
UNIVERSITÀ DEGLI STUDI

DI MODENA E REGGIO EMILIA

Dottorato di ricerca in Ingegneria dell’Innovazione Industriale
(Industrial Innovation Engineering)

Ciclo XXXII

Big Data for advanced fault diagnosis and

monitoring systems:

managing system complexity in

a distributed environment

Candidato: Claudio Santo Longo

Relatore (Tutor): Prof. Cesare Fantuzzi

Coordinatore del Corso di Dottorato: Prof. Franco Zambonelli

2 | P a g e

3 | P a g e

Acknowledgements
This page is dedicated to all the people who supported me and gave me the

opportunity to study, do my research and then write this work thesis.

I would like to thank my Tutor Prof. Cesare Fantuzzi for giving me the opportunity to

take part on the research and for referencing me for this doctorate course: he has

been a real mentor for me, and he has always been available and supportive. He gave

me trust and responsibilities (like leading internship students who became my team

of our industrial projects, as well as managing European projects): I will never forget

this important opportunity.

I would like to thank my research group team members: Marco Sorge, Luca

Manfredotti and Marcos De Silva. We have strictly worked together as a real

coordinated team. Since the first time, we were very comfortable in working

together, even when dealing with several industrial projects and strict deadlines.

I’ve always trusted them as we created an important friendship.

I would like to thank Ing. Lorenzo Tacconi for providing us with very interesting

software engineering courses: all our meetings have been always very inspiring and

provided us with tools and techniques which helped a lot our work. I recall him as a

mentor: during our conversations, we discovered new software and way of working

which automatized many working processes.

I would like to thank Prof. Dr. rer. nat. Niggemann, Prof. Dr. Jasperneite, the Big Data

Group (Khaled, Nicolas, Florian) and all the personnel of Fraunhofer IOSB-INA (like

Mischa, Karin, Astrid, Ken, Andrej, Carsten, Heike): since the first day, they gave me

trust, many responsibilities and I had the opportunity to learn a lot from them.

This was an amazing experience that I will never forget.

I must express my profound gratitude to my parents Antonio Longo and Maria

Pannucci, my family (especially my grandparents Santo Longo, Annamaria Longo,

Nunzio Pannucci, Pia Pannucci, my uncle Raffaele Longo and my cousins Alessandro,

Mirko and Ludovica Longo), Anipa Duulatova, Bakia Duulatova, Mykhaylo Bazyuk,

Oksana Bazyuk, my girlfriend Kader Löle, her family and my close friends (Andrea

Bofrone, Antonello Giannetti, Paolo Mecozzi, Claudio Verducci, Lorenzo Di Cintio,

Lorenzo Orlando, Koresh Khateri, Damjan Miklic, Riccardo Isola, Flavia Di Noi, Cataldo

Saracino, Andrea Cavallo, Andrea Di Matteo, Iginio Chirivì, Philip Merdian, Matteo

Martinelli, Ascanio Tracchi, Alberto Vestrali, Ilaria D’angelo, Chiara Biagioni, Andrea

Bicceco, Laura Cardellini, Thomas Krahn, Michael Wojtynek).

Their support and care have been important to me, especially during the hard times.

I am proud to have such people close to me.

4 | P a g e

5 | P a g e

6 | P a g e

Abstract

Nowadays, the number of interconnected devices is increasing

dramatically: devices used in everyday life are a source of data that can

be used for any purpose.

Gaining value from this data is the most important task: data can be

used for understanding the interested environmental trends, predicting

their behaviour and thus, generating new data. This view can be applied

to the management of automated machines, providing with the

possibility to analyse their working status, to understand and improve

their throughput and to accomplish the necessary maintenance

operations in time.

Thus, in a so structured and interconnected environment, high volumes

of data are being generated day by day, creating Big Data which are

ready to serve deep analyses and develop advanced monitoring

solutions.

The work thesis is based on a project developed in collaboration with

Elettric80 S.p.A., with the aim of developing a monitoring system for its

laser guided AGV systems, to then be part of the company commercial

offer. The thesis initially shows the state of the art of maintenance

techniques, then introduces the theoretical concepts on which it is

based, such as:

 Big Data;

 Message Brokers;

 Software containerisation systems;

 Hardware In the Loop;

 Industry 4.0.

The methodology used in the project is then illustrated: its requirements

are collected and analysed. A first conceptual architecture is then

defined: this must respect several constraints including the capability to

manage a large amount of data, as well as being capable to save them

easily on the database. In fact, Elettric80 has several customers who also

7 | P a g e

manage hundreds of laser guided AGVs and the system must be able to

easily handle this complexity.

Based on this architecture, software solutions are chosen to meet the

design requirements. The final solution is then explained in all its

components: starting from the machine having the task of being able to

send data from its sensors, a system installed on a server is responsible

for acquiring such data, processing and showing it in a real-time fashion

or in terms of batches.

Solutions such as NoSQL databases (Apache Cassandra) and Message

Brokers (Apache Kafka) are milestones of the architecture, as they allow

you to easily manage huge amounts of data coming from all the

machines of the customer, to analyse and save them safely. Certain types

of analyses were defined with Elettric80 during the development of the

software solution: analyses such as the quality of navigation and data

coming from the machine sensors were implemented. A web dashboard

will then have the task of showing the collected and analysed data.

Finally, additional solutions have been implemented in order to make

this architecture solid: checks are carried out so that all the components

work properly and act in case they are not working as expected

(automatic troubleshooting and technician alerting).

Finally, the achieved results are explained and commented as well as the

way the project has been leaded shown. Future works are explained in

the last chapter.

8 | P a g e

Sommario

Al giorno d’oggi, il numero di dispositivi interconnessi sta aumentando

notevolmente: dispositivi utilizzati nella vita di tutti i giorni sono una

importante sorgente di dati che può essere usata per qualunque scopo.

Acquisire valore da questi dati è il compito più importante: i dati

possono essere usati per conoscere i trend all’interno dell’ambiente di

interesse, predirne il comportamento e perciò generare nuovi dati.

Questa visione può essere applicata alla gestione delle macchine

automatiche, dando la possibilità di analizzare il loro stato di

funzionamento, comprenderne e migliorarne il throughput ed effettuare

le necessarie operazioni di manutenzione in tempo.

Perciò, in un ambiente così strutturato ed interconnesso, un alto volume

di dati viene generato giorno dopo giorno, creando i Big Data: questi

sono a loro volta utilizzati per effettuare analisi approfondite e realizzare

avanzati sistemi di monitoraggio.

Il lavoro di tesi si basa su un progetto sviluppato in collaborazione con

Elettric80 S.p.A., con l’obiettivo di sviluppare un sistema di monitoraggio

per sistemi AGV a guida laser, per poi corredare l’offerta commerciale

dell’azienda. La tesi mostra inizialmente lo stato dell’arte ad oggi delle

tecniche di manutenzione, dopodiché introduce i concetti teorici su cui

essa si basa, quali:

 Big Data;

 Message Brokers;

 Sistemi di containerizzazione software;

 Hardware In the Loop;

 Industria 4.0.

La metodologia utilizzata nel progetto di tesi viene quindi illustrata: i

requisiti di progetto vengono raccolti ed analizzati. Una prima

architettura concettuale viene quindi definita: questa deve rispettare

diversi vincoli tra cui anche quello di poter gestire una grande mole di

dati, nonché poterli salvare agilmente su database. Infatti, Elettric80 ha

diversi clienti che gestiscono anche centinaia di AGV a guida laser ed il

9 | P a g e

sistema dovrà essere in grado di poter gestire agevolmente tale

complessità.

Basandosi su questa architettura, le soluzioni software sono scelte in

modo da poter soddisfare i requisiti di progetto. La soluzione finale

viene quindi spiegata in tutte le sue componenti: partendo dalla

macchina avente il compito di poter inviare dati provenienti dai propri

sensori, un sistema installato su un server ha l’onere di acquisire tali dati,

processarli e poterli mostrare in real-time o in batches.

Soluzioni come NoSQL databases (Apache Cassandra) e Message

Brokers (Apache Kafka) sono punti cardini dell’architettura, in quanto

permettono di poter gestire agevolmente le enormi moli di dati

provenienti da tutte le macchine presenti presso il cliente, di poter quindi

analizzarli e salvarli in modo sicuro. Determinate tipologie di analisi sono

state definite con Elettric80 durante lo sviluppo della soluzione software:

analisi quali la qualità della navigazione e dei dati provenienti dai sensori

macchina sono state implementate. Una web dashboard avrà quindi il

compito di poter mostrare i dati raccolti ed analizzati. Infine, soluzioni

aggiuntive sono state implementate in modo da poter rendere tale

architettura solida: controlli vengono effettuati affinché tutti i

componenti funzionino correttamente ed azioni automatiche vengono

intraprese nel caso in cui non funzioni inaspettatamente (risoluzione

automatica delle problematiche ed allertamento dei tecnici).

Infine, i risultati raggiunti vengono quindi spiegati e commentati, nonché

l’organizzazione del lavoro mostrata. I lavori futuri vengono quindi

illustrati nell’ultimo capitolo.

10 | P a g e

11 | P a g e

1 Contents
1 Introduction ... 14

2 Background on traditional fault diagnosis and monitoring systems 16

2.1 Preventive Maintenance .. 18

2.1.1 Time Based Maintenance .. 18

2.1.2 Failure Finding Maintenance ... 19

2.1.3 Risk Based Maintenance .. 19

2.1.4 Condition Based Maintenance .. 19

2.1.5 Predictive Maintenance ... 20

2.2 Corrective Maintenance .. 20

2.2.1 Emergency Maintenance ... 21

2.2.2 Deferred Maintenance ... 21

2.3 Monitoring Systems .. 22

3 Related Work ... 24

3.1 Introduction to Big Data and difference among NoSQL databases 24

3.1.1 A Comparison Between NoSQL and SQL databases 26

3.2 Message Brokers Systems .. 29

3.3 Delivering containerised applications with Docker and Orchestrations

Tools 31

3.3.1 Docker .. 31

3.3.2 Containers Orchestration with Kubernetes .. 34

3.4 The hardware in the loop ... 37

3.5 Industry 4.0 ... 39

4 The Methodology .. 40

4.1 Projects requirements acquisition ... 41

4.2 Conceptual Architecture ... 43

4.3 Chosen equipment for data acquisition ... 46

4.4 Chosen database .. 48

4.4.1 Apache Cassandra ... 48

12 | P a g e

4.4.2 MySQL .. 51

4.5 Chosen streaming solution .. 52

5 The Developed Architecture .. 55

5.1 AGV Edge .. 58

5.1.1 Computed Order Tracking ... 59

5.1.2 Edge Computing .. 59

5.1.3 Maintenance Protocol .. 60

5.2 On-Premise Server .. 62

5.2.1 AGV Adapter .. 63

5.2.2 Message Broker .. 66

5.2.3 Stream Analytics ... 67

5.2.4 SQL Storage ... 70

5.2.5 Alerting System ... 71

5.2.6 NoSQL Storage ... 72

5.2.7 Mirroring ... 75

5.2.8 Web-Based Dashboard .. 76

5.3 Architecture Stress Conditions and Recovery Operations 80

5.3.1 Software fault causes .. 80

5.3.2 Environmental fault causes .. 85

6 Results .. 87

7 Discussion ... 90

8 Conclusions and Future Works .. 93

9 References .. 94

10 Table of Figures ... 104

13 | P a g e

14 | P a g e

1 Introduction
With the advent of industry 4.0, companies have started wondering how to

improve their industrial plants' throughput and how to connect their industrial

machines with their IT systems. That’s because, in an increasingly globalised

world, complex systems like machines and plants, are becoming way more

delocalised: this increments the complexity grade which the companies must

control.

The quality of the final product, as well as the machine productivity, must be

constantly monitored: throughput might start being lower than it has used to

be or the machines might start requiring more maintenance.

A system capable of managing these complexities, overseeing the machines

working status and the product quality is an important asset: it allows the

companies to better manage machines and plants in one time, helping them

in taking faster decisions. Systems like this might allow, for example, to

determine if the possible decremented throughput is caused by a lower

quality of the used raw materials in production or by maintenance processes

made incorrectly, giving to the companies with the possibility to act in time.

This work thesis is based on a project (SIRO) [1] developed with Elettric80

S.p.A., an international company which offers different types of automated

systems: palletising solutions, wrapping machines, AS/RS storage systems,

Laser Guided Vehicles and Warehouse Management Software.

The aim of the project is to develop a machine monitoring solution

responsible for acquiring, analysing and monitoring sensor data coming from

fleets of Laser guided autonomous Driving Vehicles (LGV) [Figure 1].

Figure 1 Elettric80 Laser Guided Vehicles. (snippet taken by Claudio Santo Longo from Elettric80 website, 2018

Elettric80 S.p.A., https://www.elettric80.com/)

15 | P a g e

Unlike the AGV machines for pallet handling, the LGV machines are capable of

freely driving inside warehouses with a high degree of flexibility, which is

provided by the usage of the laser-scanner localisation technology.

The developed machine monitoring solution is also enriched with the

knowledge that the Author has achieved during his period abroad, as a

Visiting Student: this enrichment is shown in the last chapters, as future works.

This work thesis is structured as follows:

 Chapter 2 delivers a survey over the traditional methodologies used to

diagnose faults, to monitor the asset health status and plan the

maintenance processes;

 Chapter 3 shows which are the concepts on which the software solution

is based, showing the already used technologies;

 Chapter 4 starts with the project requirements acquisition, shows a

conceptual architecture that has been developed basing on them and

on the chosen technologies;

 Chapter 5 shows the developed machine monitoring solution,

explaining all its system components;

 Chapter 6 shows the results;

 Chapter 7 discusses the achieved results, explaining the outcome of the

research;

 Chapter 8 concludes the work thesis by summing up what has been

shown and proposes new additional improvements.

Figure 2 Elettric80 Laser Guided Vehicles. (snippet taken by Claudio Santo Longo from Elettric80 website, 2019

Elettric80 S.p.A., https://www.elettric80.com/)

16 | P a g e

2 Background on traditional fault diagnosis and
monitoring systems

In a local and global context, efficiency and productivity are two strategic

points which lead to the success of a company: these factors have a serious

impact on the financial status of an industry and must be taken under control

over time.

In literature, different ways of analysing and dealing with the incoming faults

in automated machines are explained and their pros and cons analysed. These

methodologies are chosen basing on the way the company wants to manage

the maintenance processes and the action it must take in order to apply them.

All the different types of maintenance methodologies are, of course, used to

increase and maintain the availability of the company assets: the chosen

strategy has impacts on the organisation’s budget and can be applied only

basing on the available resources, technicians experience and maintenance

goals. A company that has high-budget capabilities will have a dedicated team

for the maintenance processes. A small company sometimes cannot afford

these costs and will rely on corrective maintenance or on outsourcing the

maintenance [2]. Outsourcing is a strategy adopted when there is no

competitive nor strategic advantage in doing in-house maintenance: risks

might be too many and the company cannot afford a dedicated team for

maintaining the assets, as it might be too much expensive or not really needed

because maintenance is done only sporadically (for example, outsourcing the

maintenance of “Heating, Ventilation and Air-Conditioning” systems (HVAC) is

very common and cost-effective [Figure 3]).

Figure 3 A technician controlling a Ventilation System

(snippet taken by Claudio Santo Longo from US air foces central command website, 2019, Official United States

Air Force Website, https://www.afcent.af.mil/Units/321st-Air-Expeditionary-Wing/News/Article/934787/hvac-

keeps-the-rock-cool/)

17 | P a g e

Before Machine After Machine Fault Before Machine Fault

Moreover, a company can decide to use different types of maintenance

strategies [3] [4] basing on the type of asset to be maintained: various assets

might be totally different, thus they need precise maintenance strategies.

Sometimes the used machines are very expensive and only specific

components are designed to be programmatically changed over-time,

sometimes machines need to be stopped and fully maintained.

Thus, maintenance is not only composed of corrective technical actions but

comprehend an efficient coordination of these activities, necessary for:

 Reducing the number of stoppages;

 Reducing the number of maintenance actions to be taken over time;

 Ensuring the efficiency of the industrial plants;

 Reducing the number of programmed stoppages, due to maintenance;

 Reducing the time necessary to diagnose the faults.

Doing maintenance, taking into consideration these factors, might have a

positive impact on the company’s economy and competitivity.

In this chapter, subchapters 2.1 and 2.2 describe all the maintenance strategies

[Figure 4] and highlight their economic impact [5] [6] [7] [8] [9] [10] [11].

Subchapter 2.3 provides with a brief description of the already used

techniques for monitoring the asset health status [12] [13] [14].

Figure 4 Types of Maintenance

Maintenance

Preventive
Maintenance

Time Based
Condition

Based
Failure
Finding

Risk Based Predictive

Corrective
Maintenance

Emergency
Maintenance

Deferred
Maintenance

18 | P a g e

2.1 Preventive Maintenance
Preventive maintenance is a process done before a failure occurs. In order to

be implemented, the failure root causes to be eliminated must be known,

potential failure locations must be found, and breakdowns caused by

deteriorating equipment conditions must be avoided. As this information is

well known, set of sensors and strategies (based on time and usage) are used

to implement an optimal maintenance plan.

Sometimes, specific components require periodic servicing or replacement:

this means that preventive maintenance is applied in terms of time intervals. In

other scenarios, the usage of sets of sensors and other technologies (like

image-recognition) allows the companies to keep the machinery under control

and maintain them only when needed. Both strategies have pros and cons and

must be chosen according to the company’s needs and capabilities: the first,

known as preventive maintenance, helps the company to bring back the asset

like new, but it is invasive, requires specific know-how and implies downtime,

letting the equipment be unusable for certain periods of time; the second

strategy allows the company to implement a predictive maintenance strategy,

stopping the machines only when the fault is predicted: in this case, the

company might encounter a very positive effect on its financial and productive

capabilities, as downtime is reduced as well as the number of maintenance

operations.

In this subchapter, a list of preventive maintenance strategies is shown.

2.1.1 Time Based Maintenance
This is a maintenance strategy that requires maintenance tasks to be

performed at already pre-defined time intervals, while the asset is still

operational. Assets are designed to be durable in time: thus, this kind of

maintenance is done periodically with the intent of checking the conditions of

the machine and maximising their performances.

Thus, Time based Maintenance is planned in time and performed regardless of

the fact that the assets require maintenance or not: that’s because is assumed

that incoming faults can be predicted in time. Given equipment MTBF, Time

Based Maintenance is applied accordingly: companies use software solutions,

like CMMS, in order to collect and elaborate data regarding asset faults, at

19 | P a g e

their best. Once all data is elaborated, assets maintenance plan is defined and

applied.

This strategy is not very expensive to be performed but might lead to activities

done too much frequently. Moreover, when this strategy is solely adopted,

random breakdowns may anyway occur, causing economic and productivity

losses.

2.1.2 Failure Finding Maintenance
This type of maintenance aims at detecting hidden failures associated with

security devices or measures: this collides with all the safety equipment used

in case a fault occurs. Thus, this asset is normally never used and is designed

to be used only for safety reasons (an example can be provided by safety

valves which must be periodically checked). This means that this asset is

checked at fixed time interval, based on the country legislation or risk-based

approaches.

2.1.3 Risk Based Maintenance
RBM is based on prioritising the maintenance, basing on which asset is most

likely to fail over time: this allows the company to concentrate its maintenance

effort on the most sensitive asset. Thus, assets that have a greater risk to fail

are maintained and monitored more frequently than the others: this allows to

minimise the risk of failure across the entire production plant, in the most

economical way.

Risk Based Maintenance leads to the continuous optimisation of the

maintenance processes as it is also based on testing and inspecting the asset

and continuously define which machine is more due to fail.

2.1.4 Condition Based Maintenance
This kind of strategy is based on analysing the machine working status and on

determining whether the asset is due to fail. The asset and its output are

monitored over time: the product quality, as well as the machine health status,

might determine the condition of the asset. Thus, CbM is based on the asset

physical conditions: machines are due to degradation over time and this is

20 | P a g e

reflected on the output quality. Basing on this behaviour and on the

technicians’ experience, determining when maintenance is needed is made

possible. In order to measure the machine working conditions, set of sensors

measuring temperature, pressure, vibration and noise are being used and the

acquired data is crossed with the maintenance technicians experience,

providing information about when maintenance is needed.

Thus, CbM allows the companies to understand whether the asset is due to fail

and when, basing on its physical evidence.

2.1.5 Predictive Maintenance
PM is a type of Condition Based Maintenance that is based on:

 the collection of machine data over time;

 on the prediction of possible machine malfunctions in time.

Unlike CbM, Predictive Maintenance relies on precise formula and combine

them with sensor data (acquiring temperature, noise, pressure and vibration)

in order to provide precise information about the needed maintenance.

This means that, this kind of maintenance is way more accurate than the

Condition based Maintenance as predictive formulas are being used. PM is

born with the advent of industry4.0 and the implementation of the IoT

technologies: thus, the term IIoT (Industrial Internet of Things) is now broadly

used as the market wants to implement the IoT in industrial scenarios,

bringing the advantages of way more connected and controllable machines.

2.2 Corrective Maintenance
Corrective maintenance focuses on restoring equipment to its normal

operational state after a fault has been detected, replacing or repairing the

faulty parts/components. This type of maintenance can be successfully applied

when it does interest parts which are inexpensive, simple to replace, and the

failure doesn’t affect any high-value asset.

Sometimes, machines and components might break down without any kind of

control. Thus, even this kind of scenario is included in corrective maintenance

and might lead to catastrophic events which must be treated as soon as

possible: repair costs might be very high, and the production plant might face

21 | P a g e

very long downtimes, dwarfing what you would have spent on preventive

maintenance.

In this subchapter, a list of corrective maintenance strategies is explained.

2.2.1 Emergency Maintenance
This is a type of maintenance that occurs when the asset requires immediate

attention, in order to keep a production plant operational and safe. When

needed, Emergency Maintenance gets top priority over the other, already

scheduled, maintenance activities: it is designed to cope with machine faults

which were not inadequately covered by preventive maintenance. This is the

most expensive and least efficient type of maintenance: that’s because, when

faults occur, the company must stop the other maintenance activities and

sometimes may lack in spare parts which must then be ordered and paid,

overpriced, increasing the downtime. This leads to increased management

costs and decreased performances.

This kind of maintenance can be avoided by applying efficient Preventive

Maintenance plans.

2.2.2 Deferred Maintenance
Like the Emergency Maintenance, this type of maintenance occurs when a

fault in the production plant happens.

The difference between both corrective maintenance types is the fact that

Deferred Maintenance can be scheduled, due to limited company budged

capabilities and available resources. Postponing maintenance may lead to save

costs and meet the budget funding level but may also lead to the

deterioration of the faulty machines: it’s a matter of fact that, Deferred

Maintenance must be applied with precise criteria and with timings which will

not furtherly impact the faulty asset.

22 | P a g e

2.3 Monitoring Systems
In order to control the assets health status, many solutions may be adopted:

 Manually controlling the machines: this is a process used by companies

which are only applying time-based maintenance. The usage of IT

systems is minimum, and it is only related to scheduling and registering

the inspection feedback, by using set of spreadsheets and notes.

Sensors and advanced control systems are not considered, and the

assets are manually regularly inspected (by checking the machines and

their SCADA systems). This kind of strategy, when not integrated with IT

systems, might not be very flexible as the maintenance managers must

use paper and pen and the inconveniences might not be handled in an

agile way;

 Controlling the machines health status by integrating them with

advanced IT systems: in this case, a set of sensors is being used to

control the machine health status over time. Data like temperature,

vibrations as well as the products final quality are monitored over time:

this data is being collected and used by software solutions in order to

alert the technicians in case of incurring anomalies and to help the

management in planning the maintenance activities. Thus, these

software solutions help the companies in managing all the maintenance

activities, preventing faults (when possible), improving the throughput

of the machine and improving the performance of the asset. In this case,

we talk about the usage of Computerized Maintenance Management

Systems (CMMS) [Figure 5], which allows the companies to track all the

faults, to plan maintenance activities, as well as to have a clear picture

about the owned asset;

23 | P a g e

Figure 5 CMMS purposes

With the advent of Industry4.0, markets are now moving towards the

application of IIoT technologies and the implementation of predictive

maintenance systems: major IT companies are tackling the automation

sector, providing solutions capable of integrating machine learning, Big

Data and Cloud solutions with the sensor data acquisition technologies.

The aim is to deliver systems capable of predicting faults in time,

allowing the companies to implement smart maintenance processes

(maintenance is done only when needed).

24 | P a g e

3 Related Work
The architecture of the machine monitoring solution, output of this work

thesis, has been developed basing on the nowadays edge technologies: before

the development of this complex system, a study over the most important

technologies and concepts has been made.

The following chapter provides a survey of them.

3.1 Introduction to Big Data and difference among NoSQL

databases
The nowadays interconnected devices can generate a huge amount of data

day by day. Considering the nowadays privacy regulations, companies can

store this growing amount of data, analyse it and generate insights: due to its

exponential growth, information needs to be stored quickly and safely.

Moreover, we need to consider that data is becoming very heterogeneous and

unstructured because it is generated by several different devices: thus, in order

to be used for generating value, data needs to be pre-processed or to be

stored by means of software solutions capable of handling it in a non-

structured format and of supporting parallel-computing [15] [16]. Due to the

complexity that companies are facing, NoSQL databases are being used and

generate the nowadays Big Data: with this term we intend a massive dataset

that comprehends data coming from different sources. Many IT companies are

using them to generate insights and thus, value: in fact, these technologies are

being used in any kind of situation where data is being generated in a very

fast way and insights are needed very quickly (or are being acquired from big

data-sets) in order to provide the companies with important information that

may vary from the social-media trends analysis to working environment alerts.

Moreover, with the advent of IoT (Internet of Things) and IIoT (Industrial

Internet of Things) technologies, the usage of NoSQL databases is becoming

crucial because of their capabilities: in these use-cases sensor data is being

acquired, analysed and insights are generated.

We can start from the definition of Big Data, by reading what the National

Institute of Standards and Technology (NIST) states: “Big Data consists of

extensive datasets, primarily in the characteristics of volume, variety, velocity,

and/or variability, that require a scalable architecture for efficient storage,

manipulation, and analysis” [17].

25 | P a g e

This definition highlights four characteristics (the four V’s), which are the main

attributes of these complex systems [18]:

 Volume: this is the main characteristic that leads to the definition of “Big

Data”. All the acquired data is being collected and stored in these

systems, which tend to become huge day by day;

 Variety: collected data is heterogeneous as the data sources are

different each to other, generating structured and unstructured data;

 Veracity: refers to the incompleteness and inconsistencies in data as it is

being acquired by different sources and the communication channel or

the devices might be corrupt or might send data in an inconsistent way;

 Velocity: not only the number of available communicating devices is

huge but also the transfer speed provided by them.

The complexity brought by the four V’s is addressed by the usage of NoSQL

databases: despite the traditional RDBMS [19] which might only “scaling up”

by using faster resources, NoSQL databases bring the advantage of “scaling

out” by replicating and managing data in multiple clusters and offering load

balancing capabilities (important when data grows up exponentially and very

quickly). Moreover, NoSQL databases offer the possibility to handle

unstructured and structured data, impossible task for classical RDBMS (a pre-

processing is needed). On the other hand, RDBMS guarantees ACID (Atomicity,

Consistency, Isolation, Durability) transactions and the powerfulness of the

SQL query language.

Due to the heterogeneity of the NoSQL database type, classification of them is

mandatory and it is shown below [20] [21] [22] [23] [24] [1]:

 Wide Column Store databases: are a distributed storage system that

stores data in columns. In order to perform queries, they use a SQL-like

language and they have a graphical representation that is similar to the

RDBMS.

Moreover, as said before, columns might be added afterwards without

any sort of problem, giving the opportunity to handle heterogeneous

data and store newly added features to the data sources.

This type of database was created in order to store a huge amount of

26 | P a g e

data to be then distributed across servers and clusters.

 In-Memory Databases: also known as Key Value Store, is a type of

databases that uses the hardware memory to store and serve

information. They are similar to dictionaries where information is stored

in form of keys and values. While values are opaque to the system, the

only way to retrieve them is to refer to their keys which are uniquely

stored. Since these databases store data in memory, the usage of

NVRAM memory is also recommended as it can old the processed data

even if the system is down;

 Document-Oriented Databases: are databases designed for storing,

reading and managing document-oriented information, which is known

as semi-structured data. In fact, they consist of versioned documents

that are collections of key-values combinations. Documents are

identified by an “ID”, which is also unique. Values are not opaque to the

system that can be queried, and they are encapsulated in JSON or

JSON-like documents;

 Graph Databases: in contrast with the already explained NoSQL

database types and SQL databases, this kind of database is used in case

data is heavily linked. The discovery of the relationship between data is

optimised and fast querying and lookups are made possible.

In order to represent the data, graph databases consist of:

o Nodes: entities which have to be tracked and are equivalent to a

record stored in an RDBMS;

o Edges: define the connection and thus, the relationship between

Nodes. They have a direction, a type, a start and end Node.

Properties quantify the relationships, defining information like

costs and weights.

Most of the use case in which the graph databases used are social-

medias, location-based services and retail solutions.

3.1.1 A Comparison Between NoSQL and SQL databases
A comparison between the SQL and NoSQL features is shown below [25] [26]

[20] [21] [22] [23] :

 Scalability: as said before, SQL databases can “scale-up” (vertically) and

NoSQL databases can “scale-out” (horizontally). This means that,

27 | P a g e

meanwhile the traditional RDBMS can be handled by adding faster

hardware resources to the server, the NoSQL databases can be handled

by adding more nodes to the cluster. This kind of manageability has

impacts on the costs because the upgrade of old systems might be

expensive due to the lack of support and software limitation. On the

other hand, the upgradability opportunities offered by NoSQL, allow to

use new hardware and to make a transition of the data to newer

hardware platforms. In fact, NoSQL databases rely on the BASE (Basically

Available, Soft state, Eventually consistent) principle, coming from the

CAP theorem [Figure 6] [27] [28]:

o Consistency: data replicated on a different server must be the

same;

o Availability: data must be always accessible;

o Partition tolerance: data and databases must always be accessible

despite machine or network failures.

Figure 6 The CAP Theorem

 Query Language: meanwhile RDBMS use the Structured Query

Language, NoSQL databases use a language that depends on the

database itself.

We can then highlight the consequences as follows:

o Relational Database Management Systems use a standardized

and yet very powerful language which allows using a very

structured query. The design of an RDBMS depends only on the

nature of the data;

o NoSQL databases are very heterogeneous, and every database

server solution has its own language. The provided query

language is not so strong as the SQL, and data retrieval (for batch

Availability

Partition
tolerance

Consistency

28 | P a g e

processing) is sometimes only possible by using other frameworks

(e.g. Apache Storm, Apache Flink..).

The database design depends on the application and on the

nature of the data to be handled.

 Flexibility: RDBMSs have a fixed schema that must be pre-defined

before data insertion and NoSQL databases have a dynamic schema

that has not to be pre-defined. Another point is the data type to be

managed: as RDBMS can only handle structured data, the NoSQL

database can handle any kind of data (structured, semi-structured and

unstructured);

 Data Management and Access: while in SQL databases, data is

normalised and redundancy is avoided, in NoSQL databases “data

redundancy” is inevitable due the lack of relationship between data.

When performing replication across computer clusters, availability is

always increased but performance is only decreased in RDBMS, with

long time and storage consumption consequences;

 Security: most of the NoSQL databases do not provide with a lot of

mechanisms capable of ensuring many security measures types.

Meanwhile, cryptography in some NoSQL server is guaranteed, features

like authentication, access control, secure configurations, and auditing

are not guaranteed in NoSQL databases. Due to this situation, data

security is way more impacted when stored data is stored in different

computer cluster located in different locations. RDBMSs provide with all

the security features described above.

Basing on the comparison shown above and the use case requirements,

software solution might use SQL, NoSQL or both database types and achieve

the final goals providing the end-user with the best performance and

experience. These choices must be based on the project purposes and its

constraints.

29 | P a g e

3.2 Message Brokers Systems
Sensors are installed on machines and are responsible for acquiring and

sending a high volume of data over time. In order to cope with this scenario,

Message Brokers Systems [29] [30] come in hand, as they provide with the

possibility of:

 acquiring high volumes of data;

 storing it in a shape of logs (data retention);

 serving multiple publishers and subscribers.

These solutions are publishing-subscribing systems which allow multiple

device and software solutions to intercommunicate each with other: moreover,

frameworks like Kafka integrate a functionality which allows the developers to

analyse data on the fly. This is an interesting solution when the hardware

usage must be optimized, as the end-user does not need to use other

frameworks in addition to the ones used for acquiring data. In literature, many

articles talk about them and provides the reader with use-cases and bench-

markings [30], [31], [32], [33], [34], [35] [36] [37]. The Message Brokers Systems

allow the development of efficient pipelines, establishing interconnections

between all the used IT solutions by means of the same software interface and

thus, becoming the core of the final software solution. Moreover, frameworks

like Apache Kafka provide with the possibility to retain data for certain amount

of time, providing with the possibility to recover and analyse batches of data.

Message Brokers use different communication models: the common consists

in using queue and topic, creating different streams of data which can be

transformed (e.g. transformation from XML to JSON) and lately consumed.

Figure 7 Example of a Message Broker System Architecture

30 | P a g e

The functioning mechanism of these systems is depicted in [Figure 7]:

1. Producers receive data from other devices and are responsible for

sending it to the Broker System;

2. The Broker acquires data from the Producers and is responsible for

routing it in different queues, according to the Producers’ instructions

and the system load;

3. Messages are then received by the Consumers: these are the connection

point between the Broker and the end device or software solution that

will read and use the streamed data. These messages can be also pre-

processed by the consumers, providing with the possibility to serve the

end-system with data in the desired way.

Message Broker Systems carry multiple properties:

 Scalability: data transfer speed can be always assured by splitting the

data in different queues. Moreover, Brokers can be clustered providing

load balancing and replication capabilities;

 Flexibility: basing on the use-case, communications between different

endpoints (producers and consumers) can be established and

interrupted without letting the system be faulty. Moreover, data can be

filtered, providing the endpoints with the needed data;

 Extensibility: nowadays, Brokers Systems provide with the possibility to

use different programming languages. This allows the company to

continue using its already used technology without the need of using a

new one, letting the integration of the chosen Broker System feasible;

 Fault tolerance: Brokers not only carry replication capabilities but

provide with the possibility to store the managed data on the disk,

preventing data loss in case of faults. Moreover, in case a server or a

node responsible for transferring data is being lost, the Broker can

automatically manage this situation, by stopping non-responsive

services and dynamically managing the existing queues.

31 | P a g e

3.3 Delivering containerised applications with Docker and

Orchestrations Tools
When delivering software solutions composed of a multitude of different code

components and services, companies need to install every single used

software and must make sure that its software solution is compliant with the

customers' system environment. This means that, not only the software

solution must be compatible with the hardware and operative system

provided by the customer, but also dependencies need to be satisfied [38] [39]

[40]. The usage of classical Virtual Machines running on top of the same

Hypervisor provides isolation and scalability of the applications but can

increase the used resources, the redundancy and the overhead because

multiple deployed Operative Systems are being used at the same time.

Moreover, use cases like big data processing and provisioning require the

ordinary user to install and use complex big data analytics solution which

might be a significant challenge.

The problems shown above can be handled by adopting the popular Docker

containerisation solution and scale its containers by means of Kubernetes. This

chapter provides the reader with a brief description of them, highlighting the

advantages.

3.3.1 Docker
Docker is an open platform which allows companies in developing, shipping

and running different applications very quickly [41] [42]. Unlike the traditional

“hypervisor - virtual machines” [43] architecture where VMs are an abstraction

of the physical hardware and all of them are placed on top of a hypervisor

(which coordinates them), with docker the abstraction is obtained at the

application layer [Figure 8]. Applications and their dependencies are packaged

inside “Containers” and can run as isolated processes (by means of cgroups

and kernel namespaces [44]) on the same host, sharing the OS kernel. By using

Docker, the redundancy of multiple virtual machines is reduced, and

Containers can run in multiple virtual machines as well: for example, an

application may need to read data stored on a database that resides in a

different virtual machine and both might be docker containers as well [45],

maximising the utilisation of the server resources.

32 | P a g e

Figure 8 Difference between regular "Hypervisor-Virtual Machines" solutions and Docker

The advantages of docker are the following [39]:

 Portability: all the applications and dependencies are packaged in

Containers. These can be easily moved to different platforms, allowing

to use the same software solution in the same way and providing

applications which can run with the same original behaviour;

 Lightweight: instead of using several virtual machines, which causes

redundancy and an increase in resources utilisation, Docker containers

are an abstraction of the needed application which does not need to run

on a specific Host OS. Starting and stopping a Docker Container is a fast

process if compared to managing multiple virtual machines;

 Optimised resource utilisation: we can run more containers on the same

Host OS and define the amount of resources to be allocated. Moreover,

containers can share the same data, reducing or removing redundancy;

 Fit for microservices architecture: Docker Containers provide with the

possibility to deploy software solutions as microservices, reducing the

complexity provided by monolithic architectures and improving their

maintainability and performances.

Docker works by means of a client-server architecture: clients (Docker

Containers) communicate with the server (Docker Daemon) which is hosting

them. The Daemon is responsible for running the Containers: the

communication among them is established by means of a network bridge

(docker0).

Physical Server

Hypervisor

Guest OS

Libs / Bins

Application A

Guest OS

Libs / Bins

Application B

Physical Server

Host OS

Docker Engine

Libs / Bins

Application A

Lib / Bins

Application B

33 | P a g e

The main components of Docker are [46]:

 Docker Engine: this is the layer on top of which Docker runs. It’s a

lightweight runtime responsible for running the containers;

 Docker Client: a command-line tool is used for communicating with the

Docker Daemon;

 Docker Daemon: it is responsible for executing the commands sent with

the Docker Client and runs on the host machine;

 Docker Image: it is a template used to create a Docker Container and is

buildable by means of the Dockerfile;

 Dockerfile: it is a script used to store all the instructions necessary to

build a Docker Image [Figure 9];

Figure 9 A Dockerfile packaging a Kafka Streams Application

 Docker Registry [47]: consists of a server-side application which holds

the docker images and might be public (Docker Hub) or private (used

for internal releases). Developers and DevOps can easily use a remote

registry to push and pull their applications and deploy them into

production very quickly;

 Union File System (UFS) [48]: images are composed of different layers

and when multiple images are using the same data, then this layer is

being used by all of them without duplicating it;

 Docker Container: built off docker images, Containers contain all the

necessary files in order to run the desired application;

 Volume: data part of a container. This data is not part of the UFS and

consists of a directory, stored on the Host OS HDD, responsible for

persisting container’s data and share it between multiple containers.

34 | P a g e

3.3.2 Containers Orchestration with Kubernetes
In case a set of multiple containers is supposed to run on a computer cluster, a

container orchestrator is a very important solution: it allows to manage

multiple containers which reside on different servers. Containers management

not only means starting and stopping containers but also their automatic

deployment, scaling (creating a different number of replicas and providing

with high availability), monitoring, scheduling, coordinating, securing and

connecting them [49].

According to Forbes [50] and by querying the trends of the moment [Figure

10], Kubernetes is the most popular Orchestration Tool until now. Moreover,

after a deep study about the Docker Orchestrators of the moment, [49] states:

“Kubernetes is one of the most complete orchestrators nowadays on the

market”.

Figure 10 Most popular Orchestration Tools based on interest (snippet taken by Claudio Santo Longo from

Google Trends, 2019, https://trends.google.it/trends/explore?q=kubernetes,Docker%20Swarm,Mesos)

Most popular means, more interest in the tool and more support by the

community as well as continuous development and improvement of the

software.

35 | P a g e

Kubernetes [51] [52] [53] [54], developed by Google in 2014, is an open-source

platform for managing containerised applications and provides the end-user

with:

 Storage Orchestration: possibility to mount on-premise or in-cloud

storage systems;

 Service discovery: exposure of docker containers by means of DNS or IP

addresses;

 Load balancing: network traffic is automatically balanced and

distributed, maintaining the deployment stable;

 Automated rollouts and rollbacks: describe the desired state of the

deployed containers, deploy and exchange the old with the new

releases;

 Automatic bin packing: allocate resource usage to running containers;

 Self-healing: containers which suddenly fail are subtly restarted, always

providing with the pre-defined number of up and running replicas;

 Secret and configuration management: sensitive information is stored

and used in order to provide with more control and less exposure of the

deployed applications.

The Kubernetes architecture is depicted in [Figure 11] and briefly explained as

follows [55] [56]:

 Containers: they are running on a Worker Node (a Virtual Machine or

Physical Server), they are responsible for running the application and

they are inside a pre-defined Pod;

 Pod: is a management unit in Kubernetes which comprises one or more

containers. Each of them has a unique IP-address, storage, namespace

and option which define how the containers should run. Every container,

inside of it, shares this networking and storage resources. We can use a

.yaml file to define the Pod attributes like metadata and Apiversion.

The number of Pods replica can be specified and managed by means of

a “Deployment” .yaml file or instruction.

36 | P a g e

Finally, Pods can be accessed by means of a “Service” .yaml file or sets

of instructions which define their access policies;

 Worker Node: a virtual machine or physical machine, responsible for

running Pods and its managed by the Master Node;

 Master Node: is the entry point for every administrative task for

managing the Kubernetes cluster. Has an Api Server, a scheduler and a

controller manager that watches the desired state of the object it

manages and its current state (matching them).

Figure 11 Kubernetes Architecture

Kubernetes can be managed through SSH and an installable Web-based

Dashboard [Figure 12].

37 | P a g e

Figure 12 Kubernetes Web Dashboard

3.4 The hardware in the loop
When working with automated machines, the comprehension of their

performance due to working conditions is fundamental. The execution of

extensive tests on real machine might be a usual but very expensive

procedure: during the preparation and execution of the tests, materials and

energy are being extensively used, resulting in increasing costs and testing

time.

In order to cope with this scenario, the Hardware In the loop (HIL) [57] [58] [1]

[59] [60] technique is currently taken into consideration and applied for a fast

Verification & Validation (V&V): it connects the real machine controllers with a

simulated version of the machine. This technique can be applied to already

developed machines, as well as to machines under development, because it

allows the System Engineer (SE) to rapidly and safely design and test a

machine before constructing it: the simulated machine interacts with the

controllers to be tested and behaviour of the coupled machine-controller is

obtained accordingly. HIL is also used for testing entire production lines.

On the other hand, the application of the Hardware in the Loop technique is

made difficult by the development of a reliable real system model: a machine

is a complex system which cannot be dominated if taken as a whole.

This situation is coped by applying the Modular Machine Development (MMD)

approach: machines are reproduced by functional decomposing them into

38 | P a g e

mechatronics parts. Therefore, these complex systems are a result of the

interconnection of sets of mechatronic subsystems which are simulated as

single components. All the subsystems internal behaviour is hidden from the

others thus, they communicate through interfaces. If the developed

subsystems can be used in different machines, they can be deployed in form

of libraries which can be applied multiple times and independently from the

machine taken under consideration, if applicable.

The development steps of a machine system model, according to the

Hardware In the Loop technique, is explained as follows:

1. Machine decomposition: according to the Modular Machine

Development approach, the machine is decomposed in subsystems. This

allows the modelling of them;

2. Identification of the discrete event (DE) behaviour: this step allows to

model the machine according to its DE behaviour, defining whether its

behaviour is a result of its sensors or internal PLC components;

3. Identification of the continuous event (CE) behaviour: in each state, the

identification of CE phenomena is fundamental;

4. Loop control: this step defines the identification of CE behaviour used in

closed and open control loops;

5. Development of a mathematical model of the system;

6. Testing sessions of the machine modules.

39 | P a g e

3.5 Industry 4.0
Technologies are rapidly evolving: information and automation systems are

gaining benefits from this and an incredible evolution in such systems might

be obtained by connecting both worlds.

Thus, starting from the Hannover fair of 2011, the term “Industry 4.0” or

“Industrie 4.0” [61] [62] was born [63]: a German government initiative [64],

part of the technology strategic plan for 2020. The aim is to create a “Smart

Factory” of the future capable of shifting the industrial plant decision-making

production from “centralised” to “decentralised”.

The principles of Industry 4.0 are:

 Decentralised decision-making: the automated system must be capable

of analysing the current machine working status and make decentralised

decisions;

 Information transparency and interoperability: sensor data must be

collected from the operating machines, providing with the possibility to

analyse it and generate insights;

 Technical assistance: ability to predict failures in time, basing on the

collected sensor data.

Basing on the principles shown above, Industry 4.0 comprises the following

terms and technologies, which are:

 Internet of Things (IoT) or Industrial Internet of Things (IIoT) and

Embedded Systems (ES): integration of sensors in an automated

machine for monitoring purposes and remote controlling;

 Cloud Computing and Internet of Services: usage of internet-based

services capable of providing with scalability, reliability, performances

and allowing to operating leverage [65];

 Cyber-Physical Systems: monitoring physical processes by acquiring

data from them, applying this data on a simulated reproduction of the

production plant and provide with automatic decentralised decisions

[66] (in accordance with “The Hardware in the loop” technique, [Chapter

3.4]).

40 | P a g e

4 The Methodology
With the SIRO Project, Elettric80 S.p.A. wants to constantly monitor its LGV

machines, in order to provide a better after-sales service as well as enhancing

the efficiency of its machines, by analysing the most occurring alarms over

time and consequentially improve their machine quality and performances.

For this purpose, a system capable of acquiring sensor-data is mandatory:

fleets of LGV machines were currently equipped with PLCs capable of

obtaining this information and sending it to a pre-defined destination.

Data must be then analysed in real-time or in batch and generate insights in

form of alarms and trends: the accordingly developed software solution must

help the maintenance technicians, in order to do maintenance in time, and the

company engineers to improve the quality of these machines.

This project has been accomplished in collaboration with the University of

Modena and Reggio Emilia, and its related software solution has been already

delivered and installed in an existing industrial plant.

This chapter starts by showing the requirements acquired during the first

meeting held with Elettric80 [Chapter 4.1], followed by the proposed

conceptual architecture that could fit with them [Chapter 4.2]. Basing on the

architecture and the requirements, the specific architectural components have

been chosen accordingly and explained in this chapter [Chapters 4.3, 4.4, 4.5].

Figure 13 An operating LGV machine

41 | P a g e

4.1 Projects requirements acquisition
Several meetings have been organised by the University of Modena and

Reggio Emilia (Unimore) with the intent of studying the machines, main topic

of this project, and defining an architecture that had to be capable of coping

with the project objectives which aim to remote monitoring and improve the

LGV machines performances.

Managers and technicians have been widely engaged for understanding the

LGV machines and the needs encountered by them on the field: technicians

were doing maintenance basing on the alarms raised by the machines and

mostly basing on their own experience. Sometimes, the raised alarms could

lead to extensive maintenance which was causing downtimes and letting the

relationship with their customers being harder time to time: these situations

could be solved by introducing Elettric80 maintenance technicians in the

customers' warehouse and by letting them assist the maintenance operations.

The usage of proprietary technicians in the customers' warehouse is, of course,

a cost that impacts the machines selling process: eliminating or reducing the

failure causes is a way to reduce these costs and to improve the after-sales.

Thus, the participation of Elettric80 technicians was fundamental to

understand how the LGV machines work and which were the most important

needs the software solution had to meet: this allowed Elettric80 and Unimore

to define the objectives of the project.

Moreover, during these meetings, the following information have been

acquired:

 The LGV machines work by means of two types of equipment:

o Incremental encoders: these are used to track the incremental

movement of the LGV machines over time. Incremental encoders

acquire information which are transmitted by a driving wheel.

As the wheel is subjected to wear, this kind of system must be

calibrated over time;

o Laser-scanners: reflective bars are installed in the whole

warehouse and the LGV machines can define their position by

transmitting a laser to these bars. This system allows the LGV

machines to freely drive inside the warehouses and accomplish

pick and place operations.

42 | P a g e

 Maintenance is done basing on the alarms raised by the machines and it

might be sometimes false due to other factors: this leads to an extensive

inspection of the machines which could be speeded up by the Elettric80

technician experience;

 Technicians must manually monitor the machine's activities and

recalibrate the navigation system when needed;

 Elettric80 had already deployed a communication system on their

machines which is capable of transmitting sensor data.

One of the concerns of the technicians was regarding the navigation system

recalibration: this must be monitored and accomplished by them manually.

The LGV machines wheels wear over time and this leads to a wrong encoder

calculation, thus to a wrong machine navigation: this situation is solved by

directly recalibrating the encoder.

Thus, Unimore and Elettric80 agreed on developing a machine monitoring

solution capable of:

 Acquiring and storing sensor data over time;

 Analysing the acquired data in real-time;

 Raising alarms in real-time and notify the in-plant technicians;

 Showing the acquired and analysed data in real-time on web-based

dashboards;

 Being scalable and adaptable to any situation where thousands of LGV

machine could operate.

For this project, they wanted to only raise alarms basing on the calibration of

the encoder.

Moreover, another requirement, requested by Elettric80 during the last project

month, was regarding the possibility to integrate in the architecture even

some software which could be easily accessed, used and modified by the

company even after the end of the project: sensor data trends and

maintenance tickets, are vital for the company and must be accessed with

already used in-house technologies and expertise. The company wanted to

integrate the software solution inside its commercial offer as well as using it

for monitoring its machines and improve them.

43 | P a g e

Moreover, the used technologies implemented in the machine monitoring

solution had to be open source.

Elettric80 provided Unimore with a workbench (shown in Chapter 4.3) that is

composed of a PLC unit and an encoder, for testing purposes: this allowed the

research group of the university to check the PLC unit code and to

communicate with it, reproducing the possible data an LGV machine could

generate and acquiring it with the machine monitoring solution under

development.

4.2 Conceptual Architecture
Basing on the acquired requirements, a conceptual architecture responsible

for coping with such complexities, described in [Chapter 4.1], has been

designed. It refers to the lambda architecture [67] [68] [69] [70] [71], which

considers the following concepts:

 Data Source: streams of data coming from different sources must be

acquired at the same time;

 Data can be analysed in batches and/or when acquired (stream);

 Data is stored on NoSQL or SQL databases;

 Data is then shown on a Dashboard or by means of Business

Intelligence software solutions;

In this specific case, we must develop an architecture that has to cope with

automated machines in movement: thus, this architecture communicates with

IIoT devices which might be several (a warehouse, customer of Elettric80,

manages more than 100 LGV machines at the same time).

The interconnection of the software solution with the machines is the first and

important step for this project: if a proper and secure communication channel

is not being established, the data acquisition might be the weakest point of

the entire architecture.

Moreover, our architecture must be scalable and adaptable to any required

workload: some warehouse might have 10 LGV machines and other customers

more than 100 thus, this solution must be capable of handling such

complexity.

Data must be analysed in real-time and then stored on databases which must

be accessible in an easy way.

44 | P a g e

In order to analyse data streamed on the fly, connect all the components and

ensure scalability, a broker message is mandatory.

Basing on the requirements, data must be then browsable in terms of

temporal sequences as well as in real-time: Elettric80 is interested in watching

the sensor data trends over time in terms of batches and as the user is

watching a Scada system. If the software solutions used for this solution are

not properly chosen, they might be a bottleneck for this last layer.

Figure 14 shows the Conceptual Architecture on which the final software

solution is based, and it is explained below:

Figure 14 Conceptual Architecture acquiring data from 1-n machines

 Machines: every automated machine must be capable of packaging the

information coming from its sensors and of sending it to the machine

monitoring solution, which resides on a Server.

The definition of the package structure is fundamental for the other

architectural components, as it allows them to interpret the sent

messages and transform them into a more readable structure. A

communication channel between machines and the Server must be

enabled and reliable over time, otherwise information might not be

feasible for the afterwards analyses and visualisation;

 Data Acquisition: this architectural component is responsible for

acquiring data from the Machines, parsing and sending it to the

Message Broker component. When this component receives the

message, checks its integrity and if it is compliant.

45 | P a g e

Once these steps are being accomplished, the Data Acquisition

component parses the received message and it sends it to the Message

Broker;

 Message Broker: this is the core part of the structure as it is responsible

for receiving the data coming from the sources and then letting it be

available for the other components as a unified interface. This means

that, the other architectural components can access the Broker in the

same way and use the same libraries, letting them be usable multiple

time. The Message Broker is also scalable and reliable, letting the

messages being divided into multiple topics, partitions and brokers.

Moreover, some Message Brokers provide with the possibility to retain

data for a certain amount of time (or number of messages per Partition),

letting the stream processing to read many of them at once;

 Stream Data Processing: this architectural component is responsible for

reading data on the fly and do analyses. It is composed of a set of

scripts which carries algorithms into them: they are responsible for

doing different analyses types and publishing their results on the

Message Broker;

 Alarm Notifier: this architectural component is responsible for reading

data that is being published by the Stream Data Processing or the Data

Acquisition on the Message Broker(s) and alert the technicians in case

an alarm is raised;

 Data Storage: this architectural component is responsible for receiving

data from the Message Broker(s) and store it. The databases must be

designed carefully, as a transition to another database or solution might

be very time and resource consuming. Basing on the system

requirements, this component might consist of one or different

database types, allowing the data management and analysis being

easier: different SQL and NoSQL databases can be mixed basing on the

requirements and analyses to be done afterwards;

46 | P a g e

 Data Visualisation: this architectural component, consisting of a web-

based dashboard, is responsible for showing the machines data and the

output of the data analytics algorithms. Basing on the requirements,

data can be shown in a batch or in a real-time fashion:

o Batches of data: data is being read and shown on a dashboard.

The objective is to show trends in a chosen time window (by the

user) thus, batches of data are retrieved from the database and

plotted;

o Real-time data: the dashboard continuously read data from the

Message Broker, providing the end-user with the current machine

working status, in a real-time fashion.

Starting from this conceptual architecture and basing on the requirements, the

software solutions to be used have been chosen accordingly.

In this chapter, the most prominent and chosen technologies are explained.

4.3 Chosen equipment for data acquisition
PLCs belonging to the working LGVs machines are not only responsible for

controlling them, but also for packaging and sending the collected machine

sensor data.

Elettric80 had already implemented a communication channel between the

machines and the warehouses in which are located: thus, it provided us with a

workbench which allowed us to test and debug their PLC code as well as

building the machine monitoring software solution on top of it.

This solution allowed us to deep understand the structure of the code, to

troubleshoot the PLC coded sensor data acquisition technique, to save time

and resources by directly working with it.

The provided workbench [Figure 15] [1] was consisting of:

 PLC: Beckhoff CX5020-0111;

 Power Supplier: Siemens SITOP modular 5A;

 1/2phasig 6EP1 333-3BA;

 Incremental Encoder used for analysing the data acquirable from it;

 Modem-Router: Netgear N600.

47 | P a g e

Figure 15 The workbench provided by Elettric80

Like in the real LGV machines, this workbench is capable of transmitting data

by means of a UDP protocol.

48 | P a g e

4.4 Chosen database
Basing on the system requirements, two types of data must be acquired over

time: machine sensor data and maintenance tickets. Data must be collected as

it arrives to the software solution and the system must be scalable.

Moreover, Elettric80 needs a system which allows it to browse the

maintenance tickets and trends in an easy way, even after the end of the

project: a database which can be easily used by the company and which is

compliant with its already used technologies, is mandatory.

Thus, two databases have been designed for coping with the project

complexities:

 Apache Cassandra: a NoSQL database, to be used for storing sensor

data, with fault tolerance and scalability properties;

 MySQL: an RDBMS to be used for collecting the machines maintenance

tickets, define alerting rules and aggregated sensor data over time.

In this chapter, a brief overview of both databases is done.

4.4.1 Apache Cassandra
Apache Cassandra is an open-source [72], distributed NoSQL wide columnar

data store [Chapter 3.1] that can ingest and process massive amounts of data

very fast [73] [74] [75]. Deployable as On-Premise, in Cloud and in a Hybrid

Data Environment, Cassandra was originally developed by Facebook for its

inbox search system and later become an open-source project.

It provides the following features:

 Fast writes: it provides fast writing capabilities [73], letting it be an

interesting database for storing sensor data storage [76].

 Elastic Scalability: horizontal scale-up or scale-down of the cluster is

made possible in Cassandra without the need of restarting it;

 Fast linear-scale performance: throughput is increased as the number of

nodes becomes bigger;

49 | P a g e

 Flexible data storage: structured, semi-structured, and unstructured data

can be stored. It can accommodate changes in the database structure,

allowing the end-user to add more column to the existing tables as well

as adding more tables to the same keyspace (database);

 Easy data distribution: Cassandra distributes data across multiple

datacentres by means of replication functionalities;

 Always on architecture: Cassandra is a database with no single point of

failure.

Cassandra is designed to handle heavy data workloads, distributing data

across multiple nodes (servers) [Figure 16] by means of a peer-to-peer

distribution model. All the nodes are interconnected: when a node is down,

the other nodes can anyway handle read/write requests. Moreover, as data is

distributed, Cassandra is capable of understanding if a node does not contain

the most recent data and of performing, consequentially, an automatic repair.

Requests are handled by a node, called Coordinator, which is responsible for

the managing, reading and writing operations.

Figure 16 Cassandra Architecture

50 | P a g e

Cassandra can be queried by using its own language, that is like SQL, and is

called CQL: unlike SQL, CQL has several limitations like the join operations

which are not supported.

As a wide column data store, Cassandra stores data in terms of tables of rows

and columns.

The primary key is composed of:

 Row Key: it uniquely identifies rows or groups of rows if used in

combination with “Cluster Columns”;

 Clustering Key: it organises the rows inside each Row Key.

Figure 17 A Cassandra Table Sample

In [Figure 17], an example of a Cassandra table is depicted: Temperature and

Pressure (Column-Values) are browsable by using the Row-Key and

Clustering-Key.

Used by many companies, like Facebook and Spotify, this database type is

recognized as one of the most powerful databases for operations/second

performance [73].

Thus, Cassandra has been chosen because of its throughput and scalability

properties, needed in a complex environment where data must be collected

very quickly and must be always available. Moreover, it can be installed on

Windows and Unix OS’, letting it usable on many different projects.

51 | P a g e

4.4.2 MySQL
MySQL is an open-source RDBMS that uses the SQL language [77]: it is

provided by Oracle and widely used worldwide [78] [79] [Figure 18].

The RDBMSs are database management systems that operate in compliance

with the relational theory, formulated by the British computer scientist Edgar F.

Codd: a system must operate on the data through relationships between the

different tables in which these are divided and sorted.

In the relational model, data within a database is organised in different tables

which are related each to other. All the data that an RDBMS processes is saved

in tables that can be related through keys.

In an RDBMS, all the tables are composed of columns and rows.

Each column of a table represents a specific attribute and are organised in

terms of records.

A record is usually uniquely identified, or numbered, using a primary key which

allows a unique assignment.

An RDBMS has been introduced in the machine monitoring software solution

because of the powerfulness of the SQL language and because of the

requirement of Elettric80 to analyse and manage data on its own, by using its

already known technologies: it allows to do join and better search data

without using other frameworks. For this purpose, alarms data and aggregated

data are being stored on it.

MySQL has been chosen as RDBMS as it is the most used open-source RDBMS

[78] [79] [Figure 18] and for its performances [80].

Figure 18 Database Ranking (snippet taken by Claudio Santo Longo from DB-Engines, 2019 solid IT gmbh, db-

engines.com/en/ranking)

52 | P a g e

Moreover, it provides the end-user with a GUI which allows it to fast design

and deploy a database schema [Figure 19].

Figure 19 A MySQL Workbench schema sample

It can be installed on Windows and Unix OS’ and it is well supported by Oracle

and by the community.

4.5 Chosen streaming solution
Broker message and stream analytic frameworks have been considered for

developing the final software solution.

For the presented use-case, Apache Kafka [81] [68] has been chosen because

of its capabilities and usability: with its publishing-subscribing system, this

framework provides with high throughput capabilities, handling large volume

of data coming from many sources and providing results to many other

devices.

It is becoming very popular and supports SCALA, JAVA and Python.

Kafka has three main capabilities, which are:

 Establishment of a Publishing-Subscribing system connection;

 Storage of stream of records for data retention purposes;

 Real-Time data processing, by means of Kafka Streams.

53 | P a g e

Kafka allows the IT-Architects to develop real-time streaming pipelines,

connecting several devices in a reliable and secure way [82].

Its architecture is shown in a High-Level way in Figure 20.

Figure 20 High-Level Apache Kafka Architecture

Producers send data to a defined topic and partition: data is being retained for

a predefined time or volume and can be used by other consumers. Multiple

consumers can have access to the same data retained in the same topic at the

same time, for different purposes:

 On-line Analysis;

 Connection with stream analytic frameworks;

 Connection with databases;

 Connection with other software solutions.

Each message retained in a topic consists of a key, value and timestamp. As

said, a topic is composed of one or more partitions to support:

 Parallel Processing;

 Scalability.

The order with which messages are stored in the topic is guaranteed inside

partitions. Immutability property is provided: once the data has been stored, it

cannot be modified anymore.

Topics are retained in one or more brokers: this technique allows the data

replication and so, the data loss prevention.

54 | P a g e

A perfect starting point is having 3 brokers: one of them is the leader and the

others are its replica. In fact, in case the leader stops working, another leader is

being elected. With a N replication factor, producers and consumers can

tolerate up to N-1 brokers being down.

Thus, a replication factor of 3 is a recommended configuration:

 Allows one broker to be taken down for maintenance;

 Allows another broker to be taken down unexpectedly, permitting the

system to continuously work.

Finally, a collection of Brokers is a Cluster. Kafka can run by means of

Zookeeper: a centralized service for distributed systems, which is used for

providing a distributed configuration service, synchronization service, and

naming registry. It is the service responsible for managing the brokers,

electing a new leader in case the previous dies.

55 | P a g e

5 The Developed Architecture
The following chapter describes the implemented architecture [1] [Figure 21]

[Figure 23]: starting from the original concept shown in Chapter 4.2 and

basing on the most prominent technologies explained in Chapters 4.3, 4.4, 4.5,

the final architecture has been designed and developed accordingly.

Figure 21 The developed architecture

The architecture [Figure 21] is explained as follows:

 Working Environment: environment where the software is installed and

running. In Figure 21, two environments are depicted: the LGV machine

(AGV Edge) and the server on which the system monitoring solution has

been installed (On-Premise Server);

 Macro components: refer to equipment or set of functionalities that the

software solution accomplishes (E.g. Stream Analytics algorithms);

 Micro components: regard specific functions that the software solution

accomplishes.

56 | P a g e

Every component copes with the project requirements and the architecture

has been designed in order to be scalable, independently from the complex

environment in which its consequent software solution must be installed: as

said in Chapters 4.1, 4.2, Elettric80 has many different customers which might

have a little (e.g. 7 machines) or a large number (e.g. 100 or even more) of

machines which are working in their warehouses and this software solution

must be capable of acquiring data from all the machine.

According to the Hardware In the Loop technique [Chapter 3.4], the

workbench provided by Elettric80 has been extensively used [Figure 22]: this

instrumentation, with the needed software already installed and an encoder,

allowed to simulate the machines sensor data.

This allowed a faster development of the software solution, without the need

of going to the company headquarter for any kind of experiment.

Moreover, while developing the architecture, other possible extensions have

been taken under consideration: Elettric80 expressed its interest to continue

working with the research group in order to add more functionalities to the

machine monitoring solution in possible future projects.

Finally, measures which ensure the right functioning of the system have been

taken under consideration as well (described in Chapter 5.3), providing with a

software solution that is always up and running.

Figure 22 The workbench and a pc used for developing the first release of the software solution

57 | P a g e

Figure 23 The developed architecture (Enlarged)

58 | P a g e

5.1 AGV Edge
The purpose of this component [Figure 24] is to provide an edge computing

solution for acquiring data coming from the machine sensors, packaging and

sending it to the machine monitoring solution.

Data of interest is produced by the LGV machine, used by the software

solution for delivering predictive maintenance functionalities, can be grouped

into the two following categories:

 Controller data: comes from sensors which were already installed for

controlling the LGV machines and is sent at a low frequency (e.g laser

scanner data, temperature etc.) every 2 seconds;

 Augmented data: comes from sensors which have been installed during

the project phases (accelerometers, encoders).

Figure 24 The AGV Edge architecture

Meanwhile, the acquisition of controller data is done by the already installed

PLC, the acquisition of augmented data is done by a dedicated additional PLC:

this allowed the company to not change the original code of the already

installed PLC. Once the augmented data is acquired by the additional PLC, it is

transmitted to the main PLC (by means of Beckhoff ADS protocol) of the LGV

machine.

59 | P a g e

Controller data and augmented data are exploited to evaluate low frequency

“synthetic parameters”, summarising the behaviour of the system.

Finally, the main Programmable Logic Controller is responsible for packaging

both types of data and of sending it to the “AGV Adapter” for further pre-data

preparation and then sent to the Message Broker.

In the following chapter, the “AGV Edge” structure is explained.

5.1.1 Computed Order Tracking
Computed order tracking is a technique by which data, obtained from

different sensors (each of them with its own sample time), is resampled and a

unique time scale obtained. In this case, the following instrumentation has

been used:

 Sensors: accelerometers, used to obtain high-frequency vibration

signals;

 Encoders: used to obtain the angular positions at a lower frequency and

detect the rotation cycles.

Thus, by means of the encoders data, shaft revolutions are identified: in

presence of a constant velocity, the corresponding signal is a sawtooth signal

with the same frequency as the rotating shaft. The encoder signal is resampled

by means of a linear interpolation implemented, as a task running in the PLC:

by doing this, the total number of sampling points in the accelerometric signal

is made equal to the number of the sampling points of the angular position.

Thus, it is possible to directly relate the accelerometric signal with the angular

position, so detecting the exact beginning and the end of a rotation cycle.

Each cycle is considered as a single time window in which the values of the

synthetic parameters are evaluated.

5.1.2 Edge Computing
Edge computing is made possible by exploiting both high frequency and low-

frequency data together with iterative algorithms: this operation does not

affect the real-time behaviour.

The following synthetic parameters are calculated:

 RMS;

 Kurtosis;

 Peak Value of the accelerometers signal;

60 | P a g e

Augmented data, synthetic parameters and controller data related to a 10-

cycle time window are collected task by task in a data structure and then

stored in the storage memory of the PLC as a binary log file. The interval

between different acquisitions should be compliant with the time required for

emptying the buffer and the available storage memory provided by the PLC:

the time required for emptying the buffer depends on the dimension of the

data structure, while the available storage memory depends on the specific

used PLC.

Calculated data is then packaged and integrated into the “Maintenance

Protocol” component: this data is used for generating alarms regarding the

quality of the surface on which the LGV machines is driving.

5.1.3 Maintenance Protocol
This component, based on a library created by Elettric80, is responsible for

collecting both sensor data and the output of the “Edge Computing”

component. Data is packaged in a binary format and sent to the warehouse

access point by means of a UDP protocol (already established by Elettric80

itself and depicted in Figure 25).

61 | P a g e

Figure 25 Sample of the documentation provided by Elettric80 Maintenance Protocol structure

Depending on the LGV machine type and on the warehouse in which it is

supposed to work, the Order Tracking and Edge Computing features are

enabled or disabled accordingly: when enabled, the sent synthetic parameters

are:

 RMS for each wheel;

 Kurtosis for each wheel;

 Peak Values for each wheel;

 A quality parameter based on the mean of the above ones.

In order to let the data transfer work, the LGV machine makes a request for

sending data to the “AGV Adapter” component and when the communication

has been established, by means of an Acknowledge message exchange, the

data transfer is started.

62 | P a g e

5.2 On-Premise Server
The system monitoring solution has been installed on an On-Premise Server,

provided by Elettric80, that has then been installed in a server rack of one of

its customers.

Figure 26 The On-Premise Server architecture

The provided server was carrying the following characteristics:

 CPU: Intel Xeon E5-2620;

 Memory: 16 GB;

 Hard-Drive: 4 HDD;

 Network Adapter: 1000 Mbps.

In this chapter, all the macro and micro components are explained,

highlighting the challenges and showing the found solutions.

63 | P a g e

5.2.1 AGV Adapter
This component [Figure 27] is a .Net application responsible for receiving,

processing and sending the machine data to the “Message Broker”

component.

Once it has been started, this software is set on listening mode on a pre-

defined port, ready to acquire and handle the incoming data.

The used connection protocol is UDP.

Figure 27 The AGV Adapter macro Component

This is a custom component created for the Elettric80 use-case, which must

use proprietary libraries made by the company, for establishing the

communication with the LGV machines.

All its micro-components are explained as follows.

5.2.1.1 Acquisition
This component is responsible for acquiring the messages from the LGV

machines [Figure 28].

The communication channel and the data acquisition steps are described as

follow:

1. Each LGV machine continuously sends a synchronization request;

2. When the software is started, it is set on listening mode on a predefined

port;

3. The software answers to the LGV machine synchronization request,

enabling a communication channel with it;

64 | P a g e

4. The LGV machine starts sending messages:

a. whether the “Acquisition” component receives the message, it

checks it as follows:

i. interprets the message;

ii. checks its length (the 15th message byte contains this

information);

iii. calculates its CRC (it calculates the XOR for each bit) and

compares it with the CRC contained in the last byte of the

message (they must be equal);

b. if the LGV does not receive any ACK message, it retries sending

the message: if it doesn’t receive any ACK anymore, it restarts

asking for the synchronization;

5. if the LGV does not receive any ACK message, it retries sending the

message: if it doesn’t receive any ACK anymore, it restarts asking for the

synchronization;

6. The message is stored into a buffer and it is then processed by a set of

threads;

7. Finally, the message is ready to be fully interpreted;

65 | P a g e

Figure 28 A snippet of the code used for initialising the communication with the LGV machines

5.2.1.2 Data Parsing
Once the messages are stored in an array, they are ready to be interpreted by

this architectural component, which works as a separate thread.

Each message is a string of bytes that must be divided and converted in the

proper format.

The message processing considers:

 The observation name;

 The conversion type;

 Its relative offset.

Given this information, the message (in form of bytes) is split according to the

observation offset. Then, each part is converted and assigned to a proper

variable.

Finally, the message is ready to be sent to the Message Broker: a topic is

created for each machine, for each data type and receives the data coming

66 | P a g e

from the AGV Adapter.

5.2.2 Message Broker
Kafka has been chosen as Message Broker [Figure 29] and it is the core part of

this architecture: it allows the interconnection between all the shown

components in Figure 21. Every software component acquires data from Kafka

and uses it for different purposes:

 On-line analysis;

 Storage on the databases;

 Real-time view.

Figure 29 The Message Broker component

A naming convention for the Kafka topics has been based on the machine

type, on its identification number and on the data type (e.g. telemetry data,

analysed data, etc.): in case, for example, the LGV machine 1 wants to stream

its telemetry data, it will send it to the ”LGV_1_Telemetry” topic. This naming

convention allows the developers and data analysts to clearly understand the

data type, machine number and machine type in a clear way. Kafka has been

configured for retaining the incoming data: this allows the software solution to

correctly restart in case the server is being restarted, without losing data.

Moreover, as said in Chapter 4.5, Kafka provides with very high scalability

properties, allowing the software solution to cope even with hundreds of

machines.

67 | P a g e

5.2.3 Stream Analytics
This component, depicted in Figure 30, consists of a set of Python scripts

which are responsible for on-line analysing the streamed data: data, once is

stored in Kafka, is being analysed and the results streamed back to the

Message Broker.

Figure 30 The Steam Analytics scripts

Three micro-components are part of this macro-component and are shown is

the following chapter.

5.2.3.1 Odometry Analyser
This micro-component calculates the LGV machines speed and the distance

they have travelled, using the encoder and laser-scanner data.

The two types of distance are compared every time the LGV machines have

continuously travelled along a straight path for at least 10 meters.

The result is then streamed back to Kafka;

For proofing the reliability of the data coming from encoder and laser-scanner,

the distance travelled by the LGV machine is calculated by using its position

provided by its laser-scanner (in terms of coordinates) and compared with the

encoder data (that is an incremental value). Both are incremented in-software

over time, providing a reliable algorithm even if the LGV machine has been

reset and consequentially its internal PLC variables values restart from “0”: we

call the incremental laser scanner position as

68 | P a g e

“incremental_laser_scanner_distance” and the incremental encoder

distance as “incremental_encoder_distance”.

The algorithm is explained as follows:

Figure 31 Flowchart explaining the algorithm logic

69 | P a g e

5.2.3.2 Cumulative Variables Calculator
PLC data is sent to the On-Premise Server in real-time. Among the streamed

variables, some of them regard values which are cumulated over time (e.g.

encoder data, machine usage time, machine activity time, etc.). Whether the

LGV machine is being restarted, the values of these variables which are stored

in the machine PLC, restart from the ’0’ value.

In order to cope with this problem, this micro-component is responsible for

acquiring the variables which values are accumulated over time and

accumulate their values basing on the past ones: this technique prevents to

lose data in case the working LGV machines are being shut down for

maintenance purposes and thus, always provide reliable data over time.

5.2.3.3 Alarm Raiser
This component is responsible for analysing the streamed data and raise

alarms basing on already defined rules.

In case a threshold is overlapped, an alarm is raised: this consists in a message

that is then sent back to Kafka and handled by the “Alerting System”

component for notifying the technicians, responsible for maintaining the

operating machines.

70 | P a g e

5.2.4 SQL Storage

Figure 32 The SQL Storage component inside the architecture

This component consists of a MySQL database that is responsible for storing

data regarding:

 Plant, Machines Management, Alarms Rules Definition and Maintenance

Activity: starting from the customers’ information, data regarding

contacts, working technicians, machines and their installed components

are taken under consideration.

Every machine is composed of a list of components and every

component type can trigger different alarms.

Alarms are defined and assigned to the combination machine-

component. The assigned alarm comprehends variables like the type of

threshold (above or below a defined value), the threshold value and the

personnel that is supposed to receive an alerting message. The

triggered alarm creates a ticket which is stored in a predefined table,

and allows the end-user to track its resolution status;

 Aggregated Data: LGV machines telemetry data is being aggregated per

hour, days, weeks, months and years. This allows the end-user to

71 | P a g e

visualize this data on the dashboard by using a set of pre-defined

queries. By means of the power of the SQL language, the end-user can

watch trends of data on the web-dashboard by selecting the desired

variables, time frame and thus, their trend over time. The calculation of

these aggregated values is done by means of Python scripts that

periodically query the Cassandra database and aggregate the acquired

values.

As said in Chapter 4.1, an SQL database has been chosen for providing

Elettric80 with a structured open-source solution which allows them to easily

browse and manage the stored data, even after the project.

5.2.5 Alerting System

Figure 33 The Alerting System placed inside the architecture

This component [Figure 33] consists of Python scripts responsible for

collecting, from Kafka, the generated alarms raised by the ”Alarm Raiser”

component and send their content to the specified users via e-mail.

72 | P a g e

5.2.6 NoSQL Storage

Figure 34 The NoSQL Database placed in the architecture

Unlike the RDBMS, the column-oriented database design starts from the

application point of view: as it is not possible to join the single tables, the

database should be designed in order to store and provide the desired data

with a simple query.

Moreover, a single table can contain up to 2 billion of columns: in case new

sensors have been added, their data can be anyway stored by adding its

related column to the database table.

As said in Chapter 4.4.1, Apache Cassandra has been chosen for acquiring data

that is generated very fast and in large volume over time. Basing on its

characteristics and on the fact that the project is a research project (thus,

destinated to evolve quickly over time), Cassandra resulted to fit better in the

complexities the project brings: sensors and other data generable from the

machine PLC can be easily collected by adding rows to already existing tables.

73 | P a g e

Eight tables have been identified:

 LGV List: register of the LGV machines which are working inside the

customer warehouse, comprehending their identification number and

type;

 Raw Messages: a table designed to store the LGV machine identification

number, PLC DateTime, server DateTime and the received message in a

hexadecimal format;

 Telemetry: composed of LGV number, PLC DateTime, server DateTime

and all the variables the LGV machines can send. In this table, the high-

frequency data is collected as an average evaluated in 2 seconds. An

example is shown at the end of this chapter [Figure 35][Figure 36];

 High Frequency: a table designed to store the LGV machines sensor

data collected and packaged by the machine every 200ms and then sent

every 2 seconds. This data is stored in terms of lists, in order to easily

read and understand how and which data has been collected over time;

 Odometer Data: this table collects the data calculated by the ”Odometry

Analyzer” Python script;

 Cumulative Data: this table collects the output of the ”Cumulative

Variables Calculator” component;

 Machine Status: this table is populated by a Python script that

periodically checks whether machines are sending data. It is composed

of LGV number, server DateTime and machine status (on-off).

74 | P a g e

Figure 35 Description of the telemetry table

75 | P a g e

Figure 36 Telemetry sample table containing acquired data

5.2.7 Mirroring

Figure 37 The Mirroring system placed inside the architecture

This component is responsible for periodically collecting data from the

Cassandra database and sending it to other servers via e-mail in the form of

.csv files. The receiver server collects then the .csv files from the mailbox and

stores their content in proper tables.

This technique is useful when the system is working under strict security

measures and the SMTP port is opened.

76 | P a g e

5.2.8 Web-Based Dashboard

Figure 38 The Web-Based Dashboard placed inside the architecture

The development of the web-based dashboard has been preceded by a series

of meeting with Elettric80, during which the requirements of the company

have been acquired.

This interface consists of a real-time dashboard, developed by using Node.js, a

JavaScript runtime, to locally host the application [83] [84].

The dashboard comprehends a set of different fully customizable charts and

objects (like tables, buttons and drop-down menus), created by using the D3.js

library [85].

The dashboard is composed of six pages on which LGV data filtering is made

possible by using a drop-down menu.

The pages are described as follows:

 LGV Maintenance: this page allows the end-user to create and view the

maintenance activities to be done or already done [Figure 39];

77 | P a g e

Figure 39 LGV Maintenance page

 Remaining Use Before Maintenance: this page displays several gauges

that show the remaining useful life of several LGV machines component

[Figure 40];

Figure 40 Remaining Use Before Maintenance page

 Condition Based Monitoring: in this page, the user can monitor two

parameters [Figure 41]:

o Odometry quality: this part shows the calculated difference

between the distance covered by the LGV machines, according to

the encoder data and the laser scanner data;

o Quality Factor Wheels Surface: the wheel surface quality due to

accelerometers, output of the maintenance library.

The page is divided into two sections and the user can change the

thresholds rule parameters which trigger an alarm when the quality falls

below its defined value;

78 | P a g e

Figure 41 Condition Based Monitoring page

 LGV Monitor: on this page, the user can see the LGV machines working

parametres about which Elettric80 was more interested [Figure 42];

Figure 42 LGV Monitoring page

79 | P a g e

 Trends: in this page, the user can create, through a provided menu, custom

charts which are then used for observing the main LGV machines

parameters trends [Figure 43]. Depending on the needed resolution (in

terms of seconds, hours, days, weeks, years), data is acquired from

Cassandra or MySQL accordingly;

Figure 43 Interactive Graph page

 Alarms page: in this page, the user can check the alarms that the system

has raised and stored into the database over time [Figure 44].

Figure 44 Alarms page

80 | P a g e

5.3 Architecture Stress Conditions and Recovery Operations
In this chapter, a list of stress conditions and a set of recovery operations are

shown: the purpose of the document is to define all the fault events that may

occur and generate a bad behaviour of the system.

The fault causes can be divided into two macro-areas:

 Environmental fault causes: these regard hardware, OS and network

malfunctions;

 Software fault causes: these regard all the software solution

malfunctions.

The developed architecture is composed of interconnected but independent

macro component. This means that if one macro component stops working,

the other ones are affected by this malfunction in terms of not receiving data

anymore.

A set of automatic recovery operations have then been defined and applied to

the system, guaranteeing its reliability: all the macro components are

constantly monitored and recovered in case they are no longer working

properly.

5.3.1 Software fault causes
The software solution is up and running 24/7 in the Customer Server Room.

As we know, many factors might cause the occurrence of blocking faults that

might stop the system from working properly.

All the components are constantly monitored and recovered in case a fault

occurs.

In the following chapters, a list example of symptoms, their root causes and

their solutions are shown.

We must note that, the name of the customer of Elettric80 has been hidden by

its request.

81 | P a g e

5.3.1.1 The system is no longer storing data in the database
During the nominal working state, the system might stop storing the telemetry

data.

In this case, Cassandra has been taken as an example: this process applies to

the other databases included in the infrastructure.

This could be due to several causes:

 Cassandra does not work anymore;

 Kafka subscribers and consumers are no longer working;

 Kafka is no longer working;

 The data acquisition solution is no longer working;

 All the LGV machines are not responding.

Figure 45 shows a flowchart regarding the Cassandra troubleshooting, in case

it is not storing data anymore.

Figure 45 Cassandra fault root cause analysis flowchart

82 | P a g e

Moreover, in Figure 45, the Stream Analytics scripts and all the

interconnections between Kafka and the other modules are defined as

“Pub/Sub Scripts”.

All the “Decisions” (red diamond) consist of scripts which are periodically

executed by the Operative System: this means that an OS Task is responsible

for triggering the execution of a script that checks if services are running and if

the machines telemetry is being constantly acquired.

To manage the high system complexity, the activity of each macro component

can be separately verified: this ensures the possibility to check their working

status, independently each to the others.

We have to note that if one macro component stops working, the data flow is

stopped accordingly.

5.3.1.2 The dashboard is no longer showing data
The dashboard is interconnected with Kafka and the databases: it shows data if

the other modules are running.

Figure 46 shows all the verifications done in order to re-establish the correct

functioning of the system, in case it stops working correctly.

83 | P a g e

Figure 46 No data shown by dashboard” troubleshooting

Figure 46 is similar to Figure 45 and the components are constantly kept under

control.

5.3.1.3 The data acquisition solution is no longer working
A script is responsible for defining if the data acquisition solution, SIRO AGV

Adapter, is no longer working: it connects to the Cassandra database and

checks if the data is being constantly collected.

If there is no new data, three events may have occurred:

 The data acquisition solution might be no longer active, or a deadlock

might have occurred;

 One of the interconnected components might be no longer active;

 The LGV machines might no longer communicate with the server;

84 | P a g e

Figure 47 “SIRO AGV Adapter” troubleshooting

A script is responsible for checking if new data is being stored in Cassandra

over time. If not, the SIRO AGV Adapter might have incurred in a deadlock and

thus, it is restarted. This operation can be accomplished only if Cassandra is

active.

85 | P a g e

5.3.2 Environmental fault causes
The software solution resides in a server located in a customer server room

and it is running 24/7.

During its nominal working state, there might be environmental faults, which

could be:

 Loss of internet connection;

 Operative System faults (BSOD, etc.);

 LGV machines no longer communicating with the server.

It is possible to automatically monitor the server machine activity status by

using specific software, capable of acquiring the machine resource usage and

of sending alerting messages in case particular events occur (if CPU and

Memory usage exceed a predefined threshold if the machine is capable of

sending its telemetry data over time, etc.).

The used software is DataDog [86] (https://www.datadoghq.com/): this is a

software solution capable of acquiring software and hardware metrics and

alert specific users basing on predefined rules.

Figure 48 shows a Datadog dashboard that constantly monitors and report

Hardware usage and Cassandra activities over time.

Figure 48 Datadog dashboard

Figure 49 shows the Datadog alerting rules: if Cassandra or the server stop

responding, predefined of users are alerted via email.

86 | P a g e

Figure 49 Alerting Rules

Figure 50 shows a set of procedures to be followed in case the server is no

longer reachable.

Figure 50 Server Fault Troubleshooting

87 | P a g e

6 Results
The result of this project is, firstly, the development of a conceptual

architecture which is based on the lambda architecture.

Secondly, the machine monitoring solution requested by Elettric80.

The conceptual architecture was the first step to be taken in order to define

the roadmap of the entire developed system.

The requirements acquisition allowed to define the main points to be

addressed, which were:

 How to acquire data from automated machines;

 How to interpret data and how to structure it for analytical purposes;

 How to efficiently stream the collected data, in a distributed

environment, letting it be available for all the required software

components;

 How to efficiently store the collected data in a distributed environment,

in which many actors are involved;

 How to analyse data in an efficient way: this point is connected with the

defined way of streaming and storing data.

If data is inefficiently streamed and stored, then it cannot be analysed in

an efficient way;

 How the results are shown.

Basing on these technical requirements, a state of the art review has been

done [Chapters 2, 3] and a conceptual pipeline has been developed and is re-

shown in Figure 51:

Figure 51 The conceptual architecture

88 | P a g e

The architecture has been developed in terms of micro-services: other services

can be connected with others, ensuring total modularity. Moreover, as it is not

monolithic, services and scripts can be replaced by others or updated without

impacting the capabilities of the entire system.

Finally, basing on the requirements, the final architecture has been developed

accordingly [Figure 52].

Figure 52 The developed architecture

In the developed software solution, the following features have been

implemented:

 Machine data was pre-processed and was sent to specific software,

developed for handling the communication with the machines,

acquiring data and sending it to the Message Broker;

 The Message Broker was responsible for letting the data be transparent

to all the other components;

 Scripts used the data contained in the message broker for analysing it

on the fly;

89 | P a g e

 Databases were used for storing the machines data and the manually

defined data (e.g. alarms);

 Data was sent to other servers, in a way which ensures an easy and

secure data transferring methodology;

 Data could be overseen by means of a web-based dashboard, which

allows the end-user to use it independently from the used device.

The architecture was designed in order to let it cope with any different

Elettric80 customers scenarios: as said in Chapter 4.1, customers had

thousands of machines and the system had to cope with such complexity.

Solutions like Apache Kafka and Apache Cassandra have been chosen for their

scalability and reliability properties, allowing the system to even work with

several machines.

Finally, the software solution received a name: MyHound [Figure 53].

Figure 53 The MyHound Logo

This provided us with the possibility to easily and efficiently identify the

software solution, that has been developed for this use-case, with the intent of

extending it to other similar use-cases and thus, projects.

90 | P a g e

7 Discussion
As said, starting from the requirements acquisition, a literature review and a

methodology definition have been done accordingly: this allowed the

development of a conceptual architecture which can be replicated in these

project types.

In fact, industrial projects regarding machine monitoring solutions, including

automated machines, always required the following practices and

components:

 A deep study of the automated machine involved in the project as well

as the environment in which has to work and its constraints. When

developing the software architecture, analysis of the required hardware

that must be used is fundamental;

 Development of a data structure to be sent from the machine and that

has to be compliant with the objectives of the project: this means that,

sometimes we might deal with projects in which sensor data is vital for

the development of the machine monitoring solution. Other use-cases

might only require the machine working state and the generable alarms.

Thus, machine PLCs must be programmed in order to package all its

sensor data and send it to the server responsible for acquiring this

information;

 Establishment of a communication protocol with a device responsible

for collecting data: this depends on the controller that has been

installed on the automated machine as well as on the capabilities of the

device for that has been designed for collecting data;

 A system responsible for letting the data be transparent to all the

component is needed, but might vary depending on the number of

machines which must be monitored: when several machines and their

sensor data must be handled, a message broker is a useful solution

which provides with scalability. Otherwise, data can be directly stored on

databases which can then be browsed afterwards;

 A system responsible for storing data is needed when afterwards

analyses are mandatory. Depending on the project and system

constraints, NoSQL or SQL databases or together might be tied,

91 | P a g e

obtaining the best from the combination of both;

 A system responsible for showing data is necessary: we cannot pretend

from a company to interface itself with the provided databases, because

they might not have the necessary technical knowledge as well as the

system might not appear complete at the end;

The work thesis regards the development of an architecture that had to be

scalable and adaptable to any required workload as, during the requirements

acquisition, Elettric80 expressed its interest in using the developed

architecture in warehouses where many machines were working: if these

constraints would have not been taken under consideration, further revisions

of the entire architecture would have been needed and we could have lost the

customer because of the time we would have spent.

Open-Source and edge technologies have been used for this architecture:

these had to be innovative and usable at the same time. When choosing the

components, researches about their capabilities and how much they were

supported by the community and developers (as well as they roadmap) has

been done: this ensures the usability of these technologies even after the

accomplishment of the project.

Before their implementation, tests about their real capabilities and analyses

about the effort needed to use them have been done: small exhibitors have

been developed and used to prove them.

Finally, the chosen software components have been implemented.

As it happens with large projects, requirements might vary and change time to

time: this requires the teams in charge of the development to be agile and

work according to the newly acquired requirements.

Elettric80 resulted from the developed software solution enthusiast and

together, with the research group, learnt a lot from this experience:

 The research group became agile and capable of coping with the new

requirements as well as explaining complex structures and architecture

in a simple and effective way.

In order to do so, a platform for fast agile and development as well as

project management tools have been used: Atlassian Jira [Figure 54] [87]

Bitbucket [88].

92 | P a g e

Figure 54 A Jira Dashboard used for the Siro Project

With Atlassian Jira, management of the project and team was possible:

tasks could be easily assignable and connectable with the git repository

project, stored in Bitbucket. Moreover, by means of an editable

dashboard, the team could easily track and show the status of the work;

 The company learnt the used new edge technologies (like Cassandra

and Kafka) and how to implement them in complex environments.

93 | P a g e

8 Conclusions and Future Works
This work thesis is focussed on the development of a software solution

responsible for acquiring machine data and transform it into useful

information for its end-users. The platform has been developed for acquiring

signals from many machines and handle volumes of data in a scalable way.

A dashboard is responsible for monitoring the machine and provide results

about their performances.

As it is a pipeline made of different solutions tied together, its deployment

might be complicated when a certain performance grade must be reached.

Basing on this experience and on other industrial projects, software

deployment has been always critical when its complexity was increasing: this

problem can be solved by shipping Docker containers.

As said in Chapter 3.3, all the components can be Containerised and shipped

to production: this allows the deployment of an entire pipeline without the

need of installing every single package manually. In fact, the deployment of all

the components might be automatic and easy at the same time by using the

Docker Compose tool [89].

Chapter 3.3.1 suggests Docker as containerisation system, allowing to have the

same experience from the same software on different systems.

When scalability and a system capable of administering it automatically is also

needed, all the containers can be also managed by means of Kubernetes, as

described in Chapter 3.3.2.

Docker and Kubernetes allow to manage complex environments in an easier

way, handling availability and scalability by means of a unique system:

 Docker allows to deploy a micro services-oriented software solution in

an easy way;

 Kubernetes allows to manage the docker containers (and thus the used

software), scaling and monitoring them.

Moreover, both solutions can then be remotely administered, making the

development and shipping to production even faster and easier.

94 | P a g e

9 References

[1] C. S. Longo, C. Fantuzzi, F. Monica, L. Manfredotti and M. Sorge, “Big Data

for advanced monitoring system: an approach to manage system

complexity,” in 2018 IEEE 14th International Conference on Automation

Science and Engineering (CASE), Munich, Germany, 20-24 Aug. 2018.

[2] J. D. Campbell and J. V. Reyes-Picknell, Uptime Strategies for Excellence in

Maintenance Management, CRC Press Taylor and Francis Group, 2016.

[3] M. Sherif, L. Sang-Heon , D. Jantanee and C. Nicholas , Lean thinking for a

maintenance process, Production & Manufacturing Research, Taylor &

Francis Group, 2015, pp. 236-272.

[4] D. Mungani and J. Visser, “Maintenance approaches for different

production methods,” South African Journal of Industrial Engineering, vol.

24, no. 3, pp. 1-13, November 2013.

[5] British Standards Institution, Maintenance Terminology, BS EN 13306,

2001.

[6] R. Keith Mobley, Maintenance Engineering Handbook, McGraw-Hill

Education, 2014.

[7] M. Ben-Daya, S. O. Duffuaa, A. Raouf, J. Knezevic and D. Ait-Kadi,

Handbook of Maintenance Management and Engineering, Springer-

Verlag London, 2009.

[8] UpKeep, “Types of Maintenance,” UpKeep Maintenance Management,

2019. [Online]. Available:

https://www.onupkeep.com/learning/maintenance-types/.

[9] G. Arbour, “Maintenance strategies: 4 approaches to asset management,”

Fiix, 2019. [Online]. Available:

https://www.fiixsoftware.com/blog/evaluating-maintenance-strategies-

select-model-asset-management/.

95 | P a g e

[10] E. Hupjé, “9 Types of Maintenance: How to Choose The Right

Maintenance Strategy,” roadtoreliability, 2018. [Online]. Available:

https://www.roadtoreliability.com/types-of-maintenance/.

[11] Z. Huo, Z. Zhang, Y. Wang and G. Yan, “CMMS Based Reliability Centered

Maintenance,” IEEE/PES Transmission & Distribution Conference &

Exposition: Asia and Pacific, 2005.

[12] I. Lopes, P. Senra, S. Vilarinho, C. Teixeira, J. Lopes, A. Alves, J. A. Oliveira

and M. Figueiredo, “Requirements specification of a computerized

maintenance management system – a case study,” Procedia CIRP, vol. 52,

pp. 268-273, 2016.

[13] R. Y. Zhong, X. Xu, E. Klotz and S. T. Newman, “Intelligent Manufacturing

in the Context of Industry 4.0: A Review,” Engineering, vol. 3, no. 5, pp.

616-630, 2017.

[14] F. Arévalo, M. R. Diprasetya and A. Schwung, “A Cloud-based Architecture

for Condition Monitoring based on Machine Learning,” in 2018 IEEE 16th

International Conference on Industrial Informatics (INDIN), 2018.

[15] K. Al-Gumaei, K. Schuba, A. Friesen, S. Heymann, C. Pieper, F. Pethig and

S. Schriegel, “A Survey of Internet of Things and Big Data Integrated

Solutions for Industrie 4.0,” in 2018 IEEE 23rd International Conference on

Emerging Technologies and Factory Automation (ETFA), Turin, Italy, 2018.

[16] R. Zafar, E. Yafi, M. F. Zuhairi and H. Dao, “Big Data: The NoSQL and

RDBMS review,” in 2016 International Conference on Information and

Communication Technology (ICICTM), Kuala Lumpur, Malaysia, 2016.

[17] NIST Big Data Public Working Group (NBD-PWG), “NIST Big Data

Interoperability Framework,” 2015. [Online]. Available:

http://dx.doi.org/10.6028/NIST.SP.1500-1. [Accessed 10 10 2019].

[18] J. Camacho, G. Macià-Fenandez, J. Diaz-Verdejo and P. Garcia-Teodoro,

“Tackling the Big Data 4 Vs for Anomaly Detection,” in 2014 IEEE

INFOCOM Workshops: 2014 IEEE INFOCOM Workshop on Security and

Privacy in Big Data, Toronto, ON, Canada, 2014.

96 | P a g e

[19] A. Gueld, H. Gharsellaour and S. B. Ahmed, “A NoSQL-based Approach

for Real-Time Managing of Embedded Data Bases,” in 2016 World

Symposium on Computer Applications & Research (WSCAR), Cairo, Egypt

, 2016.

[20] T. Partel and T. Eltaieb, “Relational Database vs NoSQL,” Journal of

Multidisciplinary Engineering Science and Technology (JMEST), vol. 2, pp.

691-695, April 2015.

[21] A. Nayak, A. Poriya and D. Poojary, “Type of NoSQL Databases and its

Comparison with Relational Databases,” International Journal of Applied

Information Systems (IJAIS), vol. 5, no. 4, pp. 16-19, March 2013.

[22] M. A. Mohammed, O. G. Altrafi and M. O. Ismail, “Relational vs. NoSQL

databases: A survey,” International Journal of Computer and Information

Technology, vol. 3, no. 3, pp. 598-601, May 2014.

[23] A. Zahid, R. Masood and M. A. Shibli, “Security of Sharded NoSQL

Databases: A Comparative Analysis,” in IEEE Conference on Information

Assurance and Cyber Security, Rawalpindi, Pakistan , 2014.

[24] R. Hecht and S. Jablonski, “NoSQL evaluation: A use case oriented

survey,” in 2011 International Conference on Cloud and Service

Computing, Hong Kong, China , 12-14 Dec. 2011.

[25] A. Gupta, S. Tyagi, N. Panwar, S. Sachdeva and U. Saxena, “NoSQL

databases: Critical analysis and comparison,” in 2017 International

Conference on Computing and Communication Technologies for Smart

Nation (IC3TSN), Gurgaon, India , 2017.

[26] K. Sahatqija, J. Ajdari, X. Zenuni, B. Raufi and F. Ismaili, “Comparison

between relational and NOSQL databases,” in 2018 41st International

Convention on Information and Communication Technology, Electronics

and Microelectronics (MIPRO), Opatija, Croatia , 2018.

[27] S. Gilbert and N. Lynch, “Perspectives on the CAP Theorem,” Computer,

vol. 45, no. 2, pp. 30 - 36, Feb. 2012.

97 | P a g e

[28] K. Birman, D. Freedman, Q. Huang and P. Dowell, “Overcoming CAP with

Consistent Soft-State Replicatio,” Computer, vol. 45, no. 2, pp. 50 - 58,

Feb. 2012.

[29] B. Yadranjiaghdam, N. Pool and N. Tabrizi, “A Survey on Real-time Big

Data Analytics:,” in 2016 International Conference on Computational

Science and Computational Intelligence, 2016.

[30] S. Kamburugamuve, L. Christiansen and G. Fox, “A Framework for Real

Time Processing of Sensor Data in the Cloud,” Journal of Sensors, vol.

2015, p. 11, 2018.

[31] B. R. Hiraman, C. Viresh M and C. K. Abhijeet, “A Study of Apache Kafka in

Big Data Stream Processing,” International Conference on Information ,

Communication, Engineering and Technology (ICICET), 29-31 Aug. 2018,

2018.

[32] R. Shree, U. Pradesh, T. Choudhury, S. C. Gupta and P. Kumar, “KAFKA:

The modern platform for data management and analysis in big data

domain,” 2017 2nd International Conference on Telecommunication and

Networks (TEL-NET), 10-11 Aug. 2017.

[33] A. Ara and A. Ara, “Case study: Integrating IoT, streaming analytics and

machine learning to improve intelligent diabetes management system,”

2017 International Conference on Energy, Communication, Data Analytics

and Soft Computing (ICECDS), 1-2 Aug. 2017.

[34] V.-D. Ta, C.-M. Liu and G. W. Nkabinde, “Big Data Stream Computing in

Healthcare Real-Time Analytics,” IEEE International Conference on Cloud

Computing and Big Data Analysis, pp. 37-42, 2016.

[35] A. Sotsenko , M. Jansen, M. Milrad and J. Rana, “Using a Rich Context

Model for Real-Time Big Data Analytics in Twitter,” 2016 IEEE 4th

International Conference on Future Internet of Things and Cloud

Workshops (FiCloudW), 2016.

[36] V. M. Ionescu, “The analysis of the performance of RabbitMQ and

ActiveMQ,” in 2015 14th RoEduNet International Conference -

Networking in Education and Research (RoEduNet NER), 2015.

98 | P a g e

[37] L. Magnoni, “Modern Messaging for Distributed Sytem,” Journal of

Physics: Conference Series 608 (2015) 012038, 2015.

[38] N. Naik, “Docker container-based big data processing system in multiple

clouds for everyone,” in 2017 IEEE International Systems Engineering

Symposium (ISSE), Vienna, Austria , 11-13 Oct. 2017.

[39] S. Singh and N. Singh, “Containers & Docker: Emerging roles & future of

Cloud technology,” in 2016 2nd International Conference on Applied and

Theoretical Computing and Communication Technology (iCATccT),

Bangalore, India , 27 April 2017 .

[40] D. Bernstein, “Containers and Cloud: From LXC to Docker to Kubernetes,”

IEEE Cloud Computing , vol. 1, no. 3, pp. 81 - 84, Sept. 2014.

[41] P. E N, F. Jaison Paul Mulerickal, B. Paul and Y. Sastri, “Evaluation of

Docker containers based on hardware utilization,” in 2015 International

Conference on Control Communication & Computing India (ICCC),

Trivandrum, India , 19-21 Nov. 2015 .

[42] J. Mahn, M. Schumacher and P. Siering, “Warum Container?,” c't wissen

DOCKER: Komplexe Software eifach einrichten, pp. 6-10, 2019.

[43] Docker Inc., “What is a Container? A standardized unit of software,”

Docker Inc., 2019. [Online]. Available:

https://www.docker.com/resources/what-container. [Accessed 14 10

2019].

[44] A. Lingayat, R. R. Badre and A. K. Gupta, “Performance Evaluation for

Deploying Docker Containers On Baremetal and Virtual Machine,” in 2018

3rd International Conference on Communication and Electronics Systems

(ICCES), Coimbatore, India, India , 15-16 Oct. 2018.

[45] M. Coleman, “Containers and VMs Together,” Docker Inc., 08 04 2016.

[Online]. Available: https://www.docker.com/blog/containers-and-vms-

together/. [Accessed 14 10 2019].

[46] P. Kasireddy, “A Beginner-Friendly Introduction to Containers, VMs and

Docker,” freeCodeCamp, 04 03 2016. [Online]. Available:

99 | P a g e

https://www.freecodecamp.org/news/a-beginner-friendly-introduction-

to-containers-vms-and-docker-79a9e3e119b/. [Accessed 14 10 2019].

[47] Y. Li and Y. Xia, “Auto-scaling web applications in hybrid cloud based on

docker,” in 2016 5th International Conference on Computer Science and

Network Technology (ICCSNT), Changchun, China , 10-11 Dec. 2016 .

[48] E. Mavungu, “Docker Storage: An Introduction,” Codeship by CloudBees,

05 05 2017. [Online]. Available: https://blog.codeship.com/docker-

storage-introduction/. [Accessed 14 10 2019].

[49] I. M. Al Jawarneh, P. Bellavista, F. Bosi, L. Foschini, G. Martuscelli, R.

Montanari and A. Palopoli, “Container Orchestration Engines: A Thorough

Functional and Performance Comparison,” in ICC 2019 - 2019 IEEE

International Conference on Communications (ICC), Shanghai, China,

China , 20-24 May 2019 .

[50] A. Suleman, “Docker And Kubernetes: Furthering The Goals Of DevOps

Automation,” 10 10 2018. [Online]. Available:

https://www.forbes.com/sites/forbestechcouncil/2018/10/10/docker-and-

kubernetes-furthering-the-goals-of-devops-automation/#508763af6506.

[Accessed 14 10 2019].

[51] Kubernetes, “What is Kubernetes,” 06 10 2019. [Online]. Available:

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/.

[Accessed 14 10 2019].

[52] C.-C. Chang, S.-R. Yang, E.-H. Yeh, P. Lin and J.-Y. Jeng, “A Kubernetes-

Based Monitoring Platform for Dynamic Cloud Resource Provisioning,” in

GLOBECOM 2017 - 2017 IEEE Global Communications Conference,

Singapore, Singapore , 4-8 Dec. 2017 .

[53] L. A. Vayghan, M. A. Saied, M. Toeroe and F. Khendek, “Microservice

Based Architecture: Towards High-Availability for Stateful Applications

with Kubernetes,” in 2019 IEEE 19th International Conference on Software

Quality, Reliability and Security (QRS), Sofia, Bulgaria, Bulgaria , 22-26 July

2019 .

[54] M. Gawel and K. Zielinski, “Analysis and Evaluation of Kubernetes Based

NFV Management and Orchestration,” in 2019 IEEE 12th International

100 | P a g e

Conference on Cloud Computing (CLOUD), Milan, Italy, Italy , 8-13 July

2019 .

[55] G. Rattihalli, M. Govindaraju and H. Lu, “Exploring Potential for Non-

Disruptive Vertical Auto Scaling and Resource Estimation in Kubernetes,”

in 2019 IEEE 12th International Conference on Cloud Computing

(CLOUD), Milan, Italy, Italy, 8-13 July 2019.

[56] Kubernetes, “https://kubernetes.io/docs/concepts/,” Kubernetes, 2019.

[Online]. Available: https://kubernetes.io/docs/concepts/. [Accessed 16 10

2019].

[57] C. Fantuzzi, R. Panciroli and M. Gargiulo, “Hardware in the loop

simulation for distributed automation systems,” in Proceedings of 2012

IEEE 17th International Conference on Emerging Technologies & Factory

Automation (ETFA 2012), Krakow, Poland , 17-21 Sept. 2012 .

[58] L. Racchetti and C. Fantuzzi, “Hardware in the loop simulation and

Machine Modular Development: Concepts and application,” in 2013 IEEE

18th Conference on Emerging Technologies & Factory Automation

(ETFA), Cagliari, Italy, 10-13 Sept. 2013 .

[59] C. S. Longo and C. Fantuzzi, “Simulation and optimisation of production

lines in the framework of the IMPROVE project,” in 2017 22nd IEEE

International Conference on Emerging Technologies and Factory

Automation (ETFA), Limassol, Cyprus , 12-15 Sept. 2017.

[60] C. S. Longo and C. Fantuzzi, “Simulation and optimization of industrial

production lines,” at - Automatisierungstechnik, vol. 66, no. 4, pp. 320-

330, 2018.

[61] . R. Petrasch and . R. Hentschke , “Process modeling for industry 4.0

applications: Towards an industry 4.0 process modeling language and

method,” in 2016 13th International Joint Conference on Computer

Science and Software Engineering (JCSSE), Khon Kaen, Thailand , 13-15

July 2016 .

[62] L. Bassi, “Industry 4.0: Hope, hype or revolution?,” in 2017 IEEE 3rd

International Forum on Research and Technologies for Society and

Industry (RTSI), Modena, Italy , 11-13 Sept. 2017 .

101 | P a g e

[63] P. F. S. de Melo and E. P. Godoy, “Controller Interface for Industry 4.0

based on RAMI 4.0 and OPC UA,” in 2019 II Workshop on Metrology for

Industry 4.0 and IoT (MetroInd4.0&IoT), Naples, Italy, Italy, 4-6 June 2019

.

[64] K. H, W. W and H. J, “Recommendations for implementing the strategic

initiative Industrie 4.0 – Final report ot the Industrie 4.0 Working Group,”

Acatech National Academy of Science and Engineering, 2013.

[65] I. Fedoseenko, “Business benefits from leveraging the Cloud,” BCS, The

Chartered Institute for IT, 2018. [Online]. Available:

https://www.bcs.org/content-hub/business-benefits-from-leveraging-

the-cloud/. [Accessed 17 10 2019].

[66] S. Karnouskos, L. Ribeiro, P. Leitão, A. Lüder and B. Vogel-Heuser, “Key

Directions for Industrial Agent Based Cyber-Physical Production Systems,”

in 2019 IEEE International Conference on Industrial Cyber Physical

Systems (ICPS), Taipei, Taiwan, Taiwan, 6-9 May 2019.

[67] N. Marz and J. Warren, Big Data: Principles and best practices of scalable

realtime data systems, Shelter Island: Manning, 2013.

[68] K. Al-Gumaei, A. Müller, J. N. Weskamp, C. S. Longo, F. Pethig and S.

Windmann, “Scalable Analytics Platform for Machine Learning in Smart

Production Systems,” in The 24th IEEE Conference on Emerging

Technologies and Factory Automation (ETFA 2019), Zaragoza, Spain,

September 10th - 13th, 2019.

[69] . Y. Yamato, . H. Kumazaki and Y. Fukumoto, “Proposal of Lambda

Architecture Adoption for Real Time Predictive Maintenance,” in 2016

Fourth International Symposium on Computing and Networking

(CANDAR), Hiroshima, Japan, 22-25 Nov. 2016.

[70] M. Kiran, P. Murphy, I. Monga, J. Dugan and S. S. Baveja, “Lambda

architecture for cost-effective batch and speed big data processing,” in

2015 IEEE International Conference on Big Data (Big Data), Santa Clara,

CA, USA, 29 Oct.-1 Nov. 2015.

[71] S.-H. Han and Y.-K. Kim, “An Architecture of Real-Time, Historical

Database System for Industrial Process Control and Monitoring,” in 2011

102 | P a g e

First ACIS/JNU International Conference on Computers, Networks,

Systems and Industrial Engineering, Jeju Island, South Korea, 23-25 May

2011.

[72] The Apache Software Foundation, “Apache Cassandra,” Apache

Cassandra, 2016. [Online]. Available: http://cassandra.apache.org/.

[Accessed 21 10 2019].

[73] V. D. Jogi and A. Sinha, “Performance evaluation of MySQL, Cassandra

and HBase for heavy write operation,” in 3rd Intl Conf. on Recent

Advances in Information Technology (RAIT) 2016, Dhanbad, India, 3-5

March 2016.

[74] J. Hammink , “An Introduction to Apache Cassandra,” DZone, 19 07 2019.

[Online]. Available: https://dzone.com/articles/an-introduction-to-

apache-cassandra. [Accessed 21 10 2019].

[75] Tutorials Point, “Learn Cassandra,” Tutorialspoint, 2015. [Online].

Available: https://www.tutorialspoint.com/cassandra/. [Accessed 21 10

2019].

[76] K. Ferencz and J. Domokos, “IoT Sensor Data Acquisition and Storage

System Using Raspberry Pi and Apache Cassandra,” in 2018 International

IEEE Conference and Workshop in Óbuda on Electrical and Power

Engineering (CANDO-EPE), Budapest, Hungary , 20-21 Nov. 2018 .

[77] Oracle Corporation, “MySQL,” Oracle Corporation, 2019. [Online].

Available: https://www.mysql.com/. [Accessed 21 10 2019].

[78] ScaleGrid, “2019 Database Trends – SQL vs. NoSQL, Top Databases,

Single vs. Multiple Database Use,” ScaleGrid, 4 3 2019. [Online]. Available:

https://scalegrid.io/blog/2019-database-trends-sql-vs-nosql-top-

databases-single-vs-multiple-database-use/. [Accessed 21 10 2019].

[79] solid IT gmbh, “DB-Engines Ranking,” solid IT gmbh, 2019. [Online].

Available: https://db-engines.com/en/ranking. [Accessed 21 10 2019].

[80] . S. Tongkaw and A. Tongkaw, “A comparison of database performance of

MariaDB and MySQL with OLTP workload,” in 2016 IEEE Conference on

Open Systems (ICOS), Langkawi, Malaysia , 10-12 Oct. 2016 .

103 | P a g e

[81] The Apache Software Foundation, “Apache Kafka,” The Apache Software

Foundation, 2017. [Online]. Available: https://kafka.apache.org/.

[Accessed 22 10 2019].

[82] Apache Software Foundation, “Apache Kafka,” Apache Software

Foundation, 2017. [Online]. Available:

https://kafka.apache.org/10/documentation/streams/developer-

guide/security.html. [Accessed 30 10 2019].

[83] Node.js Foundation. , “NodeJs,” Node.js Foundation. , 2019. [Online].

Available: https://nodejs.org/en/. [Accessed 24 10 2019].

[84] D. Laksono, “Testing Spatial Data Deliverance in SQL and NoSQL

Database Using NodeJS Fullstack Web App,” in 2018 4th International

Conference on Science and Technology (ICST), Yogyakarta, Indonesia , 7-

8 Aug. 2018 .

[85] M. Bostock, “D3.js,” 2019. [Online]. Available: https://d3js.org/. [Accessed

24 10 2019].

[86] Datadog, “DataDog,” DataDog, 2019. [Online]. Available:

https://www.datadoghq.com/. [Accessed 23 10 2019].

[87] Atlassian , “Atlassian Jira,” Atlassian , 2019. [Online]. Available:

https://www.atlassian.com/software/jira. [Accessed 28 10 2019].

[88] Atlassian, “Atlassian Bitbucket,” Atlassian, 2019. [Online]. Available:

https://www.atlassian.com/software/bitbucket. [Accessed 28 10 2019].

[89] Docker Inc., “Docker Compose,” Docker Inc., 2019. [Online]. Available:

https://docs.docker.com/compose/. [Accessed 31 10 2019].

104 | P a g e

10 Table of Figures

Figure 1 Elettric80 Laser Guided Vehicles. (snippet taken by Claudio Santo

Longo from Elettric80 website, 2018 Elettric80 S.p.A.,

https://www.elettric80.com/) .. 14

Figure 2 Elettric80 Laser Guided Vehicles. (snippet taken by Claudio Santo

Longo from Elettric80 website, 2019 Elettric80 S.p.A.,

https://www.elettric80.com/) .. 15

Figure 3 A technician controlling a Ventilation System (snippet taken by

Claudio Santo Longo from US air foces central command website, 2019,

Official United States Air Force Website, https://www.afcent.af.mil/Units/321st-

Air-Expeditionary-Wing/News/Article/934787/hvac-keeps-the-rock-cool/) 16

Figure 4 Types of Maintenance .. 17

Figure 5 CMMS purposes ... 23

Figure 6 The CAP Theorem .. 27

Figure 7 Example of a Message Broker System Architecture 29

Figure 8 Difference between regular "Hypervisor-Virtual Machines" solutions

and Docker ... 32

Figure 9 A Dockerfile packaging a Kafka Streams Application 33

Figure 10 Most popular Orchestration Tools based on interest (snippet taken

by Claudio Santo Longo from Google Trends, 2019,

https://trends.google.it/trends/explore?q=kubernetes,Docker%20Swarm,Meso

s) ... 34

Figure 11 Kubernetes Architecture ... 36

Figure 12 Kubernetes Web Dashboard ... 37

Figure 13 An operating LGV machine ... 40

Figure 14 Conceptual Architecture acquiring data from 1-n machines 44

Figure 15 The workbench provided by Elettric80 ... 47

Figure 16 Cassandra Architecture ... 49

Figure 17 A Cassandra Table Sample .. 50

Figure 18 Database Ranking (snippet taken by Claudio Santo Longo from DB-

Engines, 2019 solid IT gmbh, db-engines.com/en/ranking) 51

Figure 19 A MySQL Workbench schema sample .. 52

Figure 20 High-Level Apache Kafka Architecture ... 53

Figure 21 The developed architecture .. 55

105 | P a g e

Figure 22 The workbench and a pc used for developing the first release of the

software solution ... 56

Figure 23 The developed architecture (Enlarged) .. 57

Figure 24 The AGV Edge architecture ... 58

Figure 25 Sample of the documentation provided by Elettric80 Maintenance

Protocol structure .. 61

Figure 26 The On-Premise Server architecture .. 62

Figure 27 The AGV Adapter macro Component ... 63

Figure 28 A snippet of the code used for initialising the communication with

the LGV machines .. 65

Figure 29 The Message Broker component .. 66

Figure 30 The Steam Analytics scripts ... 67

Figure 31 Flowchart explaining the algorithm logic .. 68

Figure 32 The SQL Storage component inside the architecture 70

Figure 33 The Alerting System placed inside the architecture 71

Figure 34 The NoSQL Database placed in the architecture 72

Figure 35 Description of the telemetry table ... 74

Figure 36 Telemetry sample table containing acquired data 75

Figure 37 The Mirroring system placed inside the architecture 75

Figure 38 The Web-Based Dashboard placed inside the architecture 76

Figure 39 LGV Maintenance page ... 77

Figure 40 Remaining Use Before Maintenance page .. 77

Figure 41 Condition Based Monitoring page ... 78

Figure 42 LGV Monitoring page .. 78

Figure 43 Interactive Graph page ... 79

Figure 44 Alarms page .. 79

Figure 45 Cassandra fault root cause analysis flowchart ... 81

Figure 46 No data shown by dashboard” troubleshooting 83

Figure 47 “SIRO AGV Adapter” troubleshooting ... 84

Figure 48 Datadog dashboard ... 85

Figure 49 Alerting Rules .. 86

Figure 50 Server Fault Troubleshooting ... 86

Figure 51 The conceptual architecture ... 87

Figure 52 The developed architecture .. 88

Figure 53 The MyHound Logo ... 89

Figure 54 A Jira Dashboard used for the Siro Project ... 92

