

in its points so that 

MB always has 

distance d. I mean 

always has length d. 

  

04:22.24 Int Why?   

04:35.17 Stud Or, if I mirrored the 

figure across 

AB...MB would 

always be the same. 

But it would be 

mirrored on the 

other side. 
 

Window gesture 

Anticipatory 

Intuition 

 

GP_3_(0) (gestural 

– discursive):  

P at a symmetric 

position with 

respect to AB 

04:45.21 Int Show me how.   

04:47.18 Stud So I should 

start…AB... 

  

04:51.22 Stud ...a point P...more or 

less... 

He traces out a new 

point P 

 

04:53.28 Int Of course.   

04:57.12 Stud  He traces out AP, the 

new M and MB 

 

05:10.15 Stud If I mirrored it...in 

this point P I would 

have...I mean MB 

would have the same 

distance that it has 

on...P...on the other 

side. I mean if I drew 

this thing here. 

He traces out two 

dotted lines at the 

extremity of AB.  

Theoretical 

element inferred 

by the drawing: 

axis of symmetry.  
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05:23.28 Stud The two figures 

would be mirrored: 

this and this distance 

here are congruent, 

like this one and this 

one. 

He makes two marks 

on the segments:  

 
Drawing 1b 

Several theoretical 

elements are 

inerrable from the 

drawing. 

05:31.27 Int Ok. Do you think 

that there are other 

positions for point P? 

that leave MB of 

length d. 

  

05:53.10 Stud No, there are no 

more. 

  

05:55.24 Int Ok.    

The excerpt starts with the interviewer’s question about P. From time 01:47 till time 

02:02, the solver describes various figural components of the figure as if he were 

describing the drawing. He focuses not only on P, but also on MP. Looking at the 

utterances, we guess that he is considering the configuration as composed of a 

triangle (“the figure”) and a point that is connected with the figure through a 

segment.  

The sequence ends at time 02:02 with a long silence (25 seconds). So, the 

interviewer guesses that the solver will not add any more information and decides 

to ask the second question. At time 02:37, Giacomo says that P can occupy infinitely 

many positions within the plane, and we find his first product of GP: GP_1. This 

is communicated only in a discursive way and is quite fuzzy: the solver does not 

perform any gesture or drawing that could clarify where he intends to place P. The 

answer seems to be quite vague.  

The utterance at time 02:48 reveals that, while he was talking about the positions 

of P, he did not consider all the constraints. So, at time 03:02, the interviewer recalls 

in the question the constraint over the length of MB but Giacomo does not answer. 

At time 03:24, we find evidence of our inference: the GP_1 concerns a possible 

configuration that does not maintain all the given constraints, and Giacomo refers 

to a completely new configuration. At time 03:37, the interviewer rephrases the 

question and the solver replies with a new product of GP: GP_2. If MB must always 

have the same length, P must be fixed.  



 215 

When the solver is asked for a further explanation, he remains silent for a while 

(13 seconds) and all at once he communicates a coherent product of GP that is 

completely disconnected with the previous one: GP_3. The utterance reveals that 

Giacomo intends to place P at a symmetric position with respect to AB. He does 

not explicitly mention the line symmetry, but he performs a gesture that shows the 

new position of P. The utterance combined with the gesture shows that GP_3 is 

quite evident for the solver. In this sequence, we find an evidence of anticipatory 

intuition: the answer comes out suddenly, without an explicit hint for a prediction 

and after some solver’s attempt to find a solution, and it is in sharp contrast with 

the previously supposed fixedness of P.  

At time 05:23, the solver performs a drawing of the new configuration. Since after 

this moment he does not communicate other products of GP even if the interviewer 

asks for other predictions, we infer that he does not undertake other GP processes. 

This could happen because of a lack of dynamism within the Giacomo’s 

exploration or, most likely, because the solver adds another constraint to the 

configuration: the length of AM must be fixed. This is evident looking at the 

Drawing 1b: the solver marks the two segments labeled AM. 

In this excerpt, we see that the request for a further explanation triggers an 

anticipatory intuition that leads to a product of GP. Even if GP_3 is quite rigid, it 

is coherent and detailed. 

Nevertheless, an anticipatory intuition does not necessarily lead to a coherent 

product of GP. The following excerpt provides an example of this particular case. 

The excerpt is from Isabella’s interview: Isabella_G13_T2_P1_(01:37 – 04:08). 

Time Who What is said What is done Comment 

01:37.29 Int What can you say 

about the point P? 

  

01:42.29 Stud Eh I can say that it is a 

random point on the 

plane. 

The drawing which 

is already sketched 

out is the following: 

 
Drawing 1a 

She recalls 

theoretical elements 

 

01:48.11 Stud In this case it is also the 

endpoint of a segment. 

 Theoretical 

elements 

01:52.01 Stud Eee...I don't know what 

else I could say. 
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02:01.08 Stud Enough. I mean I don't 

know what else to say. 

  

02:05.05 Int Ok. Make a prediction: 

do you think that point 

P can occupy other 

positions? 

  

02:13.26 Stud Do you mean on the 

plane? Or? 

  

02:15.11 Int Yes. 

 

  

02:17.22 Stud Yes, I think it could.   

02:20.23 Int Which?   

02:23.28 Stud You mean in the sense 

that I could move it? Or 

that it could be another 

endpoint for 

segments? 

  

02:33.14 Int So, imagine... The 

question is: do you 

think that point P can 

occupy other positions 

on the plane so that MB 

remains of length d? 

  

02:52.06 Stud Mmm. She points the pen at 

P and moves to the 

top along a 

trajectory 

perpendicular to 

AB. 

Window gesture 

03:04.02 Stud So, no wait, eh!   

03:08.27 Stud Yes. Yes. Suddenly, she 

answers.  

Anticipatory 

Intuition 

03:09.21 Int Which?   

03:12.16 Stud Eh...if for example we 

placed the midpoint as 

the center of a circle 

making P rotate, that is 

making MP become 

the radius of the circle, 

then the distance, I 

mean the length MB 

would not change. 

 

 

GP_1_(0) 

(discursive – 

gestural):  

P on a circle 

centered at M and 

with radius MP  

 

Window gesture 

 

MP and the triangle 

are independent 

figural elements. 
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03:34.13 Int Show me what you 

imagine. 

  

03:36.24 Stud I think!   

03:39.03 Stud I mean considering 

that. Should I draw it? 

  

03:41.03 Int Yes, yes.    

03:42.17 Stud So considering that M 

is the central point– I 

am losing my voice – of 

the circle and making 

the circle, then moving 

P to one side or the 

other, well OK I made a 

very bad drawing but 

anyway. 

She starts drawing 

the predicted circle. 

 

04:02.14 Stud M would not change 

its position, but P 

would and so. 

  

04:08.21 Stud The length does not 

change, I mean I think, 

it would move around 

the circle. 

She draws a 

semicircle:  

 
Drawing 1b 

 

The excerpt starts with the first interviewer’s question about P, right after the 

solver has finished sketching Drawing 1a. From time 01:42 till time 02:01, the solver 

talks about the figural elements of the figure, as she is describing the drawing: P is 

a point on the plane; P is the endpoint of a segment.  

She does not add any other information, so the interviewer decides to explicitly 

ask for a prediction. Isabella seems to be confused about the question and asks for 

a further explanation. The interviewer decides to ask the most explicit question 

about P. It seems that this last hint triggers a process of GP. Indeed, at time 02:52 

we find a window gesture that suggests that a process of GP is undertaken: the 

solver seems to evaluate a possible position for P, without adding any utterances. 

Suddenly, at time 03:04, the solver claims that there exist other positions for P. 

Here we recognize an evidence that an anticipatory intuition occurred, because of 

the tone of the voice and the suddenness of the answer. This intuition leads the 

solver to a product of GP: GP_1. Isabella says that, in order to maintain the given 

constraints, P can rotate around a circle centered at M and with radius MP. The 
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utterance reveals that she is quite sure about her prediction: the sentences are quite 

assertive. We notice that, although GP_1 is detailed, it is incoherent. The solver 

seems to consider the configuration as composed of a fixed triangle and an 

independent segment. Moreover, the configuration described in GP_1 has new 

constraints and loses some of the given ones. This reveals a lack of theoretical 

control of the solver over the figure. The new constraint is: “the segment MB is fixed” 

or “M is fixed within the plane”, which leads to the fixedness of the whole triangle. 

The lost constraint is: “M is the midpoint of AP”. At time 03:42, Isabella repeats that 

M is the center of the circle and then she performs a drawing that shows what she 

has predicted.  

Intuition seems to have a role within the prediction process, but it is not necessarily 

connected with the coherence of the product of GP. The excerpt shows an evidence 

of anticipatory intuition that leads the solver to an incoherent but convincing 

product of GP. The suddenness and the tone of her voice suggest that it is actually 

an intuition that supports the communication of GP_1. The solver seems quite 

convinced of her prediction: after the communication of GP_1, she repeats the 

features of the configuration and is able to sketch it out in a drawing. Moreover, 

GP_1 is the only product of GP that the solver communicates.  

So, it seems that it is not the immediacy or the evidence of the intuition that leads 

the solver to a coherent product of GP. In this excerpt, we see that the intuition 

only leads to a solution, not necessarily to the most correct one. Nevertheless, it 

leads to something that is very evident for the solver. Probably the dominance of 

figural elements and the lack of theoretical control over the figure could more 

suitably explain why the solver did not reach a coherent product of GP.  

6.6.3 A product of GP is not ever accompanied by an intuition 

Although in our data we find several evidences that an anticipatory intuition 

occurred, it is not ever a feature of the GP process. Not every process of GP is 

accompanied by or coupled with an anticipatory intuition; there are also 

interviews during which a product of GP is communicated without any observable 

or recognizable evidences of intuition.  

One example is provided by the previously reported interview of Carlo. The 

process that leads to a product of GP proceeds very slowly and leads to an 

incoherent product of GP. Looking back at the previous sections, we find several 

examples of products of GP (coherent and incoherent) that are communicated 

without a recognizable intervention of an anticipatory intuition.  
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Here we show one last example of a product of GP produced without an 

anticipatory intuition, but that is strongly supported by figural elements. The 

excerpt is from Silvia’s interview: Silvia_G10_T5_P1_(05:21 – 08:15).  

Time Who What is said What is done Comment 

05:21.18 Stud  She starts a new 

drawing: 

 
Drawing 3a 

 

05:29.20 Stud No, it could not be 

the same. 

 GP_1_(2) (discursive):  

CM cannot be equal 

to CB 

05:32.01 Int Why?   

05:39.14 Stud I mean graphically 

you can see it, 

but...ehm... 

 Figural elements  

05:51.18 Stud Because...   

06:04.25 Stud Because...   

06:11.15 Stud I mean I don't know 

how to explain it. 

  

06:24.29 Stud Because in any case 

the midpoint is not 

the same as the 

point... point B is not 

the same as M, they 

are different points in 

the space of the 

plane. 

She points at M and 

B 

Figural elements 

06:38.09 Stud And always 

connecting them to P, 

the length is always 

different, it's 

impossible for them 

to be the same. 

She points at CM e 

CB 

GP_1 

Figural elements 

06:45.25 Int Concentrate on point 

C. 

  

06:47.19 Stud Mm mm.   

06:48.11 Int Do you think it could 

occupy other 

positions so that CM 

is congruent to CB? 

  

06:53.22 Stud  She is looking at 

Drawing 3a and 
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starts drawing 

others points C. 

07:06.08 Stud Aaah! Ah well then, 

in that case yes. 

The claim coincides 

with the drawing of 

C as the vertex of an 

isosceles triangle:  

 
Drawing 3b 

She considers the 

possibility CM=CB 

only because she sees 

it on the drawing.  

It is not a GP. It is only 

an interpretation of 

the drawing.  

Bottom-up process.  

07:11.16 Stud When... yes, when, 

when you connect M 

with C and B with C 

they would form, in 

this way, they would 

form an isosceles 

angle and so the two 

sides would be the 

same, so there are... 

basically like before, 

so there is more that 

one possibility that 

they be ... 

 The figural elements 

dominate the process.  

 

07:35.20 Int Which?   

07:37.19 Stud This one, so... She starts a new 

drawing:  

 
Drawing 4 

 

07:51.17 Stud One.   

08:00.12 Stud This is practically the 

same. 

She starts a new 

drawing:  

 
Drawing 5 

GP_2_(0) (gestural): C 

is the vertex of an 

isosceles triangle and 

is located at a 

symmetric position 

with respect to AB  

08:06.28 Stud Two. But that is 

always the same one. 

One, only one. 

 The position of C and 

its symmetric position 

are the same.  

08:15.03 Stud I think only one.  Last solution: only one 

position.  
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The excerpt starts right after the interviewer has proposed the question again. 

Until now the solver has erroneously reasoned upon the possibility that CM is 

congruent to AB and she did not communicate any product of GP. The solver starts 

performing a new drawing and at time 05:29 she communicates a first incoherent 

product of GP: GP_1. When the interviewer asks for an explanation of her answer, 

she resorts to figural elements. Indeed, from time 05:39 to time 06:24, the solver 

talks about the particular drawing she has accomplished and admits that she is not 

able to provide a better explanation. At time 06:53, after an interviewer’s hint, she 

starts drawing again. She draws several instances of a triangle on the same 

drawing. At a certain point, she draws something that seems like an isosceles 

triangle and stops drawing. The utterance at time 07:06 coincides with this 

moment. The discovery that there exists a position for C so that CM appears equal 

to CB triggers to an utterance that contains more theoretical elements. Indeed, at 

time 07:11, Silvia describes the configuration as an isosceles triangle that, for this 

reason, has two equal sides.  

The answer arises quite suddenly during the process of drawing. It seems a 

bottom-up process that was triggered by seeing a particular configuration of the 

figure, rather than an anticipatory intuition. It is neither a product of GP because 

it seems more like an observation of some figural elements discovered almost by 

accident.  

At time 07:37, Silvia draws the new configuration and at time 08:00 another one. 

Here we find the second product of GP: GP_2. This is communicated by 

performing Drawing 5. The solver is not aware that this is a possible solution to the 

problem, and she explains that she thinks of the two configurations as the same 

situation. 

Even if the insight on the solution comes suddenly, we do not see it as an evidence 

of anticipatory intuition: the solution is discovered trying to construct on the 

drawing several cases. 

6.6.4 Concluding remarks about anticipatory intuition  

As conjectured a priori, our data reveals that the theoretical construct of intuition 

interacts with the prediction processes. In particular, we find several products of 

GP that are preceded or accompanied by an evidence of anticipatory intuition.  

After some efforts to reach a solution, it could happen that suddenly, the solver 

claims that there exists a solution. At a moment like this, we identify an evidence 
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that an anticipatory intuition occurred. The subsequent product of GP 

communicated shares some features with an intuition: 

- suddenness; 

- evidence; 

- it reveals new insight on the solution; 

- it is quite disconnected from the previous attempts.  

Moreover, the intervention of an anticipatory intuition can explain what happens 

when, after a period of silence, the solver provides a solution to the problem.   

An anticipatory intuition can precede or accompany the communication of a 

product of GP. When a GP is coupled with an anticipatory intuition, its products 

seem quite evident for the solvers.  

Moreover, anticipatory intuition is not connected with the coherence of the 

product of GP. Indeed, it could lead to both coherent or incoherent products of GP.  

Nevertheless, not every process of GP is accompanied by or coupled with an 

anticipatory intuition; there are examples of products of GP that are 

communicated without any observable or recognizable evidences of anticipatory 

intuition.  

Supported by our data, we can claim that a product of GP is not an intuition, for 

the reasons listed below.  

- Intuitions are characterized by self-evidence and vivid. If a product of GP 

is an intuition, we expect all of the products of GP to be detailed. Instead, 

we have both detailed and fuzzy products of GP.  

- Intuitions are characterized by intrinsic certainty. Instead, we find several 

hedges within the solver utterances that reveal the solver’s feeling of 

uncertainty.  

- Intuitions are immediate; instead, we also find a product of GP at the end 

of a long process. 

- Intuitions are resistant to change; instead, often during the resolution 

process, the solvers change their idea about a product of GP.  

In summary, the products of GP can share features of anticipatory intuitions, but 

not all of them are actually intuitions. We prefer to claim that anticipatory intuition 

can support the process of GP, leading to products that share some features of the 

intuitions. 
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7. The role of theoretical elements: 

findings from the funnels 
A key issue in the resolution of the open problems in geometry is how the solvers 

use their mathematical knowledge and how they are able to impose upon the 

figure and to maintain particular geometrical properties. Indeed, as discussed in 

Section 5.2.2, all the solvers of our sample are supposed to have been exposed to 

the same geometrical knowledge, even if in different levels of depth. 

The mathematical theory (the TEG in our case) and in particular the theoretical 

elements recalled by the solvers are strongly involved in the process of GP. We 

will describe such an interaction in the next sections. 

7.1 Findings from the funnels  

The funnels are the best tools for analyzing the intervention of theoretical elements 

within the GP process and, in particular, how they affect the characteristics of the 

products of GP. More specifically, the funnels allow us to see at a glance: 

- the theoretical elements recalled by the solver; 

- how many theoretical elements are recognizable;  

- whether the solver introduces new theoretical elements; 

- what kinds of these theoretical elements (properties, theorems, …) there are; 

- whether the theoretical elements are coherent or incoherent with the given 

geometrical problem.  

Moreover, the funnels highlight: 

- the figural elements focused on by the solver; 

- eventually, the intervention of anticipatory intuition previously recognized.  

From the transcriptions we can capture the kind of vocabulary used by the solver 

to recall the theoretical elements highlighted in the funnel. Indeed, for example, 

the wording could be more or less detailed or mathematically correct.  

Looking at both these tools and comparing funnels, we can say that the theoretical 

components play a crucial role within the GP processes. In solvers’ utterances or 

gestures we identify theoretical elements because of the nature of geometrical 

objects. This is an expected finding.  
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What is new is the role of the theoretical elements introduced for the first time by 

the solver. In Chapter 5, we highlighted the difference between a new theoretical 

element and an already known one. Referring to this dichotomy, in our sample we 

recognized four prototypical situations, which lead to different products of GP:  

a) there are no new theoretical elements; 

b) there are new theoretical elements, but they are incoherent with the given 

constraints; 

c) there are few new theoretical elements and they are both coherent and 

incoherent; 

d) there are new theoretical elements and they are proper and consistent with 

the given constraints. 

It seems that the presence and the quality of the new theoretical elements are 

connected to the quality of the products of GP. In particular, the funnels reveal 

that: 

- if the solver does not introduce new theoretical elements, the products are 

very simple, almost obvious, and they do not give any new information on 

the problem; 

- when there are new theoretical elements and they are incoherent, the 

products of GP are strongly incoherent, very connected to figural elements, 

and they seem to move the solver away from a correct solution; 

- when the solvers communicate a product of GP passing through 

(eventually incoherent) theoretical elements introduced by themselves, they 

seem to be convinced of their findings even if the perceptual feedback 

appears to be inconsistent in the eyes of the interviewer; 

- when there are new coherent theoretical elements, the products of GP are 

coherent and,  depending on the number of new theoretical elements, the 

products of GP can be more or less detailed and well-described. 

In the next sections, we will discuss the four cases and how they lead us to the 

findings listed above.  

7.1.1 Case (a): there are no new theoretical elements 

Solvers can communicate a product of GP recalling only already known theoretical 

elements. It is not so common, but we find some instances of this case. An example 

is contained in one of Tiziana’s funnels, which refer to the resolution of Task 2. 
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Configuration 5 (Drawing 1b): 

  
Theoretical elements 4 Figural elements 

(03:55)    M’  

   AM’ 

Congruent 

segments/Midpoint 

  AM’=M’P[‘] 

   Another P 

Constant length    BM[’’]=d 

   AM[‘’] 

Congruent 

segments/Midpoint 

  AM[‘’]=MP[‘’] 

   B 

Constant length    BM[’’]=d 

   B 

 GP_4_(2) (gestural – discursive): P on the plane constructed using 

AM=MP 

 

Configuration 6 (Gesture and Drawing 1c): 

        

Funnel 4 contains only theoretical elements that are already given in the step-by-

step construction. Moreover, all the theoretical elements are correct and are used 

properly, indeed during the coding we did not put an “X” in the middle column. 

On the other hand, she introduces several new figural elements that are not 

actually present in the drawing.  

Looking at the product of GP, we can see that it is correct, not very detailed, and 

almost obvious from the beginning. Indeed, the solver refers to a particular 

position of P that she finds only by applying one of the given constraints.  

We see a connection between the lack of new theoretical elements and the quality 

of the product of GP: all the theoretical elements are correct, but none of them are 

new, so the solver tends to communicate only a trivial product of GP. The number 

of new figural elements suggests that the solver resorts to figural considerations in 

order to carry on the GP process. We will see that this also happens when the new 

theoretical elements are incoherent.  
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7.1.2 Case (b): incoherent new theoretical elements 

When there are theoretical elements introduced by the solver, but they are 

inconsistent with the given constraints, the products of GP are strongly 

inconsistent as well. Moreover, the solvers seem to resort to figural elements in 

order to reach a product of GP.  

Here we show two examples of funnels that show a product of GP that is quite 

disconnected with the given constraints.  

The first example is from the excerpt Carolina_G9_T2_P1_(01:27 – 09:52) zooming 

in on what happens from time 08:33 to time 09:02 of the interview.  

Configuration 3 (Drawing 3): 

 
Theoretical elements  4 Figural elements 

(08:33)    B  

Projection    [P] 

[Point symmetry] X  P, A 

Fixed/Constant length  X  MB 

[Point symmetry] X X [MB] 

 GP4_(0) (discursive – gestural): P symmetric with respect to A  

Configuration 5 (Gesture): 

 

Carolina introduces new elements: the projection of a point and the point 

symmetry. Unfortunately, these are not consistent with the constraint on the length 

of MB. As we can see in Configuration 5,  she obtains a position of P that does not 

maintain the length of MB. However, she is not aware of this inconsistency and 

she talks about the new position of P as a possible correct solution. The 

corresponding excerpt is the following. 

Time Who What is said What is done Comment 

08:49.20 Stud Well, it could be 

projected  again 

…that is... on the 

other side of A, so 

She points at a position 

for P:  

GP_4_(1) 

(discursive – 

gestural):  
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I’ll do it on this side, 

MB takes on the 

same distance only 

it takes it on from I 

mean here would be 

its distance, it 

should be like this. 

 
Then she points at the 

new position of MB: 

 

P symmetric point 

with respect to A  

 

09:02.18 Stud It is probably turned 

upside down. 

She mimics a rotation: 

 

GP_4 

Window gesture 

 The excerpt shows that at time 09:02 she performs another instance of GP_4 using 

a gesture and a describing utterance. Moreover, she refers to GP_4 again at the end 

of the first part of the interview. These observations reveal that the solver is quite 

convinced of her product of GP to the extent that she does not communicate any 

other products of GP.  

The second example belongs to the excerpt Ilaria_G9_T4_P1 looking at what 

happens from time 03:06 to time 03:37 of the interview. The transcription table is 

reported within Section 6.1.1.  

Configuration 4 (Gesture): 

  
 

Theoretical elements 3 Figural elements  

(03:06) Point on a [parallel] line X  C  

   A[on the line], B[on the line] 

Perpendicular X  [Straight line through C] 

Point on a [parallel] line X  C 

Point on a [parallel] line X  C 

Projections on a line X  A[on the line], B[on the line] 

Right angle X  C 

 GP_3_(0) (discursive): C on a line parallel to AB and between two 

projections of A and B on the line 
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Configuration 5 (Drawing 1b): 

 

Ilaria introduces a long sequence of theoretical elements: she sees C as a point on 

a line; the line is parallel to AB; on the line she fixes two points that are obtained 

by an orthogonal projection of the points A and B. Moving C along the line and 

between these two new points, Ilaria predicts that the angle ACB is still a right 

angle. We notice that all the theoretical elements (new and already known) are 

incoherent.  

The product of GP is incoherent: putting C on one of the projection points is 

sufficient to observe that the angle is no longer right. Nevertheless, Ilaria does not 

seem to be aware of this inconsistency. The utterance connected with GP_3 is the 

following: 

Ilaria:  r...ehm...C...I can move on any point of this line r...between the projections 

of...of B and of A on this line...and it should remain...C...and the angle C 

always right. 

We can only recognize a slight uncertainty in her words: there are a lot of pauses 

and she uses modal verbs as “should”.  

So, when the theoretical elements introduced for the first time by the solver are 

incoherent, the funnel ends with a product of GP that is strongly inconsistent with 

the given constraints. In this case, the solver seems to be blind to the contradictions 

that the obtained configurations (i.e. drawings or gestures) reveal to the 

interviewer.  

Moreover, when the theoretical elements are few and incoherent, the products of 

GP can be strongly influenced by the figural elements of the figure that the solver 

has drawn. Here we show two examples from Task 2.  

The first example is a funnel which is drawn from the excerpt Isabella_T2_P1_(01:42 

– 04:08) (see Section 6.6.2) zooming in on what happens from time 01:23 to time 

02:16 of the interview.  
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Configuration 1 (Drawing 1a): 

 
Theoretical elements 1 Figural elements 

(01:42) General point on the plane   [P]  

Endpoint of a segment   [P] 

Anticipatory Intuition 

Midpoint   [M] 

Center of a circle X  [M] 

Rotation    P 

Radius X  MP 

Fixed/Constant length    MB 

Center  X  M 

 GP_1_(0) (discursive – gestural): P on a circle C(M, MP)  

Configuration 2 (Drawing 1b): 

  

Isabella’s funnel starts with two very simple properties: P is a point on the plane, 

as reported in the step-by-step construction; P is the endpoint of a segment, which 

is a piece of information that she gathers from the Drawing 1a.  

Suddenly, she reaches a solution and recalls some theoretical elements which are 

already known, like the midpoint and the fixed length. Moreover, she refers to new 

properties: the circle center and the radius. These theoretical elements show their 

inconsistency with the given constraints. They are not incoherent in an absolute 

way, indeed we have other funnels where these elements have not been labeled as 

incoherent, but here they are listed as properties of incoherent figural elements for 

the following reasons. Looking at the funnel, we can see that Isabella is talking 

about a circle centered at M and with radius MP. In general, this is a possible locus 

for P, but here it is incoherent with the given constraints: it is impossible to move 

P along such a circle, without consequently also moving M. Following this locus, 

the length of MB changes and the solver loses a constraint. As highlighted in 

Section 6.6.2, the solver seems to both lose a constraint and to add another one. 

Thus, the product of GP is incoherent with the TEG. 

Looking at the transcription table of the excerpt that follows the first one, we find 

an explanation of the GP_1: Isabella_T2_P1_(04:22 – 05:15).  
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Time Who What is said What is done Comment 

04:22.03 Int The question is about 

P: what can you say 

about the point P? 

  

04:28.13 Stud This, I mean I think, eh 

then I don't know. 

  

04:31.01 Int Mm mm.   

04:32.18 Stud And indeed 

translating P along 

the whole circle, M 

does not vary because 

it is the center of the 

circle, and so the 

length [d] does not 

change either. 

She is moving the pen 

in order to complete 

the circle she is 

talking about:  

 

Window gesture 

(GP_1) 

She explains the 

GP_1 

 

04:47.10 Int How do you imagine 

this circle? Describe it 

to me. 

  

04:52.22 Stud I imagine MP as a 

radius of the circle, 

therefore. 

 Theoretical 

element 

04:59.01 Stud I mean in what sense 

do you mean how do I 

imagine? With respect 

to the dimensions? 

  

05:02.24 Int Like, tell me what you 

think you need to 

describe this circle to 

me. 

  

05:09.24 Stud Mmm, oh well, mmm.   

05:15.08 Stud That M, no, that MP is 

indeed the radius of 

the circle and that 

therefore translating 

the segment MP we 

can obtain the circle so 

that indeed the length 

stays unvaried. 

  

We can say that the figural components of the figure are dominant in Isabella’s 

solution because it seems that, after having performed the drawing, she forgets the 

properties given in the step-by-step construction. She also shows a lack of 

theoretical control over the figure. Indeed, she explains that it is possible to move 

P while M is fixed.  
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Another example is provided by Carlo’s funnel. The related excerpt is 

Carlo_G10_T2_P1_(01:22 – 04:52) and is analyzed in Section 6.5.4. Here is the 

funnel.  

Configuration 1 (Drawing 1a): 

 

Theoretical elements  Figural elements 

(01:38)    P  

   AP 

Center [Midpoint]    M 

Right triangle X  AMB 

Right triangle X  AMB 

Extension of a segment    [MP] 

Double length    AP = 2 AM 

Extension of a segment   [MP] 

Congruence   AM, [MP] 

Congruence   AM = MP 

[…] 

   P 

   BM 

Fixed length    MB or d 

[Point] symmetry X  P 

 GP_1_(0): P at a symmetric position with respect to A  

Configuration 2 (Gesture): 

  

As highlighted before, the figural elements drive Carlo’s exploration of the 

configuration and he shows a lack of theoretical control over the figure. The funnel, 

too, confirms this inference: there are a small number of new theoretical elements 

and only one is coherent. Both new and already known theoretical elements refer 

to the figural description of the configuration: the triangle seems to be right; he 

discovers that the segments are congruent only looking at the drawing; MP is part 

of a longer segment. Also in this case, the incoherence of new theoretical elements 

leads the solver to communicate an incoherent product of GP.  
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Apparently, like Isabella, after having performed the drawing, Carlo forgets the 

given properties and starts conceiving the configuration as composed of a triangle 

and an independent segment.  

The last example is taken from the excerpt Alessia_T2_P1_(01:27-03:09). 

Configuration 1 (Drawing 1a): 

 
Theoretical elements 1 Figural elements 

(01:27) General point on the plane    P  

Fixed point  X  P 

 GP_1_(0) (discursive): P is a fixed point  

Configuration 2 (Drawing 1b): 

  
Theoretical elements 2 Figural elements 

(02:37) Anticipatory Intuition  

[Line] symmetry  X  P 

[Axis of symmetry] X  Half-line (start point A)  

Start point of the half-line   A 

Fixed/Constant length  X  d [o MB] 

 GP_2_(1) (discursive – gestural): P is the symmetric point with 

respect to a [horizontal] line through A 

 

Configuration 3 (Gesture): 

  

The two funnels end with two incoherent products of GP. In the first funnel, there 

are only two theoretical elements, which lead to the impossibility of placing P in 

another position. Suddenly, looking at the drawing, Alessia undertakes another 

GP. She introduces new theoretical elements probably inspired by the particular 

drawing. Indeed, she draws a horizontal axis, as shown in Configuration 2, and she 

points at a new position for the point P.  

As we know, the line symmetry of P could be a theoretical element that leads to a 

coherent product of GP. However, in this case, the chosen axis is not the correct 
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one. We infer that probably the half-line through A has appeared to the solver the 

most suitable according to the particular drawing she has performed.  

Moreover, there are few theoretical elements and they are incoherent with the 

given constraints. This supports the conjecture that the solution is driven by the 

figural elements of the figure sketched out in Drawing 1a. This seems to be 

confirmed by the Configuration 3: the new position of P is suitable graphically, but 

it does not maintain the given constraints. Here we recognize a lack of harmony 

between figural and conceptual components of the given figure. Nevertheless, 

Alessia does not seem to be aware of the inconsistency between the figural and the 

conceptual component of the new configuration.  

7.1.3 Case (c): few new theoretical elements 

When the solver introduces a small number of theoretical elements, the products 

of GP are very simple. However, they are not similar to the ones described in the 

first case. Although they are simple, they are connected with the new theoretical 

elements and they contain new information about the geometrical configuration. 

Below are examples from the resolution of two tasks.  

The first is from the excerpt Giorgio_G13_T4_P1_(00:46 – 02:38) (see Section 6.4.4), 

zooming in on what happens from time 00:53 to time 02:30.  

Configuration 1 (Given drawing): 

 
Theoretical elements  Figural elements  

(00:53)    C  

   C 

Fixed segment   AB 

Not fixed    AC or C 

Not fixed   CB and CA 

   CB 

Isosceles triangle    

Equilateral triangle X  

Right angle   C 

[Line] symmetry   C 

 GP_1_(1) (gestural – discursive): C symmetric point [with respect to 

the axis of AB] 

 

Configuration 2 (Drawing 1): 
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Giorgio starts with some given theoretical information. Then he focuses on the side 

CB and he lists the kind of triangle that the given triangle should become moving 

the segment CB: isosceles and equilateral. “Equilateral triangle” and “isosceles 

triangle” are marked in the funnel as pure theoretical elements, because the solver 

does not point to anything on the sheet of paper and he does not refer to a 

particular object on the drawing: he is talking in a general way. It seems that the 

exploration of other configurations helps him to remember one of the given 

constraints: the triangle must be right. Indeed, he recalls the property “ACB is a 

right angle”. Finally, using line symmetry, he finds a correct position of point C 

such that the angle right is maintained.  

The geometrical transformation is inferred from the utterance coupled with the 

following window gesture (Figure 32) and it is confirmed by Drawing 1. 

 

The product of GP is directly connected with the last new theoretical element. 

Nevertheless, it is simple, and it remains the only product of GP communicated 

during the first part of the interview. The new theoretical elements introduced by 

the solver are not enough to find other or more detailed products of GP. 

The second example is drawn from the excerpt Margherita_G13_T2_P1_(02:16 – 

06:05) (see Section 6.3.3), looking at what happens from time 02:29 to time 04:54. 

Configuration 1 (Drawing 1a): 

  

Theoretical elements  Figural elements  

(02:29) Equidistance   PM=AM  

Fixed/constant distance  X  PB 

Fixed/constant distance   d [o MB] 

Fixed points   A, B 

Fixed/constant distance   d [o MB] 

[Fixed point]   M 

Fixed/constant distance X  PB 

Fixed/constant distance X  d(P,AB) 

Fixed points   A, B 

Figure 32 Giorgio's window gesture of a line symmetry of the point C 



 235 

Fixed/constant distance   d [o MB] 

Fixed point   M 

Anticipatory Intuition 

[Line] symmetry    [P] 

 GP_1_(1) (discursive – gestural): P symmetric point [with respect to 

AB] 

 

Configuration 2 (Drawing 1b): 

 
 

In the beginning, Margherita recalls the same already known theoretical elements. 

These elements are: explicitly given in the step-by-step construction, like the 

fixedness of points and segments; rephrased by the solver, like the equidistance 

directly deduced from the constraint on M. They do not help her to find a solution 

of the task. Suddenly, she talks about a new position of the point P, introducing a 

new theoretical element: line symmetry. The utterances and the gestures which 

communicate the product of GP are reported below. 

Time Who What is said What is done Comment 

04:22.03 Stud Well, it could be 

on the other 

side, it could be 

the mirror 

image. 

She is pointing at a 

point on the plane: 

 
She is pointing at B. 

The she is overturning 

the pen with a circular 

motion toward 

herself:  

 

GP_1_(1) (discursive – 

gestural):  

P symmetric point 

[with respect to AB] 

 

Initially, she points at a 

position where she 

expected to find the 

point P.  

Then she products a 

Window gesture:  

she performs line 

symmetry of P as a 

rotation around AB.  

Anticipatory Intuition 

The solver does not describe the prediction in greater depth and seems a bit 

uncertain: she uses the modal verb “could”. However, her pointing gesture to the 

new position of the point P is quite precise and GP_1 contains new information 

about the configuration.  
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Also in this case, the new theoretical elements do not suffice to communicate a 

detailed product of GP. Indeed, we need to infer the axis of symmetry and GP_1 is 

expressed in a simple way. Moreover, there is only one product of GP during the 

first part of the interview.  

Comparing this example with Tiziana’s product of GP reported in the Case (a), we 

can see that, despite the simplicity of both of them, Margherita’s introduces new 

information about the solution. This information is strictly related to the line 

symmetry.  

7.1.4 Case (d): coherent new theoretical elements 

The most coherent and detailed predictions are produced when the funnels 

contain a good number of new theoretical elements which are consistent with the 

given constraints.  

Here an example of this kind of funnel. It is from the excerpt 

Fiorella_MD_T5_P1_(02:05-07:07).  

Configuration 1 (Drawing 1a): 

 

Theoretical elements  Figural elements  

(02:05)    C  

Congruency   CM=CB 

   C 

Angle   C 

   C 

Angle   C [or ACB] 

Right-angled triangle   [ACB] 

   CM, CB 

It is not a height   CM 

Vertex of an isosceles triangle   C 

Congruency**   CA=CB 

Height*   CM 

Median*   CM 

Bisector*   CM, C 

   CB 

Point on a perpendicular line   C, MB 

Midpoint   [Midpoint of MB] 

Point on a perpendicular line   C 

Midpoint   K, MB 

Isosceles triangle   [MCB] 

Same length       CM=CB 

 GP_1_(0) (gestural – discursive): C on a line perpendicular to MB, 

which passes through the midpoint of MB 
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Configuration 2 (Drawing 1b): 

 

* She uses a Theorem about the height of an isosceles triangle.  

** Congruency as a consequence of having an isosceles triangle.  

We see at a glance the most evident feature of this funnel: there is a long sequence 

of new theoretical elements which are consistent with the given constraints.  

The funnel starts with already known and very simple theoretical elements. 

Fiorella recalls the constraint on the sides requested in the question: CM equal to 

CB. Then she focuses on particular figural elements: the point C, which is regarded 

as a point and as an angle; the segment CM.  

The funnel clearly shows when Fiorella starts communicating a new product of 

GP. She looks at point C as a vertex of an isosceles triangle and then it starts a long 

sequence of new theoretical elements which leads her to a correct solution. The 

sequence begins with very powerful and well-structured theoretical elements, 

highlighted in the funnel with a star (*). Indeed, the solver recalls one of the 

definitions of an isosceles triangle and a theorem on its height. The theorem is the 

following: 

Theorem:  In an isosceles triangle (where the base is the side which is not equal to any 

other side) the height drawn to the base is the median and the angle bisector.  

She does not formally recall the theorem, but she only uses it to clarify the inferred 

properties of CM. The transcription table below shows how she recalls these 

theoretical elements. 

Time Who What is said What is done Comment 

03:01.09 Stud If I instead try to 

draw C so that it 

is an isosceles 

triangle, [so that] 

CA...CA is equal 

to CB. CM is 

She points at a 

position for C: 

She explores the case: 

ABC is an isosceles 

triangle.  

She recalls a lot of 

theoretical elements: 
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height, median 

and bisector of the 

angle at C. But in 

any case, it is not 

of the same 

length. 

 

the median, the height 

and the bisector.  

She uses a Theorem: 

the height of an 

isosceles triangle is 

also median and 

bisector. 

Even if the isosceles triangle she was talking about is not CMB as we expected, the 

recalled theoretical elements help her find not only a new position of the point C, 

but also to recognize an entire locus for the point C.  

Time Who What is said What is done Comment 

03:47.15 Stud Maybe if I try to 

draw C... 

She is resolutely 

pointing a position for 

C:  

 

Window gesture 

03:55.14 Stud ...on the... 

perpendicular 

line to MB at the 

midpoint. 

She is moving the pen 

on a trajectory 

perpendicular to AB 

and passing through 

the midpoint of MB:  

 
 

GP_1_(0) (gestural - 

discursive): C on a 

line perpendicular 

to MB, which passes 

through the 

midpoint of MB  

 

Window gesture 

Even if the recalled theorem is related to the triangle ABC, these theoretical 

elements seem to open the way to the solution. Probably, the solver transfers the 

imagined properties of the triangle ABC onto the triangle CMB. Indeed, in the 

funnel we find a second set of new theoretical elements related to the triangle CMB 

or to some parts of it. She finds a locus for the point C and starts describing its 

properties: she traces the midpoint of MB; she imposes that the line passes through 

the midpoint; in this way she obtains an isosceles triangle and, therefore, CM equal 

to CB.  
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As we can see looking at the corresponding utterance, the solver stresses a 

conditional connection between the location of C and the property of CM and CB 

having the same length.  

Fiorella: I mean that if I move C on this perpendicular line through the midpoint K 

of segment AB…I construct this way an isosceles triangle and so CM and 

CB will always be of the same length. 

She uses an “if…then” form to express that if she makes C a vertex of an isosceles 

triangle with base on MB, then the sides CM and CB have the same length.  

The product of GP is well described by the solver: she finds the shape of the locus 

(a line); she constructs the midpoint of MB that the line must intersect 

perpendicularly; she properly draws the line, its properties and the properties of 

the triangle CMB. 

Funnels of this kind are not necessarily as rich in mathematical theory as the one 

shown in the previous example. What we want to stress is that they share a 

common structure. Indeed, they have a sequence of new theoretical elements 

which the researcher can capture by just glancing at the funnel. In these cases, the 

products of GP are coherent, detailed, well-described. Moreover, they add new 

information about the solution of the problem. 

This feature is also evident during the resolution of simple tasks like Task 6. The 

following funnel is constructed from Emilio’s interview. 

Configuration 1 (Drawing 1a): 

 
 

Theoretical elements 7 Figural elements  

(05:55) Center of the circle   A  

Point on a circle   Q 

Semicircle    Arc PQ 

Semicircle   Arc QP 

Circle    

 GP_8_(0) (discursive – gestural): P and A on a circle centered at A 

and with diameter PQ 

 

Configuration 8 (Gestures): 
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The funnel shows the elements introduced by the solver for answering the 

question about what happen to the configuration if the point P is moving on a 

circle.  

We can see at a glance that the solver introduces 5 new theoretical elements 

organized in a dense sequence. All of them are coherent with the given constraint: 

P and Q must be symmetric points with respect to A (the center of the symmetry). 

Moreover, the product of GP is detailed and mathematically rich: we can easily 

recognize the locus (a circle), its center, and its diameter.  

Finally, the solver shows good theoretical control over the figure. The gesture 

reveals that, while he is moving P along a semicircle, he imagines a consequent 

movement of Q along another semicircle; the two movements are coherent with 

point symmetry.  

7.1.5 Additional examples of Case (c) and Case (d) 

We want to further stress the features of the funnels that lead to coherent and 

detailed products of GP. In particular, it seems that the more theoretical elements 

are recalled, the more details the products of GP contain. The number is not to be 

considered in an absolute way, but in relation to the total number of theoretical 

elements. So, we can look at the ratio between the new theoretical elements and 

the total number of entries in the first column. 

Let’s compare two different solvers’ approaches to solving Task 2 that lead to a 

similar product of GP: Tiziana’s and Laura’s. 

The following funnel is constructed from the analysis of Tiziana’s interview.  

Configuration 6 (Gesture and Drawing 1c): 

        

Theoretical elements 5 Figural elements 

(05:15) Anticipatory Intuition  

Radius   d [or MB] 

Circle (as a locus)    

Center    B 

Radius   d [or MB] 

Point on a circle   M 

 GP_5_(0) (gestural – discursive): M on a circle C(B, d)  
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Configuration 7 (Gesture): 

  

As in Fiorella’s funnel, we notice a sequence of new and coherent theoretical 

elements. What is more, all the entries of the first column are new coherent 

theoretical elements. Seemingly, this large set of theoretical elements allows the 

solver to reach a clear and detailed product of GP:  

GP_5: M is on a circle centered at B and with radius d 

The product is very detailed: the solver makes explicit the kind of locus (a circle), 

its center and its radius.  

The following funnel was constructed from the analysis of Laura’s interview.  

Configuration 2 (Drawing 1b): 

        

Theoretical elements 2 Figural elements  

(01:56) Fixed point   B  

[Point on an arc]   M 

   M, B  

Congruence   MB and another MB 

[Fixed length]   d 

Not fixed   P 

Fixed length    d 

Fixed [segment or length]   MB 

Fixed length    d 

Rotation    d [or MB] 

Vertex   B 

Fixed point   B 

 GP_2_(1) (discursive – gestural): M turns around the fixed vertex B  

Configuration 3 (Drawing 1d): 
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Laura communicates a product of GP that refers to the same figural element of 

Tiziana’s: point M. Nevertheless, Laura’s GP_2 is not very detailed. We can only 

infer that M could be generically moved around B. We cannot be sure that she 

intends to move P along a circle.  

Laura’s funnels contain many theoretical elements: some are given at the 

beginning and recalled by the solver at a particular moment; others are introduced 

by the solver for the first time. However, only 3 out of 11 are new theoretical 

elements. 

So, it seems that the number of theoretical elements introduced for the first time 

by the solver is related to the level of detail of the product of GP.  

7.2 A general overview of the resolution of Task 2 and 

concluding remarks 

We now show the data collected from the funnels analyzing the resolution of Task 

2 to give a general overview of the role of theoretical elements within the GP 

process.  

For each funnel, Table 12 shows: 

- the name of the solver; 

- the total number of theoretical elements (column “Tot”), the number of new 

theoretical elements (column “New”), the number of incoherent already 

known theoretical elements (column “Inc. – K”), and the number of 

incoherent new theoretical elements (column “Inc. – N”); 

- the numerical label of the product of GP as reported at the end of the funnel 

(column “#”); 

- the statement that contains the product of GP itself; 

- the level of fuzziness of the product (column “Fuz.”); 

- the possible incoherence of the product of GP, present if the cell is marked 

with an “X” (column “Inc.”). 

In the last two columns, we show the ratio between: 

- the number of new theoretical elements and the total number of theoretical 

elements; 

- the number of incoherent new theoretical elements and the number of new 

ones. 
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Solver Theoretical 

elements 

Products of GP Ratio 

Tot New Inc. # GP Fuz.  Inc. 𝑵𝒆𝒘

𝑻𝒐𝒕
 

(𝑵)

𝑵𝒆𝒘
 

K N 

Agnese 
5 1   1 

P on an arc of a 

circle 
2  1/5 0 

6 2   2 
P cannot occupy 

other positions 
2 X 1/3 0 

1 1   3 MB rotates 1  1 0 

5 4   
4 

points of the circle 

C(B,MB) are 

distant d from B 

0  
4/5 0 

5 
P in a position such 

that MA=MP 
0  

5 4  2 6 
M on a circle [with 

radius MB] 
0  4/5 2/4 

           

Alessia 2 1  1 1 P is a fixed point 0 X 1/2 1 

4 3 1 2 2 

P is the symmetric 

point with respect 

to a horizontal line 

through A 

1 X 3/4 2/3 

           

Carolina 
0 0   1 

several positions of 

MB 
2  ND ND 

5 3   2 P rotates 2  3/5 0 

14 2 1 2 3 
P belongs to the 

line through AB 
2 X 2/14 1 

4 3 1 2 4 
P symmetric with 

respect to A 
0 X 3/4 2/3 

7 4   5 
if P moves along 

AP, the length of 

MB grows 

1  4/7 0 

           

Emilio 
5 2   1 

the locus of M is a 

circle centered at B 
0  2/5 0 

0 0   2 
the locus of P is a 

circle 
1  ND 0 

           

Flavia 
10 3   1 

P at a symmetric 

position [with 

respect to AB] 

0  3/10 0 

5 3   2 
moving P or M, MB 

changes its length 
2  3/5 0 
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3 0   3 

P can occupy more 

than two positions 

in order for the 

length of MB is the 

same 

2  0 ND 

0 0   4 

other positions of P 

could be found 

combining a 

translation and a 

rotation 

2  ND ND 

           

Giacomo 
6 1  1 1 

countless number 

of positions for P 
2 X 1/6 1 

3 2  2 2 P is fixed 1 X 2/3 1 

4 3   3 
P at the symmetric 

position with 

respect to AB 

0  3/4 0 

           

Ilaria 
9 3 2 1 1 

P on a symmetric 

position with 

respect to AB 

2  3/9 1/3 

2 2  1 2 
the locus of P is a 

half-line from M 
0 X 1 1/2 

           

Isabella 
8 4  3 1 

P on a circle  

C(M, MP) 
0 X 4/8 3/4 

           

Carlo 
10 4  3 1 

P at a symmetric 

position with 

respect to A 

0 X 4/10 3/4 

           

Laura 
8 4  4 1 

P on a half-line 

starting from M 
2 X 4/8 1 

11 3   2 
M turns around the 

fixed vertex B 
1  3/11 0 

           

Margherita 
12 4  3 1 

P symmetric point 

[with respect to 

AB] 

1  4/12 ¾ 
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Marta 
7 1   1 

several positions 

of MB 
2  1/7 0 

4 1   2 
several positions 

of P 
2  1/4 0 

5 5   3 
[M on a] circle 

C(B,d) 
0  1 0 

5 4   4 P on a circle 1  4/5 0 

           

Sergio 
8 5  2 1 

if P is moved, the 

length of MB 

changes 

2  5/8 2/5 

4 3  3 2 P is fixed 2 X 3/4 1 

           

Silvana 
10 3 2  1 

P symmetric point 

with respect to AB 
1  3/10 0 

 

Stefano 
8 3  1 1 

P symmetric point 

with respect to AB 
1  3/8 1/3 

4 2  2 2 
P on a line 

[through AM]  
2 X 1/2 1 

           

Tiziana 
4 1   1 

the symmetric 

point of P with 

respect to AB 

0  1/4 0 

6 5   2 
the symmetric 

point of M with 

respect to AB 

0  5/6 0 

1 1   3 
M on an arc of a 

circle 
1  1 0 

4 0   4 

P on the plane 

constructed using 

AM=MP 

2  0 0 

5 5   5 
M on a circle  

C(B, d) 
0  1 0 

3 3  1 6 
the locus of P is a 

circle passing 

through B 

0 X 1 1/3 

2 2   7 
P on the 

maximum 

distance from B 

0  1 0 

9 6  2 8 
the locus of P is a 

circle centered at 

M 

0 X 6/9 2/6 

7 7  2 9 
the locus of P is a 

circle  
0 X 1 2/7 
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C(a particular M, 

(AB+d)) 

9 8   10 

the center of the 

circle (of P) is the 

midpoint of P’P’’ 

0  8/9 0 

4 4   11 
the locus of P is a 

circle 

C(C,(AB/2)+d) 

0 X 1 0 

We now comment on the findings listed at the beginning of this chapter by reading 

the content of Table 12.  

• Seemingly, if there are not any new theoretical elements, the products of GP 

are almost obvious, and they do not add other information on the solution. 

This is not a very common behavior in our solvers. Indeed, it happens only 

in the two reported cases: Flavia (GP_3) and Tiziana (GP_4). This is an 

expected finding: because of the dual nature of geometrical objects, when 

the solvers talk about a configuration, they (possibly unconsciously) refer 

to the theoretical counterpart of the figural elements that are part of the 

configuration.  

In other cases, the product of GP comes spontaneously at the beginning of 

the interview or as a consequence of other products of GP, we find a “0” in 

the column labeled “New”: see Carolina (GP_1), Emilio (GP_2), Flavia 

(GP_4). This is a different case because we also have an empty entry within 

the column “Tot”, so the ratio is not determinable (N/D). 

• We claim that if the new theoretical elements are incoherent, the products 

of GP are incoherent or related to figural elements. Looking at the column 

named “Inc.”, we find several cases of incoherent products of GP where all 

or a great number of the new theoretical elements are incoherent: Alessia, 

Carolina (GP_3, GP_4), Giacomo (GP_1, GP_2), Ilaria (GP_2), Isabella, 

Carlo, Laura (GP_1), Sergio (GP_2), Stefano (GP_2). Looking at the last 

column, we can see that in these cases the ratio is close to 1. In this case, the 

products of GP are completely incoherent, and they constitute the only 

solution provided by the solver 

Tiziana's is a special case of incoherent products of GP, different from the 

other cases. She has found that the locus of P could be a circle. Then she is 

engaged in a dialogue with the drawing, trying to refine the products of GP 

Table 12 Data from funnels of Task 2: an overview of the theoretical elements recalled 

and introduced by the solvers within the resolution of the task. 
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by making explicit new details. The products of GP are not completely 

incoherent: they contain the coherent information that the locus is a circle. 

Despite the incoherence of some products of GP, the solver introduces a 

huge number of new theoretical elements, and this is the reason why the 

ratio is not so high. 

Also Agnese's is a rather special case: the incoherence of GP_2 is not caused 

by the incoherence of new theoretical elements, but seemingly it is due to 

the impossibility to conceive other arrangements of the configuration. 

Moreover, we notice that frequently the incoherence of the products of GP 

is related to an overabundance of theoretical constraints imposed on the 

figure. Indeed, one of the most frequent incoherent products of GP is “P is 

fixed”. 

• We had conjectured that the new incoherent theoretical elements seem to 

be connected with a sort of solvers’ blindness of such incoherence and of 

the inconsistency between figural and theoretical elements. We have 

provided examples of this phenomenon and, now, looking at the table, we 

notice that very often there are no other products of GP after an incoherent 

one. This suggests that the solver is not able to find any other solution or 

that she is quite convinced about her prediction. 

• Looking only at the coherent products of GP, we notice that when there is a 

relatively large number of new theoretical elements, the products of GP are 

quite detailed, and they provide new insights into the problem. Let us look 

at the following excerpts from some solvers' interviews: Agnese's (GP_4, 

GP_5, GP_6), Carolina's (GP_5), Giacomo's (GP_3), Marta's (GP_3, GP_4), 

Tiziana's (many cases). As previously mentioned, the funnels relative to 

these excerpts usually contain a dense sequence of new theoretical elements 

introduced before a new product of GP.  

Instead, when there are few new theoretical elements, even if the products 

of GP provide new insights into the problem, they are quite simple. This is 

shown in excerpts from the following solvers' interviews: Flavia's (GP_1), 

Ilaria's  (GP_1), Laura's (GP_2), Margherita's, Marta's (GP_1, GP_2), Sergio's 

(GP_1), Silvana's, Stefano's, Tiziana's (GP_1).    

Moreover, Table 12 reveals that the same solver can communicate both coherent 

and incoherent products of GP as well as both detailed and fuzzy ones.  
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So, the funnels confirm our conjecture that the presence or absence of the new 

theoretical elements strongly influences the products of GP. 

More specifically, if the solver does not introduce new elements the products are 

very simple, almost obvious, and they do not give any new information on the 

problem. When there are theoretical elements, but these are incoherent, the 

products of GP are strongly incoherent and they seem to move the solver away 

from a correct solution.  

Moreover, when the solvers communicate a product of GP passing through 

(potentially incoherent) theoretical elements introduced by themselves, they seem 

to be convinced of their findings even if the perceptual feedback appears 

inconsistent to the interviewer.  

By only looking at the funnel and in particular at the “X” collocated in the central 

column, we can recognize prediction processes which will produce an incoherent 

product of GP. Consequently, we can advance the hypothesis that if the solvers are 

theoretically poorly equipped and they recall incoherent theoretical elements, they 

resort to using figural considerations that are disconnected with the theoretical 

constraints. 

Moreover, we see a connection between the lack of new theoretical elements and 

the quality of the products of GP: all the theoretical elements are correct, but none 

of them are new, so the solver can communicate only a trivial product of GP.  

Instead, when there are new theoretical elements and they are coherent, the 

products of GP are consistent with the given constraints and strictly connected 

with the new elements. Moreover, the products of GP contain original information 

about the configuration. Depending on the number of new theoretical elements, 

the products of GP can be more or less detailed and well-described.  

Finally, in our sample, a sequence of new coherent theoretical elements indicates 

the production of a more accurate and detailed product of GP: it does not reflect 

the length of the interview. In the funnel we highlight each property of the 

different figural elements in focus; so, we can have a single sentence which takes 

up more than one box of the funnel. Fiorella’s coding of the theorem in the funnel 

is a good example: she utters a single sentence which is coded in the funnel with 5 

boxes.  

The funnel was a priori designed to explore the involvement of theoretical and 

figural elements within the GP process. Funnels reveal an intricate intertwining 

between predictions and theoretical elements. However, a posteriori, funnels also 
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seem to be a powerful tool for predicting the quality (in terms of coherence and 

richness in theoretical details) of the products of GP. 
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8. A second level of findings: the 

structures of GP processes and 

possible obstacles 
In this chapter we will present some additional characteristics of the processes of 

GP. More specifically, in Section 8.1 we will describe how several GP processes, or 

their products, can interact within the resolution of the given tasks; in Section 8.2 

we will describe the general and local obstacles that could inhibit the solvers in 

accomplishing processes of leading to coherent products. 

8.1 Structure of GP processes 

In the previous sections, we have highlighted several features of GP processes, 

stressing that we cannot talk about only one process of GP, since several processes 

seem to lead the solvers to make and consequently to communicate a prediction. 

For example, there are processes of prediction with a strong dynamic dimension, 

but other processes are supported by a static approach; the processes can be 

immediate, but they can also come after long reasoning about the problem; 

intuitions play a role in some processes of GP but not in others.  

In this section, we describe how several GP processes, or their products, can 

interact within the resolution of the given tasks. Indeed, during the resolution 

process – and mostly if this takes a long time – the solvers can explicitly recall a 

previously communicated product of GP or they can use some pieces of 

knowledge made explicit during another GP process; otherwise they can 

communicate several seemingly independent products of GP. 

The possible connections are determined according to the rules described within 

Section 5.4 and they are marked using a blue arrow to indicate that they appear in 

funnels describing the process. At the end of the analyses of each interview, we 

can summarize the connections between funnels with a diagram as we will show 

below.  

So, looking at the funnels and the diagrams, we observe that the products of GP 

arise and can be organized in several structures: 

a) a chain of configurations with a single product of GP; 

b) a chain of configurations with several disconnected products of GP; 
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c) one or more chains of configurations with several connected products of 

GP.  

We say that “GP_n is connected to GP_m” if the funnel which leads to GP_n is 

connected with the funnel which leads to GP_m. Otherwise, we say that the two 

funnels, and consequently the two products of GP, are disconnected. So, in the 

following, we will indifferently refer to the connection between funnels or between 

products of GP.  

The diagram of each case has a prototypical shape or some common features that 

will be shown and discussed in the next sections.  

8.1.1 Case (a): the solver communicates only one product of GP 

During the resolution of the given tasks within the paper and pencil environment 

the solvers of our sample may communicate only one product of GP. The 

prototypical shape of this kind of diagram is shown in Figure 33.  

 

These isolated products can be coherent or incoherent; we did not find a 

connection between the coherence of the products of GP and their number. 

Frequently the isolated product is not the most complete one that a solver can 

reach within the resolution of that specific task. Only, in two cases we find a 

different behavior: the product of GP is very detailed and rich in new theoretical 

elements. In these two cases, the solver was an expert. 

So, we recognize two alternative characteristics of the products of GP:  

1) the isolated product of GP is not the most complete, it shows a rigid use of 

the configuration, and it comes after prolonged reasoning upon the task; the 

solver imposes on the figure additional constraints; 

2) the isolated product of GP is the most complete, it is rich in theoretical 

elements and details.  

We infer that the solvers do not communicate other products of GP respectively 

because: 

Figure 33 Prototypical diagram of Case (a): the solver communicates only one product of 

GP 
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- the additional constraints imposed upon the figure or the rigid view of the 

configuration do not allow them to find any other arrangements that would 

lead to another solution; 

- their theoretical control over the figure suggests that the product of GP is 

actually the most general and complete that they could reach.  

In the following, we provide examples of these two different cases.  

The first subcase is very common in our sample. We provide three examples: two 

are taken from the resolution of Task 2 and one from the resolution of Task 4. In 

all cases the solvers communicate only one product of GP; the funnels show few 

or incoherent theoretical elements; the products of GP are very connected with 

figural elements.  

The first example is Isabella’s funnel, already shown in Section 7.1.2. The 

corresponding excerpt is Isabella_T2_P1_(01:42 – 04:08) (see Section 6.6.2). This is 

the case of an incoherent product of GP produced adding a constraint (“the segment 

MB is fixed” or “M is fixed within the plane”) and losing another one (“M is the 

midpoint of AP”). These additional and missed constraints lead to the fixedness of 

the whole triangle and to the possibility of only a rigid movement of the segment 

MP. In such a way, the point P can trace a circle, but a circle that is incoherent with 

the given constraints: the center is at M and the radius is MP. Looking at the 

excerpt Isabella_T2_P1_(04:22 – 05:15) analyzed in Section 7.1.2, we know that the 

solver does not feel the necessity to renegotiate or complete her prediction: it seems 

that she has the feeling that the answer is complete.  

The second example is Margherita’s funnel, already analyzed in Section 7.1.3. The 

corresponding excerpt is Margherita_G13_T2_P1_(02:16 – 06:05) (see Section 6.3.3). 

This is the case of a coherent product of GP that remains the only one 

communicated. As we have already highlighted the process that leads the solver 

to GP_1 manifests a lack of dynamic features. The motion is considered only for 

denying the possibility of the movements. Seemingly, the rigidness of the 

configuration does not allow the solver to undertake other GP processes. At time 

06:00, Margherita explicitly says that the symmetric position is the only one that 

she is willing to consider.  

The third example is Giorgio’s funnel, which has been analyzed in Section 7.1.3. 

The corresponding excerpt is Giorgio_G13_T4_P1_(00:46 – 02:38) (see Section 6.4.4). 

Also the diagram of this funnel looks like the diagram in Figure 33. The funnel 

reveals the presence of a few theoretical elements and suggests a lack of theoretical 
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control: the solver says that he is imagining to obtain an equilateral triangle, but 

this contrasts with the constraint on the right angle. After an exploration of the 

problem, Giorgio succeeds in communicating only one product of GP that is very 

connected with figural elements: C at the symmetric position. 

The second subcase (the isolated product of GP is the most complete, it is rich in 

theoretical elements and details) is well represented by the funnels of two expert 

solvers: Filippo and Fiorella.  

The first funnel is from the excerpt Filippo_PhD_T4_P1 (see Section 6.2.1), looking 

at what happens from time 00:27 to time 01:00 during the resolution of Task 4.  

Configuration 1 (Given drawing): 

 
Theoretical elements  Figural elements  

(00:27) Point on a circle   C  

Diameter   AB 

Midpoint   Point on AB 

Fixed distance   C, midpoint of AB 

 GP_1_(0) (discursive): the locus of C is a circle with diameter AB  

Configuration 2 (Gesture): 

 

 

The funnel shows that Filippo immediately talks about C as a point on a circle. The 

subsequent theoretical elements are useful for specifying the features of the locus: 

the diameter of the circle, the center of the circle, the reason why the locus is 

actually a circle. Moreover, all the theoretical elements are coherent and 

introduced for the first time by the solver. The product of GP is very detailed, 

complete, and theoretically solid. So, we can easily grasp why the solver does not 

further investigate the situation.  

The second example is taken from Fiorella’s interview during the resolution of 

Task 5. The funnel is already reported in Section 7.1.4 as an example of a 

theoretically rich funnel and the corresponding excerpt is 

Fiorella_MD_T5_P1_(02:05-07:07). Fiorella starts exploring the configuration 
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considering several positions of C: looking at the funnel we see that she focuses 

longer on C. A long sequence of new theoretical elements begins when she focuses 

on a specific position of C: at the vertex of an isosceles triangle. Starting from this 

theoretical element she introduces several mathematically advanced theoretical 

elements in which we recognize a Theorem. The product of GP is detailed, well 

described and theoretically solid. Indeed, as highlighted before (see Fiorella’s 

highlighted utterance in Section 7.1.4), at the end of the interview Fiorella uses a 

conditional statement to justify the product of GP. Since it is justified, well 

described and properly sketched out in the drawing, there is no necessity for 

further investigations: GP_1 remains the only product of GP communicated 

during the resolution of the task.  

Overall, we can claim that the solvers communicate only one product of GP in the 

two cases listed below:  

- Case 1: the solver did not succeed to discover further interesting 

arrangements of the first configuration. This could happen because of a lack 

of theoretical control, because of superimposing the theoretical constraints 

upon the figure, or because of restoring to figural components.  

- Case 2: the solver finds a complete and detailed product of GP that is 

theoretically founded. This happens when the solver manifests theoretical 

control over the figure and is able to properly introduce theoretical 

elements.  

8.1.2 Case (b): a chain of configurations with several disconnected 

products of GP 

During the resolution of the tasks, the solvers can produce several configurations 

starting only from the first one. The funnels highlight the chains of configurations 

performed by the solvers. Each chain is coupled with several products of GP. In 

some cases, the solvers only produce one chain of configurations with 

disconnected products of GP. The prototypical shape of this kind of diagram is 

sketched out in Figure 34.  

In all cases of our sample, this kind of diagram contains one or more incoherent 

products of GP. We find a connection between disconnected products of GP and 

their coherence with the given constraints, for two reasons: 

- the solvers change their mind about a product of GP (coherent or 

incoherent) and they find a new solution to the problem;  
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- the solvers communicate several products of GP referring to situations that 

they seem to perceive as independent, as if they were different problems.  

 

Here we provide two examples of the processes that can be sketched out in a 

diagram like that in Figure 34.  

The first example is already presented and discussed in Section 6.6.3. It is taken 

from Silvia’s interview: Silvia_G10_T5_P1_(05:21 – 08:15). Here are the 

corresponding funnels.  

Configuration 1 (Drawing 3a): 

  

Theoretical elements 1 Figural elements  

(05:29) Not coincident X  B, M  

Points on the plane   B, M  

Always not congruent X  CM, CB 

Not equal X  CM, CB 

 GP_1_(2) (discursive): CM cannot be equal to CB  

 

Configuration 2 (Drawing 3b): 

 

Figure 34 Prototypical diagram of Case (b): one chain of configurations with several 

disconnected products of GP 
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Theoretical elements 2 Figural elements  

(07:11)    CM  

   CB 

Isosceles [tri]angle   [MCB] 

Sides of a triangle   CM, CB 

Congruent sides   CM, CB 

   C (new position) 

[Line symmetry]   C 

 GP_2_(0) (gestural): C is the vertex of an isosceles triangle and is 

located at the symmetric position with respect to AB 

 

 

Configuration 3 (Drawing 4 and Drawing 5): 

 and  

 

Silvia communicates two products of GP: the first is a quite fuzzy and incoherent 

product and it concerns the impossibility of having two equal segments within the 

configuration obtained by the step-by-step construction; the second product is 

detailed and coherent. As highlighted, the process that leads to GP_2 is supported 

by figural elements: the discovery within the drawing that there exists a position 

for C so that CM appears equal to CB. The obtained configuration (see Drawing 3b) 

supports the introduction of a theoretical element: Silvia describes the 

configuration (CMB) as an isosceles triangle. This theoretical element is 

recognizable into the funnel and is followed by two other ones: “congruent sides”, 

which is directly deduced from the first new theoretical element; “line symmetry”, 

which arises as an instance of GP.  

The configurations and the funnels can be sketched out in a diagram that contains 

two disconnected products of GP (Figure 35). We do not add any blue arrows 

between the two funnels because the solver does not recall either theoretical or 

figural elements previously used to communicate GP_1 nor the product of GP 

itself.  
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In this example, the first product of GP is rejected because a new solution arises. 

The solver seems to change her mind about GP_1 because of the support of figural 

elements and interviewer’s prompts. Indeed, at time 06:48 and after GP_1 was 

communicated, the interviewer asks if there exist some positions for C so that CM 

is equal to CB. This prompt seems to induce the solver to investigate further the 

situation.  

The second example is from Giacomo’s interview during the resolution of Task 2 

and it is already contained in Section 6.6.2: Giacomo_G9_T2_P2_(01:38 – 05:55). 

Here are the corresponding funnels. 

Configuration 1 (Drawing 1a): 

  
 

Theoretical elements 1 Figural elements 

(01:47) Point outside a figure   [P]  

Geometrical figure   ABM 

Half length  X  MP, AM 

Equal length   MP, AM 

Half length   MP, AP 

Point on the plane   P 

 GP_1_(2) (discursive): countless number of positions for P  

 

 

No configuration 

The solver does not perform any gesture or drawing. 

 

 

 

Figure 35 The diagram summarizes the configurations and the products of GP produced 

by Silvia during the resolution of Task 5 



 259 

New sequence 

Configuration 1 (Drawing 1a): 

 
Theoretical elements 2 Figural elements  

(03:51) Fixed point X  P  

Fixed point X  P 

Fixed length    MB 

 GP_2_(1) (discursive): P is fixed  

Configuration 2 (Gesture): 

 
 

Theoretical elements 3 Figural elements  

(04:35) Anticipatory Intuition  

[Line] Symmetry   [ABM] 

[Axes of symmetry]   AB 

Constant length   MB 

[Line] Symmetry   MB 

 GP_3_(0) (gestural – discursive): P at the symmetric position with 

respect to AB 

 

Configuration 3 (Drawing 1b): 

 

Giacomo undertakes three GP processes; he communicates two incoherent 

products of GP and a final coherent product. As previously highlighted, GP_1 is 

quite fuzzy: the solver does clarify where he intends to place P; the funnel ends 

without a new configuration and it does not contain new coherent theoretical 

elements. At times 03:24 and 03:35 Giacomo explains that GP_1 refers to the 

situation where the step-by-step construction is not already performed, and the 

first configuration is not drawn.  
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At time 03:51, Giacomo focuses again on the first drawing and he starts a new GP 

process. The starting point is identified in the window gesture which addresses a 

possible position of P. It seems that the impossibility of reaching a new position 

for P that is coherent with the constraint upon the length of MB leads the solver to 

conceive the configuration statically.  

The question for explanation induces a new GP process that finishes with the 

communication of GP_3. It comes as an evidence of anticipatory intuition. As 

usual, looking at the funnel we find a sequence of new coherent theoretical 

elements before GP_3. 

The chain of configurations and the sequence of products is reported in Figure 36. 

 

Within the diagram we recognize two sub-diagrams: the first finishes without a 

configuration and the second with Configuration 3. The products of GP are not 

connected. Indeed, GP_1 is disconnected with GP_2 and GP_3 because the solver 

explicitly claims that he was not reasoning about the same configuration. So, the 

answer to the second question seems to be perceived as a solution to a problem 

different from that one proposed thought the first question. GP_1 is quickly left. 

GP_2 and GP_3 are disconnected because we were not able to find any elements 

of continuity between the two funnels. Probably this is the case because GP_3 

comes suddenly as an anticipatory intuition and it is in sharp contrast with GP_2. 

Moreover, we notice that the third funnel is very different from the others: it 

contains a good number of new coherent theoretical elements that support a 

coherent product of GP. After GP_3 has been communicated, GP_2 is left.  

Figure 36 The diagram summarizes the configurations and the products of GP produced 

by Giacomo during the resolution of Task 2 
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After GP_3 the solver does not express further products of GP. Probably because 

of the fixedness of the configuration, the solver cannot reach another position for 

P. As previously highlighted, the fixedness could be caused by the solver’s 

superimposing of theoretical constraints. Indeed, we infer from the drawing (see 

Configuration 3) that Giacomo adds another constraint: “the length of AM must be 

fixed”. With this additional constraint, GP_3 is a complete solution to the problem.  

8.1.3 Case (c): chains of configurations with connected products of 

GP 

This is the most heterogeneous case, but also the most interesting in terms of 

unveiling how a product of GP can arise, evolve or be refined during the solution 

process.  

The diagrams do not have a prototypical structure, as in the previous cases. 

Nevertheless, we recognize some common features: 

- there is one recognizable initial product of GP, which is connected with one 

or more of the others; 

- there is one recognizable final product of GP, in which other products of GP 

converge.  

Looking jointly at the transcription table and the funnels, we can distinguish two 

subcases: 

1) several connected products of GP add details to an initial rough one; 

2) several (potentially independent) products of GP contribute to express a 

new product.  

In the following we will provide examples of the two subcases and discuss in 

greater depth the underlying processes.  

We will provide two examples of the first subcase: one from the resolution of Task 

4 and another from the resolution of Task 2.  

The first example is taken from Fiorella’s interview during the resolution of Task 

4 and it constitutes the whole first part of her interview: Fiorella_MD_T4_P1. The 

transcription table has been entirely reported in Section 6.2.1 as an example of 

several detailed products of GP produced through a top-down process. Here are 

the funnels.  

Configuration 1 (Given drawing): 
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GP_1_(0) (discursive – gestural): the locus of C is a semicircle 

Configuration 2 (Gesture): 

  
 

GP_2_(0) (discursive – gestural): the locus of C is a semicircle 

centered at the midpoint of AB 

Configuration 3 (Gesture):  

  
 

Theoretical elements 3 Figural elements  

(00:47) Hypotenuse    AB  

Fixed/Constant length    AB 

   C 

Theorem*   C 

Right    C 

Right-angled triangle   [ABC] 

[Line symmetry]   C[‘], AB 

Perpendicular   Segment C[-point on AB] 

   Segment [point on AB-C’] 

[Line symmetry]   C 

 GP_3_(0) (gestural - discursive): C symmetric point with respect to 

AB 

 

Theorem*: “Since C is...the vertex of a triangle that lies on a semicircle 

circumscribed to the triangle, it is always right.” 

Configuration 4 (Gesture): 

  
 

GP_4_(0) (discursive – gestural): C on a circle centered at the 

midpoint of AB 

Configuration 5 (Gesture): 
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As we can see, Fiorella communicates four detailed products of GP and each 

funnel is connected to one another. Moreover, focusing on the content of the 

orange boxes, we notice that Fiorella communicates the first product of GP that is 

refined and completed by the others. Fiorella first says that the locus of C is a half 

circle (GP_1); the second product of GP specifies the center of the half circle and 

Fiorella carefully and coherently refers to it as the midpoint of AB. Indeed, she 

does not only point at the center (see Configuration 3) but she also geometrically 

explains how to find the point. So, GP_2 refines GP_1 and introduces additional 

details.  

In the third funnel, the solver recalls a theorem for supporting her previous 

products of GP; we reported at the end of the funnel the solver’s utterance which 

expresses the theorem. GP_3 is supported by several new coherent theoretical 

elements that lead the solver to communicate the existence of another position for 

C so that the given constraints are maintained invariant. Looking at the 

transcription table, we observe that GP_3 comes as the answer to the interviewer's 

prompt about other possible positions of C. In particular, the solver first points at 

the new position and then she explains how to geometrically find it. Fiorella says 

that she intends to construct the new point C as a “point transformed from C” 

according to a line symmetry; to do this, she would use a line through C 

perpendicular to AB and mark on the line the distance between C and AB. She 

actually talks about a perpendicular segment, but we can refer to a line without 

changing the geometric construction she would follow.  

GP_3 quickly leads to another product of GP, without adding any other theoretical 

or figural elements, as if it were a direct consequence of the previous exploration. 

GP_4 expresses that the locus of C is a circle centered at the midpoint of AB. In this 

sentence we can recognize the contribution of the processes that have led to GP_2 

and GP_3. The last product of GP is a refined and more complete version of GP_1. 

The corresponding diagram allows us to see this finding at a glance (Figure 37). 

In this example the first product of GP is communicated very soon in an initial 

formulation. The process that leads to GP_1 is very condensed. The subsequent 

process of GP allows the solver to better communicate the features of the predicted 

locus. The process that ends with the communication of GP_3 is less condensed 

and it allow us to see how the theoretical elements play a role within such a 

process. Finally, GP_4 seems to be supported by the previously communicated 

products of GP. 



 264 

 

The second example is from Agnese’s interview during the resolution of Task 2. 

An overview of her products of GP is provided by the diagram (Figure 38), which 

is composed of three directed sub-diagrams. The first on the left (from C1 to C2) 

ends with a fuzzy product of GP; the process has already been discussed within 

Section 6.5.3. The second (from C3 to C4) ends with an incoherent and quite vague 

product of GP, which communicates the impossibility of finding another position 

for P so that the given constraints are maintained invariant. GP_1 and GP_2 

address the problem of the possible positions of P and are quickly abandoned by 

the solver. We can consider these sub-diagrams as additional examples of Case (a).  

Then Agnese focuses again on C3 and starts exploring the problem from a different 

point of view, wondering about the possible positions of M. The last sub-diagram 

on the right (from C3 to C7) sketched what happens during this part of the 

interview. The transcription table is reported in Section 6.4.4 as an example of a 

strong interplay between gestures and speech within the prediction process: 

Agnese_MS_T2_P1_(03:55 – 05:14). 

Figure 37 The diagram summarizes the configurations and the products of GP produced 

by Fiorella during the resolution of Task 4 
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Since in this subsection we are not interested in analyzing the processes that lead 

to GP_1 and GP_2, here we include only the sequence of funnels that corresponds 

to the sub-diagram from C3 to C7. 

Configuration 3 (Drawing 2b): 

 
Theoretical elements 3 Figural elements 

(03:55)    A and B  

   d [or MB] 

Rotation   d [or MB] 

 GP_3_(1) (gestural – discursive): MB rotates  

 Configuration 5 (Gesture): 

 
Theoretical elements 4 Figural elements 

(04:39) Constant/fixed distance    MB=d  

Points on a circle    

Circle (as a locus)    

Center   B 

Radius   MB 

   Points of the circle 

 GP_4_(0) (discursive): points of the circle C(B, MB) are distant d 

from B 

 

 GP_5_(0) (discursive): P in a position such that MA=MP  

Figure 38 The diagram summarizes the configurations and the products of GP produced 

by Agnese during the resolution of Task 2 
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Configuration 6 (Gestures):  

  and   

Theoretical elements 5 Figural elements 

(06:35) Circle with fixed radius   MB  

   [Arc of a circle through M] 

   M 

Congruence   AM and MP 

   Arc of a circle through M 

Point on a circle   M 

Tangent  X   

[Point on a] perpendicular 

line 

X  M 

 GP_6_(0) (discursive): M on a circle [with radius MB]  

Configuration 7 (Drawing 3): 

 
 

The first product of GP is coherent and quite vague, but it is connected with an 

iconic-physical gesture (see Configuration 5) that will support the subsequent 

prediction processes.  

At time 04:39, Agnese undertakes another exploration of the problem. Looking at 

the funnel, we see that she recalls a given theoretical element (“constant/fixed 

distance of MB”) and introduces new ones. In particular, the circle and its points are 

first introduced as pure theoretical elements (see time 04:47). Then the radius and 

the center of the circle are made explicit also using their figural components. At 

the end of the funnel there is a very theoretically rich product of GP: GP_4. During 

the process the solver repeats many times the iconic-physical gesture which she 

first performs at time 04:15.  

The same gesture is also repeated during the last process of GP. An instance of the 

gesture is recognizable in the second inferred figural element of Funnel 5. Another 

evidence of the funnels’ connection is provided by the presence of the theoretical 

element “point on a circle” referred to M, which was already used for 
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communicating GP_4. The process starts after the interviewer’s request for 

possible other positions of P; an imagined movement of P is asked for explicitly. 

Even if Funnel 5 contains two incoherent new theoretical elements, the product of 

GP is coherent and detailed. The elements added in Drawing 3 confirm the 

coherence of GP_6.  

Also in this example, we can recognize three products of GP which refer to the 

same figural element: the point M. GP_3 is recognizable as an initial product and 

it is quite vague. Instead, GP_6 is recognizable as a final and more detailed 

product. The previously accomplished processes of GP support the last one and 

the connected products refine the first product of GP.  

 

For the second subcase, we will provide several examples from the resolution of 

different tasks.  

The first example is from Marta’s interview during the resolution of Task 2: 

Marta_MS_T2_P1_(01:04 – 03:13). The transcription table was already reported 

within Section 6.3.3 and the excerpt has been discussed as an example of GP 

processes with a strong dynamic dimension. The diagram has the following 

structure (Figure 39). 

 

We recognize two sub-diagrams and four products of GP, each of which is part of 

connected funnels. The figure shows that two parallel processes converge into a 

Figure 39 The diagram summarizes the configurations and the products of GP produced 

by Marta during the resolution of Task 2 



 268 

final product of GP: GP_4. Moreover, the four GP processes flow into a final 

configuration: C6. Below we list the corresponding funnels. 

Configuration 1 (Drawing 1b): 

 

Theoretical elements 1 Figural elements 

(01:08) Fixed point    A and B   

Fixed/Constant distance   [AB] 

Distance   [AB] 

   P 

Fixed/Constant distance   d [or MB] 

Fixed point    A and B  

Anticipatory Intuition 

Fixed/Constant distance   [AB] 

[Rotation]   d [or MB] 

 GP_1_(2) (discursive– gestural): several positions of MB  

Configuration 2 (Gesture): 

 

Theoretical elements 2 Figural elements 

(01:49) Variable length    AM  

[Variable length]   MP 

[Variable length]   AP 

   P 

[Rotation]    [MB] 

 GP_2_(2) (discursive): several positions of P  

Configuration 3 (Drawing 2): 

 
New sequence 

 Configuration 1 (Drawing 1b):  
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Theoretical elements 3 Figural elements 

(02:47)    [MB]  

[Rotation]    [MB] 

Circle center    B 

[Rotation]   d [or MB]  

Radius of a circle   d [or MB] 

[Rotation]   d [or MB]  

 GP_3_(0) (discursive – gestural): [M on a] circle C(B,d)  

Configuration 4 (Gesture): 

  

Theoretical elements 4 Figural elements 

(03:02) Fixed point   A and B  

   AM 

[Rotation]   AP 

[Rotation]   d [or MB]  

[Rotation]   P 

Point on a circle   P 

 GP_4_(1) (discursive – gestural): P on a circle  

Configuration 5 (Gesture): 

 
At the end, the solver produces the following additional configuration. 

Configuration 6 (Drawing 1c) 

 

The first GP process proceeds slowly and it involves an anticipatory intuition. 

Only by looking at the funnel, we can notice a long sequence of already-known 

theoretical elements and a final crucial new theoretical element (“rotation”) which 

helps the solver reach a first idea about the possible positions of M. Indeed, the 

solver grasps that, even if MB must always have the same length, it could be placed 

in several positions.  
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GP_2 emerges as a consequence of GP_1. As elsewhere highlighted, the solver’s 

utterances reveal a logical connection between the two products. At the end of the 

first path within the diagram, the solver has communicated that MB can occupy 

other positions and that consequently P can be placed in different positions as well.  

Then, even if Marta has made another drawing, she does not focus any further on 

it and she comes back to her first drawing. Looking at and interacting with Drawing 

1b, Marta undertakes another GP process and communicates GP_3. The funnel is 

very rich in new theoretical elements and ends with a detailed product of GP. 

Within the funnel we recognize a previously used theoretical element (“rotation”); 

this is the reason why we can define a connection between Funnel 1 and Funnel 3: 

the solver uses the same theoretical element which is supported by a similar 

window gesture for communicating two products of GP that are distant in time. 

GP_4 comes as a consequence of GP_3. More specifically, the movement of M on 

the described circle induces the solver to conceive P as a point of another circle. 

The connection is stressed at times 03:02 and 03:13 by the solver’s use of logic 

connections: “therefore” and “so also”.  

Funnel 4 seems to also be connected with Funnel 2. At the beginning, the solver 

seems to grasp that P can occupy more than one position, but she does not know 

which ones; after the accomplishment of the processes of GP which lead Marta to 

find the locus of M, she is more confident in communicating a possible locus for P. 

Actually, it seems to come as an analogy with the locus of M. 

At the end of the prediction processes, Marta collected and reported some of her 

products of prediction in Configuration 6. The drawing is only used for making the 

already communicated products of GP explicit, as in the other cases of detailed 

products.  

So, during Marta’s resolution process, the communicated products of GP converge 

into a final one (GP_4). GP_4 is a refined version of GP_2 and its communication 

is supported by GP_3. Moreover, GP_3 plays a role in suggesting the locus of P 

through analogy. Instead, deductive reasoning seems to play a role in connecting 

GP_1 to GP_2. In this example, we can observe how the processes of prediction 

which address M and P proceed along parallel but interacting trajectories.  

The second example is from Laura’s interview during the resolution of Task 4. 

Three excerpts of this interview have been reported in two other sections (see 

Section 6.1.2, Section 6.1.4, Section 6.2.2). As previously discussed, Laura 

undertakes three GP processes and communicates three products: GP_1 is 
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incoherent, the other two are coherent but quite fuzzy. Below is the summarizing 

diagram (Figure 40).  

 

Also in this case, the last product seems to be the outcome of three GP process. In 

particular, we will show that GP_3 gathers specific elements which belong to the 

previous processes. Below are the corresponding funnels. 

Configuration 1 (Given drawing): 

  
 

Theoretical elements 1 Figural elements  

(00:38) Fixed segment   AB  
Vertex   C 

Point on the plane   C 

No longer right   [C] or [triangle ACB] 

Point at a particular position   C 

Equilateral triangle X  [triangle ACB] 

Right  X  Sides [AB, BC, CA] 

Right angle   C 

 GP_1_(0) (gestural – discursive): C is the vertex of a right and 

equilateral triangle 
 

Configuration 2 (Gestures): 

  
 

Figure 40 The diagram summarizes the configurations and the products of GP produced 

by Laura during the resolution of Task 4 
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Theoretical elements 2 Figural elements  

(01:24) Point on a parallel line    [C’]  

   H 

Congruence   AH=BK 

Point on a perpendicular line   C 

[Parallelism]   CH [and C’K] 

Right triangle   AC’B 

 GP_2_(2) (gestural – discursive): C at a symmetric position [with 

respect to the axis of AB] 

 

Configuration 3 (Drawing 1a): 

 
 

Theoretical elements 3 Figural elements  

(02:18) Isosceles triangle     

Equilateral triangle X   

Equilateral triangle X   

Right angle X  A, B, C 

[Midpoint]   C, CC’  

Right angle   C 

 GP_3_(1) (gestural – discursive): C at a centered position [between C 

and C’] 

 

Configuration 4 (Drawing 1b): 

 

Looking at Funnel 1 we can anticipate the incoherence of GP_1, because the only 

two new theoretical elements introduced by the solver are incoherent. As already 

discussed, the reason for such an inconsistency actually lies in the mismatching of 

two constraints: “being a right triangle” and “being an equilateral triangle”. 

Nevertheless, the latter theoretical element is quite important within the resolution 

process, because it will play a role in the last process of GP. 

Funnel 2 contains a sequence of new theoretical elements. Indeed, Laura explains 

how she intends to geometrically find the new predicted position of C. This 

process seems to be independent from the first one. 

After the interviewer’s request for possible other positions of C, Laura undertakes 

the last process of GP. At the beginning she refers to GP_2 and also to GP_1. In 

particular, she recalls the theoretical element “equilateral triangle”. Although Laura 

quickly rejects GP_1, she keeps a part of the figural component of GP_1: the 

position of the vertex “toward the center”. We can reasonably set up a connection 
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between Funnel 1 and Funnel 3. Funnel 2 and Funnel 3 are connected as well. 

Indeed, Laura recalls GP_2 and makes use of the two positions of the vertex (C and 

C’) in order to find the third one. It seems that, at the beginning of the interview, 

Laura guesses the central position of C, but she does not exactly reach it. After 

having drawn C’, she seems to be more confident about the existence of such a 

position to the extent that she can communicate the product of GP in a statement.  

This is an example of three processes of GP, two of which are independent. They 

lead the solver to a final product which appears as a collection of several 

interacting theoretical and figural elements previously expressed. We notice that 

when the resolution process does not proceed too quickly and when the solver is 

willing to further explore the situation, even the incoherent products of GP or some 

part of the process that leads to them can be useful for reaching a coherent product 

of GP.  

The last example is taken from Emilio’s interview during the resolution of Task 5. 

Emilio communicates four products of GP. The processes that lead the solver to a 

solution are mainly top-down and Emilio uses the drawings only for making the 

products of GP explicit. Here is the summarizing diagram (Figure 41).  

 

The diagram shows a first and a final product of GP (GP_1 and GP_4), and two 

products that are disconnected from the first one (GP_2 and GP_3). The previous 

Figure 41 The diagram summarizes the configurations and the products of GP produced 

by Emilio during the resolution of Task 5 



 274 

processes contribute to the construction and communication of GP_4. Looking at 

the following funnels we can see the processes in detail.  

Configuration 1 (Drawing 1): 

 
Theoretical elements 1 Figural elements 

(01:09)    C  

Fixed points   A, B 

Congruency    CB=CM 

Fixed points   A, B 

Equidistance   [C] such that CB=CM 

   CM 

Variable length    CM 

Equidistance   [C] such that CB=CM 

Triangle    

Triangle   [ABC] 

Isosceles triangle   [MBC] 

Two equal sides*    

 GP_1_(0) (discursive): C in such a position that an isosceles triangle 

is formed 

 

 Configuration 2 (Drawing 3): 

 
*“Two equal sides” is the definition of the isosceles triangle.  

The solver recalls this property.  

 

GP_2_(0) (discursive – gestural): C symmetric with respect to AB 

Configuration 3 (Gesture - Drawing 4): 

 and  

Theoretical elements 3 Figural elements 

(04:00)    [C]  

Point on the height    C and height [of MC1B 

isosceles] 

Equidistance/Congruency   CM=CB 

 GP_3_(1) (discursive – gestural): C on the height [of the isosceles 

triangle MBC] 
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Configuration 4 (Gesture): 

  
 

Theoretical elements 4 Figural elements 

(04:11)    [C]  

Point on the height   C and height [of MC1B 

isosceles] 

Midpoint    Point between M and B 

Segment through a point   Height [of MC1B isosceles] 

[Line symmetry]   [C] 

Point on the height   [C] 

Midpoint   Point between M and B 

 GP_4_(0) (discursive): the locus of C is the height through the 

midpoint of MB 

 

Configuration 5 (Gesture  and Drawing 5): 

 
 

Emilio reaches a possible position for C, considering MCB as an isosceles triangle. 

The congruency between CM and CB is later introduced as a pure theoretical 

element. Below is the corresponding utterance. 

Emilio:  Because I would make another triangle the triangle and so [with] the other 

triangle I could make an isosceles triangle if it is the one with two equal 

sides, if I am not wrong. 

The interviewer’s question about the existence of possible other positions for C 

triggers a new GP process: Emilio reaches the symmetric position of C, through a 

line symmetry. We do not recognize any explicit connections between the first and 

the second funnel, so we have considered the two products to be independent.  
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The drawing that is part of Configuration 4 suggests that the solver was considering 

the heights of the triangles. So, the “point on the height” is introduced as a theoretical 

element into the prediction process and it leads the solver to GP_3. Funnel 3 is 

connected with Funnel 1 because the isosceles triangle, first considered for the 

production of GP_1, is a fundamental component of GP_3.  

Funnel 4 is the richest funnel in new theoretical and figural elements. Emilio 

predicts an entire locus for C so that the given constraints are maintained invariant. 

Moreover, the solver explains in further detail GP_3, making explicit that the 

height passes through the midpoint of MB. GP_4 is carefully described and it is 

very detailed.  

Furthermore, GP_4 emerges as a collection of theoretical information previously 

made explicit: the height of an isosceles triangle (Funnel 3), the line symmetry 

(Funnel 2), and the isosceles triangle MC1B (Funnel 1 and Funnel 3). So, we 

consider GP_4 connected with and derived from GP_3 and GP_2.  

In this example, we can see how two seemingly independent GP processes 

(sketched out in Funnel 1 and Funnel 2) and a connected one (sketched in Funnel 

3) converge into a final process. This chain of funnels allows Emilio to reach a 

coherent product of GP that constitutes a complete solution to the problem. 

8.1.4 Analyzing connections: a further example from the 

resolution of Task 6  

Looking at the diagrams that summarize the outcomes of solvers’ GP processes 

during the resolution of Task 6, we have drawn an unexpected finding. We recall 

how Task 6 is composed of four questions that could be considered as four 

independent open problems, each of which expresses an additional constraint on 

the given configuration. The solver can answer each question communicating one 

or more products of GP. Analyzing the interviews, we expected to obtain a 

diagram with disconnected funnels and products of GP. Indeed, the point 

symmetry is the only common element of the four questions. So, Filippo’s diagram 

is one of the expected outcomes (Figure 42). 
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There are only three vertical paths because Filippo has spontaneously considered 

the second case (P on a line) within the answer to the first question.  

However, we have found another solvers’ approach to the task: it is closer to Case 

(c), more than to Filippo’s. 

The best example is provided by Emilio’s interview. Below is the corresponding 

diagram (Figure 43).  

 

 

As expected, in the diagram we recognize four vertical paths and each of them 

starts from the first configuration (C1). The diagram is quite heterogeneous, 

containing both connected and disconnected funnels and in particular revealing a 

far connection between the initial and the final processes of GP.  

 

Figure 42 The diagram summarizes the configurations and the products of GP produced 

by Filippo during the resolution of Task 6 

Figure 43 The diagram summarizes the configurations and the products of GP produced 

by Emilio during the resolution of Task 6 
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Below are funnels describing in greater depth Emilio’s processes. 

Configuration 1 (Drawing 1a): 

 
Theoretical elements 1 Figural elements  

(01:09) Symmetry      

Point [on the plane]   Q 

Fixed point   A 

Diameter   QP 

Circle    

 GP_1_(0) (discursive - gestural):  P and Q on a circle with diameter 

PQ 

 

Configuration 2 (Gesture): 

  

Theoretical elements 2 Figural elements  

(01:28) Point [on the plane]   P  

[Point symmetry]    Q 

 GP_2_(1) (gestural):  Q at the symmetric position with respect to A  

 Configuration 3 (Gestures): 

    

GP_3_(1) (discursive - gestural): [P and Q on] concentric circles 

Configuration 4 (Gesture): he repeats the same gesture of Configuration 2 

  

New question (P on a line) 

Configuration 1 (Drawing 1a): 

 
Theoretical elements 4 Figural elements  

(02:05) Opposite points   P and Q  

Point on a parallel line   Q 

   Line through P  

Triangles     

 GP_4_(1) (discursive – gestural): P and Q on parallel lines  
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Configuration 5 (Gesture): 

 
 

Theoretical elements 5 Figural elements  

(02:26) Parallel line     

Line   AP 

Perpendicular line   Line through P 

Right-angled triangles   [A, B and …] 

Triangles    

   Line [through P] 

[Point symmetry]   Q 

 GP_5_(2) (discursive – gestural): P is the vertex of several triangles  

Configuration 6 (Gestures): 

 and  

 

 

New question (A on a line) 

Configuration 1 (Drawing 1a): 

 
Theoretical elements 6 Figural elements  

(03:02) Symmetric point    Q  

Fixed point   P 

[Point symmetry]   Q 

[Symmetry]   Q, A 

Equidistance   [AP=AQ] 

   P, Q 

Parallel line X  Line through P 

Parallel line   Line through A 

Parallel line   Line through Q 

Line    Line through A 

Parallel line   Line through Q 

   Line through A 

 GP_6_(1) (discursive – gestural): Q, A, P on three parallel lines  

 GP_7_(1) (discursive – gestural): Q on a line parallel to the line 

through A 
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Configuration 7 (Gesture): 

 
New question (P on a circle) 

 

 Configuration 1 (Drawing 1a): 

 
Theoretical elements 7 Figural elements  

(05:55) Center of the circle   A  

Point on a circle   Q 

Semicircle    Arc PQ 

Semicircle   Arc QP 

Circle    

 GP_8_(0) (discursive – gestural): P and A on a circle centered at A 

and with diameter PQ 

 

Configuration 8 (Gestures): 

   

Theoretical elements 8 Figural elements  

(06:15) Circle     

External circle through a 

point 

  [Circle through P] 

Point on a circle   P 

Point on a circle   Q 

Symmetry   Symmetric circle 

 GP_9_(0) (gestural – discursive): Q on a symmetric circle [with 

respect to A] 

 

Configuration 9 (Gestures): 

  

The first product of prediction comes as the answer to the first question about the 

configuration while the point P is imagined to be (randomly) moved. As the funnel 

GP1 “as I said before” 
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reveals, GP_1 is supported by the theoretical element “symmetry”, explicitly 

mentioned by the solver at time 01:09. 

Emilio: So if this principle of symmetry remains ...also point Q will move and point 

A will remain fixed. And so we could consider for example... Q and P as a 

hypothetical  diameter of a circle that...ehm...we could go draw. 

The already-known theoretical element leads the solver to introduce three 

additional theoretical elements that describe a locus. This is further shown through 

the gesture.  

GP_2 is quite simple, as we expected by only looking at the theoretical elements in 

the funnel, and it only recalls the effect of the point symmetry on Q.  

GP_3 comes right after GP_2 and it is connected with it. The logical connector “so” 

suggests such a relation as well. GP_3 is also connected with GP_1. Indeed, it 

seems to be a more refined version of GP_1 and it reveals that the solver conceives 

the circle through P and Q as two circles with the same center. The adjective 

“concentric” could be considered as a synonym of “coincident” or “overlapping”. 

Moreover, the catchment observed in gesture (see Configuration 2 and 

Configuration 4) suggests a connection.  

A new sequence of prediction processes starts when the interviewer introduces the 

second situation (P is moving on a line) and asks for a new prediction about the 

whole configuration. The first product is GP_4: it is detailed and the window 

gesture reveals a strong theoretical control of the point symmetry over the 

configuration. Emilio mimics a line through Q moving the pen from the top down 

on the sheet of paper; immediately after, he mimics a line through P moving the 

pen from below upwards on the sheet of paper. The last new theoretical element 

is quite interesting because it is recalled during the subsequent process and it 

supports the description of GP_5. Although it remains an isolated speculation of 

the solver, it is an attempt to describe a prediction with a strong figural nature. 

Indeed, the solver seems to crystallize the configuration, considering the line 

through P as a static figural element. He reviews the line as a part of a triangle 

composed by a horizontal line, a perpendicular segment through P, A, Q and 

probably the several positions of P on the line. The product of GP is quite fuzzy 

but it communicates well what the solver is predicting.  

A new sequence of prediction processes starts when the interviewer introduces the 

third situation: A is moving along a line. The point symmetry seems to also 

support this process: it is the first theoretical element of the funnel and it appears 
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again in a new formulation as the equidistance between the three points. Although 

moving A along a line can give rise only to two parallel lines, Emilio talks about 

three parallel lines because he also considers the case when P is moving on a line. 

He specifies that he is considering two cases: if P is fixed, or if P is moved. 

Nevertheless, the dependency of Q from A and from P, and the point symmetry 

are not questioned. This reflects an awareness of the given constraints and 

induced, in which we recognize a strong theoretical control over the figure.  

We notice that GP_6 and GP_7 are supported by several new theoretical elements, 

but also by new figural elements: several lines to which he refers as they were 

already drawn on the sheet of paper.  

Finally, the last sequence starts when the interviewer introduces the fourth 

situation (P is moving on a circle) and asks for a new prediction about the whole 

configuration. The funnel is the richest in theoretical elements and at the beginning 

the solver recalls GP_1. Below is the corresponding utterance (time 05:55). 

Emilio:  Mmm...well...as I said before indeed if...A becomes the center of the circle, 

Q will complete the circle with... 

The two funnels are actually connected because the solver explicitly talks about 

the connection. Moreover, we find an evolution of a theoretical element. Initially 

the point A is a “fixed point” (Funnel 1) and now it is a specific fixed point: the 

center of the circle. We guessed that Emilio has conceived A as the center, but now 

we find evidence of our inference and the property of A is unveiled also for the 

solver.  

Looking at Funnel 8, we can see several theoretical elements that suggest the 

connection with the previous funnel. This is also stressed by the solver who refers 

to GP_9 as another case of GP_8.  

We can consider Emilio’s as an additional example of Case (c). Even though the 

vertical connection between funnels that address the same question is expected, it 

is not so for the horizontal connection. In particular, we have found: a product 

(GP_8) that is reviewed as a refined version of GP_1; a product (GP_9) that 

constitutes another answer to the first question. Emilio’s resolution of Task 6 

shows that the processes of GP interact, even when this is not expected. This 

finding stresses once again the complexity of GP processes. 
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8.1.5 Concluding remarks about the structure of GP processes 

Looking at the funnels and at the diagrams, we observe the interaction between 

the processes of GP, even when they were undertaken and accomplished in 

different time frames. As a consequence, the products of GP arise and can be 

organized in several structures listed below.  

a) A chain of configurations with a single product of GP. 

Only in two cases the product of GP is the most complete and rich in 

theoretical elements. In those cases, the solvers have a long mathematically 

successful experience (i.e. they are mathematicians). Moreover, they show 

good theoretical control over the figure, which probably suggests to them 

that the product of GP is actually the most general and complete that they 

could reach.  

In all the other cases, the product of GP does not provide a complete 

solution to the problem and it shows a rather rigid use of the configuration. 

The product of GP arises as a consequence of the large number of 

constraints that the solvers have imposed on the figure. Moreover, the 

products of GP are very much connected with figural elements. All these 

factors seem to inhibit the solvers' reaching another solution or prediction. 

b) A chain of configurations with several disconnected products of GP. 

This case is strongly connected with the presence of one or more incoherent 

products of GP. We have found two reasons why the funnels and the 

products of GP are not connected: the solvers change their mind about a 

product of GP and they find a new solution to the problem; the solvers 

provide answers to problems that they seem to perceive as independent, as 

if they were different tasks. 

In these cases, more than in others, the interviewer’s prompts play a crucial 

role in guiding the solver within the resolution process.  

c) One or more chains of configurations with several connected products of 

GP.  

There is not a prototypical diagram that sketched out this case. 

Nevertheless, within several diagrams, we can recognize a final product of 

GP in which the previous processes and products converge.  

The final product of GP can be a more refined version of an initial rough 

one. If this is the case, the previously accomplished processes of GP support 
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the last one; the final product of GP is incrementally constructed adding 

new details that geometrically specify it.  

Otherwise, the final product of GP looks like a composition of several other 

products. Interacting with theoretical and figural elements previously 

expressed, it comes as the outcome of several previously accomplished 

prediction processes.  

In both cases, the solvers seem to conceive the question as part of the same 

problem, and the interviewer plays a very marginal role within the 

resolution process.  

Moreover, the data suggest that even the incoherent information considered 

by the solver at the beginning can be later used for shaping a coherent GP.  

The overview of the different structures of GP processes shown in this section 

provides evidence of the complexity of this topic. In some cases, the process can be 

very simple, linear, and easily grasped; in other cases, it can be very complex and 

composed of several interacting components of different natures. The latter are the 

most interesting cases according to our research purposes because they unveil the 

multifaced nature of the processes of prediction where the theoretical components 

play a role as do the figural ones.  

8.2 Critical elements that could hinder the prediction 

processes 

In the previous sections, we only touch upon some elements or approaches that, 

during the resolution of the given prediction open problems, could hinder the 

exploration or, in some cases, even the processes of GP.  

Among them, there are an incoherent interpretation of the theoretical constraints 

given in the step-by-step construction; or a lack of awareness of the theoretical 

constraints induced by the given ones. So, the solver could be induced to consider 

additional constraints and to forget or modify some others. These issues are 

strongly connected to the solvers’ lack of theoretical control over the figure.  

Moreover, some solvers have shown a static or discrete approach to the tasks. The 

static use of the figural elements of the given configurations seems to inhibit the 

consideration of alternative arrangements for the solvers of our sample.  

Another crucial element is the lack of harmony between the theoretical and the 

figural components of a geometric figure. In some cases, this is so prominent that 
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the stereotyped image of the geometrical figure in focus strongly affects the 

exploration.  

In this section, we will describe in greater depth the components of the solvers’ 

approaches that could hinder the prediction processes in general and the 

communication of a coherent product of GP in particular. Furthermore, we wish 

to draw attention on two additional issues: 

- the prevalence of bottom-up processes accomplished by the solvers could 

lead to a sort of “devolution to the drawing” that induces them to consider 

incoherent theoretical elements; 

- the good theoretical control over the figure could be in contradiction with 

the solver’s choice of theoretical elements.  

In the following, we will discuss some of the claims listed above and also better 

describe and clarify these last two phenomena. Moreover, we will provide 

examples from the resolution of each task. Indeed, even if we can draw some 

common approaches which impede the solver in reaching a coherent product of 

GP, each task can show specific features and obstacles. So, for the sake of clarity, 

we intend to also stress these local findings.  

8.2.1 Task 2 

There are several solvers of our sample who show a common approach to the 

configuration obtained through the step-by-step construction given at the 

beginning of Task 2. Indeed, they seem to consider the configuration as composed 

by a triangle AMB and an independent segment MP. We have found various 

evidence of this way of seeing the configuration in solvers’ utterances.  

 

In our opinion, this approach is interesting within the analyses of prediction 

processes because  apparently all the solvers who consider the configuration in this 

way had trouble reaching a product of GP or a coherent one.  

Figure 44 An instance of a possible drawing of the given configuration where the triangle 

(blue) and the independent segment (red) are highlighted 
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An example is provided by Carlo’s interview of which an excerpt is reported in 

Section 6.5.4 as an example of a process of GP that is undertaken very late during 

the interview: Carlo_G10_T2_P1_(01:22 – 04:52). We have already highlighted that 

at the beginning the figural components of the figure seem to guide Carlo’s 

answer. He simply describes the configuration sketched out in Drawing 1a and 

stresses that the point M is part of a right triangle. Actually, the figural components 

drive the answer because the right angle is not a consequence of the given 

theoretical constraints: the angle with vertex at M seems right only within the 

figural domain of the drawing. 

The interviewer’s prompt for triggering a GP process has the effect of restoring a 

figural approach for the solver. Carlo starts a new drawing (Drawing 1b) and 

continues referring to AMB as a right triangle. Moreover, he stresses that the 

triangle seems to be “always” right.  

After a last effort of the interviewer to trigger a GP process, the solver 

communicates a product of GP:  

GP_1: P at a symmetric position with respect to A 

Nevertheless, the figural components continue guiding the exploration. Indeed, in 

a subsequent excerpt, when the interviewer asks the solver to show the imagined 

position of P, Carlo performs two additional drawings, here reported (Figure 45). 

   

Even though, referring to Drawing 1b and in general, GP_1 is incoherent, we notice 

that in those particular drawings (Figure 45) the new position of P works. This 

highlights again that the figural components drive the exploration and in 

particular suggest the solver to maintain the whole triangle.  

At the times 06:35 and 06:46 we can see the crucial role that the triangle AMB plays 

in the resolution process. The corresponding utterances are: 

Figure 45 Two drawings consecutively performed by Carlo during the resolution of Task 

2: Drawing 3 (on the left) and Drawing 4 (on the right) 
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Carlo:  […] if this triangle [triangle AMB in Drawing 1b] we move it over to this 

side [triangle AMB in Drawing 2], we transfer it…in any case it is moved 

in a different way.  

Carlo:  I mean I can copy the triangle wherever I want. 

GP_1 remains the only product of GP communicated by the solver. The utterances 

reveal the two elements that impede the solver to reach another and eventually 

more coherent product of GP: 

- the configuration seems to be considered as composed of a triangle and an 

independent segment; 

- the triangle is rigidly maintained in order to show another position for P.  

So, the domain of figural elements and argumentations coupled with the fixedness 

of the configuration does not allow the solver to explore further the situation.  

Another example is provided by an excerpt from Ilaria’s interview: 

Ilaria_G9_T2_P1_(01:48 – 03:26). 

Time Who What is said What is done Comment 

01:48.12 Int What can you say 

about the point P?  

  

01:52.19 Stud The point 

P…meanwhile is 

part… of the straight 

line in which…on 

which there is also… 

AM and is outside 

the triangle AMB. 

On the sheet of paper 

there is the following 

picture: 

 
Drawing 1a 

She seems to 

consider the 

configuration 

composed of a 

triangle and an 

“external” segment.  

Theoretical 

elements: triangle, 

line. 

02:13.27 Stud In this case – but I 

think it is a particular 

case – perpendicular 

to… not the point P! 

It is a straight line on 

which there is the 

point P that is 

perpendicular to MB, 

but it is a particular 

case, I think! 

 She seems to be 

uncertain about the 

perpendicularity 

between MB and the 

line. 

02:31.09 Int Ok. Make a 

prediction. Do you 

think that the point P 

  



 288 

can have other 

positions? 

02:39.20 Stud If I draw again…if 

the length of MB 

must always be d, it 

could be like a 

mirror, so it could 

take the place…the 

same position, only 

on the other side of 

the segment. 

 

She points to the step-

by-step construction.  

She places the pen on 

AB and moves it 

upwards.  

 

GP_1_(2) 

(discursive – 

gestural): 

P on a symmetric 

position with 

respect to AB  

 

Window gesture 

03:00.14 Stud Ehm and then...there 

are no other ...other 

positions that it could 

occupy if the length 

has to always be the 

same d as the 

segment MB. 

  

03:13.20 Int Ok...Imagine... Make 

a prediction: imagine 

moving point P. Do 

you think it could 

occupy other 

positions so that MB 

remains of length d? 

  

03:26.09 Stud Yes, it [point P] 

moves along the 

segment M…along 

the half-line MP and 

then etcetera, 

etcetera… along the 

half-line that would 

continue, because it 

does not interfere 

with the triangle. 

She points at P and 

starts moving the pen 

on a straight line: 

 

GP_2_(0) 

(discursive – 

gestural):  

the locus of P is a 

half-line from M 

Window gesture 

She seems to look at 

the configuration as 

composed by a 

triangle and an 

independent 

segment. She seems 

to imagine moving 

P without changing 

the triangle.  

The drawing is 

independent from 

the geometrical 

construction.  
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The excerpt starts right after the solver has accomplished the step-by-step 

construction and when the interviewer asks the first question about P. In her 

answer Ilaria collects the observable figural elements of the configuration: P is on 

a line, AM is part of the line, AMB is a triangle. Moreover, she stresses a topological 

property: P is “outside the triangle AMB”. The description of Drawing 1a suggests 

that the solver is considering the configuration as composed of a triangle and a 

point P, which eventually is connected to the triangle with a segment. She adds 

that AP is perpendicular to MB, but she seems to be aware that this could be a 

special case whose rationale lays on the figural domain. We will see in the 

following that the perpendicularity does not affect the subsequent exploration; 

instead, the triangle AMB plays a crucial role.  

At time 02:32, the interviewer asks for other possible positions of P. The first 

utterance suggests a discrete approach to the configuration: the solver predicts a 

symmetric position of P with respect to AB and she intends to find it “drawing 

again” the figure. The product of GP is coherent, quite fuzzy and it maintains the 

length not only of MB but also of the sides of the whole triangle. At time 03:00, 

Ilaria stresses that to maintain the length of MB, P cannot occupy other positions.  

The fixedness of the configuration, and in particular of the triangle AMB, affects 

the second product of GP. The process of GP seems to be triggered by the 

interviewer’s question about the possible positions of P such that MB has the same 

length; it is explicitly required to consider the motion of P. Ilaria says that P can be 

moved on a half line from M; she explains that it is so “because” the movement does 

not infer with the triangle. We can notice the extent to which the triangle plays a 

role within the prediction process: even though the solver has previously 

communicated a coherent product of GP, GP_2 does not consider all the given 

constraints. Indeed, the described movement of P changes the length of the 

segment AP and consequently of the segment AM, but the solver seems to forget 

that M is the midpoint of AP and she considers AM and MP as independent 

segments.  

GP_1 maintains all of the given theoretical constraints and some additional ones. 

However, during the process that leads Ilaria to GP_2, she does not show an 

awareness of these constraints. In general, the figural components of the 

configuration dominate the process. It looks like, after the step-by-step 

construction was accomplished, the properties addressed to the obtained 

configuration are different from the given ones and mainly relies on the figural 

elements. This is what we have called a sort of “devolution to the drawing”.  
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Ilaria’s excerpt is an example of a bottom-up process and of the focusing on figural 

elements which affect the GP process to the extent that the solver reaches an 

incoherent product of GP even though she has previously communicated a 

coherent one.  

The same phenomenon can be observed in Isabella’s interview (also presented in 

Section 6.6.2 and Section 7.1.2). We have already noticed that also Isabella seems 

to consider the configuration as composed of a fixed triangle and an independent 

segment. Moreover, the configuration described in GP_1 (P on a circle centered at 

M and with radius MP) has new constraints and loses a given one (i.e. M is the 

midpoint of AP). At times 04:52 and 05:15, she describes in greater depth the locus 

she has imagined: she intends to translate the segment MP that she considers as 

the radius of the circle. Looking at the second part of the interview, we can see a 

drawing that confirms our inference about the configuration (Figure 46). 

 

In Isabella’s resolution the figural components are dominant to the extent that, 

after she has performed the drawing, the solver seems to forget the properties 

given in the step-by-step construction. 

8.2.2 Task 4 

The task does not present particular common obstacles and most of the solvers 

who approach the task reach at least a new position for C. Nevertheless, also the 

resolution of this task provides examples that support the role that a rigid use of 

the configuration plays within the prediction processes. Furthermore, some 

excerpts give us the opportunity to highlight that the prototype effect negatively 

influences reaching a coherent product of GP. 

The first example is from Carlo’s interview: Carlo_G10_T4_P1_(00:58 – 03:47). 

 

Figure 46 Drawing 1c performed by Isabella during the second part (time 09:46) of the 

resolution of Task 2 
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Time Who What is said What is done Comment 

00:58.21 Int What can you say 

about the vertex with 

the right angle?  

  

01:07.08 Stud That is can move 

wherever it wants. 

 GP_1_(0) 

(discursive): C can 

occupy any 

position within the 

plane 

01:12.16 Int How?   

01:13.06 Stud In any point that it 

wants ... wants, 

because... no, but if it 

moves over to that 

side the angle 

changes. 

He looks up. 

He randomly moves 

the pen above the 

drawing. 

He looks up. 

He seems to 

consider some 

positions for C.  

01:21.06 Stud If we move C to this 

side...can I? 

He is pointing at C 

and then at another 

position: 

 

Window gesture 

01:27.12 Int Yes.    

01:29.19 Stud  He draws two points 

on the sheet of paper. 

 

01:30.09 Stud They are fixed.   

01:36.03 Stud I cannot imagine 

how C can move here 

if it has to maintain a 

right angle. 

He points at the same 

position of 01:21. 

Then he uses two 

hands for mimicking 

the motion of the 

right angle:  

 

He moves the two 

hands together from 

the left to the right. 

Window gesture 

01:47.10 Stud Ah no, the triangle 

would move in any 

case. 

The utterance comes 

after a long silence.  
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01:50.11 Stud Because if we move it 

here it becomes an 

isosceles triangle. 

So... 

He points at another 

position: 

 

Window gesture 

01:58.04 Stud What was the 

question? 

  

01:59.08 Int What can you say 

about the vertex with 

the right angle? 

  

02:02.04 Stud Only that point...only 

that point...can...C is a 

right angle. Then the 

degrees change. 

he points to the initial 

position of C on the 

drawing: 

 

GP_2_(0) 

(discursive – 

gestural):  

C is fixed 

02:13.25 Int Ok. So if I ask you to 

make a prediction 

and to tell me... 

  

02:19.23 Stud But, but!  Anticipatory 

Intuition 

02:20.12 Int Mm!   

02:22.05 Stud I think that there is 

always the vertical 

line  that...because... 

He points at C and 

moves the pen on a 

strainght trajectory, 

perpendicular to AB:   

 

GP_3_(1) (gestural 

– discursive):  

C on a vertical line 

[perpendicular to 

AB] 

 

Window gesture 

02:31.22 Stud Yes, I think that there 

are actually infinitely 

many points in which 

it can become a right 

triangle. 

  

02:38.29 Int Which?   

02:41.00 Stud These. He starts drawing a 

segment through C 

and perpendicular to 

AB.  
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02:43.16 Stud Ah no, but if it goes 

here it becomes a 

straight angle. 

He points at a point 

on AB: 

 

GP_3 (discursive – 

gestural) 

 

02:46.09 Int Mm.   

02:47.16 Stud  He is laughing.  

03:00.03 Stud If it goes down there 

for sure it decreases 

until it becomes a 

straight angle. 

  

03:07.13 Int Ok, tell me there. 

Wait, this one here 

later. 

  

03:15.06 Stud Maybe it can only go 

up. If it goes up... 

He draws a vertical 

segment: 

 
Drawing 1 

 

03:24.10 Stud No.   

03:26.18 Stud It is that...I think that 

only this is possible. 

 GP_2 

03:29.10 Int Mm mm.   

03:29.29 Stud But like if one makes 

a straightedge. 

  

03:31.25 Int Mm mm.   

03:34.03 Stud Ah...one can make it 

bigger and it is 

always a right angle. 

Eh. 

  

03:40.01 Int In what sense bigger? 

How do you imagine 

it? 

  

03:43.14 Stud But the hypothenuse 

would have to get 

bigger I think. 

  

03:47.03 Stud So if the hypothenuse 

stays fixed maybe 

only...there is only 

one possibility. 

He points at the initial 

position of C. 

GP_2 (discursive) 
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The given drawing shows a right triangle which is sketched so that the hypotenuse 

AB is horizontal on the sheet of paper. Before the excerpt, Carlo has rotated the 

paper to see the triangle with a leg horizontal and the other leg vertical in front of 

him. 

The excerpt starts with the interviewer’s question about the vertex with the right 

angle. Even if the answer is quite vague, it communicates that C can occupy any 

position within the plane. However, we cannot infer where the solver intends to 

place C. At time 01:21, the window gesture suggests that another GP process is 

undertaken. Indeed, Carlo seems to investigate another configuration, which he 

would obtain placing C at a particular position. At time 01:36, he mimics the 

motion of the right angle. This is quite rigid; indeed Carlo tries to translate the 

whole angle. The impossibility of obtaining another right triangle with AB as the 

hypotenuse, explicitly expressed at times 01:36 and 01:50, leads the solver to say 

that C is fixed (GP_2).  

GP_3 comes after an evidence of anticipatory intuition. Suddenly, Carlo 

communicates an entire locus for C: a line through C perpendicular to AB. GP_3 is 

sketched in Drawing 1 and contains an incoherent product of GP: moving C along 

the line the angle is not maintained right. Probably the solver imposes over the 

figure so many theoretical constraints that impede to find other arrangements of 

the configuration. However, the locus of C seems very strange and it is difficult to 

properly guess what has driven the solver’s process of GP. From time 03:39 we 

find some revealing utterances. We grasp that Carlo considers the right triangle as 

a whole fixed and rigidly given figure. The metaphor of the set square suggests 

this interpretation. Moreover, it seems that he has imagined several enlarged 

versions of the given right triangle or set square. Overlapping these figures, he 

could see the point C occupying many positions on a straight line. An attempt to 

reproduce the imagined situation is reported in Figure 47.  

Nevertheless, at time 03:43, Carlo realizes that, if C is on the line reported in 

Drawing 1, one of the given constraints is not maintained invariant: he grasps that 

the hypotenuse could change its length. So, he restores GP_2.  

The excerpt provides instances of two elements that could impede the solver 

reaching a coherent product of GP: the fixedness of the configuration and the 

consequent impossibility of conceiving other possible arrangements.  
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The solver does not show a lack of theoretical control over the figure (simply look 

at times 01:50 and 02:43) and he dynamically interacts with the drawing (see time 

01:36). Nevertheless, it seems that he interprets the given constraints too rigidly: 

the fixedness of the length of AB could have induced the fixedness of the whole 

triangle. The figural counterpart of this situation becomes an obstacle for 

undertaking another process of GP.  

Another element that could inhibit an effective process of GP is the prototype 

effect. This is most evident in this task because it involves a well-known figure to 

which the interviewer refers explicitly: a right triangle. The awareness that the 

triangle must be right could induce a stereotyped image of it that could contrast 

with the particular drawing proposed to the solver. A first example of the 

prototype effect is provided by Ilaria’s interview. It has been already discussed in 

Section 6.1.1.  

Another, and more telling, example is provided by Giacomo’s interview: 

Giacomo_G9_T4_P1_(00:03 – 03:54). 

Time Who What is said What is done Comment 

00:03.12 Int Consider the right 

triangle in the 

figure.  
Given drawing 

 

00:07.05 Stud Ok.   

00:10.14 Int With the 

hypotenuse of fixed 

length. 

  

00:13.02 Stud Alright. He rotates the sheet of 

paper: 

 

Figure 47 A possible interpretation of the configurations imagined by Carlo  
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00:13.22 Int A and B are fixed.   

00:16.08 Stud Ok.   

00:17.03 Int The length of AB has 

to always be the 

same. 

  

00:21.08 Int Here there is 

everything written. 

She points to the step-

by-step construction. 

 

00:22.15 Stud Ok.   

00:22.26 Int Ok, this is your 

drawing. 

She points to the sheet of 

paper with the given 

drawing.  

 

00:25.02 Stud Ok, I drew it.   

00:27.29 Int Ok, when you are 

ready, I will ask you 

the question. 

  

00:30.16 Stud  He rotates many times 

the sheet of paper. 

 

00:36.03 Stud Can I...write on it?   

00:37.21 Int Of course.   

00:39.05 Stud  He labels again the 

vertices:  

 
Drawing 1a 

 

00:44.23 Stud Ok, that is better.   

00:45.13 Int Ah ok, you made the 

letters bigger? 

  

00:46.26 Stud No no, I turned it 

because I was not at 

ease keeping it like 

this right angled. 

He rotates the sheet of 

paper: first in the initial 

position and then in the 

new orientation (time 

00:39).  

 

00:48.21 Int Ah ok. Alright.   

00:51.03 Stud This is better. He takes the sheet of 

paper rotated so that the 

triangle appears lying 

on the longer leg BC. 
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00:52.23 Int What can you say 

about the vertex 

with the right angle? 

  

01:13.22 Stud  Long silence.  

01:19.05 Stud What can I say about 

the vertex with the 

right angle? 

  

01:21.20 Int Mm mm. Yes.   

01:23.01 Stud I know that it is 

right. I mean a point 

with a right angle. 

 He recalls an 

already known 

property. 

01:27.17 Stud And then... Then there is a long 

silence.  

 

01:50.29 Int What are you 

thinking, Giacomo? 

  

01:52.17 Stud I am thinking...I 

mean I know that it 

is right and that's it. 

It is the only thing 

that I know about 

point C I don't know 

anything else. 

  

01:59.01 Int Ok. Make a 

prediction: do you 

think that it can 

occupy other 

positions?  

  

02:06.28 Stud The point C?   

02:08.02 Int Yes.    

02:08.14 Stud So that AB is 

constant? They are 

fixed, ok. 

He looks at the step-by-

step construction.  

The solver seems 

to recall some of 

the given 

constraints.  

02:13.07 Stud I hope it's not like 

the one before. 

 Probably he refers 

to Task 2. 

02:16.09 Stud Always on the other 

side of segment AB, 

mirrored. 

 

GP_1_(1) 

(gestural – 

discursive):  

C at a symmetric 

position with 

respect to AB  

Window gesture 

02:23.07 Int Yes, show me how.   

02:24.20 Stud  He uses the thumb to 

have the same length:  

He performs a sort 

of step-by-step 

construction for 
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Then he draws a new 

position for C and the 

adjacent segments. 

drawing the exact 

position of C. 

02:48.16 Stud Like this. 

 
Drawing 1b 

 

02:48.17 Int Ok.   

02:49.17 Stud Like...in this way 

here. 

He rotates many times 

the sheet of paper; he 

stops and covers half of 

the drawing: 

 

 

02:52.25 Stud And like this AB is 

always constant. 

  

02:54.15 Int Mm mm.   

03:02.02 Stud Then I can move this 

point C. 

  

03:06.14 Stud In this position here, 

moving all the 

figure. And putting 

point C for instance 

here making it 

remain 90 degrees.  

He points at a new 

position for C:  

 

He draws the new 

position and the 

adjacent segments.  

GP_2_(2) 

(gestural – 

discursive):  

C at a position 

such that the 

triangle is right 

 

 

Window gesture 

03:14.04 Int Mm mm.   
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03:17.26 Stud And like this AB is 

always the same, 

but here I have C 

that is in this 

position here and it 

is...AB is always 

constant.  
Drawing 1c 

He maintains only 

some constraints: 

for example, AB is 

no longer a 

hypotenuse.  

 

03:24.17 Stud And so also in this 

case  on the other 

side. 

He points at a 

symmetric position of C 

with respect to AB:  

 

GP_1 

03:33.16 Stud And so I have 

another right 

triangle with A 

[and] B always 

constant. 

 
Drawing 1d 

He maintains only 

some constraints. 

03:44.04 Int Right where?   

03:45.11 Stud I mean it would be... He points at C’’’ and 

looks at the drawing for 

a while. 

He directly points 

at C’’’, but then he 

seems uncertain.  

03:50.00 Int Where is the right 

angle? 

  

03:51.13 Stud Here, it is moved to 

B. 

He signs the right angle 

at B. The drawing is the 

following:  

 
Drawing 1e 

Figural elements.  

03:54.10 Stud In these two cases.   

The excerpt starts at the very beginning of the interview. Right from the start it is 

evident that the solver feels uncomfortable with the particular arrangement of the 

figural elements of the triangle within the sheet of paper and he rotates it many 
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times: see what happens at times 00:13, 00:30, 00:39. Finally, at time 00:46 he 

explicitly says that he has trouble with that particular drawing. So, he relabeled 

the vertices and, at time 00:51, he takes the drawing rotated so that the triangle 

looks lying on the longer leg (the side BC). We infer that the stereotyped image of 

a right triangle influences this initial phase of the resolution process. 

The first interviewer’s question does not trigger any prediction process. We cannot 

find any explicit clues that would suggest a possible reason.  

At time 01:59 the interviewer asks the second question, that explicitly requests a 

prediction. The solver answers recalling one of the given constraints: A and B are 

fixed points. He does not mention either the constraint on the angle at C or the 

fixedness of the hypotenuse. The question triggers a GP process that finishes with 

the communication of GP_1: the gesture reveals where the solver intends to place 

C and the utterance suggests the geometrical transformation that allows him to 

find the new position of C. Probably the process is supported by the inferred 

similarity with the prediction process that was accomplished by the solver during 

the resolution of Task 2 (see time 02:13). GP_1 is carefully sketched on Drawing 1b; 

Giacomo performs a sort of step-by-step construction, starting from the distance 

between C and the segment AB. The configuration, which corresponds to the new 

position of C, rigidly maintains all the given constraints and additional ones. 

Indeed, we can notice that also the lengths of the legs are maintained invariant.  

The solver seems to spontaneously8 undertake another GP process that, at time 

03:02, leads him to communicate GP_2. At time 03:06, the utterance suggests that 

the solver is trying to maintain the constraint on the right angle. However, the 

figure sketched on Drawing 1c reveals that he is maintaining an alternative version 

of the constraint: ABC is a right triangle. GP_2 is an incoherent product of GP. The 

given constraints are not maintained, indeed AB is no longer a hypotenuse and the 

right angle now is at B. Moreover, looking at the snapshot of the window gesture, 

we notice that the orientation of the drawing used to accomplish the process of GP 

follows one of the prototypical images of a right triangle (i.e. a right triangle that 

lies on a leg). So, it seems that the prototypical effect affects the process of GP. The 

solver does not seem to be aware of such a bias.  

At time 03:24 the solver applies GP_1 to the new situation and he reaches another 

position for C. When the interviewer asks for an explanation about the right angle, 

Giacomo seems to be a bit confused. He points directly at C’’’ and probably 

 
8 We mean that the process is undertaken without a new explicit interviewer’s request for a 

prediction. 
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realized that the angle is no longer right. Only looking at the drawing he can point 

at the actual vertex with the right angle: point B. So, it seems that the configurations 

which were obtained starting from C’’ and C’’’ are so natural for the solver that he 

becomes aware of the actual location of the right angle only when the interviewer 

asks to show it.  

Looking at the final drawing, we notice that also the positions of the labels of the 

vertices, and in particular their orientation with respect to the several triangles, 

suggest an influence of a stereotyped image of the right triangle.  

We highlight that the solver seems to know and manage well the line symmetry. 

Indeed, he uses twice this transformation to reach two new positions of C. So, we 

would expect that he can reach the symmetric positions of C with respect to the 

axes of AB as other solvers did, but he did not. We advance the hypothesis that the 

prototype effect is so dominant within the prediction process that it strongly 

influences the possibility that the solver is willing to consider. Moreover, we stress 

that in the following the solver was not able to undertake other GP processes, 

despite the interviewer’s requests. 

8.2.3 Task 5 

At the very beginning, the task asks the solver to undertake a process of GP 

without the support of the drawing. As expected, this part of the task was quite 

difficult for some solvers. Probably, it depends on the number of information that 

the solver has to manage only imagining the situation. We have already discussed 

that when the solver undertakes a prediction process, the gestures are powerful 

windows onto the GP process (see Section 6.4). 

To help the solvers who have trouble with not being allowed to draw, the 

interviewer can allow them to draw only the segment AB and the midpoint. In the 

following, we will focus our analyses on this part of the interviews.  

The most common obstacle to undertake an effective GP process is the theoretical 

element that the solvers use for referring to CM. The segment CM is the median of 

the triangle ABC, even though it is not explicitly mentioned within the step-by-

step construction. However, frequently the solvers of our sample have considered 

CM as the height of the triangle ABC. According to the aim of a data analysis that 

intends to unveil the possible obstacle for a prediction process, it is an interesting 

finding. Indeed, until the solvers consider CM as a height, they have trouble 

reaching a product of GP or a coherent one. Seven solvers explicitly refer to CM as 

“the height” of the triangle.  
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The best example is provided by Sergio’s interview (also presented in Section 

6.6.1). We have already discussed the role of the instance of anticipatory intuition 

within Sergio’s resolution process. A coherent product of GP arises suddenly as an 

intuition quite late at time 03:17. Before this moment Sergio seems quite sure that 

CM cannot be congruent to CB because CM is the height of the triangle ABC. The 

solver explicitly makes use of this theoretical element (the height) to justify the 

impossibility of having the two segments congruent, that was his first product of 

GP. Suddenly, he changes his mind and communicates a product of GP that is in 

sharp contrast with the previous one. Now, we can grasp the element that supports 

the anticipatory intuition: dropping the idea that CM must be the height. This 

claim is supported by what happens in the following excerpt: 

Sergio_G10_T5_P1_(03:52 – 04:17). 

Time Who What is said What is done Comment 

03:52.05 Int Are there other ways 

in which CM can be 

congruent to CB? 

Other positions for 

point C? 

  

04:01.17 Stud Ehm... the other 

points would be 

moving point C 

perpendicularly to 

MB, I mean raising 

it... 

He points at C and 

mimics a straight 

trajectory that is 

perpendicular to 

MB:  

 

GP_2 is better 

detailed by GP_3.  

GP_3_(0) (gestural – 

discursive):  

the locus of C is a 

line perpendicular 

to MB that passes 

through the 

midpoint of MB 

It is a locus because 

he moves the pen up 

and down along the 

perpendicular line: 

Window gesture 

04:07.29 Int Mm mm.   

04:08.18 Stud ...or lowering it and, 

bringing to the other 

side, raising it or 

lowering it. 

He mimics a straight 

trajectory  

perpendicular to 

MB:  

 

Window gesture 
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04:15.14 Stud Yes, moving point C 

only perpendicularly 

to MB. 

 GP_3 

04:17.13 Int Mm mm.   

The excerpt starts after the communication of GP_2 when the interviewer asks for 

other configurations where CM could be congruent to CB. Looking at the 

utterances, we notice that the solver focuses on the point C, more then on CM; the 

segment CM is no longer mentioned as a height of the triangle; even though the 

solver resorts to figural elements (see time 04:08), he introduces new theoretical 

elements (i.e. perpendicularity, line symmetry) which support a new process of 

GP. The process seems to be triggered by the interviewer’s question, supported by 

the new theoretical elements and leads the solver to a detailed product: GP_3. It is 

a refined version of GP_2. Indeed, GP_2 addresses only a static position of C; 

instead, GP_3 depicts an entire locus using some elements of the previously 

communicated product of GP. The gestures are very detailed and reveal that the 

solver is strongly convinced about his prediction.  

Sergio’s interview provides an example of a way to look at a part of the 

configuration (i.e. the segment CM) that inhibits finding a coherent product of GP. 

This is also an example of a spontaneous breakthrough in the situation which 

allows the solver to undertake an effective GP process. The dynamic dimension 

coupled with the identification of a non-stereotyped position of C within the 

triangle seem to play an important role.  

The identification of CM as a height seems to occur for two reasons:  

- an unconscious addition of constraints, so that the solver tries to maintain 

CM as a height or ABC as an isosceles triangle; 

- a stereotyped image that does not allow the solver to consider the most 

general kind of triangle.  

In both cases, the drawing seems to have the effect of crystallizing the situation, 

making it hard to consider another configuration. Sergio was able to overcome this 

difficulty using a top-down approach to the configuration. 

8.2.4 Task 6 

The task is composed of four sub-tasks, which refer to different new positions of P 

or A proposed by the interviewer. The tasks are quite simple if the solver knows 

and is able to control point symmetry. All the solvers of our sample seem to be 
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quite at ease during the resolution of this task. However, several solvers 

communicate strongly incoherent or fuzzy products of GP.  

This task gives us the opportunity to remark some findings already discussed, like 

the role of figural elements and of a static approach to the configuration within the 

GP processes. Moreover, during the processes of GP that accompanied the 

resolution of Task 6, a particular integration of theoretical elements and theoretical 

control over the figure emerge. Indeed, even if the solvers exhibit knowledge of 

the proper TEG, they can choose to apply to the configuration an incoherent 

theoretical element that is in sharp contrast with their good theoretical control over 

the figure. 

Here are three examples that support our claims.  

The first excerpt from Stefano’s interview: Stefano_G9_T6_P1_(00:58 – 02:11) shows 

a lack of theoretical control, a static approach to the configuration, and a 

dominance of figural elements.  

Time Who What is said What is done Comment 

00:58.05 Int Ok. Imagine... make 

a prediction: 

imagine moving 

point P. 

  

01:06.13 Stud Mm mm.   

01:06.28 Int And make a 

prediction. What 

happens to the 

configuration? 

  

01:16.21 Stud That if I move 

it...that P if I move 

it on Q it remains, 

the distance QA 

remains QA or PA 

remains the same. 

He points at P and 

then at Q: 

 
He points at Q and 

A. 

GP_1_(0) (discursive 

– gestural): if P 

coincides with Q, QA 

is equal to PA  

01:24.15 Stud If instead I move it 

under the same 

distance of QA 

becomes...PA is 

equal to QA. 

“Under”: 

 
He points at Q and A 

as they are in the 

drawing. 

GP_2_(0) (discursive 

– gestural): P at a 

position such that 

PA=QA, Q and A are 

fixed 

He considers a 

position of P such that 

the distance between 

the new position of P 
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 and A is congruent to 

QA in the initial 

position.  

The segments are 

actually congruent, 

but the fixedness of Q 

is not coherent with 

the given point 

symmetry.  

01:32.19 Int Mm.   

01:33.02 Stud If I move P up ...the 

distance QA is 

equal to PA. If I 

move it above it is 

known.  

GP_2  

P is at a position such 

that the segments are 

congruent, but Q is 

considered to be fixed.  

01:41.14 Stud If instead I move Q 

on P it becomes, it 

remains always 

equal to PA, QA 

equals the length, 

the distance. 

He points at Q and P.  

 

GP_1, but moving Q.  

01:50.11 Stud I think [this is the 

case] also if I move 

it to some side 

here... 

He moves the finger 

on the drawing 

tracing several lines:  

 

 

01:55.12 Int Mm mm.   

01:56.21 Stud Between here and 

here, and it remains 

equal. 

He points to two 

positions on the 

sheet of paper:  

 

GP_2 applied to 

positions of P on a line 

neither horizontal nor 

vertical.  

The pointed positions 

of P return segments 

that are congruent to 

QA.  

02:00.04 Stud And also if I move it 

on top one on top. 

He points again at 

the same two 

positions of (01:56) 
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02:02.26 Int That is if you move 

P what do you think 

happens to...A and 

to Q. 

   

02:08.14 Stud Ah, Q A stay fixed.  Evidence of our 

inference about the 

fixedness of Q. 

02:10.16 Int Ok.   

02:11.00 Stud If I change P, it can 

remain, it can, the 

length of di AP can 

vary or it can 

remain the same if I 

move it in certain 

positions. 

 GP_2 

For the sake of completeness, we summarize what happens before the excerpt. 

Stefano has considered P as the center of the point symmetry. When the 

interviewer repeats that Q is the “symmetric point of P with respect to A”, Stefano 

reconsiders his drawing and coherently traces Q (Figure 48). This could be a 

careless mistake, but more likely it seems to be due to a lack of control of the 

theoretical element “point symmetry”. The following of the interview supports 

this interpretation.  

 

The excerpt starts when the interviewer proposes to imagine a motion of P and 

consequently asks for a prediction on the configuration. We find a product of GP 

in the solver’s utterance and gesture: if P is placed on Q, then QA is congruent to 

PA. The dynamic dimension of the utterance is only a repetition of the 

interviewer’s prompt. Indeed, the rest of the utterance reveals a very static 

approach: Stefano repeats three times the verb “remains”. Moreover, the gesture 

suggests that he conceives the configuration statically: Stefano points at A and Q 

at their initial positions. We infer that his prediction is the following: P is placed 

on Q, Q is fixed and A is as well; at that new position of P, PA is congruent to QA, 

because they are two overlapping segments. Moreover, Stefano does not mention 

another position for Q. In line with this interpretation, we must consider GP_1 to 

be an incoherent product of GP. We notice that, even if the dynamic dimension is 

Figure 48 The coherent drawing produced by Stefano during the resolution of Task 6 

(Drawing 1) 
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strongly suggested by the interviewer, the static approach is dominant in Stefano’s 

process of prediction.  

At time 01:24 the solver undertakes another GP process: he imagines moving P to 

another position on the sheet of paper and he finds two congruent segments. The 

position of P actually returns two congruent segments in that particular drawing, 

but the fixedness of Q is not coherent with the point symmetry. So, we cannot 

consider GP_2 as a coherent product of GP. In the following we find several 

instances of GP_2; in all cases the point Q is considered to be fixed.  

At time 02:08, Stefano’s utterance confirms our inference: he explicitly claims that 

Q is fixed. Analogously, in the rest of the interview, whenever the interviewer asks 

what happens to the other two points (A and Q or P and Q), the solver says that 

they are fixed. Every time the tone of the voice suggests that the solver considers 

the fixedness of the points as an obvious finding. Moreover, at time 03:40, he 

stresses his point again: 

 Stefano:  If I move P only the distance between A and P can change. 

This first excerpt shows a static approach to the configuration, dominated only by 

the figural elements that are visible in the drawing. Indeed, after the solver has 

performed the drawing, A and Q become fixed elements of the configuration. The 

theoretical constraint that Stefano has used to obtain the configuration seems to be 

forgotten. The theoretical control over the three points is absent: the solver is not 

able to recognize the effect of the movement of P on Q.  

The second excerpt from Stefano’s interview presents the same characteristics: 

Stefano_G9_T6_P1_(02:19 – 02:57). 

Time Who What is said What is done Comment 

02:19.21 Int Ok. Imagine moving P 

along a line and make 

a prediction: what 

happens to the 

configuration? 

  

02:28.24 Stud That if I mo...if I move 

P to...the right, 

outwards, the length 

PA changes and it is 

no longer equal to QA. 

He points at a position 

for P with the thumb:  

 

GP_3_(0) (gestural 

– discursive): 

there are positions 

for P such that PA 

is not congruent to 

QA 

Q is still 

considered fixed.  
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The point 

symmetry is 

absent.  

02:38.16 Int Mm mm.   

02:39.04 Stud If instead I move it 

towards Q and it goes 

on point Q, as I said 

before, QA always 

remains equal to PA. 

And they are on top of 

one another. 

He points at Q.  GP_1: the talks 

about P coincident 

with Q. 

02:47.13 Stud If instead I move it 

outwards here, to the 

left...Q. 

 

Then he moves on the 

left the whole sheet of 

paper. 

 

02:52.03 Int Mm mm.   

02:52.26 Stud Anyway the distance 

of PA changes and 

becomes greater than 

Q. 

 GP_3 

02:57.12 Stud And if instead I move 

it towards the inside 

of Q, it becomes...PA 

becomes less than QA. 

He points at a point 

between A and Q. 

 

 

The interviewer explicitly asks the solver to imagine moving P along a specific 

path. Stefano answers showing a position for P such that PA is not congruent to 

QA. He continues referring to the initial positions of A and Q as if they both are 

fixed points. At time 02:39, there is another instance of GP_1. Finally, at time 02:57, 

he concludes with another instance of GP_3.  

In this excerpt as well, Stefano shows a lack of theoretical control over the figure. 

The solver undertakes several GP processes. However, his products of GP are 

always incoherent and driven by the particular drawing he has performed. The 

incoherence of his products of GP seems to depend on the insufficient control of 

the point symmetry. Moreover, the lack of theoretical control does not allow 

Stefano to predict the effect on Q of the movement of P. So, he is induced to 

consider point Q fixed, as A in fact is.  
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The second and the third are examples of GP processes that show a paradox: a 

good and fine-grained theoretical control over the figure that leads the solver to 

communicate several incoherent products of GP. We will see that the reason 

resides in the initial choice of the theoretical constraints.  

 

 

The second example is from Giulio’s interview: Giulio_G13_T6_P1_(00:37 – 02:34).  

Time Who What is said What is done Comment 

00:37.28 Stud I need to draw the 

symmetric point to P 

with respect to A, so 

I assume that A is a 

bit like a line of 

symmetry, I would 

say, so... 

 Incoherent 

wording: A is an 

axis. 

Theoretical 

element: line 

symmetry.  

00:49.20 Stud Let's draw in another 

color. 

He draws a vertical 

segment through A.  

 

00:58.12 Stud So if it is symmetric it 

needs to be reflected 

on the other side 

exactly as it is. 

He moves the hand, 

mimicking a rotation: 

 

 

Window gesture 

01:04.07 Stud Theoretically. So 

more or less here. 

More or less. 

He draws Q: 

 
Drawing 1a 

The drawing is 

coherent with a 

line symmetry 

with a vertical 

axis.  

01:13.15 Int Ok. Imagine moving 

point P and make a 

prediction. 

  

01:21.19 Stud Ok.   

01:22.29 Int What happens to the 

configuration? 

  



 310 

01:29.05 Stud I move point P in any 

direction, then in the 

case that I move it 

closer to the line of 

symmetry, then also 

point Q would  get 

closer. 

While he is talking, he 

uses two fingers as if he 

is holding something 

and he moves the hand 

as follows: 

 

GP_1_(0) 

(discursive – 

gestural):  

P is closer to the 

axis, Q is closer as 

well  

GP_1 is coherent 

with the line 

symmetry. 

01:38.06 Stud If I moved it 

upwards point Q 

would go along the 

same trajectory, the 

same movement. 

“upwards”: 

 

GP_2_(2) 

(discursive): P is 

moved upward, 

Q follows the 

same path  

01:44.07 Int Mm mm.   

01:46.09 Int Imagine moving 

point P along a line. 

  

01:49.27 Stud  He looks at the drawing.   

01:50.05 Int And make a 

prediction. What 

happens to the 

configuration? 

  

01:59.00 Stud Imagine moving it 

along a line...can I 

draw anyway? 

  

02:02.20 Int Of course, whatever 

you think is useful. 

  

02:08.14 Stud I imagine that this is 

the line, I translate, 

say, point P, with 

respect to the line I 

bring it here, I call it 

P prime. 

He draws a line and a 

point P on this line: P’.  

 

02:21.27 Stud I do the same 

procedure basically 

also with on this 

point Q. 

He draws a line that is 

symmetric with respect 

to the sketched axis. 

 

02:34.22 Stud I obtain the same 

movement. Let's say 

it could look like a 

trapezoid, but if I 

connect all the 

points. 

He draws  the 

symmetric point Q’:  

GP_3_(0) 

(discursive): Q on 

a line that is 

symmetric to the 

axis through A 
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Drawing 1b 

At the beginning of the excerpt, Giulio is performing the first drawing. We notice 

that he interprets the theoretical constraint “Q is the symmetric point of P with respect 

to A” as if A is on a line that plays the role of an axis of symmetry. The utterance 

(time 00:37) and the window gesture (time 00:58) suggest this inference, which is 

confirmed by Drawing 1a. We notice that the drawing is incoherent with respect to 

a point symmetry centered at A.  

After the solver has sketched the situation, the interviewer asks for a prediction. 

The process of GP is quickly accomplished, and the solver communicates a product 

of GP that is coherent with the constraints that he is considering (the line 

symmetry), but incoherent with the given ones. GP_2 also shows the same features 

of GP_1. Even if the products of GP are more referred to the figural elements of the 

configuration than to the theoretical ones, they are carefully described by the 

solver.  

The second question of the interviewer triggers a new GP process, that finishes 

with the communication of GP_3. This is a detailed product of GP, but it is 

incoherent according to the point symmetry. The drawing is carefully sketched out 

as the previous ones and it reveals a good control over the figure. 

For the sake of brevity, we include only the excerpt that contains the first three 

processes of GP. The fourth one shows the same characteristics of the previous 

ones, so it is not so interesting for the aims of this section. All the prediction 

processes undertaken by Giulio are characterized by strong theoretical control 

over the figure; consequently, the products of GP are coherent with line symmetry 

but incoherent with respect to the given constraint (the point symmetry); the 

processes of GP have a dynamic dimension that is evident looking at all the 

solver’s productions.   

This is the case of strong theoretical control that is applied to the configuration 

using an incoherent theoretical constraint, which is induced by the solver and not 

by the step-by-step construction. In this case as well, the figural components of the 

particular configuration sketched out in the drawing seems to affect the prediction 

process: the axis of symmetry seems to dominate the process. 
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The third example is from Sabrina’s interview: Sabrina_G9_T6_P1_(00:00 – 03:21). 

Here we can observe another reason for the paradox: the interference between two 

different theoretical elements.  

Time Who What is said What is done Comment 

00:00.17 Int Read and perform 

the following step-

by-step 

construction. 

  

00:05.16 Stud Mm...ok. She is looking at the 

step-by-step 

construction.  

 

00:11.26 Stud So...I draw any two 

points. 

She draws two points.  

00:14.20 Int Yes.    

00:15.00 Stud On...the piece of 

paper. Not 

necessarily 

horizontal or 

vertical. 

  

00:20.17 Stud And then I draw the 

symmetric point, so 

there are A...and P. 

She labels the points A 

and P. 

 

00:26.19 Stud I draw the 

symmetric point to 

P with respect to A 

and so I call it...with 

respect to A I take it 

like an axis let's say. 

She moves the pen on a 

straight path, neither 

horizontal nor vertical:  

 

Incoherent 

wording: A is an 

axis. She seems to 

consider an axis of 

symmetry that is 

not reported in the 

step-by-step 

construction. 

00:35.07 Stud Ehm...symmetric, 

so I draw it higher 

at the same 

distance and I call it 

Q. 

 
Drawing 1a 

 

00:40.16 Int Ok. Imagine 

moving point P and 

make a prediction. 

  

00:47.00 Stud Ok.   

00:48.05 Int What happens to 

the configuration? 
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00:50.13 Stud That...it will move 

like a mirror. So if I 

move P upwards, 

also Q moves 

upwards. And...the 

same if I move it 

downwards. 

She points at P and 

moves the pen upwards 

on a vertical line:  

 

GP_1_(2) 

(discursive): P on a 

vertical line, Q on 

a vertical line 

GP_1 is not 

coherent neither 

with a point 

symmetry nor to an 

axis symmetry with 

the axis expressed 

at (00:26).  

It is coherent with a 

line symmetry with 

a vertical axis.  

01:01.21 Int Ok. Imagine 

moving point P 

along a line and 

make a prediction. 

What happens to 

the configuration? 

  

01:10.17 Stud If I take like a line 

for example...one 

that goes like this. 

She traces a line neither 

horizontal nor vertical 

through P.  

 

01:17.27 Stud I imagine that also 

point Q then would 

move in the same 

way on a same line, 

but moved, indeed, 

to the other side 

with respect to A. 
 

Window gesture 

01:27.17 Int How?   

01:28.25 Stud In the same way. If I 

move P I move it 

upwards, so I 

always have a 

line...parallel to the 

first. 

She draws a line 

through Q.  

 

01:37.27 Stud If I move P in this 

direction, also Q 

will move in this 

direction. 

She draws two arrows 

on the lines:  

GP_2_(0) 

(discursive): Q on a 

line that is parallel 

to the line through 

P and traced in the 

same direction  

GP_2 is coherent 

with a line 

symmetry with an 
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Drawing 1b 

axis parallel to the 

line through P.  

01:44.25 Int Ok. Imagine 

moving A along a 

line. 

  

01:49.01 Int And make a 

prediction: what 

happens to the 

configuration? 

  

01:54.17 Stud That depending on 

where I move it, 

also the other two 

points will move. 

  

01:59.27 Int How?   

02:01.19 Stud Ehm...if I move A 

towards P also the 

distance, so 

diminishing the 

distance, also the 

distance between A 

and Q will get 

shorter. 

 Theoretical answer  

02:12.00 Int Ok. If instead you 

move A along 

another type of 

line? 

  

02:18.05 Stud Mmm...I think that 

the other two 

points will not 

move. 

  

02:22.01 Stud If...   

02:22.09 Int Mm mm.   

02:22.27 Stud ...the line is 

parallel, that is if 

the line is like like 

this. 

She draws a line parallel 

to the other two:  

GP_3_(0) 

(discursive): A on a 

line, Q and P fixed  

 

GP_3 is coherent 

with a line 

symmetry. The axis 
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Drawing 1c 

is drawn in the 

picture.  

 

02:26.21 Int Mm mm.   

02:28.19 Stud So I move it only 

horizontally, I 

think that the other 

two points will not 

move. 

  

  Int Imagine moving P 

along a circle and 

make a prediction. 

What will happen 

to the 

configuration? 

  

02:44.26 Stud That whenever I 

move it close A 

also... that is 

shortening 

therefore the 

distance, also Q will 

shorten its distance 

from A. 

 Theoretical answer 

02:52.16 Stud And...the Q will 

move in the same 

way. 

She moves the finger 

tracing a circle under 

the desk: 

 

Window gesture 

 

02:56.16 Int Ok. P moves along a 

circle, how do you 

imagine moving it? 

  

03:01.00 Stud In...the 

counterclockwise 

direction. 

She draws a circle 

through P.  
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03:05.11 Int And what happens 

to the 

configuration? 

  

03:07.18 Stud That...it changes, it 

changes. Also Q... 

  

03:10.18 Int How. Mm.   

03:11.28 Stud ...it moves in the 

same way. 

  

03:14.04 Int How?   

03:14.16 Stud But...always in the 

counterclockwise 

direction, but 

downwards. 

She draws the path of Q:  

 
Drawing 1d 

 

03:19.04 Stud This one upwards 

and the other 

downwards. 

 GP_4_(0) 

(discursive): P on a 

circle, Q on a circle 

traced in the same 

direction 

GP_4 is coherent 

with the point 

symmetry. 

03:21.17 Int Ok.   

The excerpt shows the whole first part of Sabrina’s interview. From the beginning, 

the solver seems to introduce an implicit axis of symmetry. Indeed, at time 00:26, 

Sabrina exhibits the same interpretation of Giulio: she refers to A as an axis. We 

know that the wording is incoherent within the TEG, but the utterance suggests 

that Sabrina is considering a line through A as an axis of symmetry. Unlike Giulio’s 

first drawing, Sabrina’s Drawing 1a is not completely incoherent with point 

symmetry; on the contrary, it is potentially coherent with both the symmetries (the 

point and the line symmetry). 

The first question of the interviewer triggers a process of GP whose product reveals 

another axis of symmetry: GP_1 is coherent with a line symmetry with a vertical 

axis. 

At time 01:01, the interviewer asks another question that requires imagining a 

motion of P on a line. First, the solver considers and draws a line through P neither 

horizontal nor vertical. Then, the gesture and the utterance refer to a parallel line 
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through Q. Actually, Sabrina does not explicitly talk about the parallelism, but the 

expression “a same line” and the window gesture suggest this interpretation. This 

is confirmed by the solver’s answer to the interviewer’s request for further 

explanation. At time 01:28, Sabrina explicitly refers to a parallel line. Moreover, at 

time 01:37, she explains that the two points move on the two lines following the 

same direction; Drawing 1b marks this property. In particular, this last detail 

reveals that the solver is considering a line symmetry and that the axis is the first 

line that she has performed through gestures at time 00:26. Nevertheless, GP_2 is 

incoherent with the given constraint: the line can be parallel, but the two points 

should move in opposite directions.  

GP_3 is also coherent with a line symmetry and incoherent with respect to the 

given constraint. Indeed, while A is moving along a line, P and Q are considered 

to be fixed. Finally, the solver makes explicit the implicit axis, that we can see 

looking at Drawing 1c. We stress that Sabrina uses strong theoretical control over 

the figure, but addressed towards an incoherent theoretical element. We can say 

that Sabrina’s theoretical control is coherent to the theory that she has chosen.  

The last process of GP is in sharp contrast with the previous ones. Indeed, GP_4 is 

coherent only  with point symmetry, because Sabrina says that P and Q are on two 

circles and they move in the same direction. The arrows within the drawing also 

stress this property.  

As mentioned at the beginning of this section, Sabrina’s interview provides an 

example of the interference between different theoretical elements that the solver 

tries to use: line symmetry with a vertical axis, line symmetry with a non-

horizontal and non-vertical axis, point symmetry. The theoretical control is always 

coherent with a different theoretical constraint and consequently the products of 

GP are incoherent. During the production of GP_1, GP_2 and GP_3 it seems that 

the solver uses a different axis according to her aims. Only GP_4 is coherent, very 

detailed and carefully reported within the drawing. However, the solver does not 

seem to be aware of the inconsistency among her products of GP.  

8.2.5 Concluding remarks about the possible obstacles 

Analyzing the approaches of the solvers of our sample to the given open problems, 

we have found that both general and local obstacles inhibit the solvers in 

accomplishing processes of leading to coherent products.  

Figural elements play an important role within GP processes. When the figural 

elements dominate the exploration, the configuration can be considered as 
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composed of sub-configurations that do not mirror all the given or induced 

theoretical constraints. For example, this is the case of the triangle and the segment 

in Task 2. This can be interpreted as a lack of harmony between the theoretical and 

the figural elements of the given configuration.  

Moreover, when the solvers mainly use bottom-up processes, the drawing can 

induce the solvers to consider theoretical elements that are not coherent with the 

constraints given in the step-by-step construction. In this case, we can observe a 

phenomenon that we have called “devolution to the drawing”. After the step-by-step 

construction is performed, the solver induces on the configuration theoretical 

elements that are suggested by the particular drawing rather than deduced by the 

given theoretical constraints. Moreover, the theoretical elements inferred by the 

drawing can be in sharp contrast with the given constraints. In this case, the figural 

elements that are observed looking at the drawing can suggest to solvers 

incoherent theoretical elements that influence the prediction process.  

We have widely discussed the role of theoretical elements within the prediction 

process, in particular if they are introduced by the solver for the first time. One 

example is provided by the incoherent right triangle considered by Carlo and Ilaria 

during the resolution of Task 2. Moreover, the resolution of Task 5 provides a good 

example of the consequence of considering an incoherent theoretical element 

applied to a specific figural element. As long as the solvers of our sample do not 

refer to CM as a height of the triangle, they have trouble in reaching a product of 

GP or a coherent one. Not all the solvers were able to overcome by themselves this 

difficulty, as Sergio did.  

The use of coherent theoretical constraints seems to be directly connected to the 

solvers’ theoretical control over the figure. The lack of theoretical control is a 

crucial obstacle to reach a coherent product of GP. One of the reasons lies in the 

difficulties in managing a particular theoretical element, without which the solver 

cannot reach a coherent prediction. However, we also observe a paradoxical 

situation: strong theoretical control over the figure coupled with several 

incoherent products of GP. We have seen that in this case the reason seems to lie 

in the initial choice of an incoherent theoretical constraint coupled with a lack of 

solver’s awareness of the mistake; otherwise, it can be caused by a sort of 

interference between two theoretical elements that the solvers use independently.  

During the resolution of simple tasks, like Task 6, the role of the theoretical control 

is reduced to a careful identification or interpretation of the theoretical elements 

given by the step-by-step construction. Instead, the resolution of a more articulated 
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task, like Task 2, requires more advanced theoretical control. Indeed, the solver 

must not only consider the given theoretical elements coherently, but she must also 

infer the theoretical elements that are induced by the given constraints, and finally 

control their mutual interaction.  

Another obstacle can be an extremely rigid manipulation of the configuration. The 

reason for such a fixedness could lie in an inaccurate interpretation of the given 

constraints or on an incoherent deduction of the constraints induced by the given 

ones. The effect is the impossibility of considering other possible arrangements of 

the configuration. Carlo’s resolution of Task 4 provides an extreme example of the 

effects of the fixedness.  

The influence of a stereotyped image of a geometrical figure within the problem-

solving process is widely documented in the literature. The prototype effect seems 

to also play a role during the process of GP: it seems to inhibit the solver's 

considering properly the given constraints and exploring different arrangements 

of the configuration. When the prototype effect is strongly dominant, it seems to 

influence the alternative arrangements that the solvers are willing to consider. 

In some cases, the lack of dynamic dimension and the prototype effect seem to be 

a natural and persistent phenomenon. Indeed, also in cases like the resolution of 

Task 6 where motion is required for explicit, the solvers can manifest a static 

approach to the task; even when the given drawing does not propose, by design, 

a stereotyped image of a geometric figure (like that one used in Task 4) the solver 

can resort to a prototypical orientation. 
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9. Exploration within a DGE 
As we approached this study initially, we had wished to analyze what happens 

when a solver who has undertaken GP processes in a paper-and-pencil 

environment moves to a Dynamic Geometry Environment (DGE). This choice was 

supported by several arguments that we list below. 

- Since the dynamic figure is available on the screen to both the user and the 

interviewer, a DGE seems to be a good environment for observing more 

transparently how the solver intends to change the configuration. So, we 

could use the DGE to confirm or reject our inferences about the products of 

GP that was communicated during the first part of the interview.  

- A dynamic figure maintains all the constraints that were used for 

constructing the figure on the screen, even when the solver drags a point. 

Now, let us consider the case when the solvers undertake a process of GP 

during the first part of the interview that lead us to an incoherent product 

of GP; if they try to drag a point of the dynamic figure according to their 

incoherent prediction, the feedback of the DGE may be in sharp contrast 

with the expected final figure. We advanced the hypothesis that this 

possible mismatch between the solver's figural expectations and the actual 

behavior of the dynamic figure may elicit some surprise. In turn, such a 

surprise can have a twofold effect: trigger new GP processes or a new 

resolution process; reveal to the researcher additional or different details of 

the previously communicated products of GP.  

- Since literature has widely highlighted the important role of a DGE within 

the exploration tasks in geometry, we wanted to observe whether the 

interaction with a dynamic figure, which corresponds to the configuration 

that the solvers have reasoned upon during the first part of the interview, 

supports the resolution process, in particular of those solvers who had 

trouble in communicating a coherent product of GP or a product of GP at 

all. In other words, we wanted to gain insight into whether the use of a DGE 

leads to overcoming obstacles that the solvers may find in the paper and 

pencil resolution of the given task.  

These arguments could potentially be additional lines of research. However, 

because of the limited amount of time that could be devoted to this doctoral study, 

we were not able to investigate them adequately.  
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9.1 Some general findings from the second part of the 

interviews 

In this perspective the interaction between solvers and the dynamic figure was 

only used to support our inferences about the products of GP that was 

communicated during the first part of the interview, rather than for a separate 

discussion. Nevertheless, we have collected some general findings, each of which 

would need deeper analyses.  

Overviews of the main findings are listed below: 

- the products of GP communicated during the first part of the interview have 

an influence on the exploration of the dynamic figure; 

- the surprise, generated by the unexpected behavior of the dynamic figure, 

can lead the solvers to a new insight into the problem and trigger a new 

resolution process.  

9.1.1 The products of GP affect the dynamic exploration  

When a solver, who had reasoned upon a given figure in a paper-and-pencil 

environment undertaking GP processes, moves to a DGE the products of GP 

previously communicated can drive the exploration supporting or inhibiting the 

reaching of new insight into the problem.  

More specifically, the products of GP can drive the exploration, suggesting 

particular movements or positions of the points.  

A first example is provided by Emilio’s interview during the resolution of Task 2. 

As reported in Section 6.5.1, during the first part of the interview, Emilio suddenly 

communicates two products of GP:  

GP_1: the locus of M is a circle centered at B 

GP_2: the locus of P is a circle 

Finally, he reported GP_1 on a drawing (Figure 49). 
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Then he moves to the resolution of the same task in a DGE. We can notice that, 

during the solver’s interaction with the dynamic figure, he makes use of 

maintaining dragging (MD) in order to maintain d=3 in different ways: at the 

beginning he moves by jumps; then his movements become more fluid. Moreover, 

he passes through positions that do not maintain the label “d=3” but only the 

general shape of the locus of P previously predicted: a circle. We interpret this 

change in movement as an intervention of GP_2: he starts with his prediction of 

the trajectory of P and drags P according to this prediction. Emilio continues the 

exploration, constructively interpreting the feedback provided by the DGE to 

refine the products of GP. In particular, GP_1 is no longer discussed, to the extent 

that he draws a circle on the dynamic figure (see the small circle in Figure 50); GP_2 

is enriched by the investigation of the center and the radius of the circle. In the end, 

Emilio produces the following dynamic figure (Figure 50), where he also points at 

the center of the circle of P.  

 

Other examples like this show solvers’ constructive interactions with the DGE, 

using the feedback to confirm and refine their products of GP. In all cases, the 

Figure 49 A picture of Drawing 3 performed by Emilio at the end of the resolution of the 

first part of Task 2 

Figure 50 A screen capture of Emilio’s exploration of the dynamic figure 
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solver’s use of MD for imposing certain properties suggests the influence of a 

previously communicated product of GP.  

In some cases, the interaction with the dynamic figure leads the solvers not only 

to refine their product of GP but also to reach a new insight into the resolution of 

the task. Let us consider an example from the resolution of Task 5. It is from 

Agnese’s interview. Excerpts from the first part are reported in Section 6.3.2. 

During the paper and pencil resolution of the problem, Agnese communicates two 

products of GP:  

GP_1: CM could be congruent to CB 

GP_2: CMB is an isosceles triangle 

When she moves to the DGE exploration, on the screen she finds only the segment 

AB. Then, she directly constructs C as the vertex of an isosceles triangle (CMB) (see 

Figure 51). We interpret this as an influence of GP_2.  

 

The following excerpt shows what happens in the subsequent exploration: 

Agnese_MS_T5_P2_(13:19 – 13:35).  

Time Who What is said What is done Comment 

13:19.15 Int Are there other 

positions for 

point C so that 

CM is 

congruent to 

CB other than 

this one that I 

see? 

  

13:26.15 Stud Mmm.   

13:29.20 Stud Those along 

...aaaah… 

Starting from the initial 

position of C, she drags C on a 

vertical trajectory and then she 

stops:  

Maintaining 

Dragging 

Figure 51 A screen capture of the dynamic figure constructed by Agnese during the 

resolution of Task 5 
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13:35.16 Stud The height of 

the triangle 

C...MB. That is 

also median 

and bisector. 

 SGP_1: C is on 

the height of the 

triangle CMB 

Theorem on the 

height of an 

isosceles triangle. 

At time 13:29, Agnese moves C along a particular path, making use of MD, 

probably for maintaining the triangle isosceles. We recognize in her utterance at 

time 13:35 a product of GP suggested by the interaction with the dynamic figure. 

This product emerges from the interaction between GP processes and the feedback 

from the DGE, so we labeled this product SGP, intending a product of a “scaffolded 

GP”9. In the end, for making explicit the locus of C, she constructs a line 

perpendicular to MB and passing through the midpoint of MB. 

 

In examples like this, we can notice how the feedback from the DGE constructively 

interpreted by the solvers can lead them to reach a new solution to the given 

problem.   

More specifically, analyzing the first part of the interview, we advance the 

hypothesis that the lack of dynamism restricts the possibilities that Agnese is 

willing to explore, impeding her to undertake further GP processes. Instead, the 

exploration within the DGE seems to make Agnese accept to dynamically 

transform the figure and, consequently, discover additional theoretical and figural 

details.  

 
9 Because of the possibility of having an immediate figural feedback from the DGE,  we cannot 

properly talk about products of GP in a DGE referring to the outcome of the same process that leads 

to a product of GP in a paper-and-pencil environment.  

Figure 52 A n instance of the dynamic figure constructed by Agnese during the resolution 

of Task 5 
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However, the positions or movements of the points suggested by the previously 

communicated products of GP can also inhibit reaching another or more detailed 

solution, and in general the dynamic exploration. Indeed, the solvers might be so 

convinced about their predictions that: 

- they are not willing to explore other configurations; 

- they seem to be “blinded” to the contradictory feedbacks provided by the 

DGE.  

Let us consider two examples which respectively address the first and the second 

point.  

The first example is from Lidia’s interview during the resolution of Task 4. During 

the resolution of the first part of the task, Lidia explicitly refers to CM as a height 

of the triangle and states that CM cannot be congruent to CB. She supports her 

claim adding the following explanations: 

Lidia:  No, because even if I ...made the segment CM longer, it would not be...equal 

to... 

Lidia:  So if I had a right triangle, any leg would be of a different size with respect 

to the  hypothenuse. 

  

In Section 8.2 we have already discussed how conceiving CM as a height could 

inhibit prediction processes that lead to a coherent product of GP. We infer from 

the gesture and the drawing (Figure 53) that Lidia is investigating a possible 

position of C on a line perpendicular to AB; then, she concludes that CM cannot be 

equal to CB. The impossibility of having CM congruent to CB and the conception 

of CM as a height seem so convincing for her that they also affect the exploration 

of the dynamic figure. Indeed, when Lidia moves to the DGE, she constructs a 

dynamic figure corresponding exactly to the figure she was reasoning upon in the 

paper-and-pencil environment (Figure 54).  

Figure 53 A window gesture and a dragging performed by Lidia during the resolution of 

Task 4 in a paper-and-pencil environment 
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Starting from this configuration, she drags C only along a vertical trajectory. When 

she stops dragging, she repeats that CM cannot be congruent to CB and adds the 

following explanation: 

Lidia:  Because in any case C...CM will never be equal to CB. So I could not, I 

could not exchange them in the sense that ...I could never put CB in place 

of CM, because the height remains the height and the side is always side. 

We can notice how an incoherent convincing prediction on a figure can affect the 

exploration in a DGE to the extent that the solver does not try to move the points 

following trajectories different from the one she has predicted: Lidia is so 

convinced about her prediction that continues moving C only on the height of the 

triangle.  

The second example is from Valeria’s interview during the resolution of Task 2. 

The example shows a phenomenon that we addressed in a paper (Miragliotta & 

Baccaglini-Frank, 2018). We had advanced the hypotheses that when an incoherent 

product of GP is very convincing for the solver, it does not allow her to generate 

and interpret constructively the feedbacks from the DGE to the extent that the 

solver appears to be “blinded” by her original prediction.  

More specifically, during the first part of the interview, Valeria claims that P is 

fixed and adds the following explanations:  

Valeria:  Because for...from what I remember, through three points only one line 

passes, so first of all I could not do it. 

Valeria:   But, even if I moved it, even a little bit, it would change in any case because 

the midpoint would be different, because the length would be different from 

my segment [AP] and therefore it could never be equal [to MB].  

When she moves to the DGE, the strength of her prediction seems to inhibit her 

ability to constructively interpret the feedback obtained from the DGE. Indeed, 

Figure 54 An instance of the dynamic figure constructed by Lidia during the resolution of 

Task 4 
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when Valeria is asked to explore the dynamic figure, at first, she drags P passing 

through position very close to the initial position of P (Figure 55); she states that 

her expectations are confirmed because moving P the length of MB changes.  

 

Then the interviewer asks for further explorations. She starts moving P 

maintaining d=3 and passes through almost two positions of P that maintain the 

constraint on MB and are different from the given one (see Figure 56).  

 

Although these two positions are visible on the screen, Valeria ignores them and 

repeats that P has to be fixed at its initial position. Because of her original 

prediction, Valeria does not seem to be able to see any “good positions” for P other 

than the original configuration. 

9.1.2 The role of surprise 

In all the examples shown previously, we do not find any instances of surprise. 

When the products of GP are coherent it is quite obvious: when the solver drags a 

point, the figure behaves as she is predicted because actually the product of 

prediction is close to the proper behavior of the figure under dragging. When the 

products of GP are incoherent, the lack of solver’s surprise is quite unexpected; 

nevertheless, it can be explained considering that the solvers add reasonable (at 

least for them) explanations that confer to the product of GP a sense of confidence 

and certainty.  

Figure 55 An instance of the initial dynamic figure (on the left) and of the dynamic figure 

after dragging (on the right)  

Figure 56 Two instances of the dynamic figure while point P is dragging (on the left and 

in the central position); an instance of the final dynamic figure after dragging (on the 

right)  
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This is confirmed by another observation: when the products of GP communicated 

during the first part of the interview are quite fuzzy and, moving to a DGE, the 

solvers see behaviors of the dynamic figure in contradiction with the expected one, 

they can be quite surprised. Utterances which communicate instances of surprise 

are the following: 

- <<Oh my Goodness! What had I thought?!>>  

- <<What is this?!>> 

- <<I thought that…>> 

- <<I take back everything I said>> 

- <<It doesn't move…why not?>> 

- <<No!>> or <<Noooooo!>> 

- <<Oh no!>> 

- <<Ah!>> or <<Aaaaaah!>> 

The tone of the voice suggests that certain verbal expressions are instances of 

surprise. Moreover, often the solvers were laughing when they see behaviors of 

the dynamic figure in contradiction of their expectation: in this reaction we also 

recognize an instance of surprise.  

For the sake of clarity, we will show two examples of reactions of surprise.  

The first example is from Carolina’s interview during the resolution of Task 2. As 

presented and discussed in Section 7.1.2, during the first part of the interview, 

Carolina communicates a product of GP on P: 

GP_4: P symmetric point with respect to A 

This is accompanied by a window gesture (Figure 57) that shows where she was 

intending to place P.   

 

When she moves to the DGE, she drags P to a particular position, where probably 

she was expecting that the configuration maintains the constrains on the length of 

MB. Here is an excerpt from the second part of the interview: Carolina_9G_T2_P2. 

Figure 57 A window gesture of Carolina’s performed during the resolution of Task 2 and 

connected to GP_4 
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Time Who What is said What is done Comment 

12:14.02 Stud Nooo... She moves P to the half-plane 

below AB and towards to A.  

She drags P using small 

movements for finding d=3.  

 
Then she moves P along the 

lower edge of the screen; 

finally, she moves P on a line 

through AM. 

Guided Dragging 

Surprise 

It seems that, when 

she drags P to a 

symmetric position 

with respect to A, 

she was expecting to 

see on the screen 

d=3.  

Looking at the gesture and at the screen-capture of the dynamic figure, we can 

notice that Carolina tries reproducing the predicted configuration. When the 

configuration that was obtained dragging P in that position appears on the screen, 

Carolina seems surprised. From this moment on, Carolina undertakes a new 

exploration of the figure and a new resolution process. The feedback of the DGE 

allows her to communicate several positions of P which maintain the constrains on 

the length of MB and to conjecture that the locus of P could be a circle.  

Another example is from Carlo’s interview during the resolution of Task 4. The 

excerpt Carlo_G10_T4_P1_(00:58 – 03:47) was already shown in Section 8.2.2. As 

previously discussed, Carlo seems to interpret the given constraints too rigidly: 

the fixedness of the length of AB could have induced the fixedness of the whole 

triangle.  

During the first part of the interview, Carlo communicates mainly these two 

products of GP: 

GP_2: C is fixed 

GP_3: C on a vertical line [perpendicular to AB] 

In the end, he restores to GP_2 which is regarded as the only possible prediction.  

The following excerpt starts at the beginning of the exploration within the DGE: 

Carlo_G10_T4_P2_(04:04 – 04:17). 

Time Who What is said What is done Comment 

04:04.12 Stud Aaah! He drags C upwards 

passing through 

positions very close to 

the initial one.  

Surprise: he sees 

new positions of C so 

that the angle is 

right.  
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04:07.24 Stud There are two 

points. 

He drags C passing 

through positions 

very close to the initial 

one. 

 

Guided Dragging 

04:11.24 Stud  He quickly drags C on 

the half-plane below 

AB. 

Guided Dragging 

04:17.13 Stud The opposite is 

true. 

He drags C on the 

half-plane below AB 

and he stops when the 

following figure 

appears on the screen:  

 

Guided Dragging  

Although the label is 

different from “90°”, 

he recognizes a 

“good position” of C.  

Surprise:  

he is observing new 

positions of C so that 

the angle is right.  

Right after he has dragged C, exploring positions that are very close to the initial 

one, Carlo seems to be surprised because of the behavior of the dynamic figure. 

Looking at the rest of the excerpt, we can see that the surprise triggers a new 

resolution process: Carlo starts using guided dragging for obtaining new positions 

that leave the angle right. At time 04:17 he seems surprised again because he finds 

also a symmetric position of C with respect to AB.  

Starting from this moment, he further explores the dynamic figure moving C on a 

circular trajectory and making use of MD for maintaining the angle right. After the 

exploration, he concludes that C is on a circle: 

Carlo:  A circle will form...with all the triangle...with the inscribed segment. 

Moreover, he shows the circle performing a gesture on the screen (Figure 58).  

 

Figure 58 A gesture performed by Carlo for communicating the locus of C during the 

resolution of Task 4 
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At the end of the interview, when the researcher asks again “What can you say about 

the vertex with the right angle?”, Carlo answers as follows: 

Carlo:  They can move and make it so it stays...so that its angle is right infinitely 

many ...at infinitely many points...that make a circle. Whose diameter is AB. 

We can notice how many differences there are between Carlo’s initial prediction 

(C is fixed or on a line) and his last answer. Moreover, the interaction with the DGE 

strongly influences the last answer. Finally, we can claim that what triggered a 

new resolution process was actually the surprise, possibly coupled with products 

of GP that were not so clear or convincing for the solver. 

9.2 Concluding remarks 

In sum, we can say that our hypothesis on the conditions that could induce 

surprise is not totally confirmed. We had advanced the hypothesis that when a 

solver, who has accomplished GP processes in a paper-and-pencil environment, 

moves to the exploration within a DGE, the behavior of the dynamic figure that is 

in contradiction with her products of GP should make her surprised. However, we 

have noticed that, even if a solver has communicated incoherent products of GP 

and the researcher sees on the screen a mismatch between the solvers’ products of 

GP and the actual behavior of the dynamic figure under dragging, the solver may 

not perceive such a mismatch in the way the researcher does. Consequently, the 

solver might not be surprised. So, it seems that what triggers surprise is how 

convinced the solvers are about their product of GP, rather than the incoherence 

of the products themselves.  

However, when the solvers are surprised because of the feedback from the DGE, 

such surprise triggers new exploration and resolution processes that can lead the 

solvers to reach a coherent solution to the problem.  

Our general analyses of the second part of the interview reveal that the DGE can 

play an important a role in supporting the resolution process of those solvers who 

had trouble in reaching a coherent solution to the problem in the paper-and-pencil 

setting. In particular, it seems that the exploration of the task within the DGE helps 

solvers in considering motions in their investigations. 

Nevertheless, from an educational point of view, it is interesting to notice that the 

products of the GP processes have a strong influence on the interaction with the 

DGE. These products can guide solvers along particular trajectories to be 

investigated and can influence the interpretation of the DGE’s feedback. More 
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specifically, if the products are coherent, the dynamic exploration allows the 

solvers to refine and add details to their products of GP; if the products are 

incoherent but quite convincing for the solver, the dynamic exploration can be 

ineffective for changing the solver’s mind.  

We referred to the latter phenomenon as “the power of GP” (Miragliotta & 

Baccaglini-Frank, 2018): the products of GP, and in particular in the case of 

incoherent products of GP, can drive the solver to see on the screen only what they 

have predicted and are, therefore, prepared to see.  

This phenomenon is consistent with the overconfidence described by Fischbein 

(1987):  

As a matter of fact even after a certain decision is taken one frequently tends to be 

overconfident about the conclusion reached and to overlook possible counter-

arguments. The need for verification usually is less honored than it should be.  (ibid., 

p. 28) 

The overconfidence leads the solvers to ignore or minimize the significance of 

possible counter arguments, manifesting “a bias to confirm” (ibid., p. 36).  

On the contrary, “the power of GP” seems not to be coherent with the 

transformational-saliency hypothesis (Battista, 2007) and we suggest addressing it in 

future research.  
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10. Findings, discussion, conclusions 
In this concluding chapter, we will explicitly describe the model of geometric 

prediction processes and explain how it leads to significant findings concerning the 

research questions we had set out to investigate.  

The model provides a description of the prediction processes accomplished by a 

solver who engages in the resolution of prediction open problems proposed in this 

study. Moreover, it provides a lens through which it is possible to analyze solvers’ 

productions and gain further insight into the prediction processes. More 

specifically, it sheds light onto the role of theoretical elements introduced by the 

solvers.  

As mentioned in the description of the methodology, our findings have no 

statistical ambitions because of the limited number of cases analyzed. However, 

the fine-grained qualitative analyses that were carried out provided a richness in 

detail and depth which would not have otherwise been possible. Furthermore, 

many commonalities emerged during the analyses, outlining the features of the 

GP processes accomplished by a solver who was exposed for a long time to 

mathematical knowledge and, by virtue of this, is supposed to be expert. So, in a 

search for more general results, quantitative research can be fruitfully grounded 

upon our findings.  

After answering the research questions highlighting the theoretical contributions 

that this study offers, we contextualize our findings within the existing literature, 

and then we describe possible implications and directions for further research.  

10.1  Answers to the research questions 

In the following sections, we will provide answers to each of the questions 

concerning our findings described in Chapter 6, Chapter 7, Chapter 8 and Chapter 

9.  

All together these chapters answer to the research questions, providing both the 

elements useful for reaching a model of the GP processes and the description of 

the complex interaction between these elements emerging from data analyses.  

For the sake of brevity and completeness, we specify here that in the following we 

refer to findings that address our topic in the particular context we had 

constructed: geometric prediction processes accomplished by a solver who 
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engages in the resolution of the given prediction open problems during a task-based 

interview.   

10.1.1 How can these processes be modeled?  

Our analyses seem to confirm that there is not only one single process of prediction 

with certain fixed characteristics. More likely, there are several prediction 

processes that have in common the production of figural expectations.  

Nevertheless, our analyses (see Chapter 8) reveal that a GP process can be 

accomplished in coordination with other GP processes, giving rise to several 

structures of GPs. Indeed, during the resolution of a prediction open problem, the 

solvers can accomplish several processes of GP that can be explicitly connected or 

not, but all of them address the same issue: to give an answer to the interviewer’s 

question which requires a prediction, more or less explicitly.  

So, we can describe micro-processes of GP with general and stable components, but 

different features. The way in which the features are embedded into the model 

define a particular micro-process of GP. Although we have found instances of 

different GP processes, we can draw a common model of the micro-process. What 

makes the processes different are the ways through which the different 

components of the model interact (see the next sections), producing a particular 

micro-process of GP. We will show this below, with help of visual diagrams. 

Our model of GP has been elaborated within the particular domain of plane 

Euclidean Geometry; it maintains a strong relationship with this mathematical 

domain of reference. Each micro-process of geometric prediction is a complex 

process within which different cognitive components (visuo-spatial abilities and 

the solver's knowledge of the TEG) intervene, mirroring the dual nature of the 

objects that come into play: geometrical objects.  

Mirroring the dual nature of geometrical objects, we consider both the figural 

domain (Figure 59 on the right) and the theoretical domain (Figure 59 on the left).  

On the background there are (Figure 59): 

- the constructs developed by the Cognitive Psychology explaining 

interactions between an ideal solver and the spatial objects through her 

visuo-spatial abilities; 

- the scholarly Theory of Euclidean Geometry, as a logical system made up 

of definitions and theorems (these are known to an ideal expert solver).  
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However, a process of GP is accomplished by an actual solver. The solver: 

- makes use of some of her visuo-spatial abilities for manipulating the figural 

components of a geometrical object; 

- recalls her interpretation and use of the TEG, and therefore her personal 

figural concepts.  

So, in the foreground we find: 

- the manipulation of the figural elements on which the solver focuses during 

the resolution of a prediction open problem; 

- the specific theoretical elements recalled by the solver for exploring and 

solving the task. 

The manipulation is accomplished within the figural domain and could be 

supported by visuo-spatial abilities. The theoretical elements introduced by the 

solver are supported by her personal knowledge of and, more importantly, 

mastery in using the TEG. The GP process is at the interplay between pure 

manipulation of figural elements and pure recalling of theoretical elements. 

Below is a visual diagram summarizing the main components of the model of the 

micro-process of GP and their connections (Figure 60).  

Figure 59 A general overview of the process of GP within the conceptual and figural 

domains 
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The model is composed of the following: 

- theoretical elements, recalled by the solver through introduction of new 

elements or interpretation of the given ones; 

- figural elements, on which the solver focused, and which can be manipulated; 

- theoretical control, that supports figural manipulations that are coherent with 

respect to the solver’s TEG. 

- potentially but not necessarily, anticipatory intuitions. 

The arrows make explicit the connections between the elements and their possible 

features. Starting from the upper left side and following the blue arrows, we will 

describe the model.  

When the process starts, a geometrical configuration is interpreted by the solver, 

who recalls some theoretical elements that characterize certain figural elements. 

Through speech and gestures, the solver makes these elements explicit - we collect 

these in the funnel. The funnel is not properly a component of the model, but a 

research tool used to make explicit the elements that come into play. The funnel 

also serves the purpose of graphically showing the main elements in focus for the 

solver and within the model.  

The solver can also introduce new theoretical elements that characterize certain 

figural elements. Figural and theoretical components are always intertwined (see 

Figure 60 Visual diagram of the model of the micro-process of GP and its main elements  
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the red arrow). Anticipatory intuition may or may not intervene, suggesting to the 

solver an interesting combination of figural and theoretical elements; for this 

reason it is sketched within the funnel as an intersecting set with the sets of the 

figural and the theoretical elements.  

The solver can exercise upon the elements of the funnel (figural elements with 

theoretical properties) her theoretical control (see the blue arrow on the left). Using 

theoretical control the solver manipulates or decided to focus on particular figural 

elements (see the blue arrow on the right). In this way she obtains new figural 

elements that enter into the funnel or additional theoretical properties of the 

figural elements that enter into the funnel as theoretical elements. The cycle 

described can be repeated.  

Manipulation can be accomplished continuously or discretely, according to the 

integration of motion into the manipulation (see the blue arrow on the right). 

The process involves geometrical objects and figural concepts. Indeed, according 

to Fischbein (1993) the solvers can manipulate figural concepts: 

[…] usually in the process of mathematical invention we try, we experiment, we resort 

to analogies and inductive processes by manipulating not crude images or pure, 

formal axiomatic constraints, but figural concepts, images intrinsically controlled by 

concepts.(ibid., p. 160, italics in the original) 

Moreover, the author stresses that geometrical objects can be manipulated:  

the student has to learn to mentally manipulate geometrical objects by resorting 

simultaneously to operations with figures and to logical conditions and operations. 

(ibid., p. 158) 

A GP process does not produce either a pure theoretical or a pure figural object, 

but an object that is a composition of the two. We refer to the outcome of a GP 

process as a “product of GP”, intending in the Fischbein’s perspective the outcome 

of a manipulation of a geometrical object or a figural concept, strictly controlled by 

theoretical constraints. Manipulation of figural elements that possess certain 

properties defined by the corresponding theoretical elements, coordinated by the 

solver’s theoretical control, leads to the product of GP. A product of GP is actually 

a new solver’s geometrical object, intending an object with figural and theoretical 

components that are coherent according to the solver’s TEG. At the end of the 

prediction process, the solver has gained new insights into the initial geometric 

configuration and therefore she has constructed a geometrical object with new 

figural and theoretical elements. Such a geometrical object can be coherent or 
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incoherent with respect to the given constraints within the TEG. This object can be 

drawn or only mentally controlled, according to the theoretical control that the 

solver can exercise. 

The manipulation is always controlled by the solver’s theoretical control, more or 

less coherently with the given constraints.  During the process the solver can 

interact with drawings using a bottom-up or top-down approach or an alternative 

combination of them.  

The coherence of the manipulations that a solver can accomplish on a geometrical 

configuration is determined according to the compliance with the theoretical 

constraints (i.e. the theoretical elements) that belong to the TEG. When the solver 

is not able to exercise a good theoretical control over the figure, the coordination 

between the figural and the theoretical elements fails, and the solver restores to 

only one of the two domains: the figural or the theoretical. In this case, the products 

of GP are vague, incoherent or not reachable at all.  

Drawings, speech and gestures are heuristic aids for the solver and they can be 

considered actualizations of the process that communicate features of the process 

and of its product.  

Speech and gestures are not connected with a particular component of the model 

because they intervene during all the process. 

According to the interaction between the components of the model, we have 

several kinds of GP processes. For example, we can observe: 

- GP processes with a dynamic approach, i.e. with a continuous manipulation 

of the figural elements; 

- GP processes carried out through a static approach, i.e. with a discrete 

manipulation of the figural elements; 

- GP processes in which anticipatory intuitions intervene; 

- GP processes mainly guided by top-down processes; 

- GP processes mainly guided by bottom-up processes. 

Using our model as a tool for analysis, we can gain a deeper insight into the 

connections between the main components of the model. We will provide an 

example of how the model can be used as a tool for analyzing solver’s processes of 

GP in Section 10.1.3.  



 341 

When the process of GP has terminated, the product may or may not enter into 

another process of GP and the products may be connected.  

We have widely discussed the connections between processes of GP (see Chapter 

8). Now we can say that the solver may accomplish one single or more than one 

process of GP according to the complexity of the task, the control that the solver 

exercises on the coherence of the product of GP, the solver's awareness of the 

completeness of the products with respect to the question proposed into the task.  

We have found that within the resolution of the same task, the processes of GP can 

be organized into more complex structures. So, it seems that the micro-processes 

of GP can be combined into a larger process: Macro-process of GP. 

A Macro-process is composed of several micro-processes of GP, potentially with 

different features. So, the macro-process of GP appears to be a melting-pot of 

micro-processes.  

We have provided several examples of connected and disconnected processes of 

GP. The reason why two process of GP can be connected are the following: 

- the solver uses figural elements that she reached at the end of or introduced 

during another GP process; 

- the solver recalls theoretical elements expressed or introduced during 

another GP process;  

- the solver recalls the whole product of GP previously reached. 

An explicit reference in the solver’s discourse or a catchment (McNeill, 2005) can 

reveal these connections.  

In general, it seems that the processes are connected when the solver uses the 

insight provided by the previously reached products of GP as starting point or 

helpful elements for a new GP. When this happens, the solvers seem to conceive 

the interviewer’s questions as part of the same problem.  

More specifically, we have found two cases: 

- the final product of GP looks like a composition of several other products. 

Interacting with theoretical and figural elements previously expressed, it 

comes as the outcome of several previously accomplished prediction 

processes.  

- the final product of GP can be a more refined version of an initial rough one. 

If this is the case, the previously accomplished processes of GP support the 
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last one; the final product of GP is incrementally constructed adding new 

details that specify it.  

As shown in Chapter 8, in some cases the solver accomplishes only one process of 

GP. In this case, the macro-process coincides with the micro-process: this is the 

case of the shorter chain of GPs. This case encompasses either processes of GP that 

lead to simple products or very condensed processes of GP that lead to rich in 

theoretical elements and detailed products.  

The macro-process of GP ends when the solver does not undertake others micro-

processes of GP, even if the interviewer asks for a prediction. This can be the case, 

because the solver is not able to further explore the situation or because the last GP 

is actually the most complete. In this context, the completeness of a product of GP 

refers to a product that is reachable with the means that the solver has (paper and 

pencil without additional tools) and it represents an answer to the question 

proposed in the task.  

We observed that during the macro-process of GP, some products of the micro-

processes of GP can be rejected while others can be further explored and expressed 

in more detail. In retrospect, we can say that, during the macro-process, the solvers 

can exercise a sort of control over the products of GP that allow us to recognize a 

product of GP reach enough in theoretical details to be considered a solution to the 

problem.  

The details of the several features of the (micro) processes of GP are addressed by 

the answers to RQ2 about the new insight into the solvers’ actual process of GP, 

and RQ3 about the role of the main components of the model. In the following, 

unless otherwise specified, we will use the expression process of GP in reference to 

the micro-process modeled.  

10.1.2 What insight into students’ actual processes of GP can be 

gained when our model is used for analyzing solvers' figural 

expectations? 

The model gives us insight into a very local process: the GP process of that 

particular solver at a given moment while she is engaging the resolution of that specific 

prediction open problem. Consequently the tools of the model show different 

components depending on the solvers’ approaches and depending on the task. 

This is evident if we look at the composition of the funnels (Chapter 7) or of the 

structures of GPs (Chapter 8). Nevertheless, we were able to draw general findings 

on the processes of GP, as reported in Chapter 6, Chapter 7, and Chapter 8.  
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Since we have found several possible features of GP processes, we claim that 

different GP processes are possible. The model (Figure 60) shows the main 

elements of the process, but these can interact differently.  

• Motion can be integrated into the GP process, giving the process a dynamic 

dimension. The new geometrical object can be produced dynamically, which 

means using continuous motion. Solvers can imagine, perform or mimic a 

continuous movement of one or more figural elements of the geometrical 

configuration. In this case, the configuration seems to be considered as a 

continuously changing geometrical object and the interaction with 

diagrams seems to be similar to the interaction that a solver could perform 

in a DGE when a point is dragged.  

The dynamic dimension was studied conducting both synchronic and 

diachronic analyses of solvers’ discourse, gestures, drawings, and their 

interplay. The solvers who integrate motion into the interaction with the 

figural elements seem to reach detailed and complete products of GP 

actually because they seem to be able to conceive the figural elements as 

they handle objects.  

Moreover, dynamism plays a crucial role within the macro-process. A 

dynamic and a static approach can both lead to coherent products of GP. 

Nevertheless, the dynamic dimension seems to play a role in reaching 

products of GP that can lead the solver to a complete solution to the 

problem, which is a product of GP itself. Instead, a static approach can lead 

the solver to a coherent product of GP, but such product may not be the 

most complete.  

The most effective use of dynamism within the GP process occurs when it 

is coupled with good theoretical control. So, we advance the hypothesis that 

the dynamic dimension affects the interaction between the figural elements 

and the theoretical control. This is particularly evident when the solver 

undertakes GP processes only imagining the geometrical configuration. So, 

we advance the hypothesis that imagining continuous transformations of 

the figural elements can lead the solvers to express a product of GP without 

using any drawings. 

• The products of GP can be detailed or fuzzy. The combination of incomplete 

drawings, hedges into the discourse, and uncertain or absent gestures 

reveals the fuzziness of a product of GP.  
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At the end of our analyses, we advance the hypothesis that a detailed product 

of GP corresponds to a geometrical object that for the solver has clear figural 

elements and well characterized theoretical elements. On the contrary, a 

fuzzy product of GP corresponds to a geometrical object that has figural 

and/or theoretical elements that are not so clear for the solver and in some 

sense fleeting. This dichotomy is also a marker of more or less effective GP 

processes. A process of GP is effective when it leads the solver to generate, 

and eventually communicate, a well-structured new geometrical object.  

This dichotomy is reflected in a different interplay between solvers and 

drawings during the GP process. We find examples of solvers who interact 

with the drawing only in order to impose particular properties onto the 

figure. To do this they only describe or show through gestures the figural 

elements they were predicting; they do not draw anything but seem to 

control very carefully both theoretical and figural elements of the predicted 

configuration. The solvers do not need to get confirmation from the 

drawing and the process is mainly top-down; the drawings are used only 

for enriching an already communicated product of GP by making it explicit 

and better communicable to the interviewer.  

On the contrary, when the products of GP appear to be fuzzy, the solvers 

heavily rely on the drawing to confirm, refine and talk about these products. 

In this case, the solvers do not seem to be confident about their predictions 

until the drawing confirms such predictions in a figural way; they seem to 

mainly use a bottom-up process to the extent that they could resort to 

physical tools or to a trial and errors approach; the drawings play a key role 

in guiding the process. 

• Processes of GP are frequently accompanied by the production of several 

gestures that support the process itself and clarify the content of the other 

solvers’ productions.  

Gestures are used for focusing on particular figural elements that were 

already drawn (deictic gestures) but they can also reveal a new product of 

GP. Iconic-symbolic, iconic-physical and metaphoric gestures are mostly used 

during the prediction process; they  present a prominent dynamic 

dimension. Our analyses reveal two specific roles of gestures within the GP 

process: during the prediction process the gestures help the solver shape 

the products of GP; at the end of the process the gestures clarify the details 

of a product of GP. Moreover, gestures can announce the beginning of a 
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new process of GP and can help the solver in constructing a more accurate 

product of GP.  

Within the macro-process, the recurrence of gestures is particularly 

relevant. Since catchments show the cohesion within the discourse and 

reveal a recurrence in solver’s thinking, they are useful for constructing the 

GPs’ structure.  

• One of our working hypotheses concerns the possible role of anticipatory 

intuition within the GP processes. Our analyses actually reveal that an 

anticipatory intuition can precede or accompany the communication of a 

product of GP; nevertheless, not every process of GP is accompanied by or 

coupled with anticipatory intuitions. More properly, anticipatory intuitions 

can support the process of GP, leading to products that share some features 

of the intuitions like immediacy, self-evidence, new insight, and sharp 

contrast with the previous attempts.  

Anticipatory intuitions seem to play a role both in the micro and in the 

macro process. In the first case, an anticipatory intuition intervenes between 

the figural elements and the theoretical control, but it also maintains a 

connection with the theoretical elements. Indeed, in our data, the evidences 

of anticipatory intuitions are accompanied by the communication of a new 

interesting position for a figural element of the geometrical configuration in 

order to maintain certain theoretical constraints. In the second case, an 

anticipatory intuition that announces an incoming process of GP can come 

after other GP processes, eventually with products that are in contrast with 

the new one.  

Moreover, anticipatory intuition is not connected with the coherence of the 

product of GP. Indeed, it could lead to both coherent and incoherent 

products of GP.  

• We refer to immediacy as the quality of a reaction that is undertaken without 

a strong intervention of the interviewer and rapidly. In some cases, the 

process is so natural for the solver that it is trigger without any support from 

the interviewer. In other cases, the first question is sufficient to induce a 

prediction process. Immediacy can be a characteristic of the GP processes, 

but not all the processes are undertaken in an immediate way.  
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Moreover, it can happen that the process of GP is undertaken 

spontaneously, without questions from the interviewer. Immediacy seems 

to be mostly a quality of the process of GP undertaken by expert solvers.  

Summarizing, during the resolution of the prediction open problems given, the 

solvers have accomplished different kinds of GP processes, even during the 

resolution of the same task. A micro process of GP can be accomplished: 

- with dynamic or discrete interactions with the figural elements of the 

geometrical configuration; 

- after or with the intervention of anticipatory intuitions; 

- supported by both top-down and bottom-up processes, making use of 

gestures and drawings; 

- in an immediate way. 

During the resolution of a prediction open problem, the same solver can 

accomplish processes of GP which show with more or less continuity one or more 

features listed above. The most effective processes of GP seem to be those that 

follow a dynamic and top-down approach.  

The model  (Figure 60) allows us to describe the experts’ prototypical process of GP. 

This description does not have an absolute value, but it is limited to the inferences 

that we can draw observing the expert solvers of our sample. When an expert 

solver is solving a prediction open problem, she can proceed as follows. Looking 

at the macro-process, we can draw the conclusions listed below.  

- The first process of GP is undertaken quite rapidly: the first question is 

sufficient to trigger the process. In some cases, the first GP process is 

triggered even without the first question, by only reading the step-by-step 

construction.  

- The macro-process proceeds naturally, and the solver undertakes several 

micro-processes of GP; each micro-process can be focused on different 

figural elements (see, for example, the interplay within the locus of M and 

the locus of P in Task 2). 

Each micro-process is mainly a top-down process: 

- in order to respect the given constraints, the solver imagines specific 

positions of a figural element within the configuration; 

- she predicts the figural and theoretical consequence of such a choice, while 

the element is dynamically moved within the configuration; 
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- finally, she draws the figural elements of the new geometrical objects. 

During the dynamic interaction with the configuration, expert solvers show strong 

theoretical control. At the end, the expert solver can crystallize the properties of 

the new geometrical element into a statement. However, sometimes the process is 

so immediate that the solver first communicates a crystallized statement that is 

then explained following the steps listed above. 

10.1.3 In particular, what are the roles of the theoretical elements, 

of the figural elements, and of theoretical control? 

The theoretical elements recalled by the solvers, according to their personal TEG, are 

strongly involved in GP processes. Because of the dual nature of geometrical 

objects, when the solvers talk about the geometrical configuration in focus it is 

quite natural for them to recall or introduce theoretical elements. This is evident 

mainly looking at one of the tools in the model: the funnels. Instead, what is 

notable is the quality of the theoretical elements. Indeed, they can be present in a 

different number, coherent and incoherent with respect to scholarly TEG, new or 

given in the step-by-step construction (already known).  

The qualitative analysis of the elements reported in the transcription table, reveals 

that the theoretical elements play a role in selecting the constraints to be 

maintained. Indeed, each task explicitly gives a set of theoretical constraints that 

define the geometrical configuration; these constraints can induce additional 

constraints on the configuration that are logically derived from the given ones. 

However, there is an actual solver who should take into account the given and the 

derived constraints. Within the left side of the model, the solver can operate at two 

different stages: interpreting the given constraints and properly deriving further 

constraints.  

By interpreting and deriving the proper theoretical elements, the solvers obtain a 

set of constraints that they try to maintain in order to solve the prediction open 

problem. Theoretical control allows the solver to properly manage all the 

theoretical elements. The funnels make explicit the theoretical elements considered 

by the solver during the prediction process.  

We have found several instances of a misleading composition of the set of 

constraints to be maintained. In particular, we have observed the following cases 

which lead the solvers to incoherent products of GP: 

- the given constraints are modified, and the solver obtains one or more new 

constraints; 
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- the given constraints are maintained, but the solver adds one or more 

constraints; 

- one of the given constraints is completely removed or neglected.  

According to our model, in the first case, the solver modified the constraints 

because of an imprecise interpretation of them. As a consequence, she may focus 

on incoherent theoretical elements that can be reported by researcher and shown 

in the funnel coupled with the figural elements that they address. Generally, the 

solvers do not seem to be aware of the inconsistency of the theoretical elements 

that they are focusing on and we can say that the theoretical control is not so 

efficient. Nevertheless, the solver can manipulate the figural elements according 

to such a set of incoherent theoretical elements, producing an incoherent product 

of GP. The lack of awareness on the incoherence of the product can be now 

explained considering that the product of GP is consistent for the solver according 

to her TEG. 

In the second case, the solver properly interprets the given constraints, but 

deliberatively decides to introduce new constraints that are not derived from the 

given ones. This is evident looking at the funnel. When the solver tries to 

manipulate the figural elements maintaining the new set of theoretical elements, 

she can obtain inconsistent geometrical objects within the scholarly TEG (see for 

example a right and equilateral triangle) or the impossibility of manipulating the 

figural elements at all. The large number of theoretical constraints the solver wants 

to maintain is one of the causes of the fixedness of the figural elements, strictly 

connected with the impossibility of reaching a GP.  

In the last case, the theoretical control is totally ineffective. The solver is not able 

to coherently interpret the given constraints because she ignores one or more 

theoretical elements. Nevertheless, she may be able to manipulate the figural 

elements, but without any theoretical control. In some sense the transformation is 

accomplished only within the figural domain, as if the figure was the drawing.   

We have provided examples in Section 6.1. In all cases, the incoherence of the new 

geometrical object is evident to the researcher only: the solvers do not seem to be 

aware of such an inconsistency, or at least in their productions we do not find 

instances that suggest such an awareness; sometimes, they simply show some 

uncertainties. 
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Consequently, we can advance the hypothesis that if the solvers are theoretically 

poorly equipped and recall incoherent theoretical elements, they resort to using 

figural considerations totally disconnected with the theoretical constraints.  

The theoretical elements introduced by the solver play a prominent role within the 

prediction process. In particular, the presence and the quality of the new theoretical 

elements are connected to the quality of the products of GP. More specifically, when 

there are new coherent theoretical elements, the products of GP are coherent. 

Depending on the number of new theoretical elements, the products of GP can be 

more or less detailed and well-described, and they provide new insight into the 

problem. Looking at the funnel, we have observed that a sequence of new coherent 

theoretical elements indicates the production of a more accurate and detailed 

product of GP (see Chapter 7). We can claim that the introduction of new coherent 

theoretical elements is a sort of catalyst for accomplishing a GP process which 

leads to a coherent product.  

On the contrary:  

- if the solver does not introduce new theoretical elements, the products are 

very simple, almost obvious, and they do not give any new information on 

the problem; 

- when there are new theoretical elements and they are incoherent, the 

products of GP are strongly incoherent, very connected with figural 

elements, and seem to move the solver away from a coherent final GP.  

Moreover, when the solvers communicate a product of GP passing through 

(eventually incoherent) theoretical elements introduced by themselves, they seem 

to be convinced of their findings even if the perceptual feedback appears 

inconsistent to the interviewer.  

The tool “funnel” was designed a priori to explore the involvement of theoretical 

and figural elements within the GP process. In retrospect, funnels reveal the deep 

relationship between predictions and theoretical elements and seem to be 

powerful tools for predicting the quality (in terms of coherence and richness in 

mathematical details) of the products of GP. 

Interestingly, the set of considered constraints, that a researcher can observe 

looking at the funnels, could have an influence also on the possible manipulation 

of the figural elements that solver can accomplish. We have found cases of solvers 

who have shown good theoretical control, but this was exercised on incoherent or 

a too large number of theoretical elements. The excessive number of theoretical 
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constraints leads the solver to complete fixedness of the configuration which 

inhibits the process of GP. 

The figural elements play the fundamental role of being referents of the solvers’ 

manipulations, and they support the process of GP. Indeed, during the prediction 

process, solvers mimic through gestures, perform on the drawings, and talk about 

several figural transformations: for example, figures can be mirrored, points can be 

placed on the opposite side, segments can be turned. These all are transformations 

that can be performed within the figural domain but have a strong connection with 

some corresponding theoretical element. For example, “mirroring a figure” could 

mean making use of line symmetry. The final object may or may not be a coherent 

object within the TEG. What allows manipulations that lead to coherent objects is 

the theoretical control that coordinates between the figural and the theoretical 

elements.  

So, a geometrical object can be manipulated but under the strict coordination of 

the theoretical control.  

Figural elements can support the process because they actualize the imagined 

manipulation and the product of GP. Moreover, they can give a heuristic kind of 

help. For example, the case of the solver who finds on the drawing a particular 

position of a point (excerpt Silvia_G10_T5_P1_(05:21 – 08:15), which suggests a 

coherent answer to the problem; such a finding triggers a new GP process.  

Figural elements can play a role within the GP processes and influence the 

recalling of coherent theoretical elements. We have discussed the possible arising 

of the prototype effect. The stereotyped figural elements can impede the solver to 

properly consider the given constraints. For example, a prototypical orientation of 

the right triangle can contrast with a non-stereotyped given drawing, impeding 

the solver to recognize the proper hypotenuse. Moreover, when the given drawing 

does not propose, by design, a stereotyped image of a geometric figure the solver 

can restore to a prototypical orientation. 

When the prototype effect is strongly dominant, it seems to influence the 

alternative arrangements that the solvers are willing to consider. See, for example, 

the difficulty to consider a triangle that is not isosceles (excerpts 

Andrea_G9_T5_P1_(01:07 – 02:03), Sergio_G10_T5_P1_(01:44 – 03:35)). 

Our data suggest that theoretical control coupled with a dynamic approach can 

overcome the difficulties derived from the prototypical effect.  
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The model also shows the prominent role of theoretical control. When the solvers 

manifest a lack of theoretical control, they restore to one of the two domains: the 

figural or the theoretical. Manipulations that are not controlled by theoretical 

control and are accomplished only within the figural domain can lead to 

inconsistent geometrical objects. See, for example, the extreme example of the right 

and equilateral triangle proposed by several solvers (excerpts 

Laura_G10_T4_P1_(00:00 – 01:16), Giorgio_G13_T4_P1_(00:46 – 02:38)). Moreover, 

restoring to figural considerations can lead to an overconfidence on the drawing 

or in general on the particular figural arrangement of the geometrical 

configuration, to drawing incoherent theoretical elements and therefore to 

incoherent products of GP.  

When solvers are not able to manipulate the figural elements, they can restore to 

theoretical consideration, producing vague answers or the impossibility of 

producing a GP.  

Lack of theoretical control also affects the awareness of eventually misleading 

constraints.  

The role of coordination is confirmed by our findings on Task 6. Indeed, even if 

the solvers show good knowledge of the TEG, they can choose to apply to the 

configuration an incoherent theoretical element that is in sharp contrast with their 

ability to theoretically control the figural elements.  

Because of the coordinating function of the theoretical control, we advance the 

hypothesis that when the solver is theoretically or figurally poorly equipped, 

theoretical control is not sufficient to overcome the difficulties.  

So, the main common steps of a GP process are described below. 

- After the step-by-step construction was accomplished, the theoretical 

control guides the interplay between the figural elements of the obtained 

figure and the given theoretical elements.  

- The solver interprets the given theoretical elements, eventually considers 

other additional theoretical elements and selects the more suitable for 

producing a prediction. This step is accomplished by the interaction 

between the theoretical control and the theoretical elements. 

- The theoretical and the figural elements in focus are made explicit through 

gestures and speech. 
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- Now the solver can transform the figural elements in order to maintain the 

selected theoretical elements through dynamic or discrete interactions. This 

step is accomplished by the interaction between the theoretical control and 

the figural elements. 

- Finally, she produces a new geometrical object. This object can be drawn or 

only mentally controlled, according to the theoretical control that the solver 

can exercise. 

The figural elements and the theoretical elements of the new geometrical object 

(the product of GP) can become the starting components of a new process of GP. 

After that a process of GP was accomplished, during a subsequent GP process, the 

solver will act on a new object that is the initial geometrical object enriched by the 

new insight taken from the first process. 

As an example, now we can recall the excerpt reported in Chapter 3 and describe 

how our model can be used as a tool for analysis, unveiling the micro and the 

macro processes of GP which show some of the possible characteristics. 

 

The visual diagram (Figure 61) shows two micro-processes that compose a macro-

process (on the right); TC in the figure stands for theoretical control. 

Following the thin arrows we can observe a first micro-process, starting with 

Drawing 1 and ending with Drawing 2; a second micro-process starting with 

Figure 61 An example of the use of the model for analyzing the micro-processes and the 

macro-process  
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Drawing 2 and ending with Drawing 3. On the right, there is the macro-process 

composed of the two micro-process connected with a big blue arrow.  

After a step-by-step construction the task asks: If C has to stay on a line r parallel 

to AB, what can you say about the configuration? 

The solver proceeds as follows.  

First micro-process: 

- She performs a drawing (Drawing 1) and explains though her utterance that 

there is a triangle with AB as the base, and a point C. These elements are 

made explicit in the first three entries of the funnel. 

- She recalls the additional constraints given by the task and explicitly talks 

about C as a point on a line that is parallel. 

- While she says that C can be moved back and forth on the line, she performs 

a dynamic gesture. This constitutes the last entries of the funnel.  

- The product of GP refers to the possibility of obtaining several triangles 

while C is moving on the line. The dynamic interaction with drawing, 

supported by a top-down process of moving C on the line and the solver’s 

theoretical control (TC) that allow her to conceive the consequences of this 

movement on the triangle, leads the solver to the product of GP.  

- The solver performs a new drawing.  

The process started with a triangle with a vertex on a parallel line; the outcome is 

several triangles or several instances of the same triangles with a variable vertex. 

Second micro-process: 

- The solver looks at Drawing 2 and, supported by a bottom-up process, she 

realizes that there are also specific triangles. These are not products of GP, 

because are mere interpretation of the drawing. She makes explicit by 

speech and we reported in the funnel the kind of triangles she has observed.  

- She says she can consider a “hypothetical height”. This observation is 

accomplished by the solver’s theoretical control which imposes the height 

of the triangles on the figure sketched out in Drawing 2.  

- The height is conceived dynamically. Instead, she says that it “is moved 

according to the point”. Three possible heights are mimicking through 

gesture.  
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- The solver recalls the various triangles of GP_1 and concludes that the 

length of the height “is always the same”. In this process, a non-stereotyped 

image of the height is fundamental for reaching the product of GP. Only a 

non-stereotyped image allows to consider the height as an invariant.   

- She reproduces her findings in a drawing: Drawing 3.  

The outcome of the process is composed of several triangles or several instances of 

the same triangles with a variable vertex and a height of the same length.  

The macro-process (Figure 62) is composed of the two micro-processes that are 

connected because of the theoretical reference to “several triangles”. The solver talks 

about several triangles when she communicates GP_1 and before GP_2. The 

macro-process can be sketched as follows (Figure 62). 

 

The macro-process is finished: the solvers does not undertake other GP processes 

because GP_2 is complete (it is in fact the most complete answer to the problem). 

Other possible considerations, for example about the invariance of the area, would 

not include predictions.  

Summarizing, the components of our model and their interaction allow us to 

interpret the solver’s thinking during the resolution of a prediction open problem. In 

Figure 62 An example of macro-process of GP composed of two interacting micro-

processes that led to GP1 and GP2 
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particular, manipulation of figural elements and recalling of theoretical elements 

are different components that are constantly interacting through theoretical 

control. During a process of GP, the theoretical control allows the solvers to 

conceive step by step the given configuration as a geometrical object. This means 

that the solver is able to consider the figural elements taking into account their 

theoretical counterparts and not as mere pieces of a sketched or imagined object. 

In this way, theoretical control "fills the gap" between the geometrical figure and 

the drawing (eventually imagined).  

10.1.4 A revised definition of geometric prediction 

Geometric prediction is a complex and global process, where the dual nature of 

the geomatical objects plays a crucial role.  

The main components of the model of GP are the theoretical elements, the figural 

elements, and the theoretical control.  

At the end of our analyses and considering all the components that come into play, 

a micro geometric prediction process can be re-defined as follows. 

Geometric prediction (GP) is the process of generation of a new geometrical object 

through the manipulation of its figural elements that maintain invariant certain theoretical 

elements that belong to the solver’s TEG.  

It is important to stress that the action of manipulation can only be imagined.  

The new geometrical object is coherent or incoherent with respect to the scholarly 

TEG, according to: 

- the coherence of solver’s knowledge of the TEG with the formal TEG;  

- the dynamic use of figural elements; 

- the power of the solver’s theoretical control.  

As stressed in Section 10.1.1, a GP process does not produce either a pure 

theoretical or a pure figural object, but an object that is a composition of the two. 

In this perspective, the specificity of the problem of producing figural expectations 

within the geometrical domain becomes evident. The manipulations are not 

accomplished only within the figural domain, but they are accomplished under 

the monitoring of theoretical control which imposes on the figure the theoretical 

elements recalled by the solver.  

At the end of this study, we have gained new insight into the prediction processes. 
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- We have discovered that there are different characteristics of the GP 

processes. Moreover, the same solver can accomplish processes of GP with 

different characteristics.  

- We have constructed a model of the micro-process and outlined how the 

processes of GP interact within a macro-process.  

- We have highlighted the features of the GP processes accomplished by 

expert solvers of our sample.   

- The theoretical control, that at the beginning was only a construct that could 

interact with the GPs, is a crucial component of the process. 

- The analyses have highlighted the crucial role of the solvers’ knowledge of 

the TEG in producing coherent products of GP.  

- The model gives researchers two operative tools for analyses: the funnels 

and the transcription coding. The tools operatively show how to recognize 

instances of GP and to explicitly report and see at a glance the figural and 

the theoretical elements using by the solvers during a GP process.  

10.2 Contextualization within the literature 

In this section we situate our findings within the field of mathematics education. 

In particular, we discuss how our results can be considered with respect to 

Fischbein’s Theory of Figural Concepts and intuitions, Duval’s framework of cognitive 

apprehensions, the debate about mental imagery. Moreover, we discuss how our 

model interacts with research on visuo-spatial abilities.  

10.2.1 Our findings with respect to Fischbein’s Theory of Figural 

Concepts 

Fischbein’s Theory of Figural Concepts (1993) provides an ontological point of view 

on the nature of geometrical objects. Moreover, it suggests the necessity to always 

take into account the conceptual and the figural components of a geometrical 

figure, when we want to study the processes involved in the resolution of a 

geometrical task.  

More specifically, Fischbein (1993) talks about the “manipulation of figural concepts” 

as a means to get accesses to other cognitive processes, like induction:   

But, usually in the process of mathematical invention we try, we experiment, we resort 

to analogies and inductive processes by manipulating not crude images or pure, 
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formal axiomatic constraints, but figural concepts, images intrinsically controlled by 

concepts. (p. 160, italics in the original) 

Nevertheless, such a manipulation is not widely described. Starting from the 

theoretical assumptions given by the Theory of Figural Concepts, we modeled a 

process that allows us to shed light on the manipulation of figural concepts.  

The particular design of prediction open problems allows us to observe solvers during 

a genuine mathematical experience of exploration and discovery. During the 

resolution of the given tasks, we can recognize several instances of manipulation 

of figural concepts.  

What we actually observe are the transformations of figural components of the 

figural concepts accompanied by the description of the conceptual components. 

The transformation can be accomplished mentally or using physical supports, like 

drawing or gestures. 

So, the manipulation of figural concepts during the resolution of prediction open 

problems is: 

the (mental) transformation of the figural components of the figural concepts 

according to the conceptual components.  

Replacing the distinction assumed between a figural concept and a geometrical figure 

within the Fischbein’s framework, the closer the solver’s figural concept is to the 

actual geometrical figure, the more coherent the manipulation is with respect to 

the relations between the conceptual components. The outcome of the 

manipulation is a new figural concept, figurally and conceptually enriched by the 

new insight gained during the process of manipulation.  

Another neglected aspect is the notion of conceptual or theoretical control. Although 

it is used many times (Fischbein, 1987, 1993), we did not find a clear definition of 

this term. We borrowed the definition recently given by Mariotti and Baccaglini-

Frank (2018): 

[the act of] mentally imposing on a figure theoretical elements that are coherent in 

the theory of Euclidean geometry” (ibid., p. 156). 

This is coherent with the theoretical assumptions of the Theory of Figural Concepts. 

Supported by the findings of other research (Mariotti, 1995; Mariotti & Baccaglini-

Frank, 2018); we have studied the possible role of theoretical control within the GP 

processes. 
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We can claim that theoretical control plays a crucial role in coordinating the figural 

and the conceptual components of a figural concept. The geometrical reasoning is 

interpreted in terms of harmony between the conceptual and figural components. 

From the cognitive point of view what guarantees this harmony is the theoretical 

control that the solver can exercise over the figural components. Our model reveals 

that even if the solver is able to properly consider the figural components and the 

conceptual components, it is the role of coordination played by theoretical control 

that produces an effective process of prediction or in other words effective 

geometrical reasoning. 

10.2.2 Our findings with respect to Duval’s cognitive apprehensions 

Others research studies were grounded on theories having different backgrounds 

and different underlying assumptions about the status of the objects of Geometry, 

with respect to ours. For example, Duval’s framework of cognitive apprehensions 

(1994, 1995) is grounded on a semiotic approach. We now try to situate our 

findings with respect to this framework and these studies. 

The representation of a geometrical figure can trigger several cognitive 

apprehensions. More specifically, we refer to the role of operative apprehension. 

According to Duval (1994, 1995), through operative apprehensions the solvers can 

(mentally or physically) transform the given figure.  

Mereologic, optic and place way describe transformations of the figure which 

maintain the ratio between the lengths of the figural units of the given figure. This 

becomes more evident looking at the examples proposed by Duval (1995). 

However, among the different ways through which a figure can be transformed, 

Duval does not mention the kind of continuous motion that a solver can imagine 

and perform. For example, the movement of a point along a locus that is being 

discovered cannot be explained using the transformations listed by Duval.  

Our findings reveal that a solver may perform on the figure changes that are very 

similar to those that she can observe on a dynamic figure in a DGE when a point 

is dragged. In fact, this dynamic approach does not depend on any sort of 

internalization of dragging modalities (Mariotti & Baccaglini-Frank, 2011; 

Baccaglini-Frank & Antonini, 2016), because it is also evident in solvers’ who make 

use of the DGE for the first time in their academic life.  

For the sake of clarity, let us consider (Table 13) an example from (Duval, 1995). 
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III Statement of particular 

case 

Statement of general 

case 

 

In the trapezium ABCD, U 

is the intersection of the 

two diagonals AC and BD.  

Compare the areas of the 

two shaded triangles.  

In any trapezium, with 

unknown lengths, you 

draw shaded triangles do 

you get the same answer 

as in the previous 

question? 

Responses 11% 0% 

The task given in the “particular case” formulation can be solved making use of 

the operation of reconfiguration (Duval, 1995). In Figure 63 we show the solution of 

the particular case proposed by Duval following this approach. 

 

This resolution is very much connected with the recognition of two overlapping 

figures (BDC and ADC) and a common figure (DUC).  

Moving to the general formulation, we can notice (Table 13) that no student from 

the sample was able to solve the problem. In this formulation, the task is very 

different: to solve the problem students have to recognize that the triangles DBC 

and DAC always have the same base and the same height, even if the kind of 

trapezium changes; for this reason, they have the same area. Finally, the two 

shaded triangles (AUD and BUC) have the same area, because they share the 

triangle DUC.  

This resolution is difficult to reach making use of the transformation shown above. 

Instead, it is easy to find a solution if the solver imagines or draws two parallel 

lines, one through DC and another through AB, and imagines moving one of the 

vertices of the trapezium on such a line. 

In Figure 64 we show a possible transformation of the figure, moving B on the line 

through AB.  

Table 13 Variation of task formulation and of performance in the resolution among 123 

students aged 14 years (Duval, 1995, p. 144) 

Figure 63 Figural heuristic processing of the task given in the particular case formulation 

(Duval, 1995, p. 150) 
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We find this transformation difficult to depict using the transformations proposed 

by Duval (1995). We advance the hypothesis that this kind of transformation, that 

can be supported by a different task design, would increase the right answer given 

to the task.  

The manipulations described by our model can be considered transformations of 

the figure suggested by operational apprehensions. However, our model adds 

another way through which a figure can be transformed. This new "way" is placed 

at the interplay between the operative and the discursive apprehensions, and it can 

be considered similarly to a place and optic way transformation of a particular figural 

unit that has an effect on the whole figure. More importantly, this transformation 

is allowed to be done according to the discursive apprehensions. Indeed, the speech 

acts (denomination, definition, primitive commands in a software) determine what 

the perceived figure represents (Duval, 1995). Therefore discursive apprehension 

convinces the solver about the consistency of the transformation within the 

reference theory. 

This kind of transformation does not maintain the ratio between the length of the 

figural units, but it maintains the properties that the discursive apprehension 

allows the solver to recognize in the figure. 

The product of GP can be seen as the outcome of a reconfiguration guided by 

operative and discursive apprehension. In this framework, the product of GP is a 

new semiotic representation of the figure. Moreover, according to Duval (1995) 

operations used in order to transform a figure could be accomplished only in the 

figure’s register. Indeed, operative apprehension is close to perceptual 

apprehension. They share the same figural organization laws, but at a different 

level: in the second case it is an automatic and immediate process, in the first one 

it is a conscious process and could require a long time. 

Our findings reveal that the operative apprehension is intertwined with the 

discursive apprehension. To be effective the transformations on the figural register 

must be coupled and directed by the discursive apprehensions.   

Figure 64 Possible representation of the figure after the movement of point B 
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The difficulties encountered by our solver because of the prototypical effect or a 

strong influence of the particular representation of the given figure can be 

explained by a too strong intervention of perceptual apprehensions which is 

dominant among the others.  

Our findings also address the important role of discursive apprehension in 

interpreting the given theoretical constraints: mathematical knowledge supports 

the discursive apprehension which drives a coherent interpretation of the 

properties of a given figure.  

10.2.3 Our findings with respect to research on mental imagery and 

visuo-spatial abilities……………………………………… 

Concerning the research on mental images involved in doing mathematics (see, for 

example, Bishop, 1983; Presmeg, 1986, 1997;  Owens, 1999, 2014), GP processes can 

be considered processes of elaboration and processing of mental images.  

Our model explains how a solver engaged in the resolution of a prediction open 

problem can generate and transform mental images. The mental images in focus 

are strictly related to the reference theory (TEG). In this perspective, the outcome 

of a GP process is a mental image with attributes that belong to the solver’s TEG.  

Concerning the abilities theorized by Bishop (1983), we stress that one of the 

possible actions that the ability of VP allows the solver to make is transforming 

“one visual image into another” (ibid., p. 177). In this perspective a product of GP 

is the outcome of a process undertaken with the support of VP. Instead, the ability 

named IFI can support the initial process of interpretation and recalling of the 

theoretical elements.  

Following the definition of visualization provided by Presmeg (2006), the 

processes of GP can be considered a particular visualization process: 

[…] when a person creates a spatial arrangement (including a mathematical 

inscription) there is a visual image in the person’s mind, guiding this creation. Thus 

visualization is taken to include processes of constructing and transforming both 

visual mental imagery and all of the inscriptions of a spatial nature that may be 

implicated in doing mathematics (ibid, p. 206) 

Indeed, processes of GP involve both mental and inscriptions (drawings) 

transformations and, in its new formulation, it is specific of the geometrical 

activities.  

Moreover, following the definition provided by Bruce et al. (2017):  
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the ability to recognize and (mentally) manipulate the spatial properties of objects 

and the spatial relations among objects (ibid., p. 146) 

the GP processes can be supported by the spatial reasoning when it is carried out in 

a geometrical context.  

With respect to the research on visuo-spatial abilities (Cornoldi & Vecchi, 2004), our 

model takes into account the fundamental role of theoretical elements and 

theoretical control. These two components of the model represent the major 

difference with respect to those models grounded on perspectives (see, for 

example, Kosslyn, 1996) that consider the interaction between solvers and 

geometrical objects as pure scanning and manipulations of mental images, without 

the intervention of any reference mathematical theory (in our case TEG).  

The outcome of a mental manipulation can interact with other elements deposited 

in long-term memory for interpreting the mental images. Our model stress that the 

role of the solver’s geometrical knowledge and ability to impose on an image 

certain geometrical properties (i.e. theoretical control) do not only have an 

interpreting function but also a control function. We can claim that the 

manipulations of images that a solver can accomplish on a geometrical figure are 

driven by the solver’s use of the TEG: the manipulations are Theory-driven by the 

theoretical control. The theoretical control is not only a system of control of the 

consistency of the outcomes but also a construct that acts during all the 

manipulation, guiding it.   

The manipulations that a solver can accomplish on a geometrical figure during the 

GP processes convey a mutually determining phenomenon of acting and knowing: 

the GP process involves knowing that something occurs as a result of performing 

actions on a geometrical object.  

Here is (Table 14) an example of an excerpt where we highlight the component of 

our model and the visuo-spatial abilities: Marta_MS_T5_P1_(00:23 – 02:44) already 

reported and commented in Section 6.3.2.  

Who What is said What is done GP Model Visuo-spatial 

abilities 

Int Make a prediction: 

is it possible that 

CM is congruent 

to CB? 

   

Stud Is it possible that 

CM is congruent 

to CB? 
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Int Mm mm.    

Stud So...I have a 

triangle...M 

midpoint, perfect. 

CM...great, so it is 

a median. Ok. 

She is looking at the 

step-by-step 

construction. 

 

Recalling and 

introduction of 

theoretical 

elements  

Visual 

reconstructive 

ability 

Stud CM can be 

congruent to CB...I 

think so, I mean 

that…ehm... 

She is looking up 

and ahead. 

Recalling and 

focusing on 

theoretical 

elements 

 

Stud If CM is congruent 

to CB, I have a 

triangle BCM that 

is isosceles and, 

just a bit big, I 

have another 

triangle ABC that 

was my initial 

triangle, I mean. 

So…eh… 

While she is talking 

about the triangle 

ABC, she rotates 

the right hand: 

 
While she is talking 

about the initial 

triangle:  

 

Recalling and 

introduction of 

theoretical 

elements 

 

Manipulation 

of figural 

elements 

 

Theoretical 

control 

 

GP_1: BCM is 

an isosceles 

triangle 

 

Imagery 

generation ability 

 

Imagery 

manipulation 

ability 

Stud Yes, I think that it 

is possible. 

   

Int Ok. Make a 

drawing of what 

you imagined. 

   

[…] 

Stud This is what I 

imagined. 

 

Drawing 2a 

Recalling of 

theoretical 

elements (see 

the hash 

marks) 

Imagery 

generation ability 

 

Planned visual 

scanning 

[…] 

Int Do you think that 

there are other 

positions for point 
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C so that CM is 

congruent to CB? 

Stud Ok, so any 

translation of C 

downwards  or 

upwards, parallel 

to BA, maintains 

this property. So... 

She draws two 

arrows:  

 
Drawing 2b 

“downwards or 

upwards”: 

 

“parallel”: 

 

Manipulation 

of figural 

elements  

 

Theoretical 

control 

 

GP_2: C on a 

line 

perpendicular 

to AB  

 

Imagery 

manipulation 

ability 

 

Imagery 

generation ability 

 

The manipulations (mentally) accomplished by the solver can be supported by the 

visuo-spatial abilities reported in the last column. Nevertheless, the only use of 

those abilities does not explain why Marta decided to consider an isosceles triangle 

in her answer. More likely, her TEG supports the translation of the given 

information “CM equal to CB” into “CMB is an isosceles triangle”; then her theoretical 

control, possibly supported by the imagery manipulation ability, allows her to find 

the triangle ABC as a transformation of the triangle CMB.  

For drawing the imagined figure, Marta can make use of the ability to generate 

and to visual scan images.  

Again the manipulation which leads to the second product of GP can be supported 

by the imagery manipulation and generation ability but is strongly influenced by 

the theoretical control. This interpretation is supported by the solver’s utterance: 

she explicitly says that the manipulation she is imagining is the most suitable for 

Table 14 An excerpt from Marta interview’s during the resolution of Task 5. The fourth 

column reported the components of the GP model, the last column shows the visuo-spatial 

abilities possibly involved 
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maintaining the given constraints. Such constraints are not figural but they belong 

to the TEG.  

Summarizing, we can claim that during the processes of GP the solvers can 

accomplish manipulations that are supported by abilities like those described by 

in Cognitive Psychology, of which the visuo-spatial abilities are an example. 

However, the manipulations are not only supported by the solvers’ TEG but they 

are also strongly controlled by the solvers’ theoretical control, which interprets the 

outcome of and drives the manipulation.  

 

Our findings also address the topic of dynamism in geometric reasoning. A priori, 

we have conjectured that the solvers can integrate motions into their interaction 

with drawings and in general into the manipulations of images. In retrospect, we 

can claim that, among the solvers of our sample, even if this is not the most popular 

approach to the task, a dynamic approach revealed to be the most effective in order 

to reach a coherent prediction. This is in line with Presmeg’s findings on dynamic 

imagery (1997).  

Recently, grounded on the classification of spatial skills as static versus dynamic 

skills and intrinsic versus extrinsic proposed by Uttal et al. (2013), McGarvey et al. 

(2012) focus on the dynamic dimension of students’ geometrical reasoning 

discussing how student approach the task of drawing.  

[…] there were two ways in which students approached the task of drawing: (1) 

drawings of multiple triangles, each one different from the other, and (2) drawings 

of single triangles undergoing transformation. (ibid., p. 144) 

In McGarvey et al.’s study, the drawing task was given after an exploration of a 

dynamic triangle in a DGE, so students marked on the drawing how they 

perceived the dynamic shape.  

The first category of drawings focuses more on the multiple different shapes while 

the second focuses on the continuous transformation between shapes. […] The 

drawings in both categories show evidence of intrinsic-dynamic spatial reasoning 

as the children transform the triangle in time. (McGarvey et al., 2015, p. 115) 

The authors conclude that: 

the drawings are less about the discrete example space of the dynamic triangle and 

more about its continuous changeability. (McGarvey et al., 2015, p. 115) 

Looking at solvers like Marta (see the previous subsection), we observed that she 

seems to conceive the movement of C and the whole triangle as a continuously 
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changing object. This solver’s approach is independent of a dynamic exploration 

in a DGE because the task was accomplished first in a paper-and-pencil 

environment.  

This finding stresses that motion can actually be embedded in the manipulation of 

a geometrical figure and in this case the manipulation is particularly effective in 

terms of exploring the possible solution of a given task.  

Finally, our findings provide new insights into a kind of reasoning that is neither 

deductive nor inductive: transformational reasoning (Simon, 1996). 

Transformational reasoning is mental or physical enactment of an operation or set 

of operations of object or set of objects that allows one to envision the 

transformations these objects undergo and the set of results of these operations. 

Central to transformational reasoning is the ability to consider not a static state, but 

a dynamic process by which a new state or a continuum of states are generated. 

(Simon, 1996, p. 201) 

Looking at the definition and at the example provided by Simon (1996), we can say 

that the kind of solvers’ thinking underlying GP processes can be the 

transformational reasoning. So, our excerpts can be interpreted as additional 

examples of processes carried out by transformational reasoning.   

Following the definition, in our case: 

- the objects are the figural elements coupled with the theoretical elements;  

- the operation is the manipulation of figural elements controlled by 

theoretical control; 

- the results are the product of GP.  

10.2.4 Our findings on Fischbein’s intuition 

Although our main focus was not on intuitions, this study also contributes to this 

topic. Since “intuition” is a controversial term, we explicitly followed Fischbein’s 

notion of intuition (Fischbein, 1987), widely described in Chapter 3.  

We decided to focus on anticipatory intuition, a kind of intuition specifically 

involved in problem-solving activities. This seems to be an open research topic: we 

did not find explicit examples of anticipatory intuitions within the literature 

(Fischbein, 1987; 1999a) or a description of the circumstances that lead to an 

anticipatory intuition.  

We have found that prediction open problems, specifically designed for eliciting 

prediction processes, can also trigger processes that produce anticipatory 
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intuitions. So, these kinds of intuition can arise during the resolution of an open 

problem. This provides a direction for the task-design of further research on the 

topic of intuition. 

Moreover, we have found several anticipatory intuitions combined with the 

communication of a product of GP. We can recognize the arising of anticipatory 

intuition when the solver communicates a new piece of mathematical knowledge 

about the solution of the given task:  

- suddenly; 

- without an explicit or recognizable connection with the processes 

previously undertaken; 

- after a long silence. 

An anticipatory intuition may have one or more of these characteristics and it can 

support the process of GP, leading to products that share some features of the 

intuitions. Our data provide several examples of anticipatory intuitions: these 

episodes provide new insight into the Fischbein’s taxonomy of the intuitions.  

In some cases, anticipatory intuition provides a heuristic kind of help to the solvers 

(see, for example, excerpt like Sergio_G10_T5_P1_(01:44 – 03:35)). This is an 

interesting point for studying the role of anticipatory intuition within the 

resolution process of other kinds of problems.  

Finally, we want to clarify that intuition and the product of GP are different 

outcomes. Supported by our data, we can claim that a product of GP is not an 

intuition, for the reasons listed below.  

- Intuitions are characterized by self-evidence and vividness. If a product of 

GP is an intuition, we expect all of the products of GP to be detailed. Instead, 

we have both detailed and fuzzy products of GP.  

- Intuitions are characterized by intrinsic certainty. Instead, we find several 

uncertainties within the solver utterances.  

- Intuitions are immediate; instead, we also find a product of GP at the end 

of a long process. 

- Intuitions are resistant to change; instead, often during the resolution 

process, the solvers change their idea about a product of GP.  

In summary, the products of GP can share features of anticipatory intuitions, but 

not all of them are actually intuitions.  
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10.3 Educational implications  

The need for visual literacy has become fundamental to the functioning of modern 

society, characterized by information-based communication where interfaces are 

increasingly less alphanumeric and more visuo-spatial (Mulligan, 2015). As Arcavi 

(2003) stresses  

we live in a world where information is transmitted mostly in visual wrappings, and 

technologies support and encourage communication which is essentially visual. 

(ibid., p. 215) 

Because of mathematics educators’ recent renewed interest in visualization and its 

related skills, our findings can be interesting from an educational point of view. In 

particular, it seems to be important that teachers develop the awareness that a 

student, who is solving a geometric task, can undertake GP processes even when 

this is not explicitly required.  

Our data reveals that solvers engaged in a prediction open problem can 

spontaneously undertake GP processes, to the extent that the GP processes can be 

undertaken before the question, right after the step-by-step construction (see, for 

example, Agnese_MS_T2_P1_(01:54 – 02:08), Ilaria_G9_T4_P1). As long as the 

question is not asked, the task is not yet a prediction open problem, but only the 

description of a given geometrical configuration that could be provided in another 

kind of problem. In other cases, the GP process was undertaken right after the first 

question, when a prediction had not yet been asked for explicitly.  

This evidence supports the hypothesis that a GP process can be spontaneously 

undertaken by a solver when she approaches a geometrical task. So, from an 

educational point of view, it is important for the teacher to be aware of such a 

phenomenon, in particular because the products of GP processes undertaken can 

remain implicit and unconscious for the solver and unknown to the teacher. 

Indeed, the solvers of our sample communicate the product of their GP processes 

mainly because, by design, they are invited to do so explicitly; in a generic 

problem-solving context the products of GP can remain unexpressed. This claim is 

supported by the gestural instances of GP that are not accompanied by any 

discursive instances (see Section 6.4). Moreover, we have highlighted (see Section 

8.1) that a product of GP is not neutral within the macro-process. Indeed, the 

products of GP can interact and influence each other within the macro-process. An 

incoherent answer to the problem can be supported by several products of GP that 

can remain unknown to the teacher if the solvers are not asked for making them 

explicit.  
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The teacher who knows the solver’s products of GP has windows onto the solver’s 

interpretation of the figure and of the task and, consequently, she can help students 

to overcome difficulties. So, we can draw the importance of discovering the 

solvers’ products of GP.  

More specifically, the process of making the products of GP explicit provides a 

window onto the solver’s TEG. Our model stresses the fundamental role of the 

solvers’ knowledge and use of the TEG. The funnels show the central role of the 

theoretical elements recalled or introduced by the solvers. These elements revealed 

to be fundamental for inferring the solver’s interpretation of the given figure and 

in particular the theoretical constraints that the solver is imposing on the figure. 

We had the opportunity to capture solver’s use of theoretical elements because of 

the particular design of the interview; nevertheless, the teacher can also ask the 

solver to make them explicit. A teacher, who knows what the “pieces of 

knowledge” are that the solvers are using for reaching a product of GP can 

coherently interpret the solvers’ misleading interpretations and incoherent 

solutions. A coherent interpretation of the solvers’ processes of GP leads the 

teacher to a proper intervention for supporting an effective resolution process. In 

Section 8.2, we highlight and discuss the elements that can inhibit an effective 

process of GP.  

So, our model provides a theoretical lens through which the teachers can look at 

solvers’ productions during the resolution of a geometrical task, for recognizing 

the possible obstacles and planning possible intervention to remove them.  

In retrospect, data analysis also reveals particular observable markers that a GP 

process is occurring. In particular, during the processes of GP, we notice that:  

- the solvers can silently perform gestures; 

- the solvers use expressions like “I expect to”, “I imagined”, “what I was 

thinking is more intuitive”, “intuitively”, “hypothetical 

point/segment/line”; 

- the solvers’ utterances contain the use of modal verbs and hedges in general; 

- the solvers can explore a drawing previously performed, without adding 

other graphical elements. 

A priori, we look at solvers’ productions as windows onto the GP processes. In 

retrospect, the way through which the solvers make use of gestures, drawings, and 

utterances can reveal to an observer (eventually a teacher) that actually a GP 

process is running, even if the solver has not already communicated its products.     
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In terms of implications for supporting visualization and spatial reasoning, our study 

proposes a new kind of task: prediction open problems.  

This kind of task provides an example of a geometrical problem that gives students 

a genuine research experience. This is in line with the Cuoco et al.’s (1996) 

perspective, concerning the mathematical habits of mind and the design of a 

mathematical curriculum which supports them.  

By “habits of mind,” we mean ways of thinking that one acquires so well, makes so 

natural, and incorporates so fully into one’s repertoire, that they become, well, 

mental habits: not only can one draw upon them easily, one is likely to do so. 

(Goldenberg, 2014, p. 146) 

The researchers describe the features of a mathematical curriculum that may “help 

high school students learn and adopt some of the ways that mathematicians think 

about problems” (Cuoco et al., p. 376). Among the several mathematical habits of 

mind, the researchers include visualization and more specifically the visualization of 

the change. The educational implication of such a perspective is stressed as follows: 

A curriculum organized around habits of mind tries to close the gap between what 

the users and makers of mathematics do and what they say. (ibid., p. 376) 

The prediction open problems proposed in our study have elicited GP processes 

strictly connected with the possibility of considering a situation that changes, 

potentially continuously (i.e. visualizing the change). Because of the explorative 

nature of the questions proposed in a prediction open problem, this kind of task 

seems to be particularly effective in promoting visualization as a habit of mind.   

We advance the hypothesis that the implementation of prediction open problems in 

the classroom activities may support the development and refinement of abilities 

connected with visualization and spatial reasoning without losing the connection 

with the reference mathematical theory (in our case the TEG).  

Even if the task-design in the case of prediction open problems has to be carefully 

constructed, it is not so difficult for teachers to find problems that can be 

reformulated as open problems. As shown in Section  3.3, in some cases it is 

sufficient to take the text of a geometrical problem asking for a proof and try to 

change the question, “opening” it. This can be a first approach to the task design 

of prediction open problems. Moreover, problems concerning locus constructions 

can potentially be fruitful in terms of eliciting GP processes and construct 

prediction open problems.   
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In terms of implications for the teaching and learning of geometry, searching for 

and recognizing invariants under transformations is not only fundamental in 

doing geometrical investigations, but it is recognized as an important achievement 

that should be developed by students attending Italian high schools, as reported 

in the government’s document Indicazioni Nazionali (MIUR, 2010). According to 

our perspective, theoretical control allows the solver to maintain certain given 

properties during the manipulation of the figure. Moreover, a good theoretical 

control is strictly connected with reaching a coherent product of GP. So, we 

advance the hypothesis that educational activities that require the production of 

predictions can support a teaching and learning of geometry that addresses the 

issue of recognizing invariants.  

Moreover, we have observed that when a solver works in a DGE, the products of 

the previously accomplished processes of GP influence the exploration of a 

dynamic figure corresponding to the figure reasoned upon in the paper-and-pencil 

environment. If the solver is quite convinced of her incoherent predictions, she 

seems to be blind to the feedbacks provided by the dynamic figure. Coupled with 

the immediacy and spontaneity of the GP processes, this finding is interesting from 

an educational point of view: it reveals that even when a solver starts solving a 

problem in a DGE, she may have figural expectations on the behavior of the 

dynamic figure that can influence the exploration. We again stress the importance 

of allowing the solver to make explicit their predictions about a given geometrical 

figure.   

 

In Section 3.2.1, we touched on how students should develop all the elements 

involved in doing geometry and construct their figural concepts, as conjectured by 

Fischbein (1993). Indeed, concerning figural concepts, from the developmental 

point of view, initially the visual aspects are dominant, and gradually the role of 

formal constraints becomes more important, until the construction of the figural 

concept is reached (Mariotti, 2005). So, the figural concept is individually constructed 

during the learning experiences and can change. Moreover, personal intuitions 

change during the time (Fischbein, 1987).  

The educational problem is not to eliminate intuitive representations and 

interpretations. This, in our view, would be impossible and certainly not desirable. 

Rather, the educational problem is to develop the capacity of the student to analyse 

and keep under control his intuitive conceptions and to build new intuitions 

consistent with formal scientific requirements. (ibid., p. 206) 
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Therefore, we can claim that all the components of our model are modifiable 

passing time: 

- the student’s TEG changes because of the exposure to the mathematical 

culture and to the learning experiences; 

- consequently, the student’s figural components of figural concepts may also 

change, for example leaving some stereotyped images in favor of more 

versatile and transformable ones;   

- finally, the theoretical control can also be developed, making use of 

appropriate educational activities.  

Moreover, other abilities that could support the manipulation of figural elements 

(for example, visuo-spatial abilities or VP) are recognized to be not innate but 

learnable and malleable at any age (Newcombe, 2010; Bruce et al., 2017). 

So we can advance the hypothesis that also the GP processes are trainable by 

designing effective educational activities, which specifically support and improve 

the dynamic dimension of the process. From this perspective, thanks to the natural 

integration of motion into the exploration of a figure in a DGE, we advance the 

additional hypothesis that DGE can offer powerful educational resources. In 

particular, exploring a dynamic figure can support and improve the solver’s 

theoretical control and therefore the GP processes. 

In addition, our findings concern the central role of theoretical control in 

coordinating the interplay between the figural and the conceptual components, 

and the importance to refer the theoretical control to the specific TEG developed 

at school. In particular, they suggest the importance of teaching students to 

carefully use intuitive reasoning, and the importance of promoting development 

of their consciousness regarding theoretical control as well as the possibilities of 

theoretical inconsistencies.   

Finally, we want to stress that effective educational activities for improving GP 

processes must to take into account and support all the main components of the 

model: the manipulation of figural elements, the solver’s TEG and, more 

importantly, the theoretical control.  

10.4 Shortcomings and directions for further research 

We would like to conclude this chapter by expressing some limitations of our 

study, introducing some general questions that arise from it and outlining possible 

directions for future research that could stem from it.  
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As for the analyses, because of the time constraints, we did not have the 

opportunity to adequately investigate the generation of predictions within the 

DGE. Since the interaction between a solver and a dynamic figure has specific 

features that are different with respect to the interaction between a solver and the 

drawing of a figure on a sheet of paper, when the process of GP is undertaken 

within a DGE we can observe other and potentially different characteristics of the 

process. This is a line for further research. Moreover, looking at the second part of 

the interview we observed that solvers make use of different dragging modalities 

and that in some cases these modalities evolve during the exploration, influenced 

by the previously accomplished processes of prediction. Analyzing the dragging 

modalities, their possible evolution during the dynamic exploration, and their 

interaction with prediction processes could be a fruitful direction for further 

research aimed at gaining a deeper insight into GP processes and their influence 

on the solvers’ exploration of a dynamic figure. 

As for the task design, we developed our tasks starting from a limited set of 

common mathematical notions and theoretical elements to be used for solving the 

proposed prediction open problems (see Section 5.3). This choice is supported by the 

idea of having a common mathematical background that all the solvers could recall 

more or less easily and that they have certainly developed during their academic 

life. For this reason, for example, we did not make use of tasks that involve loci 

like ellipses or parabolas. We proposed the same tasks both to high school students 

and more expert solvers. However, for the latter, not all the tasks were really 

challenging, to the extent that they solved the tasks easily only by recalling a well-

known theorem or mathematical result. The most challenging task revealed to be 

Task 2; it could be interesting to explore the design of tasks that share a different 

set of mathematical notions and to study the solver’s GP processes within these 

tasks.  

Furthermore, since sometimes the questions that follow the very first one suggest 

a particular exploration and a specific focus (for instance, see the third question of 

Task 2) it might be interesting to see what happens if the question is changed, 

before focus is put on other configurations. For example, it might be interesting to 

observe also what happens if the request focuses on the general configuration, 

inducing the solver to focus on the final product of a possible transformation of 

the configuration and not only on a particular sub-configuration.  
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Moreover, in order to analyze in greater depth the role of theoretical elements 

recalled by the solvers during a process of GP, it could be interesting to interview 

solvers who belong to a more homogeneous sample. For example, we could 

analyze the features of GP processes undertaken by solvers who were previously 

exposed to a same set of educational activities designed by their teacher and aimed 

at introducing certain mathematical notions (for example, point symmetry and line 

symmetry). For the same reason, making use of suitable problems, it might be 

fruitful to conduct interviews with younger students that have experienced 

geometry activities only in an unformal way.  

Concerning the third research question, a small remark is needed. The study aimed 

at describing the process of GP, also analyzing both the role of figural and 

theoretical elements. In retrospect, the main focus was on the latter. The reason is 

the starting point and the rationale of the study: the shortcomings of using a pure 

psychological perspective for interpreting the prediction processes when the 

reasoning is carried out in the context of the TEG. In particular, a pure 

psychological approach does not seem to take into account and to clarify the 

possible role of elements that belong to the domain of Euclidean Geometry. This is 

the reason why this study focused mainly on the fundamental role of the 

theoretical elements, and why the role of figural elements might seem somewhat 

neglected. For the sake of completeness, it is important to highlight that the figural 

elements also have an influence on the prediction processes. Moreover, the role of 

figural components in geometrical reasoning is well documented within the 

Mathematics Education literature (e.g., Mariotti, 1992, 1995; Fischbein, 1993; 

Duval, 1994, 1995). In this perspective, a deeper investigation on the role of 

gestures within the prediction processes could be a fruitful line of investigation. 

Indeed, as highlighted in Section 10.1.1, speech and gestures intervene during all 

the GP process. Nevertheless, similarly to drawings, gestures have a spatial 

component that makes them potentially more effective in dealing with the figural 

component; the dynamic nature of a gesture seems appropriate to provide and 

support a dynamic representation of a figural concept. As an example, the gesture 

of tracing a circle, usually accomplished by moving a pointing finger that mimes a 

point moving on a circular trajectory while another finger is fixed, provides 

support to the figural component of the figural concept of “circle”. Moreover, even 

if our findings reveal that to be effective the transformations on the figural register 

must be coupled and directed by the discursive apprehensions, also the figural 

register can be coupled and directed by an apprehension “supported by gestures”. 

Indeed, gesture and speech give a different contribution: since gesture is an iconic 
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sign, better than speech it can afford the function of representing a manipulation 

of the figure. So, gestures can support perceptual apprehension in its dynamic 

dimension and can constitute the base of the prediction. 

A discussion should be opened, stemming from our findings, about whether, as a 

mathematics education community, we are interested in fostering processes of 

prediction-generation as described by our model, and therefore whether specific 

educational activities should be taught as part of the mathematics curriculum. If we 

decide to support the development of effective students’ GP processes, we should 

consider all the main components of our model as well as their interactions. 

Moreover, we need to take into account the solver’s difficulties in producing 

coherent products of GP using properly both the theoretical constraints and the 

figural elements emerging from the given geometrical figure. Might it be possible, 

through particular teaching strategies, to avoid some of the potential cognitive 

difficulties that certain figural elements seem to induce? If not, what strategies 

might be developed to overcome such difficulties? Moreover, might it be possible, 

through particular teaching strategies, to support the development of the solver’s 

theoretical control over the figures?  

So, a possible line of research could address the issue of the trainability of effective 

GP processes; the hypothesis of the trainability of GP processes should be 

confirmed or disconfirmed by further investigation. Moreover, we had advanced 

the additional hypothesis that a DGE can offer powerful educational resources in 

order to foster a dynamic approach to the geometrical figures; in particular, 

exploring a dynamic figure could support and improve the solver’s theoretical 

control and therefore the GP processes. This hypothesis offers an additional line of 

research.  

As concerns the solvers’ exploration of the tasks in a DGE after having faced the 

problem in a paper-and-pencil environment, we have unearthed an unexpected 

result. Indeed, we expected that a mismatch between the solver’s expectations and 

the actual behavior of the dynamic figure will trigger the solver’s surprise and 

consequently activate a new resolution process or new processes of prediction. 

Instead, we found that in some cases, if the products of GP are incoherent but quite 

convincing for the solvers, the dynamic exploration can be ineffective for changing 

the solvers’ mind to the extent that they seem to be “blinded” to the contradictory 

feedbacks provided by the DGE. In this case, we did not find any observable 

instances of surprise and our hypothesis was partially disconfirmed. Moreover, 

this phenomenon seems not to be coherent with the transformational-saliency 
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hypothesis (Battista, 2007). For these reasons, further investigations devoted to 

unveiling the reasons for this apparent blindness should be conducted. It might be 

interesting to investigate if acting in a DGE can support a solver in perceiving 

incoherence of which she was not previously aware.   

An aspect that has not been considered in this study but that would be worth 

focusing on is the role of the interviewer (or possibly teacher if the interview 

activities are used in the classroom). We have decided to look at GP processes 

accomplished in the particular environment of the task-based interview. This 

choice was supported by our research aim of gaining insight into a cognitive 

process. However, a one-to-one task-based interview is not the usual context in 

which students face geometrical problems. So, two new issues arise. The first has 

to do with task design of educational activities that elicit GP processes and that 

involve a whole classroom of students instead of a single solver. Is it possible to 

design educational activities for the whole class that include prediction open 

problems or, in general, elicit GP processes? If so, how can we design these 

activities? How should the formulation of the tasks change? How should the 

teacher propose these activities? How should the teacher intervene (by design) to 

elicit the desired processes? How can GP processes be elicited during regular 

classroom activities in geometry? 

The second issue addresses how the role of the teacher (as opposed to the 

unknown-to-the-students interviewer) might influence students’ GP processes. 

What changes in students' processes when the teacher proposes a prediction open 

problem or educational activities that elicit GP processes? How can the teacher 

support the student’s processes of prediction (potentially in different ways than 

through the supporting interview questions used by the researcher in this study)? 

What role is played by the didactical contract? 

Furthermore, our data reveal that when a GP process has been completed, the 

solvers can crystallize the predicted property into a statement (see the excerpt 

Marta_MS_T5_P1_(00:23 – 02:44) in Section 6.3.2) that can be very close to a 

conditional statement. So, we can advance the hypothesis that the conjecture-

generation process could be connected to and potentially could follow the 

prediction-generation process. The possible connection between the processes of 

prediction-generation and conjecture-generation can be further analyzed, as well 

as the situations in which a GP process does not lead to a conditional statement.  

Moreover, looking at the macro-process of GP (Section 10.1) and how several 

processes of GP can be connected and lead to a more or less complete product of 
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GP, we can advance the additional hypothesis that the process of GP may be an 

initial phase of the problem-solving process that could be followed by more 

analytical investigations. Further research can address the issue of the possible role 

of GP processes within the general problem-solving process.  

As highlighted in this chapter, the model allows us to describe the experts’ 

prototypical process of GP. However our findings are limited to the inferences that 

we can draw observing the expert solvers of our sample. Moreover, in some cases, 

the processes of GP undertaken by expert solvers goes so fast and is so condensed 

that it can be difficult to grasp in detail all the steps and features of the process. 

Nevertheless, from an educational point of view and to gain further insight into 

the mathematical habits of mind that interact with the GP processes, it is potentially 

important to unveil the processes of prediction of expert solvers. For this reason, a 

possible line of further research is to investigate the approach to more 

mathematically advanced prediction open problems of mathematicians who are 

active in research in different mathematical fields.  

We conclude with an important issue in the field of math education: the problem 

of designing tasks that are in line with the educational goals behind a specific 

activity, that is, the problem of generating “good problems” aimed at achieving 

certain educational goals. This issue touches research in curriculum design and 

further research could explore if prediction open problems should have a place in 

school mathematics, and if so which, at what grades, and to help achieve which 

educational goals.





 379 

Bibliography  
Anderson, J. R. (1995). Cognitive psychology and its implications (4th ed.). New York: 

Freeman. 

Arcavi, A. (2003). The role of visual representations in the learning of 

mathematics. Educational studies in mathematics, 52(3), 215-241. 

Arsac, G., Germain, G., & Mante, M. (1991). Problème ouvert et situation-problème. Université 

Claude Bernard Lyon I. 

Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging 

practices in Cabri environments, Zentralblatt fur Didaktik der 

Mathematik/International Reviews on Mathematical Education, 34(3), 66-72. 

Arzarello, F., Paola, D., Robutti, O., & Sabena, C. (2009). Gestures as semiotic resources in 

the mathematics classroom. Educational Studies in Mathematics, 70(2), 97-109. 

Arzarello, F., Robutti, O., & Thomas, M. (2015). Growth point and gestures: looking inside 

mathematical meanings. Educational Studies in Mathematics, 90(1), 19-37. 

Baccaglini-Frank, A. (2010). Conjecturing in dynamic geometry: A model for conjecture-

generation through maintaining dragging. Doctoral dissertation, University of New 

Hampshire, Durham, NH.  

Baccaglini-Frank, A. (2019). Dragging, instrumented abduction and evidence, in processes 

of conjecture generation in a dynamic geometry environment. ZDM, 1-13. 

Baccaglini-Frank, A. & Antonini, S. (2016). From conjecture generation by maintaining 

dragging to proof. In C. Csíkos, A. Rausch & J. Szitányi, Proceedings of the 40th 

conference of the International Group for the Psychology of Mathematics Education, Vol.2, 

pp. 43-50. Szeged, Hungary: PME. 

Baccaglini-Frank, A., & Mariotti, M. A. (2010). Generating conjectures in dynamic 

geometry: The maintaining dragging model. International Journal of Computers for 

Mathematical Learning, 15(3), 225-253. 

Baccaglini-Frank, A., Mariotti, M. A., & Antonini, S. (2009). Different perceptions of 

invariants and generality of proof in dynamic geometry. In Tzekaki, M., & 

Sakonidis, H. (Eds.), Proceedings of the 33rd PME Conference, Vol. 2, pp. 89-96. 

Thessaloniki, Greece.  

Baccaglini-Frank, A. & Sinclair, N. (2017). Surprise-driven abductions in DGEs. Proceedings 

of ICTMT13, Lyon.  



 380 

Balacheff, N., & Kaput, J. J. (1996). Computer-Based Learning Environments in 

Mathematics. In A. J. Bishop, et al. (Eds.) International Handbook of Mathematics 

Education, (pp. 343-351). Kluwer Ac. Publishers. 

Bartolini Bussi, M. B., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics 

classroom: Artifacts and signs after a Vygotskian perspective. Handbook of 

international research in mathematics education, (pp. 746-783). Mahwah, NJ: LEA. 

Battista, M. T. (2007). The development of geometric and spatial thinking. Second handbook 

of research on mathematics teaching and learning, 2, 843-908. 

Battista, M. T. (2008). Development of the Shape Maker geometry microworld: Design 

Principles and Research. In G. Blume & M. K. Heid (Eds.), Research on technology 

and the teaching and learning of mathematics: Cases and perspectives, (Vol. 2, pp. 341-

362). Charlotte, NC: Information Age Publishing. 

Bishop, A. J. (1983). Spatial abilities and mathematical thinking. In M. Zweng, T. Green, J. 

Kilpatrick, H. Pollak & M. Suydam (Eds.), Proceedings of the fourth international 

congress on mathematical education, (pp. 176-178). University of Iowa: Iowa. 

Bishop, A. J. (1988). A review of research on visualization in mathematics education. In A. 

Borbás (Ed.), Proceedings of the 12th PME International Conference, 1, 170-176. 

Veszprem, Hungary. 

Boero, P. (2001). Transformation and anticipation as key processes in algebraic problem 

solving. In Perspectives on school algebra, (pp. 99–119). Springer, Dordrecht. 

Boero, P., Garuti, R., & Mariotti, M. A. (1996). Some dynamic mental process underlying 

producing and proving conjectures. In Proceedings of 20th PME Conference, (Vol. 2, 

pp. 121-128). Valencia, Spain. 

Boero, P., Garuti, R., & Lemut, E. (2007). Approaching theorems in grade VIII. In Boero, P. 

(Ed.), Theorems in school: From history epistemology and cognition to classroom practice 

(pp. 249-264). Sense Publishers. 

Bruce, C. D., Davis, B., Sinclair, N., McGarvey, L., Hallowell, D., Drefs, M., ... & Okamoto, 

Y. (2017). Understanding gaps in research networks: using “spatial reasoning” as 

a window into the importance of networked educational research. Educational 

Studies in Mathematics, 95(2), 143-161. 

Chen, C., & Herbst, P. (2013). The interplay among gestures, discourse and diagrams in 

students’ geometrical reasoning. Educational Studies in Mathematics, 83, 285-307. 

Chinn, C. A., & Sherin, B. L. (2014). Microgenetic methods. In The Cambridge Handbook of 

the Learning Sciences, Second Edition (pp. 171-190). Cambridge University Press. 



 381 

Clement, J. (2000). Analysis of clinical interviews: Foundations and model viability. In 

Lesh, R. & Kelly, A., Handbook of research design in mathematics and science education, 

547-589. Hillsdale, NJ:  Lawrence Erlbaum. 

Clements, M. A. (1982). Visual imagery and school mathematics. For the Learning of 

Mathematics, 2, 2-9; 3, 33-39.  

Clements, M. K. A. (2014). Fifty years of thinking about visualization and visualizing in 

mathematics education: A historical overview. In Mathematics & mathematics 

education: Searching for common ground, (pp. 177-192). Springer, Dordrecht. 

Clements, D. H., & Sarama, J. (2011). Early childhood teacher education: the case of 

geometry. Journal of Mathematics Teacher Education, 14(2), 133-148.  

Coren, S., Porac, C., & Ward, L. (1979). Sensation and Perception, NY. 

Cornoldi, C., & Vecchi, T. (2004). Visuo-spatial working memory and individual differences. 

Hove (UK): Psychology Press. 

de Finetti, B. (1967). Il saper vedere in Matematica. Torino: Loescher.  

Dindyal, J. (2015). Geometry in the early years: A commentary. ZDM Mathematics 

Education, 47(3), 519-529. 

diSessa, A. A. (2007). An interactional analysis of clinical interviewing. Cognition and 

Instruction, 25(4), 523-565.  

diSessa, A. A. (2014). A history of conceptual change research: Threads and fault lines. 

In The Cambridge Handbook of the Learning Sciences, Second Edition, (pp. 88-108). 

Cambridge University Press. 

Duval, R. (1994). Les différents fonctionnements d’une figure dans une démarche 

géométrique. Repères IREM, 17, 121-138. 

Duval, R. (1995). Geometrical Pictures: Kinds of representation and specific processing. In 

R. Suttherland and J. Mason (eds.), Exploiting Mental Imagery with Computers in 

Mathematics Education, Springer, Berlin, pp. 142-157 

Duval, R. (1998). Geometry from a cognitive point of view. In C. Mammana & V. Villani 

(Eds.), Perspectives on the teaching of geometry for the 21st century: an ICMI study, (pp. 

37-51). Dordrecht: Kluwer Academic Publishers. 

Duval, R. (1999). Representation, vision and visualization: cognitive functions in 

mathematical thinking. Basic issues for learning. In F. Hitt, & M. Santos (Eds.), 

Proceedings of the 21st annual meeting of the North American chapter of the International 

Group for the Psychology of Mathematics Education, (pp. 3-26). Columbus: ERIC 

Clearinghouse for Science, Mathematics, and Environmental Education. 

Duval, R. (2000). Basic issues for Research in Mathematics Education. In Proceedings of the 

Proceedings of the 24th PME Conference, Vol. 1, pp. 55-69.Hiroshima, Japan.  



 382 

Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of 

mathematics. Educational studies in mathematics, 61(1), 103-131 . 

Duval, R. (2014). Commentary: linking epistemology and semio-cognitive modeling in 

visualization. ZDM—The International Journal on Mathematics Education, 46(1), 159-

170. 

Edwards, L. D. (2009). Gestures and conceptual integration in mathematical talk. 

Educational Studies in Mathematics, 70, 127-141. 

Finke, R.A. (1989). Principles of Mental Imagery. Cambridge: The MIT Press (MA).  

Fischbein, E. (1987). Intuition in science and mathematics: An educational approach. Dordrecht: 

Reidel. 

Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 

24(2), 139-162. 

Fischbein, E. (1999a). Intuitions and schemata in mathematical reasoning. Educational 

Studies in Mathematics, 38(1-3), 11-50. 

Fischbein, E. (1999b). Psychology and mathematics education. Mathematical thinking and 

learning, 1(1), 47-58. 

Gal, H., & Linchevski, L. (2010). To see or not to see: analyzing difficulties in geometry 

from the perspective of visual perception. Educational studies in mathematics, 74(2), 

163-183. 

Ginsburg, H. (1981). The clinical interview in psychological research on mathematical 

thinking: aims, rationales, techniques. For the Learning of Mathematics, 1(3), 4-11.  

Gutiérrez, A. (1996). Visualization in 3-dimensional geometry: In search of a framework. 

In L. Puig & A. Gutiérrez (Eds.), Proceedings of the 20th conference of the international 

group for the psychology of mathematics education, (pp. 3-19). Valencia: Universidad 

de Valencia. 

Goldenberg, E. P., Cuoco, A. A., & Mark, J. (1998). A role for geometry in general 

education? In R. Lehrer & D. Chazan (eds.), Designing Learning Environments for 

Developing Understanding of Geometry and Space, Lawrence Erlbaum Associates, 

Hillsdale, NJ, pp. 3-44. 

Goldenberg, E. P. (2014). “Mathematical Literacy”: An Inadequate Metaphor. In M. Fried 

& T. Dreyfus (Eds.) Mathematics & Mathematics Education: Searching for Common 

Ground. Springer, Dordrecht, pp. 145-156. 

Goldin, G. (2000). A scientific perspective on structures, task-based interviews in 

mathematics education research. In R. Lesh, & A.E. Kelly (Eds.), Research design in 

mathematics and science education. Erlbaum, Hillsdale, pp. 517-545. 



 383 

Goldin-Meadow, S. (2003). Hearing gesture: How our hands help us think. Cambridge: 

Harvard University Press. 

Hadamard, J. (1945). The Psychology of Invention in the Mathematical Field. Princeton, NJ: 

Princeton University Press. 

Hadas, N., Hershkowitz, R., & Schwarz, B. B. (2000). The Role of Contradiction and 

Uncertainty in Promoting the Need to Prove in Dynamic Geometry Environments. 

Educational Studies in Mathematics, 44 (1/2), 127-150. 

Healy, L. (2000). Identifying and explaining geometric relationship: interactions with 

robust and soft Cabri constructions. Proceedings of the 24th PME Conference, (Vol. 1, 

103-117). Hiroshima, Japan.  

Healy, L., & Hoyles, C. (2001). Software tools for geometrical problem solving: potentials 

and pitfalls. International Journals of Computers for the Learning of Mathematics, 6, 235-

256.  

Hershkowitz, R., Ben-Chaim D., Hoyles C., Lappan G., Mitchelmore M., & Vinner S. 

(1989). Psychological aspects of learning geometry. In P. Nesher & J. Kilpatrick 

(eds), Mathematics and Cognition, ICMI Study Series, pp. 70-95. Cambridge: 

University Press. 

Highfield, K., & Mulligan, J. (2007). The Role of Dynamic Interactive Technological Tools 

in Preschoolers’ Mathematical Patterning. In J. Watson & K. Beswick (Eds), 

Proceedings of the 30th annual conference of the Mathematics Education Research Group 

of Australasia, (pp. 372-381). MERGA.  
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Glossary 

Table of abbreviation 

GP  Process of GP 

GP_N Product of GP number “N” 

TEG Theory of Euclidean Geometry 

TC Theoretical Control 

DGE  Dynamic Geometry Environment  

 

P in place of “the point P” we reported only the letter 

P 

MB in place of “the segment MB” we reported only the 

letters MB 

C(C,CA) circle centered at C and with radius CA 

 

Name of the solver_GNumber  when the interview was video recorded, the 

solver was attending the “Number” class  

Name of the solver_MS  when the interview was video recorded, the 

solver has already reached a bachelor’s degree 

(the Italian “Laurea Triennale”) and was attending 

the postgraduate classes in Mathematics (the 

Italian “Laurea Magistrale”) 

Name of the solver_MD when the interview was video recorded, the 

solver has already reached a master’s degree in 

mathematics (the Italian “Laurea Magistrale”) 

Name of the solver_PhD when the interview was video recorded, the 

solver was a PhD student in Mathematics. 
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What is meant by…  

Expert solver  A solver who was exposed for a long time to the 

mathematical knowledge and, by virtue of this, is 

supposed to be expert. 

Theoretical elements  Elements that belong to the formal Theory of 

Euclidean Geometry. They include: all the 

properties that a solver gives to the configuration 

or that she gives to part of it; theorems and 

mathematical results.  

Figural elements Elements that belong to the figural domain in a 

specific moment (seen on the drawings or on the 

screen), related to the configuration in front of the 

solver.  

Theoretical control We use the expression theoretical control intending 

“[the act of] mentally imposing on a figure 

theoretical elements that are coherent in the 

theory of Euclidean geometry” (Mariotti & 

Baccaglini-Frank, 2018, p. 156). 

Anticipatory Intuition According to Fischbein’s definition (1987), we 

label anticipatory intuition moments in which a 

solver produces a sentence or a gesture suddenly 

without an explicit link to the previous process of 

solution and which led to new insight into the 

problem. At such a moment, we infer that an 

intuition has occurred, and we can observe an 

evidence of it. 

Window gestures These are gestures that communicates a product 

of GP. Gestures may or may not be coupled with 

discursive elements. 

Instance of surprise Gestural or discursive expressions which reveal a 

surprise.  
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Appendix A 
Here are the two version of the original consent forms used before the interviews.  
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Appendix B 
The original Italian version of all the excerpts that have been used in the thesis is 

available here:  

https://drive.google.com/open?id=11tiLfw8b33R2vUGnsXccUabsEZzrM7cE 

https://drive.google.com/open?id=11tiLfw8b33R2vUGnsXccUabsEZzrM7cE
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