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I N T R O D U C T I O N

In the last years, first-order methods received renewed attention, due
to the growing demand in solving large-scale optimization problems
arising in many important real-world applications (e. g., imaging, sig-
nal processing, machine learning). Their popularity is essentially re-
lated to the computational simplicity combined with low cost per
iteration and low memory requirements for solving such problems
with sufficient (but not high) accuracy.

Gradient methods are first-order iterative algorithms devised for
unconstrained optimization of differentiable functions and are based
on the use of steps proportional to the negative gradients of the objec-
tive function, until a local minimum is approached; hence, they only
require the evaluation of the objective function and the correspond-
ing gradient at each iterate. When dealing with constrained problems,
such methods are referred to as gradient projection methods; in this
case, the additional cost of applying a projection operator to ensure
the feasibility of each iterate, must be taken into account; however, in
many real applications, the computational effort required to fulfil this
task may not be excessively demanding, for example in presence of
simple constraints (e. g., bound constraints).

Steplength selection is a fundamental task for improving the effi-
ciency of gradient-based algorithms; it requires to balance the need of
accelerating the convergence rate without increasing the overall com-
putational cost. In the last decades, the role of the steplength selec-
tion strategies has been widely investigated; indeed, starting from the
seminal paper of Barzilai and Borwein (1988), many efficient steplength
selection rules have been designed, making the gradient approaches
an effective tool for solving optimization problems that handle large-
scale data and require real-time solutions. Most of these steplength
rules have been conceived for the unconstrained framework, with
the aim of exploiting some second-order information to achieve a
fast annihilation of the gradient of the objective function in inexpen-
sive way. Nevertheless, these rules have been successfully employed
also within gradient projection methods for constrained optimization,
without any prior analysis on the possible effects of the constraints
on the steplength formulation, at least to our knowledge.

The aim of this thesis is to investigate how the presence of the con-
straints can affect the spectral properties of some well-known step-
length selection rules in gradient projection method for solving con-
strained optimization problems. We focus, in particular, on two spe-
cial cases, very frequent in the applications: box-constrained prob-
lems and constrained problems subject to a single linear equality con-

ix



x introduction

straint in addition to box-constraints.
The main contribution of the thesis consists in the spectral analysis
and in the introduction of modified versions of the Barzilai-Borwein
(BB) rules in presence of special feasible regions. Indeed, we remind
that the convergence criteria do not require restrictive hypothesis on
the sequence of the steplength parameters, by simply assuming that
it is bounded below and above by positive constants; this flexibility
in the choice of the steplength can be exploited to develop updating
strategies aimed at optimizing the numerical behaviour. Hence, our
novel proposals are specifically designed in order to take account of
the information related to the first-order optimality conditions. In par-
ticular, we prove that the proposed modifications to the steplength
selection rules are able to sweep the spectra of suitable submatri-
ces of the Hessian matrix during the iterative procedure, improving
the performance of the method. Our analysis is not limited to the
BB-like rules but, in the case of box-constraints, it is extended also
to the LMSD steplength selection strategy developed by R. Fletcher
(2012). Finally, we describe the results of an extensive numerical ex-
perimentation, aimed at evaluating the practical effectiveness of the
novel strategies on both quadratic and non-quadratic test problems,
large-scale problems and real-world applications.

The thesis is organized as follows.
In Chapter 1 we remind the basic schemes of gradient methods for

unconstrained optimization and gradient projection methods for con-
strained optimization, included the variable metric approach known
as scaled gradient projection method. Then, the spectral properties
of Barzilai-Borwein rules and the LMSD approach are discussed in
detail in the context of unconstrained problems. Furthermore, with-
out claiming to be exhaustive, we also provide an overview of some
state-of-the-art steplength selection strategies.

The first part of Chapter 2 is dedicated to the spectral analysis
of the BB rules in gradient projection methods for solving box-con-
strained quadratic programming problems. We prove that, when the
active constraints start to stabilizing in the iterative procedure, the
first Barzilai-Borwein rule (BB1) is able to produce a sequence of
steplengths sweeping the spectrum of a proper submatrix of the Hes-
sian matrix, which depends only on the inactive constraints at the cur-
rent iterate. This property does not hold for the second BB rule (BB2);
therefore, our proposal consists in forcing the BB2 rule to mimic the
natural behaviour of BB1 by neglecting the quantities that depends on
the active constraints. This simple modification helps to recover suit-
able spectral properties, improving the practical performance of the
method, also when it is used within alternating strategies. The result-
ing rules are named, respectively, BoxBB2 and BoxABBmin. The sec-
ond part of the chapter is devoted to analyse the spectral behaviour of
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steplength selection strategies based on the use of Ritz values. This ap-
proach was originally proposed by Fletcher within the LMSD method,
and successively employed, after slight modifications, within a gradi-
ent projection scheme for the box-constrained framework, by Porta
et al. (2015). Since the spectral properties of both the mentioned ap-
proaches were not inspected, we propose a special analysis aimed at
highlighting the relation between subsequent gradients in a sweep.
Then we introduce an adaptive strategy, called Box-LMGP2, that al-
lows to set the length of a sweep during the iterative procedure, based
on the gradient components that provide feasible steps in a sweep.

In Chapter 3 we extend the analysis developed for the box-con-
strained case to the case of singly linearly equality constrained mini-
mization problems subject to lower and upper bounds (SLB). In par-
ticular, starting from the quadratic framework, we show that the BB1
rule produces a sequence of steplengths whose reciprocals belong to
the spectra of special submatrices of the Hessian matrix, correspond-
ing to suitable approximations of the Hessian matrix restricted to the
tangent space of the active constraints at the solution. As observed
in the box-constrained case, this property does not hold for the BB2
rule and, therefore, we introduce suitable modifications, in order to
foster a behaviour similar to that of the BB1 rule. Such modified rule
is named EQ-BB2 and is exploited also in the alternating scheme here
denominated EQ-ABBmin. Furthermore, we prove that the spectral
properties of BB1 and EQ-BB2 observed for quadratic programming
still hold also in the general non-quadratic case. The chapter ends by
reporting a further generalization of the BB rules to a variable metric
scheme.

Numerical experiments aimed at evaluating the practical effective-
ness of gradient projection scheme combined with the proposed rules
are reported in Chapter 4. The set of experiments collected in the
first section is devoted to comparing the behaviour of both standard
and modified versions of the BB rules and the limited memory ap-
proaches on box-constrained quadratic programming problems of
medium and large dimensions. The numerical results are coherent
with the theoretical analysis developed in Chapter 2, confirming also
the higher efficiency achieved by using the BB-based alternating sche-
me rather than the other rules. The general outcomes obtained in the
first part of numerical tests, are confirmed by the two successive sets
of experiments concerning, respectively, SLB quadratic programming
problems and non-quadratic problems. Furthermore, each section of
Chapter 4 contains a special discussion of the results gained on some
real-world applications related to Support Vector Machines, journal
bearing problem and imaging processing problems.
Finally, in Appendix A, some basic definitions and useful results on
projection matrices, used throughout the thesis, are presented for the
reader’s convenience.
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Mn,m(R) denotes the set of all the n-by-mmatrix overR; Mn,n(R)

is denoted by Mn(R).

In PMn(R) denotes the identity matrix of order n.

Or,s denotes the r-by-s matrix with null entries.

If x,y P Rn, then xTy =
řn
i=1 xiyi denotes the scalar product.

} ¨ } denotes the Euclidean norm: }x} = }x}2 =
?
xTx.

Given two subsets of indices I Ď t1, 2, . . . ,nu and J Ď t1, 2, . . . ,mu,
for any matrix A P Mn,m(R), the notation AI,J indicates the
submatrix defined by the intersections of the rows and columns
with indices in I and J. Similarly, for any vector x P Rn, xI
denotes the subvector whose entries have indices in I.

} ¨ }D denotes the norm induced by a symmetric positive definite
matrix D PMn(R): }x}D =

?
xTDx.

Given a symmetric matrix A P Mn(R), for any non-zero vector
x P Rn, RA(x) denotes the Rayleigh quotient of A at x.
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1
S P E C T R A L A N A LY S I S I N G R A D I E N T- B A S E D
M E T H O D S : A R E V I E W O F S O M E
S TAT E - O F - T H E - A RT S T E P L E N G T H S E L E C T I O N
S T R AT E G I E S

Gradient methods fall into the broader class of first-order methods,
designed to address general optimization problems of type

min
xPΩ

f(x) (1.1)

where f : Rn Ñ R is a continuously differentiable function over the
nonempty subset Ω Ď Rn. The case Ω = Rn is referred to as the un-
constrained case, while if Ω is a subset of Rn, the problem (1.1) is said
to be constrained. In the latter case, the feasible region Ω is generally
assumed closed and convex.

Gradient-based methods have been widely used for solving nonlin-
ear programming problems, revealing themselves as the most conve-
nient choice in many large-scale applications, due to their simplicity
combined with low iteration cost and low memory requirements.

Starting from an arbitrary initial guess x(0), standard gradient me-
thods for unconstrained minimization generate a sequence of vectors
x(1), x(2), . . . , in accordance with the general rule:

x(k+1) = x(k) +αkd
(k), k = 0, 1, 2, . . . , (1.2)

where αk ą 0 is the steplength parameter and, for ∇f(x(k)) ‰ 0, the
direction d(k) is chosen such that

∇f(x(k))Td(k) ă 0, (1.3)

i. e., d(k) is a descent direction. Typically, the iterative process is not
finitely convergent; it is terminated when }∇f(x(k))} ď ε1 or }x(k+1)´
x(k)} ď ε2}x

(k)}, where ε1 and ε2 are small positive scalars. The de-
scent direction (1.3) is usually defined as

d(k) = ´Dk∇f(x(k)), (1.4)

where Dk is a symmetric positive definite (SPD) matrix, known as
scaling matrix. Different methods arise from different choices of the
scaling matrix [9]; in this chapter, we will deal, at first, with the sim-
plest choice Dk = In, k = 0, 1, 2, . . . , which gives rise to the so-called
steepest descent (SD) method.

1



2 spectral analysis in gradient-based methods

Most of the popular gradient-based approaches have the desirable
feature of being iterative descent algorithms; this means that they gen-
erate a sequence of iterates able to foster a decrease in the objective
function at each iteration, that is:

f(x(k+1)) ă f(x(k)), k = 0, 1, 2, . . . , . (1.5)

Condition (1.5) is typically achieved by imposing further require-
ments on the choice of the steplength αk. As a consequence, the effec-
tiveness of gradient schemes strongly relies on appropriate selections
of the steplength αk, as well as the direction d(k).
A classical example of steplength selection is the minimization rule,
where the steplength is computed by means of an exact linesearch
along the steepest descent direction d(k) = ´∇f(x(k)), namely

αk = arg min
αě0

f(x(k) +αd(k)). (1.6)

The steplength defined by (1.6) is the classical Cauchy steplength [18].
In general, the minimizing steplength cannot be exactly computed in
the practice and it turns out to be an inefficient strategy, due to the
expensive computations needed for implementing one-dimensional
minimization algorithms; furthermore, it often reveals poor practi-
cal behaviour and low convergence rate, as pointed out for the first
time by Akaike [1], who highlighted the phenomenon of the typi-
cal zig-zag pattern exhibited by the Cauchy steepest descent method
in the unconstrained quadratic case. As a consequence, most of the
subsequent attempts in literature were successfully directed towards
inexpensive ways to compute an acceptable steplength instead of the
optimal one. The aim of these novel steplength selection rules is to
accelerate the steepest descent method, without increasing the com-
putational costs, and avoiding the iterates falling into a two dimen-
sional subspace, which is the reason for the inefficiency of the Cauchy
steplength (see e. g. [31, 53, 73, 77, 78]).

Among the wide variety of possibilities for choosing the steplength,
we intend to give special attention to steplength selection strategies
that exploit spectral properties of the Hessian matrix of the objective
function by means of low cost approximations of second-order infor-
mation, which do not require the explicit computation of the Hessian.
These techniques, starting from the inspiring work of Barzilai and Bor-
wein [5], gave new impulse to first-order approaches and contributed
to the development of a class of methods known as spectral gradient
methods, which are still considered a valuable tool in the context of
nonlinear unconstrained optimization (see e. g. [25, 26, 30, 33–35, 45,
47, 48, 51, 72, 74, 77, 90]). Many of these steplength selections have
been successfully exploited (without any modification to their defi-
nitions) also in gradient projection methods for solving constrained
optimization problems arising from real-world applications (see e. g.
[6, 10, 15, 27, 28, 61, 68, 71, 78]).
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This chapter is organized as follows. In Section 1.1 we recall the
spectral properties of some well-known steplength selection rules in
the context of unconstrained minimization, whereas in Section 1.2
we report the basics of gradient projection methods and some other
well-known algorithm for constrained optimization.

1.1 spectral properties in the unconstrained case

This section is devoted to describing some of the most popular step-
length selection strategies based on spectral properties of the Hes-
sian matrix. These techniques have been first designed for solving a
special instance of the general problem (1.1), given by the following
quadratic programming (QP) problem

min
xPRn

f(x) =
1

2
xTAx´ bTx+ c, (1.7)

where b P Rn, c P R and A PMn(R) is a SPD matrix. The quadratic
model (1.7) represents the natural setting for analysing how the up-
dating steplength rules are related to the eigenvalues of the Hessian
matrix and provides useful information that may enable to extend
the approach to the case of more general non-quadratic optimization
problems.
The theoretical motivation behind this approach for developing novel
strategies is related to a relevant property possessed by all the gra-
dient methods for the minimization of a strictly convex quadratic
function: that is, the solution can be reached in a finite number of
iterations by using as steplengths the sequence of the reciprocals of
the exact eigenvalues of the Hessian matrix. Indeed, let consider the
standard SD iteration

x(k+1) = x(k) ´αkg
(k) (1.8)

applied to the minimizing problem (1.7), where g(i) = g(x(i)) with
g(x) = ∇f(x) = Ax´ b; then a recurrence formula for the gradient
can be easily derived:

g(k+1) = g(k) ´αkAg
(k) =

k
ź

j=0

(
In ´αjA

)
g(0); (1.9)

let suppose, without loss of generality [44], that the matrix A has
distinct eigenvalues

0 ă λ1 ă λ2 ă ¨ ¨ ¨ ă λn, (1.10)

and g(0)i ‰ 0 for all i = 1, . . . ,n; by denoting with tv1, v2, . . . , vnu a
set of associated orthonormal eigenvectors, which form a basis of Rn,
the gradient can be expressed as

g(k+1) =
n
ÿ

i=1

µ
(k+1)
i vi, (1.11)
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where µ(k+1)i , i = 1, . . . ,n, are suitable scalars called eigencomponents
of g(k+1); in particular, since (1.11) holds true for g(0), from (1.9) we
have

g(k+1) =
n
ÿ

i=1

µ
(0)
i

(
k
ź

j=0

(
In ´αjA

))
vi; (1.12)

then, pairing the eigencomponents in equations (1.11)-(1.12) and re-
calling that Avi = λivi, for i = 1 . . . ,n, the i-th eigencompontent of
the gradient recurs according to the following formula

µ
(k+1)
i = µ

(0)
i

k
ź

j=0

(1´αjλi) = µ
(k)
i (1´αkλi). (1.13)

From (1.13) it follows:

• if µ(k)i = 0 for some i, then µ(h)i = 0 for h ě k and the com-
ponent of the gradient along vi will be zero at all subsequent
iterations;

• if αk = 1/λi, then µ(k+1)i = 0.

As a consequence, a finite termination property of the steepest de-
scent method can be deduced: in particular, if the eigenvalues of A
are known and the first n steplengths are defined by setting in any
order

αkj =
1

λj
, j = 1, . . . ,n,

then the method converges in, at most, n iterations. However, the
eigenvalues of A are not usually available. Then, in order to take
advantage of the previous results, a lot of efforts has been devoted
in designing steplength selection strategies able to generate suitable
approximations of the inverses of the eigenvalues of the Hessian. Gra-
dient methods that share the idea of choosing the steplengths based
on the spectral properties of the underlying Hessian, rather than the
standard decrease in the objective function, are known in literature
as spectral gradient methods; as first observed by Fletcher in [43], their
effectiveness is strictly related to the ability in sweeping the spectrum
of the inverse of the Hessian matrix (see also [35, 44, 72, 80, 87]).

1.1.1 The Barzilai-Borwein rules and their generalizations

The Barzilai-Borwein (BB) rules arise from the clever intuition of com-
bining quasi-Newton properties with a SD method for the uncon-
strained minimization of a differentiable function f(x). This technique
allows to accelerate the annihilation of the gradient of the objective
function by means of a suitable sequence of steplengths αk able to
capture second-order information in an inexpensive way.
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The idea of introducing second-order information within a gradient
scheme avoiding the explicit computation of the Hessian matrix is
typical of quasi-Newton methods. These methods provide a less de-
manding alternative to standard Newton’s method, ensuring a su-
perlinear convergence rate [65]; in particular, they only require the
knowledge of two successive iterates and the corresponding gradi-
ents for updating, at each step, an approximate Hessian matrix Bk
that solves the secant equation:

Bks
(k´1) = y(k´1), (1.14)

where s(k´1) = x(k)´ x(k´1) and y(k´1) = ∇f(x(k))´∇f(x(k´1)). In-
deed, condition (1.14) enables to yield curvature information at each
step by mimicking the approximate relation that holds for the true
Hessian and it is exact for quadratic functions:

∇2f(x(k))(x(k) ´ x(k´1)) « ∇f(x(k))´∇f(x(k´1)).

The BB strategy for the steplength selection adopts this principle to
incorporate second-order information within the search direction: in
particular, the steplength αk is determined by minimizing the error
on a secant equation, in two alternative ways:

αk = arg min
α

›

›

›
α´1s(k´1) ´ y(k´1)

›

›

›
, (1.15)

or

αk = arg min
α

›

›

›
s(k´1) ´αy(k´1)

›

›

›
. (1.16)

In other words, the BB rules define a gradient method described by
the iteration (1.8) where the steplength is obtained by forcing the
matrix (αkIn)

´1 to approximate the Hessian of the objective func-
tion. From (1.15) and (1.16), respectively, two updating rules for the
steplength can be defined:

αBB1
k =

}s(k´1)}2

s(k´1)
T
y(k´1)

, (1.17)

and

αBB2
k =

s(k´1)
T
y(k´1)

}y(k´1)}2
. (1.18)

The Barzilai-Borwein rules involved within a gradient scheme de-
fine a spectral method. Indeed, in the strictly convex quadratic case (1.7)
it can be readily seen that the steplengths (1.17)-(1.18) correspond to
the reciprocals of particular Rayleigh quotients of the Hessian ma-
trix,providing suitable approximations of its eigenvalues.
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Proposition 1.1 Let f : Rn Ñ R be defined as in (1.7) with SPD matrix A
and let tx(k)ukPN be the sequence generated by a gradient method of the
form (1.8). Then the BB rules (1.17)-(1.18) can be rewritten, respectively, as
follows:

αBB1
k =

g(k´1)
T
g(k´1)

g(k´1)
T
Ag(k´1)

=
(
RA(g

(k´1))
)´1

, (1.19)

αBB2
k =

g(k´1)
T
Ag(k´1)

g(k´1)
T
A2g(k´1)

=
(
RA(A

1/2g(k´1))
)´1

, (1.20)

where g(k´1) = ∇f(xk´1). Furthermore, if λ1 and λn denote, respectively,
the minimum and the maximum eigenvalues of A, then the following in-
equality holds

λ1 ď
1

αBB1
k

ď
1

αBB2
k

ď λn. (1.21)

Proof: from the gradient scheme (1.8) we can write

s(k´1) = ´αkg
(k´1). (1.22)

Similarly, the recurrence property (1.9) gives

y(k´1) = ´αkAg
(k´1). (1.23)

Replacing the relations (1.22)-(1.23) in (1.17), we have

αBB1
k =

(´αkg
(k´1))T (´αkg

(k´1))

(´αkg(k´1))T (´αkAgk´1)
=

g(k´1)
T
g(k´1)

g(k´1)
T
Ag(k´1)

;

thus the identity (1.19) is proved. Applying a similar argument to
αBB2k (1.18), we obtain (1.20). From the extremal properties of the

Rayleigh quotients (see [55], Theorem 4.2.2), it follows that
1

αBB1
k

=

g(k´1)
T
Ag(k´1)

g(k´1)
T
g(k´1)

ě λ1 and
1

αBB2k

=
(g(k´1)

T
A1/2)A(A1/2g(k´1))

(g(k´1)
T
A1/2)(A1/2g(k´1))

ď

λn. Finally, from the Cauchy-Schwarz inequality it follows: s(k´1)
T
y(k´1) ď

}s(k´1)}}yk´1}, which implies

αBB2
k =

s(k´1)
T
y(k´1)

}y(k´1)}2
ď
}s(k´1)}}y(k´1)}

}y(k´1)}2
=
}s(k´1)}

}y(k´1)}
ď

ď
}s(k´1)}2

}s(k´1)}}y(k´1)}
ď

}s(k´1)}2

s(k´1)
T
y(k´1)

= αBB1
k .

˝

We remark that, if g(k´1) is different from both the eigenvectors as-
sociated with the eigenvalues λ1 and λn, then the steplengths αk
defined by the BB rules satisfy

λ1 ă
1

αk
ă λn. (1.24)
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In [5] the authors established a first convergence result of the gradi-
ent scheme equipped with BB rules in the two-dimensional strictly
convex quadratic case; in particular, in this special case, they proved
that the gradient method (1.8) with the steplength defined by (1.18)
converges R-superlinearly with R-order equal to

?
2. This surpris-

ing result, however, cannot be generalized to the n-dimensional case,
where only R-linear convergence can rather be expected. In partic-
ular, in 1993, Raydan [75] proved the convergence of the BB method
for any-dimensional strictly convex quadratic problem and this result
was later refined by Dai and Liao [29], who established the following
result.

Theorem 1.1 [29, Thm. 2.5] Let f(x) be a strictly convex quadratic func-
tion. Let tx(k)ukPN be the sequence generated by the gradient method (1.8)
with the steplength defined by (1.17) (or, equivalently, (1.18)). Then, either
g(k) = 0 for some finite k, or the sequence t}g(k)}ukPN converges to zero
R-linearly.

In many applications, it is shown that BB rules are able to greatly
speed up the method, exhibiting a practical behaviour of higher or-
der; however, a theoretical explanation of this phenomenon is still
missing.

For what concern the possibility of extending the use of the Barzilai-
Borwein rules to general (continuously differentiable) non-quadratic
minimization problems, linesearch techniques are necessary to ensure
the convergence to a stationary point. At this regard, the first impor-
tant contribution was that of Raydan [76] who proposed the use of
the Grippo-Lampariello-Lucidi (GLL) nonmonotone linesearch strat-
egy [52], summarized in Algorithm 1, to force a sufficient decrease
in the objective function. The choice of a weaker nonmonotone tech-
nique rather than a standard monotone Armijo-type linesearch, is
motivated by the need of preserving some local properties of the
method related to the nonmonotone behaviour induced by the BB
rules, which is behind the effectiveness of the method. In particular,
the scheme proposed in [76], called Global Barzilai-Borwein (GBB)
method, requires to compute the steplength αk = αBB1k provided that

it belongs to a bounded interval
(
1

ε
, ε
)

, ε ą 0, otherwise αk = δ ą 0;

then, the gradient iteration is given by

x(k+1) = x(k) + νkd
(k), (1.25)

where d(k) = ´g(k), νk = γsαk, γ P (0, 1) and s is the first nonnega-
tive integer such that the following condition is satisfied:

f(x(k) + γsαkd
(k)) ď fref + σγ

sαkg
(k)Td(k), (1.26)
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where σ P (0, 1) and the reference function value fref is defined as the
maximum value of the objective function over the last M iterations

fref = max
0ďjďmin(k,M´1)

f(x(k´j)).

Let observe that for M = 1 the standard monotone Armijo rule is
recovered:

f(x(k) +αd(k)) ď f(x(k)) + σαg(k)
T
d(k), (1.27)

where the steplength is set equal to α = γsαk and s is the first nonneg-
ative integer such that (1.27) is satisfied. The convergence properties
of the GBB algorithm are reported in the following theorem.

Theorem 1.2 [76, Thm. 2.1] Assume that Ω0 = tx : f(x) ď f(x(0))u is a
bounded set. Let f : Rn Ñ R be continuously differentiable in some neigh-
borhood N of Ω0. Let tx(k)ukPN be the sequence generated by the GBB
algorithm. Then either g(k) = 0 for some finite k, or the following properties
hold:

(i) limkÑ∞ }g(k)} = 0 ;

(ii) no limit point of tx(k)ukPN is a local maximum of f;

(iii) if the number of stationary points of f inΩ0 is finite, then the sequence
tx(k)ukPN is convergent.

We observe that other nonmonotone linesearch strategies are avail-
able (e. g., see [89]). For a more detailed analysis on the convergence
properties of nonmonotone linesearch methods see also [24].

Algorithm 1 Nonmonotone linesearch algorithm (GLL)

1: Initialize: x(k),g(k) P Rn, α ą 0, M P N, σ,γ P (0, 1),
fref = maxtf(x(k´j), 0 ď j ď min(k,M)u;

2: αÐ α;
3: while f(x(k) ´αg(k)) ą fref ´ σαg(k)

T
g(k) do

4: αÐ γα;
5: end while
6: αk Ð α;
7: return αk

It is worth noting that in the non-quadratic case we need to assume
the well-known curvature condition [65]

s(k´1)
T
y(k´1) ą 0. (1.28)

Under this assumption, the inequality αBB2k ď αBB1k still holds and,
in addition, from Taylor’s theorem ([65, Thm. 11.1]) we have

y(k´1) =

ż 1

0

∇2f(x(k´1) + ts(k´1))s(k´1)dt,
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and, then, we obtain

1

αBB1
k

=

ż 1

0

s(k´1)
T∇2f(x(k´1) + ts(k´1))s(k´1)dt

}sk´1}2
,

that is, the inverse of the steplength defined by the BB1 rule can be
interpreted as the Rayleigh quotient related to the average of the
Hessian matrix along the segment s(k´1). A similar property holds
for αBB2

k .

Improving the BB rules: the alternating strategies

Despite their nice spectral properties, the BB rules may produce a
nonmonotonic behaviour in the sequences tf(x(k))u and

 

}g(k)}
(

.
Indeed, the recurrence (1.13) implies, for any i = 1, . . . ,n:

αk «
1

λi
ñ

$

’

’

’

’

’

&

’

’

’

’

’

%

ˇ

ˇ

ˇ
µ
(k+1)
i

ˇ

ˇ

ˇ
!

ˇ

ˇ

ˇ
µ
(k)
i

ˇ

ˇ

ˇ
,

ˇ

ˇ

ˇ
µ
(k+1)
j

ˇ

ˇ

ˇ
ă

ˇ

ˇ

ˇ
µ
(k)
j

ˇ

ˇ

ˇ
if j ă i,

ˇ

ˇ

ˇ
µ
(k+1)
j

ˇ

ˇ

ˇ
ą

ˇ

ˇ

ˇ
µ
(k)
j

ˇ

ˇ

ˇ
if j ą i λj ą 2λi.

(1.29)

From (1.29) we may observe that:

• when αk is close to the reciprocal of an eigenvalue λi, then it
forces a remarkable reduction of |µ(k+1)i | with respect to |µ(k)i |;
in particular, from (1.24), the sequence |µ(k)1 | is monotonically
decreasing;

• if αk is close to 1/λ1, it can amplify the absolute values of the
gradient’s eigencomponents corresponding to the larger eigen-
values, in particular |µ(k+1)n | is increased by a factor close to the
condition number of A;

• if αk is close to 1/λn, the effect on the reduction of small index
eigencomponents is negligible, especially when the condition
number λn/λ1 is large.

As observed by Fletcher in [44], even tough this nonmonotonic be-
haviour might seem undesirable, it is somehow responsible for the ef-
fectiveness and fast convergence of the method, and it should not be
completely prevented by using technique for limiting it, but may be
properly exploited, particularly when the condition number is large.
Indeed, when an iteration occurs on which small index components
dominate the gradient g(k´1), this gives rise to a small steplength αk
(from (1.19)), which in turn causes a large increase in large index
components of the gradient; the effect of this increase is to produce
subsequent large steplengths, leading to gradients in which large in-
dex components are no longer dominant, and therefore, in successive



10 spectral analysis in gradient-based methods

iterations the contribution of small index components in the gradient
can be significantly reduced as well.

A way to take advantage of the described nonmonotonic behaviour
is proposed in [90], by considering new strategies which adaptively
select a small steplength or a large one at every iteration or in a more
dynamical way. The heuristic idea behind this approach is the follow-
ing: assuming that the eigenvalues of A can be simply classified as
the large ones and the small ones, then a certain superlinear behavior
is related to how frequently the gradient is approaching the eigenvec-
tors associated with the large or small eigenvalues of A, during the
iterative procedure.

A practical implementations of this idea results in the Adaptive
Barzilai-Borwein (ABB) scheme:

αABB
k =

$

’

’

&

’

’

%

αBB2
k if αBB2

k

αBB1
k

ă τ,

αBB1
k otherwise,

(1.30)

where τ P (0, 1).
The adaptive criterion used to switch between the two steplengths is
based on the value

αBB2
k

αBB1
k

=

(
g(k´1)

T
Ag(k´1)

)2
}Ag(k´1)}2}g(k´1)}2

= cos2 (ψk´1) , (1.31)

where ψk´1 is the angle between g(k´1) and Ag(k´1). Hence, when
αBB2
k

αBB1
k

« 1 this means that g(k´1) is a sufficiently good approximation

of an eigenvector of A. In other words, the method tends to force a se-
quence of small steplengths αBB2

k with the aim of reducing the larger
index eigencomponents of the gradient, until αBB1

k becomes a suitable
approximation of the inverse of some small eigenvalue.

A further improvement of this approach is represented by the ABBmin

strategy proposed in [47], which consists in substituting αBB2
k in (1.30)

with a shorter steplength, as follows:

αABBmin
k =

$

’

’

&

’

’

%

mintαBB2
j | j = maxt1,k´mαu, ...,ku if α

BB2
k

αBB1
k

ă τ,

αBB1k otherwise,

(1.32)

where mα ą 0 is a positive integer. This choice is motivated by
the idea (supported by numerical experiments) that more efficient
schemes could be obtained by improving the ability to approximate λ´11 ,
achieving a fast reduction of the first gradient component. Then, the
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rule (1.32) is aimed at forcing steplengths that reduce large index com-
ponents of the gradient, in such a way that a following BB1 step will
likely depend on a gradient dominated by small components.
It is well-known that the alternating strategies generally outperform
other BB-based gradient methods, in particular for ill-conditioned
problems; furthermore, the ABBmin approach has been proved to im-
prove the efficiency of the original ABB method [47, 80, 90].

For QP problems, the R-linear convergence of both (1.30) and (1.32)
can be derived from the general result obtained for the class of me-
thods known as Gradient Methods with Retards (GMR) [25, 48]. This
approach, inspired by the BB methods, defines a family of gradient
methods which exploit the cyclic use of a steplength in some consec-
utive iterations. Given a positive integer m and a set of real numbers
qi ě 1, i = 1, . . . ,m, the GMR steplength is given by

αGMRk =
e(βk)

T
Aρk´1 e(βk)

e(βk)
T
Aρk e(βk)

, (1.33)

where eβk = x(βk) ´ x˚, βk P tmaxt0,k´mu, . . . ,k´ 1,ku and ρk P
tq1,q2, . . . ,qmu, assuming that x˚ is the unique solution of (1.7).
Clearly, the BB rules and their alternated versions are special instances
of (1.33). Indeed, by observing that Ae(βk) = A(x(βk) ´ x˚) = g(βk),
for m = 1, βk = maxt0,k´mu and ρk ” 3 we can recover the BB1
rule; similarly for ρk ” 4 we obtain the BB2 rule. The ABB method
can be regarded as a member of GMR family for βk = k ´ 1 and
ρk P t3, 4u, where the switching criterion beetween the two possible
values for ρk is based on the ratio (1.31); in a similar way, the ABBmin

strategy is obtained with suitable choices of βk and ρk based on the
value (1.31).

We report the more general convergence result, established in [25], for
the gradient method (1.8) applied to any-dimensional QP problems
of type (1.7), where the steplength satisfies the following property
(see [25, Property(A) p.9]):

Let 0 ă λ1 ď ¨ ¨ ¨ ď λn be the eigenvalues of the matrix A. The steplength
αk has the Property (A) if there exist an integer m and positive constants
M1 ě λ1 and M2 such that

(i) λ1 ď α´1k ďM1;

(ii) for any integer l P [1,n´ 1] and real number ε ą 0, if

l
ÿ

i=1

(g
(k´j)
i )2 ď ε and (g

(k´j)
l+1 )2 ěM2ε hold for j P [0, mintk,mu´1]

then α´1k ě 2
3λl+1.
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Combining (i) and (ii) the following theorem can be proved as gen-
eralization of the convergence result by Dai and Liao reported in The-
orem 1.1.

Theorem 1.3 [25, Thm. 4.1] Let f(x) be a strictly convex quadratic func-
tion. Let tx(k)ukPN be the sequence generated by the gradient method (1.8)
where the steplength αk has the Property(A). Then either g(k) = 0 for some
finite k, or the sequence t}g(k)}ukPN converges to zero R-linearly.

Finally, the R-linear convergence of the GMR method can be derived
as corollary of Theorem 1.3, since the steplength (1.33) satisfies Prop-
erty (A) (see [25]).

We conclude this section by mentioning also the ABBmin variant in
which a variable setting of the parameter τ is exploited, as suggested
in [15]:

α
ABBmin
k =

$

’

’

&

’

’

%

mintαBB2
j | j = maxt1,k´mαu, ...,ku if α

BB2
k

αBB1
k

ă τk,

αBB1
k otherwise,

(1.34)

where

τk+1 =

$

’

&

’

%

τk/ϑ if
αBB2
k

αBB1
k

ă τk,

τk ¨ ϑ otherwise,
(1.35)

with ϑ ą 1. A typical value for ϑ is 1.1. It is worthwhile observing that
this variable setting makes the efficiency of the steplength strategy
less dependent on the value of τ provided by the user and, in several
applications, it allowed remarkable performance improvements with
respect to the standard ABBmin strategy (see for example [15, 61, 71,
88]).

1.1.2 The Limited Memory Steepest Descent approach

We now describe the steplength updating rule proposed by Fletcher
in [45] within the Limited Memory Steepest Descent (LMSD) method.
This approach was first tailored for the quadratic case and then adapt-
ed for general non-quadratic functions, introducing some form of
monotonicity needed to drive the gradients to zero. The basic idea of
the method is to divide up the sequence of steepest descent iterations
into groups of m iterations, referred to as sweeps, where m is a small
positive integer and, at each new sweep, to compute the steplengths
as the reciprocals of the so-called Ritz values [49] of the Hessian ma-
trix (arising from the Lanczos process [59]), assuming that m Ritz
values of the Hessian are available from the previous sweep. The Ritz
values belong to the spectrum of A and provide m approximations
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of its eigenvalues [49]. Since the Lanczos process requires the Hes-
sian matrix to be available, Fletcher suggested an alternative way of
computing the Ritz values that exploits the gradients of the objective
function related to m previous iterations. The main steps of this pro-
cedure are briefly outlined below.

At any iteration, let suppose that, in addition to x(k) and g(k), the
most recent m back gradients are available

G =
[
g(k´m)g(k´m+1) ¨ ¨ ¨g(k´1)

]
, (1.36)

where m ď m is limited to an upper bound m on the number of such
vectors that can be stored. In general, it is assumed m ! n.
The nˆm matrix G helps to rewrite the recurrence equations (1.9) in
matrix form as

AG = [G, g(k)] J, (1.37)

where J is the (m+ 1)ˆm matrix

J =



1
αk´m

´ 1
αk´m

. . .

. . . 1
αk´1

´ 1
αk´1

 ,

and αk´i is the steplength associated with the gradient g(k´i), for
i = 1, . . . ,m. Equation (1.37) can be used to compute the tridiagonal
matrix T resulting from the application of m iterations of the Lanczos
process to the matrixA, without explicitly involving this latter one. To
this purpose, let remind that the recurrence properties of the gradient
descent method (1.8) for minimizing a quadratic objective function of
the form (1.7), implies

x(k) ´ x(k´m) P span
 

g(k´m),Ag(k´m),A2g(k´m), . . . ,Am´1g(k´m)
(

, (1.38)

that is, the vector x(k)´ x(k´m) belongs to the m-dimensional Krylov
space spanned by the Krylov sequence started from g(k´m). In par-
ticular, it follows that

g(k)´g(k´m) P span
!

Ag(k´m),A2g(k´m), . . . ,Amg(k´m)
)

. (1.39)

The importance of this Krylov sequence is related to its ability in
providing m distinct estimates of the eigenvalues of the matrix A: in-
deed, the Lanczos iterative process applied to A, with starting vector

q1 =
g(x(k´m))

}g(x(k´m))}
, allows to generate a matrix Q = [q1, q2, . . . , qm]
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whose columns are an orthonormal basis for the Krylov space (1.38)
and such that the matrix

T = QTAQ (1.40)

is a mˆm tridiagonal matrix. The eigenvalues of T are the so-called
Ritz values. From (1.39), the columns of G are a set of generators of the
m-dimensional Krylov subspace and, assuming that they are linearly
independent, we may write G = QR, where R is an upper triangular
and non singular matrix; hence, from (1.40) and (1.37) we have

T = R´TGTAGR´1 = R´TGT [G g(k)] JR´1 = [R r] JR´1, (1.41)

where the vector r is the solution of the linear system RT r = GTg(k).
Since the matrix R can be obtained from the Cholesky factorization
of GTG, then the computation of Q by means of the Lanczos process
is not required. At the beginning of each sweep, assuming that m
Ritz values θi, i = 1, . . . ,m are available from a previous sweep, the
steplengths for the next m gradient iterations are defined as the recip-
rocals of the Ritz values:

αk´1+i =
1

θi
, i = 1, . . . ,m. (1.42)

Let observe that for m = 1 we recover as special case the BB1 rule.
Within each sweep, m steepest descent steps are computed

x(k+i) = x(k´1+i) ´αk´1+i g
(k´1+i), i = 1, . . . ,m,

starting from x(k) and using the steplengths (1.42). Then, the iterate
x(k+m) is the starting vector for the next sweep and the gradients
g(k´1+i), i = 1, . . . ,m, obtained on the sweep are used to calculate
Ritz values for the next sweep. The convergence theorem proposed
in [45], follows an argument similar to that used in [75] for the BB
scheme. Furthermore, a proof of the R-linear convergence of the se-
quence t}g(k)}ukP to zero, under suitable assumptions, can be found
in [23].

Similarly to the BB-based approaches, the sequences of gradient
norms t}g(k)}u and function values tf(k)u exhibit a nonmonotonic
behaviour. Indeed, if θk is the current Ritz value, from (1.13) we can
write

µ
(k+1)
i =

(
1´

λi
θk

)
µ
(k)
i , i = 1, . . . ,n,

where λ1 ă θk ă λn (for the properties of the Rayleigh quotients);
then t|µ(k)1 |u is monotonically decreasing, with slow rate when θk is
close to λn; on the other hand, when θk is close to λ1, the eigencom-
ponent of the gradient corresponding to the smallest eigenvalue is
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drastically reduced, while those corresponding to the larger eigenval-
ues may increase: for example the quantity

|µk+1n | =

ˇ

ˇ

ˇ

ˇ

1´
λn

θk

ˇ

ˇ

ˇ

ˇ

|µ
(k)
n |

increases by a factor close to the condition number of A.
Some issues concerning how to ensure monotonocity and how to

adapt the method to non-quadratic case are treated in [45]. With re-
gard to the former task, the author suggests to select the Ritz values
in decreasing order of size, during a sweep; if a new iterate fails to im-
prove on the value f(k) obtained at the beginning of a sweep, then the
Cauchy steplength is computed and the sweep is terminated. A fur-
ther check is implemented to guarantee the decreasing of the gradient
norm within a sweep. According to the author, imposing monotonic-
ity does not seem to reduce or particularly affect the effectiveness of
the method, in the quadratic case.

Similar strategies to ensure monotonicity are needed in the non-
quadratic case, to guarantee the convergence of the method; in ad-
dition, suitable solutions have to be found to handle the following
issues, arising in the non-quadratic case:

• the matrix T is upper Hessenberg, but not usually tridiagonal;

• the matrix A is no longer available to compute the Cauchy
steplength in the algorithm;

• various effects related to the existence of non-positive curvature.

Of course, there are different possibilities to address them. For what
concern the matrix T , Fletcher suggests to construct a symmetric tridi-
agonal matrix T̃ , by replacing the strict upper triangle of T by the
transpose of the strict lower triangle, and use the eigenvalues of T̃ to
compute Ritz-like values for the next sweep. To overcome the second
drawback, one could implement alternative linesearch strategies (for
example that suggested by Raydan [76]); however, in [45] a slightly
more elaborate search aiming to satisfy Wolfe- Powell conditions is
chosen (essentially that described in Section 2.6 of Fletcher [42]), since
it ensures that the resulting T̃ has at least one positive eigenvalue.

Effects related to non-positive curvature can result also in the pres-
ence of some negative eigenvalues of matrix T̃ . In this case, some pos-
sibilities are: to discard the oldest gradients and recompute a smaller
matrix T̃ , or either terminate the sweep when a negative Ritz value
is found, or carry out a linesearch before terminating the sweep. The
last option is implemented in [45].

Finally, Fletcher in his paper mentioned the possibility of imple-
menting a preconditioned version of the sweep method and also a
version involving the harmonic Ritz values [66], which are all weighted
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harmonic means of the eigenvalues of A (while the standard Ritz val-
ues are weighted arithmetic means of A’s eigenvalues); in this case
the second BB rule is obtained as special instance for m = 1.

1.1.3 Other efficient steplength selection rules

We conclude this section by mentioning some other efficient steplength
selection strategies based on spectral properties, which share R-linear
convergence rate in the quadratic case.

Some of them have been proposed with the aim of generalising
the BB methods, and are based either on the alternation of Cauchy
steplength and BB steplengths, like in the Alternate Step gradient
method (AS) [25], or on their cyclic use as in the Adaptive Cyclic
Barzilai-Borwein (ACBB) [84] or the Cauchy Barzilai-Borwein method
(CBB) [77]. All these rules are special implementations of the GMR
scheme (1.33).

Recent proposals based on a different philosophy are the alter-
nating strategies SDA and SDC suggested in [34, 35] for QP prob-
lems. They are based on the idea of alternating Cauchy steplengths

αSD
k =

g(k)
T
g(k)

g(k)
T
Ag(k)

with constant steplengths α̃k, with the aim of es-

caping from the two-dimensional space where the steepest descent
method with Cauchy steplength asymptotically reduces.
Given an integer h ě 2, the SDA method (the acronym stands for
Steepest Descent with Alignment) computes a sequence of Cauchy
steplengths αSD

k until a switch condition is satisfied, then it performs
h consecutive iteration with the following constant steplength

α̃k ” α̃
SDA
k =

(
1

αSD
k´1

+
1

αSD
k

)´1
, (1.43)

provided that it produces a decrease in the objective function, other-
wise the steplength 2αSD

k is used. The switch condition is defined as

|α̃k ´ α̃k´1| ă ε (1.44)

where ε ą 0 is a small positive scalar. The rationale behind this strat-
egy is related to the following result.

Proposition 1.2 [34, Prop. 3.2] Let x˚ denote the solution of problem (1.7).
Under the assumptions (1.10) and

g(0)
T
ν1 ‰ 0, g(0)

T
νn ‰ 0 ,

the sequence tx(k)ukPN generated by the gradient method (1.8) with con-
stant steplength

α =
1

λ1 + λn
(1.45)
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converges to x˚. Moreover

lim
k

µ
(k)
h

µ
(k)
1

=
µ
(0)
h

µ
(0)
1

lim
k

(
λ1
λn

+
λn ´ λh
λn

)k
= 0, h = 2, . . . ,n, (1.46)

where µ(k)i , i = 1, . . . ,n, are the eigencomponents of g(k).

When the steplength (1.45) is adopted, relation (1.46) ensures that
the sequence tµ(k)h ukPN, for h ą 1, converges to zero faster than the
sequence tµk1ukPN; as a consequence, the search direction tends to
align with the eigendirection ν1 associated with the minimum eigen-
value λ1. For k sufficiently large, the value (1.43) is an approximation
of the steplength (1.45) (see [34, Prop. 3.1]).

Given two integers h ě 2 and mc ě 1, the SDC updating rule [35]
computes h consecutive Cauchy steplengths and then switchs to a
different steplength, which is applied in mc consecutive iterations, in
accordance with the following scheme

αSDC
k =

$

&

%

αSD
k if mod (k,h+mc) ă h,

αYs otherwise, with s = maxti ď k : mod (i,h+mc) = hu,
(1.47)

where the steplength αYs is computed by means of the Yuan for-
mula [87]

αY
k = 2


g

f

f

e

(
1

αSD
k´1

+
1

αSD
k

)2
+ 4

}g(k)}

αSD
k´1}g

(k´1)}
+

1

αSD
k´1

+
1

αSD
k


´1

.

(1.48)

Let remind that the steplength (1.48) is defined as the value α such
that, for 2-dimensional convex quadratics problems, three iterations
of the SD method equipped with the steplengths

α1 = αSD
1

α2 = α

α3 = αSD
3

are sufficient to find the minimizer of the objective function in exact
arithmetic. In particular, Yuan steplength αYs satisfies the inequalities(

1

αSD
k´1

+
1

αSD
k

)´1
ď αY

s ď mintαSD
k´1, αSD

k u

and tends to approximate the reciprocal of the largest eigenvalue λn
of the Hessian matrix (see [35, Thm. 3.1]). The R-linear convergence
of SDA and SDC strategies can be derived from the general result
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stated in Theorem 1.3, since the authors proved that both the rules
satisfy the Property (A).

We now report the steplength rule proposed in [73], which we refer to
as Golden Arcsine (GA). This method generates steplengths αk such
that the asymptotic distribution of the sequence t 1αk u is close to the
distribution with the arcsine density on the interval [m,M]:

p(t) =
1

π
a

(t´m)(M´ t)
, m ď t ďM

where m = λ1+ ε, M = λn+ ε, with small ε ě 0. Indeed, in this case,
the asymptotic rate of convergence of the gradient method can ap-
proach that of the Conjugate Gradient (see [73, Prop. 5]). However, in
practice, λ1 and λn are unknown; then during the iterative procedure
suitable estimators of the extremal eigenvalues are computed, based
on the moments of the probability measures associated with the spec-
trum of A at each iteration. To sum up, the steplength updating rule
is defined as

αGA
k =

1

βk
, βk = mk + (Mk ´mk)zk (1.49)

where mk and Mk are suitable approximation of the minimum and
maximum eigenvalues of A, respectively, updated at each iteration
and the sequence tzkukPN with the asymptotic arcsine density is
given by

zk = (1+ cos(πuk))2, k = 0, 1, . . . ,

where u2k = mintvk, 1´ vku, u2k+1 = maxtvk, 1´ vku, vk is the frac-

tional part of (k+ 1)φ, with φ denoting the golden ratio, φ =

?
5+ 1

2
.

Another technique to build steplengths aimed at breaking the zig-
zagging pattern of the Cauchy steplength is developed in [51], and
is based on the use of the Chebyshev nodes, i. e., the roots of the
Chebyshev polynomial of the first kind.

An interesting analysis of the spectral behaviour of the mentioned
strategies within the gradient method can be found in [80].
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1.2 classical gradient projection methods

Let now consider the constrained version of the differentiable opti-
mization problem (1.1), where the feasible region Ω is a closed and
convex subset of Rn.

The basic iteration of the standard Gradient Projection (GP) method
along the feasible direction [9, Chapter 2] is defined by

x(k+1) = x(k) + νkd
(k) =

= x(k) + νk

(
ΠΩ

(
x(k) ´αk∇f(x(k))

)
´ x(k)

) (1.50)

where ΠΩ(¨) denotes the Euclidean projection onto the feasible re-
gion, αk P [αmin,αmax] is the steplength parameter and νk P (0, 1] is
a linesearch parameter ensuring a sufficient decrease of the objective
function along the direction d(k), by means of an Armijo rule (1.27)
or its non-monotone version (1.26). This guarantees the convergence
of the method; at this regard, in [27] some box-constrained quadratic
2-dimensional counter-examples were constructed in order to show
how a gradient projection scheme equipped with BB-based steplength
selection rules may fail to converge without some kind of linesearch.
However, this failure would appear to be very unlikely in practice.

We report in Algorithm 2 the main steps of a general GP method
performing a linesearch along the feasible direction. Let observe that
for M = 1 in the step 3 of the algorithm, the standard Armijo rule is
obtained.

Algorithm 2 Gradient Projection (GP) method

Initialize: x(0) P Ω, δ,σ P (0, 1),

M PN, 0 ă αmin ď αmax,

α0 P [αmin,αmax];

1: for k = 0, 1, . . . do
2: d(k) Ð ΠΩ

(
x(k) ´αkg(x

(k))
)
´ x(k);

3: νk Ð 1; fref Ð maxtf(x(k´i)), 0 ď i ď min(k,M´ 1)u;
4: while f(x(k) + νkd

(k)) ą fref + σνkg(x
(k))Td(k) do

5: νk Ð δνk;
6: end while
7: x(k+1) Ð x(k) + νkd

(k);
8: define the steplength αk+1 P [αmin,αmax];
9: end for

In the next theorems we recall the basic convergence results for the
sequence tx(k)ukPN generated by Algorithm 2. We remark that Theo-
rem 1.4 refers to a GP method where a nonmonotone linsearch strat-
egy is performed as well as the Armijo rule, while the stronger results
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stated in Theorems 1.5-1.6 hold when a standard Armijo rule is con-
sidered.

Theorem 1.4 [10, Thm. 2.2] Let αmin,αmax be positive constants such
that 0 ă αmin ď αmax. Let tαkukPN Ă [αmin,αmax] be a sequence of
parameters. Then any accumulation point of the sequence tx(k)ukPN gener-
ated by Algorithm 2 is a stationary point for problem (1.1).

Theorem 1.5 [56, Thm. 1] Assume that the objective function of (1.1)
is convex and the solution set is not empty. Then the sequence tx(k)ukPN
generated by Algorithm 2 combined with the Armijo rule,converges to a
solution of (1.1).

Theorem 1.6 [14, Thm. 3.2] Let the hypotheses of Theorem 1.5 hold and
assume, in addition, that ∇f is globally Lipschitz on Ω (or ∇f is locally
Lipschitz and f is level bounded on Ω). Let f˚ be the optimal function value
for problem (1.1), then

f(x(k))´ f˚ = O

(
1

k

)
.

The analysis developed in [85] ensures the R-linear convergence of a
GP method combined with the BB rules and the GLL nonmonotone
linesearch procedure for the minimization of general strongly convex
functions. A variant of the GP method, developed to improve the
convergence rate, is the scaled GP method (or SGP method), defined
by the following iteration

x(k+1) = x(k) + νkd
(k) =

= x(k) + νk

(
ΠΩ,Dk

(
x(k) ´αkD

´1
k ∇f(x

(k))
)
´ x(k)

)
,

(1.51)

where Dk, k = 0, 1, . . . , is a SPD matrix whose eigenvalues lies in
the bounded interval

[
1
µ ,µ

]
, µ ě 1, and ΠΩ,Dk(¨) is the projection

operator onto Ω with respect to the Dk-norm:

ΠΩ,Dk(y) = arg min
xPΩ

}x´ y}2Dk . (1.52)

In the practice, the sequence tDkukPN is chosen as a set of diagonal
SPD matrices. For a convergence analysis of general SGP methods we
refer to [11, 14, 15].

Many well-known gradient projection methods for constrained opti-
mization exploit the same steplength selections designed for the un-
constrained case in combination with some kind of linesearch strat-
egy [2, 10, 12, 27, 41, 58, 61, 78, 86, 91].

Among them, one of the most popular is the Nonmonotone Spec-
tral Projected Gradient method developed by Birgin et al. in [10],
which consists in a scheme of the type described by Algorithm 2,
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where the spectral steplength updating rule is provided by the BB1
rule (1.17). The authors considered also another classical GP scheme
performing a nonmonotone linesearch on the feasible arc, instead of
the linesearch on the feasible direction considered in Algorithm 2;
however, they highlighted that these algorithms are especially effec-
tive when the projection step is easy to compute, for example when
the region Ω is a n-dimensional box. A generalization of this ap-
proaches to the case where the constraints are not simple (and conse-
quently the projection step is more difficult) is proposed in [11].

A different linesearch technique is suggested in [27] within a GP
method involving BB-based steplength updating rules (called Pro-
jected Barzilai-Borwein or PBB), for box-constrained quadratic pro-
grams. In particular, based on the works [32, 82], the authors imple-
mented an adaptive nonmonotone linesearch strategy with an Armijo-
type acceptability test

f(x(k) +αd(k)) ď fref + σαg
(k)Td(k)

where σ P (0, 1) and the reference function value fref is updated in
accordance with the following scheme:

Initialize: fref = +∞, fbest = fc = f(x(0)), L PN, l = 0 ;
1: for k = 1, 2 . . . do
2: if f(x(k)) ă fbest then
3: fbest Ð f(x(k)), fc Ð f(x(k)), lÐ 0;
4: else
5: fc Ð maxtfc, f(x(k))u, lÐ l+ 1;
6: if l = L then
7: fref Ð fc, fc Ð f(x(k)), lÐ 0;
8: end if
9: end if

10: end for
This choice seems to be motivated by practical considerations. Indeed,
the authors claimed that this adaptive nonmonotone linesearch strat-
egy is able to better preserve the properties of the spectral steplength
rules rather than the GLL technique, especially when relatively small
values of the parameter M are used in this latter one.

We now outline a variant of the PBB method, named projected
Barzilai-Borwein with fall-back (PBBF), recently appeared in [58], for
solving QP problems subject to separable convex constraints. This al-
gorithm is based on the following theorem, which gives an estimate
of the decrease of the convex quadratic objective function f defined
in (1.7).



22 spectral analysis in gradient-based methods

Theorem 1.7 [39, Prop. 5.10] Let x˚ denote the unique solution of (1.7),
and let λmin denote the smallest eigenvalue of A. If α P (0, 2}A}´1] where
}A} denote the matrix norm induced by the Euclidean norm, then

f(ΠΩ(x´αg(x)))´ f(x˚) ď η(α) (f(x)´ f(x˚)) , (1.53)

where η(α) = 1´ α̂λmin and α̂ = mintα, 2}A}´1 ´αu.

The estimate (1.53) is exploited within the PBBF method to achieve
a sufficient decrease in the objective function, avoiding the use of a
standard linesearch strategy. In particular, the algorithm generates
the projected BB iterations until there is either the improvement of
the objective function, or there are K consecutive iterations without
improvement. In the first case, an additional GP iteration with a fixed
steplength α P (0, 2/λmax] is carried out to perform the acceptability
test for achieving a sufficient decrease of the objective function at the
next iteration; in the second case, the new iterate is defined by the
fixed steplength GP iteration from the best of the last K iterations,
again with α P (0, 2/λmax]. The R-linear convergence of the sequence
tf(x(k))u generated by the PBBF scheme can be derived from Theo-
rem 1.7 (see [39, Thm. 2]).

The mentioned methods and, in general, spectral gradient methods
for constrained optimization share a lack of attention on the spectral
properties of the steplength selection strategies related to the feasible
region. In our opinion, this issue deserves an appropriate analysis,
since most of these strategies have been designed for achieving a fast
annihilation of the gradient of the objective function, which is not
the main goal in constrained optimization. Therefore, a better under-
standing of the role of the steplength in gradient projection methods
may be useful for improving first-order approaches in constrained
optimization, at least for some special set of constraints.

Before concluding, we recall that QP problems subject to special
closed and convex feasible set, such as box-constraints, can be ad-
dressed by means of other efficient techniques based on a different
philosophy, which generally combine active set strategies with gra-
dient projection method (see, e. g., [17, 38, 64, 79]). Among them, we
will mention the Modified Proportioning with Reduced Gradient Pro-
jections (MPRGP) method [38, 39], which will be considered for some
numerical experiments in Chapter 4. For this scheme, the R-linear
rate of convergence is proved not only for the decrease of the cost
function, but also for the norm of the projected gradient (see [39]).
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This chapter is devoted to investigate how some steplength selection
rules designed in the context of unconstrained optimization can be
adapted to gradient projection methods for solving box-constrained
problems. Indeed, the observations made at the end of Chapter 1

make clear that the study of the role of the steplength in gradient
projection methods has to be deepened, based on the idea that the
presence of the feasible region might influence the spectral properties
of the methods. To this purpose, we will proceed by first investigat-
ing the behaviour of the methods in the quadratic case, with the aim
of extending the analysis to general non quadratic box-constrained
optimization problems.
The chapter is organized as follows. In Section 2.1 we recall the first-
order optimality conditions for a quadratic problem subject to box-
constraints. In Section 2.2 the spectral properties of the BB rules are
investigated, highlighting the relationship between the reciprocals of
the steplengths generated by the rules and the spectrum of a spe-
cial submatrix of the Hessian matrix. In Section 2.3 we propose a
limited memory approach that combine the LMSD strategy with a
gradient projection method, taking into account the presence of the
box-constraints.

2.1 optimality conditions

Throughout the chapter we will consider the following box-constrain-
ed quadratic programming (BQP) problem

min
xPΩ

f(x) ”
1

2
xTAx´ bTx+ c, (2.1)

where A P Mn(R) is an SPD matrix, b P Rn, c P R, and, given
`,u P Rn with ` ď u, the feasible region is defined by

Ω = tx P Rn : ` ď x ď uu . (2.2)

We assume Ω ‰ H. Problem (2.1) has a unique solution x˚, satisfy-
ing the Karush-Khun-Tucker (KKT) first-order optimality conditions,
which can be rewritten as

$

’

’

&

’

’

%

g(x˚)i = 0 for `i ă x
˚
i ă ui,

g(x˚)i ď 0 for x˚i = ui,

g(x˚)i ě 0 for x˚i = `i.

(2.3)

23
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We remind that g(x) denotes the gradient of the objective function
at x: g(x) ” ∇f(x) = Ax´ b. Hereafter, we define N = t1, 2 . . . ,nu,
I˚ = ti P N : `i ă x˚i ă uiu and A˚ = ti P N : x˚i = `i, x˚i = uiu.
Apart from trivial cases, we assume H Ă I˚ Ă N and denote m = 7I˚,
0 ă m ă n.

We observe that the KKT conditions can be reformulated in terms of
the projected gradient. Indeed, for any x P Ω, let denote the active set
at x by A(x) = A`(x)YAu(x), where A`(x) = ti P N : xi = `iu and
Au(x) = ti P N : xi = uiu. The part of the gradient which violates the
KKT conditions can be decomposed into the free gradient ϕ and the
chopped gradient β, which are defined component-wise as

ϕi(x) = gi(x) for i P NzA(x), ϕi(x) = 0 for i P A(x),

βi(x) = 0 for i P NzA(x), βi(x) =

#

maxt0,gi(x)u for i P Au(x),

mint0,gi(x)u for i P A`(x).

(2.4)

The projected gradient is defined by

gP(x) = ϕ(x) +β(x). (2.5)

Clearly, the KKT conditions (2.3) at the solution x˚ can be rewritten
as follows:

gP(x˚) = On,1. (2.6)

Condition (2.6) suggests a useful stopping criterion for practical im-
plementations of GP methods. In particular, since (2.6) cannot be sat-
isfied exactly in practice (especially for large-scale problems), it can
be reasonable to require the weaker condition

}gP(x)} ď ε, (2.7)

for small ε ą 0 and x P Ω. The following result guarantees that any
feasible vector x that satisfies (2.7) is near the solution.

Proposition 2.1 [39, Lemma 5.1] Let x˚ be the solution of (1.7) where A
is a SPD matrix and let gP(x) denote the projected gradient at x P Ω. Then

}x´ x˚}2A ď 2(f(x)´ f(x
˚)) ď }gP(x)}A´1 ď

}gP(x)}

λmin

where λmin denotes the minimum eigenvalue of A.

2.2 spectral analysis of the bb rules related to the re-
duced hessian matrix

Our analysis starts by considering the GP method described by Al-
gorithm 2 for solving problem (2.1). In order to inspect the spectral
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properties of the BB rules (1.17)-(1.18) we need to investigate how
the gradient projection step influences their definitions. We will first
study the BB1 rule and then, by proceeding in a similar way, we will
develop the analysis for the second selection rule BB2.

As already observed, in the unconstrained case the effectiveness of
the BB-based rules results in a fast annihilation of the gradient, which
must be equal to zero at the solution. In the box-constrained case, in
accordance with the KKT conditions (2.3), only the gradient’s compo-
nents corresponding to the inactive variables are zero at the solution.
This simple observation suggests to implement a novel strategy able
to foster a reduction of the components of the gradient related to the
variables that remain inactive during the iterative procedure; at the
same time, the components corresponding to the active variables of
the current iterate are discarded; this procedure continues until the
solution is reached and, consequently, the subset of the active box-
constraints has stabilized.

In other words, to take advantage of the spectral properties induced
by the BB rules, we have to properly select the second-order informa-
tion to rely on. As a consequence, the effectiveness of the steplength
selection in the constrained case depends on its ability in sweeping
the spectrum of a particular submatrix of the Hessian rather than the
whole Hessian matrix.

Surprisingly, this ability is inherently owned by the BB1 rule, as
we will show in the next results, while the BB2 steplength does not
seem to inherit such ability and needs appropriate modifications to
preserve the spectral properties.

For the sake of clearness, we now introduce two subsets of indices
that are indispensable to our analysis and will be extensively used
throughout the chapter.

Let tx(k)ukPN be the sequence generated by the GP algorithm. At
the k-th iteration, the set of indices N may be partitioned into the
following subsets:

Jk´1 =
!

i P N : (x
(k´1)
i = `i ^ x

(k)
i = `i)_ (x

(k´1)
i = ui ^ x

(k)
i = ui)

)

,

Ik´1 = N z Jk´1.
(2.8)

Therefore, during the iterative procedure two families of subsets of N
arise, namely (Jk´1)kPN and (Ik´1)kPN, which tend to approximate
the corresponding sets A˚ and I˚ related to the solution, as k in-
creases.

remark It worth noting that the subset Jk´1 in (2.8) is equivalent
to a special instance of the so-called binding set defined for a general
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constrained minimization problem of the form (1.1), as follows (e. g.,
see [17] p.112 - Eq. (6.5)):

B(x) = ti P N : i P A(x), ξi(x) ě 0)u, x P Ω, (2.9)

where ξ(x) is an estimate (computed by the algorithm) of the La-
grangian multiplier associated to the constraints at x. In particular,
if Ω is the box-constrained set (2.2) and the Langrangian multipliers
are chosen by the first-order estimates, then (2.9) corresponds to the
following set

B(x) = ti P N : (x
(k´1)
i = `i ^ g

(k´1)
i ě 0)_ (x

(k´1)
i = ui ^ g

(k´1)
i ď 0)u, (2.10)

which in turn is equivalent to Jk´1.

Turning back to the BB1 rule, it can be readily observed that when
some variables remain active along two subsequent iterations, they
do not contribute to the computation of the steplength used to recover
the next iterate. Indeed, if at the k-th iteration the subset Jk´1 is not
empty, then s(k´1)j = 0 for all j P Jk´1, and we can write

αBB1
k =

}s(k´1)}2

s(k´1)
T
y(k´1)

=
}s

(k´1)
Ik´1

}2

s
(k´1)
Ik´1

T
y
(k´1)
Ik´1

. (2.11)

Equation (2.11) provides a significant interpretation of the first BB
rule in the box-constrained case; indeed, similarly to the unconstrained
case, the updating rule αBB1

k corresponds to the least-squares solution
of a suitable secant equation

αBB1
k = arg min

α

›

›

›
α´1s

(k´1)
Ik´1

´ y
(k´1)
Ik´1

›

›

›

2
. (2.12)

In other words, αBB1
k is defined by forcing the matrix (αkIn)

´1 to ap-
proximate the submatrix AIk´1,Ik´1 of A defined by the intersection
of the rows and columns with indices in Ik´1. We will refer to the
matrix AIk´1,Ik´1 as the reduced Hessian matrix at the (k´ 1)-th itera-
tion.

Now, we are able to prove that the spectral properties induced by
the BB1 rule are preserved with respect to the submatrix AIk´1,Ik´1 .
In particular, the next theorem shows that the inverse of αBB1k belongs
to the spectrum of the reduced Hessian matrix.

Theorem 2.1 Let tx(k)ukPN be the sequence generated by the GP method
(1.50) for solving problem (2.1), where A is a SPD matrix. Let Ik´1 be the
subset of indices defined in (2.8); then we have

λmin(AIk´1,Ik´1) ď
1

αBB1
k

ď λmax(AIk´1,Ik´1), (2.13)

where λmin(AIk´1,Ik´1) and λmax(AIk´1,Ik´1) are the minimum and the
maximum eigenvalues of AIk´1,Ik´1 , respectively.
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Proof: We assume that, at the iteration (k´ 1), the rows/columns of A
and the entries of any vector are reordered so that Ik´1 is related
to the first indices and Jk´1 contains the last indices; by dropping
for simplicity the iteration counter k´ 1 from Ik´1 and Jk´1, we can
write

x(k´1) =

 x
(k´1)
I

x
(k´1)
J

 , A =

 AI,I AI,J

ATI,J AJ,J

 . (2.14)

In view of the GP iteration, we have that the entries of the iterate x(k)

are

x
(k)
i =

$

&

%

x
(k´1)
i + νk´1(p

(k´1)
i ´ x

(k´1)
i ) for i P I,

x
(k´1)
i for i P J,

(2.15)

where p(k´1)i = max(`i, min(x(k´1)i ´αk´1g
(k´1)
i ,ui)), i P I.

Let p(k´1) denote the vector of length 7I with entries p(k´1)i , i P I.
Then, the vector s(k´1) can be partitioned as follows

s(k´1) =

 s
(k´1)
I

s
(k´1)
J

 =

 νk´1(p
(k´1) ´ x

(k´1)
I )

0

 . (2.16)

In view of (2.15), any entry g(k)i , i = 1, . . . ,n, of the gradient g(k) has
the following expression:

g
(k)
i =

n
ÿ

j=1

aijx
(k)
j ´ bi

=
ÿ

jPI

aij(x
(k´1)
j + νk´1(p

(k´1)
j ´ x

(k´1)
j )) +

ÿ

jPJ

aijx
(k´1)
j ´ bi

= g
(k´1)
i + νk´1

ÿ

jPI

aij(p
(k´1)
j ´ x

(k´1)
j ).

Consequently, from (2.16), we can write

y(k´1) =

 y
(k´1)
I

y
(k´1)
J

 = g(k)´ g(k´1) =

 AI,Is
(k´1)

İ

AJ,Is
(k´1)
I

 . (2.17)

From definition (2.11), the value of αBB1k can be written as

α BB1
k =

s
(k´1)
I

T
s
(k´1)
I

(s
(k´1)
I )TAI,Is

(k´1)
I

, (2.18)

and, therefore, αBB1
k is the reciprocal of a Rayleigh quotient of the sub-

matrix AI,I. From the extremal properties of the Rayleigh quotients
the thesis (2.13) follows. ˝

Theorem 2.1 confirms the natural ability of the BB1 rule in capturing
the spectral properties of the reduced Hessian matrix, rather than the
whole Hessian, consistently with the information deriving from the
KKT conditions at the solution.
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remark We observed that the presence of the projection operator
to ensure the feasibility of each iterates in GP schemes does not al-
low to prove the validity of any recurrence formula for the gradient’s
components. This might prevent the desirable sweeping process ex-
hibited by the BB-type methods in the unconstrained quadratic case.
Nevertheless, based on the previous analysis, we may argue that the
BB1 rule still plays a role in reducing the gradient components with
indices belonging to Ik´1. In particular, under the special assumption
that Ik = Ik´1 and p(k)i = (x

(k)
i ´αkg

(k)
i ), i P Ik, we have

g
(k+1)
Ik

= g
(k)
Ik

+AIk,Iks
(k)
Ik

= g
(k)
Ik
´ νkαkAIk,Ikg

(k)
Ik

.

Let r = 7Ik, by denoting with γ1, . . . ,γr and u1, . . . ,ur the eigen-
values and the associated orthonormal eigenvectors of AIk,Ik respec-
tively, we can write

g
(k+1)
Ik

=
r
ÿ

i=1

µ̄
(k+1)
i ui and g

(k)
Ik

=
r
ÿ

i=1

µ̄
(k)
i ui.

Hence, similarly to the unconstrained case, we obtain the following
recurrence formula for the gradient’s eigencomponents:

µ̄
(k+1)
i = µ̄

(k)
i (1´ νkαkγi), i P Ik.

As a consequence, in this special case, if the selection rule (2.18) pro-

vides a good approximation of
1

γi
, a useful reduction of |µ̄(k+1)i | can

be achieved.

Let now inspect how the subsets of indices Jk´1 and Ik´1 can affect,
at each iteration, the definition of the BB2 rule. As in the proof of The-
orem 2.1, let assume that at the iteration (k´ 1) the rows/columns of
A and the entries of any vector are reordered so that Ik´1 is related
to the first indices and Jk´1 contains the last indices.

If Jk´1 ‰ H, we have s(k´1)
T
y(k´1) = s

(k´1)
Ik´1

T
y
(k´1)
Ik´1

, whereas the

norm }y(k´1)}2 can be splitted into the sum }y
(k´1)
Ik´1

}2 + }y
(k´1)
Jk´1

}2.
Therefore, the steplength (1.18) can be written as

αBB2
k =

s
(k´1)
Ik´1

T
y
(k´1)
Ik´1

}y
(k´1)
Ik´1

}2 + }y
(k´1)
Jk´1

}2
, (2.19)

and, in view of (2.17), we have

αBB2
k =

s
(k´1)
Ik´1

T
AIk´1 ,Ik´1s

(k´1)
Ik´1

s
(k´1)
Ik´1

T
A2Ik´1 ,Ik´1

s
(k´1)
Ik´1

+s
(k´1)
Ik´1

T
ATJk´1 ,Ik´1

AJk´1 ,Ik´1s
(k´1)
Ik´1

. (2.20)

Both the expressions (2.19)-(2.20) emphasize that the steplength pro-
vided by the second Barzilai-Borwein rule does not correspond, in
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general, to any Rayleigh quotients of AIk´1,Ik´1 , and, consequently,
1/αBB2

k might be outside of the spectrum of the current reduced Hes-
sian at x(k´1).
A simple way to correct (2.19) consists in redefining its value as fol-
lows

αBoxBB2 =
s
(k´1)
Ik´1

T
y
(k´1)
Ik´1

}y
(k´1)
Ik´1

}2
. (2.21)

For the modified BB2 rule (2.21), hereafter called BoxBB2, the follow-
ing result holds.

Theorem 2.2 Let tx(k)ukPN be the sequence generated by the GP method
(1.50) for solving problem (2.1), where A is a SPD matrix. Let Ik´1 be the
subset of indices defined in (2.8), then we have

λmin(AIk´1,Ik´1) ď
1

αBB1
k

ď
1

αBoxBB2
k

ď λmax(AIk´1,Ik´1), (2.22)

where λmin(AIk´1,Ik´1) and λmax(AIk´1,Ik´1) are the minimum and the
maximum eigenvalues of AIk´1,Ik´1 , respectively.

Proof: from the definition (2.17) of y(k´1)Ik´1
readily follows

λmin(AIk´1,Ik´1) ď
1

αBoxBB2
k

ď λmax(AIk´1,Ik´1).

Similar arguments to that used in Theorem 2.1 show the remaining
inequalities. ˝

To provide a first insight about the different effect produced by the
steplength updating rules BB1, BB2 and BoxBB2 on the GP method,
we show the results obtained on a quadratic toy problem subject to
lower bounds of size n = 20, with ten active constraints at the solu-
tion. The eigenvalues of the Hessian matrix are logarithmically dis-
tributed in the interval [1, 500] and the spectral condition number is
equal to 500.
For the GP implementation we refer to Algorithm 2, with the follow-

ing parameters setting: αmin = 10´10, αmax = 106, α0 =
g(0)

T
g(0)

g(0)
T
Ag(0)

.

The feasible initial point x(0) is randomly generated with inactive en-
tries. The stopping criterion is based on the projected gradient (2.5),
which allows to check the possible violation of the KKT conditions;
in particular, we set

}gP(x(k))} ď tol}g(x(0))}, (2.23)

where tol = 10´8.
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Figure 1: Distribution of
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)

(red crosses) with respect to iterations for
BB1 (top panel), BB2 (middle panel) and BoxBB2 (bottom panel)
on a toy problem of size n = 20.
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In Figure 1 the reciprocals of the the steplength αk generated by each
updating rule are reported (red crosses) with respect to the iterations,
together with the eigenvalues of the Hessian matrix (green dotted
lines) and the eigenvalues of the reduced Hessian matrix (black cir-
cles). In each panel of the figure, the blue lines correspond the max-
imum and the minimum eigenvalues of the whole Hessian matrix,
whereas the blue circles at the right of each panel are used to plot the
eigenvalues of the submatrix AI˚,I˚ .

We observe that the inverses of the steplengths produced by the
BB2 method may sometimes fall outside the spectrum of the reduced
Hessian matrix, showing also a curious pattern; on the other hand,
the sequences

!

1
αk

)

generated by BB1 and BoxBB2 are able to sweep
the spectrum of the reduced Hessian matrix. In particular, the mod-
ification introduced within the BoxBB2 rule clearly acts as a correc-
tion factor for the BB2 rule, providing also a reduction of the itera-
tions needed to satisfy the stopping criterion. This general trend will
be confirmed by numerical experiments on randomly generated test
problem of larger size (see Chapter 4)).

In view of Theorem 2.2, we propose to exploit the BoxBB2 rule within
the alternating strategy (1.32), for an effective combination of short
and long steps also in the framework of gradient methods for con-
strained optimization. Hence, we denote by BoxABB min the modified
ABBmin selection in which the BB2 rule is replaced by the BoxBB2:

αBoxABB min
k =

$

’

&

’

%

min
!

αBoxBB2
j : j = maxt1,k´mαu, . . . ,k

)

if
αBoxBB2
k

αBB1k

ă τ

αBB1k otherwise
(2.24)

where τ P (0, 1) and mα is a nonnegative integer.
Furthermore, we will denote by BoxVABB min the variant of BoxABB min

inspired by the rule (1.34) (1.35) with ϑ = 1.1.
We compare the spectral behaviours of the updating strategies ABB min,
BoxABB min and BoxVABB min within the GP method on the toy prob-
lem. The results obtained for mα = 2 are shown in Figure 2. We ob-
serve that the sequence t 1αk u generated by standard ABBmin performs
poorly, due to the bad behaviour of the original BB2 steplength. The
ehnancement achieved by using the modified rule BoxBB2 within the
alternating strategies is clear from the corresponding panels in Fig-
ure 2: in both cases, the steplength sequences belong to the spectra of
the reduced Hessian matrices, and the numbers of iterations needed
to satisfy the stopping criterion are reduced by half with respect to
standard ABBmin rule, with a slight improvement for BoxVABB min. In
Figure 3 are reported the performances of the alternating strategies
for mα = 4; in this case, the standard ABBmin rule shows a behaviour
similar to the previous one, while the modified rules are negatively
affected by this choice, resulting in an higher number of iterations.
A possible explanation is that using steplength values computed at
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too far iterations, when the inactive set is not yet stabilized, may not
be appropriate. This suggest to exploit small values for the memory
parameter mα, in order to preserve the property that the inverse of
the steplength is in the spectrum of the current reduced Hessian.
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Figure 2: Distribution of 1
αk

with respect to iterations for ABBmin (top panel),
BoxABBmin (middle panel) and BoxVABBmin (bottom panel), with
mα = 2, on a toy problem of size n = 20.
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(red crosses) with respect to iterations for
ABBmin (top panel), BoxABBmin (middle panel) and BoxVABBmin
(bottom panel), with mα = 4, on a toy problem of size n = 20.
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2.3 a limited memory approach in gp methods for bqp

problems

In this section we investigate the spectral properties of the gradient
projection method combined with the steplength selection rule based
on Ritz values, proposed in [45].

When we solve a problem of type (2.1) by means of the GP method
(1.50), the procedure to build the matrix G defined in (1.36) using
the whole gradients may not be convenient; indeed, in this case, the
recurrence (1.9) does not hold; as a consequence, the matrix obtained
by procedure (1.41) may not exhibit a tridiagonal structure, but it is
an upper Hessenberg matrix.

The previous analysis on the BB-based rules suggests that suitable
rules based on the information related to the inactive constraints can
improve the performance of the method. Indeed, when the set of the
inactive variables starts to get settled, a recurrence formula for the
gradient’s components can be recovered again. A first attempt at sug-
gesting a possible way to employ the limited memory steplength se-
lection rule in the framework of box-constrained optimization was
done in [69]. In particular, the authors proposed to consider a gener-
alized matrix T , called T̃ , defined as

T̃ = R̃´T G̃T [G̃ g̃(k+m)] J̃ R̃´1,

where the vector g̃(k) is given by

g̃
(k)
i =

#

g
(k)
i if `i ă x

(k)
i ă ui

0 otherwise
, (2.25)

G̃ = [g̃(k) g̃(k+1) ¨ ¨ ¨ g̃(k+m´1)], R̃ is such that R̃T R̃ = G̃T G̃ and J̃ is
the (m+ 1)-by-m lower bidiagonal matrix

J̃ =


1

αkνk

´ 1
αkνk

. . .

. . . 1
αk+m´1νk+m´1

´ 1
αk+m´1νk+m´1

 . (2.26)

However, in [69] the spectral properties of the steplengths generated
by the suggested approach were not inspected. Thus, we propose a
special analysis, clarifying the relation between subsequent gradients
in a sweep. The idea is to introduce an adaptive strategy for setting
the length of a sweep during the iterative procedure, based on the
gradient components which provide feasible steps in a sweep. This
technique is consistent with the strategy we have adopted for the gra-
dient projection method equipped with BB-based rules: we select only



36 steplength selection in gp methods for box-constrained problems

some portions of the gradient to compute the steplengths, attempting
to approximate the inverse of the eigenvalues of a proper submatrix
of the Hessian matrix of the objective function, instead of considering
the whole Hessian matrix.

At any iteration, let consider the following subsets of N:

Fk = ti P N : `i ď x
(k)
i ´αkg

(k)
i ď uiu,

Bk = N z Fk .
(2.27)

remark We observe that the subsets defined in (2.27) are different
from the subsets Ik and Jk introduced in the previous section; in
particular, we have

Fk Ď Ik and Jk Ď Bk, k = 0, 1, . . . .

Based on (2.27), the entries of the iterate x(k+1) generated by the GP
method (1.50) are

x
(k+1)
i =

$

&

%

x
(k)
i + νk

(
x
(k)
i ´αkg

(k)
i ´ x

(k)
i

)
i P Fk,

x
(k)
i + νk

(
γ
(k)
i ´ x

(k)
i

)
i P Bk,

(2.28)

where

γ
(k)
i =

#

`i if x(k)i ´αkg
(k)
i ă `i,

ui if x(k)i ´αkg
(k)
i ą ui.

As a consequence, for any i = 1, . . . ,n, the new gradient components
are given by

g
(k+1)
i =

n
ÿ

j=1

aijx
(k+1)
j ´ bi =

=
ÿ

jPFk

aij

(
x
(k)
j ´ νkαkg

(k)
j

)
+

ÿ

jPBk

aij

(
x
(k)
j ´ νk(x

(k)
j ´ γ

(k)
j )

)
´ bi =

= g
(k)
i ´ νkαk

ÿ

jPFk

aijg
(k)
j ´ νkαk

ÿ

jPBk

aij
x
(k)
j ´ γ

(k)
j

αk
.

From the previous equation we can write

AFk,Fkg
(k)
Fk

=
[
g
(k)
Fk

g
(k+1)
Fk

] [ 1
αkνk

´ 1
αkνk

]
´AFk,Np

(k), (2.29)

where p(k) is a vector with n entries defined component-wise as

p
(k)
i =

$

&

%

0 i P Fk,
x
(k)
i ´γ

(k)
i

αk
i P Bk.

(2.30)
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At the next iteration, using the same argument employed to obtain (2.29),
we get

AFk+1,Fk+1g
(k+1)
Fk+1

=
[
g
(k+1)
Fk+1

g
(k+2)
Fk+1

] 1
αk+1νk+1

´ 1
αk+1νk+1

´AFk+1,Np
(k+1),

(2.31)

with the obvious definitions for Fk+1 and Bk+1. Under the assump-
tion Fk X Fk+1 ‰ H, we consider the following subsets of indices
by taking into account all the possible cases that may occur at the
(k+ 1)-th iteration:

F(k,k+1) := Fk XFk+1,

F
k
(k,k+1) := Fkz (Fk XFk+1) ,

F
k+1
(k,k+1) := Fk+1z (Fk XFk+1) .

From (2.29) and (2.31), we may write

AF(k,k+1),F(k,k+1)

[
g
(k)
F(k,k+1)

g
(k+1)
F(k,k+1)

]
=

=
[
g
(k)
F(k,k+1)

g
(k+1)
F(k,k+1)

g
(k+2)
F(k,k+1)

]
1

αkνk
0

´ 1
αkνk

1
αk+1νk+1

0 ´ 1
αk+1νk+1

+

´AF(k,k+1),N

[
p(k) p(k+1)

]
+

´

[
A

F(k,k+1),Fk(k,k+1)
g
(k)

F
k
(k,k+1)

A
F(k,k+1),Fk+1(k,k+1)

g
(k+1)

F
k+1
(k,k+1)

]
.

The argument can be generalized to a sweep of length m starting
from the iteration k. By defining F(k,k+m´1) := X

k+m´1
s=k Fs, we have

AF(k,k+m´1),F(k,k+m´1)

[
g
(k)
F(k,k+m´1)

¨ ¨ ¨ g
(k+m´1)
F(k,k+m´1)

]
=

=
[
g
(k)
F(k,k+m´1)

¨ ¨ ¨ g
(k+m´1)
F(k,k+m´1)

g
(k+m)
F(k,k+m´1)

]
J̃+

´AF(k,k+m´1),N

[
p(k) ¨ ¨ ¨ p(k+m´1)

]
+

´

[
A

F(k,k+m´1),Fk(k,k+m´1)
g
(k)

F
k
(k,k+m´1)

¨ ¨ ¨ A
F(k,k+m´1),Fk+m´1(k,k+m´1)

g
(k+m´1)

F
k+m´1
(k,k+m´1)

]
,

where J̃ is the (m+ 1)-by-m lower bidiagonal matrix given in (2.26).
If Fk+j Ď F(k,k+m´1), for j = 0, . . . ,m´ 1, the term

A
F(k,k+m´1),Fk+jk,k+m´1

g
(k+j)

F(k,k+m´1),Fk+jk,k+m´1
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does not contribute to the previous relation, which can be rewritten as

AF(k,k+m´1),F(k,k+m´1)

[
g
(k)
F(k,k+m´1)

¨ ¨ ¨ g
(k+m´1)
F(k,k+m´1)

]
=

=
[
g
(k)
F(k,k+m´1)

¨ ¨ ¨ g
(k+m´1)
F(k,k+m´1)

g
(k+m)
F(k,k+m´1)

]
J̃+ (2.32)

´AF(k,k+m´1),N

[
p(k) ¨ ¨ ¨ p(k+m´1)

]
.

In order to preserve the validity of (2.32) and correctly neglect the
term A

F(k,k+m´1),Fk+jk,k+m´1
g
(k+j)

F(k,k+m´1),Fk+jk,k+m´1
, j = 0, . . . ,m´ 1, we pro-

pose to interrupt a sweep and to restart the collection of new re-
stricted gradient vectors when the condition

Fk+j Ď F(k,k+m´1), j = 0, . . . ,m´ 1, (2.33)

is not satisfied. In this way we develop a technique which adaptively
controls the length of the sweep, up to the given value m. Typically,
at the beginning of the iterative process, this condition does not hold
and the length of the first sweeps is equal to 1, at most; however, as
the number of iterations increases, the components that are going to
be projected onto the feasible set Ω tend to stabilize and, as a con-
sequence, condition (2.33) starts to occur for a growing number of
iterations.

Hereafter, let suppose that (2.33) holds. The equality (2.32) may be
considered as a possible extension of the equation (1.37) that holds in
the unconstrained framework. Hence, in presence of box-constraints,
we suggest to avoid the storage of m back whole gradients vectors, by
consideringm back gradients restricted to the set of indices F(k,k+m´1).
Driven by these considerations, our implementation of the limited
memory steplength rule for the constrained case is based on the fol-
lowing submatrix of the matrix G:

G(k,k+m´1) =
[
g
(k)
F(k,k+m´1)

¨ ¨ ¨ g
(k+m´1)
F(k,k+m´1)

]
. (2.34)

Given m ě 1 and the mˆm matrix R(k,k+m´1) such that

RT(k,k+m´1)R(k,k+m´1) = G
T
(k,k+m´1)G(k,k+m´1),

we propose to compute, at each new sweep,m steplengths as inverses
of the eigenvalues of the symmetric matrix

T̃(k,k+m´1) = R
´T
(k,k+m´1)G

T
(k,k+m´1)AF(k,k+m´1),F(k,k+m´1)G(k,k+m´1)R

´1
(k,k+m´1), (2.35)

with the aim of approximating the inverses of the eigenvalues of the
matrix AF(k,k+m´1),F(k,k+m´1) .
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remark This idea mimics the approach proposed for the BB-based
rules in the box-constrained case. Indeed, under the special assump-
tions m = 1, Fk´1 = Fk and νk´1 = 1, in view of γ(k)Bk

= x
(k)
Bk

, the
recurrence (2.29) can be simplified as

g
(k+1)
Fk

= g
(k)
Fk
´ νkαkAFk,Fkg

(k)
Fk

.

Let denote with tδ1, . . . , δru and tw1, . . . ,wru, respectively, the eigen-
values and the associated orthonormal eigenvectors of AFk,Fk where
r = 7Fk; by writing g(k+1)Fk

=
řr
i=1 µ̄

(k+1)
i wi and g(k)Fk

=
řr
i=1 µ̄

(k)
i wi,

we obtain the following recurrence formula for the eigencomponents:

µ̄
(k+1)
i = µ̄

(k)
i (1´ νkαkδi).

This means that if the selection rule provides a good approximation
of 1δi , a useful reduction of |µ̄(k+1)i | can be achieved.
We underline that, if m = 1, αk is computed in order to estimate the
inverse of an eigenvalue of AFk´1,Fk´1 ; obviously, if Fk´1 = Fk, αk
can also provide a good approximation of 1δi and thus reduce the cor-

responding component |µ̄(k+1)i |.

In view of (2.32), the matrix T̃(k,k+m´1) defined in (2.35) has the fol-
lowing form

T̃(k,k+m´1) = R´T(k,k+m´1)G
T
(k,k+m´1)

[
G(k,k+m´1) g

(k+m)
F(k,k+m´1)

]
¨ J̃R´1(k,k+m´1)+

´ R´T(k,k+m´1)G
T
(k,k+m´1)AF(k,k+m´1),N ¨

[
p(k) ¨ ¨ ¨ p(k+m´1)

]
R´1(k,k+m´1) =

=
[
R(k,k+m´1), r(k,k+m´1)

]
J̃R´1(k,k+m´1)+

+ R´T(k,k+m´1)G
T
(k,k+m´1)AF(k,k+m´1),N ¨

[
p(k) ¨ ¨ ¨p(k+m´1)

]
R´1(k,k+m´1),

(2.36)

where the vector r(k,k+m´1) is the solution of the system

RT(k,k+m´1)r(k,k+m´1) = G
T
(k,k+m´1)g

(k+m)
F(k,k+m´1)

.

From a practical point of view, we want to avoid to explicitly use
the matrix AF(k,k+m´1),N; hence, we do not consider the exact rela-
tion (2.32), but its inexact version where the term

AF(k,k+m´1),N

[
p(k) ¨ ¨ ¨ p(k+m´1)

]
is neglected. For this reason, we do not compute the eigenvalues of
T̃(k,k+m´1) but the eigenvalues of the symmetric part of the matrix

Z(k,k+m´1) =
[
R(k,k+m´1), r(k,k+m´1)

]
J̃R´1(k,k+m´1).

To explain the relation between the eigenvalues of T̃(k,k+m´1) and
those of the symmetric part of Z(k,k+m´1), we start to clarify the
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details of our approach in the easier case of m = 1, where T̃(k,k+m´1)
reduces to a scalar.
In this case, at iteration k+ 1 only one gradient is available Gk = g

(k)
Fk

.
We are interested in computing

T̃k = R´Tk GTkAFk,FkGkR
´1
k ,

where

GTkGk = g
(k)
Fk

T
g
(k)
Fk

=

b

(g
(k)
Fk

)Tg
(k)
Fk

b

(g
(k)
Fk

)Tg
(k)
Fk

= RTkRk.

Then, using (2.29), the matrix T̃k is given by

R´Tk GTk

[g(k)Fk
g
(k+1)
Fk

] 1
αkνk

´ 1
αkνk

´AFk,Np
(k)

R´1k =

=
g
(k)
Fk

T

c

g
(k)
Fk

T
g
(k)
Fk

g(k)Fk
´ g

(k+1)
Fk

αkνk
´AFk,Np

(k)

 1
c

g
(k)
Fk

T
g
(k)
Fk

=
g
(k)
Fk

T
AFk,Fkg

(k)
Fk

g
(k)
Fk

T
g
(k)
Fk

.

(2.37)

Hence, in the special case m = 1, if we consider the exact expres-
sion of AFk,FkGk given by the right-hand side of (2.29), we obtain as

unique eigenvalue of T̃k the value
g
(k)
Fk

T
AFk ,Fkg

(k)
Fk

g
(k)
Fk

T
g
(k)
Fk

, which is the inverse

of the Rayleigh quotient of the matrix AFk,Fk .
However, in practice we compute the scalar

Zk = =
(g

(k)
Fk

)TAFk,Fkg
(k)
Fk

(g
(k)
Fk

)Tg
(k)
Fk

+
(g

(k)
Fk

)TAFk,Np
(k)

(g
(k)
Fk

)Tg
(k)
Fk

(2.38)

that is a value in the spectrum of AFk,Fk affected by en error, due
to the presence of the second term at the right-hand side of equa-
tion (2.38). An estimation of this error, at iteration k+ 1, is given by

ρk ď
}AFk,Np

(k)}

}g
(k)
Fk
}

.

From equations (2.28) and (2.30), the following results hold

}p(k)} = }p
(k)
Bk
} =

}x
(k+1)
Bk

´ x
(k)
Bk
}

αkνk
and }g

(k)
Fk
} =

}x
(k+1)
Fk

´ x
(k)
Fk
}

αkνk
.

As a consequence,

ρk ď
}AFk,Bkp

(k)
Bk
}

}g
(k)
Fk
}

ď
}AFk,Bk}}p

(k)
Bk
}

}g
(k)
Fk
}

=
}AFk,Bk}}x

(k+1)
Bk

´ x
(k)
Bk
}

}x
(k+1)
Fk

´ x
(k)
Fk
}

.
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From this bound on ρk, we can state that, when k is sufficiently large
so as the components to project onto the feasible region are almost
settled, the error ρk is negligible and the steplength αk+1 is approx-
imating the inverse of an eigenvalue of AFk,Fk . In the more general
case m ą 1, we compute the eigenvalues of the symmetric part of
Z(k,k+m´1) given by

Z̃(k,k+m´1) =
1

2

(
Z(k,k+m´1) +Z

T
(k,k+m´1)

)
. (2.39)

Then, from equation (2.36) we have

Z̃(k,k+m´1) = T̃(k,k+m´1)+

+
1

2

(
R´T(k,k+m´1)G

T
(k,k+m´1)AF(k,k+m´1),N

[
p(k) ¨ ¨ ¨p(k+m´1)

]
R´1(k,k+m´1)

)
+

+
1

2

(
R´T(k,k+m´1)

[
p(k) ¨ ¨ ¨p(k+m´1)

]T
ATF(k,k+m´1),N ¨G(k,k+m´1)R

´1
(k,k+m´1)

)
.

(2.40)

A result of perturbation matrix theory (see Corollary 6.3.4 [55]) en-
sures that
ˇ

ˇλj
(
Z̃(k,k+m´1)

)
´ λj

(
T̃(k,k+m´1)

)ˇ
ˇ ď

›

›Z̃(k,k+m´1) ´ T̃(k,k+m´1)
›

› , (2.41)

where λj(C) is the j´th eigenvalue of C. By denoting with }D}F the
Frobenius norm of a matrix D, the right-hand side of (2.41) can be
bounded from above as

›

›Z̃(k,k+m´1) ´ T̃(k,k+m´1)
›

› ď

ď

›

›

›
R´T(k,k+m´1)G

T
(k,k+m´1)AF(k,k+m´1),N

[
p(k) ¨ ¨ ¨ p(k+m´1)

]
R´1(k,k+m´1)

›

›

›
ď

ď

›

›

›
AF(k,k+m´1),N

[
p(k) ¨ ¨ ¨ p(k+m´1)

]›
›

›
}R´1(k,k+m´1)} ď

ď

›

›

›
AF(k,k+m´1),N

›

›

›

›

›

›

[
p(k) ¨ ¨ ¨ p(k+m´1)

]›
›

›
}R´1(k,k+m´1)} ď

ď

›

›

›
AF(k,k+m´1),N

›

›

›

›

›

›

[
p(k) ¨ ¨ ¨ p(k+m´1)

]›
›

›

F
}R´1(k,k+m´1)} ď

ď

›

›

›
AF(k,k+m´1),N

›

›

›

g

f

f

e

m´1
ÿ

i=0

›

›

›
p
(k+i)
Bk+i

›

›

›

2
}R´1(k,k+m´1)},

where in the second inequality we used

}R´T(k,k+m´1)G
T
(k,k+m´1)} =

b

}R´T(k,k+m´1)G
T
(k,k+m´1)G(k,k+m´1)R

´1
(k,k+m´1)} = 1.

We can conclude that, if m is relatively small, the matrix Z̃(k,k+m´1)
approaches the matrix T̃(k,k+m´1) as the number of iterations k in-
creases.

We now report a first result on the behaviour of the the described
approach on the toy problem of size n = 20 considered in Section 2.2
In particular we compare the behaviour of the GP method combined
with
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• the original limited memory steplength selection rule that col-
lects the whole back gradients, here named LMGP;

• the modified limited memory steplength selection rule suggested
in [69], which considers the modified gradients given in (2.25),
named Box-LMPG1;

• the modified LM steplength selection rule suggested in this sec-
tion exploiting the matrix G(k,k+m´1) defined in (2.34), which
we refer to Box-LMGP2.

The considered methods share a monotone Armijo linesearch (1.27)
and the stopping criterion defined by (2.23), with tol = 10´8.

In Figure 4-5-6 we report the behaviour of
!

1
αk

)

(red crosses) with
respect to the eigenvalues of the Hessian matrix (green dotted lines)
and the restricted Hessian submatrix (black circles) at each iteration k,
for m = 3, 5, 7. We observe that the inverses of the steplengths pro-
duced by the LMGP method may sometimes fall outside the spec-
trum of the restricted Hessian or even the spectrum of the whole
Hessian, while the other two approaches are able to restrain this ef-
fect. In particular, the sequence

!

1
αk

)

generated by the Box-LMGP2
scheme, belongs to the spectra of the current restricted Hessian matri-
ces, providing also a reduction of the iterations needed to satisfy the
stopping criterion. Indeed, the effectiveness of the Box-LMGP2 proce-
dure allows an earlier stabilization of the active set, with respect to
the other two approaches, and seems to be less sensitive to the length
of the sweep thanks to the adaptive strategy.
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Figure 4: Distribution of
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(red crosses) with respect to iterations for
LMGP (top panel), Box-LMGP1 (middle panel) and Box-LMGP2
(bottom panel) on a toy problem of size n = 20, for m = 3.
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Figure 5: Distribution of
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(red crosses) with respect to iterations for
LMGP (top panel), Box-LMGP1 (middle panel) and Box-LMGP2
(bottom panel) on a toy problem of size n = 20, for m = 5.
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(red crosses) with respect to iterations for
LMGP (top panel), Box-LMGP1 (middle panel) and Box-LMGP2
(bottom panel) on a toy problem of size n = 20, for m = 7.





3
S T E P L E N G T H S E L E C T I O N I N G P M E T H O D S F O R
S I N G LY L I N E A R LY C O N S T R A I N E D P R O B L E M S
S U B J E C T T O L O W E R A N D U P P E R B O U N D S

This chapter is dedicated to extend the spectral analysis of the GP
method to a more general class of constrained optimization problems,
which differs from the previous one due to the presence of an addi-
tional linear equality constraint:

min
xPΩ

f(x), (3.1)

where f(x) : Rn Ñ Rn is continuously differentiable function,

Ω = tx P Rn : ` ď x ď u, vTx = eu, (3.2)

and `,u, v P Rn, e P R. The feasible region Ω is assumed not empty.
We refer to (3.1) as the general SLB problem. The study of this mini-
mization model is quite relevant since it allows to formalize real-life
applications in different areas, such as imaging, signal processing,
machine learning and portfolio optimization (see for example [7, 8,
57, 67, 83]).

The chapter is organized as follows. In the first section we briefly
recall the optimality conditions in the quadratic case; in Section 3.2
we introduce the main properties of the Hessian matrix restricted to
the tangent space of the active constraints at the solution, which is
involved in the spectral analysis of the BB rules of Section 3.3. Finally,
the analysis is extended to the non-quadratic case and variable metric
GP schemes.

3.1 optimality conditions

We start our analysis from the simpler case of a SLB quadratic pro-
gramming problem (SLBQP) of the form:

min
xPΩ

f(x) ”
1

2
xTAx´ bTx+ c, (3.3)

where A P Mn(R) is a SPD matrix, b P Rn, c P R, and the feasi-
ble region Ω is defined as in (3.2). Problem (3.3) admits a unique

47
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solution x˚, satisfying the KKT optimality conditions, i. e. there exist
ψ˚ P R and µ˚,ν˚ P Rn such that

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

g(x˚)´ψ˚v´ µ˚ + ν˚ = 0,

vTx˚ = e,

µ˚ ¨ (x˚ ´ `) = 0, x˚ ´ ` ě 0, µ˚ ě 0,

ν˚ ¨ (u´ x˚) = 0, u´ x˚ ě 0, ν˚ ě 0,

(3.4)

where the products between vectors have to be intended component–
wise. We denote N = t1, 2 . . . ,nu, J˚ = ti P N : x˚i = `i, x

˚
i = uiu, and

I˚ = N z J˚ with cardinality m = 7I˚. Apart from trivial cases, we
assume that 0 ă m ă n, i. e. H Ă I˚ Ă N, and that v and the columns
of the identity matrix of order n with indices in J˚ are linearly inde-
pendent. Consequently, the entries of v corresponding to I˚ are not all
equal to zero. For the sake of simplicity, we assume that the rows and
columns of A and the entries of any vector are permuted so that I˚ is
related to the first m indices and J˚ contains the last n´m indices.
As for the box-constrained case, we will show that the reciprocals of
the steplengths defined by the BB rules are related to the spectrum
of special matrices obtained by restricting the matrix A to the sub-
spaces depending on the constraints that become active during the
iterative process. To this end, we first introduce the definition of Hes-
sian matrix restricted to the tangent space of the active constraints at
the solution and then we suggest a possible way to approximate this
matrix during the iterations of gradient projection schemes.

3.2 the hessian matrix restricted to the tangent space

of the active constraints at the solution

Let S˚ be the surface defined by the active constraints at the solution.
The tangent space T˚(x˚) to the surface S˚ at x˚ is defined as

T˚(x˚) =

#

x P Rn :

[
On´m,m IJ˚

vT

]
x = On´m+1,1

+

= range

([
II˚

On´m,m

])
X ker(vT ). (3.5)

Let T˚ ” T˚(x˚). Taking into account that the dimension of the surface
of the active constraints is (n´m+ 1), we have that the dimension of
T˚ is (m´ 1). We can consider the matrix A˚ PMm´1(R) given by

A˚ = Ũ˚
T
AŨ˚ (3.6)

where Ũ˚ denotes an nˆ (m´ 1) matrix whose columns are an or-
thonormal basis of T˚. We call A˚ the Hessian matrix restricted to
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the tangent space of the active constraints at the solution, hereafter
named restricted Hessian matrix. Let observe that this matrix is the ob-
vious generalization to the SLB case of the reduced Hessian matrix
arisen in the box-constrained framework.

In order to characterize the SPD matrix A˚, some useful results on
projection matrices are collected in the following lemmas (see Ap-
pendix for the proofs).

Let V and W be two subspaces of Rn such that Rn = V‘W.

Lemma 3.1 A matrix P PMn(R) is a projection matrix onto V = range(P)
along W = ker(P) if and only if

P2 = P. (3.7)

Let P be a projection matrix onto V along W and let x = v+w, v P V,
w PW. The matrix Q = In ´ P satisfies Qx = (In ´ P)x = w and

Q2 = (In ´ P)
2 = In ´ 2P+ P

2 = In ´ P = Q,

then Q is a projection matrix onto W along V. We also have

PQ = P(In ´ P) = P´ P
2 = On,

implying range(Q) Ď ker(P); from Lemma 3.1, range(Q) = ker(P).
Similarly QP = On, then range(P) = ker(Q).

Lemma 3.2 Let V be subspace of Rn and let VK denote the complement
subspace of V. A matrix P P Mn(R) is an orthogonal projection matrix
onto V along VK if and only if

P2 = P and PT = P. (3.8)

Furthermore, the eigenvalues of P are 0 or 1.

The following result descend from the previous lemmas and gen-
eral results on spectral decomposition of symmetric matrices.

Lemma 3.3 Let u P Rm be a non-zero vector and let V be the subspace
of Rm spanned by the vector u: V = range(u). Then, the matrix V = uuT

uTu

is the orthogonal projection onto V. Moreover, it holds that

(a) the spectral decomposition of V is

V =W
[
Om´1,m´1 Om´1,1
O1,m´1 1

]
WT ,

where W =
[
W̃ w

]
is an orthogonal matrix of order m such that

W̃ P Mm,m´1(R), w P Rm; the subspace range(V) = range(w) is
the one-dimensional eigenspace associated to the eigenvalue 1, whereas
ker(V) = range(W̃) is the eigenspace of dimension m´ 1 associated
to the eigenvalue 0;



50 steplength selection in gp methods for slb problems

(b) Let P = Im ´ V . The spectral decomposition of P is

P =W
[
Im´1 Om´1,1

O1,m´1 0

]
WT ;

the subspace range(P) = range(W̃) is the eigenspace of dimension
m´ 1 associated to the eigenvalue 1 and ker(P) = range(w) is the
one-dimensional eigenspace associated to the eigenvalue 0;

(c) P = W̃W̃T and V = wwT , with W̃TW̃ = Im´1 and wTw = 1,
w = u

}u}
; furthermore W̃ is an orthonormal basis of range(P) =

VK = ker(uT ).

By using the notation vT =
[
vTI˚ vTJ˚

]
and applying Lemma 3.3 with

u = vI˚ it is possible to construct the matrix Ũ˚ involved in (3.6).
Indeed, if P˚ denotes the orthogonal projection onto ker(vTI˚), from
part (c) of Lemma 3.3, there exists a matrix W̃˚ PMm,m´1(R) whose
columns are an orthonormal basis of ker(vTI˚). Consequently, the ma-

trix Ũ˚ =
[

W̃˚

On´m,m´1

]
provides an orthonormal basis for T˚, since any

vector x P T˚ can be expressed as xT =
[
xTI˚ xTJ˚

]
with xI˚ P ker(vTI˚)

and xJ˚ = On´m,1.

The spectrum ofA˚ plays a crucial role in the analysis of the steplength
rules, as we will see in the next section.

3.3 spectral analysis of the bb rules related to approx-
imating restricted hessian matrices

Since both the matrix A (and consequently A˚) and the solution x˚ of
problem (3.3) are not generally available, we need to provide a way
to realize a sequence of suitable approximations of A˚ during the it-
erations, in order to highlight the relationship between the spectra of
these approximating matrices and the BB rules.

Let consider the set of indices introduced in (2.8), and assume that
the rows/columns of A and the entries of any vector are reordered so
that Ik´1 is related to the first mk = 7Ik´1 indices and Jk´1 contains
the last n´mk indices.
Let Pk´1 be the orthogonal projection onto ker(vTIk´1):

Pk´1 = IIk´1 ´
1

vTIk´1vIk´1
vIk´1v

T
Ik´1

. (3.9)

From part (c) of Lemma 3.3, there exists a matrix W̃k´1 PMmk,mk´1(R)

such that

Pk´1 = W̃k´1W̃
T
k´1 (3.10)
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and the nˆ (mk ´ 1) matrix

Ũk´1 =

[
W̃k´1

On´mk,mk´1

]
(3.11)

is an orthonormal basis for the subspace

Tk´1 =

#

x P Rn :

[
On´mk,mk

IJk´1

vT

]
x = On´mk+1,1

+

. (3.12)

Therefore, the SPD matrix ŨTk´1AŨk´1 represents an approximation
of the matrix (3.6) at the iteration k.
Recalling that y(k´1) = g(k) ´ g(k´1), we introduce the vector:

t(k´1) = g(k) ´ψkv´ (g(k´1) ´ψk´1v) = y
(k´1) ´ (ψk ´ψk´1)v, (3.13)

where the quantities ψk´1 and ψk are defined as

ψk´1 =
vTIk´1g

(k´1)
Ik´1

vTIk´1vIk´1
, ψk =

vTIk´1g
(k)
Ik´1

vTIk´1vIk´1
. (3.14)

The values (3.14) correspond to approximations computed, respec-
tively, at iterations k´ 1 and k of the Langrange multiplier ψ˚ asso-
ciated to the equality constraint (see KKT conditions (3.4)). We notice
that quantities similar to t(k´1) were also considered in the frame-
work of interior point methods [54].

The vector (3.13) can be partitioned as t(k´1) =

[
t
(k´1)
Ik´1

t
(k´1)
Jk´1

]
, where

t
(k´1)
Ik´1

= Pk´1y
(k´1)
Ik´1

= W̃k´1W̃
T
k´1y

(k´1)
Ik´1

. (3.15)

To better understand the role of t(k´1)Ik´1
within the definitions of the

BB steplength rules, we need to prove the following lemma.

Lemma 3.4 Given s(k´1) = x(k)´x(k´1) and t(k´1) as in (3.13), it holds
that

(a) s(k´1)
T
v = 0;

(b) s(k´1)Ik´1

T
vIk´1 = 0;

(c) s(k´1)
T
y(k´1) = s(k´1)

T
t(k´1) = s

(k´1)
Ik´1

T
t
(k´1)
Ik´1

.

Proof: (a). s(k´1)
T
v = 0 since both x(k´1) and x(k) satisfy the equality

constraint vTx = e.
(b). We show that s(k´1)Ik´1

T
vIk´1 = 0. Indeed,

0 = s(k´1)
T
v =

ÿ

iPIk´1

s
(k´1)
i

T
vi +

ÿ

iPJk´1

s
(k´1)
i

T
vi =

ÿ

iPIk´1

s
(k´1)
i

T
vi,
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where the last equality holds since s(k´1)Jk´1
= On´mk,1 from the defini-

tion of Jk´1.
(c). From parts (a), we have that

s(k´1)
T
t(k´1) = s(k´1)

T
(
y(k´1) ´ (ψk ´ψk´1)v

)
= s(k´1)

T
y(k´1),

(3.16)

and, since s(k´1)Jk´1
= On´mk,1, the last equality follows easily. ˝

Lemma 3.4 allows to state that the classical formulation (1.17) of the
first BB rule provides a steplength depending only on the indices
belonging to the subset Ik´1:

αBB1
k =

s(k´1)
T
s(k´1)

s(k´1)
T
y(k´1)

=
s
(k´1)
Ik´1

T
s
(k´1)
Ik´1

s
(k´1)
Ik´1

T
t
(k´1)
Ik´1

. (3.17)

As in the box-constrained case, the rule αBB1
k computes the steplength

by capturing, in a natural way, the information related to the current
inactive constraints, discarding the effect of those constraints that re-
main active in the last two iterations. The original BB2 rule does not
fulfill a similar property, due to the special form of its denominator.
By analogy with the modified rule (2.21), we suggest the following
rule

αEQ-BB2
k =

s(k´1)
T
y(k´1)

t
(k´1)
Ik´1

T
t
(k´1)
Ik´1

. (3.18)

It is worth noting that the BB rules (2.11)-(2.21), obtained in the box-
constrained framework, are special instances of (3.17) and (3.18), in
the case where the SLBQP problem (3.3) reduces to (2.1) . Therefore,
the following theorem extends the result of Theorem 2.2 to the case
of SLBQP problems, showing that the reciprocals of αBB1

k and αEQ-BB2
k

give spectral information related to the approximating restricted ma-
trix ŨTk´1AŨk´1, at each iteration.

Theorem 3.1 Let tx(k)ukPN be the sequence generated by the GP method
(1.50) for solving problem (3.3), where A is a SPD matrix. Let Ik´1 be the
subset of indices defined in (2.8) and then we have

λmin(Ũ
T
k´1AŨk´1) ď

1
αBB1
k

ď 1

α
EQ-BB2
k

ď λmax(Ũ
T
k´1AŨk´1) (3.19)

where λmin(ŨTk´1AŨk´1) and λmax(ŨTk´1AŨk´1) are the minimum and
the maximum eigenvalues of ŨTk´1AŨk´1), respectively, and ŨTk´1 is de-
fined as in (3.11).

Proof: In the following, we drop for simplicity the iteration counter
k´ 1 from Ik´1 and Jk´1. In view of the gradient projection iteration
(1.50), we have that the entries of the iterate x(k) are

x
(k)
i =

$

&

%

x
(k´1)
i + νk´1(r

(k´1)
i ´ x

(k´1)
i ) for i P I,

x
(k´1)
i for i P J,

(3.20)
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where r(k´1)i = (ΠΩ(x(k´1) ´ αk´1g
(k´1)))i, i P I. The vector s(k´1)

can be partitioned as follows

s(k´1) =

 s
(k´1)
I

s
(k´1)
J

 =

 νk´1(r
(k´1) ´ x

(k´1)
I )

OJ,1

 . (3.21)

Any entry g(k)i , i = 1, . . . ,n, of the gradient g(k) has the following
expression:

g
(k)
i =

n
ÿ

j=1

aijx
(k)
j ´ bi

=
ÿ

jPI

aij(x
(k´1)
j + νk´1(r

(k´1)
j ´ x

(k´1)
j )) +

ÿ

jPJ

aijx
(k´1)
j ´ bi

= g
(k´1)
i + νk´1

ÿ

jPI

aij(r
(k´1)
j ´ x

(k´1)
j ).

Consequently, from (3.21), we can write

y(k´1) =

 y
(k´1)
I

y
(k´1)
J

 =

 AI,Is
(k´1)
I

AJ,Is
(k´1)
I

 . (3.22)

Furthermore, from Pk´1 = P
2
k´1 it follows that

Pk´1s
(k´1)
I =

(
II ´

1

vTI vI
vIv

T
I

)
s
(k´1)
I = s

(k´1)
I . (3.23)

Hence, from (3.23) and (3.10) we observe that

s(k´1)
T
s(k´1) = s

(k´1)
I

T
s
(k´1)
I = s

(k´1)
I

T
Pk´1s

(k´1)
I = }W̃T

k´1s
(k´1)
I }2. (3.24)

From (3.15), (3.22), (3.23), (3.10) and (3.11), we obtain

s(k´1)
T
y(k´1) = s

(k´1)
I

T
t
(k´1)
I

= s
(k´1)
I

T
Pk´1y

(k´1)
I

= s
(k´1)
I

T
Pk´1AI,Is

(k´1)
I

= s
(k´1)
I

T
Pk´1AI,IPk´1s

(k´1)
I

= s
(k´1)
I

T
W̃k´1W̃

T
k´1AI,IW̃k´1W̃

T
k´1s

(k´1)
I

= s
(k´1)
I

T
W̃k´1Ũ

T
k´1AŨk´1W̃

T
k´1s

(k´1)
I .

(3.25)

From (3.24) and (3.25), we can conclude that 1/αBB1
k is the Rayleigh

quotient of the matrix ŨTk´1AŨk´1 at the vector W̃T
k´1s

(k´1)
I ; then,

from the extremal properties of the Rayleigh quotient, we have

λmin(Ũ
T
k´1AŨk´1) ď

1

αBB1
k

ď λmax(Ũ
T
k´1AŨk´1).
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Similar arguments to that of (3.25), enable to write

t
(k´1)
I = W̃k´1Ũ

T
k´1AŨk´1W̃

T
k´1s

(k´1)
I . (3.26)

As a consequence, recalling that W̃T
k´1W̃k´1 = Im´1, we obtain

t
(k´1)
I

T
t
(k´1)
I = s

(k´1)
I

T
W̃k´1(Ũ

T
k´1AŨk´1)

2W̃T
k´1s

(k´1)
I . (3.27)

Since ŨTk´1AŨk´1 is a SPD matrix, we can introduce the vector

z(k´1) = (ŨTk´1AŨk´1)
1/2W̃T

k´1s
(k´1)
I , (3.28)

so that the scalar product in (3.27) can be written as

t
(k´1)
I

T
t
(k´1)
I = z(k´1)

T
ŨTk´1AŨk´1z

(k´1), (3.29)

and

s(k´1)
T
y(k´1) = z(k´1)

T
z(k´1).

Hence, 1/αEQ-BB2
k is the Rayleigh quotient of the matrix ŨTk´1AŨk´1

at the vector z(k´1) and the following inequality holds

λmin(Ũ
T
k´1AŨk´1) ď

1

αEQ-BB2
k

ď λmax(Ũ
T
k´1AŨk´1). (3.30)

Finally, from the Cauchy-Schwarz inequality, it follows that

1

αBB1
k

=
s(k´1)

T
y(k´1)

s(k´1)
T
s(k´1)

=
s
(k´1)
Ik´1

T
t
(k´1)
Ik´1

s
(k´1)
Ik´1

T
s
(k´1)
Ik´1

ď
}s

(k´1)
Ik´1

}}t
(k´1)
Ik´1

}

}s
(k´1)
Ik´1

}2
=
}t

(k´1)
Ik´1

}}t
(k´1)
Ik´1

}

}s
(k´1)
Ik´1

}}t
(k´1)
Ik´1

}

ď
t
(k´1)
Ik´1

T
t
(k´1)
Ik´1

s
(k´1)
Ik´1

T
t
(k´1)
Ik´1

=
t
(k´1)
Ik´1

T
t
(k´1)
Ik´1

s(k´1)
T
y(k´1)

=
1

αEQ-BB2
k

.

(3.31)

˝

remark The spectral properties described in Theorem 3.1 are use-
ful to highlight the ability of the BB steplength updating rule to foster
a reduction of the quantities |g(k´1)i ´ψk´1vi|, i P Ik´1, which is a
remarkable skill since at the solution x˚ we have gI˚(x˚)´ψ˚vI˚ = 0,
as prescribed by the KKT conditions. The next theorem is crucial to
prove the mentioned ability.
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Theorem 3.2 Let assume that Ik´1 = Ik and

`i ă
(
ΠΩ(x(k´1) ´αk´1g

(k´1))
)
i
ă ui, i P Ik´1.

The following equality holds:

Pkg
(k)
Ik

=
(
Imk

´αk´1νk´1Pk´1AIk´1,Ik´1Pk´1
)
Pk´1g

(k´1)
Ik´1

. (3.32)

Proof: By using equations (3.21)-(3.23) and the assumption Ik´1 = Ik,
we can write

Pkg
(k)
Ik

= Pk´1

(
g
(k´1)
Ik´1

+AIk´1,Ik´1s
(k´1)
Ik´1

)
= Pk´1g

(k´1)
Ik´1

+νk´1Pk´1AIk´1,Ik´1Pk´1

(
r(k´1) ´ x

(k´1)
Ik´1

)
,

(3.33)

where r(k´1) =
(
ΠΩ(x(k´1) ´αk´1g

(k´1))
)
Ik´1

.

Since x(k)Jk´1
= x

(k´1)
Jk´1

and `Ik´1 ă r(k´1) ă uIk´1 , the vector

ΠΩ(x(k´1) ´αk´1g
(k´1)) can be partitioned as follows

ΠΩ(x(k´1) ´αk´1g
(k´1)) =

 r(k´1)

x
(k´1)
Jk´1

 .

Let denote ẽ = e´ vTJk´1x
(k´1)
Jk´1

, the vector r(k´1) solves the problem

r(k´1) = arg min
!

r : vTIk´1
r=ẽ

)

1

2
}r´ (x(k´1) ´αk´1g

(k´1))Ik´1}
2. (3.34)

From the KKT conditions related to problem (3.34), the vector r(k´1)

has the following expression

r(k´1) = x
(k´1)
Ik´1

´αk´1g
(k´1)
Ik´1

+

´
vTIk´1(x

(k´1)
Ik´1

´αk´1g
(k´1)
Ik´1

)

vTIk´1vIk´1
vIk´1 +

ẽvIk´1

vTIk´1vIk´1
=

= x
(k´1)
Ik´1

´αk´1g
(k´1)
Ik´1

´
vTIk´1x

(k´1)
Ik´1

vIk´1

vTIk´1vIk´1
+

+
αk´1v

T
Ik´1

g
(k´1)
Ik´1

vIk´1

vTIk´1vIk´1
+

ẽvIk´1

vTIk´1vIk´1
=

= x
(k´1)
Ik´1

´αk´1Pk´1g
(k´1)
Ik´1

.

(3.35)

From equations (3.33) and (3.35), the thesis is proved. ˝

Assuming Ik = Ik´1, as immediate corollary of Theorem 3.2 we have

W̃kW̃
T
kg

(k)
Ik

= W̃k´1
(
Imk´1 ´αk´1νk´1Ũ

T
k´1AŨk´1

)
W̃T
k´1g

(k´1)
Ik´1

, (3.36)
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where (3.10) is used; in this case W̃k´1 = W̃k and, due to the linear
independence of their columns, from (3.36) it follows that

W̃T
kg

(k)
Ik

=
(
Imk´1 ´αk´1νk´1Ũ

T
k´1AŨk´1

)
W̃T
k´1g

(k´1)
Ik´1

. (3.37)

If we denote by (λ1, . . . , λmk´1) and (ξ1, . . . , ξmk´1) the eigenvalues
and the associated orthonormal eigenvectors of ŨTk´1AŨk´1, we may

write W̃T
kg

(k)
Ik

=
řmk´1
i=1 γ

(k)
i ξi and W̃T

k´1g
(k´1)
Ik´1

=
řmk´1
i=1 γ

(k´1)
i ξi.

For the eigencomponents γ(k)i the following recurrence formula can
be easily derived from (3.37):

γ
(k)
i = (1´αk´1νk´1λi)γ

(k´1)
i , i = 1, . . . ,mk ´ 1. (3.38)

Formula (3.38) highlights that, if αk´1 is an accurate approximation
of the inverse of an eigenvalue of ŨTk´1AŨk´1, since νk P (0, 1], a

reduction of
ˇ

ˇ

ˇ
γ
(k)
i

ˇ

ˇ

ˇ
with respect to

ˇ

ˇ

ˇ
γ
(k´1)
i

ˇ

ˇ

ˇ
is obtained.

Therefore, a reduction on the eigencomponents of W̃T
kg

(k)
Ik

results

in a reduction on the quantities }g(k)Ik
´ψkvIk}, as the set Ik tends to

stabilize; indeed, when Ik´1 = Ik, we may observe that

g
(k)
Ik
´ψkvIk = g

(k)
Ik
´
vTIkg

(k)
Ik

vTIkvIk
vIk = Pkg

(k)
Ik

,

g
(k´1)
Ik´1

´ψk´1vIk´1 = g
(k´1)
Ik´1

´
vTIk´1g

(k´1)
Ik´1

vTIk´1vIk´1
vIk´1 = Pk´1g

(k´1)
Ik´1

.

By recalling that P˚gI˚(x˚) = W̃˚W̃˚TgI˚(x
˚) = 0, we can conclude

that the use of a steplength rule providing good approximations of
the inverse of the eigenvalues of ŨTk´1AŨk´1 can be a fruitful strat-
egy for accelerating gradient projection methods for problem (3.3).

We provide a first example of the spectral behaviour of the GP method
combined with the steplength updating rules BB1, BB2 and EQ-BB2,
on a SLBQP toy problem of size n = 20, with ten active constraints at
the solution and such that the eigenvalues of the Hessian matrix are
logarithmically distributed in the interval [1, 500]; the spectral condi-
tion number is equal to 500.
For the GP implementation we refer to Algorithm 2, with the follow-

ing parameters setting: αmin = 10´10, αmax = 106, α0 =
g(0)

T
g(0)

g(0)
T
Ag(0)

.

We remind that the projection onto the feasible set Ω can be formu-
lated as a root-finding problem and have been effectively computed
by means of the secant-like algorithm developed in [28]. The feasible
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initial point x(0) is randomly generated and then projected into the
feasible region. The stopping criterion is defined as:

}x(k) ´ x(k´1)}∞ ď tol, (3.39)

with tol = 10´7. Figure 7 shows the distribution of the sequences
!

1
αk

)

generated by each rule with respect to the eigenvalues of the

matrices ŨTk´1AŨk´1, during the iterative procedure. In each panel,
at the k-th iteration, the black circles denote the eigenvalues of the
restricted Hessian matrix ŨTk´1AŨk´1, whereas the reciprocals of the
steplengths αk are plotted by red crosses; the blue lines correspond
to maximum and minimum eigenvalues of the Hessian matrix A and
the blue circles on the right denote the eigenvalues of the restricted
Hessian matrix at the prefixed solution x˚. These plots confirm the
ability of the reciprocals of BB1 and EQ-BB2 steplengths to sweep the
spectrum of the restricted Hessian matrices, while the reciprocals of
the steplengths produced by the original BB2 scheme are placed near
the largest eigenvalues of the restricted Hessian matrices during the
iterative procedure, and seems unable to sweep their whole spectra.

By analogy with the box-constrained case, the previous analysis
suggests that the modified BB2 rule (3.18) can be exploited within the
alternating strategy (1.32) and its adaptive version (1.34). The result-
ing updating rules will be denoted, respectively, by αEQ-ABBmin

k and
α

EQ-VABBmin
k , summarized below

α
EQ-VABBmin
k =

$

’

&

’

%

min
!

αEQ-BB2
j : j = maxt1,k´mαu, . . . ,k

)

if
αEQ-BB2
k

αBB1
k

ă τk

αBB1
k otherwise

(3.40)

where mα ď 0, τk is updated as in (1.35); for τk ” τ1 the steplength
α

EQ-ABBmin
k is recovered.

We can guarantee that 1/αEQ-VABBmin
k and 1/αEQ-ABBmin

k belongs to the
spectrum of ŨTk´1AŨk´1 at any iteration only when mα = 0. Indeed,
if mα ą 0, the inequalities (3.30) do not hold, in general, for αEQ-BB2

j

with j = maxt1,k ´mau, . . . ,k ´ 1. However, small values for mα
are acceptable since the final active set stabilizes at some point of
the iterative process. We compare the spectral behaviours of the up-
dating strategies ABBmin, EQ-ABBmin and EQ-VABBmin within the GP
method on the previous toy problem. The results obtained formα = 2

are shown in Figure 8. We observe that the pattern shown by the se-
quence t 1αk u generated by ABBmin is negatively influenced by the
presence of the standard BB2 rule, resulting in a poor behaviour. The
improvement achieved by using the modified rule EQ-BB2 within the
alternating strategies is clear from the corresponding panels in Fig-
ure 8.
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Figure 7: Distribution of
!

1
αk

)

(red crosses) with respect to iterations for
BB1 (top panel), BB2 (middle panel) and EQ-BB2 (bottom panel)
on a toy problem of size n = 20.
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Figure 8: Distribution of
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1
αk

)

(red crosses) with respect to iterations for
ABBmin (top panel), EQ-ABBmin (middle panel) and EQ-VABBmin
(bottom panel) on a toy problem of size n = 20.
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3.3.1 The non-quadratic case

In this section we derive the spectral properties of αBB1
k and αEQ-BB2

k

when the GP method is applied for solving a more general constrained
problem of type (3.1).
The multidimensional variant of Taylor’s theorem [65, Theorem 11.1]
allows to write the following equation:

y(k´1) =

ż 1

0

∇2f(x(k´1) + ρs(k´1))s(k´1)dρ. (3.41)

From (3.15) and (3.41) and by recalling that s(k´1)Jk´1
= On´mk,1, it holds

t
(k´1)
Ik´1

= [Pk´1 Omk,n´mk
]y(k´1) =

=

ż 1

0

Pk´1∇2f(x(k´1) + ρs(k´1))Ik´1,Ik´1s
(k´1)
Ik´1

dρ.

From the equality s(k´1)Ik´1
= Pk´1s

(k´1)
Ik´1

and the properties of projec-
tion matrices, we have

s(k´1)
T
y(k´1) = s

(k´1)
Ik´1

T
t
(k´1)
Ik´1

= s
(k´1)
Ik´1

T
ż 1

0

W̃k´1W̃
T
k´1∇2f(x(k´1) + ρs(k´1))Ik´1,Ik´1

W̃k´1W̃
T
k´1s

(k´1)
Ik´1

dρ

= s
(k´1)
Ik´1

T
W̃k´1

ż 1

0

(
ŨTk´1∇2f(x(k´1) + ρs(k´1))Ũk´1

)
W̃T
k´1s

(k´1)
Ik´1

dρ. (3.42)

Since s(k´1)Ik´1

T
W̃k´1W̃

T
k´1s

(k´1)
Ik´1

= s(k´1)
T
s(k´1), from the previous

equation we can conclude that 1/αEQ-BB1
k corresponds to a Rayleigh

quotient related to the average matrix ŨTk´1∇2f(x(k´1)+ρs(k´1))Ũk´1
along the vector W̃T

k´1s
(k´1)
Ik´1

.

In order to give a similar interpretation for αEQ-BB2
k , we consider the

linear function φ : Rm´1 Ñ Rm´1 defined as

φ(xW̃) = zW̃ = W̃T
k´1Pk´1∇f(xIk´1 , xJk´1)Ik´1 ,

where xW̃ P Rm´1, xIk´1 = W̃k´1xW̃ and xJk´1 is defined with re-
spect to the iterations k´ 1 and k. We have

W̃k´1φ(xW̃) = W̃k´1zW̃ = Pk´1∇f(W̃k´1xW̃ , xJk´1)Ik´1 .

Let assume that ∇f is continuously differentiable and locally invert-
ible in the intersection of Tk´1 with a neighborhood of x(k´1) includ-
ing x(k); in this intersection we can define the inverse function φ´1

as

φ´1(zW̃) = xW̃ ô φ(xW̃) = zW̃ ,
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or, equivalently,

φ´1(zW̃) = xW̃ ô W̃T
k´1Pk´1∇f(W̃k´1xW̃ , xJk´1)Ik´1 =

= W̃T
k´1∇f(W̃k´1xW̃ , xJk´1)Ik´1 = zW̃ .

The Jacobian matrix of φ´1 at zW̃ is

(W̃T
k´1∇2f(W̃k´1xW̃ , xJk´1)Ik´1,Ik´1W̃k´1)

´1,

equal to the inverse of ŨTk´1∇2f(xIk´1 , xJk´1)Ũk´1.
Setting

φ´1(z
(k´1)

W̃
) = x

(k´1)

W̃
, with x(k´1)Ik´1

= W̃k´1x
(k´1)

W̃
,

φ´1(z
(k)

W̃
) = x

(k)

W̃
, with x(k)Ik´1

= W̃k´1x
(k)

W̃
,

we can write

x
(k)

W̃
´ x

(k´1)

W̃
=
ş1
0(Ũ

T
k´1∇2f(x(k´1) + ρs(k´1))Ũk´1)´1(z

(k)

W̃
´ z

(k´1)

W̃
)dρ.

Multiplying both the sides of the previous equality by y(k´1)Ik´1

T
W̃k´1,

we have

y
(k´1)
Ik´1

T
s
(k´1)
Ik´1

= y
(k´1)
Ik´1

T
W̃k´1

(
x
(k)

W̃
´ x

(k´1)

W̃

)
= y

(k´1)
Ik´1

T
W̃k´1

ż 1

0

(ŨTk´1∇2f(x(k´1) + ρs(k´1))Ũk´1)´1

W̃T
k´1y

(k´1)
Ik´1

dρ.

Since t(k´1)Ik´1

T
t
(k´1)
Ik´1

= y
(k´1)
Ik´1

T
W̃k´1W̃

T
k´1y

(k´1)
Ik´1

, we can conclude

that αEQ-BB2
k can be interpreted as a Rayleigh quotient relative to the

average inverse of the matrix ŨTk´1∇2f(x(k´1) + ρs(k´1))Ũk´1 along

the vector W̃T
k´1y

(k´1)
Ik´1

.

remark Inspired by the idea at the basis of the classical BB rules,
we observe that the steplength selections (3.17) and (3.18) can be inter-
preted also as solutions of the following modified secant conditions:

αBB1
k = arg min

αPR

}α´1s
(k´1)
Ik´1

´ t
(k´1)
Ik´1

}, (3.43)

αEQ-BB2
k = arg min

αPR

}s
(k´1)
Ik´1

´αt
(k´1)
Ik´1

}. (3.44)

As final remark, we observe that this analysis for general non-quadratic
case holds, with the obvious modifications, also for the BB rules de-
fined for box-constrained problems, since they are special cases of the
version here considered.
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3.3.2 Variable metric gradient projection method

In this section we consider the more general variable metric scheme
defined in (1.51) and suggest how to properly modify the BB updat-
ing rules for this case. From a theoretical point of view, the conver-
gence of the variable metric gradient projection method is still en-
sured for any value of the steplength αk belonging to a compact sub-
set ofR+ [14, Thm. 2.1]; since this condition is not restrictive, it allows
some flexibility in the definitions of novel rules.

A natural way to extend the previous ideas consists in requiring
the steplength αk to satisfy generalized secant conditions written in
terms of the norm induced by the matrix (Dk)Ik´1,Ik´1 :

αP-BB1
k = arg min

αPR

}α´1s
(k´1)
Ik´1

´ (D´1k )Ik´1,Ik´1t
(k´1)
Ik´1

}(Dk)Ik´1 ,Ik´1

αP-EQ-BB2
k = arg min

αPR

}s
(k´1)
Ik´1

´α(D´1k )Ik´1,Ik´1t
(k´1)
Ik´1

}(Dk)Ik´1 ,Ik´1
,

(3.45)

providing the following updating rules

αP-BB1
k =

s
(k´1)
Ik´1

T
(Dk)Ik´1,Ik´1s

(k´1)
Ik´1

s
(k´1)
Ik´1

T
t
(k´1)
Ik´1

, (3.46)

αP-EQ-BB2
k =

s
(k´1)
Ik´1

T
t
(k´1)
Ik´1

t
(k´1)
Ik´1

T
(D´1k )Ik´1,Ik´1t

(k´1)
Ik´1

. (3.47)

Again, we may observe that

αP-BB1
k =

s
(k´1)
Ik´1

T
(Dk)Ik´1,Ik´1s

(k´1)
Ik´1

s
(k´1)
Ik´1

T
t
(k´1)
Ik´1

=
s(k´1)

T
Dks

(k´1)

s(k´1)
T
y(k´1)

,

while the rule (3.47) can be viewed as the modified version of the
following strategy

αP-BB2
k =

s(k´1)
T
y(k´1)

y(k´1)
T
D´1k y

(k´1)
, (3.48)

which takes into account the presence of the scaling matrix but does
not consider the inactive constraints of the feasible region at each iter-
ation. Furthermore, the steplengths (3.46)-(3.47) reduce, respectively
to the standard BB1 and EQ-BB2 in case of non-scaled gradient me-
thods, i. e. when the matrix Dk is equal to the identity matrix for all k.
It is interesting to observe that, when s(k´1)

T
y(k´1) ą 0, from the

inequality(
s
(k´1)
Ik´1

T
t
(k´1)
Ik´1

)2
ď

(
s
(k´1)
Ik´1

T
(Dk)Ik´1,Ik´1s

(k´1)
Ik´1

)(
t
(k´1)
Ik´1

T
(D´1k )Ik´1,Ik´1t

(k´1)
Ik´1

)
,



3.3 spectral properties of the bb rules 63

we easily obtain that αP-EQ-BB2
k ď αP-BB1

k . This suggests that the rule
(3.46) and (3.47) are suitable to be tested within a strategy generaliz-
ing the alternating scheme(3.49) to the variable metric case:

α
P-EQ-VABBmin
k =

#

mintαP-EQ-BB2
j : j=maxt1,k´mαu, . . . ,ku if α

P-EQ-BB2
k

αP-BB1
k

ă τk,

αP-BB1

k otherwise,

(3.49)

where mα and τk are defined as in (1.34) and (1.35).





4
N U M E R I C A L E X P E R I M E N T S

This chapter is devoted to evaluating the practical effectiveness of the
proposed steplength selection rules within GP methods for solving
special constrained optimization problems. We report and discuss the
results of different numerical investigations to evaluate the effective-
ness of the techniques developed in Chapters 2 and 3. First, in order
to provide practical evidences of the theoretical analysis, we anal-
yse the spectral behaviour of the steplength rules on some selected
medium-scale quadratic problems; afterwards, we evaluate the per-
formance of the methods on a set of large-scale benchmark quadratic
test problems; then, we test the ability of the methods to solve gen-
eral non-quadratic minimization problems. Furthermore, we test our
approaches on some optimization problems arising from real-world
applications.

All the numerical experiments were carried out on a workstation
equipped with an Intel Xeon QuadCore E5620 processor at 2,40 GHz
and 18 Gb of RAM, by implementing the GP methods in the Matlab
R2019a environment.

The chapter is organized as follows. Section 4.1 is devoted to the
numerical tests on BQP problems, whereas in Section 4.2 SLBQP prob-
lems are considered. In Section 4.3 we report the results obtained on
general non-quadratic box-constrained and SLB test problems.

4.1 numerical experiments on bqp problems

In this section we provide a comparison of the spectral behaviours
of the original BB-rules and the limited memory approaches with
those of the modified versions proposed in Chapters 2 on BQP test
problems. To this aim, we start by studying how the steplengths se-
quences generated by each rule are distributed with respect to the
eigenvalues of the reduced Hessian matrices obtained during the GP
iterative process. Then, we test the efficiency of the methods on a
dataset of large-scale BQP problems, reporting the results by means
of performance profiles plots. We conclude the section with a com-
parison between the GP method combined with the BoxVABBmin rule
and the MPRGP method on some real-world applications.

65
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Table 1: Spectral features of the BQP test problems subject to lower bounds

n = 1000 na = 400

λmin(A) λmax(A) λmin(AI˚,I˚) λmax(AI˚,I˚)

BQP1 1 1000 41.78 957.19

BQP2 3.10 997.70 64.57 819.53

BQP3 1 1000 3.08 753.26

BQP4 9.40 1013.95 10 1000

4.1.1 Spectral inspection on BQP problems

We generated four test problems of the form (2.1), with size n = 103,
u = +∞, and dense SPD Hessian matrices A, characterized by the
following different distributions of eigenvalues:

BQP1 : for i = 1, . . . ,n,

λi =
λ+ λ

2
+
λ´ λ

2
cos
(
π(i´ 1)

n´ 1

)
,

where λ = 1 and λ = 103;

BQP2: for i = 1, . . . ,n,

λi =
(λb´ λa)

(b´ a)
+

(λ´ λ)

(b´ a)
ωi,

where λ = 1, λ = 103, a = (1´ c)2, b = (1+ c)2, c = 1/2 and
the values ωi are distributed according to the Marčenko-Pastur

density pc(x) =

a

(b´ a)(x´ a)

2πxc2
, a ă x ă b [62];

BQP3: logarithmic distribution in [1, 103] such that λ1 = 1, λn = 103

and
λi
λi´1

is constant, generated through the MATLAB function

logspace;

BQP4: eigenvalues of the reduced Hessian matrix at the solution x˚

with logarithmic distribution in [10, 103], generated through the
MATLAB function logspace.

For each problem, the optimal solution x˚ is randomly chosen from
a uniform distribution in (0, 5) and it has prefixed number na of ac-
tive variables; the vector b is set as b = Ax˚ and the feasible initial
point x(0) is randomly generated in order to have inactive entries.
Other spectral features of the problems are reported in Table 1. Prob-
lems BQP1 and BQP2 are suggested also in [50, 73].
The GP variants exploiting the different steplength rules are distin-
guished by means of the rule’s name (BB1, BB2, BoxBB2, BoxABB min,
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BoxVABB min), whereas the limited memory GP approaches are named
as in Section 2.2, p.43. With regard to Algorithm 2, the following pa-

rameter setting is used: α0 = g(0)Tg(0)

g(0)TAg(0)
, αmin = 10´10, αmax = 106,

σ = 10´4, δ = 0.5.
For the BB-based rules a nonmonotone GLL linesearch procedure
with M = 9 is considered, while for LMGP, Box-LMGP1, Box-LMGP2
the value M = 1 is used; furthermore, τ = τ1 = 0.5 and mα = 2 are
set in BoxABB min and BoxVABB min, whereas in the limited memory
approaches two different values for the parameter m are used, i. e.
m = 3, 5. All the methods share the same stopping criterion defined
as in (2.23), with tol = 10´8.

Figures 9-12 show the behaviour of BB1, BB2, ABBmin, BoxBB2,
BoxABB min and BoxVABBmin rules on the four test problems. In each
panels of the figures, at the k-th iteration, the black dots denote 20
eigenvalues of the reduced Hessian matrix AIk´1Ik´1 , with linearly
spaced indices (included the maximum and the minimum eigenval-
ues), and the red crosses correspond to the reciprocals of the step-
lengths αk. The blue lines show the maximum and the minimum
eigenvalues of the Hessian matrix A and the blue circles on the right
are used to plot 20 eigenvalues of the reduced Hessian matrix at the
solution x˚, with linearly spaced indices (included the maximum and
the minimum eigenvalues). Figures 13-16 report, for each problem,
the history of relative error on the solution, }x(k)´ x˚}/}x˚}, the func-
tion error f(x(k))´ f(x˚), and the projected gradient norm, }gP(x(k))}.
The plots in Figures 9-12 confirm the ability of BB1 and BoxBB2 rules
to produce steplengths αk whose reciprocals belong to the spectrum
of the reduced Hessian matrix AIk´1Ik´1 , at each iteration. Further-
more, we may observe that, at the last iterations, the eigenvalues of
the reduced Hessian matrices tend to stabilize and to well approxi-
mate the eigenvalues of AI˚I˚ . This means that the two rules play
a role in reducing the gradient components with indices belonging
to I˚, which are the gradient components that have to be zero at the
solution, as prescribed by the KKT conditions. On the other hand, the
reciprocals of the BB2 steplengths seem unable to effectively sweep
the spectrum of the reduced Hessian matrices with dangerous effects
on the performance. The benefits achieved with the BoxBB2 rule re-
flect also on the behaviour of the alternating strategies BoxABB min

and BoxVABBmin, which confirm their ability to speed up the method
within the same or (in some cases) slightly higher accuracy with re-
spect to the single rules, as it is clear from the convergence plots in
Figures 13-16.

The results obtained with the limited memory approaches are shown
in Figures 17-21. The distribution of the sequences t 1αk u generated by
LMGP, Box-LMGP1 and Box-LMGP2 rules are reported in Figures 17-
20, for each problem. From these plots we may observe that the Box-
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LMGP1 and Box-LMGP2 strategies are able to better approximate the
eigenvalues of the submatrices of A restricted to rows and columns
corresponding to the inactive components of the current iterate rather
than the LMGP algorithm; in particular, for the Box-LMGP1 method,
the choice m = 5 seems preferable, while the adaptive strategy imple-
mented by Box-LMGP2 approach seems to be less dependent on the
choice of the parameter m, confirming its ability in adaptively con-
trolling the length of the sweep. Indeed, such ability allows to con-
sider shorter sweeps at the beginning of the iterative process when
the sequence of the restricted Hessian matrices is not yet stabilized
towards AF˚,F˚ and, hence, the inverses of the steplengths generated
by the strategy in a sweep could not yet provide suitable approxima-
tions of the eigenvalues of the restricted Hessian matrices involved in
the next sweep; longer sweeps are instead promoted with the stabi-
lization of the final active set. Panels in Figure 21 report the history
of the relative error on the solution, }x(k) ´ x˚}/}x˚} and the func-
tion error f(x(k))´ f(x˚), for each problem. These plots reveal how
both the modified approaches Box-LMGP1 and Box-LMGP2 are, in
general, able to accelerate the GP method with respect to the LMGP
strategy. We cannot observe a particular supremacy of one over the
other.
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Figure 9: Behaviour of GP equipped with BB-based steplength rules on

BQP1. Distribution of
!

1
αk

)

with respect to the iterations for BB1,
BB2 (top panels), BoxBB2, ABBmin (middle panels), BoxABB min
and BoxVABBmin (bottom panels).
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Figure 10: Behaviour of GP equipped with BB-based steplength rules on

BQP2. Distribution of
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with respect to the iterations for BB1,
BB2 (top panels), BoxBB2, ABBmin (middle panels), BoxABB min
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Figure 11: Behaviour of GP equipped with BB-based steplength rules on
BQP3. Distribution of t 1αk u with respect to the iterations for BB1,
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Figure 13: Test problem BQP1. History of relative error on the solution (top
panel), function error (middle panel), projected gradient norm
(bottom panel).
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Figure 14: Test problem BQP2. History of relative error on the solution (top
panel), function error (middle panel), projected gradient norm
(bottom panel).
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Figure 15: Test problem BQP3. History of relative error on the solution (top
panel), function error (middle panel), projected gradient norm
(bottom panel).
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Figure 16: Test problem BQP4. History of relative error on the solution (top
panel), function error (middle panel), projected gradient norm
(bottom panel).
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Figure 17: Behaviour of limited memory approaches on BQP1. Distribution
of t 1αk u with respect to the iterations for LMGP (top panels), Box-
LMGP1(middle panels), Box-LMGP2 (bottom panels), for m = 3

(first column) and m = 5 (second column).
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Figure 18: Behaviour of limited memory approaches on BQP2. Distribution
of t 1αk u with respect to the iterations for LMGP (top panels), Box-
LMGP1(middle panels), Box-LMGP2 (bottom panels), for m = 3
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Figure 19: Behaviour of limited memory approaches on BQP3. Distribution
of t 1αk u with respect to the iterations for LMGP (top panels), Box-
LMGP1(middle panels), Box-LMGP2 (bottom panels), for m = 3
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Figure 20: Behaviour of limited memory approaches on BQP4. Distribution
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Figure 21: History of relative error on the solution (left panel) and function
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4.1.2 Numerical results on random large-scale BQP problems

In order to verify the effectiveness of the methods on a more exhaus-
tive set of large-scale problems, we used the software package down-
loadable at http://www.dimat.unina2.it/diserafino/dds_sw.htm

for generating random BQP problems of the form (1.7). Following the
procedure proposed in [63, 79], the software allows to generate test
problems with prefixed features (size, number of active constraints
at the solution, condition number, etc), which can be arbitrarly set
by the user. For our experiments. we assigned different values to the
following parameters:

• n, size of the problem;

• κ(A), spectral condition number of the Hessian matrix A;

• na P [0, 1), fraction of active variables at the solution x˚;

• ndeg P t0, 1, 2, . . . , u, amount of near-degeneracy.

Then we generated two sets of test problems:

dataset 1 : 108 strictly convex BQP problems with non-degenerate
solutions, obtained setting n = 15000, 20000, 25000, na = 0.1, 0.5,
0.9, κ(A) = 104, 105, 106, ndeg = 1, 4, 7, 10.

dataset 2 : 108 strictly convex BQP problems with degenerate solu-
tions, obtained setting n = 15000, 20000, 25000, na = 0.1, 0.5,
0.9, κ(A) = 104, 105, 106, ndeg = 1, 4, 7, 10. The fraction of active
variables at the solution that are degenerate is equal to 0.2.

For each problem, the solution x˚ is randomly chosen from a uniform

distribution in (´1, 1), the starting point x(0) is set equal to
`+ u

2
and

the Hessian matrix is defined as A = GDGT where G is the product
of three Householder matrices associated to randomly generated unit
vectors and D is the diagonal matrix of the eigenvalues, which are
log-spaced between 1 and κ(A). Hence, the matrix A is not stored
in memory but only the operator for computing the matrix-vector
products is available. Furthermore, the levels of near-degeneracy are
obtained by setting the positive Lagrangian multipliers associated to
the active constraints equal to 10´ηindeg, i = 1, . . . ,na ¨ n, where
ηi P (0, 1) is a random number.
The parameter setting of the methods is the same of the previous sec-
tion and the stopping criterion is defined by (2.23), with tol = 10´7.
Concerning the alternating rules BoxABBmin and BoxVABBmin, we
remark that the choice mα = 2 appears preferable. The behaviours
of the BB-based steplength rules and limited memory strategies are
evaluated by means of the performance profile plots proposed in [36].
In particular, to compare the methods, we consider as performance
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measure of interest the execution time required by each solver to sat-
isfy the stopping criterion. To this aim, for each problem p in a given
dataset P of np problems, we need to compute the performance ratio
rp,s defined as the computing time of the solver s divided by the best
time of all the solvers; then, the performance profile of a solver s is
given by

ρs(θ) =

ř

pPP P(rp,s, θ)
np

,

where θ ě 1 and

P(rp,s, θ) =

#

1 if rp,s ď θ,

0 otherwise.

Hence, ρs(θ) is the probability for solver s that rp,s ď θ. If the stop-
ping criterion is not fulfilled by a solver within the maximum number
of 40000 iterations, the corresponding performance ratio is set equal
to a fixed value rM larger than any ratio rp,s.
For all the test problems described above, the performance profiles of
the different GP versions are reported in Figures 22-29. Each profile
ρ(θ) gives the fraction of problems that a solver is able to solve within
a factor θ of the best time of all the solvers; in particular, the value
ρ(1) represents the fraction of problems for which the considered
solver is the winner, whereas the performance profile corresponding
to the largest value of θ gives the fraction of problems for which the
considered solver is successful.

The BoxBB2 steplength rule is compared with the standard BB2
and BB1 rules in the top-left and middle-left panels of Figure 22, re-
spectively, whereas a comparison between BoxBB2 and BoxABB min

is provided in the top-right panel; a summarizing analysis includ-
ing also the BoxVABB min is given in the bottom-right panel of Fig-
ure 22. Figure 22 shows that, on dataset 1 , the BoxBB2 rule is
generally preferable to the standard BB2 and BB1 selections, which
are not successful on the total amount of test problems. Furthermore,
the adaptive alternation of BB1 and BoxBB2 selections exploited in
the BoxABB min rule is still more convenient than the use of a single
steplength rule. In particular, the version BoxVABB min is able to fur-
ther improve the performance provided by the BoxABB min thanks to
the updating formula (1.35) for the switching parameter τ.
The general trend shown in the bottom-right panel of Figure 22 is
confirmed also by the plots in Figure 23; indeed, this last figure high-
lights that the results are independent from the different values of
the parameter na. Finally, Figure 24 shows the performance profiles
obtained on the subsets of BQP test problems with non-degenerate
solution generated by setting ndeg = 7 (left panel) and ndeg = 10

(right panel), i. e. in the near-degeneracy case. The comparison of Fig-
ure 24 with the bottom-right panel of Figure 22 puts in evidence that
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the level of degeneracy of the constraints weakly affects the perfor-
mance of the different rules.

Performance profiles of the limited memory approaches are re-
ported in Figures 25-27. Figure 25 refers to dataset 1; in particular,
in the top-left panel the performance profiles of LMGP (m = 3) and
Box-LMGP1 (m = 3) are reported: we can observe that the LMGP and
Box-LMGP1 methods for m = 3 are not successful on about 20% of
the problems and, hence, their version with m = 5 are preferable; on
the other hand, the adaptive strategy implemented within the Box-
LMGP2 approach enables to solve all the problems in both cases,
however the best performance is achieved for m = 5, as shown in the
bottom-left panel of the figure. The best version of the different strate-
gies are compared, in pairs, in the top-right and middle-right panels
of Figure 25; finally, the summarizing plot in the bottom-right panel
shows that the Box-LMGP1 (m = 5) approach is able to solve about
80% of the problems within the best computing time with respect to
both LMGP and Box-LMGP2 (m = 5), while this last one is still prefer-
able to the LMGP strategy. Figure 26 highlights the results obtained
on the subsets of problems characterized by different values of the
parameter na: in particular, when the number of active constraints
at the solution is equal to 0.1 ¨ n (top-left panel) the performances
of LMGP and Box-LMGP2 improve with respect to the other cases,
where the general behaviour observed in Figure 25 is confirmed. The
performance profiles obtained for ndeg = 7 and ndeg = 10 are re-
ported in Figure 27: also in this case the level of degeneracy of the
constraints seems to weakly affect the performance of the different
rules.

In Figure 28 the runtime performance profile of the BB-based rules
and limited memory approaches are compared on the set of test prob-
lems with non-degenerate solutions (dataset 1): we may observe
that the GP method equipped with BoxVABBmin rule clearly outper-
forms the other solvers, however the Box-LMGP1 method proves to
be competitive with BoxVABBmin, while BoxLMGP2 exhibits a run-
time performance profile similar to that of BoxBB2 steplength rule.

The results obtained on the set of BQP problem with degener-
ate solutions (dataset 2) are summarized in Figure 29. Compar-
ing the panels in Figure 29 with the corresponding profiles obtained
on dataset 1, we can observe that the performances of the solvers
are weakly influenced by the presence of degeneracy, confirming the
overall behaviours exhibit in the non-degenerate case.
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Figure 22: Runtime performance profiles of GP method equipped with BB-
based rules on dataset 1 of BQP test problems with non-
degenerate solutions.



86 numerical experiments

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 23: Runtime performance profiles of the GP method equipped with
BB-based rules on dataset 1 of BQP test problems with non-
degenerate solutions. Fraction of active constraints at the solu-
tion: 0.1 ¨n (top-left panel), 0.5 ¨n (top-right panel), 0.9 ¨n (bottom
panel).
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Figure 24: Runtime performance profiles of the GP method equipped with
BB-based rules on the subsets of dataset 1 corresponding to the
parameters ndeg = 7 (left panel) and ndeg = 10 (right panel).
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Figure 25: Runtime performance profiles of limited memory approaches on
a dataset 1 of BQP test problems with non-degenerate solu-
tions.
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Figure 26: Runtime performance profiles of the GP method equipped with
limited memory approaches on dataset 1 of BQP test problems
with non-degenerate solutions. Fraction of active constraints at
the solution: 0.1 ¨n (top-left panel), 0.5 ¨n (top-right panel), 0.9 ¨n
(bottom panel).
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Figure 27: Runtime performance profiles of the limited memory approaches
on the subsets of dataset 1 corresponding to parameters
ndeg = 7 (left panel) and ndeg = 10 (right panel).
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Figure 28: Runtime performance profiles of the GP method equipped with
different steplength rules on the dataset 1 of BQP test problems
with non-degenerate solutions.
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Figure 29: Runtime performance profiles of the GP method equipped with
different steplength rules on the dataset 2 of BQP test prob-
lems with degenerate solutions. Fraction of active variables at the
solution that are degenerate equal to 0.2 ¨na.
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4.1.3 A comparison between GP-BoxVABBmin method and MPRGP method
on Support Vector Machines and contact problems

Based on the soundness of the theoretical results shown in Chapter 2

and the numerical results obtained in the previous tests, we provide
a comparison between the GP method combined with BoxVABBmin

rule and the MPRGP method [39], on some real applications related
to SVMs and contact problems.
MPRGP scheme is presented in Algorithm 3.

Algorithm 3 Modified Proportioning with Reduced Gradient Projec-
tions (MPRGP) method

Initialize: A, x(0) P Ω, b, Γ ą 0, α P (0, 2||A||´1]

g = Ax(0) ´ b, p = ϕ(x(0)), k = 0;

1: while ||gP(x(k))|| is not small do
2: if ||β(x(k))||2 ď Γ2gr(x(k))Tϕ(x(k)) then
3: αf Ð maxtαcg : x(k) ´αcgpu;
4: αcg Ð gTp/(pTAp) ;
5: if αcg ă αf then
6: x(k+1) Ð x(k) ´αcgp CG step
7: gÐ g´αcgAp;
8: βÐ ϕ(x(k+1))TAp/pTAp;
9: pÐ ϕ(x(k+1))´βp;

10: else
11: x(k+

1
2 ) Ð x(k+1) ´αfp Expansion step

12: gÐ g´αfp;
13: x(k+1) Ð x(k+

1
2 ) ´αgr(x(k+

1
2 ));

14: gÐ Ax(k+1) ´ b;
15: pÐ ϕ(x(k+1));
16: end if
17: else
18: αcg Ð gTβ(x(k))/(β(x(k))TAβ(x(k))) Proportioning step
19: x(k+1) Ð x(k) ´αcgβ(x

(k));
20: gÐ g´αcgAβ(x

(k));
21: pÐ ϕ(x(k+1));
22: end if
23: kÐ k+ 1;
24: end while

return x(k)

No-bias data classification

We start by reporting the results obtained on Support Vector Ma-
chines (SVM). We recall that Support Vector Machines belong to the
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conventional machine learning techniques, and they are practically
used for classification, i. e. the problem of identifying the category to
which a new observation belongs. For a detailed discussion on SVMs
framework we refer to [16, 22]).

In case of no-bias data binary classification, i. e. when the bias of
the hyperplane from the origin is not considered in the classification
model, the problem is formulated as a BQP problem with a symmet-
ric positive semi-definite (SPS) Hessian matrix. We briefly outline the
main features of the problem considered in our experiments.
Let D = t(zi,yi), i = 1, . . . ,n, zi P R

m, yi P t´1, 1uu be a training
set of labeled examples; the classification of new examples z P Rm

is performed by using a decision function F : Rm −Ñ t´1, 1u of the
form

F(z) = sign

(
n
ÿ

i=1

x˚iyiK(z, zi)

)
, (4.1)

where K : Rm ˆRm −Ñ R denotes a kernel function and the vector
x˚ = (x˚1, . . . , x˚n)T is the solution of

min f(x) =
1

2
xTAx´

n
ÿ

i=1

xi,

subject to 0 ď x ď Ce.

(4.2)

Here, e = (1, 1 . . . , 1)T P Rn, C ą 0 is a positive parameter arising
from the penalization of the misclassification error, and the matrix A
has entries Aij = yiyjK(zi, zj), i, j = 1, 2, . . . ,n. We refer to prob-
lem (4.2) as the `1-loss SVM formulation. This formulation can be
modified so that the Hessian matrix becomes positive definite. Then,
we consider also the problem

min f(x) =
1

2
xT
(
A+C´1I

)
x´

n
ÿ

i=1

xi,

subject to x ě 0,

(4.3)

where the Hessian matrix is regularized by matrix C´1I, obtaining a
SPD matrix. Problem (4.3) is referred to as `2-loss SVM formulation.

For our experiments the classification datasets, named mushrooms and
phishing, were downloaded from the LIBSVM dataset page at
https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html.
The mushrooms dataset is used for training a machine to determine
whether a mushroom is edible or poisonous, whereas the phishing
dataset is used for the detection of phishing websites. The main char-
acteristics of the datsets are summarized in Table 2. Furthermore, a
linear kernel is adopted, i. e. K(zi, zj) = zTi zj.
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Table 2: Characteristics of the classification datasets.

Dataset Samples+ Samples- features training data testing data

mushrooms 2830 2613 112 5443 2681

phishing 4073 3333 68 7406 3649

Table 3: Confusion matrix layout related to a binary classifier

Actual class

Class A Class B

Predicted class
Class A True Positive (TP) False Positive (FP)

Class B False Negative (FN) True Negative (TN)

Tables 4-7 report the results obtained on these datasets with the GP-
BoxVABBmin method (M = 9, mα = 2, τ1 = 0.5, ,ϑ = 1.1), the
MPRGP method described in Algorithm 3 and its variant, named
MPRGPp, where the expansion step is realized by a projected CG
step method. The methods share the same stopping criterion defined
as in (2.23) with tol = 0.1. For each method, the tables report the
number n of matrix-vector products performed by the algorithm, the
computational time needed to satisfy the stopping criterion and the
performance scores, namely accuracy (Acc.), precision (Prec.), sensi-
tivity (Sens), F1-score. The symbol “´”denotes that the stopping cri-
terion has not been satisfied within the maximum number of 10000
iterations. The performance scores are defined on the basis of the con-
fusion matrix, reported in Table 3, which gives a first insight of the
prediction quality of a classifier; indeed, when a classification system
has been trained to distinguish between two classes, e. g. Class A and
Class B, the confusion matrix summarizes the results of testing the al-
gorithm, by counting the number of true positive (TP), false positive
(FP), false negative (FN) and true negative (TN) samples.

Then, the perfomance scores are defined as follows:

• accuracy =
TP + TN

TP + FP + FN + TN
¨ 100%,

• precision =
TP

TP + FP
¨ 100%,

• sensitivity =
TP

TP + FN
¨ 100%,

• F1-score = 2
precision ¨ sensitivity
precision + sensitivity

¨ 100% i. e.F1 is the armonic

mean of sensitivity and precision.
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Tables 4 and 5 reports the results obtained on the mushrooms dataset
for `1-loss and `2-loss SVM formulations, respectively. In particular,
in case of `1-loss (Table 4) we can observe that the methods are not
sensitive to the values assigned to parameter C, since the values of
n and the performance scores are the same for each case; further-
more, the GP-BoxVABBmin scheme is able to considerably reduce the
number of matrix-vector multiplications and the computational time
compared with the other two methods, while the best performance
scores are obtained with MPRGPp; however, the performance scores
related to GP-BoxVABBmin and MPRGP are still satisfying. Also in
the case of `2-loss formulation the GP-BoxVABBmin method shows
better result than those obtained with the MPRGP methods in terms
of number of matrix-vector products and execution times, within the
same quality, except for the cases C = 10 and C = 50, in which the
MPRGPp method provides the best performance scores (see Table 5).
On the other hand, we obtain performances of models corresponding
to phishing dataset that are lower than in mushrooms dataset, as we can
see from the results reported in Tables 6-7. Indeed, for each method,
these results compared with those obtained on mushrooms show an
increase in the number of matrix-vector products and computational
times, and a decrease of the performance scores, which, however, are
still greater than 90% in any case. We may observe that all the me-
thods are, in general, less performing in solving the `1-loss formula-
tion; the GP-BoxVABBmin method is not able to satisfy the stopping
criterion within the prefixed number of iterations in two cases (see
Table 6 ); on the other hand, the results of each methods improve in
the regularized version of the problem (see Table 7).

Table 4: Dataset mushrooms, `1-loss SVM formulation, C = 1, 5, 10, 50, 100.
For each method the mean time over the five runs for the different
value of C is reported.

n time (s) Acc. Prec. Sens. F1

MPRGP 994 15.177 99.89% 100.00% 99.78% 99.78%

MPRGPp 264 4.0012 100.00% 100.00% 100.00% 100.00%

GP-BoxVABBmin 72 1.1119 99.89% 100.00% 99.78% 99.78%

Application to journal bearing problem

The journal bearing problem arises in the determination of the pres-
sure distribution in a thin film of lubricant between two circular cylin-
ders (see e. g. [4, 37, 64]). The infinite dimensional version of the prob-
lem is of the form

min
vPK

q(v) ”

ż

D

(
1

2
wq(x)}∇v(x)}2 ´wl(x)v(x)

)
dx
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Table 5: Dataset mushrooms, `2-loss SVM formulation.

n time (s) Acc. Prec. Sens. F1

C = 1

MPRGP 962 15.337 99.89% 100.00% 99.78% 99.78%

MPRGPp 286 4.2746 99.89% 100.00% 99.78% 99.78%

GP-BoxVABBmin 57 0.8347 99.89% 100.00% 99.78% 99.78%

C = 5

MPRGP 982 16.384 99.89% 100.00% 99.78% 99.78%

MPRGPp 301 4.4594 99.89% 100.00% 99.78% 99.78%

GP-BoxVABBmin 64 0.9472 99.89% 100.00% 99.78% 99.78%

C = 10

MPRGP 998 14.730 99.89% 100.00% 99.78% 99.78%

MPRGPp 307 4.5771 100.00% 100.00% 100.00% 100.00%

GP-BoxVABBmin 72 1.3334 99.89% 100.00% 99.78% 99.78%

C = 50

MPRGP 994 16.1077 99.89% 100.00% 99.78% 99.78%

MPRGPp 298 4.4650 100.00% 100.00% 100.00% 100.00%

GP-BoxVABBmin 63 0.9512 99.89% 100.00% 99.78% 99.78%

C = 100

MPRGP 994 15.3936 99.89% 100.00% 99.78% 99.78%

MPRGPp 294 4.3089 99.89% 100.00% 99.78% 99.78%

GP-BoxVABBmin 66 0.9876 99.89% 100.00% 99.78% 99.78%
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Table 6: Dataset phishing, `1-loss SVM formulation.

n time (s) Acc. Prec. Sens. F1

C = 1

MPRGP 3830 67.587 93.56% 94.91% 93.88% 93.88%

MPRGPp 175 2.8094 93.51% 95.20% 93.54% 93.54%

GP-BoxVABBmin 781 13.125 93.59% 94.77% 94.05% 94.05%

C = 5

MPRGP 4936 91.202 93.64% 94.72% 94.18% 94.18%

MPRGPp 341 5.5824 93.72% 95.01% 94.06% 94.06%

GP-BoxVABBmin 1321 22.446 93.70% 94.91% 94.10% 94.10%

C = 10

MPRGP 5356 96.723 93.89% 94.15% 95.10% 95.10%

MPRGPp 566 10.808 93.75% 93.81% 95.18% 95.18%

GP-BoxVABBmin 2639 63.909 93.67% 94.77% 94.18% 94.18%

C = 50

MPRGP 5548 136.55 93.64% 95.11% 93.84% 93.84%

MPRGPp 886 21.410 93.75% 94.24% 94.79% 94.79%

GP-BoxVABBmin ´ 253.49 93.89% 94.63% 94.67% 94.67%

C = 100

MPRGP 5913 147.16 93.64% 95.15% 94.24% 93.80%

MPRGPp 1247 30.854 93.81% 94.43% 94.71% 94.71%

GP-BoxVABBmin ´ 255.17 93.89% 94.77% 94.54% 94.54%
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Table 7: Dataset phishing, `2-loss SVM formulation.

n time (s) Acc. Prec. Sens. F1

C = 1

MPRGP 2503 55.36 93.92% 94.67% 94.67% 94.57%

MPRGPp 1143 2.6696 93.61% 95.20% 93.72% 93.72%

GP-BoxVABBmin 257 5.3164 93.92% 95.01% 94.38% 94.38%

C = 5

MPRGP 3154 68.804 94.05% 94.82% 94.77% 94.77%

MPRGPp 232 6.065 93.64% 94.53% 94.35% 94.35%

GP-BoxVABBmin 443 5.3164 93.67% 94.00% 94.87% 94.87%

C = 10

MPRGP 3231 67.600 94.08% 94.82% 94.82% 94.82%

MPRGPp 213 3.7882 93.64% 94.63% 94.26% 94.26%

GP-BoxVABBmin 1461 26.3447 93.67% 94.43% 94.48% 94.48%

C = 50

MPRGP 3537 77.885 93.67% 94.39% 94.52% 94.52%

MPRGPp 272 5.4236 93.67% 94.53% 94.39% 94.39%

GP-BoxVABBmin 2226 51.098 94.00% 94.67% 94.81% 94.81%

C = 100

MPRGP 3625 67.429 93.89% 94.82% 94.50% 94.50%

MPRGPp 666 10.596 93.42% 94.15% 94.33% 94.33%

GP-BoxVABBmin 3993 62.435 93.97% 94.72% 94.72% 94.72%
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where wq(x1, x2) = (1+ε cos x1)3, wl(x1, x2) = ε sin x1 for some con-
stant ε P (0, 1), and D = (0, 2π)ˆ (0, 2d), for some constant d ą 0. The
convex set K is defined as K = tv P H10(D) : v ě 0 on Du, where H10(D)

is the Hilbert space of the functions with compact support on D such
that v and }∇v}2 belong to L2(D). The finite differences discretizetion
of this problem lead to a quadratic programming problem of the form

min
vPΩ

1

2
vTAv´ bTv

where v P Rnxny , Ω = tv P Rnxny : vi,j ě 0u and vi,j is the value
of v at the corresponding grid point of the discretization of the rect-
angle D. For our tests we consider the journal bearing problem with
ε = 0.1 and d = 10 and different discretizations: nx = ny = 50;
nx = ny = 100; nx = 200,ny = 50; nx = 400,ny = 25.

Table 8 shows the results obtained with the GP-BoxVABBmin method
(M = 9, mα = 2, τ1 = 0.5, ϑ = 1.1), the MPRGP method described
in Algorithm 3 and its variant MPRGPp. The methods share the same
stopping criterion defined as in (2.23) with tol = 10´7. For each
method, the table reports the number n of matrix-vector products
performed, the absolute value of the objective function at computed
solution |f(x(k))|, the number of active constraints at the computed
solution, na(x(k)) and the computational time needed to satisfy the
stopping criterion. We can observe that the GP-BoxVABBmin approach
performs a lower number of matrix-vector products and employes
less computational time to satisfy the stopping criterion.

The solutions returned by each method are compared in Table 9,
where x̄1, x̄2, x̄3 denote, respectively, the computed solutions of MPRGP,
MPRGPp and GP-BoxVABBmin.
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Table 8: Journal bearing test problem.

n |f(xk)| na(x(k)) Time(s)

nx = 50, ny = 50

MPRGP 279 1.804880e´ 01 824 0.16950

MPRGPp 294 1.804880e´ 01 824 0.14008

GP-BoxVABBmin 165 1.804880e´ 01 824 0.07245

nx = 100, ny = 100

MPRGP 589 1.805744e´ 01 3232 1.11416

MPRGPp 589 1.805744e´ 01 3232 1.00365

GP-BoxVABBmin 314 1.805744e´ 01 3232 0.23941

nx = 200, ny = 50

MPRGP 1055 1.802781e´ 01 3214 2.11197

MPRGPp 1077 1.802781e´ 01 3214 1.57805

GP-BoxVABBmin 656 1.802780e´ 01 3214 0.44538

nx = 400, ny = 25

MPRGP 2089 1.793250e´ 01 3195 3.94401

MPRGPp 2314 1.793250e´ 01 3195 3.63034

GP-BoxVABBmin 872 1.792793e´ 01 3195 0.52482

Table 9: Journal bearing test problem.

}x̄1 ´ x̄3}∞ }x̄2 ´ x̄3}∞
nx = 50, ny = 50

5.5185e´ 05 5.5184e´ 05

nx = 100, ny = 100

1.0543e´ 04 1.0543e´ 04

nx = 200, ny = 50

7.0144e´ 04 7.0144e´ 04

nx = 400, ny = 25

1.1147´ 03 1.1147´ 03
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4.2 numerical experiments on random slbqp problems

This section is devoted to evaluating the numerical behaviour of the
BB-based rules introduced in Chapter 3 within GP methods for solv-
ing SLBQP problems (3.3). The aim of the section is to provide prac-
tical confirmations of the theoretical results proved in Chapter 3. We
recall that, in this case, the projection onto the feasible set Ω is com-
puted by means of the secant-like algorithm developed in [28].

4.2.1 Spectral inspection on SLBQP problems

We start by analysing the distribution of the steplength sequences gen-
erated by the BB strategies and their modified versions with respect to
the eigenvalues of the Hessian matrix. We randomly generated three
SLBQP test problems of the form (3.3), where the distributions of the
eigenvalues of the Hessian matrix A are defined as follows:

SLBQP1: for i = 1, . . . ,n,

λi =
(λb´ λa)

(b´ a)
+

(λ´ λ)

(b´ a)
ωi,

where λ = 1, λ = 104, a = (1´ c)2, b = (1+ c)2, c = 1/2 and
the values ωi are distributed according to the Marčenko-Pastur

density [62] pc(x) =

a

(b´ a)(x´ a)

2πxc2
, a ă x ă b;

SLBQP2: logarithmic distribution in [1, 103] such that λ1 = 1, λn =

103 and
λi
λi´1

is constant, generated through the MATLAB func-

tion logspace;

SLBQP3: eigenvalues of the restricted Hessian matrix with logarith-
mic distribution in [10, 102], generated through the MATLAB
function logspace.

For each problem, the optimal solution x˚ and the vector v are ran-
domly chosen from a uniform distribution in (´1, 1); the number na
of active constraints at the solution is equal to 0.4 ¨ n and the feasi-
ble initial point x(0) is randomly generated such that its entries are
inactive. Table 10 summarizes the spectral features of the problems.
We evaluate the behaviour of the GP method equipped with differ-
ent steplength selection rules: BB1, BB2, EQ-BB2, ABBmin, EQ-ABBmin

and EQ-VABBmin. The parameter setting for Algorithm 2 is the same
of the previous section. The stopping criterion is defined as in(3.39)
tol = 10´7.
Figures 30-32-34 show the distribution of the sequences

!

1
αk

)

ge-
nerated by each rule with respect to the eigenvalues of the matrices
ŨTk´1AŨk´1, during the iterative procedure. In each panel, at the k-
th iteration, we plotted 20 eigenvalues (black dots) of the restricted
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Table 10: Some features of the SLBQP problems.

λmin(A) λmax(A) λmin(AI˚,I˚) λmax(AI˚,I˚)

SLBQP1 19 9923 39.21 9865.62

SLBQP2 1 1000 3.34 722.20

SLBQP3 0.05 1396.3 10 100

Hessian matrix ŨTk´1AŨk´1 with linearly spaced indices (including
the maximum and minimum eigenvalues), and the reciprocal of the
steplength αk (red cross); the blue lines correspond to maximum and
minimum eigenvalues of the Hessian matrix A and the blue circles
on the right denote 20 eigenvalues of the restricted Hessian matrix at
the prefixed solution x˚, with linearly spaced indices (including the
maximum and minimum eigenvalues). These plots confirm the ability
of the reciprocals of BB1 and EQ-BB2 steplengths to sweep the spec-
trum of the restricted Hessian matrices, as predicted by Theorem 3.1;
the reciprocals of the steplengths obtained by applying the original
BB2 scheme can sometimes fall outside the spectrum of the restricted
Hessian matrices, and, in general the rule provides unsatisfying re-
sults, which reflect also in the behaviour of the alternating scheme
ABBmin. On the contrary, the use of the EQ-BB2 rule within alternat-
ing schemes helps to enhance the performances of the method both
in terms of spectral behaviour and efficiency.

Figures 31-33-35 report the decrease of the relative error on the

solution, }x
(k)´x˚}
}x˚}

, and the function error, |f(x(k))´ f˚|. We may ob-
serve that the decrease of both the errors is considerably accelerated
by employing the EQ-BB2 strategy instead of BB2. Furthermore, the
GP method equipped with the alternating rules EQ-ABBmin and EQ-
VABBmin preserves the ability to outperform the single steplength
rule, as observed in the unconstrained case, thanks to the approach
that takes into accounts the presence of the feasible region. In particu-
lar, the algorithm that adopts the variable scheme EQ-VABBmin shows
higher efficiency than the other schemes.
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Figure 30: Behaviour of GP equipped with BB-based steplength rules on

SLBQP1. Distribution of
!

1
αk

)

with respect to the iterations for
BB1, BB2 (top panels), EQ-BB2, ABBmin (middle panels), EQ-
ABBmin and EQ-VABBmin (bottom panels).
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Figure 31: Test problem SLBQP1. History of relative error on the solution
(top-left panel) and function error (top-right panel).
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Figure 32: Behaviour of GP equipped with BB-based steplength rules on

SLBQP2. Distribution of
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with respect to the iterations for
BB1, BB2 (top panels), EQ-BB2, ABBmin (middle panels), EQ-
ABBmin and EQ-VABBmin (bottom panels).

0 100 200 300 400

10 -4

10 -2

10 0

0 100 200 300 400

10 -5

10 0

Figure 33: Test problem SLBQP2. History of relative error on the solution
(top-left panel) and function error (top-right panel).
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Figure 34: Behaviour of GP equipped with BB-based steplength rules on

SLBQP3. Distribution of
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with respect to the iterations for
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Figure 35: Test problem SLBQP3. History of relative error on the solution
(top-left panel) and function error (top-right panel).
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4.2.2 Numerical results on random large-scale SLBQP problems

We report the numerical results obtained on a set of large-scale SLBQP
problems with non-degenerate solution, generated as in Section 4.1.2,
with the same parameter setting used in dataset 1. In particular,
by means of performance profile plots, we compare the computa-
tional time required by the GP method combined with the following
steplength updating rules: BB1, BB2, EQ-BB2, EQ-ABBmin and EQ-
VABBmin.

From Figure 36 we may observe that the EQ-BB2 outperforms the
standard BB2 rule; on the other hand, only the alternating schemes
are able to solve all the problems within the maximum number of
40000 iterations, while the single rule seems to suffer on this dataset,
especially the BB1 rule. As shown in Figure 37, the results seem from
the number of active variables at the solution, whereas the level of
degeneracy weakly affect the general behaviour of the considered
schemes (see Figure 38).
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Figure 36: Runtime performance profiles of GP method equipped with BB-
based rules on a set of SLBQP test problems with non-degenerate
solutions.
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Figure 37: Runtime performance profiles of the GP method equipped with
BB-based rules on a set of SLBQP test problems with non-
degenerate solutions. Fraction of active constraints at the solu-
tion: 0.1 ¨n (top-left panel), 0.5 ¨n (top-right panel), 0.9 ¨n (bottom
panel).
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Figure 38: Runtime performance profiles of the GP method equipped with
BB-based rules on the subsets of SLBQP test problems corre-
sponding to the parameters ndeg = 7 (left panel) and ndeg = 10

(right panel).
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4.2.3 Application in Support Vector Machines

For these experiments we consider a problem of binary data classifi-
cation formulated as follows.
Let D = t(zi,yi), i = 1, . . . ,n, zi P R

m, yi P t´1, 1uu be a training
set of labeled examples, the SVM algorithm performs classification of
new examples z P Rm by using a decision function F : Rm −Ñ t´1, 1u
of the form

F(z) = sign

(
n
ÿ

i=1

x˚iyiK(z, zi) + b
˚

)
, (4.4)

where K : Rm ˆRm −Ñ R denotes a kernel function and the vector
x˚ = (x˚1, . . . , x?

n)
T is the solution of

min f(x) =
1

2
xTAx´

n
ÿ

i=1

xi

subject to 0 ď x ď Ce,
n
ÿ

i=1

yixi = 0,

(4.5)

where e = (1, 1, . . . , 1)T P Rn and C ą 0. Once the vector x˚ is com-
puted, the quantity b˚ in (4.4) is easily derived. The Hessian matrix
A has entries Aij = yiyjK(zi, zj), i, j = 1, 2, . . . ,n. For our test prob-

lems we consider a Gaussian kernel, namely K(zi, zj) = e
´
}zi´zj}

2
2

2σ2 ,
with σ P R.
The dataset for our tests from the repository LIBSVM, available at
https://www.csie.ntu.edu.tw/„cjlin/libsvmtools/datasets/. In par-
ticular, the following test problems are considered:

mnist1000 n = 1000, C = 10, σ = 1800, rank(A) = 1000;

mnist2000 n = 2000, C = 10, σ = 1800, rank(A) = 2000;

adu n = 1000, C = 1, σ =
?
10, rank(A) = 985;

web n = 1000, C = 5, σ =
?
10, rank(A) = 736.

We recall that MNIST is the well-known dataset of handwritten digits
that is commonly used for training various image processing systems,
ADU dataset is used for training a machine to determine whether a
person has an annual income greater than 50.000 dollars, and WEB
dataset is related to web spam detection.

We compare the behaviour of the GP method combined with the
steplength rules BB1 , BB2, VABBmin, EQ-BB2, EQ-VABBu on the de-
scribed problems. For the alternating schemes the following parame-
ter setting is used: mα = 2, τ1 = 0.7, and ϑ = 1.3. The GP methods
share a nonmonotone linsearch procedure (M = 9) and are stopped
when either the relative distance between two successive iterations is
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lower than 10´8 or 1000 iterations have been performed. The initial
point for all the considered schemes is the null vector.
Table 11 shows the number of iterations and the computational time
needed by each scheme to satisfy

|f(x(k))´ f˚|

|f˚|
ď tol (4.6)

where f˚ is the minimum of the objective function values obtained by
the different methods at the end of the iterative process. The symbol
“´”denotes that condition (4.6) has not been satisfied within the max-
imum number of 1000 iterations.
In Figure 39, we can appreciate the decrease of the relative function
error defined in (4.6), with respect to the computational time, for the
four datasets. The results reported in Table 11 and Figure 39 con-
firm the effectiveness of the modified BB2 selection rule compared
with those obtained with the original rule, also within the alternating
scheme EQ-VABBmin. Indeed, the benefits gained by employing EQ-
BB2 in place of BB2 are clear in terms of both number of iterations
and computational time.
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Figure 39: Plots of the relative difference (4.6) with respect to the computa-
tional time for the four SVM test problems
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Table 11: SVM test problems. Number of iterations required by each algo-
rithm satisfy (4.6) for different tolerances. The corresponding com-
putational time (averaged over 20 runs) is also reported.

tol = 10´2 tol = 10´4 tol = 10´6 tol = 10´8

It. Time It. Time It. Time It. Time

MNIST1000

BB1 474 0.0194 91 0.0365 143 0.0570 185 0.0735

BB2 91 0.0298 219 0.0703 333 0.1068 400 0.1282

EQ-BB2 41 0.0169 88 0.0348 114 0.0447 154 0.0604

VABBmin 48 0.0363 92 0.0556 145 0.0789 175 0.0921

EQ-VABBmin 36 0.0155 81 0.0328 121 0.0483 142 0.0567

MNIST2000

BB1 77 0.1190 166 0.2571 286 0.4467 392 0.6167

BB2 175 0.2437 427 0.6060 890 1.2740 ´ ´

EQ-BB2 78 0.1101 158 0.2255 251 0.3588 376 0.5379

VABBmin 71 0.1068 162 0.2476 270 0.4144 373 0.5713

EQ-VABBmin 57 0.0825 130 0.1895 189 0.2754 252 0.3658

ADU

BB1 23 0.0080 45 0.0158 79 0.0277 113 0.0399

BB2 30 0.0091 73 0.0220 158 0.0475 299 0.0897

EQ-BB2 22 0.0070 47 0.0150 72 0.0228 104 0.0329

VABBmin 29 0.0089 67 0.0203 109 0.0328 164 0.0492

EQ-VABBmin 23 0.0077 60 0.0203 85 0.0286 111 0.0374

WEB

BB1 84 0.0315 243 0.0902 599 0.2214 952 0.3523

BB2 281 0.0867 977 0.2994 ´ ´ ´ ´

EQ-BB2 59 0.0187 175 0.0553 349 0.1111 523 0.1670

VABBmin 103 0.0325 260 0.0818 620 0.1958 847 0.2668

EQ-VABBmin 60 0.0205 163 0.0549 314 0.1043 393 0.1304
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4.2.4 Application in reconstruction of fiber orientation distribution in dif-
fusion MRI

We consider the problem of intra-voxel reconstruction of the fiber
orientation distribution function (FOD) in each voxel of white matter
of brain from diffusion MRI data. In [57] the authors clarify that the
diffusion signal can be represented as the convolution of a response
function with the FOD function and, as a consequence, the estimation
of the intra-voxel structure can be shaped through a linear model of
the form

b = Φx+ η, (4.7)

where x P Rn represents the FOD function, b P Rd is the vector of
measurements, Φ is the linear measurement operator, and η is the
acquisition noise. Since problem (4.7) is ill-posed, the solution is ap-
proximated by means of a reweighted `1-minimization process which
involves, at each step, the solution of a convex problem of the form

min
xPRn

f(x) ” }Φx´ b}22

subject to x ě 0, }Wx}1 = K,
(4.8)

where W P Rnˆn is a diagonal matrix with positive entries and K is
the estimated maximum number of fibres to be detected in the brain
volume [3]. The weighted `1-norm constraint induces sparsity on the
solution, and the weighting matrix W forces some anatomical proper-
ties of the fiber bundles in neighboring voxels. A complete overview
about the properties of W can be found in [3].

It has been shown in [20] and [13] that the presence of a variable
metric in first-order methods can significantly improve the perfor-
mance in solving problem (4.8) with respect to their standard non-
scaled versions. We report the results obtained by using different
steplength selection strategy within the SGP scheme (1.51) We con-
sider the P-BB1 and P-BB2 rule defined in (3.46) and (3.48) respec-
tively, the modified version P-EQ-BB2 defined in (3.47), and the alter-
nating strategies P-EQ-VABBmin (3.49) and P-VABBmin, which can be
obtained from (3.49) by using the P-BB2 rule in place of P-EQ-BB2.
The values mα = 2, τ1 = 0.5 and ϑ = 3 are used in P-EQ-VABBmin

and P-VABBmin. The sequence tDkukPN is selected by mimicking the
split gradient-based scaling proposed in [6] for quadratic problems:
the scaling matrix has the following form

Dk = diag
(

max
(
1

µk
, min

(
µk,

x(k)

ΦTΦx(k)

)))´1
, (4.9)

where µk =

d

1+
1011

(k+ 1)2
. The parameter µk forces the sequence

tDkukPN to asymptotically approach the identity matrix [21, Lemma
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2.3]. This condition ensures the convergence of the sequence of the it-
erates generated by the SGP scheme to a solution of the minimization
problem, as proved in [14, Theorem 3.1].

For the numerical tests, we employed the Phantom dataset, avail-
able at https://github.com/basp-group/co-dmri, and described in
[3]. In particular, the test problem has d = 19200, n = 257280, and
K = 3840. Table 12 summarizes, for each scheme, the number of iter-
ations and the computing time needed to guarantee

|f(x(k))´ f˚|

|f˚|
ď tol. (4.10)

the distance (4.6) is below certain thresholds tol. Symbol “´”denotes
that condition (4.10) has not been satisfied within the maximum num-
ber of 4000 iterations. Figure 40 shows the relative function error
(4.10) between the objective function values provided by the differ-
ent methods and the minimum computed value f˚.

By analysing the results in Table 12 and Figure 40, we can affirm
that the modified version of the BB2 rule allows to largely improve
the behaviour of the SGP algorithm in terms of number of iterations
and computational time compared to the performance obtained with
the standard BB2 strategy. Similar considerations hold also for the
alternating schemes: the use of EQ-BB2 in place of BB2 makes P-EQ-
VABBmin more effective than P-VABBmin in finding the solution of
the optimization problem; furthermore, this test confirms that alter-
nating strategies still outperform the result obtained using a single
steplength rule.

Table 12: Number of iterations and computational time required by SGP
equipped with different steplength rules satisfy condition 4.10 for
different tolerance values.

tol = 10´3 tol = 10´5 tol = 10´8 tol = 10´10

It. Time It. Time It. Time It. Time

P-BB1 263 2.7 1025 10.6 3541 38.7 ´ ´

P-BB2 620 6.4 ´ ´ ´ ´ ´ ´

P-EQ-BB2 282 3.1 830 9.4 2552 29.9 ´ ´

P-VABBmin 283 2.9 3175 36.0 ´ ´ ´ ´

P-EQ-VABBmin 271 3.1 683 8.1 2169 26.5 3034 37.7

4.3 beyond the quadratic case

In this section we investigate the practical efficiency of the proposed
steplength selection rules within GP methods for constrained mini-
mization of general non-quadratic objective functions.
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Figure 40: Test problem (4.8): plots of the relative function error (4.10) with
respect to the number of iterations (first panel) and the computa-
tional time (second panel) achieved by the SGP methods.

4.3.1 Numerical results on general box-constrained problems

We start by analysing the effect of the different steplength selection
rules in accelerating the GP method on general box-constrained test
problems and we compare the results by means of performance pro-
file plots introduced in Section 4.1.
The test problems are generated as follows. Starting from an uncon-
strained minimization problem of a twice continuously differentiable
objective function Ψ(x), for which a local minimum point x˚ is known,
we used the technique proposed in [40] to generate a box-constrained
problem of the form

min
`ďxďu

f(x) = Ψ(x) +
ÿ

iPA˚`

hi(xi)´
ÿ

iPA˚u

hi(xi) (4.11)

where hi : R Ñ R, i P A˚, are twice continuously differentiable non-
decreasing functions. Due to the special definition of f(x), the point
x˚ is a solution of (4.11).

For our tests, we selected some well-known non-quadratic functions Ψ(x),
described below.

trigonometric function [46] :

Ψ(x) = }b´ (Av(x) +Bu(x))}2,

where v(x) = (sin(x1), ..., sin(xn))T , u(x) = (cos(x1), ..., cos(xn))T ,
and A and B are square matrices of order n = 500 with entries
generated as random integers in (´100, 100). Given a vector
x˚ P Rn with entries randomly generated from a uniform dis-
tribution in (´π,π), the vector b is defined such that Ψ(x˚) = 0.
The starting vector is set as x(0) = min(u, (max(`, x˚ + 0.3 r))),
where r P Rn has random entries from a uniform distribution
in [´π,π].
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chained rosenbrock function [81] :

Ψ(x) =
n
ÿ

i=2

(4ϕi(xi´1 ´ x
2
i )
2 ´ (1´ xi)

2),

where n = 500, the values ϕi, i = 1, . . . , 50, are defined as in [81,
Table 1] and ϕi+50j = ϕi, i = 1, ..., 50, j = 1, . . . , 9. In this case,
a solution of the unconstrained problem is x˚ = (1, 1, ..., 1)T .
The starting vector is set as x(0) = min(u, (max(`, x˚ + 0.8 r))),
where r P Rn has random entries from a uniform distribution
in [´1, 1].

laplace2 function [44] :

Ψ(x) =
1

2
xTAx´ bTx+

1

4
h2

ÿ

i

x4i ,

where A is a square matrix of order n = N3, N = 100, arising
from the discretization of a 3D Laplacian on the unit box by a

standard seven-point finite difference formula, h =
1

N+ 1
and

b is chosen such that x˚i ” x(kh, rh, sh) with

x(kh, rh, sh) = h3krs(kh´ 1)(rh´ 1)(sh´ 1)e´
1
2 ((kh´ d1)

2 + (rh´ d2)
2 + (sh´ d3)

2),

where the index i is associated with the mesh point (kh, rh, sh),
k, r, s = 1, . . . ,N. Two different settings for the parameters d,d1,d2
and d3 are considered:

a) d = 20, d1 = d2 = d3 = 0.5,

b) d = 50, d1 = 0.4, d2 = 0.7, d3 = 0.5.

In both cases, the starting vector is x(0) = `+u
2 .

For each function Ψ(x), we built the corresponding constrained ver-
sions with the following choices for the functions hi(x), as suggested
in [40]:

(1) βi
(
xi ´ x

˚
i

)
,

(2) αi
(
xi ´ x

˚
i

)3 + βi
(
xi ´ x

˚
i

)
,

(3) αi
(
xi ´ x

˚
i

)7/3 + βi
(
xi ´ x

˚
i

)
,

where αi are random numbers in (0.001, 0.011), βi = 10´ηindeg, ηi
are random number in (0, 1), and ndeg = 1, 4, 10; in particular, the
values βi correspond to the Lagrangian multipliers associated to the
active constraints and, therefore, the values assigned to ndeg allow
to control the degeneracy of the problem at x˚. The vectors ` and u
are set in order to have a number of active constraints at the solution
equal to a prefixed value na; the same number of lower and upper ac-
tive constraints is considered and different problems are generated by
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setting na « 0.1 ¨n, 0.5 ¨n, 0.9 ¨n. In this way, we built a total amount
of 108 box-constrained non-quadratic test problems.

Figure 41-43 show the performance profiles obtained by solving the
non-quadratic problems by the GP method with different steplength
rules. All the parameters involved in the GP algorithm and in the
steplength rules are set as in the quadratic case, except for the initial
steplength α0 = 1. The maximum number of iteration is set equal
to 4000. As regard the limited memory approaches we report the re-
sults obtained for m = 5, since they gave the best performances in
the quadratic case. From Figure 41 we may observe that the BoxBB2
rule confirms its better behaviour compared with the profile of the
standard BB2 selection. Furthermore, the steplength strategies based
on adaptive alternation of BB1 and BoxBB2 still provide the best
performance. Since the proposed selections are designed essentially
for achieving an effective approximation of the spectrum of the re-
duced Hessian and, consequently, speed up the method, we may con-
clude that the spectral properties exhibited by the modified BB-based
steplength rules play a crucial role for improving the gradient me-
thods also in case of general box-constrained non-quadratic optimiza-
tion problems.

Figure 42 report the results obtained with LMGP, BoxLMGP1, and
BoxLMGP2 for m = 5: from these plots we can affirm that the general
behaviour observed in the quadratic case is confirmed. Finally, Figure
43 shows a summarizing plot that compares the performance profile
obtained with both BB-based rules and limited memory approaches:
on the considered test problems, the GP method combined with the
BoxVABBmin scheme turns out to be the best solvers, followed by the
BoxBB2 and the BoxLMGP1 strategies.

4.3.2 Numerical results on general SLB problems

In this section we report the result obtained in the solution of non-
quadratic SLB test problems, generated with a similar approach of
that described in [40].

Starting from an unconstrained minimization problem of a twice
continuously differentiable objective function Ψ(x) with known solu-
tion x˚, we built SLB constrained test problems of two possible for-
mulations:

min
xPΩ

f(x) = Ψ(x) + vT (x´ x˚) +
ÿ

iPA˚`

hi(xi)´
ÿ

iPA˚u

hi(xi)

Ω = tx P Rn : ` ď x ď u, vTx = eu,

(4.12)
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Figure 41: Runtime performance profiles obtained by the GP method
equipped with different BB-based steplength rules on a set of
box-constrained non-quadratic test problems.
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Figure 42: Runtime performance profiles obtained by different limited mem-
ory approaches on a set of box-constrained non-quadratic test
problems.
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Figure 43: Runtime performance profiles obtained by by the GP method
equipped with different steplength rules on a set of box-
constrained non-quadratic test problems.

min
xPΩ

f(x) = Ψ(x)vTx+
ÿ

iPA˚`

hi(xi)´
ÿ

iPA˚u

hi(xi)

Ω = tx P Rn : ` ď x ď u, vTx = e, e ą 0u,

(4.13)

where v P Rn, e P R, and hi : R Ñ R, i P A˚, are twice continu-
ously differentiable non-decreasing functions. The constrained prob-
lems defined by (4.12) and (4.13) have the same solution x˚ of the un-
constrained problem of minimizing Ψ(x); we notice that the scalar e
in the second formulation (4.13) must be positive to ensure this prop-
erty. For our experiments, we selected the same non-quadratic func-
tions described in the previous subsection. To build the correspond-
ing constrained versions of Trigonometric and Chained Rosenbrock
test problems we used both the formulations (4.12) and (4.13), while
for Laplace2 function we used the latter form only. The vector v is ran-
domly generated from a uniform distribution in (0, 1) and the follow-
ing choices for the functions hi(x) are considered, as in the previous
case:

(1) βi
(
xi ´ x

˚
i

)
,

(2) αi
(
xi ´ x

˚
i

)3 + βi
(
xi ´ x

˚
i

)
,

(3) αi
(
xi ´ x

˚
i

)7/3 + βi
(
xi ´ x

˚
i

)
,

where αi are random numbers in (0.001, 0.011) and βi = 10´ηindeg,
with ηi random numbers in (0, 1) and ndeg = 1, 4, 10. In order to
retain first-order optimality conditions, the Lagrangian multiplier of
the single linear equality constraint must be equal to 1 up to sign (for
the case (4.12)) or to Ψ(x˚) up to sign (for the case (4.13)), while the
Lagrangian multipliers associated to the active constraints are easily
assigned equal to the values βi, and, therefore, the parameter ndeg
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allows to control the degeneracy of the problem at x˚. The vectors `
and u are defined in order to have the number of active constraints
at the solution equal to a prefixed value na; in particular, we set
na « 0.1 ¨ n, 0.5 ¨ n, 0.9 ¨ n and the same number of lower and upper
active constraints at x˚. Finally, the resulting dataset is composed of
162 non-quadratic SLB test problems.

We evaluated the performance obtained by running the GP method
equipped with the steplengths rules: BB1, BB2, ABBmin, VABBmin, EQ-
BB2, EQ-ABBmin, EQ-VABBmin. The considered schemes share the fol-
lowing parameter setting: α0 = 1, τ = 0.7 and ma = 2 for defin-
ing αABBmin

k and α
EQ-ABBmin
k and τ1 = 0.7, ma = 2 and ζ = 1.3 for

α
EQ-VABBmin
k . The starting vectors are defined as follows:

• x(0) = ΠΩ (x˚ + 0.3 r), where r P Rn has random entries from a
uniform distribution in [´π,π], when Ψ(x) is the Trigonometric
function;

• x(0) = ΠΩ(x˚ + 0.8 r), where r P Rn has random entries from a
uniform distribution in [´1, 1], when Ψ(x) is the Chained Rosen-
brock function;

• x(0) = ΠΩ
(
`+u
2

)
, when Ψ(x) is the Laplace2 function.

The stopping criterion adopted is defined as in (3.39). The perfor-
mance profiles shown in Figure 44 confirm the results obtained in the
quadratic framework. By capturing the information about the active
set at each iteration, the EQ-BB2 steplength strategy allows to speed
up the GP method with respect to the case the original BB2 rule is
used. This enhancement is further emphasized by using the alternat-
ing strategies employing the modified rule EQ-BB2.

4.3.3 Application in image deblurring with Poisson noise

In order to evaluate the behaviour of the proposed steplength rules
on a non-quadratic problem arising from real-applications, we con-
sider the problem of recovering a blurred image corrupted by Pois-
son noise. In general, in a Bayesian framework, an approximation of
the original object can be obtained by solving a constrained problem
where the objective function is given by the sum of a discrepancy
function (typically depending on the noise type affecting the data)
and a regularization term adding a priori information; simple con-
straints, expressing physical requirements, can be considered. In the
case of Poisson noise, the discrepancy function measuring the dis-
tance from the data b is the generalized Kullback-Leibler (KL) diver-
gence, having the form

f0(Ax+ c;b) =
n
ÿ

i=1

bi log
bi

(Ax+ c)i
+ (Ax+ c)i ´ bi, (4.14)
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Figure 44: Runtime performance profiles obtained by the GP method
equipped with different steplength rules on a set of non-
quadratic SLB test problems.
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where A P Mn(R) is a linear operator modelling the distortion due
to the image acquisition system and c P Rn is a known positive back-
ground radiation constant. A typical assumption for the matrix A
is that it has nonnegative elements and each row and column has
at least one positive entry (see [8] for details about the image de-
blurring problem in presence of Poisson noise). A widely used edge-
preserving regularizer is the discrete smooth Total Variation func-
tional, also known as Hypersurface regularizer, which is defined, for
an image of n = NˆN pixels, as

f1(x) =
ÿ

k,`

b

(xk+1,` ´ xk,`)2 + (xk,`+1 ´ xk,`)2 + γ2 ´ γ, (4.15)

where γ is a small positive constant and periodic boundary condi-
tions are assumed. A maximum a posteriori estimate of the original
image is a solution of the following nonlinear programming problem

min
xPRn

f(x) ” f0(Ax+ c;b) + ρf1(x)

subject to x ě 0,
n
ÿ

i=1

xi = K,
(4.16)

where K =
řn
i=1 bi ´ n ¨ c is the flux of the image and ρ is a posi-

tive parameter balancing the role of the regularization term and the
discrepancy function; the inequality constraints and the single linear
equality constraint express the non-negativity of the pixels and the
conservation of the image flux, respectively.
We consider as test problem a 512ˆ 512 object representing a micro-
tubulin network inside a cell [70]. In this case, the values of the orig-
inal object x are in the range [0, 686], whereas those of the blurred
and noisy image b are in [0, 446]; the background was set equal to 1
and the relative distance between the original object and the blurred
noisy data in Euclidean norm is 0.756; furthermore, ρ = 4 ¨ 10´4 and
γ = 10´6 ¨maxitbiu. A ground-truth solution x˚, i.e., an estimate of
the real minimum point of the problem (4.16), is obtained by execut-
ing a huge number of iterations of the SGP method. Indeed, it is well
known that the above problem can be efficiently addressed by the
gradient projection method equipped with a variable metric (see for
example [15, 19, 60]). Mimicking the split gradient-based scaling,the
sequence of scaling matrices tDkukPN can be selected as follows

Bk = diag
(

max
(
1

µk
, min

(
µk,

x(k)

AT1+ ρV(x(k))

)))´1
, (4.17)

where 1 is a vector with all entries equal to 1, V(x(k)) is the positive
part of the splitting of ∇f1(x) = V(x)´U(x) at x(k) (see [8, Cap. 5])

and µk =

d

1+
1011

(k+ 1)2
.
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In Table 13 and Figure 45 we report the behaviour of the SGP
method combined with the steplength rules P-BB1, P-BB2, P-EQ-BB2,
P-VABBmin and P-EQ-VABBmin. For the alternating rules, the follow-
ing setting of parameters is considered: ma = 2, τ1 = 0.5 and ϑ = 3.
Table 13 shows the number of iterations and the computational time,
in seconds, required by the considered methods to satisfy

|f(x(k))´ f˚|

|f˚|
ď tol, (4.18)

where f˚ ” f(x˚). We also report the relative reconstruction error

(RRE)
}x(It.) ´ x}

}x}
at the iteration It. If one of the approaches is not able

to reduce the relative error on the objective function below a prefixed
tolerance within 1000 iterations, Table 13 displays the computational
time spent and the RRE achieved after the 1000 iterations performed,
and the corresponding results are indicated by a star. Figure 45 shows
the relative error of the objective function and the relative minimiza-

tion error }x(k)´x˚}
}x˚}

with respect to the number of iterations and the
computational time.

We observe that P-BB2 and P-EQ-BB2 rules show the same be-
haviour, which is very similar to that of P-BB1, as well; indeed, for
this problem, the variable metric (in particular the term x(k) in (4.17))
hides the effects of the rules that take into account the constraints and,
at the same time, the equality constraint plays a minor role, since the
assumptions on the matrix A already induce the iterates to satisfy the
flux constraint.

Nevertheless, when the alternating rule is adopted, the use of P-
EQ-BB2 can still improve the performance of SGP, achieving in 33 s.
(565 iterations) with P-EQ-VABBmin the value of the objective function
obtained with P-VABBmin after 56 s. (1000 iterations).

Figure 46 shows the relative error of the objective function and
the relative minimization error obtained in absence of a variable met-
ric, with the same parameter setting used for SGP. The general effect
of the scaling matrix is clear by comparing these results with those
reported in Figure 45: in particular, we can observe that the scaled
version of the methods are able to significantly reduce both the errors
with respect to the standard GP schemes; furthermore, as already re-
marked, its influence overlaps with the effect of the modification in
the P-EQ-BB2 rule.
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Table 13: Image deblurring test problem: number of iterations and compu-
tational time (average over 10 runs) required to reduce the relative
error on the objective function below a prefixed tolerance. The cor-
responding relative reconstruction error achieved is reported.

tol = 5 ¨ 10´2 tol = 10´3 tol = 5 ¨ 10´4

It. Time RRE It. Time RRE It. Time RRE

P-BB1 64 3.8 0.568 933 48 0.447 1000˚ 52˚ 0.447˚

P-BB2 28 2.1 0.531 1000˚ 53˚ 0.446˚ 1000˚ 54˚ 0.446˚

P-EQ-BB2 27 2.0 0.533 1000˚ 56˚ 0.446˚ 1000˚ 56˚ 0.447˚

P-VABBmin 26 1.9 0.537 471 25 0.438 1000˚ 55˚ 0.438˚

P-EQ-VABBmin 37 3.0 0.531 267 15 0.438 565 33 0.438
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Figure 45: Image deblurring test problem: numerical results of 1000 iter-
ations of the SGP method combined with different steplength
rules; first row: relative error of the objective function with re-
spect to iterations (left panel) and computational time (right

panel); second row: relative minimization error }x(k)´x˚}

}x˚}
with

respect to iterations (left panel) and computational time (right
panel).
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Figure 46: Image deblurring test problem: numerical results of 1000 itera-
tions of the GP method combined with different steplength rules;
first row: relative error of the objective function with respect to
iterations (left panel) and computational time (right panel); sec-

ond row: relative minimization error }x(k)´x˚}

}x˚}
with respect to

iterations (left panel) and computational time (right panel).





C O N C L U S I O N S

In this thesis we presented a spectral analysis of the Barzilai-Borwein
and the LMSD steplength rules in gradient projection methods for
solving special constrained QP problems. We proposed suitable mod-
ifications to the original strategies, in order to exploit the informa-
tion prescribed by the KKT optimality conditions. Concerning the BB
rules, we proved that BB1 rule is able to capture the spectral prop-
erties of special submatrices of the Hessian matrix, which depend
only on the inactive variables at each iteration; in accordance with
this analysis, we proposed novel versions of BB2 rule with the same
features of BB1; these rules seem very useful in improving the effec-
tiveness of the method and, consequently, can be efficiently exploited
within state-of-the-art adaptive alternation steplength strategies.

With regard to the limited memory method, we introduced an ad
hoc strategy that allows to adaptively set the length of the sweep
during the iterative procedure. An extensive numerical experimenta-
tion confirmed the benefits of the proposed rules, also for solving
constrained problems deriving from real-world applications.

The carried out analysis opens the way to further investigations.
Indeed, optimization problems subject to more complex feasible re-
gions, such as, e. g., an n-simplex or a polyhedron, may be addressed
using techniques similar to those presented in this thesis.

Furthermore, another interesting topic for future works consists
in the spectral analysis of the LMSD procedure when it is combined
with a GP method exploiting a linesearch on the feasible arc. This last
procedure is interesting, although generally more expensive, because
it allows to identify the set of active constraints in a finite number of
iterations.
These open issues could be considered beyond the class of gradient
projection methods: the behaviour of the novel BB-rules may be anal-
ysed in the context of forward-backward splitting methods where the
non-smooth part of the objective function contains the indicator func-
tion of the non-negative orthant or the n-simplex.
A further new challenge is how these techniques could be exploited
in the context of stochastic gradient methods for the big data scenario.
This is a widely investigated current research area. Indeed, the numer-
ical resolution of the current machine learning problems requires to
obtain in a limited time, not asymptotically, the maximum decrease
of the objective function. The performance of current stochastic me-
thods may therefore benefit from the development of tools similar to
the BB rules used as steplengths or learning rates.
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A
A P P E N D I X

This appendix is devoted to recall some basic concepts and defini-
tions; furthermore, we report here the proofs of lemmas 3.1-3.2-3.3

a.1 some definitions and general results

Definition. For any symmetric matrix Q P Mn(R), the Rayleigh quo-
tient of Q at a non zero vector x P Rn is defined as the value

RQ(x) =
xTQx

}x}2
,

that minimize the quantity }(Q´ λI)x} with respect to λ. Clearly, if x
is an approximate eigenvector, then RQ(x) is a reasonable estimate of
the corresponding eigenvalue [49].

Definition. (Rates of convergence) Let tx(k)ukPN Ď Rn be a sequence
that converges to x˚. The convergence is said Q-linear if there is a
constant r P (0, 1) such that

}x(k+1) ´ x˚}

}x(k) ´ x˚}
ď r,

for all k sufficiently large. The convergence is said Q-superlinear if

lim
kÑ∞ }x

(k+1) ´ x˚}

}x(k) ´ x˚}
= 0.

In general, we say that the Q-order of convergence is p (p ą 1) if there
is a positive constant M such that

}x(k+1) ´ x˚}

}x(k) ´ x˚}p
ďM,

for all k sufficiently large.
The convergence is R-linear if there is a sequence of nonnegative
scalars tνkukPN such that

}x(k) ´ x˚} ď νk

for all k and tνkukPN converges Q-linearly to zero.
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a.2 general results on projection matrices

Let x P Rn = V‘W. Then, x can be uniquely decomposed as

x = x1 + x2, x1 P V, x2 PW.

The projection onto V (along W) is the linear transformation that
maps x into x1; the matrix that represents this transformation is called
projection matrix.

Let P denote the projection matrix onto V along W.
Proof of Lemma 3.1.
(Necessary condition) For any z P Rn = V‘W, Pz = x P V. Then, we
have

P(Pz) = Px = x = Pzñ P2z = Pzñ P2 = P.

(Sufficient condition) Let now suppose that the matrix P represents a
linear transformation such that P2 = P. We first observe that

kerP = range(In ´ P),

indeed, let x P kerP, x = (In ´ P)x then kerP Ď range(In ´ P); on
the other hand, for any z P Rn, P(In ´ P)z = Pz´ P2z = On,1 and
range(In ´ P) Ď kerP. Furthermore, we have

z = z´ Pz+ Pz = (In ´ P)z+ Pz,

hence, any vector can be decomposed as the sum of x1 = Pz P rangeP
and x2 = (In ´ P)z P kerP. Since rangeP X kerP = On,1, it follows
that P represents a projection onto V = rangeP along W = kerP.

Proof of Lemma 3.2.
(Necessary condition) From Lemma 3.1 it follows P2 = P.
Let x,y P Rn, x = x1 + x2 and y = y1 + y2, where x1,y1 P V and
x2,y2 P VK; let recall that xT2Py = 0 and yT2Px = 0, then

xTPy = (Px+ x2)
TPy = (Px)TPy = (Px)T (y´ y2) = x

TPTy,

which implies that PT = P.
(Sufficient condition) Let x = Pz P rangeP, then Px = P2z = Pz = x;
let y P range(P)K; for any x, we have (Px)Ty = xTPTy = xTPy = 0,
which implies that Py = 0. Therefore, from Lemma 3.1 P is a projec-
tion matrix onto rangeP along range(P)K. Finally, let λ be an eigen-
value of P; then for some x ‰ 0, Px = λx. We have

λx = Px = P2x = λPx = λ2x,

which implies that λ = 0 or λ = 1.
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