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Abstract

When light and organic molecules interact in confined nanometric volumes, their exchange of
energy becomes coherent over a few tens of femtoseconds. As the rate of such exchange be-
comes quicker than the decay of the system, the so-called strong coupling regime is achieved.
In strong coupling, the degrees of freedom of light and molecule mix, offering a brand-new
way to modify chemical processes. A straightforward description of molecules in strong
coupling is promptly obtained by describing the eigenstates state of the system as hybrids
between light and matter: the polaritons. The experiments driving this field exploited po-
laritons to modify the rate of photochemical processes and observed polaritons down to the
single molecule level at room temperature. In parallel, the theoretical models developed a
simple interpretative framework to polaritons, pioneering a new, rich polaritonic chemistry.
However, the complexity of real-life polaritonic systems can quickly become cumbersome to
describe theoretically, resulting detrimental for the predictive power of such models. In this
thesis, the typical quantum chemistry concepts are revised for the polaritonic case. The same
concepts are then exploited to extend a QM/MM surface hopping method to polaritons. In
the end, the developed method is successfully applied to the study of a complete polaritonic
photochemical reaction, allowing to predict a remarkable enhancement of the quantum yields
and explain its mechanism.

Quando luce e molecole organiche interagiscono confinati in un volume nanometrico, scam-
biano energia coerentemente su scale di tempi dellordine di decine di femtosecondi. Se la
velocit di scambio di energia risulta maggiore delle velocit di decadimento del sistema, si
raggiunge il regime di accoppiamento forte. In questa condizione, i gradi di libert di luce e
molecole si mescolano ed il sistema caratterizzato da una reattivit chimica modificata. Un
modo conveniente di descrivere luce e molecole in accoppiamento forte quello di trattare
gli autostati del sistemi come ibridi fra luce e materia: i polaritoni. I primi esperimenti in
questo ambito hanno utilizzato i polaritoni per modificare sensibilmente le velocit di pro-
cessi fotochimici. Inoltre, i polaritoni sono stati osservati a temperatura ambiente con una
risoluzione fino alla singola molecola. Parallelamente, i modelli teorici sviluppati forniscono
uno schema concettuale semplice per descrivere una nuova e ricca chimica polaritonica. Tut-
tavia, descrivere teoricamente e simulare sistemi polaritonici realistici si rivelato arduo per
le dimensioni e la complessit del sistema. In questa tesi, viene presentato un metodo in
grado di simulare sistemi polaritonici simulando esperimenti realistici. Il metodo si basa su
un approccio Quantum Chemistry ed estende i tipici oggetti presenti in chimica quantistica
al caso polaritonico. Gli stessi concetti trovano successivamente impiego nellestensione ai
polaritoni di un metodo semiclassico QM/MM basato sulla tecnica Surface Hopping e nella
simulazione unintera reazione fotochimica in condizioni di accoppiamento forte. Il metodo
sviluppato permette di caratterizzare il meccanismo di reazione e di prevedere la possibilit
di aumentare o sopprimere selettivamente le rese quantiche di reazione.
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Introduction

The milestone of changing chemistry with light dates back to the very beginning of the 19th

century, when in 1801 J. Cruickshank observed the violent reaction between hydrogen and

chlorine under UV-irradiation to form chloridric acid.1 That was the first photochemical

experiment recognized and described. Ever since, the knowledge to modify physicochemical

phenomena through absorption of light has been recollected in what, nowadays, is modern

photochemistry. Even if hypothesized that light could induce new chemistry, the lacking

of molecular structure theory and scarce knowledge of light at the beginning of the 19th

century made the comprehension of the underlying phenomena impossible to grasp. For the

scientific knowledge of light, the second half 19th century has provided the foundation of

classical electrodynamics. Yet, one more century was needed to formulate a theory of photo-

physical and photochemical phenomena beyond the empirical perspective. A more advanced

molecular structure theory was required and the answer heavily relies on quantum mechanics.

With the advent of the quantum theory in 20th century, the quantized nature of both light and

matter was unraveled. Such achievement drove to a reformulation of the knowledge collected

on the classical electrodynamics, taking into account the quantized nature of light through

the formal introduction of photons. Interlaced with the developing theory of light, the mod-

ern molecular structure theory sprouted based on quantum mechanics. The development of

the quantized theory of light and matter allowed to delve further in their interaction as well,

finally leading to discover the rich phenomenology underlying the archetypical photochemi-

cal experiments of the previous century. Stark and Einstein firstly defined the absorption of

a single photon as a trigger for a single physical or chemical event with the photochemical

equivalence law. Few years later, the term Quantum Electrodynamics was coined by Dirac.

It is the 1927 and it is just the beginning of how light can be used to manipulate matter.2

Fast forward to the second half of the century, it is the turning point in controlling the light
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properties: the first laser is built.3 Ever since, the interaction between light and matter is

widely exploited in the development of technologies which quickly become irreplaceable in

medicine, industries, imaging, sensors and communication (e.g. the Internet infrastructure

deeply supporting the realization of the present work). In scientific research, lasers are an

everyday tool for both driving a system and probing its response. The relevance of controlled

light in driving a photochemical event comes by itself.

In the last decades, the routine introduction of nanoparticles as efficient tools to modulate

light brought along a new era for the control of light-matter interaction at the nanoscale.

Here, the light properties can be remarkably modulated via the different materials, shapes

and setups of nanoparticles. The modulation exploits collective excitations of charges oc-

curring propagating on the nanoparticle surfaces: the plasmons. As plasmonic oscillations

are triggered by an external driving, a molecule close to an excited nanoparticle experi-

ences an electromagnetic environment modified by the nanoparticle. Even more practically,

suitable nanoparticles setups can act as efficient electromagnetic field enhancers, antennas,

quenchers and even cavities.4 The interaction of molecules and electromagnetic field modu-

lated by nanoparticles is already central in advanced probing techniques as plasmon-enhanced

fluorescence spectroscopy,5 surface-enhanced Raman scattering6,7 (SERS) and tip-enhanced

Raman scattering8,9 (TERS).

Yet, with the possibilities to manipulate light properties offered by the nanoplasmonic

devices down to the sub-molecular scale, a fundamental question opens: how far can the

nanoscale control of light be pushed to control photochemistry? This question is the main

motivation of the present work. To answer, it is necessary to take into account the quantized

nature of light at the nanoscale and a refined description of the molecular structure.

The quantum interaction between a metal nanoparticle and a neighbouring molecule is the
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interaction occurring between the surface plasmons of the nanoparticle and molecular tran-

sitions. When the molecule and the plasmonic field are confined in a nanometric volume, the

excited plasmonic modes resonate with either the vibrational or the electronic transitions of

the molecule. The high intensity of the plasmonic field due to the nanometric confinement

allows the nanoparticle to exchange energy coherently with the molecule or a portion of it,

provided that the molecular transition exhibits a strong transition dipole moment. If such

coherent exchange of energy between molecule and nanoparticle occurs, and if it occurs on

time scales quicker than the decay channels of the system, the system enters the strong

coupling regime. Namely, to achieve this condition, the plasmonic mode and the molecular

exciton need to live long enough not to damp the coherent energy exchange energy. Upon

entering the strong coupling regime, the states of the system are best described as hybrids

between light and matter: the polaritons.

The capability of strong coupling to affect chemistry has been assessed in the last few years by

coupling many molecules with metal nanoparticles,10,11 the experimental devising of a setup

to achieve single molecule strong coupling at room temperature12,13 is encouraging the idea

that also single-molecule chemistry can be tailored by shaping quantum light. More practi-

cally, we are interested to assess the capabilities of strong coupling to guide photochemical

events towards a desired outcome. In these regards, this work contributes to determin-

ing whether strong coupling has a real capability to be exploited in sub-nanometric control

devices, e.g. molecular photoswitches. As the experimental verification to probe photochem-

istry in strong coupling at the single molecule level has not been yet realised, we rely on

computational simulations to explore the strong-coupling photochemistry phenomenology at

a high level of realism. The work develops and applies a strong-coupling quantum chemical

method to investigate the mechanism and the outcome of photochemical reactions in this

regime.

The goal of theoretically describing the dynamical modification of the properties of nanocav-
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ities and molecules in strong coupling is a formidable task. The strong light-molecule Hamil-

tonian (ĤSC) in its general shape consists of three contributions:

ĤSC = Ĥmol + Ĥcav + Ĥint. (1)

Here, Ĥmol is the molecular Hamiltonian described at a certain level of theory, Ĥcav is the

quantized electromagnetic field Hamiltonian and Ĥint is the light-matter interaction. The

global level of description is affected by the quality of the description of each subcomponent

of the system. A poor choice in the description of the molecule, of the quantized electromag-

netic modes or of the interaction could lead to an oversimplified description of the dynamics,

irremediably flawing the predicting and interpretative capability of the models.

The ideal model should be able to propagate a manifold of quantum modes for the cavity

together with the quantum treatment of the molecule, eventually including the external

driving field and the non-radiative events in both the molecule and the nanoparticle.16–19 As

any of these aspects is individually subject to approximations to make the system treatable,

the degree of description of the global system suffers severe limitations. A realistic (yet far

from complete) description of the system is lacking in most -if not all- the works treating

strong coupling between emitters and nanocavities, with drastic approximations disregarding

either the complexity of the plasmonic structure or the complexity of the molecules. The

minimal models to treat light-molecule strong coupling are borrowed by from traditional

approaches in quantum optics (Figure 1a and 1b). Hence, they consist in taking a 2-level

(Figure 1c and 1d) quantum emitter as Ĥmol and couple it via a dipolar transition to a single

photon mode, i.e. the Jaynes-Cummings model20 either including counter rotating terms21

(Rabi model) or many 2-level emitters22,23 (Dicke and Tavis-Cummings models):

Ĥ =

Nemit∑

n

ωnσ̂
†
nσ̂n + ωcav b̂

†b̂+

Nemit∑

n

[
gn
(
σ̂†
n + σ̂n

) (
b̂† + b̂

)]
. (2)
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Figure 1: Population dynamics of a quantum emitter in a cavity starting with
photon occupation number p = 2— a)-b) Spontaneous emission in presence of two
decay channels κ and γ, namely the cavity loss and non-radiative decay for the emitter.
The dynamics of p = 2 in weak coupling is governed by the dissipative behaviour. c)-d)
Quantum-Rabi model describing the strong coupling regime. Several features in the popu-
lation dynamics arise, such as a non-purely dissipative behaviour for p = 2, together with
a transient population of the p = 3 subspace in the first few femtoseconds.e)-f) Quantum-
Rabi model for a 5-level molecule including non-adiabatic events and nuclear dynamics via
Surface-Hopping.14,15 Together with a transiently increasing total photon number (circled
markers), a richer oscillating dynamics is shown (see Chapters 2 and 3) as a result of the
interplay between strong coupling and non-radiative events. The realistic treatment for the
molecule also provides on-the-fly information on the molecular structure allowing to track
down the progress of a polaritonic chemical reaction.

The Tavis-Cummings Hamiltonian couples a certain number Nemit of 2-level quantum emit-

ters to a single mode of the cavity. Here ωn and ωcav are the transition frequencies of the

n-th emitter and the cavity, while gn is the coupling strength between the n-th emitter and

the quantized light. While this Hamiltonian is successful in describing large ensembles of

emitters characterized by neighboring transition frequencies and similar coupling strengths,
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it does not provide any insight on the nuclear structure of the emitters and on the plasmonic

dynamics for the field part.

On the other hand, surface plasmons full quantum calculations are instead limited due to

the dimensions of the nanoparticle, forcing to resort to more traditional continuum model

methods to solve Maxwell’s equations,24–26 where the limitation becomes the huge number

of modes or the assumptions on the dielectric constant. On top of those complexities, the

interaction itself embodies debated approximations, such as considering the coupling at dipo-

lar level within the Coulomb gauge and long-wavelength approximation,27–30 with very few

works moving beyond the dipolar approach.31,32

Indeed, simplified models offer a perspective towards a whole new strong coupling chemical

reactivity17,33–35 providing the ground to root the so-called polaritonic chemistry.17,36,37 Such

new reactivity includes enhanced energy transfer,38–40 quenching and enhancement14,15,41

of photochemical events, remote control of chemical reactions.42 Unsurprisingly, neglecting

molecular complexity may flatten the rich polariton-assisted chemical reactivity (Figure 1e

and 1f),43,44 eventually missing alternative pathways leading to modified relaxation dynam-

ics45,46 or enhanced photoisomerization quantum yields.15

In line with what happens to molecular reactivity, also light properties are modified via light-

matter strong coupling. One can think to strong light-molecule coupling as an alternative

device to shape and enhance the properties of confined light. It has already been observed

that the dynamics of cavities is strictly dependent on the emitters coupled to them. So

far, organic polaritons have been exploited to design several room-temperature devices47 as

picocavities,48,49 organic polariton transistor,50 ultra-low threshold lasers,51 hybrid organic-

inorganic polariton LED.52
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The outstanding possibilities to exploit light-molecule interaction to control either molecu-

lar properties and reactivity or emitted light property call for several theoretical challenges.

While the potential of nanocavities to guide the realization of molecular devices and novel

polaritonic chemistry is by now well established, each developed model present weaknesses.

The greatest challenges are indeed due to the dimensions and complexity of the system. In

turn, the system components (light, molecule, environment, light-matter interaction) are in-

dividually complex enough to be supported by separated communities. Taming light-matter

interaction is at the base of moving beyond mechanical technologies, still the phenomenol-

ogy and possibilities are countless and challenging. Theoretical efforts are then required

to merge the knowledge of detached communities into computationally feasible techniques,

with the aim of conducting the fundamental investigation together with aiding the devising

of light-matter devices and develop new photochemistry.

Goal of the work and contribution

This thesis is aimed at developing and applying an original quantum chemical computational

methodology to assess the role of chemical complexity in a realistic polaritonic photochemical

reactions. Such chemical complexity arises from different sources: photochemical and envi-

ronmental.

The photochemical complexity lies in the inability to simulate a photochemical reaction by

taking into account the completeness of the degrees of freedom of even small systems.53

The computational techniques to simulate photochemistry rely on non-adiabatic dynamics

methodologies. This class of techniques interfaces a proper method to compute the electronic

properties with a propagation scheme for the nuclei in several flavours.54 The non-adiabatic

dynamics methods can be (very) roughly divided in two branches:55

• semiclassical: the nuclei are classical individual trajectories moving on the electronic

potential energy surfaces (PESs) computed at quantum level. The transition between
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states to simulate non-radiative reaction pathways (like internal conversions, passage

through conical intersection) is described through hops of the trajectories between the

PESs.

• full quantum: the nuclear wavefunction is explicitly computed. Several approxima-

tion schemes have been developed to cut the outstanding computational cost of a full

quantum propagation,56,57 ranging from grid-based methods58,59 on selected degrees of

freedom to adaptive spawning methods.60

Although semiclassical methods are generally approximated, they allow to explicitly simu-

late the degrees of freedom of large systems at a semi-quantitative level.61–64 In the recent

years, their formulation has been widely improved to take into account quantum effects in-

volving the nuclei in an effective way.65–69 It is an excellent class of methods to investigate

unexplored processes and grants a very intuitive representation of the photochemical events.

On the contrary, the wide majority of the efforts in the full quantum methods is based on

cutting the outstanding computational cost.70–72 Due to the impossibility to simulate large

systems at a full quantum level, this class of methods relies on an a priori choice of the

degrees of freedom to investigate. The aim is to achieve quantitative results when nuclear

quantum effects are strongly involved and semiclassical methods are expected to fail.73–75

An additional point of the photochemical complexity is the level of computation of the

electronic potential energy surfaces themselves. Several photochemical reactive pathways,

particularly when involving organic molecules and biological systems, are characterized by

the passage of the nuclear wavepacket through a conical intersection76–78 or involve doubly

excited states and charge transfer states.79–81 To properly describe such electronic features,

the electronic structure approach must be able to tackle the variation of the states com-

position.82 Consequently, the computationally expensive multiconfigurational wavefunction

methods83–87 are one of the most recommended approaches to these simulations. Yet, par-
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ticularly severe limitations on the electronic states calculation cost arise for trajectory-based

methods which rely on an on-the-fly dynamics. A common solution to overcome such lim-

itations is to use semiempirical Hamiltonians,88–91 which retain all the flexibility of the

multiconfigurational wavefunctions at a lower computational cost, provided a previous pa-

rameterization is performed for the class of molecules in exam.

Aiming at including the molecular complexity, the description of the molecule adopts a

semiempirical formulation of the electronic Hamiltonian.89 The nuclear propagation scheme

chosen is a semiclassical on-the-fly Surface Hopping scheme92–95 (Direct Trajectory Surface

Hopping, DTSH), allowing to treat the completeness of the degrees of freedom of the test

cases presented. In this thesis, I adapt the quantum chemistry formalism of a multiconfig-

urational wavefunction to the polaritonic case, building the polaritonic analogous of every

feature necessary to simulate a photochemical reaction. This adaptation involves building a

multiconfigurational wavefunction based on polaritonic states, defining the diabatic/adiabatic

representations in the polaritonic case. To compute the forces acting on the classical nuclei,

I derive analytically the gradients of the polaritonic contribution to the energy with respect

to the cartesian nuclear coordinates. The derivation and implementation have been carried

out in collaboration with G. Granucci and M. Persico (University of Pisa), which originally

developed the DTSH algorithm for the electronic case. The implementation has been carried

out in a developer version of MOPAC2002.96

Accounting for the environmental complexity in photochemistry typically means to include

the solvent effects and the chemical surrounding of the photochemical reaction center.87,97

The two main approaches to include the environmental complexity are to either include it im-

plicitly or explicitly. The polarizable continuum model98 (PCM) with its more advanced for-

mulations99,100 provides a plethora of recipes to include implicitly the environmental effects.

Such technique allows to investigate effects induced by either the solvent or a nanoparticle
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on the molecule, provided that the solvent or the nanoparticle can be described as a contin-

uous dielectric. This formulation is particularly suitable to investigate solvatochromic101–104

effects for the solvent interacting with the molecule and the modified optical properties of

nanoparticles interacting with molecules.25,26,105–109 In addition, the PCM-based approaches

also allow to include the effect of the external driving field in terms of a polarization contri-

bution to the medium.100,110 As the interactions between molecule and environment involve

a very heterogeneous chemical environment (like in proteins) an explicit approach to the

environment is required.111–114 The several formulations of the interface between Quantum

Mechanics and Molecular Mechanics (QM/MM) satisfy such requirement, with the molecule

treated at QM level is embedded in a chemical environment of classical MM molecules.

The additional environmental complexity in the polaritonic case comes from the effect of

the environment on the polaritonic dynamics. The action of the environment in such case is

not restrained to the relaxation and dephasing channels induced by the environment on the

molecule. Namely, the multimode field for nanoparticles of different shapes shall be included,

together with the cavity losses associated to it. For the chemical surrounding, the method

developed for the photochemical simulation exploits the pre-existing electrostatic embedding

QM/MM interface of the QM code with the TINKER package115 to integrate the MM part.

The effort done on reformulating the polaritonic problem in a quantum chemical way allows

to directly interface the QM code with the MM part without modifications. For the confined

electromagnetic field, I firstly implemented a parametric single mode electromagnetic field.

In the last part, I present and discuss the method to explicitly include the quantum coupling

between a setup of realistic nanoparticles of arbitrary shape with realistic molecules. The

implementation I realized is currently limited to the static calculations, for which validation

results are shown. An explicative case of the importance to describe the geometrical features

of both nanoparticles and molecules is presented. This last section opens up several further

developments, ranging from the application of the same interaction scheme to polaritonic
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non-adiabatic dynamics, the investigation of Surface Enhanced Raman Scattering effects and

the investigation of the strong coupling regime phenomenology to the sub-molecular level.

This thesis is organized in 4 chapters.

Chapter 1 is based on the article: J. Fregoni, S. Corni, M. Persico, G. Giovanni, Pho-

tochemistry in the strong coupling regime: a trajectory surface hopping scheme, currently

accepted on J. Comput. Chem. There, I will introduce the method and the formalism de-

veloped for polaritonic photochemical reactions. The starting point of the development is

to adapt the quantum chemical formalism of non-adiabatic dynamics to the case of a po-

laritonic wavefunction. Here, I discuss the approximations on which this approach relies

and build a conceptual representation for polaritonic system. Such representation is based

on the polaritonic analogous of diabatic and adiabatic states. Chapter 1 continues with the

derivation of analytical forces acting on the nuclei when the states of the molecule are polari-

tons, derived in the framework of multiconfigurational wavefunctions. Here, the derivation

aims at computing the polaritonic forces acting on the nuclei to perform a semiclassical on-

the-fly dynamics,i.e. the adaptation of the DTSH algorithm to polaritonic states. At last,

the algorithm to include the cavity losses in the dynamics is presented. The method has

been developed and refined during the whole PhD activity, so the presented version is more

complete and refined with respect to the variants applied in Chapters 2 and 3.

Chapter 2 is based on J. Fregoni, G. Granucci, E. Coccia, M. Persico, S. Corni, Manip-

ulating azobenzene photochemistry through strong light-molecule coupling. Nat. Commun.

9(1), 1-9, 2018. The Chapter offers a first example of simulation of a well characterized

polaritonic photoisomerization reaction in the strong coupling regime. This chapter is aimed

at introducing all the relevant tools and quantities to interpret the outcome of the calcu-

lations such as the Rabi splittings in molecules, polaritonic conical intersections, quantum

yields of the reaction and tools to visualize the motion of the classical nuclear trajectories
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on polaritonic potential energy surfaces. With the aid of such tools developed during the

PhD activity, I characterize the mechanism leading to a suppression of the trans-cis photoi-

somerization reaction in azobenzene. Such chemical mechanism modified by polaritons gives

rise to strong coherent oscillations of the wavepacket between polaritonic states, that may

be amenable to experimental verification.

Chapter 3 is based on J. Fregoni, G. Granucci, M. Persico, S. Corni, Strong coupling

with light enhances the photoisomerization quantum yield of azobenzene. Chem 6(1), 250-

256, 2020. The Chapter presents an investigation where conditions are determined to dis-

play enhanced photoisomerization quantum yields of azobenzene as a result o the strong

coupling. There, I simulate the azobenzene photoisomerization reaction with the molecule

encapsulated in a nanocavity. The environment is described via the QM/MM interface of

the polaritonic DTSH algorithm, with one single photon which can be multiply occupied.

The setup is inspired to the one proposed by Baumberg and collaborators for single-molecule

strong coupling. Chapter 3 extends the polaritonic description to include the whole pho-

tochemical complexity of the system in a simulation, like mimicking a realistic excitation

of the molecule to a manifold of polaritonic states, discussing the importance of including

all the molecular degrees of freedom or investigating the photostationary equilibrium in the

case of a reversible photochemical reaction. The main result of the work is that the trans-

cis photoisomerization reaction of azobenzene can be enhanced in suitable strong coupling

conditions. I characterize such conditions and extend all the analysis tools previously de-

veloped to characterize the involved mechanism leading to such enhancement. Chapter 3 is

indeed showing that molecular complexity can strongly impact the outcome of simulations,

highlighting the limits of model approaches.

Chapter 4 is based on J. Fregoni, T. Haugland, S. Pipolo, H. Koch, S. Corni, Quan-

tum coupling between classical nanoparticles and quantum molecules, which is currently
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in preparation. In this Chapter, I present the methodology and the preliminary results to

treat quantum coupling between realistic molecules and realistic nanoparticles. Namely, I

present the approach to replace the cavity field parameters exploited in previous chapters

with realistic multimode quantized fields, coming from calculations of nanoparticle setups

with an arbitrary shape. I present the derivation of how to compute the quantum coupling

element between such setups and a molecule. I discuss the importance of moving beyond the

single-mode description of the electromagnetic field and beyond the dipole approximation

when treating the light-molecule interaction. Numerical results to illustrate the theory are

also reported, focusing on azobenzene.

The results are presented in the form of published papers with supporting information

as well as unpublished drafts and manuscripts. With respect to the up-to-date state of the

art, the approach and application presented here provide the ground to develop a very ro-

bust framework to guide and reproduce strong light-molecule coupling experiments at an

unprecedented level of realism. The formulation of the method, together with the collection

of tools developed to investigate the mechanism, provide insight into the polaritonic proper-

ties from a chemically-intuitive point of view and shine new light on the rich phenomenology

of polaritonic chemistry.
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Chapter 1

This Chapter presents the formalism and the main features of the method developed to

perform polaritonic photochemistry simulations, in a form of a drafted paper submitted for

publication to J. Comput. Chem. The formulation presented in the followings corresponds

to the latest developments achieved by the end of the PhD activity.

This Chapter firstly introduces the unsolvable problem of a correlated photon-electron-

nuclei system, discussing the suitable approximations to its wavefunction. On the basis of the

chosen approximation, I build the uncoupled states and polaritonic states by direct analogy

with the diabatic and adiabatic electronic states. Lately, I define the relevant quantities for

such states in a Quantum Chemistry formalism, like the polaritonic wavefunction, polaritonic

density matrix and the polaritonic contribution to the energy. The cavity mode-molecule

interaction is taken as dipolar, as it is tipically assumed when treating organic molecules in

the strong coupling regime. The choice of the interaction Hamiltonian is Rabi-like,14,21,34

hence it goes beyond the rotating-wave approximation. In the present chapter I discuss how

such additional terms, together with the strength of the electromagnetic field and its orien-

tation, can strongly alter the shape of polaritonic potential energy surfaces.

The second part of the Chapter is devoted to the adaptation of the Surface Hopping al-

gorithm92,94 to the polaritonic case. Starting from the quantities presented in the first part,

I derive the analytical gradients for the polaritonic contribution to the energy. Although the

implementation of such gradients was done for a FOMO-CI wavefunction, the derivation is

rather general for multiconfigurational wavefunction methods. Among the features to adapt

the DTSH algorithm to the polaritonic case, I exploit the stochastic nature of Surface hop-

ping to include the cavity losses via a Stochastic Schröedinger equation approach.105,106,116,117

As a test for the method, I discuss the energy conservation for both the absence and presence

of cavity losses. For both cases, I characterize the dissipation of the loss of the photon from
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the cavity from a kinetic perspective.

The method presented in this chapter is part of my personal contribution to this work.

The most of the development and implementation were conducted by me in collaboration

with Prof. Giovanni Granucci (University of Pisa). To achieve the present version of the

code, the basic features such as the computation of the polaritonic wavefunction, the inter-

face to the Surface Hopping algorithm via computation of analytical gradients for polaritonic

states and the cavity losses were implemented by me during the PhD project. I also extended

the formalism to multiple occupation numbers of the same mode and implemented it. The

method and results are hereby presented as drafted paper, which is currently accepted for

publication in Journal of Computational Chemistry. My personal contribution to the work

was to devise the extension of the non-adiabatic dynamics method and implement it. In

addition, I personally devised and performed the test application and drafted the paper.
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Abstract

The strong coupling regime between confined light and organic molecules turned out

to be promising in modifying both the ground state and the excited states properties.

Under this peculiar condition, the electronic states of the molecule are mixed with

the quantum states of light. The dynamical processes occurring on such hybrid states

undergo several modifications accordingly. Hence, the dynamical description of

chemical reactivity in polaritonic systems needs to explicitly take into account the

photon degrees of freedom and nonadiabatic events. With the aim of describing pho-

tochemical polaritonic processes, in the present work, we extend the direct trajectory

surface hopping scheme to investigate photochemistry under strong coupling

between light and matter.

K E YWORD S

nonadiabatic dynamics, photochemistry, polaritonic chemistry, strong coupling, surface

hopping

1 | INTRODUCTION

The coherent interaction between light and matter in confined sys-

tems offers an alternative pathway to tailor optical and chemical prop-

erties of molecules. While the spectroscopy of atoms and molecules

in resonant cavities is well established, the possibility to manipulate

the molecular reactivity through quantum coupling with light has only

recently been addressed. By devising microcavities[1,2] and

nanocavities,[3,4] the experimental efforts[5,6] to bring molecules in the

strong coupling regime down to the single molecule level have driven

an increasing theoretical interest.[7–10] Yet, the modeling of such com-

plex systems experiences limitations both theoretical and

computational.

Understanding which approximations can hold for a correlated

nuclear–photonic–electronic system is indeed challenging.[11,12] Even

more, an important option is whether to couple the photonic degrees

of freedom to the nuclear ones or to the electronic ones.[8,13,14]

Within the first approach, the photonic degrees of freedom are

treated so as the nuclear ones, allowing to study the effect of the

electron–nuclei–photon coupling on adiabatic potential energy sur-

faces. Such approach provides insightful tools of analysis for

phenomena like Raman Scattering,[15,16] modified molecular proper-

ties,[14,17] and ground state reactivity.[18–20] Instead, the second

approach, in which electronic and photonic states are mixed, is suit-

able to describe the modified photochemical properties[8,21] and reac-

tivity,[22–24] provided that nonadiabatic couplings are taken into

account.

A full quantum approach has been developed by Rubio's group in

the DFT framework. The method is based on rewriting the DFT for-

mulation in terms of a current density functional which allows to

include the photonic degrees of freedom[10,25] (QEDFT). Later on, the

same group reformulated the Born–Oppenheimer approximation to

partially decouple the nuclear–photonic–electronic problem with the

so-called Cavity Born–Oppenheimer approximation.[13,14] Such works

opened a way to a full ab-initio investigation of strongly coupled

light–matter systems,[10,17,26] with successful applications in strong-

coupling modified properties of single and many molecules.

Aiming to investigate polaritonic photochemical reactions, the

complexity of the system can quickly become cumbersome. The cor-

rect computation of excited states is mandatory, together with the

treatment of the photonic degree of freedom.[27–29] Further complex-

ity to the problem is added by interfacing a propagation scheme for
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the nuclei[30] and by accounting for environmental effects. In addition,

the common problems encountered in photochemical simulations[31]

are directly transposed to the study of polaritonic photochemical

reactions.

A pioneering conceptual display of novel photochemical events in

the strong coupling regime is offered by the works of Mukamel and

collaborators[7,32,33] and Feist and collaborators[8,22,23] on model mol-

ecules. Such works collect a plethora of insights for a novel chemical

reactivity ranging from single-molecule strong coupling to collective

strong coupling effects. We have also recently shown how moving

beyond model treatments to investigate polaritonic chemistry can also

reveal noteworthy effects like enhanced photoisomerization quantum

yields.[34]

To simulate mixed light–molecule systems, a toolbox of strong-

coupling techniques for photochemistry has been developed in the

last three years.[24,35,36] Among them, we mention the multiscale MD

approach devised by Groenhof and collaborators, which allows to

investigate the collective polariton behavior in biological environ-

ments through a QM/MM approach.[35,37,38] For events occurring in

small ensembles of realistic molecules in cavities on a shorter time-

scale, the extension of the MCTDH technique to polaritonic sys-

tems[36,39] is also remarkable. In recent works,[24,34] we showed how

the Surface Hopping scheme in a semiempirical framework can be

used to describe the photochemistry of molecules in a strong coupling

environment with a high level of realism. A similar Surface Hopping

scheme has been used by Tretiak et al.,[40] which studied the stilbene

photoisomerization under strong coupling, employing a single refer-

ence quantum chemical approach for the electronic states. Compara-

tively, in our scheme, we also include cavity losses, and our

semiempirical multireference FOMO-CI scheme allows for a qualita-

tively correct description of potential energy surfaces and couplings,

which is also quantitatively accurate since we reparametrize the semi-

empirical Hamiltonian.

In the present contribution, we show in detail the theoretical

approximations and the implementation techniques of our approach to

polaritonic chemistry. To this aim, we show first how polaritonic states

are built on top of the semiempirical FOMO-CI[41–44] technique for the

computation of electronic states. Then, we derive the analytical gradients

for the strong coupling contribution to the CI energy via the Z-vec-

tor[45,46] algorithm. We also discuss the interface with the on-the-fly

Direct Trajectory Surface Hopping (DTSH), with emphasis on the method

we have adopted to include the effect of cavity losses on the dynamics.

We want to stress that the hereby presented gradients and Surface

Hopping interface have a general applicability to multiconfigurational

wavefunction methods. The choice of a semiempirical approach to solve

the electronic problem resides in the good compromise between effi-

ciency and accuracy.[31] We also mention that such approach has been

successfully applied to deal with the molecular complexity of polaritons

when all the degrees of freedom are taken into account,[24] and also in

the presence of an environment[34] inspired to a realistic setup.[5] We

also stress that, while our method carries the potential to treat a few

chromophores, the study of a large ensemble of molecular systems is

beyond the aim of the present work.

2 | METHODOLOGY

2.1 | Polaritonic wavefunction in a semiclassical
framework

To build polaritonic states, we consider a generalized correlated

photon–electron–nuclear system:

bHtot = bTe + bTn + bTph + bWe,e + bWe,n + bWn,n + bWe,ph + bWph,n + bWph,n,e ð1Þ

where the electronic degrees of freedom are described by the e sub-

script (r coordinates), the nuclear ones by the n subscript (R coordi-

nates), and the photon one by the ph subscript (q coordinates). The

total wavefunction of the correlated electron–photon–nuclei system

is Ψ(r, R, q). Two approaches to approximate the eigenstates and the

time-evolution of strongly coupled systems have been applied so far:

the first is to embed the photon degrees of freedom into the nuclear

wavefunction[14] while the second is to embed the photon into the

electronic wavefunction.[8]

Such two different approaches provide different insight on two

classes of processes. In fact, the molecular properties and the dynam-

ics in the Cavity Born–Oppenheimer approximation[13,17] are opti-

mally described by incorporating the photon in the nuclear

wavefunction (Ψn + ph, e). Instead, the processes involving nuclear

dynamics on polaritonic states, that is, photochemical processes, are

accurately described by considering hybrid electron–photon states

(polaritons, Ψn, e + ph).
[7,24,32,34,47] The Born–Huang factorizations of

the wavefunction in these cases respectively correspond to:

Ψn+ ph,e r,q,R,tð Þ=
X
k

χk R,q,tð Þϕel
k r;q,Rð Þ, ð2Þ

Ψn,e+ ph r,q,R,tð Þ=
X
k

χk R,tð Þϕe+ ph
k r,q;Rð Þ: ð3Þ

Equation (2) represents the case where the photon degrees of

freedom are considered slow. Hence, they are treated alike to the

nuclear degrees of freedom in the Cavity Born–Oppenheimer frame-

work.[13,17] Based on this assumption, the purely electronic

wavefunction and the related electronic potential energy surfaces

show a parametric dependence on both the nuclear and photonic

coordinates. This framework explicitly requires to compute the quan-

tum nuclear wavefunction to include the photon effects, hence it is

not properly interfaced with semiclassical methods developed treating

the whole nuclear dynamics as classical.

In the factorization presented in Equation (3), the photonic

degrees of freedom are considered fast and possibly resonant with

optical transitions. Within this framework, the parametric dependence

of the mixed electronic-photonic wavefunction with respect to the

nuclear degrees of freedom allows to describe the time evolution of a

polaritonic wavefunction with semiclassical trajectory-based methods.

In that case, the nuclei are moving according to a classical trajectory R

(t), and the polaritonic nonadiabatic couplings can be included as for
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the purely electronic case. In the semiclassical case, we define by anal-

ogy with Equation (3) the polaritonic wavefunction:

jΨpol r,q,R tð Þ,tð Þi=
X
A

CA tð Þ jA r,q;Rð Þi, ð4Þ

where jAi are the semiclassical analogous of the polaritonic states

ϕph+ e
k of Equation (3). We choose jAi to label such states to directly

refer to their adiabatic behavior, as they are the eigenstates of the

polaritonic Hamiltonian:

bHpol jAi= EA jAi, ð5Þ

with

bHpol = bHel + bHph + bHint: ð6Þ

Here, bHel is the standard electronic Hamiltonian and bHph is the

Hamiltonian of the quantized electromagnetic field (we consider here

a single mode for the field),

bHph =ℏωph
bb†bb+ 1

2

� �
ð7Þ

where bb†, bb are the creation and annihilation operators for the electro-

magnetic field. In principle, the approach considered in this work

could be extended in a straightforward way to consider several cavity

modes. However, it is uncommon that many modes can reach a cou-

pling strength large enough to require a strong coupling treatment,

not to mention that they may also be well separated in energy. As

interaction Hamiltonian Hint, we take the dipolar light–matter interac-

tion in the Coulomb gauge and long wavelength approximation:

bHint =ℰ1phλ �bμtr bb† +bb� �
: ð8Þ

In the light–matter interaction, we refer to ℰ1ph as the 1-photon

field strength, with the electromagnetic field polarization λ. bμtr is the

electronic transition dipole moment between the electronic states.

Notice that bHpol is parametrically dependent on the nuclear coordi-

nates through bHel and bHint. As we have numerically verified in previous

works,[24,34] for the case of strong coupling with optical frequencies, it

is enough to restrain to the transition dipole operator. In the next sec-

tion we focus term-by-term on the two individual subcomponents of

the polaritonic Hamiltonian, namely bHel and bHph.

2.2 | FOMO-CI wavefunction and uncoupled
states

The method for the computation of electronic states, that is, the

eigenstates of bHel , is based on floating occupation of molecular

orbitals (FOMO).[42,43] This variant relies on the optimization of a

single determinant wavefunction with fractional variational occupa-

tion of the molecular orbitals through a self-consistent field calcula-

tion (SCF). The single-determinant SCF calculation is formally closed-

shell. Here, the energy of the i-th orbital (φi) is the Fock eigenvalue εi

corresponding to that orbital, while the occupation number Oi of φi is

obtained integrating a function fi(ε) normally distributed along the

energy axis around εi:

bFφi = εiφi, ð9Þ

Oi =
ðεF
−∞

fi εð Þdε=
ðεF
−∞

ffiffiffi
2

pffiffiffi
π

p
σ
e−

ε−εið Þ2
2σ2 dε: ð10Þ

Here, σ is an arbitrary parameter and the Fermi energy εF is deter-

mined by imposing that the sum of the orbital occupation numbers Oi

equals the total number of electrons. The Fock operator bF is obtained

from the density (orbitals are considered as real functions in the pre-

sent work)

ρ r
!� �

=
X
i

Oiφ
2
i r

!� �
: ð11Þ

Through this procedure, the lower virtual orbitals can be popu-

lated without resorting to a MCSCF optimization of the wavefunction,

allowing to smoothly adapt the orbitals to the internal coordinate's

variations with just a single determinant. The electronic

wavefunctions are obtained performing a CI calculation on top of the

FOMO-SCF, resulting in a multiconfigurational FOMO-CI. This

approach can be taken as a replacement of the more accurate but

much more complex CASSCF procedure.

As electronic Hamiltonian bHel , we consider a semiempirical Hamil-

tonian, as this allows to treat relatively large chromophores, including

all the degrees of freedom in the simulation of polaritonic photochem-

istry, for timescales up to several picoseconds. In particular, for our

test case we used a reparametrized version of the AM1 semiempirical

Hamiltonian.[41] Notice that the standard semiempirical parameters

are normally determined to reproduce ground state properties, with a

SCF wavefunction. Therefore, to deal with excited states, a repar-

ametrization is often mandatory, as what has been done in Refer-

ence [41].

As we adopt a CI-type wavefunction, the (approximated)

eigenstates jni of bHel and the corresponding eigenenergies Un are

obtained by diagonalizing the electronic Hamiltonian matrix:

bHel j ni=Un j ni, ð12Þ

on the basis of a chosen set of NCI Slater's determinants {Φ}, so that

j ni=
XNCI

K

CK,n jΦKi ð13Þ

Similarly to the electronic states, the photon states are the

eigenstates jpi of bHph:
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bHph j pi= ℏωph p+
1
2

� �
j pi: ð14Þ

The meaning of p is a photon occupation state number, for the

single electromagnetic mode of frequency ωph considered here.

The product states between the electronic and photonic

eigenstates jn, pi are then the eigenstates of the light–matter non-

interacting Hamiltonian bHel + bHph . We shall address to them as

uncoupled states through all the present work. Such set of uncoupled

states jn, pi are the polaritonic equivalent of, for example, the spin-

diabatic states for the purely electronic case with spin-orbit

coupling.[48]

2.3 | Polaritonic states evolution and energies

The time evolution of the wavefunction is performed in terms of the

polaritonic adiabatic states jAi, which are obtained by diagonalization

of the matrix of bHpol (Equation (6)) on a selected subspace of

N× (pmax+1) uncoupled states {n, p}, where N≤NCI is the number

(usually small) of electronic states considered, and pmax is the maxi-

mum value of the photon occupation number. The set of adiabatic

states jAi is used to perform the time evolution as the surface hop-

ping approach is representation-dependent, and usually performs bet-

ter in the adiabatic basis. However, the set of uncoupled states jn, pi
is still useful, mainly in order to ease the interpretation of the results.

Within the described framework, the polaritonic wavefunction evo-

lves according to the “polaritonic TDSE” iℏ _Ψpol = bHpolΨpol, which gives

_CA tð Þ= −
X
B

i
ℏ
HAB + A

d
dt

���� ����B� 	� �
CB tð Þ ð15Þ

= −
X
B

i
ℏ
HAB +GAB� _R tð Þ

� �
CB tð Þ, ð16Þ

where HAB = A bHpol

��� ���BD E
and GAB is the derivative coupling vector

between the polaritonic states jAi and jBi, namely

GAB = A b=R

��� ���BD E
: ð17Þ

According to Equation (13), a polaritonic state can be written as

Aj i=
XN
n=1

Xpmax

p=0

DA
n,p n,pj i=

X
n,p

DA
n,p

XNCI

K

CK,n ΦK ,pj i, ð18Þ

and its energy is

EApol = E
A
el + E

A
ph + E

A
int, ð19Þ

where the contribution of the uncoupled part can be extracted by

exploiting Equations (14) and (18), resulting in:

EAel =
X
n

Un

X
p

DA
n,p

��� ���2 ð20Þ

EAph =ℏωph

X
n,p

p DA
n,p

��� ���2 + 1
2

 !
: ð21Þ

The interaction term EAint is given by

EAint =ℰ1ph

X
n6¼m

mh jλ�bμ Rð Þ nj iD A jm,nð Þ ð22Þ

where we used the shorthand

D A jm,nð Þ=
Xpmax−1

p=0

ffiffiffiffiffiffiffiffiffiffi
p+1

p
DA
n,pD

A
m,p+1 +D

A
n,p+1D

A
m,p

� �
: ð23Þ

Notice that D(A j m, n) = D(A j n, m).

When m < n the process described is the molecule exchanging the

photon of frequency ωph with the cavity. The rate of such exchange is

the Rabi splitting (Jaynes-Cummings Hamiltonian).[49,50] In this regime,

the emission rate and efficiency is greatly enhanced through the Purcell

effect[47,51] and the energy is coherently exchanged between matter

and cavity. Such energy contribution is the Rabi splitting. Instead, when

m > n, the so-called counter rotating terms account for the simultaneous

creation/annihilation of two off-resonant excitations within the cavity.

Such terms become non-negligible, together with the dipolar self-energy

of the molecule, in the ultrastrong coupling regime.[11,12]

From now on, we will use i, j, … to label CI-active molecular orbitals

(MO) and a, b for any kind of MO. A more appealing expression, from

the computational point of view, of the interaction energy EAint is

obtained by using the spinless electronic density matrix, suitably mod-

ified, of the polaritonic state jAi considered. In particular, we have

EAint =ℰ1ph

X
ij

ρintij Að Þμij, ð24Þ

where μij = ih jλ�bμ jj i and

ρintij Að Þ=
X
n6¼m

D A jm,nð ÞΔel
ij m,nð Þ: ð25Þ

Δel
ij m,nð Þ is the spinless transition density matrix between the

electronic states m and n, expanded on the molecular orbital basis.

The action of the bosonic creators and annihilators of Equation (8) is

embedded into the D(A jm, n) coefficients. Therefore, Δel
ij m,nð Þ is

purely electronic:

Δel
ij m,nð Þ= mh jba†i ba j nj i=

X
I,J

CI,m ΦIh jba†i ba j ΦJj iCJ,n ð26Þ

Within our method, we are able to compute the Polaritonic

Potential Energy Surfaces (PoPESs) up to an arbitrary occupation

number of the photonic mode involved in strong coupling.
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We shall now briefly discuss the dependence of the PoPESs on

the molecular transition dipole moments. Upon diagonalization, a

crossing of the uncoupled states PES is converted to a polaritonic

avoided crossing. The magnitude of the splitting (Rabi splitting) is pro-

portional to the transition dipole moment between the crossing

states, potentially reaching zero for vanishing transition dipole

moments (polaritonic conical intersection). The strong dependence of

the Rabi splitting on the transition dipole moment also embodies a

strong dependence on the nuclear geometry at which the crossing

between uncoupled states occurs, as the transition dipole moments

variation with nuclear geometry may be large. Note that the orienta-

tion of the molecule here plays the same role as the internal coordi-

nates, because it affects the projection of the transition dipole on the

field polarization vector.

While the polaritonic conical intersection and avoided crossings

have been reported in previous works,[8,24,39,52,53] here we stress that

they are an easy-to-predict feature only when limited to two level

strong coupling models, that is, Jaynes-Cummings like. Two-level models

imply a linear dependence of the Rabi splitting on the coupling constant

ℰ1ph. As the number of electronic states is extended by including upper

states (Figure 1a), the interaction between the polaritons originating the

avoided crossing or conical intersections becomes more involved. This

behavior is due to the interaction between the uncoupled states not

directly crossing, originated by the counter-rotating terms in the Hamil-

tonian. The sum of such interactions deeply affects the polaritonic

energy landscape by modifying both the splitting and the crossing

geometry, as shown in Figure 1a,b for the azobenzene molecule.

We stick to azobenzene as a test case, since the phenomenology

of polaritonic photochemistry has been investigated in recent

works.[24,34] In the present work, instead, we focus on discussing the

change of shape of the polaritonic avoided crossing regions, com-

puted along NNC for different values of ℰ1ph. For mode volumes

smaller than 20 nm3 (ℰ1ph > 0.003), the polaritonic crossing seam gets

displaced to up to 8� along the NNC coordinate while the Rabi split-

ting is not much affected, as shown in Figure 1. The curves here are

computed within a model space of uncoupled states composed by 5

electronic states and photon occupation number ranging from 0 to 3.

The polaritonic state energies are computed along the symmetric

NNC bending angles with fixed CNNC (180�) and optimizing all the

other degrees of freedom for the ground state energy, resulting in a

C2 symmetry. The photon frequency is set at 2.30 eV and the polari-

zation of the field is oriented along the longitudinal axis of the mole-

cule. Here, the high transition dipole moment between the state S0

and the S2, S3, and S4 states manifold is instrumental in modifying the

avoided jS0, 1i,jS1, 0i crossing landscape by effect of the interaction

between the state jS0, 1i and the jS2, 0i, jS3, 0i, and jS4, 0i manifold.

We examine the whole range of ℰ1ph going from 0.002 au

(corresponding to a mode volume of �40 nm3) to ℰ1ph = 0.010 au

(�1.6 nm3). While a mode volume of 40 nm3 is in line with typical

nanocavities,[5] the extreme limit of �1 nm3 has been accessed exper-

imentally via single-atom hotspots.[54,55] In all the conditions exam-

ined in this work, the mode volume is enough to fully embed the

molecule (the molecular volume being �0.25 nm3). A few works pio-

neer the interaction beyond the dipolar approximation for small mode

volumes for TERS experiments,[56,57] but not in connection with

polaritonic photochemistry. More practically, it is not clear at which

volumes and in which conditions the dipolar approximation ceases to

be valid in the framework of dynamical processes. Moving beyond the

dipolar treatment for polaritonic photochemistry carries the promise

to reveal new effects for strong coupling at submolecular level.

F IGURE 1 Polaritonic crossing seams for weak to ultrastrong values of ℰ1ph. (a) Polaritonic PESs along the NNC coordinate with CNNC fixed
at 175�, relaxing all the other degrees of freedom and including multiple states and counter-rotating terms. The field polarization λk is taken
parallel to the longitudinal axis of the molecule. Although values of ℰ1ph > 0.005 au (<7 nm3 mode volume) can actually be reached through
single-atom hotspots,[54,55] (b) a drastic effect on the PESs shape is observed also for intermediate values of ℰ1ph, ranging from 0.002 au (�46
nm3 mode volume) to 0.004 au (�12 nm3 mode volume), resulting in the seam shifting up to 3–4� along the NNC coordinate. In both panels, the
dotted-dashed lines label purely electronic states (no strong coupling) [Color figure can be viewed at wileyonlinelibrary.com]
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However, in the present case, we limit ourselves to the dipolar

approximation for the whole range of mode volumes investigated.

The polarization of the field is another important issue to deal

with when computing polaritonic states. Indeed, the anisotropy of the

transition dipole moment components with respect to the axes of the

molecule impacts the outcoming energy landscape as well. For trans-

azobenzene at nearly planar geometries, the largest component of the

transition dipole moments lies in the molecular plane. In particular, at

C2h geometries the S0 bμj jS1h i transition dipole vanishes. As a conse-

quence, by changing the polarization of the field from longitudinal (λk)

to perpendicular (λ⊥) to the plane of the molecule, the PoPESs change

from the ones in Figure 1a to the ones in Figure 2a. In the latter case,

the dependence of the splitting on the coupling strength is lost due to

a vanishing transition dipole moment when CNNC is 180�.

Although the uncoupled states used in the calculation are the

same as in Figure 1, almost all the lines corresponding to different

ℰ1ph are overlapped in Figure 2a. The transition dipole moments per-

pendicular to the plane of the molecule begin to rapidly grow when

twisting the molecule, that is, with a change along the CNNC coordi-

nate. Consequently, the polaritons are split again by a twisting of the

CNNC dihedral, resulting in a polaritonic conical intersection (Fig-

ure 2b) at CNNC 180� and NNC 132�. All these features provide a

clear evidence that the molecular complexity must be dealt with to

correctly describe the photochemical dynamics on polaritonic states.

2.4 | Analytical gradients for CI-expanded
polaritonic states

After showing the strong coupling contribution to the energy in the

previous section (Equation (24)), here we derive the analytical energy

gradient with respect to the nuclear coordinates Rα for a generic

FOMO-CI expanded polaritonic state. The present approach is based

on previous works,[43,58] where the Z-vector method has been applied.

In particular, here we adapt to the polaritonic case the “contracted”

strategy that was developed in a spin-orbit framework.[44] As in Refer-

ences [44, 58], only the active MOs are allowed to have floating occu-

pation numbers. The gradient of the energy can be partitioned in a

response term, containing the derivatives of CI and MO coefficients,

and a static term. The static contribution specific to the present case

is given by the derivative of the molecular dipole operator matrix ele-

ments in terms of atomic orbitals (AO). As for the response terms,

notice that the derivatives of the expansion coefficients DA
n,p of the

polaritonic adiabatic state jAi give a null contribution to
∂EApol
∂Rα

, since
∂EApol
∂DA

n,p
= 0 by construction. As a consequence, since EAph does not involve

geometry dependent quantities other than the DA coefficients (in the

long wavelength approximation), it does not contribute to the gradient

and will not be considered further here. At variance, the derivatives of

the electronic CI coefficients CI, n have to be considered.

We have then

∂EApol
∂Rα

=
∂EAel
∂Rα

+
∂EAint
∂Rα

: ð27Þ

The gradients for the electronic energies Un entering ∂EAel
∂Rα

are

known.[43,44,46,58] Hence, here we only show explicitly the evaluation

of ∂EAint
∂Rα

. By making use of Equation (24) one gets

∂EAint
∂Rα

=ℰ1ph

X
ij

∂ρintij Að Þ
∂Rα

μij + ρ
int
ij Að Þ ∂μij

∂Rα

" #
: ð28Þ

Let μij be the matrix element of the molecular dipole operator bμλ
in the MO basis, and c the transformation matrix from the AO to the

F IGURE 2 Polaritonic conical intersection for weak to ultrastrong values of ℰ1ph, with the field polarization perpendicular to the longitudinal
axis of the molecule. (a) Polaritonic states computed along the NNC coordinate in the same conditions as in Figure 1a. The polarization of the
field λ⊥ is perpendicular to the longitudinal axis of the molecule. Along this direction, the vanishing S0 ! S1 transition dipole moment at
azobenzene trans-planar geometries (CNNC�175 − 180�) causes (b) a polaritonic conical intersection to arise, independently of the coupling
strength [Color figure can be viewed at wileyonlinelibrary.com]
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MO set (c is real orthogonal in the semiempirical framework consid-

ered here). We have then μ = c†μAOc, where μAO is the matrix of bμλ in
the AO basis. Therefore, the derivatives of μ can be expressed as

∂μ
∂Rα

=Bαμ−μBα + c†
∂μAO
∂Rα

c with Bα =
∂c†

∂Rα
c, ð29Þ

which can be decomposed into a static part and a response

part,[43,44,58]

∂μ
∂Rα

����
static

= c†
∂μAO
∂Rα

c, ð30Þ

∂μ
∂Rα

����
resp

=Bαμ−μBα ð31Þ

The static term (Equation (30)) is easily evaluated as follows. Let

χασ R
!� �

be an AO belonging to nucleus α centered on R
!
α , with

r
!
rel = r

!−R
!

α . The dipole matrix elements μστ are then, in the semiem-

pirical framework

μ
!
στ = −e χασ r

!
rel

� �
r
!��� ���χβτ r

!
rel

� �D E
= −eδαβ δστR

!
α + f

!
στ

� �
ð32Þ

where −e is the electronic charge and the Kronecker delta δαβ is due

to the semiempirical NDDO approximation. Moreover, the term

f
!

στ = χασ r
!

rel

� �
r
!
rel

��� ���χβτ r
!

rel

� �D E
ð33Þ

is independent on the nuclear coordinates. Therefore, the derivative

of μ
!
στ with respect to R

!
α vanishes unless the two atomic orbitals σ

and τ are both centered on the nucleus α, and in that case it simply

evaluates to −e ∂R
!

α

∂R
!

α

. In an ab initio context, one would have to com-

pute also the derivative of the dipole matrix elements between atomic

orbitals centered on different atoms, which has a more involved

expression with respect to the term considered here. However, that

would not be expected to have a large impact on the computational

cost, which is mainly influenced by the response part of the gradient.

The contribution of the response term of Equation (31) to the

derivative of EAint (Equation (28)) can be recast in this way, following

Patchkovskii and Thiel[45,46]

ℰ1ph

X
ij

ρintij Að Þ ∂μij
∂Rα

�����
resp

=
X
i

X
a

Bα
ia +

∂εi
∂Rα

δia

� �
qintia , ð34Þ

where εi is the energy of MO i and

qintii = 0

qintia = 2ℰ1ph

X
j

ρintij Að Þμaj i 6¼ a: ð35Þ

As qintii =0, the term containing the derivative of the orbital energy

εi gives a null contribution to the sum of Equation (34). Such term has

been included to recover the same formalism of previous

works.[43,44,58]

We now turn to the derivative of ρintij Að Þ, which is a response term

(i.e., the CI response contribution to the polaritonic energy), evaluated

by taking the derivative of Δel
ij m,nð Þ. Such derivative is obtained by fol-

lowing the same procedure outlined for the MOs response terms

(Equation (31))

∂Δel
ij m,nð Þ
∂Rα

=
XNCI

k

dαmkΔ
el
ij k,nð Þ−Δel

ij m,kð Þdαkn
� �

ð36Þ

with

dαmn =
X
J

∂CJm

∂Rα
CJn ð37Þ

Notice that the sum in Equation (36) is extended to NCI rather

than to the number N of states selected: in principle, the evaluation of

the CI response contribution requires the full diagonalization of the CI

space considered. While this may be too demanding in an ab initio

context, normally it does not represent a problem in a semiempirical

framework, where NCI is usually small. The antisymmetric matrix dαnm ,

expressing the response of the CI coefficients, represents the CI con-

tribution to the derivative couplings. We have then

∂EAint
∂Rα

�����
CI

resp

�ℰ1ph

X
ij

∂ρintij Að Þ
∂Rα

μij

=
X
i≤ j

X
n6¼m

Gij A jm,nð Þ
XNCI

k

dαmkΔ
el
ij k,nð Þ+ dαnkΔel

ij m,kð Þ
� �

, ð38Þ

where

Gij A jm,nð Þ=ℰ1phD A jm,nð Þμij 2−δij

 �

: ð39Þ

According to Reference [44], we evaluate the derivative coupling

terms dαmn by exploiting the Hellmann–Feynman theorem

dαmn = Um−Unð Þ−1
X
IJ

CI,m
∂ ΦIh jbHel ΦJj i

∂Rα
CJ,n ð40Þ

=
X
ij

Δel
ij m,nð Þ

Um−Un

∂ε+ij
∂Rα

+
X
ijkl

Γel
ijkl m,nð Þ
Um−Un

∂ ijjklh i
∂Rα

: ð41Þ

for m 6¼ n, and dαnn =0. Here, Γel
ijkl m,nð Þ= m ba†i ba†jbalbak��� ���nD E

are the two-

electron density matrices and the terms ε+ij are defined in equation

(36) of Reference [44].

Inserting Equation (41) into (38), we obtain the following expres-

sion for the CI response term induced by the strong coupling

interaction:

∂EAint
∂Rα

�����
CI

resp

=
X
ij

∂ε+ij
∂Rα

Δint
ij Að Þ+

X
ijkl

∂ ijjklh i
∂Rα

Γint
ijkl Að Þ: ð42Þ

where

FREGONI ET AL. 7

31



Δint
ij Að Þ=

XNCI

k

X
m

m 6¼ k

Δel
ij m,kð Þ

Um−Uk
R A j k,mð Þ ð43Þ

Γint
ijkl Að Þ=

XNCI

k

X
m

m 6¼ k

Γel
ijkl m,kð Þ
Um−Uk

R A j k,mð Þ ð44Þ

R A j k,mð Þ=
X
i≤ j

X
n

n 6¼m

2Gij A jm,nð ÞΔsymm
ij k,nð Þ ð45Þ

Δsymm
ij k,nð Þ= Δel

ij k,nð Þ+Δel
ji k,nð Þ

2
ð46Þ

Here, Δsymm
ij k,nð Þ is the symmetric part of Δel

ij k,nð Þ . Notice that it

is symmetric with respect to both i, j and k, n indices, since

Δel
ij k,nð Þ=Δel

ji n,kð Þ.
To obtain the final expression for the gradient of EApol , we have

also to consider the contribution given by the derivative of the naked

electronic state energy Un (see Reference [58])

∂Un

∂Rα
=
∂E0
∂Rα

+
X
ij

Δel
ij nð Þ∂ε

+
ij

∂Rα
+
X
ijkl

Γel
ijkl
∂ ijjklh i
∂Rα

: ð47Þ

By putting all the terms together we arrive at

∂EApol
∂Rα

=
∂E0
∂Rα

+
X
ij

Δpol
ij Að Þ∂ε

+
ij

∂Rα
+
X
ijkl

Γpol
ijkl Að Þ∂ ijjklh i

∂Rα

+
X
ai

Bα
iaq

int
ia +ℰ1ph

X
ij

ρintij Að Þ
X
στ

cσi
∂μστ
∂Rα

cτj

ð48Þ

where we made use of the modified electronic density matrices

Δpol
ij Að Þ=

X
n

Δel
ij nð Þ

X
p

DA
n,p

��� ���2 +Δint
ij Að Þ ð49Þ

Γpol
ijkl Að Þ=

X
ijkl

Γel
ijkl nð Þ

X
p

DA
n,p

��� ���2 +Γint
ijkl Að Þ: ð50Þ

The evaluation of the gradient of EApol can proceed in the way out-

lined in Reference [58], using the modified density matrices Δpol
ij Að Þ

and Γpol
ijkl Að Þ. In particular, the response term is

∂EApol
∂Rα

�����
resp

=
X
i

X
a

Bα
ia +

∂εi
∂Rα

� �
qelia + q

int
ia


 �
, ð51Þ

where qel, defined as done in[58] (see also[44]), is explicitly reported

below for reader's convenience

qelii =Δ
pol
ii Að Þ−Oi−

1
2

X
jkl

βki ljkkkh i Δpol
lj Að Þ−δljOl

� �
ð52Þ

qelia =4
X
jkl

Γpol
ijkl Að Þ ajjklh i−

X
jk

Δpol
ij Að ÞOk kkkajh i− ð53Þ

X
jk

Δpol
jk Að ÞOi aikjkh i+

X
j

OiO j aikjjh i for i 6¼ að Þ

βki = fk εFð Þ fi εFð ÞP
j f j εFð Þ −δik

 !
ð54Þ

In the above equations, we used the shorthand hijkkli = 2hij| kli
− hik| jli, and fi is the Gaussian function defined in Equation (10).

Finally, for the static part, one has just to add the last term of Equa-

tion (48), representing the static dipole derivative (see above).

2.5 | Surface hopping

In the framework of Direct Trajectory Surface Hopping, the formula-

tion of strong coupling given in this work allows to include the

decoherence corrections[59] and environmental effects through the

QM/MM interface previously devised.[60–62] For the time evolution of

the polaritonic wavefunction, we adopt the local diabatization tech-

nique,[48,63] with a recently improved evaluation of transition probabil-

ities. Such probabilities are compliant with Tully's Fewest Switches

prescription and particularly effective when many states are involved

in nonadiabatic events,[64] as commonly happens in single-molecule

polaritonic systems (see Figure 1b).

As a test case, we examine the azobenzene strong coupling

dynamics with ωph = 2.7 eV and ℰ1ph = 0.004 au (�12 nm3) in the

absence of the cavity losses. The initial conditions are sampled on the

ground state via a 20 ps dynamics, thermostated at room temperature

(with a Bussi-Parrinello thermostat[65]). In particular, 230 starting

structures and velocities are extracted from the sampling dynamics,

and the system is initially vertically excited to the jR8i state, that is

mostly jS2, 2i state. Rather than the simulation of a realistic excitation

(the transition jS0, 0i ! j S2, 2i would require a multiphoton

pumping), this is a test case to investigate the effect of photon occu-

pation numbers greater than 1 (up to p = 3). In Figure 3a, we show the

behavior of the population of the photon states during the dynamics,

in the absence of cavity losses. The blue line with circle markers (right

y scale) shows the total photon number within the cavity, namelybb†bbD E
.

The full lines (left y scale) show the populations of each photon

state, that is,
P

n|Dn, p|
2, with p = 0, …, 3. While no cavity loss is explic-

itly included in the dynamics, still the total photon number in the sys-

tem decreases. Through strong coupling, a photon is continuously

exchanged between the molecule and the cavity. However, the elec-

tronic component keeps decaying via internal conversion, meaning

that when the photon is absorbed, its energy can be redistributed to

the nuclear degrees of freedom. While the total number of photons

decreases in the ongoing dynamics, the energy of the system is still
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conserved (Figure 3b). The initial conditions are chosen such that the

resonant region between the p = 3 states (namely S0, 3) and the p = 2

states jS1, 2i is interested, so both the subspaces jn, 3i and jn, 2i are
populated. This results into an average photon occupation number

greater than j2i, namely 2.23.

2.6 | Cavity losses

Aiming to provide a realistic model, we deal with the issue of lossy

cavities. The strong coupling regime for single molecules is usually

reached by exploiting a nanocavity setup of the system.[5,6,66,67] The

typical lifetime of nanocavities is few tens of femtoseconds. However,

we have recently shown that the overall photon lifetime of the system

is way longer than the individual cavity lifetime,[34] reaching a time

scale comparable to several ultrafast photochemical processes. This

effect is due to the transient passage of the wavepacket through

strongly coupled regions, so that the composition of the polaritonic

state keeps interchanging between electronic and photonic. As a con-

sequence of the mixing, the lifetime of states with the photon partially

absorbed is extended up to hundreds of fs, depending on the strong

coupling conditions. Within our model, we adapt a quantum jump

algorithm[68–71] already exploited in the Stochastic Schrödinger Equa-

tion (SSE) framework[72] to account for relaxation and dephasing

channels. Stochastic methods in the framework of SSE are also com-

monly exploited as an equivalent alternative to master equations in

treating cavity losses.[73–75] We then follow a standard implementa-

tion of this approach, similar to others already present in Quantum

Optics simulation packages like QuTip.[76]

The quantum jump is a natural choice as it fully exploits the tra-

jectory-based machinery of the surface hopping. Having to deal with

semiclassical trajectories, both the polaritonic wavefunction and the

“current state” (i.e., the adiabatic state on which PES the nuclei are

evolving) must be taken into account whenever a photon loss occurs.

We start with the expression of the polaritonic wavefunction in terms

of the uncoupled states basis:

Ψpol =
X
A

CA jAi=
X
n,p

dn,p j n,pi: ð55Þ

where dn,p =
P

AD
A
n,pCA . Only states with free photons can decay via

cavity losses, namely states with p≥1. We evaluate the photon loss

probability Pdec by taking the squared modulus of the uncoupled states

coefficients with p≥1 in the total wavefunction Ψpol, that is, dn, p≥1:

Pdec =
X
p≥1,n

dn,pj j2Δt
τ
: ð56Þ

Here, Δt is the integration time step and τ is the cavity lifetime,

namely the inverse of the cavity decay rate κ. We generate a uniform

random number within the interval [0, 1]. If the random number falls

in [Pdec, 1], the photon is retained and the cavity loss does not occur.

If not, the photon is lost. Upon photon loss, the photon occupation

number is lowered by 1 via application of the projector bP which

includes the photon annihilation operator bb:
bPΨpol = Iel�bb� �

Ψpol =
X
n

Xpmax

p=1

dn,p−1
ffiffiffi
p

p j n,p−1i: ð57Þ

F IGURE 3 Photon statistics and energy conservation. (a) Dynamics of the photons in the cavity during the internal relaxation of the strongly-
coupled azobenzene molecule, in absence of cavity losses. The dynamics is started from the jR8i state and runs for 1 ps, with ℰ1ph = 0.004 au
(�12 nm3 mode volume), ωph = 2.7 eV and longitudinal field polarization. The molecule is in gas phase.[24] The curves with full lines show the
dynamics of each p subspace, while the light blue line with circle markers (with the scale on the right) represents the total photon number within
the cavity. Error bars, represented as lighter bands, are also shown. Even in absence of cavity losses, the average photon number decreases during
the dynamics. While the photon is in its absorbed state, the energy stored within the molecule is redistributed via internal conversion to nuclear
kinetic energy. The overall process is still conserving the energy, as shown in panel (b) [Color figure can be viewed at wileyonlinelibrary.com]
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Here, the projector bP preserves the electronic coherence within

each p subspace, apart of course for p = 0 that is annihilated. The pho-

tonic annihilation operator bb is applied to mimic the loss of the photon

from the cavity, resulting in a manifold of states with photon number

lowered by one. The wavefunction is normalized after application

of P.

To reinitialize the dynamics after the photon loss has occurred,

we need both the wavefunction to propagate and a polaritonic sur-

face to resume the nuclear trajectory integration, jFi. The

wavefunction is simply a linear combination of polaritonic states jAi:

Ψ0
pol =

bPΨpol =
X
A

C0A jAi, ð58Þ

where the ' symbol denotes the quantities after the jump. As a

polaritonic energy surface to resume the nuclear trajectory propaga-

tion, we choose the polaritonic surface jFi that has the maximum

overlap with the polaritonic wavefunction after the jump:

j Fi= jAi jmax j<AjΨ0
pol > j

n o
: ð59Þ

If the quantum jump does not occur, the wavefunction is propa-

gated with the non-Hermitian Hamiltonian[68,72,77]:

bHeff = bHpol− iħ
κ

2
bb†bb: ð60Þ

For each timestep, this is accomplished by first propagating

according to Hpol, and then modifying Ψpol in the following way

Ψpol =
X
A

X
n,p

CADA
n,p 1−

κ

2
pΔt

� �
j n,pi: ð61Þ

The polaritonic wavefunction Ψpol is then renormalized. The prop-

agation between each attempted jump should be performed with the

non-Hermitian bHeff of Equation (60), leading to un-normalized

wavefunction. Anyway, in our algorithm, the jump is attempted at

each time step and so the wavefunction is always normalized, one

way or the other. A consequence of the photon loss is that the total

energy of the system is not conserved.

In Figure 4, we replicate the dynamics performed for the lossless

case (Figure 3) in presence of a cavity lifetime τ of 65 fs. The same

color scheme and notation is applied. While the relaxation dynamics is

of course quicker (Figure 4a) due to the presence of an extra relaxa-

tion channel (cavity loss), the decay dynamics is better described by a

biexponential function, rather than a simple exponential (Figure 4b).

The main reason is that photons can be exchanged back and forth

between the cavity and the molecule, via transitions jn, pi ! j n + 1,

p − 1i and vice versa, slowing down the cavity loss rate. This is espe-

cially important when p = 1, as there is no way to lose the photon

from a state jn0
, 0i with zero free photons in the cavity. In particular,

this happens for the system considered here, which shows transitions

back and forth from jS1, 0i to jS0, 1i. Here, the single photon

remaining appears to decay with a lifetime which is 20 fs longer than

the nominal decay time of the cavity. Notice that, if the single photon

remaining is adsorbed by the molecule due to strong coupling, the life-

time of the system is ascribable to that of the pure electronic states.

Conversely, when the photon is free within the cavity, the lifetime of

the system becomes that of the nominal cavity lifetime.

The consequence of the cavity losses becomes also evident in the

energy conservation plot (Figure 4c), where the initial part of the

dynamics is characterized by a quick drop of the total energy due to

the photon losses with no kinetic energy compensation. As a last

remark, we stress that the current implementation takes advantage of

dressing the chemical quantities for the strong coupling effect. Conse-

quently, it directly supports the interface with the TINKER package to

F IGURE 4 Cavity losses in strong coupling. Same conditions of Figure 3, with the same notation and color scheme. A cavity lifetime τ = 65 fs
is considered. (a) The overall population dynamics is definitely shorter in this case, with a transient population of the jn, 1i subspace. (b) Photon
number in the cavity at each time step. Remarkably, the kinetics is not simply dissipative. While p ≥ 1, the photon loss occurs at a faster rate than
the cavity lifetime (circle markers fit). After only one photon remains, the loss dynamics slows down, as the only photon remaining is partially
absorbed by the molecule and cannot be lost. (c) Breakdown of the energy conservation, due to cavity losses [Color figure can be viewed at
wileyonlinelibrary.com]
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perform QM/MM simulations with electrostatic embedding, as

described and applied in References [34, 61, 62].

3 | CONCLUSIONS

In the present work, we describe a scheme we have implemented to

perform direct nonadiabatic molecular dynamics simulations for semi-

classical molecules in strong coupling, based on classical nuclear tra-

jectories and on multiconfigurational wavefunctions. We build

polaritonic states and present the evaluation of analytical gradients

for polaritonic CI energies, extending the DTSH machinery to the

polaritonic systems. Among the DTSH[42,43,58] exploitable features,

we count the decoherence corrections,[59] the QM/MM interface with

electrostatic embedding[60,62] and the local diabatization scheme[48,63]

for wavefunction propagation. Cavity losses are included in the simu-

lations through quantum jumps, relying on the stochastic nature of

Surface Hopping. We choose the test case to highlight the complex

features of the potential energy surfaces arising when moving beyond

the one-dimensional 2-level molecular models. The results presented

for the test dynamics highlight the delicate interplay between radia-

tive and nonradiative emissions, both impacting the relaxation dynam-

ics of strongly coupled systems. Especially, we show that losses are

competitive with usual nonadiabatic events and that the outcoming

dynamics cannot be described as simply dissipative, the photon actu-

ally living longer than the nominal lifetime of the cavity. The content

of this work provides both formal and conceptual tools to approach

the polaritonic photochemical simulations within a semiclassical

ansatz, allowing to simulate complete photochemical reactions with a

trivially parallelizable technique.
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Chapter 2

The starting point of this chapter is the renown azobenzene photoisomerization. Grounded

on such basis, I make extensive use of the features presented in the previous chapter, aiming

at exploring how different light-molecule coupling conditions can impact both the photoiso-

merization mechanism and quantum yields. All the results are produced for both the weak

coupling case and the strong coupling case in absence of environment. Through this means,

all the modifications occurring in the mechanism are tied to the effect of the strong coupling

regime between light and molecule. All the presented results have been originally produced

by me during the PhD activity and are reported in the followings as published article and

supporting information. The formalism adopted in the article partially differs from the one

adopted in Chapter 1. However, it is thoroughly explained in the main text. With the

aim of aiding the interpretation of the modified reaction mechanism, I have realized several

visualization tools which have been exploited to realize the figures and the movies in the

section: Supplementary Movies. Such movies are consultable as Supplementary Material of

the online version of the article or by scanning the QR code in the dedicated section.
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ARTICLE

Manipulating azobenzene photoisomerization
through strong light–molecule coupling
J. Fregoni1,2, G. Granucci 3, E. Coccia4, M. Persico3 & S. Corni2,4

The formation of hybrid light–molecule states (polaritons) offers a new strategy to manip-

ulate the photochemistry of molecules. To fully exploit its potential, one needs to build a

toolbox of polaritonic phenomenologies that supplement those of standard photochemistry.

By means of a state-of-the-art computational photochemistry approach extended to the

strong-coupling regime, here we disclose various mechanisms peculiar of polaritonic

chemistry: coherent population oscillations between polaritons, quenching by trapping in

dead-end polaritonic states and the alteration of the photochemical reaction pathway and

quantum yields. We focus on azobenzene photoisomerization, that encompasses the

essential features of complex photochemical reactions such as the presence of conical

intersections and reaction coordinates involving multiple internal modes. In the strong cou-

pling regime, a polaritonic conical intersection arises and we characterize its role in the

photochemical process. Our chemically detailed simulations provide a framework to ratio-

nalize how the strong coupling impacts the photochemistry of realistic molecules.
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Control and manipulation of the photochemistry of mole-
cules has traditionally relied on synthetic1 chemical
modifications or changes in the environment surrounding

the photoactive molecule2. Precise control of the main products,
the reaction yields and rates is achievable through addition or
removal of functional groups that modify the properties of the
ground and excited states. Together with the idea that
light–matter interaction in both the weak-field and strong-field
limits can be exploited to control molecular processes3–7, it has
been suggested recently that the light–molecule interaction itself
can be used to modify the photochemistry of the molecules, with
no other direct changes in the molecule or its environment8–10.
We specifically refer to the regime where the coherent energy
exchange rate g (also addressed as a coupling constant) between
light and molecules becomes faster than any decay rate of the
system itself (strong-coupling limit) (Fig. 1a). In this regime, the
states of the system become hybrid between light and matter, the
so-called polaritons11–13.

Such states mix the photonic and the electronic degrees of
freedom: when compared to the pure electronic states, the
properties of the polaritons show a different dependence on the
molecular geometry. This applies, in particular, to the polaritonic
potential energy surfaces (PPESs) and any feature related to them,
such as avoided crossings and conical intersections. As a con-
sequence, the polaritons may impart a new photochemistry,
laying the basis for polaritonic chemistry8,9,13–16.

To achieve the strong coupling required to exploit such hybrid
states, resonant or nanoplasmonic cavities have been devised only
in the last years17,18 and recently the single-molecule level has
been reached11,19 at room temperature. Coherent coupling
between a single organic molecule and a microcavity has also
been recently achieved20, opening a way to the investigation of
coherence effects in the light–matter interactions on a longer
timescale than in the nanocavity case. Such groundbreaking
experimental findings have spurred an intense and pioneering
theoretical activity12,14,21–23. Various interesting phenomena
were predicted in prototypical systems (model potential energy
surfaces—PESs—along one or two coordinates, representing
specific internal coordinates in more complex systems), such as
the modification of quantum yields and the creation of polari-
tonic conical intersections by light–molecule coupling13,15,21,24,25.

The computational investigation of weak-field photo-
chemistry5,6,26–29 has undoubtedly shown that even for the
simplest and best characterized systems, such as azobenzene, the
chemical complexity of the molecule cannot be disregarded. To
tackle such complexity, the inclusion of all the molecular degrees

of freedom is necessary to describe the main features of photo-
chemical processes: the occurring events where the
Born–Oppenheimer approximation breaks down and the correct
account of the quantum nature of the nuclear motion. In the past
few decades, many efforts in this field resulted in detailed and
realistic models30,31 of photoactive systems.

An equivalent investigation of the photochemical properties
and peculiar features of realistic molecules in the strong-coupling
regime is still an open challenge14. Recently, methodologically
remarkable advancements have been made along such direction:
Luk et al. investigated the formation of collective polaritonic
states for systems of hundreds of realistic dye molecules22, and
Vendrell focused on collective quantum effects for up to five
diatomic molecules strongly coupled to a cavity mode23. Yet, the
characterization of a photochemical reaction in the strong-
coupling regime for a molecule of realistic complexity is still
lacking. To move further in the characterization of photochemical
processes, we focus on azobenzene. Azobenzene and its deriva-
tives are a prototypical benchmark for studying photochemical
processes32,33. The photo-reversible switch of configuration
between trans and cis (Fig. 1b) in this class of molecules has been
studied extensively, due to the wide applicability in the field of
photocontrol of biomolecular structures34, of sensing35, and
photoresponsive materials36.

To investigate such system, we rely on an on-the-fly surface
hopping technique37 already validated for several applica-
tions31,38,39. Here we characterize the PPESs by relying on the
detailed description of the molecule taking into account the full
space of the internal degrees of freedom of azobenzene. We make
use of such characterization to discuss the effects of strong cou-
pling on photochemistry, as the birth of coherent oscillations of
the populations between the polaritonic states. For coupling
strengths comparable to what was already achieved in experi-
ments11, we show how the mechanism of the trans–cis photo-
isomerization is modified, leading to a decrease in the quantum
yield24,25. Finally, we investigate the oscillations referred above by
including the effect of cavity losses to mimic realistic plasmonic
nanocavities. Through our results, we emphasize the significant
role of quantum coherence in controlling the molecular processes,
including in the picture also the polaritonic coherences beside
electronic and vibrational ones29,40,41.

Results
Azobenzene polaritonic PESs. The azobenzene electronic PESs
are represented with respect to the CNNC and one of the NNC

vis

a

Cis-azobenzene

CNNC dihedral

NNC angle

d

c

Trans-azobenzene

b

UV

g K

γ

Fig. 1 Scheme of the modeled system. a Trans azobenzene molecule inside a resonant cavity. The decay rate of the system is γ for the molecule and κ for the
cavity. b Isomerization of the azobenzene molecule: the switch of configuration can be achieved by irradiation with UV–Vis light. c, d Photoisomerization
coordinates of azobenzene: the reaction occurs through the torsion of the CNNC dihedral angle, with a simultaneous relaxation of the NNC angle
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angular coordinates (Fig. 1c, d) with all the other nuclear degrees
of freedom optimized with respect to the first excited state and for
each choice of such coordinates. These two angles are directly
involved in the photoisomerization mechanism42. The CNNC
dihedral angle (Fig. 1c) represents the torsion around the N=N
double bond and it is the main reaction coordinate for the
photoisomerization. Together with the torsion, the NNC angles
are necessary to successfully describe the photoisomerization
mechanism3842,43. Electronic wavefunctions and PESs (Fig. 2a)
were computed exploiting a semiempirical quantum chemistry
approach, developed by Persico and collaborators38,43. Such
approach has been extensively validated in the past for azo-
benzene and its derivatives38,4344. Accuracy and low computa-
tional cost make this method extremely suitable to simulate the
photochemistry of realistic molecules, as it allows the inclusion of
all the internal degrees of freedom.

We build (see Methods) the polaritonic states as eigenstates of
the total (molecule+ light) Hamiltonian on the basis of product
states between the electronic eigenstates S0, S1, and a photon
occupation state number 0j i, 1j i, that is S0; 0j i, S1; 0j i, S0; 1j i, and
S1; 1j i. The strong-coupling interaction only mixes states differing
by one in the photon occupation state number. The mixing
between S0; 1j i and S1; 0j i is by far the most relevant, as these two

states are close in energy. In particular, such mixing gives rise to
the lower and upper polaritons ( �j i and þj i, respectively, see
Fig. 2b)12,21,24,45.

In Fig. 2b, they have been obtained with a coupling constant
(see Methods) g of 0.010 au and a photon energy Eph of 1.3 eV. As
shown there, a new avoided crossing arises for the polaritonic
states as a signature of the coupling. Such avoided crossing is
found in the coordinate range where the S1; 0j i and S0; 1j i states
would cross. The energy splitting contribution along the avoided
crossing line between the �j i and þj i states is proportional to the
coupling between S0; 1j i and S1; 0j i before the diagonalization.
Such coupling depends on the expectation value of the
component of the transition dipole moment between the pure
electronic states, μS0;S1ðQÞ, taken along the polarization direction
of the electric field (see Methods). Therefore, the splitting
magnitude depends indirectly on the nuclear coordinates through
the transition dipole moment. In turn, since the geometry where
the strong-coupling avoided crossing occurs is tuned by Eph,
different splitting energies are obtained as a function of Eph. Such
dependence has been noted in previous works and included in the
models21,22,24,25, though its role for the photochemistry of
realistic molecules has not been explored yet. By showing in
Supplementary Figs. 1 and 2 that the effect of such dependence is
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Fig. 2 Electronic and polaritonic states of azobenzene. a Pure electronic ground (brown surface) and first excited (purple surface) PESs of azobenzene,
plotted with respect to the torsion and inversion coordinates. The S0 and S1 PESs are characterized by the presence of a conical intersection. b Polaritonic
potential energy curves (black, dark orange, and purple full lines) of azobenzene with respect to the CNNC coordinate with NNC 115°, obtained as linear
combinations of uncoupled states (dotted lines, orange and violet) for a photon energy Eph of 1.3 eV and a coupling constant g of 0.010 au. The splitting
between the polaritonic states ( �j i, þj i) depends on the transition dipole moment between the electronic states, evaluated at the crossing geometry
(CNNC 130° and NNC 115°)
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remarkable, we anticipate that the transition dipole moment at a
given crossing geometry (governed by Eph) is a further parameter
to take into account to manipulate the PPESs features and, as a
consequence, the photochemical reaction. The splitting can range
from zero (for dipole forbidden transitions) to very large,
depending on the transition dipole magnitude and orientation.

The out-of-plane component of the transition dipole moment
between S0, and S1 vanishes at planar geometries. Therefore, for a
field polarization perpendicular to the plane of the molecule as in
the present case, the �j i and þj i states become exactly
degenerate at crossing points between S1; 0j i and S0; 1j i at planar
geometries. In other words, a polaritonic conical intersection
(indicated with a red arrow in Figs. 3, 4a and 4d) is originated (see
Supplementary Note 1 for more details).

Aiming to highlight how deeply the conical intersection
features can influence the photoisomerization yields and
mechanism, we chose two limiting cases which shape very
differently the PPESs. Within such two cases, the photon energy
Eph is set to 1.3 and 2.2 eV, while g is equal to 0.010 au and the
field is polarized perpendicularly to the plane of the molecule for
both. By doing so, we obtain coupling magnitudes which are
comparable to what has recently been observed experimentally
for single molecules in the strong-coupling regime11,19. In the
next section, we analyze the differences between strong coupling-
induced avoided crossings under different conditions and discuss
the consequences of the photoisomerization process of
azobenzene.

Photochemistry in the strong-coupling regime. The simulation
of a photochemical process is carried out by non-adiabatic
molecular dynamics methods: this manifold of techniques37,46–48

consists in mimicking the nuclear wavepacket motion on the
excited electronic PESs and aims to correctly retrieve the quan-
tum yields of a reaction when the Born–Oppenheimer approx-
imation breaks down. Such breaking can occur either for
electronic states degeneracy, quasi degeneracy49,50 or, in the
strong-coupling regime we are considering, for polaritonic state
avoided crossings12,25,51. In these critical regions, reproducing the

correct splitting of the wavepacket through crossing seams is the
key to correctly retrieve the molecular mechanism30,44,49,50,52.

To this purpose, an effective46,47 strategy is to rely on the
semiclassical surface hopping method pioneered by Tully53. Such
framework provides an accurate description of de-excitation
mechanisms in molecules. A recent improvement to such an
approach includes decoherence effects54, which have been proven
successful to describe multiple passages of the wavepacket
through the crossing seams. The accurate description of multiple
passages is essential to our system: the presence of the conical
intersection and the strong-coupling avoided crossing entails
multiple wavepacket branchings in rapid succession. Therefore,
we have devised a propagation scheme for the nuclear trajectories
on the PPESs, in the framework of an on-the-fly trajectory surface
hopping technique37 (see Methods for more details).

As mentioned above, we compare two cases with different
photon energies (Eph= 1.3 eV and 2.2 eV), g equal to 0.010 au
and the field polarized along the z-axis perpendicular to the plane
of the molecule for both. The initial conditions (nuclear
coordinates and momenta) for the swarm of trajectories
mimicking the nuclear wavepacket are sampled from a room-
temperature Boltzmann distribution, obtained from a single
trajectory propagated for 10 ps on the ground state with a
Bussi–Parrinello thermostat55. A vertical excitation is performed
to the upper polariton for each trajectory (Fig. 3a). The PPESs
and some snapshots of the 1.3 eV dynamics are shown in Fig. 3
(for the 2.2 eV case and the movies of the whole dynamics, see
Supplementary Movies 1 and 2). In order to compare the effect of
different coupling conditions on the photochemical process, the
population evolution and the characterization of the polaritons
are shown for the two cases in Fig. 4.

In both cases, the vertical excitation brings the sampled
trajectories on a slope of the upper PPES. As shown for the 1.3 eV
case at 10 fs, the trajectories start propagating, accumulating
kinetic energy toward the minimum of the upper polariton
(Fig. 3a). At 20 fs, as the ensemble approaches the strong-
coupling avoided crossing as well as the related polaritonic
conical intersection, the trajectories split and start oscillating
between the �j i and þj i polaritonic states (Fig. 3b, c). At 30 fs,
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Fig. 3 Snapshots of the photoisomerization on PPESs for Eph 1.3 eV and g 0.010 au. The black triangles identify the strong-coupling avoided crossing line,
the red arrow identifies the polaritonic conical intersection while the black circle is the conical intersection between the pure electronic states. Light blue
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we observe a branching of the trajectories on the lower PPES,
with a cluster of trajectories moving toward the lower PPES
minimum (Fig. 3c).

Such oscillations were characterized for both the 1.3 and 2.2 eV
cases, as shown in the population plot reported in Fig. 4. To this
aim, we extracted the oscillation coordinate by averaging the
NNC and CNNC angles for the oscillating trajectories, and we
plotted the avoided crossing profiles for both the dynamics
(Fig. 4a, b, d, e) along such a coordinate. The extrema of the
(CNNC, NNC) couple of angles during the oscillations are
indicated as I and IV in the figure. In both cases, we observe that
the oscillation coordinate is hybrid between CNNC and NNC,
though with a different mixing of the two. We also stress the
different shape of the surfaces and of the crossing profiles
between the polaritonic states in the two cases, despite the same
coupling constant. The splitting extent at the avoided crossing
(hence, proportional to the coupling) is a signature of the
geometric dependence of the coupling through the transition
dipole moment. This dependence carries non-trivial effects on the
dynamics and the oscillation feature, as it becomes clear by
analyzing the populations of the two cases reported in Fig. 4c, f.
The different decay rates of the upper polaritonic state and the
oscillation peaks strengths and occurrences in time can be
rationalized by exploring further the potential energy curves
along the oscillation coordinate.

In the 1.3 eV case (Fig. 4c), the excited trajectories starting in
the Franck–Condon region on the upper PPES (close to point IV

in Fig. 4a) are dragged toward a strong-interaction region
between the two polaritonic states. As a consequence, a diabatic
behavior is obtained, with the trajectories oscillating on the S1; 0j i
PES between the points I and IV (Fig. 4b). However, during the
oscillations, some trajectories get trapped in the minimum region
of the lower polariton, which becomes therefore more and more
populated (see Supplementary Fig. 3 for a sketch representation).
In this specific case, a motion toward the conical intersection
(point V, Fig. 4a) becomes unfavorable due to the oscillation trap
triggered by the peculiar shaping of the PESs. This process occurs
completely in the trans region of the conformational space: as a
consequence, an almost complete quenching of the reaction is
observed (the quantum yield is reduced to 3.1%). The 2.2 eV case
is substantially different: the wavepacket starts its propagation
close to the avoided crossing located at the point II of Fig. 4e, and
4f, entailing the quick upper polariton population drop reported
in Fig. 4f.

In this case, the upper PES has a minimum coincident with the
strong-coupling avoided crossing: while few trajectories oscillate
due to the coupling effects, the wavepacket can evolve toward the
conical intersection on the lower polariton (point V, Fig. 4d),
damping the oscillation trap effect and resulting in a quantum
yield of 16.1% (going toward the 33.1% for the isolated molecule).
We also observe an effect on the populations driven by the
different PPESs shapes in the two cases. For Eph 1.3 eV, the �j i
state has a deeper minimum, which is located far from the
avoided crossing. As a consequence, the polaritonic and
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uncoupled populations tend to coincide quicker than in the 2.2
eV case. Due to the trajectories falling in the �j i PPES minimum
(coincident with the S0; 1j i state in that region), the S0; 1j i state
population grows significantly higher than the S1; 0j i population.
In the 2.2 eV case, the presence of a shallow minimum close to
the avoided crossing entails that the trajectories are located in a
region where the S0; 1j i and S1; 0j i states are very mixed. This
behavior is well shown in Fig. 4f by the remarkable difference
between the polaritonic and uncoupled states populations. It is
clear from Fig.4a, d that the oscillation coordinate involves the
polaritonic conical intersection neither for the 1.3 eV nor for the
2.2 eV case. Yet, inspection of the trajectory swarm shows that in
both cases, some trajectories do approach the polaritonic conical
intersection (and turn to the lower PPES there), with a higher
probability for the 2.2 eV case due to the local shape of the PPES.

Comparing the presented results with the weak-coupling case
(see Supplementary Movie 3), the pathway followed by the swarm
of trajectories is substantially different. The presence of the
trapping minimum in the polaritonic case (absent in the isolated
molecule) limits the motion along the CNNC coordinate. As a
consequence, the torsional photoisomerization mechanism turns
out to be quenched. In addition, the oscillations along the NNC
coordinate, inducing the periodic crossing of the polaritonic
conical intersection region, not only elicit the oscillations of the
polaritonic populations discussed so far: indeed, they provide a
channel to intermittently fall in the electronic ground state
(actually S1; 0j i), which is fully missing in the weak-coupling
regime. The effect of such process on the ground-state population
retrieval is discussed in the next section.

Finally, we evaluated the quantum yield as a function of the
photon frequency in the strong-coupling regime. The trend, that
is presented and discussed in the Supplementary Note 2, is non-
trivial. In particular, it encompasses three different regions (a
decrease, a plateau, and a recovery, reaching even a modest
improvement of the yield with respect to the weak-coupling
result), that testify the complexity of the strong-coupling effects
on photochemistry.

Effect of cavity losses on the photochemistry. So far, we have
presented results that explicitly account for the decay of excited
electronic states. Nevertheless, they did not take into account the
finite lifetime of the photon in the resonant cavity driven by the
unavoidable cavity losses. While a promising coherent energy
exchange has been recently shown for a single molecule within a
high-quality factor (i.e., low losses) microcavity20, so far lossy
plasmonic nanocavities have been used to achieve strong coupling
at the single-molecule level11,17–19. The electromagnetic excita-
tion of such systems is typically characterized by a lifetime of few
tens of femtoseconds, i.e., on the same timescale of the coherent
oscillations described in previous sections (Fig. 4c, f). As a con-
sequence, the lifetime of the electromagnetic excitation cannot be
neglected.

In this section, we investigate the consequences of the cavity
losses by means of a Monte Carlo approach (see Methods). In
particular, we check whether the observed coherent oscillations
persist or are dismantled by the loss of photon. We hereby
consider photon lifetimes τc= 1/κ of 10 fs, 50 fs, 100 fs (Fig. 5a–c,
respectively), and 150 fs to investigate their impact on the 1.3 eV
dynamics (see Supplementary Note 3 for the 2.2 eV case). The
main finding here is that, regardless of the specific value of the
cavity lifetime used in our analysis, oscillations of the polaritonic
states are retained.

To explain the persistence of such oscillations between
polaritons for each investigated lifetime, it is useful to consider
how the photon loss probability is determined. Akin to ref. 22, the

probability of disappearance of the photon at a given time is
proportional to the probability of the system to be in the state
S0; 1j i (the photon loss collapses the state on S0; 0j i). Therefore,
during the time intervals in which such a probability is low, the
system is protected against photon loss (i.e., the effective decay
rate is much slower than τc). On the contrary, when the state is
predominantly S0; 1j i, such state will decay exponentially with a
rate close to κ. This is evident for τc 10 fs (Fig. 5): every time the
mimicked nuclear wavepacket passes through the polaritonic
avoided crossing and S1; 0j i converts to S0; 1j i, a clear decay with
a time constant in the tens of femtoseconds range is visible. The
protection against losses offered by disguising the photon in the
S1; 0j i state makes the dynamical features, observed above, robust
in the range of hundreds of femtoseconds, despite a photon
lifetime of 10 fs only.

Remarkably, the excited states oscillatory behavior translates
into an oscillating probability of the molecule of being in the
electronic ground state, as shown in Fig. 5d. Oscillations are
clearly visible for τc 50 fs, and even for a limit value of τc 10 fs
(rather short even for plasmonic nanocavities) clear periodic
plateaus are visible. Current ultrafast optical experiments provide
viable time resolution to observe such features, found missing in
the weak-coupling regime (No SC) in Fig. 5d. Incidentally, such a
panel also illustrates well the different mechanism of the reaction
in the strong-coupling regime vs. weak coupling: in the former
case, the ground state starts to be populated at the very beginning
of the simulation due to the change in polaritonic nature upon
traversing the polaritonic avoided crossing (one can interpret this
as an enhanced radiative decay); in the latter, no decay takes place
until the molecule reaches the electronic conical intersection (that
requires around 150 fs).

Although the qualitative features are conserved, the introduc-
tion of the cavity losses does affect the results: the trapping into
the lowest polaritonic state is now only transient, as it evolves
toward the S0; 0j i state. Moreover, the decay rate to the ground
state is overall (moderately) increasing by decreasing τc: this
behavior is expected as, once S0; 0j i is reached, going back to
S1; 0j i would require a thermal activated event. Yet, the features
of the strong-coupling regime are clearly visible for all the τc. The
case of Eph 2.2 eV is discussed in the Supplementary Note 3; the
notable point there is that for the lowest τc, only the polaritonic
state that coincides with S1; 0j i survives. As a consequence, the
difference between the population of polaritons and the
population of the uncoupled states, shown in Fig. 4f, is also
suppressed, indicating the loss of coherence between the
electronic and photonic states in this very lossy cavity regime.

Discussion
Building upon well-established methods to simulate photo-
chemistry, we have characterized the PPESs for a realistic mole-
cule. The simulation of the photoisomerization has shown how
the reaction pathway and quantum yields can be modified in the
strong-coupling regime (see Supplementary Movies 1 and 2).
Tunable parameters are the coupling constant, the field mode
polarization, and the resonant photon frequency, carrying strong
consequences on the polaritonic splitting. In particular, the
resonant frequency affects the photochemistry both by the posi-
tioning of the polaritonic avoided crossing and via the depen-
dence of the local transition dipole moment on the avoided
crossing geometry, offering a powerful (but difficult to set) handle
to affect photochemistry. We have highlighted and characterized
the peculiar population oscillations arising in strongly coupled
azobenzene photoisomerization, promising to be probed by
experimental ultrafast spectroscopy (whose role in probing
polaritonic photochemistry has been already underlined)21. We
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have shown that such features are qualitatively conserved even
when fast photon losses in the cavity are accounted for (much
faster than the time span of the dynamics), and explained why
this is the case. In addition, we have calculated and commented
the non-trivial dependence of the quantum yields on different
photon energies and coupling constants.

Our results open the way to the rational design of polariton-
induced control of the molecular photochemistry as, for instance,
high-throughput computational investigations of the optical
parameter space (photon energy, coupling strength, and electric
field polarization) can be performed to find out how to control
photochemistry. Among the unexplored photochemical features,
the strong-coupling conditions can potentially be tuned to
retrieve quantum yield enhancements instead of quenching, to
maximize the photostationary state concentrations of reactant
and product, to maximize the coherent oscillation aspects of the
reaction mechanisms, and to tune PESs features such as the
position of the electron and polaritonic conical intersections,
possibly to engineer new photochemical reaction pathways.

Methods
Electronic states . The electronic calculations are performed in a semiempirical
framework, with an AM1 Hamiltonian, which was carefully reparameterized for

azobenzene in a previous work43. In particular, the FOMO-CI37,43 method has
been used for the evaluation of electronic energies, wavefunctions, and couplings.

Polaritonic states. We rely on recent theoretical developments for strongly cou-
pled systems24,25,51 to build the polaritonic states. The total Hamiltonian for the
system is composed by three different contributions12,21,24: molecule, electro-
magnetic field, and coupling,

Ĥsc ¼ Ĥmol þ Ĥph þ Ĥint: ð1Þ

A single quantized mode for the electromagnetic field is considered56:

Ĥph ¼ ωph b̂yb̂þ 1
2

� �
; ð2Þ

where ωph is the resonant photon frequency and b̂
y
, b̂ are the creation and anni-

hilation operators for the bosonic mode, respectively. This term represents the light
mode confined in resonant cavities or nanocavities. The uncoupled system, whose
Hamiltonian reads Ĥmol + Ĥph, is described by the product states S0; 0j i, S1; 0j i
(molecular electronic states with no photon) and the same electronic states with a
photon present, S0; 1j i, S1; 1j i. The positioning of the crossing between the
uncoupled states S0; 1j i, S1; 0j i is governed by the confined mode frequency only.
The PPESs are obtained by including light–matter interaction in the Coulomb
gauge with a dipolar light–matter Hamiltonian (the dipolar formulation allows to
exploit the molecular quantities as computed by quantum chemistry calculations):

Ĥint Qð Þ ¼ gμ̂S0 ;S1 Qð Þ � λ b̂y þ b̂
� �

; ð3Þ

where μ̂S0 ;S1 Qð Þ is the transition dipole moment between the electronic states at
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given nuclear coordinates Q, while λ is the field polarization vector. Within our
treatment, we include the counter rotating terms usually disregarded in the
Jaynes–Cummings model, which account for the Lamb shift of the S0; 0j i, S1; 1j i
states. As the total Hamiltonian is diagonalized, the polaritonic states ( S0; 0j i, �j i,
þj i, S1; 1j i for the present case) are obtained as linear combinations of the
uncoupled states. The �j i and þj i states are the minus and plus combination
between the S0; 1j i and S1; 0j i states, respectively. It is worth noticing that the
S0; 0j i and S1; 1j i states are coupled as well with the other states, as a result of the
diagonalization. In the present case, they are labeled as the uncoupled states since
their mixing with other states is negligible for each geometry.

About dipolar formulation. To compute the polaritonic states, we work in the
Coulomb gauge with an extended Jaynes–Cummings Hamiltonian (see Supple-
mentary Note 4). A recent discussion about the gauge choice to treat strong-
coupled systems has been proposed by Flick et al.12, where they show that for low
photon frequencies and high field intensities, a complete dipolar formulation (or
minimal coupling as well) is needed45. To this aim, we numerically tested the
complete dipolar, minimal coupling and extended Jaynes–Cummings formulations
for the computation of polaritonic states. Within the resonant frequencies and field
strength investigated in this work, we proved numerically that the additional terms
of a complete dipolar formulation can be disregarded (Supplementary Fig. 6).
Therefore, we restrain the treatment to an extended Jaynes–Cummings
formulation.

Strong-coupling non-adiabatic dynamics. In the trajectory surface hopping fra-
mework, the nuclear wavepacket motion on the electronic PESs is mimicked by a
swarm of independent classical nuclear trajectories. The electronic wavefunction is
propagated on-the-fly, according to the time-dependent Schrodinger equation. The
propagation of the wavefunction is carried on the adiabatic basis of the polaritonic
states. As a consequence, the non-adiabatic couplings between polaritonic states
take into account both the couplings between electrons and nuclei and between
photon and electrons. The integration of the TDSE is performed using the local
diabatization (LD) scheme37, and the transition probabilities between polaritonic
states are computed according to Tully’s fewest switches algorithm53, as adapted to
local diabatization. In this version, the decoherence corrections are included as
presented in ref. 54.

The classical nuclear trajectories are evolved according to Newton’s equation of
motion. The force acting on each atom is given by the gradient of the adiabatic
polaritonic state energy. The gradients for the pure electronic states are evaluated as
reported in ref. 57. In order to evaluate the gradients arising from the
light–molecule interaction contribution to the energy, we rely on the scheme
proposed for spin orbit coupled systems, presented in ref. 58 (see Supplementary
Methods for the flowchart).

Cavity losses. The cavity losses are included through a Monte Carlo scheme
applied, a posteriori, on the swarm of trajectories evaluated without losses. The
disappearance of the photon from the cavity is included as a stochastic event whose
realization is evaluated at each time step. Each of the 300 original trajectories are
replicated five times, and the resulting set of 1500 trajectories is rerun. The
probability of photon loss pcav(t) at a given time (t) is evaluated as:

pcav ¼
1
τc

Δt CΓ
S0 ;1

tð Þ
��� ���2¼ 1

τc
ΔtPΓ

S0 ;1
; ð4Þ

where Γ is the current polaritonic state for the current trajectory, τc is the
photon lifetime in the cavity, and Δt is the timestep of the dynamics. The
population PΓ

S0 ;1
of the S0; 1j i uncoupled state in the current polaritonic state Γ is

defined as the square modulus of CΓ
S0 ;1

, which is one of the expansion coefficients of
the current state Γ on the uncoupled basis. In each step, this probability is evaluated
and a uniform random number in the interval [0, 1] is generated. If such a number
is lower than the decay probability, the total wavefunction for the trajectory is
collapsed on the S0; 0j i state, and the trajectory is stopped. Compared to the direct
inclusion of the photon decay in the dynamics, this procedure is neglecting the
(very unlikely) event that once in the S0; 1j i state, the system fluctuates back into
the higher energy S1; 0j i state (or rather the corresponding polaritonic state).

Code availability. The calculations were based on a locally modified version of
MOPAC2002, which is available from G.G. and M.P. upon reasonable request.

Data availability
The data that support the findings of this study are available from the open Zenodo
repository https://doi.org/10.5281/zenodo.1423796. Additional data are available
from the corresponding authors upon reasonable request.
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Supplementary Movies

The Supplementary Movie 1 and 2 the non-adiabatic dynamics simulations for the azobenezene

photoisomerization dynamics in the strong coupling regime. The simulations are realized

under the two different conditions described in the main text, namely Eph = 1.3 eV with

g = 0.010 au and Eph = 2.2 eV with g = 0.010 au. On the CNNC coordinate, the basin on

the right represents the trans region, while the basin on the left is the cis region. The states

from upper left to lower right are ordered energetically from the highest to the lowest. See

the main text for further info. The Supplementary Movie 3 shows the non-adiabatic dynam-

ics for the bare molecule in weak coupling. For completeness and to ease the interpretation

of the results, the Supplemental Movies are included via a QRcode in this section.

Supplementary Movie 1 Supplementary Movie 2 Supplementary Movie 3

Supplementary Movies
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Transition dipole moment and polaritonic energy splitting depen-

dence on nuclear coordinates

As mentioned in the main text, the interaction between light and molecule strictly depends

on the transition dipole moment component along the polarization of the electromagnetic

mode, for each nuclear coordinate. Therefore, the polaritonic energy splitting dependence on

the nuclear coordinates is embodied into the dependence on the transition dipole moment:

Ĥint(Q) = gµ̂S0,S1(Q) · λ̂
(
b̂† + b̂

)
. (1)

The transition dipole components between the ground and first excited state for the
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isolated azobenzene molecule are shown in Figure S1. It is evident that the range of variation

of the transition dipole moment on the geometry can cover several Debyes, depending on

the alignment of the molecule. In this work, we take the field as polarized along z, i.e. the

axis perpendicular to the molecular plane: as a consequence, along the avoided crossing line,

the transition dipole z-component varies from zero to few Debyes. The splitting magnitude

and profile also depends strictly on the field orientation with respect to the molecule. Such

conditions gives origin to splittings ranging from zero to about 100 meV for a coupling

constant g of 0.010 au.

a) b)

c) d)

x

yz

Figure S1: Panel a),b),c) Transition dipole moments components along the x, y and z
direction respectively, as a function of the CNNC and NNC coordinates. The orientation of
the trans azobenzene with respect to the x, y and z axes is shown in Panel d)

In Figure S2 two strong coupling avoided crossing profiles with g of 0.010 au, the field

polarized along the z axis and two different photon energies are compared. In the plot, such

splitting is defined as the contribution to the energy splitting between the upper and lower

polariton due to the strong-coupling matrix element. The profile presented in the Panel a)

corresponds to the case where the |S0, 1〉 energy is set to Eph 1.3 eV, while the Panel b) is

the Eph 2.2 eV case. The splitting is evaluated analytically for a two level system composed
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of the states |S0, 1〉 and |S1, 0〉, taking into account the dependence of the dipoles on the

nuclear coordinates:

∆Esc
+,− = − |HS1,0 −HS0,1|+

√
|HS0,1 −HS1,0|2 + 4g2µ2

z. (2)

As highlited in the main text, the position of the contribution of the interaction to the

polaritonic splitting can be tuned by changing the photon frequencies Eph (1.3 eV and 2.2

eV respectively). For both the analyzed cases the splitting goes to zero when approaching

the CNNC value of 180◦, signature of an intersection line between the uncoupled states with

a zero interaction element. The magnitude of such contribution, instead, shows dramatic

and non trivial dependence on the nuclear coordinates in both cases. As the azobenzene

molecule moves out of the plane through torsion of the CNNC dihedral angle, the splitting

value increases drastically, carrying a non-trivial dependence on the nuclear coordinates.

a) b)Eph = 1.3 eV, g = 0.010 au, λz Eph = 2.2 eV, g = 0.010 au, λz 

Figure S2: Panel a) Splitting profiles for the Eph 1.3 eV Panel b) and 2.2 eV case.

As shown in Figure S2 the Rabi splitting approaches the zero as the CNNC angle moves

towards 180 (planar molecule). The zero transition dipole moment perpendicular to the

molecule together with the field polarization along the same component (used in the current

work) suggests the presence of a light-induced conical intersection. In Figure S3 the polari-

tonic conical intersections for the 1.3 eV and the 2.2 eV cases are shown. As anticipated in

the main text, the position of the polaritonic conical intersection can be tuned by changing
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the photon frequency. For the 1.3 eV case, the intersection is located at 180 along the CNNC

coordinate and 155.33 along the NNC (Figure S3a,b); for the 2.2 eV case, the intersection

is located at 180 along the CNNC coordinate and 135 along NNC (Figure S3c,d).

a)

b)

c)

d)

1.3 eV Polaritonic CoIn 2.2 eV Polaritonic CoIn

|�i

|+i

|�i

|+i

Figure S3: Polaritonic conical intersection and section of the polaritonic potential energy
surfaces for Panels a),b) the 1.3 eV case Panel c,d) and 2.2 eV case.

Together with the different position of the polaritonic conical intersection, the different

crossing geometry entails a substantially different shape of the polaritonic potential energy

surfaces in the surroundings of the crossing seam. The effects of such difference in the two

studied cases are discussed in the main text and in the next section (Figure S5a,b).

Strong coupling non-adiabatic dynamics

In this section we overview the conditions and the supplementary characterization for the

two performed dynamics simulations. The sampling was performed by running 10 ps of
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equilibration dynamics on the ground state of azobenzene, absent field and with a single

trajectory. The initial velocities for such trajectory are distributed according to a Maxwell-

Boltzmann distribution at room temperature, and the sampling dynamics is performed on the

ground state with a Bussi-Parrinello stochastic thermostat, with a time constant τ of 10 fs.

We sample 300 sets of positions and velocities from the equilibration dynamics. We retain the

same sampling conditions for all the following dynamics in order to highlight the differences in

the mechanism driven by different coupling conditions. In this way, we are able to ascribe the

differences in the evolution of the wavepackets to the difference in the polaritonic potential

energy surfaces. For each sampled trajectory, we compute the polaritonic states and we excite

it through a Franck-Condon excitation to the upper polaritonic state. Each trajectory runs

and independent dynamics for 2 ps, with a time step of 0.1 fs. We refer to Figure 4 of the

main text for the discussion about the mechanism change induced by the strong coupling

regime. In Figures SS4a and S4b we propose a scheme for the splitting of the wavepacket

along the oscillation coordinates (Figure 4a and 4d of the main text) for the Eph 1.3 eV and

2.2 eV respectively.

1

2

3

3
4

a) b)Eph = 1.3 eV, g = 0.010 au, λz Eph = 2.2 eV, g = 0.010 au, λz 

1

2

3

3

I II III IV II III IVI II III IV

Figure S4: Scheme of the different wavepacket splitting driven by the strong coupling avoided
crossing shape in the Eph 1.3 eV Panel a) and 2.2 eV Panel b), respectively.
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The complete movies of the dynamics are presented as standalone files of the supple-

mentary material. Interpreting together the hereby scheme and the proposed movies, it

becomes evident how the different shaping of the avoided crossing due to different coupling

conditions impacts the dynamics. In the characterization of the dynamics, we also analyzed

the average oscillation of the CNNC and NNC angles, together with the oscillation of the

energy difference between the polaritonic states (Figure S5 and S6). The oscillation of the

angles (Figure S5) in the first 500 fs of the dynamics allowed us to extract the range of

the average oscillation coordinate for the wavepacket in the two cases. The oscillation of

energy in Figure S6 is a signature of the hopping between polaritonic states. In particular,

the first pronounced peak implies that all the trajectories move toward the minimum of

the upper polariton before splitting. As the trajectories split close to the strong-coupling

avoided crossing, the oscillation in the energy difference damps progressively, following the

oscillation trend of populations presented in Figure 4c and 4f (see main text).

a) b)Eph = 1.3 eV, g = 0.010 au, λz Eph = 2.2 eV, g = 0.010 au, λz 

Figure S5: Oscillation of the CNNC and NNC coordinates for the Eph 1.3 eV Panel a) and
2.2 eV Panel b) case, respectively.

In Figure S7 we report the quantum yields dependence on the coupling constant g and

the photon frequency. Such non-monotonic dependence can be approximately split in three
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a) b)Eph = 1.3 eV, g = 0.010 au, λz Eph = 2.2 eV, g = 0.010 au, λz 

Figure S6: Oscillation of the energy difference between the |+〉 and |−〉 states for the Eph

1.3 eV Panel a) and 2.2 eV Panel b) case, respectively

domains: low frequency (less than 0.8 eV), middle frequency (0.8-2.0 eV) and high frequency

(higher than 2.0 eV). In the middle frequency domain the yields are very low, i.e., the

photoisomerization is quenched. The origin of this behavior can be traced to the trapping

in the lower polariton state, as discussed above. Remarkably, for g=0.005 au in the high

frequency domain, we observe an increase of the yield, although very limited (but with

statistical significance, the error being smaller than 1%). The reason for such behavior is

that the PPES are modified in such a way that the system approaches the electronic conical

intersection with larger velocities. As a consequence, the trajectories perform hops with a

slightly higher probability towards the cis branch.

Finally, in the lower frequency domain we observe quantum yields that are recovering

towards the weak-coupling value. In this case, the polaritonic avoided crossing is close to

the electronic conical intersection. Accordingly, the hopping of the trajectories to the lower

polaritonic state and the reaching of the conical intersection become concurrent, leading

back to a mechanism similar to that in the weak coupling regime and thus to similar yields.

However, such low photon frequency becomes resonant with vibrational transitions, calling
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Figure S7: Dependence of the quantum yields on the photon energies and coupling constants.
The quenching of the reaction is dominated by the trapping mechanism for energies between
0.8 and 2.0 eV. For different energies, the quenching-by-trapping mechanism is suppressed: at
low energies, for concomitance of the strong coupling avoided crossing and electronic conical
intersection; at high energies, the trapping minimum becomes less deep and the wavepacket
proceeds towards the conical intersection.

for a quantum mechanical description of the nuclear motion.

Cavity Losses

The results for the inclusion of the cavity losses is already discussed in the main text for the

1.3 eV case. Here we present the effect of explicitely including the cavity lifetime for the 2.2

eV case (Figure ). As for the 1.3 eV case, we take into account 4 cavity lifetimes: 10 fs, 50

fs, 100 fs (Figures a,b,c respectively) and 150 fs.

As discussed in the main text, the inclusion of the cavity lifetime impacts the decay

mechanism of the system: the driving process for the de-excitation of a polaritonic system

becomes the loss of coherence between the polaritonic states (Figure d). As the 2.2 eV case

is characterized by a quick population drop on the lower polariton, the overall relaxation

mechanism is ruled by the lower polaritonic decay. Indeed, in the 2.2 eV case the whole
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I

a) b)

c) d)

⌧c = 100 fs ⌧c = 50 fs

⌧c = 10 fs

Figure S8: 2.2 eV including cavity lifetimes of 100 fs Panel a), 50 fs Panel b), 10 fs Panel
c). Ground state population retrieval for the 2.2 eV dynamics Panel d).

dynamics occurs in a region where the |S1, 0〉 and |S0, 1〉 states are more mixed than in the

1.3 eV case: while in the 1.3 dynamics the evolution of the uncoupled and polaritonic states

differs only at the oscillations peaks, where the wavepacket goes through the narrow crossing

seam, in the 2.2 eV case (when no losses are considered) the populations of coupled and un-

coupled states follow opposite trends. As shown in Figure 4f of the main text, when the lower

polariton is completely populated (100 to 200 fs), the uncoupled populations are both about

0.5. The cavity loss, therefore, affects greatly the decay of both polaritonic states (Figure
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c), in contrast with the 1.3 eV case, where the most affected state is the lower polariton. In

particular, as the cavity loss becomes quicker, the polaritons tend to evolve as the uncoupled

states earlier (Figures a,b,c) due to the loss of mixing. This behaviour becomes evident

in Figure d, where the major differences between the ground state population retrieval are

observed between the τc =∞ case and the τc = 150 fs case. As addressed in the main text,

we can conclude that if the wavepacket evolves in a region where the polaritonic states are

mixed in nature, the decoherence between light and matter becomes the main decay channel

for such system.

Gauge choice and extendend Jaynes-Cummings model

We hereby present the plots of polaritonic states obtained numerically starting from the

bare electronic states as reported in the electronic structure paragraph of the Methods sec-

tion. In this numerical polaritonic state calculation, we compared compare the dipolar and

extended Jaynes-Cummings Hamiltonians. The dipolar Hamiltonian is obtained through

the Göppert-Meyer gauge transformation starting from a minimal coupling Hamiltonian in

the Coulomb gauge (C. Cohen-Tannoudj, Photons and atoms, Wiley Interscience, 1997).

Both the hamiltonians are composed by the molecular and photonic contributions and the

light-matter interaction term:

Ĥ = Ĥmol + Ĥph + Ĥint. (3)

The light-matter interaction term in the dipolar formulation is:

Ĥdip = iµ̂ · λ̂√ωphA0

(
b̂− b̂†

)
+ 2 (µ · λ)2A2

0, (4)

where A0 is the vector potential intensity, λ̂ is the polarization of the field, ωph is the

frequency of the resonant mode, b̂ and b̂† are the bosonic annihilation and creation operators

respecitvely and µ̂ is the dipolar operator. We distinguish two interaction orders in the
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vector potential. The first order terms embody the interaction between states differing for

one in the photon number:

iA0
√
ωph〈n, p|µ̂

(
b̂− b̂†

)
|n′, p± 1〉 = ±iA0

√
ωph

√
p+ 1µn,n′ (5)

where |n, p〉 is the basis of the uncoupled states (see Methods section of the main text).

The first order terms consist of two kind of interactions: one mixing states with the same

electronic index,

iA0
√
ωph〈n, p|µ̂

(
b̂− b̂†

)
|n, p± 1〉 = ±iA0

√
ωph

√
p+ 1µn,n, (6)

and the other depening on the transition dipole moments, which is characteristic of the

strong coupling regime,

iA0
√
ωph〈n, p|µ̂

(
b̂− b̂†

)
|n′, p± 1〉 = ±iA0

√
ωph

√
p+ 1µn′,n, (7)

with n 6= n′. To compute the second order terms, we exploit a resolution of identity:

A2
0〈n, p|µ̂2|n′, p′〉 = A2

0

Nst∑

i

〈n, p|µ̂|i, p′〉〈i, p|µ̂|n′, p′〉δp,p′ . (8)

Due to the absence of any bosonic operator in the second order interaction terms, these kind

of terms act only on the electronic part. Therefore, a shift of the diagonal elements of the

Hamiltonian is provided by the terms:

〈n, p|µ̂2|n, p〉 = A2
0

Nst∑

i=1

〈n, p|µ̂|i, p〉〈i, p|µ̂|n, p〉, (9)

together with a correction to the isolated molecule interaction between electronic states,

〈n, p|µ̂2|n′, p〉 = A2
0

Nst∑

i=1

〈n, p|µ̂|i, p〉〈i, p|µ̂|n′, p〉, (10)
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with n 6= n′. The extended Jaynes-Cummings model disregards the permanent dipole con-

tributions and the second order terms and it can be recast in a dipolar-like shape:

Ĥ = Ĥmol + Ĥph + µ̂tr · λ̂
√
ωphA0

(
b̂+ b̂†

)
(11)

where µ̂tr collects the transition dipole moments between the electronic states and the ratio

g/ωph is A0/
√
ωph. The problem of the gauge choice in strongly coupled light-matter systems

has been presented by Flick et al. (J. Flick, M. Ruggenthaler, H. Appel, A. Rubio, Proc.

Natl. Acad. Sci. USA, 114(12), 3026, 2017).

In particular, they emphasized that for high g/ωph ratios (greater than 0.4 au) the full

dipolar light-matter Hamiltonian must be considered. Such g/ωph ratio is peculiar of vibro-

polaritonic (photon resonant with vibrational transitions) coupled systems, which are char-

acterized by low frequencies together with high fields. Under such conditions, the second

order terms are non negligible as they impact deeply the bond lengths. Nevertheless, within

the conditions where the electronic transitions are resonant with a cavity mode, the involved

g/ωph ratios set the system in a regime where higher order terms can be disregarded (ranging

from 0.20 au to 0.12 au for the Eph 1.3 eV and 2.2 eV respectively). For the sake of com-

pleteness, we numerically verified the stability of our approximation for the conditions used

in this work. We computed the states involved in the non-adiabatic dynamics by taking into

account two electronic states (|n〉=|S0〉,|S1〉) and two occupation numbers for the photon

(|p〉=|0〉,|1〉). The results for the 1.3 eV and 2.2 eV cases are reported in Figure S9, where it

is shown that the additional terms appearing in the dipolar formulation can be disregarded

within our system conditions.

Even though negligible, the minor differences between the polaritonic states within the

two models shown in Figure S9 (full lines) are amenable to the truncation of the occupation

number space. When considering the truncated space, we disregard the interaction terms
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a) b)Eph = 1.3 eV, g = 0.010 au, λz Eph = 2.2 eV, g = 0.010 au, λz 

Figure S9: Numerical comparison of the light-matter interaction Hamiltonians for the Eph

1.3 eV Panel a) and 2.2 eV Panel b) case respectively in the truncated space with |0〉 and
|1〉 photon occupation state numbers. The coupling constant is g 0.010 au and the field is
oriented along the z axis of the molecule.

a) b)Eph = 1.3 eV, g = 0.010 au, λz Eph = 2.2 eV, g = 0.010 au, λz 

Figure S10: Numerical comparison of the light-matter interaction Hamiltonians for the Eph

1.3 eV Panel a) and 2.2 eV Panel b) case respectively. In this calculation, 6 states are
included: the space is spanned by the direct product of the electronic states times the
occupation numbers for the photon.

of equation 6. In particular, the state |S0, 1〉 (and |S1, 1〉, respectively) do not interact with

|S0, 2〉 (|S1, 2〉) in the truncated space, due to the absence of the |2〉 occupation number.
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In order to reach the agreement between the two models, we include in the space one more

occupation state number (|2〉) for each electronic state. As shown in Figure S10, the two

models converge to the same results despite the difference in the uncoupled states (dotted

line). Such difference in the uncoupled states is due to the diagonal shift coming from the

second order term of the dipolar Hamiltonian (eq. 9).

On the basis of the negligible differences outlined with the numerical results presented

in this section, we decided to rely on the extended Jaynes-Cummings Hamiltonian for our

specific conditions. Nevertheless, it is to emphasize once more that the range of stability

of this approximation must be carefully checked when treating strongly coupled systems as

addressed by Flick et. al(J. Flick, M. Ruggenthaler, H. Appel, A. Rubio, Proc. Natl. Acad.

Sci. USA, 114(12), 3026, 2017).
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Algorithm

The following notation is used in the flowchart:

1. |K〉 and UK are electronic states and energies (approximate eigenfunction of the elec-

tronic Hamiltonian for the free molecule). In the present case we only considered

K = S0, S1. The polaritonic “diabatic” states are obtained as products |K,n〉 (n being

the photon occupation number), as mentioned in the main text.

2. µKL = 〈K |µ|L〉 are the matrix elements of the molecular dipole.

3. |A〉 and EA are the polaritonic adiabatic states (linear combinations of |K,n〉) and

energies.

4. The polaritonic wavefunction is Ψ(t) =
∑

ACA(t)|A〉

5. The state where the trajectory is running on is the “current” adiabatic state (labelled

Γ).

6. TΓ→A is the surface hopping transition probability.
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Figure S11: Flow chart for the algorithm applied to propagate each trajectory. For each
sampled trajectory (see Main Text) a Franck-Condon excitation is performed to the upper
polariton. At each time step the electronic and polaritonic energies and coeffiecients are
computed. The gradient of the polaritonic energy is calculated to propagate the classical
nuclear tajectories. The overlap between the polaritonic wavefunction at the begin and the
end of the timestep is computed to evaluate the transition probability, accordingly to the local
diabatization scheme on which we rely on. The decoherence correction is then applied and,
if a hopping has occurred, the nuclear kinetic energy of the trajectory is readjusted to ensure
total energy conservation. The propagation is then resumed. The statistical treatment of all
the trajectories retrieves the branching of the wavepacket on the potential energy surfaces.

66



Chapter 3

This chapter is devoted to address the role of chemical and environmental complexity in

polaritonic photochemistry. The dye molecule exploited in the present work is still azoben-

zene. With respect to the results presented in the previous Chapter, here I push the system

description to a higher level of realism. The environment is simulated by mimicking the

setup used to achieve single-molcule strong coupling at room temperature by Baumberg

and collaborators12 for the methylene blue molecule. In the present work, the azobenzene

molecule is encapsulated by a cucurbit-7-uril molecule. The azobenzene is described at the

same semiclassical level presented in previous Chapters, while the cucurbit-7-uril cage is

treated at MM level. The cavity is realized by approximating the Nanoparticle on Mirror

(NPoM, the experimental setup adopted by J. J. Baumberg’s group) setup with layers of

frozen MM gold atoms. The cavity is then filled with water molecules treated at MM level.

The cavity mode is parametrized as described in Chapter 1.

In this work, I also simulate the direct and backward photoisomerization reaction of

azobenzene taking into account a realistic excitation process. Here, I discuss how suitable

cavity conditions can be found to enhance the photoisomerization quantum yield of the

unfavoured trans→ cis process, explaining the differences with the effect of strong coupling

on the backward cis → trans reaction. The characterization of the mechanism leading to

the enhanced quantum yield completely exploits post-processing tools I realized during the

PhD activity to monitor the evolution of the wavepacket on the polaritonic potential energy

surfaces. Through this means, I show how the strong coupling can quench non-reactive

relaxation pathways via kinetic energy redistribution to other degrees of freedom. I comment

on how such behaviour can only be observed when including all the molecular degrees of

freedom. I realized supplementary movies in the same fashion of the ones presented in the

previous chapter, and are hereby accessible via QRcode scan in the Supplemental Movies

section. All the presented results have been originally produced during the PhD activity and
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are reported in the followings as published article and supporting information. My personal

contribution to this work covers all the implementations, calculations, partial devising of

the analysis and the full development of the analysis tools, together with the drafting of the

original paper. The article has been published in early 2020 on Chem, and was highlighted

in a Preview.118
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The traditional ways to control photochemical reactions range from chemical

modifications to tuning the surrounding environment. Strong coupling between a

molecule and light, achievable in resonant plasmonic cavities, provides an

alternative toolbox to manipulate photochemistry. Here, by means of accurate

quantum chemistry simulations, we show that it is possible to enhance the

photoisomerization yield for azobenzene in a realistic setup with a mechanism that

involves full complexity of the atomistic dynamics of the system.
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Article

Strong Coupling with Light
Enhances the Photoisomerization
Quantum Yield of Azobenzene
Jacopo Fregoni,1,2 Giovanni Granucci,3,* Maurizio Persico,3 and Stefano Corni2,4,5,*

SUMMARY

The strong coupling between molecules and photons in resonant cavities offers

a new toolbox to manipulate photochemical reactions. Although the quenching

of photochemical reactions in the strong coupling regimen has been demon-

strated before, their enhancement has proven to be more elusive. Here, by

means of a state-of-the-art approach, we show how the trans/cis photoisome-

rization quantum yield of azobenzene embedded in a realistic environment

can be higher in polaritonic conditions than in the cavity-free case. We charac-

terize the mechanism leading to such enhancement and discuss the conditions

to push the photostationary state toward the unfavored reaction product.

Our results provide a signature that the control of photochemical reactions

through strong coupling can be extended from selective quenching to improve-

ment of the quantum yields.

INTRODUCTION

The interaction between light and matter at the nanoscale is at the basis of a mani-

fold of experimental applications in plasmonics,1–4 single-molecule spectros-

copies,5,6 nanoprinting,7 and nanocavity optics.8–10 When light is sufficiently

confined in micrometric or nanometric systems in the presence of one or more quan-

tum emitters, its exchange of energy with the emitters becomes coherent and the

system enters the strong coupling regimen.11,12 Accordingly, the degrees of

freedom of light andmatter mix and the states of the system are described as hybrids

between the two: the polaritons.13,14 The first experimental realizations to pioneer

the idea of controlling the chemical reactions through strong coupling of molecules

with light made use of metallic cavities.15,16 Later on, the achievement of strong

coupling with plasmonic nanocavities at the single-molecule level at room temper-

ature has been obtained with a nanoparticle on a mirror (NPoM) setup.17,18 Such a

setup has been recently improved with DNA origami for higher reproducibility.19,20

The manifold of possibilities opened up by such experiments drove efforts to

explore microcavity-based setups at low temperature, achieving longer lifetimes

for the whole system.21 Theoretical modeling followed immediately to survey the

plethora of new possibilities offered by strong light-molecule coupling.22,23 The

high flexibility of the polaritonic properties has been assessed for both real-

ized20,24,25 and potential applications13,26 giving rise to a new branch of chemistry27:

the so-called polaritonic chemistry.28

When a resonant mode is coupled to electronic transitions, the molecules exhibit

enhanced spontaneous emission at both the collective and single-molecule

levels.29–32 When the coupling is sufficiently strong, coherent energy exchange

The Bigger Picture

Strong coupling between

molecules and light can be

achieved in resonant cavities,

giving rise to hybrid light-

molecule states (polaritons).

Chemistry in such states is

different than the original

photochemistry of the molecule.

As such, polaritonic chemistry is

emerging as a non-conventional

approach to manipulate

photochemical reactions, toward,

for example, increasing reaction

specificity or enhancing yields.

Using accurate quantum

chemistry multiscale simulations,

we find that strong coupling can

lead to enhanced

photoisomerization yields for

azobenzene in a realistic

nanoplasmonic setup. Strong

coupling acts on the motion of

azobenzene atoms in the multi-

dimensional space of internal

coordinates, steering them away

from unreactive pathways

accessible instead in the

traditional regimen. Our results

show that the chemical complexity

of molecules, rather than being a

foe, can be turned into a friend in

the strong coupling regimen,

endowing polaritonic chemistry of

additional potentialities.

250 Chem 6, 250–265, January 9, 2020 ª 2019 Elsevier Inc.
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occurs between light and photoactive molecules, potentially translating into

modified photochemical properties.15 The modifications to the potential energy

surfaces (PESs) (through all the current work) driving different photophysical and

photochemical behaviors are described by a basis of direct products of electronic

and photonic states. Under this assumption, the states of the system are best

described as hybrids between electronic and photonic.12,14,33

The possibility to shape the electronic states with quantum light inspired various

groups to explore the role of strong light-molecule coupling in controlling

photochemical processes. For collective effects, the focus has been on polariton

formation in full quantum diatomic molecules34 and several model dye molecules

in a realistic environment.35 At the single-molecule level, the non-adiabatic dy-

namics schemes developed allowed for the prediction of features arising on the

PESs such as the creation of avoided crossings and light-induced conical intersec-

tions (CoIns).13,36,37 Such features modify the shape of PESs, translating into a

potentially different photochemical reactivity.27,38–40 The possibility to enhance

the yield of photochemical processes has been recently proven for energy trans-

fer,38,41 singlet fission,42 and catalyzed reactions through vibrational strong

coupling, obtained by exploiting remote catalysts.43 For strong coupling with

resonant optical frequencies, enhancement has only been suggested by calcula-

tions on model PESs28,44 and neglecting the cavity losses and realistic non-radiative

events.

As such events play a central role in the yields of photochemical reactions, the

question remains if strong coupling can lead to a real enhancement of photochem-

ical quantum yields in real molecules. Even more practically, the interest resides in

the photostationary regimen and in determining whether the related concentration

of products is enriched with respect to the standard reaction conditions. Here, by

means of the state-of-the-art approach we devised,45 we show that it is possible

to identify conditions that lead to improved quantum yields and product-enriched

photostationary states. By investigating azobenzene trans/cis photoisomerization

in strong coupling, we compare to the zero-coupling case and highlight the

differences between the two processes. Such a comparison allows us to propose

an interpretation of the mechanism leading to the increased quantum yield for the

trans/cis p� p� photoisomerization.

The model system we simulate is depicted in Figure 1 and mimics the experimental

setup used by Baumberg and co-workers17 for achieving strong coupling with a sin-

gle methylene blue chromophore. The azobenzene molecules are hosted in a one-

to-one arrangement by cucurbit-7-uril ring molecules, which are in turn adsorbed on

a planar gold surface. In this arrangement, the azobenzene long axis is approxi-

mately perpendicular to the surface. This is relevant because the field polarization

and the transition dipole for the S0-S1 and the S0-S2 transitions are all aligned in

the same direction.46 The cavity is completed by gold nanoparticles sitting on top

of the cucurbituril ring and is much larger than the latter, so we simulate them as a

second planar surface. Explicit water molecules fill the space between the gold

layers (see Note S1).

RESULTS

Polaritons in Azobenzene

Before investigating the photochemical properties of molecules under strong

coupling, we show how the coupling conditions affect the energy landscape in the
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case of multiple electronic states. In this section, we aim only to provide an interpre-

tative framework for the results of the next section, and hence the results presented

in this section are computed without environment.

In Figure 2, we present two relevant cuts of the polaritonic PESs for the isolated

azobenzene molecule, one along the CNNC dihedral and the other along the sym-

metric NNC bending (symNNC). In the former, all other degrees of freedom and

also symNNC were optimized for the ground state. In the latter, the analogous con-

strained optimization was done for each symNNC value, except that CNNC was

fixed at 165�, in order to show a clear cut of the polaritonic avoided crossing modi-

fying the dynamics (notice that at the trans planar geometry the S0,S1 transition

dipole moment vanishes). We shall exploit the PESs presented in this section to

act as a qualitative and conceptual aid. By doing so, we introduce the framework

to discuss the mechanism leading to the enhanced yield of the photoisomerization

reaction under realistic environment.

Even in absence of environment, when a single molecule is strongly coupled with a

cavity, polaritons drastically affect its PES.12,13,45 The photochemical properties are,

in turn, deeply affected by the shape of the polaritonic PESs. Aiming to thoroughly

describe the molecule in the strong coupling regimen, we build the polaritonic

Hamiltonian in the framework of a semiempirical wavefunction method48:

bHtot = bHmol + bHcav + bHsc

int : (Equation 1)

Here, bHmol is the semiempirical electronic Hamiltonian, bHcav is the quantized

electromagnetic field Hamiltonian for an effective resonant mode set at optical

Figure 1. Simulated System

Snapshots of the simulated system mimicking a plasmonic nanocavity as the one reported by Baumberg and co-workers.17 The molecule, here

azobenzene in trans (A) or cis (B) configurations, is computed at QM level (see text and Experimental Procedures) and interacts with the MM

environment by electrostatic embedding plus Lennard-Jones potentials. The environment is composed by cucurbit-7-uril (gray organic molecule cage)

and gold layers (four layers on each side, frozen MM degrees of freedom), including also explicit water molecules. The cavity mode is polarized along lz ,

and the sampling is run at room temperature.47

252 Chem 6, 250–265, January 9, 2020
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frequencies, and bHsc

int is the quantum interaction between light and molecule in a

dipolar fashion:

bHsc

int = E1ph

X
nsn0

��n�l ,mðRÞn;n0 Cn0��ðbby
+ bbÞ: (Equation 2)

E1ph represents the magnitude of the single-photon electric field of the confined

light mode, mn;n0 is the transition dipole moment between the electronic states, l

is the field polarization unit vector, and bby
and bb are the bosonic creation and anni-

hilation operators. The nuclear motion is treated classically, using the surface-hop-

ping approach45 (see Experimental Procedures). By relying on a semiempirical

wavefunction method, we provide a detailed description of the electronic structure

at low computational cost. Such electronic structure method exploits a solid param-

eterization49 of the semiempirical electronic Hamiltonian and has been previously

validated against experimental data in a number of applications.50–53

To gain more insight on the features of the polaritonic PESs, we refer to the basis of

uncoupled products of light and matter wavefunctions, given by the diagonalization

A

B C

Figure 2. Polaritonic Potential Energy Curves of Azobenzene with Photon of 2.8 eV and Single-

Photon Electric Field Strength E1ph of 0.002 a.u

The polaritonic PESs are computed at the (A) CNNC coordinate while relaxing all the other degrees

of freedom for the ground state and (B) symNNC coordinate with CNNC 165� and constrained

optimization as before. Each polaritonic branch is colored depending on the uncoupled state that

majorly composes the polariton at each geometry. (C) Detail of the strong coupling avoided

crossing along the symNNC coordinate and between the jS0; 1i and jS1; 0i states where this feature

gives rise to a different mechanism for the photoisomerization.
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of bHmol + bHcav , labeled as
��n;pi. Here, n (e.g., S0;S1) is the electronic state index and p

is the photon occupation number, either 0 or 1 in the present work. We consider a

cavity photon of frequency 2.8 eV. Therefore, states with pR2 lay at least 5.6 eV

higher in energy than the ground state, i.e., more than 1 eV above our excitation

window, which reaches up to 4.5 eV. Because of such a high energy difference,

they cannot be populated during the dynamics, and therefore they are disregarded

in our simulations of the photoisomerization dynamics (see Note S2). To clearly

distinguish the uncoupled states in strong coupling and the electronic states in

the zero-coupling frameworks, we refer to the set of uncoupled states f��n;pig with

the ket notation, e.g., jS0;1i or jS1;0i, whereas the zero-coupling electronic states

fng are named by the state label only, e.g., S0, S1. The polaritonic eigenstates ofbHtot , labeled as jRki, are expressed in the
��n;pi basis:�����Rk

+
=
X
n;p

Dk
n;p

�����n;p
+
: (Equation 3)

The coefficients Dk
n;p of the uncoupled states in the wavefunction provide a simple

interpretation for the system under strong coupling. The states with p = 0 represent

no free photon in the cavity, the states with p = 1 represent one free photon in the

cavity, and so on. In turn, the time-dependent polaritonic wavefunction can be ex-

pressed in either the polaritonic or the uncoupled basis set:�����JðtÞ
+

=
X
k

CkðtÞ
�����Rk

+
=
X
k

CkðtÞ
X
n;p

Dk
n;p

�����n;p
+
: (Equation 4)

By the inclusion of the light-molecule interaction, a polaritonic avoided crossing or

CoIn is originated where the uncoupled states would cross. In Figure 2, we show such

crossings along two reactive coordinates: the torsion of the CNNC dihedral and the

symNNC. Here, the states labeled as p>1 are included in the PESs’ calculations, yet

they are not included in the dynamics presented in the next section.

The Rabi splitting between the polaritonic states is proportional to the transition

dipole moment between the electronic states at the correspondent crossing geom-

etry for the uncoupled states through Equation 2. The magnitude of such splitting

represents the coherent energy exchange rate between light and molecule in a

confined system. In Figure 2C, we focus on the polaritonic avoided crossings laying

in the trans region (CNNC 165�). We anticipate that such crossings deeply impact

the photoisomerization mechanism of azobenzene, leading to enhanced trans/cis

photoisomerization quantum yield.

Photochemistry on Polaritonic States: Tuning the Photostationary Equilibrium

In photoreversible processes, the ratio between the quantum yields of the direct and

backward process determines the product yieldQ at the photostationary state,54 as

shown in Equation 5

Q =
½c�N

½c�N + ½t�N
=

Jt/c

Jc/t + Jt/c
=

εtFt/c

εcFc/t + εtFt/c
(Equation 5)

where t and c refer to the trans and cis isomers, respectively, J is the reaction rate, ε is

the molar extinction coefficient integrated over the excitation wavelength window,

and F is the quantum yield. The quantities ½c�N and ½t�N are the asymptotic concen-

trations of the cis and trans isomers, respectively, which in this framework corre-

spond to the cis and trans populations at the end of the dynamics. The ratio between

themolar extinction coefficients depends on the excitation wavelength, and we shall

assume εt=εc = 7:9 as determined by their integral average over the present

254 Chem 6, 250–265, January 9, 2020

74



excitation interval from the experimental data of azobenzene in methanol.54 Such

a ratio impacts the position of the photostationary state, allowing it to shift selec-

tively toward the cis and trans isomer depending on the irradiation wavelength.

Nevertheless, the tunability is limited by the quantum yields of the individual pro-

cesses, according to Equation 5. Aiming to manipulate the photostationary state

position in azobenzene photoisomerization, we focus on improving the quantum

yield of the unfavored process, namely the trans/cis photoisomerization.

To perform the polaritonic photoisomerization simulations, we exploit an on-the-fly

surface-hopping approach45,55–57 and take into account all the nuclear degrees of

freedom of azobenzene. Within this framework, the nuclear wavepacket moving

on the polaritonic PESs is mimicked by a swarm of independent classical nuclear tra-

jectories (see Experimental Procedures).

To build the polaritonic states, we sought a field frequency to maximize the quantum

yields for the p� p� trans/cis photoisomerization. We set the cavity resonant fre-

quency to 2.80 eV, which allows modification of the crucial region of the first excited

state at CNNC close to 180� (detailed in Figure 2C) and the surrounding geometries,

i.e., the region of the PESs where the geometry of the molecule starts to partially

twist but it is essentially trans. The coupling strength E1ph is 0.002 au, corresponding

to a splitting of �100 meV with a transition dipole of �1 a.u. for the present case,

consistent with the observed 80–100 meV in the experiment by Baumberg and

co-workers.17 We sample the ground state distribution at thermostated47 room

temperature. For each sampled configuration, we mimic the excitation by near-UV

light with a central wavelength of 313 nm (3.96 eV) and a full bandwidth of 1 eV.

The excitation window is chosen to include the absorption spectral features corre-

sponding to the first p/p� transitions of trans- and cis-azobenzene, though a nar-

rower excitation bandwidth centered at the same frequency yields the same results

(see Note S1 and Figure 3). Upon absorption, the trajectories are vertically excited

from the ground state to the polaritonic states. The excitation procedure is

described in the Experimental Procedures section.58 The polaritonic states initially

populated are jR3i, jR4i, and jR5i that correspond essentially to jS2;0i, jS3;0i, and
jS4;0i in the Franck-Condon region, respectively. Their populations at time t =

0 are 0.76, 0.21, and 0.03, respectively. In the zero-coupling case, the initial popu-

lations of the corresponding S2, S3 are 0.78 and 0.22, whereas S4 is empty.

The polaritonic non-adiabatic dynamics simulations results are reported in Figure 3

(see Videos S1 and S2 for the dynamics with strong and zero coupling along the reac-

tive coordinates). The capability of strong coupling to affect photochemistry is strik-

ingly evident in Figure 3A, where we compare the population of trans and cis isomers

for the trans/cis photoisomerization process obtained by zero and strong

coupling. Such populations are evaluated at each time step by counting the number

of trajectories with a CNNC dihedral greater (trans) and smaller (cis) than 90�. The
populations are then normalized to the total number of trajectories.

Remarkably, the cis formation is significantly more efficient for the strong coupling.

This is one of the main results of the present work, as the enhancement of a realistic

reaction via electronic strong coupling has not been reported so far. As a first step to

analyze the mechanism driving such an increased yield of product, in Figure 3B, we

plot the fraction of reactive trajectories (reaching CNNC<90�) for each starting state

separately. Each of such individual processes in strong coupling (orange lines) is

indeed more efficient than the corresponding one in zero coupling (purple lines).

The strong coupling processes are on average slower than the zero-coupling case,
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i.e., the torsion around the N=N double bond is delayed, together with the decay to

the ground state (Figures 4A and 4B). Although paradoxically contrasting with the

higher yields observed with respect to the zero-coupling case, the slower dynamics

offers a first hint to explain the change in themechanism brought about by the strong

coupling regimen, as detailed later in this work (see Video S3 for an example of the

dynamics along a reactive trajectory).

The factor capable of both slowing the kinetics and increasing the quantum yields

in polaritonic processes is the existence of the jS0;1i state and its coupling with

jS1;0i. Aiming to characterize the nature of the polaritonic states involved in the dy-

namics and to obtain a more meaningful comparison with the zero-coupling case, it

is convenient to investigate the processes on the uncoupled state basis. To this aim,

Figure 4A compares the uncoupled states’ populations (full lines) with those of the

corresponding states in the zero coupling simulation (dashed lines, circle markers).

Here, the population of the jS2;0i, jS3;0i, and jS4; 0imanifold is represented as Psum

to highlight the relevant processes. The first striking difference is that the S1 state in

the zero-coupling case is populated quicker than in the strong-coupling case. In

addition, a longer permanence of the trajectories on the jS1;0i state is observed

in strong coupling, mainly because part of the population oscillates between

jS1;0i and jS0;1i (see Table S1). Consequently, jS1;0i (strong coupling) can be

found still populated at times where S1 (zero coupling) is already decayed (see Fig-

ure 4A). The role of the jS0;1i state in delaying the depletion of jS1;0i is to act as a

supplementary reservoir for the jS1;0i population during the first 400 fs. In fact, non-

radiative electronic state decays from jS0; 1i are blocked given that the molecule is in

its ground state.

A B

Figure 3. Product-Enriched Trans/Cis Photoisomerization of Azobenzene under Strong Coupling

(A) Populations of azobenzene trans (light) and cis (dark) isomers in the zero-coupling (purple) and strong-coupling (orange) cases for the trans/cis p� p�

photoisomerization, computed with a photon energy Eph of 2.8 eV and a coupling strength E1ph equal to 0.002 au.

(B) Comparison between the cis formation for processes starting on different electronic or polaritonic states in zero coupling (purple-blue) and strong

coupling (orange-red). The individual processes are investigated by running �100 trajectories. For each pair of initial states in zero coupling and strong

coupling, the same sampling is used, i.e., jR3i with S2, jR4i with S3, andjR5i with S4.
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The shape of the jR1i and jR2i PESs (see Figure 2) in the transoid region explains why

the torsion is initially delayed in the strong-coupling case. Most of the hops that

populate these two states go from jR3i to jR2i (i.e., essentially jS2; 0i/jS1; 0i).
Subsequently, more transitions back and forth between jR1i and jR2i occur because
of the avoided crossing involving jS1; 0i and jS0;1i (see Table S1). The upper surface,

belonging to jR2i, is less favorable than that of jR1i to the torsional and the symNNC

motions (see Figure 2A), i.e., to the decrease of the CNNC dihedral and to the in-

crease of both NNC angles. By partially populating jR2i, the progress along the re-

action coordinate CNNC and the symNNC vibrational excitation are both hindered.

The association of slower torsional motion and slower jS1;0i decay with higher Ft/c

quantum yield, which characterizes the strong coupling with respect to the zero-

coupling case, is not so intuitive. Still, this effect is reminiscent of the same joint

trends observed in simulations of the trans/cis photoisomerization in solvents of

increasing viscosity, in agreement with experimental quantum yields and fluores-

cence lifetimes for the field-free case.50 A similar hindrance of the motion along

the reaction coordinate, caused by strong coupling, was highlighted by Galego

et al.40 by full quantum simulations but unavoidably led to suppression of the

photoisomerization because the one-dimensional model cannot account for the

competition between radiationless electronic transitions and geometry relaxation.

Using a different one-dimensional model, Herrera and Spano showed how strong

coupling can instead increase the electron transfer rate in disordered molecular

ensembles.38

The reason why a slower progress along the reaction coordinate leads to a higher

quantum yield for the realistic model we are using here can be found in the shape

of the S1, S0 crossing seam. Note that, after leaving the surroundings of the

CNNC reactive sc

CNNC reactive zc

CNNC non-reactive scCNNC non-reactive zc

NNC reactive sc NNC reactive zc

NNC non-reactive scNNC non-reactive zc

A B

Figure 4. Population and Geometrical Relaxation Dynamics Upon Photoisomerization

(A) Population evolution on the uncoupled states in strong coupling (full lines), directly compared with the zero-coupling population evolution involving

the same states (dashed lines with markers). The strong-coupling population evolution is slowed by the presence of jS0; 1i (blue full line), which is

transiently populated during the dynamics.

(B) CNNC and NNC angles averaged over the reactive and non-reactive trajectories in zero coupling (dashed lines) and strong coupling (full lines),

computed as a function of time. See Note S4 for the corresponding cis/trans plot.
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Franck-Condon region by twisting the N=N bond and/or increasing the symNNC

angles, jR1i becomes almost pure jS1;0i. In the new region, its energy gets closer

to that of jR0i: a crossing seam between the two PESs exists. Even more, the crossing

seam is practically unaltered with respect to the zero-coupling case (see Note S4 of

the present work and Figure 1 in Cusati et al.50). The energy minimum of such a seam

(optimized CoIn) is found at a twisted geometry (CNNC = 95�), the seam is also

accessible and coincides with the global minimum in S1, therefore, it is accessible

even in the absence of vibrational excitation. However, the crossing seam can also

be approached at larger CNNC values by opening the symNNC bond angles, as

indicated by our semiempirical PESs and confirmed by accurate ab initio calcula-

tions.59,60 At planar transoid geometries the seam is slightly higher in energy than

the Franck-Condon point and much higher than the S1 minimum, so a strong excita-

tion of the symNNCmode is needed to reach it. Recent work based on time-resolved

spectroscopy has demonstrated the importance of the symNNC vibration, espe-

cially in the case of the S0/S2 excitation.60

In zero coupling, the symNNC bending mode is excited once the S1 state is popu-

lated by internal conversion from S2, explainable by comparing the equilibrium

values of the NNC angles in S1 and in S0/S2 (132� versus 118� and 110� at planar

geometries). This excitation results in the opening of the symNNC angle and, in

turn, promotes the internal conversion of S1 to the ground state by making the

seam accessible at transoid regions, resulting in a rather low trans/cis photoisome-

rization quantum yield. On the contrary, in strong coupling, the hindering of the

twisting and bending motions discussed above decreases the extent of symNNC

excitation. In fact, with more time spent at transoid geometries, symNNC is also

quenched by vibrational energy transfer to other internal modes and the medium.

As such, the detrimental effect of the symNNC on the trans/cis photoisomerization

quantum yield is partially suppressed. The essential role played by (at least) one

additional vibrational mode other than the reaction coordinate shows the limitations

of one-dimensional models, which might capture some essential features of the dy-

namics40 but fail to faithfully describemolecules of useful complexity. Such limitation

becomes critical in strong coupling as the PESs and the wavepacket motion are

altered by the coupling along all modes. The present case gives a clear example

of the need to resort to multi-dimensional models: the trajectories are steered

away from the highly excited symNNC bending (zero coupling) toward the less

excited symNNC bending (strong coupling). The alternative pathway due to strong

coupling along a secondary coordinate is mainly reflected in the motion along the

main isomerization coordinate, resulting in a higher yield pathway not predictable

through the one-dimensional models.

The behavior hereby described is well highlighted in Figure 5, where we

compare the distribution of the geometrical coordinates at the moment of the

S1-S0 (jR1i � jR0i) hoppings in zero coupling (strong coupling), depicted for the

non-reactive and reactive trajectories in the upper and lower panels, respectively.

Additional data, including the hopping times, are also provided in Table S1. The

reactive trajectories are shown to hop at CNNC closer to 90�, whereas the non-reac-

tive ones count many hops at large values of both CNNC and symNNC. Moreover, a

significantly wider distribution of symNNC is observed for the zero-coupling case

(purple), a signature that the symNNC is more excited in zero coupling than in strong

coupling. Large symNNC (symNNC > 150+) in zero coupling is accompanied by

many hops at CNNC > 130+, confirming that the excitation of the symmetric NNC

vibration promotes the internal conversion at transoid geometries. The narrower in-

terval of symNNC for the strong-coupling case, instead, causes the trajectories to
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hop (on the average) at more twisted geometries, accompanied by a higher proba-

bility of successful photoconversion to the cis isomer.

Until now, we have shown that the coherent exchange of energy between light and

matter impacts both the kinetics of the dynamics and the mechanism, resulting in a

non-trivial trend in the quantum yields. To verify the consequence of this result on

the photostationary ratio of cis and trans populations, the cis/trans photoreaction

at the same excitation frequency must be simulated as well. We found that such a

process in strong coupling shows the same yield with respect to the zero-coupling

case, Fc/t = 58% and Fc/t = 61%, respectively. This is consequent to the more

favorable slope of the PESs in the cis side, which also makes the cis/trans photoi-

somerization quantum yield insensitive to environmental hindrances.50,51,53 Going

from the cis to the trans isomer, such steep PESs make the effect of the jS0; 1i state

Figure 5. Non-reactive and Reactive Photoisomerization Dynamics for Strong Coupling and Zero

Field upon S1 � S0 Hopping

Non-reactive (upper) and reactive (lower) distributions of the reactive coordinates (symNNC and

CNNC), computed upon the S1 � S0 hops for the zero-field case (purple) and jR1i�jR0i for the
strong-coupling case (orange). The distributions, in particular the non-reactive one, show that high

excitation of symNNC causes hops at less twisted CNNC values, resulting in a lower

photoisomerization yield in zero coupling with respect to strong coupling.
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in the dynamics almost irrelevant, resulting in the cis/trans photoisomerization

occurring on much shorter timescales (150 fs, see Note S4) than in the trans/cis

photoisomerization. Therefore, the substantial rise of the yields in the trans/cis

process is sufficient to push the photostationary state toward the cis isomer.

When the system is in its free-photon state jn;1i, a loss of the photon can occur (e.g.,

by leakage from the cavity or absorbed by the cavity walls). As a consequence, the

coherent exchange between light and matter is disrupted and the molecule col-

lapses from a mixture of jn0; 0i and jn;1i states to jn;0i only (see Experimental

Procedures).

To test how robust the results seen above are with respect to photonic losses in

the resonant cavity, we simulate the trans/cis and cis/trans photoisomerization

processes in the presence of a finite cavity lifetime tcav and compare the so-ob-

tained quantum yields to the zero-coupling case (see Figure 6). The photostation-

ary state yield of cis product exceeds the zero-coupling one for tcavR 50 fs (Fig-

ure 6A). Remarkably, this time is much shorter than the typical

photoisomerization timescale, whereas intuitively one would expect that cavity life-

times comparable to the photoisomerization time are needed to observe

enhanced reactions. The photoisomerization timescales are longer than the

permanence time of the trajectories on jS0; 1i, which is the only jn;1i state with

a non-negligible population at any time. Although the decay to the ground state

and photoisomerization take around 800 fs to be completed, the average perma-

nence time in jS0;1i can be estimated to about 35 fs from its time-dependent

population. We see then why a photonic loss timescale much shorter than the

timescale of the whole photochemical process is compatible with the observation

of strong coupling effects. Below tcav = 100 fs, however, the trans/cis conversion

yield is quite sensitive to cavity lifetime. On the other hand, the cis/trans process

is less affected because of the more favorable slope of the PESs and faster photo-

isomerization dynamics (see Figure 2 and Note S4).

A B C

Figure 6. Effect of Cavity Losses on the Photostationary State

Quantum yields comparison for the (A) trans/cis and (B) cis/trans isomerization in strong coupling as a function of the cavity photon lifetime. The

black dotted line is the zero-coupling limit, whereas the full line is the lossless cavity limit. The transient role of jS0; 1i is reflected by lower quantum yields

for very lossy cavities with respect to the zero-coupling case. (C) The product yield at the photostationary state computed by taking into account the

forward and backward reaction. The molar extinction coefficients are obtained by their integral average over the present excitation interval, starting

from the experimental data reported by Vetrakova and collaborators.54 The product yield Q at the photostationary state is shifted toward the strong

coupling limit for tcav greater than 50 fs.
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DISCUSSION

By building the polaritonic states of azobenzene, we have shown how the molecular

complexity can be taken into account for a single molecule strongly coupled to a

resonator. The inclusion of a detailed treatment for the molecule and its environ-

ment allowed us to investigate the shape of single-molecule polaritons when amani-

fold of excited states are involved in the strong coupling.

We have shown that strong coupling deeply affects the dynamical processes taking

place on polaritonic PESs. In particular, we have found a remarkable increase in the

quantum yield of the p� p� trans/cis photoisomerization due to subtle changes in

the mechanism: the shape of the polaritonic PESs and the time spent in the one-

photon states bring about a lower degree of excitation of the symNNC vibration,

which is the main cause of early decay from the S1 state in zero-coupling conditions.

As a result, under strong coupling more molecules reach a torsion of the N=N bond

closer to cis before relaxing to the ground state and thus photoisomerize with a

higher probability. By taking into account the backward reaction (cis/trans), such

an effect results in an increase of the photostationary concentration of the cis isomer.

Through the simulation of a realistic system, i.e., by including the effects of environ-

ment and cavity losses, we could estimate a minimum cavity lifetime of 50 fs

to observe a shift of the photostationary equilibrium toward higher trans/cis

photoconversions. Although currently the lifetimes of typical plasmonic nanocavities

do not exceed the 10 fs, new experiments are actively devising prototypical setups

to achieve high reproducibility17,19,20 and longer lifetimes for these systems21,61 at

the single-molecule level. The quickly growing interest in polaritonic applications

bodes well for polaritonic devices to be exploited in real-life polaritonic chemistry.

Our results show promising possibilities in this field. Among them, the enhancement

of the quantum yields and photostationary concentrations in experimentally achiev-

able systems opens up a pathway toward a real control of photochemical reactions

(i.e., quenching and enhancement). Concerning the role of polaritons in the photo-

chemistry of single molecules, we think that the physics of polariton-mediated

reactivity is far from being thoroughly investigated. Among the yet-to-be-explored

possibilities, we mention multistate and bielectronic polaritonic processes, such as

photoreactions mediated by excitation transfer.

EXPERIMENTAL PROCEDURES

Strong Coupling Hamiltonian

The Hamiltonian describing the system is given in Equation 1. Aiming to include

all the degrees of freedom of azobenzene, we exploit a semiempirical Austin model

1 (AM1) Hamiltonian reparametrized for the first few electronic excited states of azo-

benzene.49 In addition, it includes the molecular interaction with the environment

(see next section). The basis on which we build the polaritonic states is the set of

electronic-adiabatic singlets fng, from S0 to S4. The cavity Hamiltonian of the quan-

tized electromagnetic field is:

bHcav = Zucav

�bby bb +
1

2

�
(Equation 6)

where ucav is the resonator frequency and bby
and bb are the bosonic creation

and annihilation operators. As reported in the main text, the eigenvectors of the

non-interacting Hamiltonian bHmol + bHcav constitute the uncoupled state basis f��n;
pig. To obtain the polaritonic states (Equation 4) and energies, we selected a subset
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of states
��n;pi of interest, in which we performed a confidence interval (CI) calcula-

tion including the dipolar light-molecule interaction at QM level (Equation 2), work-

ing in the coulomb gauge and long wavelength approximation. The stability of the

dipolar approximation has been proven to break up when reaching high cou-

plings.62–65 To prove the robustness of such approximation in the current case,

test calculations have been performed as in the previous work45 (see Note S3).

Inclusion of the Environment

The environment is included at quantummechanics/molecular mechanics (QM/MM)

level interfaced with the electronic semiempirical Hamiltonian. The molecular Hamil-

tonian for the system is partitioned as66:

bHmol = bHQM + bHQM=MM + bHMM: (Equation 7)

The QM part is composed by the azobenzene molecule and the MM part is

composed by the cucurbit-7-uril molecule (150 atoms), 710 water molecules, and

eight frozen layers of gold encapsulating the system (418 atoms each, only van

der Waals interactions). The force field used to evaluate the MMpart is all-atom opti-

mized potentials for liquid simulations (OPLS-AA) contained in the TINKER code.67

The QM/MM interactions are modeled by electrostatic embedding plus Lennard-

Jones atom-atom potentials53,68,69 (see Note S1).

Surface Hopping on Polaritonic States

After building the molecule embedded in the environment and optimizing the geom-

etry at MM level, the equilibrium trajectory is run on the ground state by QM/MM dy-

namics. At the end of such dynamics, a few hundred of the initial conditions (nuclear

phase space point and polaritonic or electronic state) are extracted by evaluating

the transition probability from the ground state to the S2,S3, and S4 electronic states

(zero coupling) or jR3i; jR4i; jR5i polaritonic states (strong coupling). Both the zero

coupling and strong coupling states are excited within the same energy window,

i.e., centered at 3.96 eV (from 3.46 to 4.46 eV). More details can be found in Note S1.

The non-adiabatic molecular dynamics is performed by exploiting the direct trajec-

tory surface-hopping approach.55 A few hundred classical nuclear trajectories (230

to 270) are computed on the fly on the polaritonic PESs independently. The hopping

probability between the states is a modified version of Tully’s fewest switches.70 The

modifications added take into account the strong coupling contributions45 and the

decoherence corrections needed to properly describe the decoupling of wavepack-

ets traveling on different states.56

As usual in surface hopping, the population of a polaritonic state jRmi is represented
by the fraction of trajectories evolving on jRmi (called the ‘‘current’’ state) at the given

time. Consistently, the population of unmixed states
��n;pi, shown in Figure 4A, are

obtained by averaging
���Dm

n;pj2 over the full swarm of trajectories, where jRmi is again
the current state.

Cavity Losses

The decay probability to account for cavity losses is evaluated through a stochastic

approach. In particular, it is taken to be proportional to the square of the coefficients

of the uncoupled states
��n;pi, with p>0 (p = 1 in the present work), composing the

time-dependent polaritonic wavefunction (see Equation 4):

Ploss =
Xnst
n;pR1

1

tcav
Dt

�����X
m

CmD
m
n;p

�����
2

=
Xnst
n;pR1

Pjn;pi: (Equation 8)
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Here, tcav denotes the cavity lifetime while Dt is the integration time step. The decay

probabilities referred to each state are indicated as Pjn;1i, and nst denotes the total

number of electronic states included in the calculation. A uniform random number

is generated between 0 and 1 and compared with the above interval. A check if

the random number falls in any subinterval up to Pjnst ;1i is performed (see Figure

7). If that is the case, the photon is lost from jn0;1i. The decay operator bDn0 is then

applied to the polaritonic wavefunction:

bDn0 jJi = jn0;0iCn0;1jJi: (Equation 9)

The arrival state jFi is determined by taking the adiabatic state, which has the largest

overlap Cn0; 0jFiwith the electronic state jn0;0i. The dynamics is then resumed by tak-

ing jFi as the new current state. We, hereby, point out that, for our current work, the

decay always occurs from the jS0;1i state, as it is the only state with p> 0 with a non-

negligible population during the dynamics. Even more, the arrival state is always

jR0i, as it is almost purely jS0;0i at all the relevant geometries (see Note S2). More

generally, the wavefunction after the jump should be written as an electronic wave-

packet, maintaining the possible electronic coherence present within the p> 0

manifold.

DATA AND CODE AVAILABILITY

The calculations were based on a locally modified version of MOPAC2002 and

TINKER and are available from G.G. andM.P. upon reasonable request. The analysis

and the Supplemental Videos are based on ad-hoc tools which are available from

J.F. upon request.
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Interval subdivision to evaluate from which state the photon is lost.
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Supplemental Movies

The Supplemental Movie 1 and 2 show an animated version of the non-adiabatic dynamics

simulations for the strong coupling regime (polaritonic, Supplemental Movie 1) and zero

coupling regime (electronic, Supplemental Movie 2) for the trans-cis photoisomerization of

azobenzene. On the CNNC coordinate, the basin on the right represents the trans region,

while the basin on the left is the cis region. The states from upper left to lower right are

ordered energetically from the highest to the lowest. The light blue trajectories are the

ones which will not isomerize, while the orange ones depict the reactive trajectories. The

Supplemental Movie 1 involves 6 states, while the Supplemental Movie 2 involves 4 states.

The polaritonic PES are shown within the same energy window of the S0, S1, S2, S3 states

for the weak coupling case. Supplemental Movie 3 shows a rendered example of a reactive

trajectory. For completeness and to ease the interpretation of the results, the Supplemental

Movies are included via a QRcode in this section.

|R5i
<latexit sha1_base64="BvO8Vs3vfUZjRiCGGeKLw6pwOhI=">AAADMXicfVLLbtRAEJyYVwivJBy5jLCQOK1sLwgOKIrgwjEgNgmyrdV43LsZ7czYmmmDoll/BVfyFfma3BBXfgLb65DEAfrUjypVdauzUgqLQXC25t24eev2nfW7G/fuP3j4aHNre98WleEw4YUszGHGLEihYYICJRyWBpjKJBxki3ft/OALGCsK/QmPS0gVm2sxE5xh0/qcLADdx+nLerrpB6OgC3o9CfvEJ33sTbe87SQveKVAI5fM2jgMSkwdMyi4hHojqSyUjC/YHOIm1UyBTV3nuKbPKsuwoCUYKiTtmnCZ4Ziy9lhlDVIxPLLDWdv82yyucPY6dUKXFYLmrRAKCZ2Q5UY0pwCaCwOIrHUOVGjKmWGIYARlnDfNqrnNFcFMNeto+MoLpZjOXZJjHYepS2aGcZeU7c5MOj+s6z8VxXpAak69YkmY4ZK28MSI+RHuDICZYRfAN5eAywGwkcrB1HH0fyvOj+qhGZCqjsfnGn64MuVHvZA//qe1bo3ogrmk56yd9ovC4c9cT/ajUTgehR9e+Ltv+39aJ0/IU/KchOQV2SXvyR6ZEE4U+Ua+kxPv1Dvzfng/V1Bvrec8JlfC+/Ub1acL/g==</latexit>
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|R2i
<latexit sha1_base64="JiVtFcE2l9i3kFLbq2jW4dLmk1o="></latexit>

|R1i
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|S0, 0i
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Snapshots of Supplemental Movie 1 showing the non-adiabatic dynamics on polaritonic
states. The polaritonic states are labeled in this Figure as |Rn〉



Snapshots of Supplemental Movie 2 showing the non-adiabatic dynamics on purely
electronic states. The electronic states are labeled in this Figure as Sn after the notation
used in the main text.
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Table S1: Related to Figure 5 of the main text. Complete data of the hops between
adiabatic states in the strong coupling regime and in the zero coupling one. Averages and
standard deviations for the following quantities at the time of hops: energy difference between
initial and final state, CNNC dihedral, time elapsed from the excitation.

strong coupling
initial final number ∆E CNNC symNNC time
state state of hops (eV) (degrees) (degrees) (fs)
|R5〉 |R4〉 35 0.0972±0.0643 175.52±3.37 116.24±2.63 24.43±41.93
|R5〉 |R3〉 7 0.2018±0.0510 175.09±3.72 119.70±1.98 14.57±15.55
|R4〉 |R5〉 11 -0.1702±0.1002 175.26±2.58 115.64±1.41 41.09±36.44
|R4〉 |R3〉 155 0.1545±0.0757 174.87±3.98 116.00±3.01 31.72±47.26
|R3〉 |R5〉 1 -0.2488±0.0000 179.97±0.00 111.92±0.00 74.00±0.00
|R3〉 |R4〉 34 -0.2078±0.0732 175.33±4.18 115.87±3.16 60.91±76.93
|R3〉 |R2〉 419 0.1181±0.0801 173.18±4.40 112.93±3.03 64.65±56.57
|R3〉 |R1〉 6 0.2877±0.0406 168.48±5.73 112.24±3.16 58.50±38.65
|R2〉 |R3〉 194 -0.1331±0.0738 173.78±4.22 117.94±2.70 66.15±55.66
|R2〉 |R1〉 529 0.0881±0.0591 172.22±5.26 117.94±3.45 186.52±173.06
|R1〉 |R2〉 270 -0.0883±0.0621 172.65±5.17 118.30±3.43 270.94±170.59
|R1〉 |R0〉 285 0.1207±0.0802 104.61±7.91 133.73±7.22 446.40±188.13
|R0〉 |R1〉 21 -0.1606±0.0886 103.38±8.92 136.54±7.40 412.48±208.55

zero coupling
initial final number ∆E CNNC symNNC time
state state of hops (eV) (degrees) (degrees) (fs)
|S4〉 |S3〉 116 0.1557±0.0750 164.42±29.47 115.84± 5.50 90.77±205.69
|S4〉 |S2〉 6 0.2362±0.0406 170.41±5.59 111.28± 2.20 141.17±282.43
|S3〉 |S4〉 62 -0.1665±0.0703 161.79±34.66 116.88± 4.97 112.23±235.44
|S3〉 |S2〉 291 0.1686±0.0812 168.93±15.97 114.99± 5.29 71.11±147.11
|S3〉 |S1〉 7 0.2401±0.0653 173.26±4.28 108.82± 1.28 59.86±90.4
|S2〉 |S4〉 1 -0.2710±0.0000 19.95±0.00 113.24± 3.17 977.00±0.00
|S2〉 |S3〉 138 -0.1804±0.0818 168.40±19.08 115.30± 5.13 91.79±170.83
|S2〉 |S1〉 315 0.1582±0.0832 169.73±13.17 112.83± 5.10 72.10±108.81
|S1〉 |S2〉 79 -0.1506±0.0812 168.56±19.7 113.88± 5.39 71.03±93.39
|S1〉 |S0〉 264 0.1320±0.0789 107.07±11.23 138.85±10.24 353.06±199.07
|S0〉 |S1〉 25 -0.1573±0.0944 102.90±10.36 140.10± 7.32 395.32±212.66



Supplemental Experimental Procedures

Supplemental Note 1: Setup of the system for the dynamics simu-

lation

In this section, we provide further detail to the system setup. The core of the system is

composed by azobenzene, treated at QM level. The MM molecules are divided in three

classes: cucurbit-7-uril molecule (126 atoms, Figure S1a) gold layers (3342 atoms) and water

molecules (2700 atoms). The cucurbit-7-uril molecule encages the azobenzene and is placed

between 8 squared gold layers (4 on top, 4 on bottom). The 900 water molecules fill the

space within the layers (Figure S1b).

30
 a

ng

60 ang 60 ang

a. b.

Figure S1: Simulated system— a) Cucurbit-7-uril encapsulating azobenzene. b) The
encapsulated subsystem is then placed within a 60 by 60 by 30 angstrom box. The cavity is
simulated by placing four gold layers in the top and four in bottom positions. The cavity is
then filled with water molecules. The field polarization of the cavity mode is directed along
the 30 angstrom dimension.

A preliminary minimization of the structure is performed with the TINKER1 code. Then,

a full MM equilibration trajectory is run at 300K for 100 ps. The final geometry is taken

as a starting point for a QM/MM equilibration (with locally modified MOPAC2002 inter-

faced with TINKER) in presence of the Bussi-Parrinello thermostat2 at 300K for 50 ps. The

forcefield used for the system is OPLS-AA. The charges of the nitrogens of cucurbit-7-uril



have been locally rescaled to match the neutrality of the cyclic molecule. Water are repre-

sented by the TIP3P potential and, since TIP3P does not provide a Lennard-Jones potential

for the hydrogen atoms belonging to water molecules, it is necessary to define specific van

der Waals interaction parameters between the hydrogens belonging to water and the solute

atoms.3,4 The gold layers are kept fixed and they interact with the other parts of the system

by Lennard-Jones potentials, specifically defined for gold atoms.5

Two thousands configurations are extracted from the last 20 ps of the QM/MM equili-

bration trajectory outcome of such dynamics. This procedure mostly populates the S2-S3

excited states (or the polaritonic equivalents |R3〉, |R4〉), proportionally to their squared

transition dipoles. The excitation process is simulated by mimicking the absorption of radi-

ation (centered at 313 nm with an energy width of 1 eV) through the procedure outlined in

reference.6 The excitation energy window 3.46 < ∆Eexc < 4.46 eV was imposed to include

the absorption spectrum features corresponding to the first π → π∗ transitions of trans and

cis azobenzene. The absorption spectra of cis and trans, compared with the excitation win-

dow, are shown in Figure S2. It is apparent for both trans and cis that the actual energy

bandwidth of the excitation is less than 1 eV (∼ 0.5 eV), due to the features of the absorption

spectra.

Supplemental Note 2: Discussion on the approximations

Truncation of the CI-space As described in the main text, we work in the single excita-

tion space with a single photon mode and maximum photon occupation number equal to 1.

Figure 2 in the main text suggests that, for the excitation window used in this work, states

with p ≥ 2 are too high in energy to be relevant in the excitation process. To prove that

this is the case during the dynamics, the energy difference between the current state (i.e.

the state where the given trajectory is running on) and either |S1, 1〉 or |S0, 2〉 are reported

in Figure S3. Indeed, they are found to be always larger than 1 eV and we stress that we



excitation 
window

Figure S2: Excitation windows of trans and cis azobenzene— Comparison between
the π − π∗ excitation bands of trans- (orange) and cis- (blue) azobenzene, with respect to
the excitation window between 3.46 eV and 4.46 eV. The absorption spectra are obtained by
the ground state sampled configuration, excited in a wider excitation window (3 to 5 eV).

compute such difference along all the degrees of freedom, therefore there are no orthogonal co-

ordinates where the states might be close enough in energy to allow hoppings going upwards.

Even though states with p ≥ 2 are never populated during the dynamics, they might

affect the shape of the PESs due to the counter rotating terms. To check this is not the

case for our conditions, in Figure S3 we report the energy values for the active polaritonic

states computed at relevant geometries. At trans-equilibrium, cis-equilibrium and conical

intersection geometries, we compute the polaritonic energies by progressively expanding the

CI space. The expansion is accomplished by adding uncoupled states with p=1, p=2 and

p=3 respectively. The excellent agreement between p = 1 and p ≥ 1 shows that is safe to

truncate the CI space at p = 1 for the conditions reported in the present work.
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Figure S3: Distribution of the energy differences between the current state and
|S1, 1〉, |S0, 2〉 states —Panels a) and b) refer respectively to simulations starting from trans
or cis. Peaks at 5.6 eV correspond to trajectories running on the ground state. c) Energy
values for relevant geometries computed by truncating the photon space at p=1, p=2 and
p=3 respectively.

Decay algorithm When treating the cavity losses, we resort to the algorithm described

in the methods section. The presented algortihm takes the polaritonic wavefunction at each



time step, expands it on the uncoupled state basis and evaluates the probability that the

photon is dissipated by any |n′, 1〉 state. The choice of such state relies on a Monte Carlo

approach, by comparing for each trajectory at each time step a uniform random number

with respect to a probability of transition. Strictly speaking, the photon loss has the effect

to disrupt only the photonic part. This is realized by projecting the wavefunction over the

p = 1 subspace from which the photon is lost. The associated decay operator D̂2 acts as:

D̂2|Ψ〉 =
[
Iel ⊗ b̂

]
|Ψ〉 =

∑

R,n′
CRD

R
n′,1|n′, 0〉, (1)

where Iel is the identity over the electronic subspace and b̂ is the bosonic annihilation oper-

ator. The electronic coherence is preserved.

In the current case, our algorithm presented in the main text represents a good approx-

imation of the whole algorithm. As shown in the previous subsection and in Figure 3a of

the main text, the |S1, 1〉 state is hardly populated during the whole dynamics. As a con-

sequence, the photon must necessarily be lost from the |S0, 1〉 state, which collapses on the

ground state (|S0, 0〉), and so the operator D̂2 in eq. 1 is practically identical to |S0, 0〉〈S0, 1|.

Even when the arrival state is univocally determined as |S0, 0〉, there is a specificity of the

surface hopping to take into account. In this framework, it is the fact that the propagation

of the nuclei must be on a polaritonic state. To fulfilll this requirement, the first step is to

expand the final electronic state |S0, 0〉 on the polaritonic basis:

|S0, 0〉 =
∑

R

DS0,0
R |R〉. (2)

In our implemented version, we choose to resume the dynamics from the polaritonic state

|F 〉, which has the maximum overlap 〈S0, 0|F 〉} with |n′0〉.



Figure S4: Composition of the |S0, 0〉 state over the polaritonic basis —|S0, 0〉 state
composition on the polaritonic basis for the a)cis-trans and b) trans-cis dynamics, at each
step of the dynamics. The orange distribution shows that |S0, 0〉 coincides with |R0〉, while
the expansion coefficients of |S0, 0〉 on |R1〉 is 2-3 orders of magnitude lower.

A more rigorous possibility would be to the state |F 〉 randomly with a probability pro-

portional to |DR|2, that can be implemented as a Monte Carlo algorithm. In the present case

the two approaches coincide within our conditions. We show in Figure S4 the composition

of the |S0, 0〉 state on the polaritonic basis over all the dynamics. It appears that |S0, 0〉

coincides always with |R0〉. Hence, in case of photon loss, the photon is only lost from |S0, 1〉

and the only possible arrival state is |R0〉.

The data shown in Figure 6 of the main text are complemented here by a trajectory-

averaged photon-loss statistics of the performed dynamics (Figure S5). The photon statistics

reveals that the p = 1 states are never populated more than 20%. As a consequence of the

mixing, the average life of the photon within the cavity is extended beyond the nominal

cavity lifetime. For low τcav, we also note that the photon population (and therefore the



a. b.

Figure S5: Photon population within the cavity during the dynamics for different
cavity lifetimes—a) Trans-cis and b) cis-trans photoisomerizations. Coherently with the
quenched yields reported in Figure 6 of the main text, for τcav = 10 fs the photon loss occurs
on a timescale much shorter than the photoisomerization. A behaviour approaching the
lossless case is obtained for τcav = 200 fs for each individual process, despite the fact that
the enhanced of the photostationary equilibrium can be observed starting from 50 fs.

probability of the photon exiting the cavity) is non-monotonic, depending on the molecular

dynamics.

Supplemental Note 3: Stability of dipolar approximation in the

Coulomb gauge

Through all our work, we resort to a dipolar interaction between the photonic degree of

freedom and the molecule, in the Coulomb gauge and long-wavelength approximation. As

recently debated,7–10 the dipolar choice is rather controversial in materials at the ultrastrong

coupling regime (USC). When moving to strong coupling between light and molecules, Rubio

and collaborators11 have proven that large enough couplings (g/ωc ≥ 0.1) can break down

the Jaynes-Cummings approximation. To prove the robustness of our results within the

present work, we numerically compare the Jaynes-Cummings plus counter rotating terms



(JC+CRT) to a full dipolar Hamiltonian (eqs. 3, 4).

ĤJC+CRT = Ĥmol + Ĥcav + E1ph

∑

n6=n′
|n〉λ · µ̂n,n′〈n′|

(
b̂† + b̂

)
(3)

Ĥfull = Ĥmol + Ĥcav + λ · µ̂E1ph

(
b̂† + b̂

)
+ 2(µ̂ · λ)2(

E1ph√
ωp

)2 (4)

The JC+CRT approximation is the one applied in our work, while the full dipolar Hamil-

tonian has been obtained by the Power-Zienau-Wolley gauge transformation of the minimal

coupling Hamiltonian.12 We stress that our aim is not to solve the controversy about of the

gauge transformation but to test the reliability of our findings.

a. b. c.

Figure S6: Comparison between JC+CRT and full dipolar Hamiltonians in strong
coupling— Through all the panels, the circular marker indicate the full dipolar calcula-
tion and the full lines are the JC+CRT calculation, showing excellent agreement at both
uncoupled and polaritonic conditions

As a test case, we investigate the first few polaritonic states which are directly involved

in the findings reported in the main text. We repropose the calculation of the energy curves

in the same conditions reported in the main text, i.e. an electric field E1ph of 0.002 au

and ωp of 2.80 eV. The cuves are computed along CNNC by relaxing all the other degrees

of freedom S6a and along symmNNC by constraining CNNC at 165◦. Figure S6 compares

the JC+CRT(full lines) approach vs the full dipolar approach (circular markers) showing



excellent agreement between the two models for the system treated in this work.

As reported in refs.,7,8 a relevant deviation between the two models is expected to appear

for values of g/ωp ≥ 0.1 au. In those works, g represents the coupling, i.e. includes the

magnitude of the transition dipole moment. In a realistic treatment, the explicit dependence

of the transition dipole moment on the nuclear coordinate may alter the quality of the

approximation in different regions of the conformational space. However, in consideration of

the very small differencies found in the PES for the current work, it is safe to assume that

within the coupling conditions chosen in this work the JC+CRT is a good approximation to

the full dipolar treatment.



Supplemental Note 4: Analysis of nonadiabatic transitions.

Here we provide supplementary data for the analysis of the photoisomerization mechanism.

Figure S7 shows the minimum potential energy curve for the S1 state, as a function of

the CNNC dihedral, along with the energies of S0 and S2 at the same geometries. It can be

noted that the potential energy between trans and twisted conformations in S1 is very flat,

while on the cis side it is much steeper. Besides the individual state energies, we also show

the S0/S1 crossing seam, i.e. the energy of the two states with the constraint of degeneracy.

The crossing seam coincides with the minimum energy pathway (MEP) in S1 when CNNC is

in the range 85◦-105◦. By approaching the trans conformation, the crossing seam is found at

progressively higher energies with respect to the MEP and can be reached by opening both

NNC bond angles. This is the reason why the degree of excitation of the symmetric bending

mode is important for the lifetime of S1 and the trans→cis photoisomerization quantum yield.

Figure S8 shows the state populations and averaged internal coordinates for the cis→trans

photoisomerization and is analogous to Figure 4 of the main text. The two figures highlight

how faster is the dynamics by excitation of the cis isomer, in comparison with excitation of

the trans one. This is due to the larger slope of the PES on the cis side (see Figure S7) and

determines the lower sensitivity of the cis→trans quantum yield to the environment, to the

strong coupling conditions, and to the cavity losses.

In Table S1 we provide information concerning the nonadiabatic events (hops) between

states: their number, as well as the average and standard deviation of internal coordinates

and times at which the hops occur. These data complement those of Figure 5 in the main

text. They show how fast are the radiationless transitions between pairs of states and the

degree of reversibility of such processes (lower state→upper state versus upper→lower). Of

particular interest is the large number of |R1〉 → |R2〉 hops in the strong coupling case, about



Figure S7: S0, S1 and S2 PESs The PESs are computed along the CNNC coordinate by
relaxing all the other degrees of freedom with respect to S1. The colorscheme matches the
one reported in the main text. The red line shows the S0-S1 crossing seam, i.e. the energy
of two states minimized with the constraint of degeneracy.

half of the |R2〉 → |R1〉 ones (see discussion of the trans→cis photoisomerization in the main

text).



a. b.
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CNNC reactive zc

CNNC non-reactive sc

CNNC non-reactive zc

NNC reactive sc NNC reactive zc

NNC non-reactive sc
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Figure S8: a) Population evolution and b) dynamics of the reactive coordinates in the
cis-trans dynamics, in the same fashion of Figure 4 of the main text. With respect to
the trans-cis case, the dynamics occur on much quicker timescales. Indeed, at 200 fs the
photoisomerization reaction has almost completely occurred (vs 600 fs for the trans-cis case)
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Chapter 4

Until now, it was shown and discussed how the inclusion of chemical complexity in polari-

tonic systems may impact the outcome of a reaction and lead to new reactive pathways. So

far, we have based our description on a high level of molecular accuracy coupled with a sin-

gle quantized mode of a model electromagnetic field. As we aim at achieving a satisfactory

description for all the subcomponents of the nanoparticle-molecule-environment system, we

now focus on improving the description of the field to account for the geometrical features

of the nanoparticle. A realistic description of the nanoparticle is not only relevant for po-

laritonic photochemistry applications, as it is also pivotal in spectroscopic techniques down

to the submolecular level.5–9,119–122 In particular, plasmonic hotspots are widely exploited to

enhance the molecular Raman response. Most of the setups rely on the inhomogeneities of

the plasmonic field to achieve a coupling strong enough to observe enhanced signals.7,123–125

The access to nanoparticle-molecule interaction at the sub-molecular scale has been demon-

strated also for strongly confined optical modes,13,48 spurring the expectation to exploit

strong coupling to modify chemistry on even portion of the molecules. Having to account for

the local behaviour of both the plasmonic field in nanostructures and molecular transition

density, it becomes mandatory to devise a method being able to support both the degrees

of complexity. While full quantum methods can be pushed to simulate only a small portion

of a nanoparticle system, the direct quantization of the plasmonic field from classical modes

allows to account for the spatial features of plasmonic field and molecular complexity.31,126

While a satisfactory description of the molecule has already been exploited through all

the present work, this Chapter is devoted to treat the quantum coupling between a realistic

nanoparticle and a quantum molecule. Here, I make use of a particular eigenmode decom-

position of BEM methods (IEF-BEM diagonal25,26,127,128) to compute the plasmonic mode

of two nanoparticle setups and quantize them. I derive some of the quantities presented in

Chapter 1 and build hybrid plasmon-molecule states. Through these means, the quantum



coupling between plasmons and molecules is obtained. After validating the method for a

spherical nanoparticle and a dipolar molecule against analytical results,16 I make use of such

method to discuss the effect of the plasmonic field inhomogeneities on the coupling with

the azobenzene molecule. This Chapter is then concluded with a brief perspective on the

applicability of this approach to the Surface Hopping machinery presented and exploited in

the previous Chapters.

All the presented results have been originally produced during the PhD activity and are

part of my original contribution to this work. They are reported in the followings as a draft of

a manuscript. Based on an original sketched derivation by S. Corni, I worked out the details

of the theory and I implemented it in the group’s code TDPlas. I implemented the interface

with MOPAC2002 to compute and investigate the quantum coupled polaritonic potential

energy surfaces. Finally I collaborated with the group by Prof. H. Koch’s (SNS Pisa) to

interface this approach with their Coupled Clusters code, eT. I have personally implemented

and developed the tools to produce the validation tests and the figures presented in the

followings and drafted the original text.
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Abstract

The near-field enhancement in plasmonic nanoparticles drives exotic phenomena on

molecules which see their photophysical and photochemical properties strongly mod-

ified. The field enhancement is modulated through different shapes, materials and

arrangements of the nanoparticles. As a result, powerful spectroscopic techniques with

sub-molecular resolution have been devised in recent years. As a second outcome,

the interest is rapidly shifting towards investigating the capabilities of such setups to

modify chemical and photochemical properties at the sub-molecular level, namely by

confining molecules and electromagnetic field via nanocavities and nanotips setups.

Simulating these systems requires a high-level of accuracy from both the nanoparticle

and the molecular ends. Here we present a method suitable to describe the quantum

coupling between nanoparticles and molecules from the weak to the strong coupling

regime. This method is grounded on an intuitive-yet-realistic representation of the



quantized plasmonic modes and allows to retrieve high-resolution results without dis-

regarding the molecular description.

1. Introduction

As light shines on metal nanoparticles, collective excitations of the surface charges are trig-

gered on the nanoparticle surface. Such excitations go by the name of plasmons.1 In most

cases, the electromagnetic field in the close proximity of the metal nanoparticles is strongly

enhanced by the plasmon resonance. The region where the field-enhancement occurs can be

arranged by exploiting nanoparticles of different shapes or geometrical disposition. A promi-

nent display of setups which exploits the properties of such enhanced near-field are nanocav-

ities, where the enhanced field is confined in nanometric volumes.2–4 When a molecule is

placed in the close proximity of nanoparticles surfaces, it experiences the enhancement elec-

tromagnetic field. Consequently, its optical and chemical properties are strongly affected.

This effect is of paramount importance: on one hand, the enhanced optical response of the

molecule to the plasmonic field is exploited in advanced spectroscopic techniques, such as

Surface Enhanced Raman Scattering,5,6 Tip Enhanced Raman Scattering7,8 or Plasmon En-

hanced Fluorescence Spectroscopy.9 The molecular response in such cases is so enhanced

that the signal can be detected down to the single molecule or even sub-molecular level.10,11

On the other hand, the nanoparticles-molecule coupling is known to affect the chemical

properties of molecules,12–14 potentially resulting in modified chemical/photochemical reac-

tivity15–19 and relaxation dynamics,20–23 along with other coherent processes.24–27

As most of the mentioned applications strongly rely on the quantum nature of the plasmon-

molecule coupling in the near field, the level of description of molecules, nanoparticles

and their coupling strongly affects the predictive power of said methods. In general, two

main paradigms are adopted by the methods treating coupled nanoparticle-molecule sys-



tems.17,18,28,29 According to the first, the field is treated as a single, parametric mode to

focus on the molecular modified properties.24,26,30 Otherwise, the description can privilege

the field properties by disregarding the chemical complexity, taking the risk of flattening

the rich nanoparticle-molecule phenomenology. Even more practically, when the coupling

affects the molecule on a sub-molecular level (namely, a portion of the molecule),10,31 a sub-

molecular resolution in both the nanoparticle and the molecular description is no longer an

optional. This translates in devising methods able to describe both the geometrical features

of the molecular charge density and the geometrical features of the electromagnetic field

originated by a nanoparticle of arbitrary shape, with just few works being able to describe

the quantum system beyond a dipolar approximation for the molecule.10,32

Here, we present an approach to compute the quantum light-molecule coupling which ac-

counts for the geometrical features of the nanoparticles setups without disregarding the

molecular complexity. We exploit the quantization of the plasmonic modes computed from

a classical nanoparticle of an arbitrary shape based on a diagonal-BEM version of the IEF-

PCM technique.33,34 We interface the so-obtained quantum plasmonic modes to interface

with high-level quantum chemical descriptions of the molecule (FOMO-CI35,36 and EOM-

CCSD37–39). However, we stress that the method presented here can be interfaced to any

quantum chemical level of description.

Firstly, the implemented theory has been compared with the case of a spherical nanopar-

ticle. In this simple test, we compute the transition potential acting on the nanoparticle

by a realistic molecule and compare it to the point-dipole description. The presented test

also allows to directly compare with the analytic results for the quantum coupling between

nanoparticles and point-dipolar molecules provided by A. Delga et al.40 Finally, we exploit

the presented theory to show the interaction between a nanotip realized after ref.10 and the

azobenzene molecule. Through these means, we show and discuss the importance of describ-

ing the geometrical features of the system beyond the dipolar approximation through a brief



perspective on the further development. In particular, we anticipate that it does not lack

any capability to achieve an unprecedented level of realism in the description of interacting

nanoparticle-molecule dynamical processes.

2. Quantization of the modes in a plasmonic BEM

nanoparticle

2.1. IEF-BEM diagonal formulation

The first subsystem to treat is the nanoparticle. Being unable to fully treat the system at

quantum level due to its dimensions, we approach the NP problem by an electromagnetic

perspective. This translates into computing classically the plasmon modes. The more refined

approximations to the electromagnetic problem in nanoparticles are safely able to reproduce

the plasmonic features at a good level of realism. Among such features, the inhomogeneity

of the electric field driven by the irregular shape of the nanoparticles is particularly relevant,

as such irregularities are known to strongly influence the molecular properties.

To classically compute the nanoparticle surface properties means to classically solve the

Maxwell Equation’s for a continuous dielectric (nanoparticle) under an external perturba-

tion. Put differently, simulating the plasmons of a nanoparticle calls for the computation of

the nanoparticle linear response to the external perturbation. In the quasi-static limit, i.e.

λ greater of the nanoparticle, the external perturbation is associated to an electrostatic po-

tential V (ω) acting on the nanoparticle surface. Such potential induces polarisation charges

that, in turn, generate an additional electrostatic potential. A commonly adopted solution

to the electrostatic problem is to resort to discretisation techniques (Figures 1a and 1b) such

as Boundary Element Method (BEM) in the quasi-static limit.41,42
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Figure 1: Nanoparticles surfaces discretised with BEM— a) Surface discretization of
a 10 nm spherical nanoparticle, which will be used in the tests of the presented method. b)
Discretisation of a nanotip setup. The dimensions are reproduced after ref.10

A particularly convenient formulation of BEM in such regards is based on the Inte-

gral Equation Formalism (IEF-BEM). Within such formulation, a set of charges (Apparent

Surface Charges, ASC) sitting on the representative points of the nanoparticle discretised

surface is used to represent the electrostatic potential which solves the Poisson equations.

Such charges represent the linear dielectric response of the nanoparticle to the external per-

turbation at different ω. The IEF-BEM equation defining the apparent surface charges (q)

is

q(ω) = QIEF (ω)V (ω) (1)

where QIEF (ω) is the frequency-dependent response matrix to the external perturbation

V (ω). The QIEF (ω) matrix is computed following the standard IEF formalism as:34

QIEF (ω) = −S−1

(
2π
ε(ω) + 1

ε(ω)− 1
I +DA

)−1

(2πI +DA) . (2)

Here, ε(ω) is the dielectric function of the medium, A is a diagonal matrix containing the



area of the tesserae, while S and D are the Calderon’s projectors, respectively storing

information on the electrostatic potentials and the electric field between charges sitting on

different tesserae:

Sij =
1

|si − sj |
Dij =

(si − sj) · nj

|si − sj|3
, (3)

with si, sj the coordinates of the i−th and j−th tessera and nj the unit vector directed along

the normal of the j−th tessera. Examining the response function in eq. 2, the frequency

dependence is embodied in the choice of the dielectric function ε(ω). Following the procedure

outlined in previous works,33,34 it is possible to reformulate the problem in a diagonal form:

QIEF (ω) = −S− 1
2T

(
2π
ε(ω) + 1

ε(ω)− 1
I + Λ

)−1

(2πI + Λ)T †S−
1
2 , (4)

Here, the diagonal matrix Λ and the matrix T † collect the eigenvalues and eigenvectors of

S−
1
2DAS−

1
2 , which is (formally) symmetric. A compact form to indicate the diagonalized

version of QIEF (ω) is to collect all the central terms of eq. 4 into a single diagonal matrix

K(ω):

QIEF (ω) = −S− 1
2TK(ω)T †S−

1
2 , (5)

Kp(ω) =
2π + Λp

2π ε(ω)+1
ε(ω)−1

+ Λp

. (6)

Kp and Λp are respectively the diagonal elements of the K(ω) and Λ matrices.

2.2. Quantization of the plasmonic modes

To quantize the plasmonic modes, we assume the metal nanoparticle as a continuous dielectric

of an arbitrary shape, characterized by a Drude-Lorentz dielectric function ε(ω):

ε(ω) = 1 +
A

ω2
0 − ω2 − iγω , (7)



Plugging eq. 7 into eq.6:

Kp(ω) =

(
1 + Λp

2

)
A
2

ω2
0 − ω2 − iγω +

(
1 + Λp

2

)
A
2

. (8)

Renaming ω2
0 +

(
1 + Λp

2

)
A
2

as ω2
p and working out the denominator, we get:

Kp(ω) =
ω2
p − ω2

0

ωp

ωp(
ωp − ω − iγ2

) (
ωp + ω + iγ

2

) (9)

=
ω2
p − ω2

0

2ωp

(
1(

ωp + ω + iγ
2

) +
1(

ωp − ω − iγ2
)
)
. (10)

We now recognize the typical structure of response function denominator coming from Linear

Response Theory43 where ωp are the excitation frequencies of the plasmonic system. We can

retrieve the full form of the response function QIEF (ω) from eq. 5

Qkj(ω) =
∑

p

(
S−

1
2T
)
k,p

√
ω2
p − ω2

0

2ωp

(
1

ωp + ω + iγ
2

+
1

ωp − ω − iγ2

)√
ω2
p − ω2

0

2ωp

(
T †S−

1
2

)
p,j
.

(11)

Each matrix element of QIEF (ω) is evaluated on a couple of tesserae representative points,

namely k, j. QIEF (ω) is the response function providing quantization charges q induced

by an external potential V . Our goal now is to identify the quantities characterising the

nanoparticle quantized excited states (ie, plasmons) relevant to devise the coupling with

the molecule. To this end, we identify the plasmonic matrix elements between ground (no

plasmons) and the excited states of the nanoparticle. We compare eq. 11 to the structure of

a general response function R(ω) induced by the operator q̂.44 We conveniently write R(ω)

matrix elements in its spectral representation for the dynamical linear response case:45,46

Rkj(ω) = −
∑

p

(〈0|q̂k|p〉〈p|q̂j|0〉
ωp + ω + iγ

+
〈p|q̂k|0〉〈0|q̂j|p〉
ωp − ω − iγ

)
, (12)

By comparison of the first term of eq. 11 and eq. 12, we verify that ωp represents the



excitation frequencies of the plasmonic system, while we can identify 〈0|q̂j|p〉 with:

〈0|q̂j|p〉 = −
(
S−

1
2T
)
p,j

√
ω2
p − ω2

0

2ωp
. (13)

Here we will label the right hand side as qp, j from now on, as that term represents the

sitting on the j-th tessera, associated to the mode p. Such charges play the same role as

the transition densities for molecules. Indeed, they correspond to the plasmonic matrix el-

ements 〈0|q̂j|p〉. Put differently, the ensemble of the qp,j set of charges for a given value

of p represents the normal mode of the plasmonic system at frequency ωp. The first nor-

mal modes of a spherical plasmonic system and a nanotip on a support are shown in Figure 2.

In the following section, we use this formulation to compute and validate the quantum

coupling element between two material systems, namely a molecule and a plasmonic mode p,

represented by its charges qp. While in the present work we focus on the quantum coupling

between the two material systems (molecule and nanoparticle), the IEF-BEM diagonal for-

malism is general. Consequently, the response function of the nanoparticle and the related

quantized description can take into account other effects as the driving of an external field.

2.3. Nanoparticle-Molecule Hamiltonian

In this section, we focus on computing the coupling element between a molecule and the

plasmons of a spherical nanoparticle. The quantized plasmon-molecule Hamiltonian is:

Ĥ = Ĥmol + Ĥp + Ĥint (14)

where we make no assumptions on the form of the molecular Hamiltonian, provided it is

a suitable method to compute excited states. To quantize the plasmons in the dielectric



a.

b.

Figure 2: Examples of plasmonic modes computed at IEF-BEM diagonal—a)
Plasmonic modes for a 10 nm sphere. The p index does not take into account the 2l + 1
degeneracy for the modes of the sphere. From left to right example of dipolar, quadrupolar
and octupolar mode. Here, the dipolar modes are p = 2 t;o p = 4, the quadrupolar modes
are p = 5 to p = 9 and so on. b) Normal modes for a nanotip on a support. The system is
the one described in ref.10 The dimensions of the system are about 10 by 10 nm (see Figure
1b). The p = 2 and p=7 modes are suitable for TERS applications,7,8,11 as the charge density
is concentrated on the tip.

nanoparticle47,48 we work in the assumption described in the previous section, namely that

the dielectric responds linearly to an external perturbation and that such response is instan-

taneous.49 Under such assumptions, the plasmonic Hamiltonian is written as the Hamiltonian

of a quantized electromagnetic field:

Ĥp =
∑

p

ωp

(
b̂†pb̂p

)
(15)

where ωp is the p mode frequency computed at IEF-BEM diagonal level with a Drude-Lorentz

dielectric and b̂†p, b̂p are the bosonic creation and annihilation operators for the same mode.



The interaction term Ĥint is taken in the quasi-static limit as:44

Ĥint =
∑

p

(
b̂†p + b̂p

)∑

j

qp,jV̂j, (16)

where V̂j is the potential induced by the molecule on the nanoparticle, evaluated at each

tessera representative point j. Compared to the usual dipolar formulation of the quantized

light-matter interaction (reported few equations below in eq. 19), this interaction presents

two major advantages: on one side, we compute explicitly the nanoparticle modes as appar-

ent surface charges qp,j allowing to obtain realistic quantities for the electromagnetic field

without recurring to arbitrary parameters. The quantization allows to take into account the

inhomogeneities of the electromagnetic field due to different nanoparticle shapes and setups.

On the other side, this interaction is fully general and can easily be interfaced to advanced

electronic structure calculations. The only requirement is to compute the potential Vj from

the output electronic density of the quantum chemistry calculation.

Based on eq.16, we define for each mode the plasmon mode-molecule coupling operator

ĝp as

ĝp =
∑

j

qp,jV̂j, (17)

hence reducing the interaction Hamiltonian to:

Ĥint =
∑

p

ĝp

(
b̂†p + b̂p

)
. (18)

A common approximation to the interaction Hamiltonian is to consider the molecule as

a dipole within the cavity, allowing to retrieve a Tavis-Cummings-like50,51 interaction for the

nanoparticle and the molecule.13,30,52,53 We report the approximated interaction as it will be



used only for test purposes:

Ĥdip
int =

∑

p

E1ph,pλp · µ̂
(
b̂†p + b̂p

)
. (19)

ĝdipp = E1ph,pλp · µ̂ (20)

where ĝdipp is the dipole truncated analogous of ĝp (eq. 17) when the molecule is considered as

a point dipole. E1ph,p is the single-plasmon electric field amplitude associated to the plasmon

mode p, while the polarization of the field associated to mode is λp.

As a test, we will compare the coupling between a spherical nanoparticle and a molecule

obtained in three different ways of increasing realism, as sketched in Figure 3:

• Coupling between analytical spherical plasmonic modes and a point-dipole molecule

(Figure 3a). This approach was proposed by Delga et al.40

• Coupling between the plasmonic modes computed at IEF-BEM diagonal level and a

point dipole (Figure 3b). This is done to directly compare with the analytical results.

• Coupling between the plasmonic modes computed at IEF-BEM diagonal level and a

realistic molecule, computed at EOM-CCSD level (Figure 3c). This is the central

feature of this work.

As a test molecule, we take HF due to its simple structure and longitudinal dipolar

S0 → S1 transition. Such dipolar behaviour of said transition allows us to compare the cou-

pling computed with the realistic molecule (Figure 3c) to the other cases where the molecule

is a point-dipole (Figures 3a and 3b).

Aiming at describing the interaction between plasmon and molecule, we firstly define

the states of the non-interacting system. The eigenstates of the non-interacting system are

obtained by diagonalization of the non-interacting Hamiltonian Ĥmol + Ĥp. We shall label



Figure 3: Dipolar plasmonic mode of a spherical nanoparticle (diameter=10 nm)
interacting with a molecule—a) The molecule is represented as a point dipole distant d
from the nanoparticle surface, while the nanoparticle is taken as a continuous Drude-Lorentz
metal. The computed coupling is analytical, following ref.40 b)-c) The plasmonic modes are
computed at IEF-BEM diagonal level. In Panel b), the molecule is represented as a point
dipole corresponding to the S0 → S1 transition dipole moment of the HF molecule. The
transition dipole moment µS0S1 = 1.695 Debyes is computed at EOM-CCSD level. The
EOM-CCSD calculations have been realized by Tor S. Haugland (SNS) using the eT code54

with a cc-PVTZ basis set. In Panel c) The molecule is represented with its ρ(S0,S1)(r)
electronic transition density computed at CCSD level. The plasmon-molecule interactions
are accounted via eqs. 19 and 16 for panels b and c, respectively.

such states as uncoupled states. Such states are expressed as a product states between the

molecular electronic states manifold, {n}, and the Hilbert space of the plasmonic modes:

|n, p1, p2, ..., pNmod
〉 = |n〉 ⊗ |p1〉 ⊗ ...⊗ |pNmod

〉, (21)

where n is the electronic state index, pk denotes the occupation number of the k-th plasmonic

mode and Nmod is the total number of plasmonic modes. To compute the coupling between

the S0 → S1 transition and the nanoparticle, we momentarily focus on a single plasmonic

mode of the nanoparticle, qp. The uncoupled states for this reduced system are written as

|n, p〉: n is either the ground state S0 or the first excited state S1 of the molecule, while

p is the occupation number of the plasmonic mode we are focusing on (either 0 or 1 in

this example). Moving to the plasmon-molecule interaction, the interaction elements are

evaluated for the three cases presented above and in Figure 3. For the analytical modes and



the point dipole molecule (Figure 3a):

gan,dipp = E1ph,p

〈
S0, 1

∣∣ĝdipp b†p
∣∣S1, 0

〉
= E1ph,pλp · µS0,S1 (22)

where µS0,S1 is the transition point-dipole associated to the S0 → S1 transition in the HF

molecule. For the BEM nanoparticle and the point-dipole molecule (Figure 3b):

gbem,dipp =

〈
S0, 1

∣∣∣∣∣
∑

j

qp,j
(sj − rd) · µS0,S1

|sj − rd|3
b†p

∣∣∣∣∣S1, 0

〉
= Eqpλqp · µS0,S1 (23)

Here, the plasmonic electric field interacting with the dipole, Eqpλqp , is the electric field

associated to the apparent surface charges of the plasmonic mode under investigation qp:

Eqpλqp =
∑

j

qp,j
(sj − rd)

|sj − rd|3
(24)

where sj − rd is the distance between the tessera representative point sj and the position

of the point dipole rd. Computing the interaction element between the nanoparticle and a

realistic molecule requires to get rid of the point dipole approximation. Put differently, one

needs to take into account the spatial features of the transition density (Figure 3c). The

interaction element between the BEM mode qp and a realistic molecule beyond the dipolar

approximation then reads:

gbem,fullp =
〈
S0, 1

∣∣∣ĝpb̂†
∣∣∣S1, 0

〉
=
∑

j

qp,jV
(S0,S1)
j (25)

where V
(S0,S1)
j is the potential originated by the S0 → S1 transition on the j-th tessera.

The problem is then reduced to find an expression for such potential. To this purpose, it

is convenient to describe the local behaviour of the molecule in terms of the one-particle

electronic density. The potential acting on the j-th tessera is then the potential associated

to the one-particle electron density operator ρ̂(r), expanded on the basis of the molecular



orbitals φr(r), φs(r):

V̂j =

∫

V ol

d3r
ρ̂(r)

|sj − r|
=
∑

rs

∫

V ol

d3r
ρrs(r)â†râs
|sj − r|

=
∑

rs

V rs
j â†râs. (26)

Consequently, the molecule-nanoparticle coupling operator ĝp can be obtained as:

ĝp =
∑

rs

grsp â
†
râs =

∑

rs

qp,jV
rs
j â†râs. (27)

The coupling element between the S0 → S1 transition is then evaluated as:

gbem,fullp =

〈
S0, 1

∣∣∣∣∣
∑

rs

grsp â
†
râsb̂

†

∣∣∣∣∣S1, 0

〉
=
∑

rs

ρ(S0,S1)
rs grsp , (28)

where we made use of the transition density matrix ρ
(S0,S1)
rs (r) to retrieve a similar formalism

to the one proposed by Aizpurua and collaborators.10,32

The molecule nanoparticle coupling in the classical plasmon framework was described beyond

the point approximation before,55 here we extend it to the quantized plasmon case.

3.1. Comparison to analytical results

As a test case, we take into account a spherical geometry for the nanoparticle. Indeed,

the spherical geometry of the nanoparticle causes the plasmonic mode to be degenerate,

depending on their angular momentum. By following the notation of A. Delga et al.,40

we consider as l the angular momentum of the quantized nanoparticle, with the plasmonic

modes 2l + 1 degenerate. We compute the analytical coupling values ganl by grouping the

degenerate plasmonic modes by angular momentum. From the derivation presented in ref.,40

we recast the analytical coupling presented in eq. 29 into:

(
gan,dipl

)2

=

√
l(l + 1)2µ2

S0,S1

2

√
A

2l + 1

r
(2l+1)
s

d(2l+4)
; (29)



where l is the angular momentum associated to the nanoparticle plasmonic modes manifold

(three dipolar modes, five quadrupolar modes and so on) and A is the Drude-Lorentz pa-

rameter determining ωp (eq. 7). Here rs and d are respectively the radius of the sphere and

the distance of the point dipole from the nanoparticle surface.

To directly compare to the analytical (gan,dipl ) value, we need to compute the interaction

with the same modes, hence taking into account the degeneracy of the sphere. To this aim,

we group the squared values of gbem,dipp and gbem,fullp by angular momentum, respectively ob-

taining (gbem,dipl )2 and (gfull,dipl )2. In Figure 5a, we compare the values of (gl)
2 for the three

models. As plasmonic modes, we take the l = 1 (dipolar modes) and l = 2 (quadrupolar

modes).

A good agreement between analytical model and the BEM variants is shown for both

the interaction elements with ` = 1 and ` = 2 up to ∼3 Å distance, comparable to the

molecule-nanoparticle distance in plasmonic nanocavities and TERS setups.10,56,57 For real

molecules, shorter distances would not be realistic anyway. The same behaviour is shown for

both the variants of the coupling computed with the BEM plasmonic modes. The choice of

a dipole-like molecule as HF ensures that no major effects due to the shape of the transition

density arise. Indeed, no difference is displayed when moving from point-dipole molecule

(gbem,dip) to the full molecular description (gbem,full). The difference from the analytical

model is then due to the numerical accuracy of the BEM calculation, in turn related the

surface density of the tesserae. The effect becomes evident in Figure 5b, where we show the

molecule-nanoparticle interaction for ` = 1 obtained by varying the density of tesserae (and

hence of apparent surface charges). An increase in the quality of the description is obtained

by increasing the number of tesserae from two thousands to seven thousands. A further im-

provement is observed by inhomogeneously distributing the seven thousand tesserae on the

spherical surface, thickening the mesh close to the molecule. In such last case, the agreement



Figure 4: Interaction between a molecule and the ` = 1 (dipolar), ` = 2 (quadrupo-
lar) plasmonic modes of a nanosphere (diameter=10 nm)— a Comparison between
the analytical value reported in (dashed black line) with the gbem,dip` and gfull,dip` . b Inter-
action element for the ` = 1 for the same case. The number of tesserae is increased from
two thousands (labelled as 2k t, blue line) to seven thousands (labelled as 7k t, purple
line). An even closer agreement between the analytical model and the BEM-based model
is obtained by keeping seven thousands tesserae and making the mesh denser close to the
molecule(labelled as 7k t inhom, light blue line).

between the analytical model and the BEM-based one holds down to ∼ 2.5 Å, which is even

smaller than the typical non-bond distances of 3.5Å. The great accuracy achieved for a very

dipolar-like molecule such as HF ensures a reliable interaction in the near-field.

3.2. Quantum coupling between a nanotip and azobenzene

As a last case, we take the plasmonic mode of the nanotip shown in Figure 2b (left panel)

and let it interact with two mostly dark transitions of the azobenzene molecule: S0 → S1

and S0 → S3. Despite the low coupling magnitude expected due to the dark transitions,

the choice of dark transitions allows to highlight the limits of neglecting the full structure of

the molecule. To this aim, we take two different molecular representations: point-dipole and



realistic. For both cases, the molecular properties are computed via the FOMO-CI semiem-

pirical method35,36 we already exploited in previous works as a basis for photochemistry in

the strong coupling regime.19,30 The reason of the choice is the high-level of the description

of the azobenzene coming from the ad-hoc parameterization.58

Figure 5: Quantum Interaction between two dark transitions of azobenzene and a
nanotip- a) Sketch of the setup with the trans-azobenzene in a C2h configuration and lies
on the plane perpendicular to the rotational axis of the tip. b), c) Maps of the interaction
between the plasmonic mode shown in Figure 2b (left) and the S0 → S1 and S0 → S3

molecular transitions, respectively. Here the molecule is represented as a point-dipole. The
maps are obtained by displacing the tip with respect to the molecule. The maps in panels
d) and e) are the maps for the same transitions when the full electronic transition density
is taken into account.

The azobenzene molecule is taken in its trans-planar equilibrium configuration and it

lies on the plane perpendicular to the rotational axis of the tip (Figure 5a). Instead, the

polarization (λp) of the electric field associated to the plasmonic mode is perpendicular to

the plane containing the molecule (Figure 5a) and oriented along the rotational axis of the

tip. The point-dipole representation is obtained by taking the transition dipole moments

obtained through the FOMO-CI calculation and by locating the point-dipole vector at the



center of mass of the molecule. For the full representation, we take the whole transition

density of the molecule expanded on the Molecular Orbitals (MO) basis. The nanoparticle-

molecule interaction elements for the two representations are then respectively computed

via eqs. 23 and 28. Namely, we label them as gbem,dip(S0,S1)

(
gbem,dip(S0,S3)

)
and gbem,fullS0,S1

(
gbem,fullS0,S3

)
as

they refer to the S0 → S1 (S0 → S3) molecular transition. At the molecular geometry in

exam, azobenzene displays a totally dark S0 → S1 optical transition due to symmetry. At

the same geometry, the S0 → S3 transition is almost vanishing, even if it conserves a very

small (∼0.02 Debye) S0 → S3 transition dipole moment component in the plane containing

the molecule.

In Figures 5b and 5c, we show the interaction computed with the point-dipole repre-

sentation, respectively for the S0 → S1 and S0 → S3 transitions. The interaction maps

are obtained by displacing the tip with respect to the molecule and exploring its surround-

ings. As the S0 → S1 is completely dark, no interaction between the nanoparticle and the

point-dipolar molecule arises at any geometry (Figure 5b). Instead, a very weak dipolar-like

interaction is observed for the S0 → S3 transition.

The maps reported in Figures 5d and 5e represent the same interaction when taking the

full transition density of the molecule. In particular, the map in Figure 5d is referred to the

S0 → S1 transition, while Figure 5e is referred to S0 → S3. Rather straightforwardly, major

differences are present when comparing the interactions in the two representation for the two

transition cases. While the S0 → S1 in the dipolar representation does not interact at all with

the nanoparticle, a weak dipolar-like interaction arises when taking the transition density of

the molecule. Even more interesting is the case of the S0 → S3 transition: the interaction

in the realistic representation is quadrupolar, whereas the point-dipole case is flattened to

a dipolar transition. Both of such differences are indeed due to the spatial features of the

transition density of the molecule, since the nanoparticle treatment is the same in both cases.



To qualitatively understand the shape of the interaction maps, we sketch the approximated

electronic transition densities associated to S0 → S1 and S0 → S3 respectively in Figure 6a

and Figure 6b.

HOMO-1

HOMO-5

LUMO

LUMO

S0-S1 TRANSITION DENSITY

S0-S3 TRANSITION DENSITY

N

N

N

N

C-ortho

C-ortho

a.

b.

Figure 6: Sketch of the S0 → S1 and S0 → S3 transition densities-a) The S0 → S1

transition density is well approximated as a product of the HOMO− 1 and LUMO orbitals
and it is mostly dipolar along the direction perpendicular to the N=N bond. b) The S0 → S3

transition density is mostly quadrupolar. This density is approximated by the product of the
HOMO − 5 and LUMO orbitals which govern the transition. The poles of the quadrupole
sit on the C atoms in ortho position with respect to the N atoms.

Although computed at a multiconfigurational wavefunction level, the S0 → S1 and

S0 → S3 transitions are respectively governed by the HOMO − 1 → LUMO and the

HOMO − 5 → LUMO excitations. As a consequence, the product of the molecular

orbitals involved in each transition is a good approximation to the full transition den-

sity, which is instead exploited in the calculation of the interaction. Figure 6 shows the

HOMO − 1 → LUMO orbitals and product, associated to S0 → S1. Indeed, the shape of

the approximated S0 → S1 is dipolar and it is oriented in-plane and perpendicular to the

N=N double bond of azobenzene. Directly comparing to the map in Figure 5d with this



density, we then see why displacing the tip with respect to the molecular center would yield

a dipolar interaction for the S0 → S1 transition. The same considerations can be applied to

the S0 → S3 transition density: indeed, the product between the HOMO − 5 and LUMO

orbitals governing the transition yields a quadrupolar shape to the approximated transition

density, with the poles of the quadrupole sitting on the C atoms in ortho position with

respect to the N=N double bond. The same quadrupolar-like shape is well reproduced by

the interaction maps in Figure 5e. Even more, a careful analysis of the interaction map

reveals a region of minor interaction on located on the N=N double bond, corresponding to

the barely-visible component of S0 → S3 transition density on the same bond.

This simple example allows us to comment on two features of the method: firstly, our

formulation of the interaction clearly accounts for the spatial features of the molecular tran-

sition density. Secondly, the IEF-BEM diagonal correctly accounts for the different charge

density associated to different modes down to the atomic level. Indeed, if any of the as-

pects was absent, we would not be able to reproduce the correct shape of the transition

density. Our results prove that the proposed method is an advantageous tool to com-

pute nanoparticle-molecule interaction which requires few computational effort to treat the

nanoparticle-molecule interaction with sub-molecular resolution.

4. Conclusions

In this work we have introduced a new methodology to treat the quantum coupling between

nanoparticle setups of arbitrary shape and realistic molecules. We have adapted a diagonal

formulation coming from the polarizable continuum model community55,59 to directly obtain

quantized plasmonic modes. Here, we represent the plasmonic mode as individual sets of

independent charges sitting on the nanoparticle surface, which allows us to treat inhomo-

geneities of the electromagnetic field due to the shape and setups of the nanoparticles. By



exploiting such intuitive representation of the plasmonic modes as set of charges, we reformu-

lated the quantum interaction between molecules and plasmonic modes with a more general

formalism. The strength of this reformulation is to rewrite the interaction terms on the basis

of the molecular orbitals. Two major advantages arise from this approach: the principal is

to account for local changing in the molecular electronic density due to the presence of a

nanoparticle of arbitrary shape, achieving a sub-molecular resolution in the quantum cou-

pling. The second is that it can be easily interfaced with high-accuracy quantum chemistry

methods.

As a test case, we compared the results of our formulation to the analytical results for a

spherical nanoparticle and a point-dipole molecule, reaching great agreement for distances

even smaller of the normal non-bonding distance (∼ 3.5 Å). To prove the necessity of moving

beyond the dipolar formulation, we took the interaction of a nanotip and two dark transi-

tions of the azobenzene molecule. Here, we observed a major difference between the dipolar

interaction and our model. In particular, the dipolar approximation fails in describing the

coupling in both cases, where our presented model reproduces well the features of the tran-

sition density.

This approach, motivated by the encouraging results, has the simplicity and flexibility

to be interfaced with more complex simulation frameworks. Indeed, it has the potential to

bring the simulation of nanoparticle-molecule systems to an even higher level of realism. It

does not lack a high capability of supporting experiments trying to both investigate and

manipulate the chemical properties at the sub-molecular level. Such experiments range from

the reproduction of typical TERS setups7,8,10,11 to molecules in nanocavities.3,4,31,56
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Future developments

Further developments of the method are currently being addressed on three fronts:

• The interface between the approach for quantum coupling treated in this Chapter and

the polaritonic photochemistry machinery presented in Chapter 1 is currently being

devised. Currently, the interface I realized only achieves single-point calculations on

the system, as shown in the interaction maps in Figure 5. The further development is to

derive and implement the analytical gradients approach for polaritonic photochemistry

with a IEF-BEM nanoparticle. The implementation is in collaboration with Giovanni

Granucci and Maurizio Persico at the University of Pisa.

• To overcome the limitations due to a Drude-Lorentz dielectric constant for the choice

of the metal, a fitting approach with a generalized dielectric constant has been im-

plemented by Giulia Dall’Osto and Gabriel Gil (Unipd) for the BEM computation of

the interaction between a classical nanoparticle and a quantum molecule. We plan to

extend it to the quantum coupling in the near future.

• To achieve a more general and higher level of accuracy in the molecular description,

we are currently interfacing this interaction scheme with the EOM-CCSD method in

collaboration with Tor Haugland and Prof. Henrik Koch in Scuola Normale Superi-

ore (Pisa). The results of the interaction maps for the free-base porphyrin molecule

are currently in production. The aim of this part of the project is to develop a tool

to investigate changes in the electronic structure and even ground state properties of

molecules in strong coupling. While the high accuracy of the EOM-CCSD approach

ensures the quality in the molecular description, the extension of the BEM approach

to generic dielectric constants ensures to simulate nanoparticles in experimental con-

ditions. Consequently, the interface of BEM with EOM-CCSD is expected to provide

a benchmark for realistic coupling conditions without assuming parameters.





Summary and Conclusions

This thesis is devoted to the development of a method able to tackle the photochemical com-

plexity in polaritonic photochemistry simulations. To this aim, different layers of complexity

have been taken into account.

Firstly, the computation of the polaritonic states and energies are computed by adapting

a quick-yet-accurate multiconfigurational wavefunction method relying on a semiempirical

electronic Hamiltonian and floating occupation numbers for the SCF calculation. To sim-

ulate polaritonic photochemistry, the Direct Trajectory Surface Hopping method has been

extended to tackle both the intrinsic transition probability and overcoherence biases of the

more traditional Fewest-Switches Surface-Hopping.

My original contribution in this field dealt with the theoretical development and imple-

mentation in scientific codes to extend such methods, together with devising and developing

the interpretative tools to recover the chemical intuition in polaritonic systems. Such tools

have proven to be a valid aid for investigating the changes in photochemical reaction mecha-

nisms induced by strong light-molecule coupling. Even more, the devised method has proven

useful to include and interpret all the photochemical and environmental complexity in the

simulated reaction. Initially, we approached the problem by deriving the relevant quantities

such as polaritonic eigenstates and eigenvalues, trying to map the diabatic/adiabatic be-

haviour to the polaritonic case and recover a chemical picture. In this process, we adapted

the non-adiabtic dynamics technique to the polaritonic case by deriving the analytical gra-

dients for the polaritonic energy. In the beginning we took into account only few molecular

states and a singly-occupied photonic mode. That was sufficient to glimpse at the modified

dynamics. Motivated by the chemically-friendly method, we then moved to include various

features of the photochemical and environmental complexities: multiple states in the simu-

lations, mimicking of the excitation process, environment and losses.



We have shown that, with different cavity parameters, a photoisomerization reaction can

be selectively quenched or enhanced. Also, we have exploited the direct correspondence of

electronic states and polaritonic states in the uncoupled representation and several ad-hoc

tools of analysis to give an intuitive chemical explanation of the mechanism leading to both

the quenching and the enhancement. While the quenching occurs because the modified shape

of the PESs leads to a trap of the wavepacket, the mechanism leading to the enhancement is

more involved. An intuitive explanation is that strong coupling intrinsically quenches some

reaction channels in a polaritonic photochemical reaction. In such regards, we made use of

the quenching effect to deactivate a fast relaxation channel of the trans-cis photoisomer-

ization reaction, which would normally lead to an inefficient photoisomerization. By the

deactivation of this relaxation channel, we are able to achieve a remarkably higher quantum

yield for the same process.

Aiming to describe the system even more realistically, and taking into account the state-

of-the-art direction in experiments, we decided to move on two fronts. On one hand, we

refined the method by including the mode with a higher occupation number and exploited a

quatum optics Monte Carlo approach to account for cavity losses. On the second front, we

aim at investigating how strong coupling can can be locally achieved at the sub-molecular

level. To this aim, we devised a method to quantize the plasmonic modes coming from

classical electrodynamics calculation. This approach is based on previous works in the field

of the solvent-molecule interaction, as well as on state-of-the-art works in the molecular

polaritonics community. The tests and results obtained so far are already enough to investi-

gate optical properties of molecules in cavities. However, the aim is to interface this hybrid

classical electrodynamics-quantum chemistry method to the Surface Hopping machinery to

also investigate dynamical processes. As a perspective on the nanoparticle-molecule inter-

action, we aim at explicitly treating the interaction of few quantized plasmonic modes with



the molecule. The other modes can be then described as an effective dissipative mode, as

depicted by Delga et al.

Finally, during my last year of PhD I could also explore the non-adiabatic dynamics on

few molecular modes by resorting to a full quantum approach. The work was mostly con-

ducted during a visit in collaboration with Dr. Simone Felicetti and Dr. Johannes Feist at

IFIMAC (Universidad Autonoma de Madrid). The visit helped me consolidating the knowl-

edge on strong light-molecule coupling models and Quantum Optics approaches interfaced

with grid methods to propagate a fully quantum wavefunction. The results are not reported

in the present work, although a first publication is expected for the near to medium future.

The approach introduced here investigates the photochemical properties of polaritonic

systems at an unprecedented level of realism. With respect to the up-to-date state of the

art, the methodology developed led to discover a novel reactivity pathway resulting in en-

hanced photoisomerization quantum yields, which was hidden in the chemical complexity.

Even more, the high level of description allowed to dig into the reaction mechanism and,

consequently, to understand how to turn the chemical complexity from a foe to a friend.

This was realized by also including environmental effects of a realistic experimental setup.

In conclusion, the method presented in this thesis carries the promise to both guide and sup-

port challenging experiments in the emerging-yet-propitious field of polaritonic chemistry,

together with providing a powerful tool of analysis to disentangle the richness of polaritonic

phenomenology.
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