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Abstract Due to the continuous refinements in engineering
operations, process parameters need to be optimised in order
to improve the production quality. In this study we present a
novel method based on the hybridisation of an ant colony
system search mechanism with a steepest ascent method
to achieve such a parameter optimisation. The proposed
algorithm has been implemented and run on two real time
industrial applications. Experimental results showed that the
optimised parameters for a stealth laser dicing process pro-
vided by the newmethodwere able to increase the production
quality by improving production precision, which is mea-
sured in terms of average deviation from the expected result
and relative variance. The novel method we propose was
able to identify improved settings for a stealth laser dicing
process with five parameters, resulting in a greatly reduced
rate of product failures. Additionally six parameters were
optimised for another industrial application, namely a grease
filling system with twin towers, using only 23 experiments,
leading to an increase in the tool life (objective of the opti-
misation) from the previous average of 9236U produced to
13,883U. The new method performed better than conven-
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tional response surface methods, showing therefore to be
promising for other similar industrial applications.

Keywords Taguchi design · Multiple linear regression ·
Desirability function · Steepest ant sense · Stealth laser
dicing · Twin grease filling system

Introduction

Seeking global solutions of continuous optimisation prob-
lems arise in many industrial applications. Response surface
methods have been used to solve a vast variety of practical
problems. Practitioners often wish to determine the proper
levels of process parameters at which the responses approach
their optimum. A combination of mathematical and statisti-
cal techniques aims to model and predict the response of
interest, that is affected by a number of process parame-
ters in need of tuning (Myers et al. 2016). The optimum
is typically determined from a particular function in terms
of those parameters via common statistical tools. Factorial
design methodology (FDM) employs full or fractional fac-
torial design and avoids the traditional one-factor-at-a-time
experiments (Montgomery 2012). The statistically signifi-
cantmain or interaction effect between variables is a frequent
phenomenon to drive the process to its optimum. Instead
of the traditional full or fractional factorial experiments
which were used by the majority of previous researchers
to determine the individual effect of various parameters on
continuous problems, Taguchi designs can be employed to
reduce the number of designed experiments, time and overall
related cost. Taguchi method (TM) is the referencemethod in
the literature to achieve a robust parameter design for produc-
tion processes in industry. Themethod is systematic, efficient
and insensitive to variation. The target in such applications
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is to determine an optimal configuration of a large number of
parameters, while minimising the number of experiments on
the realmachines in such away that the production can be car-
ried out at high quality standards and at low cost. This class
of methods is based on a sequence of experiments designed
to gain very useful information on a decreasing number of
experimental parameters and design points. The initial exper-
iment is often limited to a small subregion of the feasible
operating region for the process or system of interest. In such
cases, a first order model often allows an adequate approx-
imation to the response surface. Moving toward a region of
rapidly improved response can be directly accomplished by
following the path of steepest ascent (descent), according to
the theoretical model of the system.

Many of the applications in the literature treat a single
response or quality characteristic, which is considered crit-
ical. In today’s highly competitive markets, there is often
more complexity in the product or process design. The simul-
taneous optimisation of several responses upon a number
of parameters or sets of operating conditions needs to be
achieved. To reach a satisfactory compromise of multiple
conflicting responses in an actual manufacturing process, a
recent thrust of management has focused on the use of a
desirability function approach to combine various criteria
into a single one with the objective of maximising multiple
response measures simultaneously. Although the conven-
tional response surface methods provide useful tools, they
are usually unsuitable for finding a global optimum of a
continuous optimisation problem with several local optima
or curved ridges. In the last few years, population-based
metaheuristic algorithms have been widely used in many
applications in place of traditional techniques. To improve
upon the efficiency of the steepest ascent method (SAM) for
continuous optimisation problems, researchers made some
efforts to hybridise SAM with some neighbourhood-search-
based procedures such as genetic, simulated annealing, tabu
search, and ant colony optimisation. In order to overcome
the deficiencies of mathematical and statistical techniques
of the SAM, metaheuristic optimisation techniques based on
ant colony systems have been proposed. These allow a good
solution or near optimum to be achieved within a reasonable
execution time, without any loss of subtle characteristics of
the first ordermodel andwithout any requirement of complex
derivatives or careful choice of initial values.

The proposed algorithm based on the hybridisation of
Taguchi design, steepest ascent (descent) and ant colony
systems could help to improve and simplify the continuous
optimisation procedures. The objective of the present study
is to develop a new approach that systematically determines
suitable parameter levels for process optimisation problems.
With this novel algorithm, a set of influential parameters is
obtained by which the generated model closely reproduces
process responses. Practically, it starts with various classes

of experimental designs. In this research, Taguchi orthog-
onal arrays are implemented to determine those parameters
having impacts on the process responses. The first order rela-
tionships between the statistically significant parameters and
process responses are then estimated using the method of
least squares. An optimisation method based on the path of
steepest ascent or descent is used to determine an optimum
set of process parameters that gives the best responses of a
model. Due to the complexity involved in the real industrial
process, good functional relationship with reasonable accu-
racy between responses and process parameters is difficult to
obtain.Once the solutions deteriorate, the set of newsolutions
from stochastic mechanisms from ant colony systems is used
to perform experiments rather than terminate the sequen-
tial optimisation procedures. The proposed method has been
tested on actual industrial applications and the experimental
results compared favourably to the results from conventional
response surfacemethods, verifying the adequacy of the solu-
tion and also the applicability of the newly devised method.
The rest of the paper discusses the following: “Related meth-
ods” section introduces Taguchi design, the steepest ascent
method (SAM), and the ant colony system (ACS). “The
new steepest ant sense algorithm (SASA)” section describes
the novel integrated approach for a multi-response optimi-
sation with continuous improvement that uses evolutionary
operations. In “Industrial applications of the SASA and com-
parison with other methods” section the proposed algorithm
is tested on two real industrial processes, namely, a laser
dicing operation and a grease filling system, where process
parameters need to be set to meet all quality requirements.
Results are compared with those of conventional methods.
“Conclusions” are finally summarised in last section.

Related methods

A collection of statistical and mathematical techniques
is conventionally used to develop, improve and optimise
industrial systems in the context of response surface method-
ologies. Its objective is to evaluate a response influenced by
several parameters. Taguchi orthogonal arrays are experi-
mental designs employed for a first-order or second-order
response surface. Although there are many available types of
plans, such as the complete or fractional factorial design, the
potential benefit of Taguchi design approaches is its ability to
solve complex systems with a drastically decreased number
of performed experiments when compared to previous exper-
imental designs. The response surface of a process is usually
described by a polynomial representation. Moreover, it is
assumed that the current operating region of the problem of
interest is far from the optimum. The optimisation resolution
process time can be reduced by assessing responses and the
corresponding parameters through a first-order approxima-
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tion, rather than using more complex empirical models. Gra-
dient descent (ascent) or steepest descent (ascent) obtained
by the designed experiments and principles of least squares
are often adequate for rapidly moving toward a region of
improved responses. After an adequate model is obtained, it
then becomes necessary to design a trajectory towards the
optimum.

Some real problems need the best solution simultaneously
assessed by several fundamentally conflicting responses. In
many cases, there are multiple constraints and noisy envi-
ronment, owing to increasing the complexity of product and
process development (Sibalija and Majstorovic 2012). How-
ever, response surface methodology is unable to directly
deal with these problems. To overcome these difficulties,
existing stochastic mechanisms from metaheuristics are
employed. Ant colony system optimisation has been suc-
cessfully used to solve various combinatorial optimisation
problems. However, very little exists in terms of documen-
tation for solving continuous optimisation problems. In this
study, ant colony systems allow the exploration of a com-
bination with another simple optimisation method based on
steepest ascent (descent). The following paragraphs review
the traditional approaches for response surface optimisation
that are later embedded into the new framework we propose.

Taguchi design

Taguchi method (TM) includes both experimental designs
and analyses and has been used by various industries for
many years (Taguchi et al. 1993). These applications include
cryogenic treatment and drilling parameters of AISI 304
stainless steel affecting surface roughness and roundness
error based on drilling parameters and heat treatments (Çiçek
et al. 2015). There have been various successful applica-
tions of TM to industrial processes, such as the setting
of optimised factors affecting coagulation in a haemodial-
yser (Lin et al. 2016) and wastewater treatment (Zirehpour
et al. 2014) including the specific film parameter optimisa-
tion (Kuo et al. 2016). It uses fractional factorial designs
or orthogonal arrays on the full set of parameters affecting
the output performances or responses. This method cate-
gorises influential parameters into controllable parameters
and uncontrollable parameters (noise). For system stabil-
ity, the controllable parameters are used to determine the
preferred designed plan. With no parameter interaction, the
selection of Taguchi designed orthogonal arrays depends on
the number of controllable parameters and their levels.When
considering system variations, the decision maker aims at
reducing the effects of uncontrollable parameters via vari-
ous design alternatives. The objectives of Taguchi design are
simultaneously to improve quality via controllable parame-
ters and to achieve robustness against noises (uncontrollable
parameters). Thismethod is iterative: experiments are carried

out and numerical results are evaluated iteratively until satis-
factory knowledge has been gained. Taguchi design evaluates
the quality of a parameter configuration based on crossed
orthogonal arrays via a loss function transformation and a
measure of the variation or the signal-to-noise ratio. Its aim
is to decide the optimal parameters and their levels for the reli-
able reproduction of the desired characteristic values within
a minimal variation range.

The steepest ascent method

In the context of response surface, the response of a process
can be described via level changes in process parame-
ters. Interesting practical issues are the combination of an
estimation of the surfaces and the identification of near
optimal settings of all influential process parameters. An
aim is to drive the current operating conditions toward
the optimal (or anyway improving) conditions. The actual
relationship between the response and the set of process
parameters is unknown. A suitable approximation can how-
ever be determined via a low-order polynomial—such as a
linear function of the first-order model—in some region of
the significant (or at least influential) process parameters.
Based on the observed data, the appropriate relationship
between parameters and quality is modelled via the least-
squares technique, and the adjustment quality of the model is
assessed using a traditional simple or multiple linear regres-
sion tools (Edwards and Fuerte 2011). For k parameters xi ,
i = 1, 2, . . ., k, the fitted first-order model for each of R
responses is given by

ŷr = 1β̂0 + XT β̂; r = 1, 2, . . ., R. (1)

The path of steepest ascent is then given by β̂ =
[

β̂1β̂2 . . . β̂k

]T
and X is a vector of [x1, x2, . . . , xk] and 1

is a column of 1’s. The β̂ vector is from the least-squares
method and all the xi are in coded form with the center of the
initial design point at (x1, x2, . . . , xk) = (0, 0, . . ., 0). Such
a function describes how the mean response is modified by a
change in the process parameters. The process parameters are
then optimised using steepest ascent or descent methods on
the function. This (heuristically determined) direction is par-
allel to the normal contour line of the approximated response
surface. The sequential experiments are performed along this
path until there is no further improvement in the process
response, and parameter levels obtained are returned. This
algorithm has been widely used to determine the optimal
parameters in manufacturing optimisation problems (Hron
and Macak 2013; Joyce and Leung 2013; Chen et al. 2014;
Zhanget al. 2016). In a systemwithmultiple responses, a con-
siderable tradeoff among the different responses is required.
The resulting approach is called compromise steepest ascent

123



444 J Intell Manuf (2019) 30:441–457

Fig. 1 Pseudo code of the
SAM

Procedures of SAM()
While (termination criterion not satisfied) - (line 1)
Schedule activities (when second order criteria not satisfied)

Generate design points from Taguchi orthogonal arrays or factorial designs;
Evaluate responses of design points;
Determine the significant first order model from the method of least squares;
Move along the estimated parameter levels with a step length (Ω);
If the new one is better than the preceding then 

Move ahead with another Ω;
Else

Compute two more design points to verify the descending trend;
If one of which design points turns out to be better than the preceding then

Use the best one to continually move along the same path;
Else

Use the closest preceding one as a centre for the new design points;
End if;

End if;
End schedule activities;
End procedure;

method, but this study abbreviated it as SAM throughout. A
desirability function is introduced. It is a transformation of
the natural responses to desirability values between 0 and 1
via a geometric mean (Harrington 1965). The value 0 repre-
sents a completely undesirable response and 1 means the
most desirable response. Whilst continually checking the
termination criteria such as an evidence of quadratic or inter-
action effects, the following standard pseudo code describes
the steepest ascent method (Fig. 1).

Ant colony system optimisation

Ant colony system (ACS) is a population-based optimisa-
tion paradigm based on the imitation of real ants. In more
detail, it mimics the natural process for exchanging infor-
mation between real ants when they look for the shortest
route between the nest and a food source (Dorigo and Stutzle
2004). The parallel is therefore between a colonyof ants seek-
ing for food and an optimisation process where the aim is to
find a (hopefully) global optimal solution according to a given
objective function.Ant colony systemshave been remarkably
successful in solving many difficult discrete combinatorial
problems like the traveling salesman, scheduling, network
routing, vehicle routing and the quadratic assignment. Many
academic problems have been solved successfully by the ant
system. A number of companies have realised the value of
this algorithm for real-world applications. Later, applications
have focused on parameter optimisation problems in indus-
tries (Saravanan et al. 2005; Baskar et al. 2005; Mukherjee
et al. 2012; Zhang et al. 2005).

In Nature, an ant searching for food prefers to take a
direction marked with more pheromone, which is a volatile
chemical left on the ground by each ant and can be smelt by
all the ants of the same colony. This implies that over time
the shortest path between the nest and food tends to have a
higher concentration of pheromone, thereby attracting more
and more ants, while the pheromone on a non-successful
path will gradually evaporate. This process leads to a learn-
ing process giving the colony the capability of learning the
shortest path. Similarly, in engineering optimisation each
decision variable initially selects any value within the fea-
sible region to form a solution vector. If all decision variable
values construct a good solution, that experience is stored
in a shared memory of pheromone trails, so that future
ants will have knowledge on how proficient the parame-
ters were collectively to the selected values. In the long
run, the ant colony system will learn how to combine the
settings of the individual parameters to obtain better solu-
tions.Additionally, artificial pheromone evaporation is useful
to avoid too quick a convergence and to allow artificial
ants to better search for alternative regions of the solution
space.

The new steepest ant sense algorithm (SASA)

The novel algorithm we propose is a hybridisation of the
Taguchi method, the steepest ascent method and the ant
colony system. In the product or process development com-
munity, there are various engineering applications where
process design parameters have to be optimised to achieve
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desirable (or optimal) combinations of given quality mea-
sures. The desirable conditions are usually either amaximum
or minimum of the geometric mean of a computed set of
desirability indicators dr , r = 1, 2, . . . , R where a normali-
sation 0 ≤ dr ≤ 1 is normally carried out in advance, and
for each indicator 1 means optimum and 0 undesirable val-
ues. The computation of each desirability indicator dr works
as follows. The target is normally to minimise a predicted
measure of error Ŷr . We have a level Yr∗ near which some
product or process is considered nearly flawless, and a value
Y ∗
r where the product or process is considered unacceptable.

A desirability function dr is then defined as follows:

dr =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if Ŷr ≤ Yr∗
[

Y ∗
r −Ŷr

Y ∗
r −Yr∗

]w

if Yr∗ < Ŷr < Y ∗
r

0 if Ŷr ≥ Y ∗
r

(2)

where w is a weighting used to attribute emphasis to various
levels of the response. For R responses, the maximal overall
desirability (OD, the measure that will be optimised) is taken
via the geometric mean of the individual desirability, i.e.

OD = (d1 · d2 · · · · · dR)1/R (3)

There are two main steps of the proposed Steepest Ant Sense
Algorithm, which consist of an exploitation and an explo-
ration phases. The outline of SASA is described in Fig. 2.
During an exploitation step, the Taguchi method is first
applied to find the design parameters and their levels, deter-
mine both orthogonal inner or outer arrays, then designed
experiments are collected and experimental results are stud-
ied via the analysis of the mean or a signal-to-noise ratio.
These sequential procedures are applied to achieve adequate
and reliable measurement of the responses of interest. The
aim is to concisely determine the influence of design parame-
ters on the overall product or process quality. The influential
design parameters identified by the Taguchi method are used
to define a first order mathematical model for the response
surface. Once such an approximatedmathematicalmodel has
been built, the steepest ascent path is evaluated for the process
response bymeans ofmultiple linear regression analysis. The
significant terms in the model and the individual regression
coefficients are determined via an analysis of variance or
ANOVA and T test, respectively. Significance is judged by
determining the P value less than a preset significance level
(Montgomery 2012). Having fitted the model, the conven-
tional steepest ascent method determines the improvement
direction on the hyperplane by changing design parameter
levels in proportion to the significant estimated regression
coefficients. The next experiment is performed at a design
point that is at some fixed distance in that direction. Further
iterations of the same method are carried out by continuing

on this path of steepest ascent until no further improvement
is reported. When the response first deteriorates, an explo-
ration step (explained later) is then carried out to search for
the better condition. This phase, and how it is carried out,
represents the novelty of the method.

In the exploration step we apply evolutionary elements
from the ant colony system paradigm. Before starting the
optimisation, we need to set the following parameters: R+1,
the number of ants and ρ, the evaporation rate, and design
parameter domains are discretised. The new design points
(combinations of parameter levels) are selected by consider-
ing a posteriori information given by parameter levels with
highest pheromone. The steepest ant sense algorithm pro-
poses three alternative exploration modes based on the ant
colony system (ACS)which includes iterationbest ant system
(BAS), best so far ant system (BSFAS) and neighbourhood
ant search (NAS). When there is no OD improvement from
the new points, R + 1 design points from the Taguchi’s
Orthogonal Array are selected and associated with the ants
for the first iteration. In the second iteration, solutions asso-
ciated with ants are from other R + 1 design points with the
highest OD values. Pheromones are then updated. For the
ACS, the pheromone τi j , associated with the j-level of the
i-parameter, is updated as follows:

τi j ← (1 − ρ) · τi j + t ·i j (4)

where t ·i j is the total pheromone laid on the j-level of the
i-parameter after the colony has concluded the computation
and is calculated as follows:

t ·i j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑R+1
r=1 ODr if the solution of ant r used the

j − level of the i − parameter in
its design point,

0 otherwise

(5)

whereODr is the overall desirability of the design point con-
structed by ant r (Fig. 3).

When there is deterioration in yields from both funda-
mental mechanisms of Taguchi design and steepest ascent
method, three variants are then implemented to activate the
process toward the optimum. For the BAS, ants select the lev-
els to be visited through a stochastic mechanism based on the
best of a preset number of ants to form the new design point.
For theBSFAS, the best iteration and additional design points
fromTaguchi designed orthogonal array are included for ants
to form the new design point. In the case of three alternatives

or

[

j − � j ↔
j
j + � j

]

, the probability to decrease the para-

meter level of ( j −� j), to maintain the current level ( j) and
to increase the parameter level of ( j + � j) are P1, P0 and

P2, respectively or

[

P1↔
P0

P2

]

. The probability for an ant to
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Fig. 2 Outline of a proposed
algorithm: SASA
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select any level depends on a random variable uniformly dis-
tributed over [0, 1]. Those levels are selected via cumulative
probabilities. For example, if the cumulative probabilities for
selecting the new levels are [0.25, 0.75, 1] and the random

variable assigned to the first ant is 0.67, the first ant then
maintains the current level of j as shown in Fig. 4. There are
two cases of two possible parameter levels. In the first case

of two possible levels or

[

j→ j + � j

]

, the probabilities to
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Fig. 3 Presentation of ant pheromone concentration

Fig. 4 Presentation of
stochastic mechanism based on
BAS and BSFAS

maintain the current level ( j) and to increase the parameter

level ( j + � j) are P3 and P4, respectively or

[

P3→ P4

]

. In

the second one or

[

j − � j
j←
]

, the probabilities to main-

tain the current level ( j) and to decrease the parameter level

( j − � j) are P5 and P6, respectively or

[

P6
P5←

]

. Embed-

ding neighbourhood search in the ACS (NAS) is proposed
to overcome stagnations, where a solution does not change
anymore. The latest solutions are used to check the relation-
ship of the parameter levels against the averaged response or
overall desirability (OD). The neighbourhood search begins
by going through each parameter. In this step, parameter lev-
els and their OD’s are considered. If the percentage of an
OD improvement (�OD) from an increase or decrease in
parameter levels is larger than a preset value (α), those para-
meters are adjusted from the current best levels with the level

of� j . During consecutive time periods, if increasing the lev-
els from j − � j to j brings an OD increase larger than 5%,
the first ant adjusts to the neighbourhood level of j + � j as
shown in Fig. 5. This step is repeated until no further possible
change is possible.

In a preliminary study, the evolutionary procedures of the
SASA have been tested on various continuous mathemati-
cal functions widely used in response surface methodology
such as the single peak, the multi-peak and the curved ridges
including the multi-peak with curved ridge (Lee and Geem
2005). The confirmation tests on these models based on the
predicted operating conditions were verified and carried out
to show statistically significant improvement at 95% confi-
dence interval when compared to two conventional response
surface methods of the steepest ascent (SAM) and factorial
design (FDM). The numerical experiments were performed
on a personal computer under the environment of Intel(R)
Core(TM) i5-2410M CPU @ 2.30GHz and 4GB of RAM.
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Fig. 5 Presentation of stochastic mechanism based on NAS

Matlab 7.0 package and Visual C#2008 computer program
were run to execute the sequential procedures to deter-
mine the parameter choices in each case. Each case was
experimented 15 times to measure the responses. Theoret-
ical approximations were used to determine the parameter
choices. The aimwas to optimise the parameter levels and use
them as real settings on a stealth laser dicing operation and a
grease position tooling process. The sequential procedures of
the SASA performed in real experiments followed the steep-
est ascent method with the replacement of the ant colony
system (ACS) procedures (Fig. 6) when there is deterioration
in the response or OD during standard procedures (lines 10–
15) of the SAM (Fig. 1). The ACS procedures include the
iteration best ant system (BAS), the best so far ant system
(BSFAS) and the neighbourhood ant search (NAS). These
procedures are applied when the new response or desirabil-
ity value deteriorates or parameter regions are infeasible.

Industrial applications of the SASA and
comparison with other methods

Nowadays, there is an increasing competitionwithin the inte-
grated circuit industries in the worldwide market. Integrated
circuits (IC) are widely used for different applications. Var-
ious factors such as quality, tolerances, delivery times and
cost are highly important at production plants. Two case
studies from the semiconductor industry were selected to
illustrate the proposed integrated approach to multi-response
process design. Results of the application of SASA or the
integrated intelligent model and the factor effects approach

were compared to the results of three popular approaches for
multi-response design from the literature. These approaches
consisted of factorial design method (Montgomery 2012),
Taguchimethod (Taguchi et al. 1993) and compromise steep-
est ascent method (Edwards and Fuerte 2011). Details about
the implementation of the general framework to the given
applications follow.

Phase 1: Taguchi designs and analyses

In the initial phase, two steps of the Taguchi designed exper-
iments are carried out to determine the consistency of the
signal or output characteristics and their noises. The signal-
to-noise (S/N) ratio in the Taguchi method was also used to
transform quality characteristics for optimising the process.
The S/N ratio function depends on the larger the better (L),
smaller the better (S) or target the better (T) of the quality
characteristics. The following equation (6) of the larger the
better (L) was then selected to model such a quantity:

S/NL = −10 log

⎧

⎪

⎨

⎪

⎩

n
∑

i=1

[

1
/

y2i
]/

n
⎫

⎪

⎬

⎪

⎭

(6)

From the Taguchi designs and analyses phase, the numerical
results are used to determine the influential parameters and
the multiple regression for the path of steepest ascent. Some
Taguchi design points will later be used within the best so far
ant colony system (BSFAS, see “Phase 3: Ant colony system
mechanisms” section).
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Procedures of ACS()
Begin;

Initialise parameters: 
ρ : an evaporation rate;
∆ : a difference of parameter levels;
α : a preset value of response or OD improvement;

Construct R+1feasible solutions; 
Determine the response or OD (multiple responses);
Update the best solution;
Global updating rule;

For every combination (i,j) 
Find  ̇ according to Eq.(5);
Update the trail values according to Eq.(4);

End For; 
If the response or OD increases then 

Go to standard SAM procedures;
Else

Set up the probability to decrease or maintain or increase the current level;
Select the proper level by comparing a random number to cumulative probabilities; 
Update the best solution;
If the response or OD increases then 

Go to standard SAM procedures;
Else

Determine the percentage of the response or OD improvement;
If the percentage of improvement is larger than α then

Adjust the current best levels with the level of ∆ ;
Go to standard SAM procedures;

Else
Generate a new set of ample design points;
Go to standard SAM procedures;

End if;
End if; 

End if; 
End;
End procedure;

Fig. 6 Pseudo code of the ant colony system (ACS) procedures

Phase 2: Path of steepest ascent

FromTaguchi design, the multiple linear regression based on
OD is determined to form the path of steepest ascent. Sequen-
tial experiments are performed along this path until there is
no more improvement of the overall desirability (OD).

Phase 3: Ant colony system mechanisms

In this phase we apply evolutionary elements from the ant
colony system and its variants of BAS, BSFAS and NAS (see
“The new steepest ant sense algorithm (SASA)” section). For
the first two mechanisms, the best iteration (B) or best so
far (BSF) ant selects the levels to be investigated through
stochastic mechanisms to form its new design point. For

NAS, the probability of the i-parameter of B and BSF used

to select the level of

[

j − � j ↔
j
j + � j

]

,

[

j→ j + � j

]

or
[

j − � j
j←
]

is

[

0.25 ↔
0.50

0.25

]

,

[

0.75→ 0.25

]

or

[

0.25
0.75←

]

,

respectively. The new level for each parameter is determined
via its parameter levels and their OD′. s of all ants from all
iterations. If the percentage of an OD. improvement from an
increase or decrease in the parameter levels is larger than
5%, the parameter is set at the new level. For example, in the
experiments described in “Experiment 1: Stealth laser dicing
process (SLDP)” section, for parameter C it will be possible
to have a percentage improvement for OD in the order of
9.201% from an increase in the parameter levels from 0.36
to 0.38 (� j = 0.2). Since this was larger than 5%, the fol-
lowing setting of C to test was selected at 0.40.
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Experiment 1: Stealth laser dicing process (SLDP)

The production process for a die was analysed with the aim
of providing optimised production parameters to reduce the
average and standard deviation of some representative feature
of the products with respect to the expected one (tolerance)
and thus to guarantee a significant increase in the number of
dies perwaferwith efects.We focused on the stealth laser dic-
ing process, a high-quality dicing technology where a laser is
applied by internal processing to cut a semiconductor wafer
into small dies. Such a technology provides high accuracy
and high production speed at a low cost. A laser diode gener-
ates a pulse to break the wafer into dies with no chip or crack.
Such a technology is quite new, so process parameter tuning
is still an open issue. If the production tolerance is too high,
pieces might be defective and look like wavy kerf (Kuma-
gai et al. 2007). In semiconductor fabrication, there are two
types of dicing processes that consist of mechanical sawing
and laser cutting. Both operate automatically to ensure the
precision and accuracy. The innovative and high capability
concept to separate dies from a wafer is stealth laser dicing.
An interesting feature of the SLDP is the high-speed process
without chipping, no frictional heat or debris contamination
and a completely dry process. Therefore, this process does
not require any cleaning sub procedure with water or other
fluids. In this dicing process, a laser-based technique is used
to dice silicon wafers on the saw lane to dies without causing
defects such as cracking on the wafer. Its performance can
support the silicon wafer within the required target of a saw
lane width. During the SLDP, semiconductor wafers are typi-
cally mounted on a back grinding tape which holds the wafer
on a thin frame. A laser diode is used to generate the pulse
to destroy the silicon structure. The laser beam at a wave-
length permeable to a semiconductor wafer is scanned along
intended dicing lines. An underlying carrier membrane only
occurs on the interior of the wafer to induce fracture (Fig. 7).

In the SLDP, the current level of meandering (Fig. 8) on
SLDP layers along the scanned line in the wafer is the main
problem. The meandering measures of both the central ten-
dency and the standard deviation are slightly higher than the
customer specification (Fig. 9). This situation leads to qual-
ity inspection of a large sample size with high frequency.
This results in a higher production cost and also wastes time
and labor. Therefore, a meandering quality measures in the
SLDP need to be improved. Since the collaboration with the
Thai Company carrying out the production was based on a
no-disclosure agreement, all the data reported in the remain-
der of the paper have been modified (in such a way that the
readability of the results is not compromised).

In a preliminary study, a two level experimental design
was performed to determine the statistical significance of
five process parameters, which were the scanning height (A),
scanning power # 1 (B), scanning power # 2 (C), beam shape

FFCFFC

Wafer Thickness Required

Back Grinding Tape

Wafer Thickness Required

Dicing Tape

Back Grinding Tape

Die

WAFER

WAFER

BACK GRINDING PROCESS

WAFER

WAFER

MOUNTING PROCESS

LAMINATE PROCESS

FFCFFC

DICING PROCESS

Dicing Tape

LAMINATOR PROCESS

Fig. 7 Stealth laser dicing process (SLDP)

(D) and scanning speed (E). The feasible ranges, the current
operating condition and their possible differences of opera-
tion (�) are provided in Table 1 (all are coded levels). The
problem of interest was the drift of meandering data in the
stealth laser dicing process. The current mean and standard
deviation of meandering were at -3.2 and 314.5, respectively.
The A-process parameter is a combination of (First, Second)
scanning height of a laser (Fig. 10) for this SLDP. The fol-
lowing seven combinations are possible, and define A levels:
(10, 9), (11, 8), (12, 7), (13, 6), (14, 5), (15, 4) and (16, 3).
These combinations are coded by the approach into 1, 2, 3, 4,
5, 6 and 7, respectively. The feasible levels of beam shape (D)
consist of ultrathin (1), thin (2) and thick (3). Themeandering
data is then measured and compared with the customer spec-
ification. The mean target is -19.0 microns and the standard
deviation target is 232.0.
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Table 1 Process parameters, feasible ranges and the current operating
condition

Process parameter Feasible range Current �

Lower Upper

A 1 7 4 1

B 0.12 0.48 0.24 0.01

C 0.18 0.72 0.36 0.01

D 1 3 1 1

E 100 300 200 10

DIE: BACK

DIE: FRONT

FIRST 
SCANNING 

HEIGHT

SECOND 
SCANNING 

HEIGHT

Fig. 10 (First, second) laser scanning height

The controllable parameters A, B, C, D and E were
selected to estimate effects on the performance indicators of
the mean and standard deviation of meandering. This paper

investigates how the proposed SASA based on ACS stochas-
tic evolutionary elements may be applied to the challenging
industrial problemoffinding the optimal operating condition.
The standard L8 orthogonal array was employed to design
these experiments. A minimal number of experimental runs
could be effectively employed to determine the influen-
tial effects of these parameters. The experiments were kept
within the actual stealth laser dicing process specifics, pro-
vided by the Company. The qualitative evaluations of some
selected process parameter levels combinations were made
from the previous data set by the decision maker (DM). The
experiments highlighted some interaction effects between
process parameters.Notably,A–BandB–C interactionswere
identified. The (lower, higher) or (1, 2) levels of the process
parameters ofA,B,C,D andEwere (4, 5), (0.24, 0.26), (0.36,
0.38), (1, 2) and (200, 210), respectively.With three replicates
for each combination and with the help of the DM, each nat-
ural response (r ) from experimental results was transformed
into its individual desirability (dr ). An overall desirability
(OD) was also determined by using the attribute weighting
(w) of one. The (lower, upper) bounds of the mean and stan-
dard deviation were (−15, 0) and (300, 350), respectively.
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Fig. 11 SLDP: evolution of the overall desirability for different design points

Table 2 Influential Effects on the OD and S/N of OD

Rank A B AB C D BC E

OD 5 3 1 4 7 6 2

S/N of OD 4 2 1 5 6 7 3

Levels of significance and importance were determined for
the process parameters by analysis of variance (ANOVA).
The results for Taguchi design, multiple regression and ant
system are summarised in Fig. 11.

The numerical results of the influential effects based on the
yield differences and the main effect plots were categorised
by the desirability types of OD (Table 2), d1 (mean) and d2
(standard deviation). When compromising both responses,
influential parameters were A, B, C and E. The lower A lev-
els led to desirable mean of meandering levels. In contrast,
parameters A and C highly affected the standard deviation
of meandering and lower levels on both parameters brought
undesirable standard deviation. In the first phase, the analyses
were categorised by the desirability types of OD, d1 and d2.
When compromising both responses, influential parameters
were A, B and E. However, the A levels had the most impor-
tant effect. Their lower levels led to the desirable standard
deviation and provided thrable mean of meandering levels.
These conflicting effects were repeated on the C parame-
ter in the opposing way. From Taguchi analyses based on
OD, the influential process parameters were A, B, C and

E. The influential process parameter affecting the mean of
responses (d1) could beA, and the influential process parame-
ters affecting the standard deviation of responses (d2) could
be A and C. The multiple regression line based onOD and its
influential process parameters wasmined via the method of
least squares. However, the coefficient corresponding to the
C parameter was proven not statistically significant (Table
3). This regression line was used as the subprocedure of the
path of steepest ascent to achieve the higher levels of over-
all desirability (OD). The additional procedures based on
Taguchi method were carried out to determine the regres-
sion lines of the desirability function of the mean (d1) and
the standard deviation (d2) of meandeng values (Table 4).
There were some moves along the path until there was no
OD increase, at the design point (DP) # 11. Instead of apply-
ing the conventional second order design, new design points
were determined via the multiple linear regression based on
d1 (DP# 12) and d2(DP# 13) and the highestOD (HOD) from
all Taguchi design points (DP# 14).

The novel SASA procedure we propose was then applied
to try to exit from a local optimum. Three different design
points (ants) were randomly selected from all 11 design
points to be three ants for the first iteration (I = 1). Another
three design points were also picked from d1, d2 andHOD, to
be ants for the second iteration (I = 2). The new ants or DP#
15, 16 and 17 for the third iteration were generated via the
ant systemmechanisms by equation (10). Some design points
were investigated by applying local updating rules of BAS
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Table 3 Regression
Coefficients and the Analysis of
Variance of the Model based on
OD

Predictor Coeff SE Coeff T P value

Constant 0.15575 0.05387 2.89 0.015

A 0.01525 0.01771 0.86 0.408

B 0.04475 0.01771 2.53 0.028

C −0.02200 0.01771 −1.24 0.240

E 0.04550 0.01771 2.57 0.026

Analysis of Variance

Source DF SS MS F P value

Regression 4 0.019157 0.004789 3.82 0.035

Residual error 11 0.013803 0.001255

Total 15 0.032960

Table 4 Summarisation of
Regression Coefficients and the
Analysis of Variance of the
Model based on Individual
Desirability Function

Function ̂d1 ̂d2

Predictor Constant A Constant A C

Coeff −0.1745 0.35738 0.92500 −0.26800 −0.14375

SE Coeff 0.1224 0.07739 0.02950 0.01353 0.01353

T −1.43 4.62 31.36 −19.80 −10.62

P value 0.176 0.000 0.000 0.000 0.000

F: ANOVA 21.32 252.45

P value: ANOVA 0.000 0.000

to DP#18, BSFAS to DP#19 and the neighbourhood search
or NAS to DP# 20. DP# 18 and 19 were determined by their
parameter levels from the best iteration or B (this case from
ACS) and the best so far or BSF (this case from Taguchi),
respectively. However, at this moment the levels were very
similar, and in fact corresponded to the same design point.
ForDP# 20, this ant used the neighbourhood search or NAS.
The OD was then improved when C level increased from
0.36 to 0.38 or with the positive difference of 0.2. The DM
decided to increase the C level to 0.4. These mechanisms
from ant colony system seemed to be good alternatives to the
existing algorithm for seeking the parameter settings of the
SLDP. The novel algorithm showed its performance to avoid
getting stuck at the local optimum instead of using the sec-
ond order based methods when compared to the traditional
response surface algorithms.

Various hybridisations based on the ant system were
carried out to improve the search efficiency of the com-
promise steepest ascent method (SAM). By integrating the
previous design points from Taguchi array and the SAM,
solution-finding was diverse to avoid settling at a local opti-
mum and achieve better operating condition. Regarding the
initialisation process of the ACS, the first step was to deter-
mine the initial ants or design points. To avoid a biased
exploration, different random initial configurations were per-
formed with the same local and global pheromone updating

rules. However, from experimental results ofDP# 21, 22 and
23 (Fig. 11); there was no difference in the overall search
efficiency of the ACS. In the fourth iteration of the proposed
algorithm it might be that a series of the overall desirability
did not improve. The decision maker could systematically
adjust the preference parameters of shape, bound, or target
of the desirability function by using the tradeoffs informa-
tion.

In conclusion, the optimised controllable parameters of
the scanning height (A), scanning power # 1 (B), scanning
power # 2 (C), beam shape (D) and scanning speed (E)
were 5, 0.25, 0.39, 1 and 220, respectively. Performances
of the desirability of the mean and the overall desirability
level (OD) have been simultaneously improved by 159.4774
and 49.4049%, respectively. There was a low decrease
(13.9694%) in the desirability of the standard deviation. This
process optimisation was provided by the steepest ascent
method. These experimental results demonstrated that the
ant colony system mechanisms were efficient and greatly
enhanced both performance measures on meandering data.

Although a parameter optimisation procedure is a valu-
able technique for various application domains, conventional
techniques based on experimental designs and analyses are
still widely used in the Industry. For comparison purposes,
we report the results we have obtained with Taguchi method
(TM), compromise steepest ascent method (SAM) and fac-
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Table 5 Comparison of different optimisation methods on the SLDP

Method Parameters Sample mean

A B C D E ̂d1 ̂d2 ̂OD

FDM 4 0.24 0.36 1 200 0.214 0.708 0.389

TM 5 0.26 0.38 1 210 0.366 0.621 0.477

SAM 4 0.27 0.35 1 210 0.229 0.726 0.408

SASA 5 0.25 0.39 1 220 0.552 0.607 0.579

Fig. 12 Bearing with no-go (a) and go (b) grease positions

torial design method (FDM). The comparison of results of
the SASA with other selected methods are summarised in
Table 5. From the overall desirability function there is statis-
tical evidence that the mean values of the SASA provide the
preferable operating conditions when compared. This new
parameter tuning via the SASAhas been adopted by the com-
pany.

Experiment 2: Grease filling system (GFS)

In electronic industries, grease is important for the bear-
ings in component machining tools. Benefits of grease are
to increase compactness of metal ball and to minimise wear
under high load conditions. It improves operation reliability
for bearings at high speeds, high load capacities and greater
energy savings. However, grease leakages during a filling
process bring a lot of failed parts with wrongly positioned
filling or grease no-go parts (Fig. 12). In this case study, this
uncontrollable situation affects the purchasing department of
unit grease supplies. Additionally, the producermust be care-
ful to save resources, conserve energy and decrease wasted
grease to care for the environment. Therefore, a system for
greasing bearings to be maintenance free for a long life was
developed and evaluated. However, it is impractical to deter-
mine directly the greasing position with sufficient accuracy.
For mass production a new grease filling system with twin
(left, right) towers contributes to increase the precision of
operations, leading to higher productivity, higher speed and
greater reliability (Fig. 13).However, the newsystembrought
a new problem concerning the difficulty of controlling grease
filling system parameters. At current operating conditions,
the tooling life times or time until achieving grease no-go
parts on both left and right towers are 9236U on average.

Remove Grease 

Screw Lock Lower 

Position Lower 

Grease Supply 

Lower Grease 

x2 

x3 

x1 Cylinder 
Speed 

Fig. 13 Side view of the grease filling system

An experiment was conducted to optimise the grease fill-
ing system in bearing assembly. Six process parameters were
studied within the feasible lower and upper ranges: lower
grease supply distance (mm):78 and 82; lower grease sup-
ply speed (kgf/cm2): 4.3 and 5; removal pressure speed
(kgf/cm2): 3.8 and 4.7; protection equipment height (mm):
1 and 2; cycle time (second): 2.0 and 2.1; pallet lock speed
(kgf/cm2): 3.9 and 4.6. The quality of the considered sys-
tem is determined by the number of parts filled with grease
before the inspection department detects a grease no-go part.
The tooling life times determined via the twin grease filling
system on the left (yL) and the right (yR) towers were con-
sidered as the first and the second response. Both responses
are variables of the larger the better type. To solve this prob-
lem, the parameter settings of the grease filling system (GFS)
should be maximised.

The same procedure described in “Experiment 1: Stealth
laser dicing process (SLDP)” section for the SLDP was
employed here. By using Taguchi experimental plan, the
orthogonal array was generated. Since there were six con-
trollable parameters varied on two levels without noise, the
plan presented a standard L8 (27) orthogonal array with eight
treatments and the maximum number of factors for screen-
ing up to seven. After performing experimental trials, both
responses were measured for two replicates. By analysing
the observed data, the effective parameters having an influ-
ence on the tooling life times and their desirability function
levels (dL and dR) including overall desirability (OD) could
be seen and the preferred levels of the process parameters
could be obtained. Based on the average values, analysis of
means (ANOM) diagrams were drawn indicating the para-
meter impact of lower grease supply distance (x1) and lower
grease supply speed (x2) based on the performance measures
of OD and dR. Parameters of lower grease supply distance
(x1), cycle time (x5) and pallet lock speed (x6) affected dL
as shown in the table below.

When the current region of experimentation is assumed
to be far from the optimum—like in this case—a first-
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Table 6 Ranks of parameters categorised by desirability functions

Functions Parameter and interaction

x1 x2 x1x2 x3 x4 x5 x6

OD 1 2 3 5 6 4 7

dL 1 7 6 4 5 2 3

dR 1 2 3 4 7 5 6

order approximated function to the response surface is often
conducted. A steepest ascent method will rapidly locate
an improved response design point. From the experimental
design and the results in Table 6—with the statistically sig-
nificant level set at 10%—four parameters of lower grease
supply distance (x1), lower grease supply speed (x2), cycle
time (x5) and pallet lock speed (x6) were investigated in an
experiment involving the grease filling system to determine
their effects on three responses of overall desirability func-
tion (OD), desirability function of tooling life time on the
left (dL) and the right (dR) towers. All responses were to be
maximised. The first-order response functions representing
OD and dR could be expressed as a function of two signif-
icant parameters, namely lower grease supply distance (x1)
and lower grease supply speed (x2). Only parameter of lower
grease supply distance (x1) significantly affected dL (Table
7). There were lack-of-fit tests indicating no presence of pure
quadratic curvature in each of these simple models. The rela-
tionships between the responses and influential parameters
to determine the direction of rapid improvement for each
response were obtained as follows:

̂OD = 9.402 − 0.08877x1 − 0.3911x2
̂dL = 3.89 − 0.0403x1
̂dR = 11.215 − 0.1038x1 − 0.5468x2

Based on the fitted models, the steepest ascent direction
for ̂OD was determined to find the required direction of
changing parameters by decreasing the lower grease supply
distance (x1) and lower grease supply speed (x2) to improve
the overall desirability. The results from the steepest ascent
path indicated that the yield profile had a maximum at the
design point (DP) # 9 and got worse atDP# 10. Artificial ants

randomly constructed R solutions, a finite set of available
design points from the OA and the path of steepest ascent. In
this case, on thefirst iteration they consistedofDP#3, 4 and5.
Each ant represented a solution string, with a selected level
(j) for the ith influential parameter. The newly determined
ants of DP# 11, 12 and 13 formed via the path of steepest
ascent on dL and dR included the ant with the highest level
of OD (HOD) based on Taguchi design points, respectively.
Accordingly, pheromone concentration associated with each
possible route (parameter level) was changed in a way to
reinforce good solutions. The concentration of pheromone
at the previous iteration with pheromone evaporation rate of
0.4 brought new ants of DP# 14, 15 and 16, but DP# 14
was similar toDP# 15. Additionally, the best iteration (B) or
best so far (BSF) ant selected the levels to be visited through
stochastic mechanisms to form its new design point. The
probability levels of P1, P2, P4 and P6 from the current best
or the best so far were set at 0.25 throughout.Moreover, there
was embedding neighbourhood search in the ACS (NAS). If
the percentage of an OD improvement from an increase or
decrease in parameter levels was larger than 5%, those para-
meters were adjusted from the current best levels with the
level of � j .

Applying BAS, BSFAS and NAS got new ants ofDP# 17,
18 and 19, respectively. After updating ACS for two cycles
the best so far condition was DP# 23 via BAS. Parameters
of lower grease supply distance (x1), lower grease supply
speed (x2), removal pressure speed (x3), protection equip-
ment height (x4), cycle time (x5) and pallet lock speed (x6)
were 79.5, 4.8, 4.6, 1, 2 and 4.5, respectively. The evolution
of the design points is shown in Fig. 14. The tooling life
time responses were at 14,805.99044 and 12,960.14307U
for the left and right towers of the GFS. The results of the
SASA were compared with results of FDM, TM and SAM
as shown in Table 8. Quantitative comparisons between the
experimental results of SASA and those of the other three
methods reveal that the new set of GFS parameters obtained
through the series of sequential procedures proposed in this
research provided reliable results.

The numerical results on SASA resulted in a better over-
all desirability function. At the new operating condition, the
mean time between failures or the mean time until there is

Table 7 ANOVA for regression models and related coefficients

̂OD ̂dL ̂dR

Parameter β̂ P value Parameter β̂ P value Parameter β̂ P value

Constant 9.402 0.000 Constant 5.248 0.010 Constant 11.215 0.000

x1 −0.08877 0.001 x1 −0.0403 0.051 x1 −0.1038 0.001

x2 −0.3911 0.018 x5 −0.4796 0.221 x2 −0.5468 0.007

x6 −0.0872 0.264

123



456 J Intell Manuf (2019) 30:441–457

Fig. 14 GFS: evolution of the overall desirability for different design points

a grease no-go part was 13,883U on average while the pre-
vious average was 9236U. The benefits from adopting the
new decision technology of the SASA, as in the GFS exam-
ple, are that the Company can predetermine when the twin
grease filling system should be replaced and achieve longer
tooling life times. However, there are learning costs typi-
cally incurred at the time of adoption for using some types
of new technology. It is typically much less than the cost to
the purchasing department when timing of grease supplies
are unpredictable and result in higher inventory.

Normally, the actual data sets are assumed to be used dur-
ing a reported process optimisation. However, in this paper,
the actual data we used at the factories were concealed and
their domain was shifted as was done for the first experiment
(stealth laser dicing) to keep the mercantile secrets. The goal
is to gain benefits from applying these sequential procedures
on other learning machines.

Conclusions

We have proposed a novel methodology to optimise the con-
trol parameters of typical industrial processes. The SASA
is based on the combination of the conventional Taguchi
designs, steepest ascent and ant colony systems. Principal
advantages of this combination of SASA are high accuracy,

Table 8 Comparison of different optimisation methods on the GFS

Method Parameters Sample mean

x1 x2 x3 x4 x5 x6 ̂dL ̂dR ̂OD

FDM 82 4.8 4.5 1 2 4.5 0.670 0.221 0.385

TM 80 4.5 4 1 2 4 0.668 0.485 0.570

SAM 82 4.7 4 1 2 4 0.634 0.657 0.645

SASA 79.5 4.8 4.6 1 2 4.5 0.740 0.648 0.693

reliability, efficiency and confidence with a lower number
of design points while searching the optimum. The SASA
has been applied to a specific stealth laser dicing process
(SLDP) and a grease filling system (GFS) in a Thai electron-
ics factory producing integrated circuits. The results obtained
showed that the new method was effective in improving the
settings and in turn the production quality. This procedure
showed effectiveness, efficiency and accuracy in noisy sce-
narios and allowed for the proper identification of parameter
settings in the SLDP and the GFS studied, whereas for the
conventional response surface methods, the low confidence
and reliability of overall desirability levels make their use
unsuitable for these problems. The SASA demonstrates an
excellent tradeo? between exploitation of the steepest ascent
method and exploration in ant colony systems. Based on
overall desirability, the high confidence and stability of the
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SASA combined with its simple computation structure could
lead to solving real-life and real-time manufacturing opti-
misation problems in industry. The promising and viable
hybrid method can be applied to determine the appropriate
operating conditions for any process parameter calibration
problem, (very common in the production industry), in order
to achieve desired quality characteristics. Future investiga-
tions will look for new integrated methods to compare with
the ant system on the steepest ascent method to enhance its
performance as indicated in this work. Better convergence
effects could be achieved for solving multi-response surface
problems. These methods aim to improve local search abil-
ity, thus enhancing the effectiveness of searching for a global
optimum.
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