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Abstract 

Nowadays, the number of interconnected devices is increasing 

dramatically: devices used in everyday life are a source of data that can 

be used for any purpose.  

Gaining value from this data is the most important task: data can be 

used for understanding the interested environmental trends, predicting 

their behaviour and thus, generating new data. This view can be applied 

to the management of automated machines, providing with the 

possibility to analyse their working status, to understand and improve 

their throughput and to accomplish the necessary maintenance 

operations in time. 

Thus, in a so structured and interconnected environment, high volumes 

of data are being generated day by day, creating Big Data which are 

ready to serve deep analyses and develop advanced monitoring 

solutions. 

The work thesis is based on a project developed in collaboration with 

Elettric80 S.p.A., with the aim of developing a monitoring system for its 

laser guided AGV systems, to then be part of the company commercial 

offer. The thesis initially shows the state of the art of maintenance 

techniques, then introduces the theoretical concepts on which it is 

based, such as: 

 Big Data; 

 Message Brokers; 

 Software containerisation systems; 

 Hardware In the Loop; 

 Industry 4.0. 

The methodology used in the project is then illustrated: its requirements 

are collected and analysed. A first conceptual architecture is then 

defined: this must respect several constraints including the capability to 

manage a large amount of data, as well as being capable to save them 

easily on the database. In fact, Elettric80 has several customers who also 
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manage hundreds of laser guided AGVs and the system must be able to 

easily handle this complexity. 

Based on this architecture, software solutions are chosen to meet the 

design requirements. The final solution is then explained in all its 

components: starting from the machine having the task of being able to 

send data from its sensors, a system installed on a server is responsible 

for acquiring such data, processing and showing it in a real-time fashion 

or in terms of batches. 

Solutions such as NoSQL databases (Apache Cassandra) and Message 

Brokers (Apache Kafka) are milestones of the architecture, as they allow 

you to easily manage huge amounts of data coming from all the 

machines of the customer, to analyse and save them safely. Certain types 

of analyses were defined with Elettric80 during the development of the 

software solution: analyses such as the quality of navigation and data 

coming from the machine sensors were implemented. A web dashboard 

will then have the task of showing the collected and analysed data. 

Finally, additional solutions have been implemented in order to make 

this architecture solid: checks are carried out so that all the components 

work properly and act in case they are not working as expected 

(automatic troubleshooting and technician alerting).  

Finally, the achieved results are explained and commented as well as the 

way the project has been leaded shown. Future works are explained in 

the last chapter. 
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Sommario 

Al giorno d’oggi, il numero di dispositivi interconnessi sta aumentando 

notevolmente: dispositivi utilizzati nella vita di tutti i giorni sono una 

importante sorgente di dati che può essere usata per qualunque scopo. 

Acquisire valore da questi dati è il compito più importante: i dati 

possono essere usati per conoscere i trend all’interno dell’ambiente di 

interesse, predirne il comportamento e perciò generare nuovi dati. 

Questa visione può essere applicata alla gestione delle macchine 

automatiche, dando la possibilità di analizzare il loro stato di 

funzionamento, comprenderne e migliorarne il throughput ed effettuare 

le necessarie operazioni di manutenzione in tempo. 

Perciò, in un ambiente così strutturato ed interconnesso, un alto volume 

di dati viene generato giorno dopo giorno, creando i Big Data: questi 

sono a loro volta utilizzati per effettuare analisi approfondite e realizzare 

avanzati sistemi di monitoraggio. 

Il lavoro di tesi si basa su un progetto sviluppato in collaborazione con 

Elettric80 S.p.A., con l’obiettivo di sviluppare un sistema di monitoraggio 

per sistemi AGV a guida laser, per poi corredare l’offerta commerciale 

dell’azienda. La tesi mostra inizialmente lo stato dell’arte ad oggi delle 

tecniche di manutenzione, dopodiché introduce i concetti teorici su cui 

essa si basa, quali: 

 Big Data; 

 Message Brokers; 

 Sistemi di containerizzazione software; 

 Hardware In the Loop; 

 Industria 4.0. 

La metodologia utilizzata nel progetto di tesi viene quindi illustrata: i 

requisiti di progetto vengono raccolti ed analizzati. Una prima 

architettura concettuale viene quindi definita: questa deve rispettare 

diversi vincoli tra cui anche quello di poter gestire una grande mole di 

dati, nonché poterli salvare agilmente su database. Infatti, Elettric80 ha 

diversi clienti che gestiscono anche centinaia di AGV a guida laser ed il 
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sistema dovrà essere in grado di poter gestire agevolmente tale 

complessità.  

Basandosi su questa architettura, le soluzioni software sono scelte in 

modo da poter soddisfare i requisiti di progetto. La soluzione finale 

viene quindi spiegata in tutte le sue componenti: partendo dalla 

macchina avente il compito di poter inviare dati provenienti dai propri 

sensori, un sistema installato su un server ha l’onere di acquisire tali dati, 

processarli e poterli mostrare in real-time o in batches. 

Soluzioni come NoSQL databases (Apache Cassandra) e Message 

Brokers (Apache Kafka) sono punti cardini dell’architettura, in quanto 

permettono di poter gestire agevolmente le enormi moli di dati 

provenienti da tutte le macchine presenti presso il cliente, di poter quindi 

analizzarli e salvarli in modo sicuro. Determinate tipologie di analisi sono 

state definite con Elettric80 durante lo sviluppo della soluzione software: 

analisi quali la qualità della navigazione e dei dati provenienti dai sensori 

macchina sono state implementate. Una web dashboard avrà quindi il 

compito di poter mostrare i dati raccolti ed analizzati. Infine, soluzioni 

aggiuntive sono state implementate in modo da poter rendere tale 

architettura solida: controlli vengono effettuati affinché tutti i 

componenti funzionino correttamente ed azioni automatiche vengono 

intraprese nel caso in cui non funzioni inaspettatamente (risoluzione 

automatica delle problematiche ed allertamento dei tecnici). 

Infine, i risultati raggiunti vengono quindi spiegati e commentati, nonché 

l’organizzazione del lavoro mostrata. I lavori futuri vengono quindi 

illustrati nell’ultimo capitolo. 
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1 Introduction 
With the advent of industry 4.0, companies have started wondering how to 

improve their industrial plants' throughput and how to connect their industrial 

machines with their IT systems. That’s because, in an increasingly globalised 

world, complex systems like machines and plants, are becoming way more 

delocalised: this increments the complexity grade which the companies must 

control.  

The quality of the final product, as well as the machine productivity, must be 

constantly monitored: throughput might start being lower than it has used to 

be or the machines might start requiring more maintenance. 

A system capable of managing these complexities, overseeing the machines 

working status and the product quality is an important asset: it allows the 

companies to better manage machines and plants in one time, helping them 

in taking faster decisions. Systems like this might allow, for example, to 

determine if the possible decremented throughput is caused by a lower 

quality of the used raw materials in production or by maintenance processes 

made incorrectly, giving to the companies with the possibility to act in time. 

This work thesis is based on a project (SIRO) [1] developed with Elettric80 

S.p.A., an international company which offers different types of automated 

systems: palletising solutions, wrapping machines, AS/RS storage systems, 

Laser Guided Vehicles and Warehouse Management Software. 

The aim of the project is to develop a machine monitoring solution 

responsible for acquiring, analysing and monitoring sensor data coming from 

fleets of Laser guided autonomous Driving Vehicles (LGV) [Figure 1].  

 

Figure 1 Elettric80 Laser Guided Vehicles. (snippet taken by Claudio Santo Longo from Elettric80 website, 2018 

Elettric80 S.p.A., https://www.elettric80.com/) 
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Unlike the AGV machines for pallet handling, the LGV machines are capable of 

freely driving inside warehouses with a high degree of flexibility, which is 

provided by the usage of the laser-scanner localisation technology. 

The developed machine monitoring solution is also enriched with the 

knowledge that the Author has achieved during his period abroad, as a 

Visiting Student: this enrichment is shown in the last chapters, as future works. 

This work thesis is structured as follows:  

 Chapter 2 delivers a survey over the traditional methodologies used to 

diagnose faults, to monitor the asset health status and plan the 

maintenance processes; 

 Chapter 3 shows which are the concepts on which the software solution 

is based, showing the already used technologies; 

 Chapter 4 starts with the project requirements acquisition, shows a 

conceptual architecture that has been developed basing on them and 

on the chosen technologies; 

 Chapter 5 shows the developed machine monitoring solution, 

explaining all its system components; 

 Chapter 6 shows the results; 

 Chapter 7 discusses the achieved results, explaining the outcome of the 

research; 

 Chapter 8 concludes the work thesis by summing up what has been 

shown and proposes new additional improvements. 

 

 

Figure 2  Elettric80 Laser Guided Vehicles. (snippet taken by Claudio Santo Longo from Elettric80 website, 2019 

Elettric80 S.p.A., https://www.elettric80.com/) 
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2 Background on traditional fault diagnosis and 
monitoring systems 

In a local and global context, efficiency and productivity are two strategic 

points which lead to the success of a company: these factors have a serious 

impact on the financial status of an industry and must be taken under control 

over time. 

In literature, different ways of analysing and dealing with the incoming faults 

in automated machines are explained and their pros and cons analysed. These 

methodologies are chosen basing on the way the company wants to manage 

the maintenance processes and the action it must take in order to apply them. 

All the different types of maintenance methodologies are, of course, used to 

increase and maintain the availability of the company assets: the chosen 

strategy has impacts on the organisation’s budget and can be applied only 

basing on the available resources, technicians experience and maintenance 

goals. A company that has high-budget capabilities will have a dedicated team 

for the maintenance processes. A small company sometimes cannot afford 

these costs and will rely on corrective maintenance or on outsourcing the 

maintenance [2]. Outsourcing is a strategy adopted when there is no 

competitive nor strategic advantage in doing in-house maintenance: risks 

might be too many and the company cannot afford a dedicated team for 

maintaining the assets, as it might be too much expensive or not really needed 

because maintenance is done only sporadically (for example, outsourcing the 

maintenance of “Heating, Ventilation and Air-Conditioning” systems (HVAC) is 

very common and cost-effective [Figure 3]). 

 

 

Figure 3 A technician controlling a Ventilation System  

(snippet taken by Claudio Santo Longo from US air foces central command website, 2019, Official United States 

Air Force Website, https://www.afcent.af.mil/Units/321st-Air-Expeditionary-Wing/News/Article/934787/hvac-

keeps-the-rock-cool/) 
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Before Machine After Machine Fault Before Machine Fault 

Moreover, a company can decide to use different types of maintenance 

strategies [3] [4] basing on the type of asset to be maintained: various assets 

might be totally different, thus they need precise maintenance strategies. 

Sometimes the used machines are very expensive and only specific 

components are designed to be programmatically changed over-time, 

sometimes machines need to be stopped and fully maintained. 

Thus, maintenance is not only composed of corrective technical actions but 

comprehend an efficient coordination of these activities, necessary for: 

 Reducing the number of stoppages; 

 Reducing the number of maintenance actions to be taken over time; 

 Ensuring the efficiency of the industrial plants; 

 Reducing the number of programmed stoppages, due to maintenance; 

 Reducing the time necessary to diagnose the faults. 

 

Doing maintenance, taking into consideration these factors, might have a 

positive impact on the company’s economy and competitivity. 

In this chapter, subchapters 2.1 and 2.2 describe all the maintenance strategies 

[Figure 4] and highlight their economic impact [5] [6] [7] [8] [9] [10] [11]. 

Subchapter 2.3 provides with a brief description of the already used 

techniques for monitoring the asset health status [12] [13] [14].  

 

Figure 4 Types of Maintenance 

Maintenance

Preventive 
Maintenance

Time Based
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Failure 
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Risk Based Predictive
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Emergency 
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2.1 Preventive Maintenance 
Preventive maintenance is a process done before a failure occurs. In order to 

be implemented, the failure root causes to be eliminated must be known, 

potential failure locations must be found, and breakdowns caused by 

deteriorating equipment conditions must be avoided. As this information is 

well known, set of sensors and strategies (based on time and usage) are used 

to implement an optimal maintenance plan. 

Sometimes, specific components require periodic servicing or replacement: 

this means that preventive maintenance is applied in terms of time intervals. In 

other scenarios, the usage of sets of sensors and other technologies (like 

image-recognition) allows the companies to keep the machinery under control 

and maintain them only when needed. Both strategies have pros and cons and 

must be chosen according to the company’s needs and capabilities: the first, 

known as preventive maintenance, helps the company to bring back the asset 

like new, but it is invasive, requires specific know-how and implies downtime, 

letting the equipment be unusable for certain periods of time; the second 

strategy allows the company to implement a predictive maintenance strategy, 

stopping the machines only when the fault is predicted: in this case, the 

company might encounter a very positive effect on its financial and productive 

capabilities, as downtime is reduced as well as the number of maintenance 

operations.  

In this subchapter, a list of preventive maintenance strategies is shown. 

 

2.1.1 Time Based Maintenance 
This is a maintenance strategy that requires maintenance tasks to be 

performed at already pre-defined time intervals, while the asset is still 

operational. Assets are designed to be durable in time: thus, this kind of 

maintenance is done periodically with the intent of checking the conditions of 

the machine and maximising their performances. 

Thus, Time based Maintenance is planned in time and performed regardless of 

the fact that the assets require maintenance or not: that’s because is assumed 

that incoming faults can be predicted in time. Given equipment MTBF, Time 

Based Maintenance is applied accordingly: companies use software solutions, 

like CMMS, in order to collect and elaborate data regarding asset faults, at 
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their best. Once all data is elaborated, assets maintenance plan is defined and 

applied. 

This strategy is not very expensive to be performed but might lead to activities 

done too much frequently. Moreover, when this strategy is solely adopted, 

random breakdowns may anyway occur, causing economic and productivity 

losses. 

 

2.1.2 Failure Finding Maintenance 
This type of maintenance aims at detecting hidden failures associated with 

security devices or measures: this collides with all the safety equipment used 

in case a fault occurs. Thus, this asset is normally never used and is designed 

to be used only for safety reasons (an example can be provided by safety 

valves which must be periodically checked). This means that this asset is 

checked at fixed time interval, based on the country legislation or risk-based 

approaches. 

 

2.1.3  Risk Based Maintenance 
RBM is based on prioritising the maintenance, basing on which asset is most 

likely to fail over time: this allows the company to concentrate its maintenance 

effort on the most sensitive asset. Thus, assets that have a greater risk to fail 

are maintained and monitored more frequently than the others: this allows to 

minimise the risk of failure across the entire production plant, in the most 

economical way.  

Risk Based Maintenance leads to the continuous optimisation of the 

maintenance processes as it is also based on testing and inspecting the asset 

and continuously define which machine is more due to fail. 

 

2.1.4 Condition Based Maintenance  
This kind of strategy is based on analysing the machine working status and on 

determining whether the asset is due to fail. The asset and its output are 

monitored over time: the product quality, as well as the machine health status, 

might determine the condition of the asset. Thus, CbM is based on the asset 

physical conditions: machines are due to degradation over time and this is 



 

20 | P a g e  

 

reflected on the output quality. Basing on this behaviour and on the 

technicians’ experience, determining when maintenance is needed is made 

possible. In order to measure the machine working conditions, set of sensors 

measuring temperature, pressure, vibration and noise are being used and the 

acquired data is crossed with the maintenance technicians experience, 

providing information about when maintenance is needed. 

Thus, CbM allows the companies to understand whether the asset is due to fail 

and when, basing on its physical evidence.  

 

2.1.5 Predictive Maintenance  
PM is a type of Condition Based Maintenance that is based on: 

 the collection of machine data over time; 

 on the prediction of possible machine malfunctions in time.  

 

Unlike CbM, Predictive Maintenance relies on precise formula and combine 

them with sensor data (acquiring temperature, noise, pressure and vibration) 

in order to provide precise information about the needed maintenance.  

This means that, this kind of maintenance is way more accurate than the 

Condition based Maintenance as predictive formulas are being used. PM is 

born with the advent of industry4.0 and the implementation of the IoT 

technologies: thus, the term IIoT (Industrial Internet of Things) is now broadly 

used as the market wants to implement the IoT in industrial scenarios, 

bringing the advantages of way more connected and controllable machines. 

 

2.2 Corrective Maintenance  
Corrective maintenance focuses on restoring equipment to its normal 

operational state after a fault has been detected, replacing or repairing the 

faulty parts/components. This type of maintenance can be successfully applied 

when it does interest parts which are inexpensive, simple to replace, and the 

failure doesn’t affect any high-value asset.  

Sometimes, machines and components might break down without any kind of 

control. Thus, even this kind of scenario is included in corrective maintenance 

and might lead to catastrophic events which must be treated as soon as 

possible: repair costs might be very high, and the production plant might face 



 

21 | P a g e  

 

very long downtimes, dwarfing what you would have spent on preventive 

maintenance. 

In this subchapter, a list of corrective maintenance strategies is explained. 

 

2.2.1 Emergency Maintenance 
This is a type of maintenance that occurs when the asset requires immediate 

attention, in order to keep a production plant operational and safe. When 

needed, Emergency Maintenance gets top priority over the other, already 

scheduled, maintenance activities: it is designed to cope with machine faults 

which were not inadequately covered by preventive maintenance. This is the 

most expensive and least efficient type of maintenance: that’s because, when 

faults occur, the company must stop the other maintenance activities and 

sometimes may lack in spare parts which must then be ordered and paid, 

overpriced, increasing the downtime. This leads to increased management 

costs and decreased performances. 

This kind of maintenance can be avoided by applying efficient Preventive 

Maintenance plans. 

 

2.2.2 Deferred Maintenance 
Like the Emergency Maintenance, this type of maintenance occurs when a 

fault in the production plant happens.  

The difference between both corrective maintenance types is the fact that 

Deferred Maintenance can be scheduled, due to limited company budged 

capabilities and available resources. Postponing maintenance may lead to save 

costs and meet the budget funding level but may also lead to the 

deterioration of the faulty machines: it’s a matter of fact that, Deferred 

Maintenance must be applied with precise criteria and with timings which will 

not furtherly impact the faulty asset. 
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2.3 Monitoring Systems 
In order to control the assets health status, many solutions may be adopted:  

 

 Manually controlling the machines: this is a process used by companies 

which are only applying time-based maintenance. The usage of IT 

systems is minimum, and it is only related to scheduling and registering 

the inspection feedback, by using set of spreadsheets and notes. 

Sensors and advanced control systems are not considered, and the 

assets are manually regularly inspected (by checking the machines and 

their SCADA systems). This kind of strategy, when not integrated with IT 

systems, might not be very flexible as the maintenance managers must 

use paper and pen and the inconveniences might not be handled in an 

agile way; 

 

 

 Controlling the machines health status by integrating them with 

advanced IT systems: in this case, a set of sensors is being used to 

control the machine health status over time. Data like temperature, 

vibrations as well as the products final quality are monitored over time: 

this data is being collected and used by software solutions in order to 

alert the technicians in case of incurring anomalies and to help the 

management in planning the maintenance activities. Thus, these 

software solutions help the companies in managing all the maintenance 

activities, preventing faults (when possible), improving the throughput 

of the machine and improving the performance of the asset. In this case, 

we talk about the usage of Computerized Maintenance Management 

Systems (CMMS) [Figure 5], which allows the companies to track all the 

faults, to plan maintenance activities, as well as to have a clear picture 

about the owned asset; 
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Figure 5 CMMS purposes 

 

With the advent of Industry4.0, markets are now moving towards the 

application of IIoT technologies and the implementation of predictive 

maintenance systems: major IT companies are tackling the automation 

sector, providing solutions capable of integrating machine learning, Big 

Data and Cloud solutions with the sensor data acquisition technologies. 

The aim is to deliver systems capable of predicting faults in time, 

allowing the companies to implement smart maintenance processes 

(maintenance is done only when needed). 
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3 Related Work 
The architecture of the machine monitoring solution, output of this work 

thesis, has been developed basing on the nowadays edge technologies: before 

the development of this complex system, a study over the most important 

technologies and concepts has been made. 

The following chapter provides a survey of them. 

3.1 Introduction to Big Data and difference among NoSQL 

databases 
The nowadays interconnected devices can generate a huge amount of data 

day by day. Considering the nowadays privacy regulations, companies can 

store this growing amount of data, analyse it and generate insights: due to its 

exponential growth, information needs to be stored quickly and safely. 

Moreover, we need to consider that data is becoming very heterogeneous and 

unstructured because it is generated by several different devices: thus, in order 

to be used for generating value, data needs to be pre-processed or to be 

stored by means of software solutions capable of handling it in a non-

structured format and of supporting parallel-computing [15] [16]. Due to the 

complexity that companies are facing, NoSQL databases are being used and 

generate the nowadays Big Data: with this term we intend a massive dataset 

that comprehends data coming from different sources. Many IT companies are 

using them to generate insights and thus, value: in fact, these technologies are 

being used in any kind of situation where data is being generated in a very 

fast way and insights are needed very quickly (or are being acquired from big 

data-sets) in order to provide the companies with important information that 

may vary from the social-media trends analysis to working environment alerts. 

Moreover, with the advent of IoT (Internet of Things) and IIoT (Industrial 

Internet of Things) technologies, the usage of NoSQL databases is becoming 

crucial because of their capabilities: in these use-cases sensor data is being 

acquired, analysed and insights are generated. 

We can start from the definition of Big Data, by reading what the National 

Institute of Standards and Technology (NIST) states: “Big Data consists of 

extensive datasets, primarily in the characteristics of volume, variety, velocity, 

and/or variability, that require a scalable architecture for efficient storage, 

manipulation, and analysis”  [17].  
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This definition highlights four characteristics (the four V’s), which are the main 

attributes of these complex systems [18]: 

 Volume: this is the main characteristic that leads to the definition of “Big 

Data”. All the acquired data is being collected and stored in these 

systems, which tend to become huge day by day; 

 

 Variety: collected data is heterogeneous as the data sources are 

different each to other, generating structured and unstructured data; 

 

 Veracity: refers to the incompleteness and inconsistencies in data as it is 

being acquired by different sources and the communication channel or 

the devices might be corrupt or might send data in an inconsistent way; 

 

 Velocity: not only the number of available communicating devices is 

huge but also the transfer speed provided by them.  

 

The complexity brought by the four V’s is addressed by the usage of NoSQL 

databases: despite the traditional RDBMS [19] which might only “scaling up” 

by using faster resources, NoSQL databases bring the advantage of “scaling 

out” by replicating and managing data in multiple clusters and offering load 

balancing capabilities (important when data grows up exponentially and very 

quickly). Moreover, NoSQL databases offer the possibility to handle 

unstructured and structured data, impossible task for classical RDBMS (a pre-

processing is needed). On the other hand, RDBMS guarantees ACID (Atomicity, 

Consistency, Isolation, Durability) transactions and the powerfulness of the 

SQL query language. 

Due to the heterogeneity of the NoSQL database type, classification of them is 

mandatory and it is shown below  [20] [21] [22] [23] [24] [1]: 

 Wide Column Store databases: are a distributed storage system that 

stores data in columns. In order to perform queries, they use a SQL-like 

language and they have a graphical representation that is similar to the 

RDBMS.  

Moreover, as said before, columns might be added afterwards without 

any sort of problem, giving the opportunity to handle heterogeneous 

data and store newly added features to the data sources.  

This type of database was created in order to store a huge amount of 
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data to be then distributed across servers and clusters. 

 

 In-Memory Databases: also known as Key Value Store, is a type of 

databases that uses the hardware memory to store and serve 

information. They are similar to dictionaries where information is stored 

in form of keys and values. While values are opaque to the system, the 

only way to retrieve them is to refer to their keys which are uniquely 

stored. Since these databases store data in memory, the usage of 

NVRAM memory is also recommended as it can old the processed data 

even if the system is down; 

 

 Document-Oriented Databases: are databases designed for storing, 

reading and managing document-oriented information, which is known 

as semi-structured data. In fact, they consist of versioned documents 

that are collections of key-values combinations. Documents are 

identified by an “ID”, which is also unique. Values are not opaque to the 

system that can be queried, and they are encapsulated in JSON or 

JSON-like documents; 

 

 Graph Databases: in contrast with the already explained NoSQL 

database types and SQL databases, this kind of database is used in case 

data is heavily linked. The discovery of the relationship between data is 

optimised and fast querying and lookups are made possible.  

In order to represent the data, graph databases consist of: 

o Nodes: entities which have to be tracked and are equivalent to a 

record stored in an RDBMS; 

o Edges: define the connection and thus, the relationship between 

Nodes. They have a direction, a type, a start and end Node. 

Properties quantify the relationships, defining information like 

costs and weights. 

Most of the use case in which the graph databases used are social-

medias, location-based services and retail solutions. 

 

3.1.1 A Comparison Between NoSQL and SQL databases 
A comparison between the SQL and NoSQL features is shown below [25] [26] 

[20] [21] [22] [23] : 

 Scalability: as said before, SQL databases can “scale-up” (vertically) and 

NoSQL databases can “scale-out” (horizontally). This means that, 
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meanwhile the traditional RDBMS can be handled by adding faster 

hardware resources to the server, the NoSQL databases can be handled 

by adding more nodes to the cluster. This kind of manageability has 

impacts on the costs because the upgrade of old systems might be 

expensive due to the lack of support and software limitation. On the 

other hand, the upgradability opportunities offered by NoSQL, allow to 

use new hardware and to make a transition of the data to newer 

hardware platforms. In fact, NoSQL databases rely on the BASE (Basically 

Available, Soft state, Eventually consistent) principle, coming from the 

CAP theorem [Figure 6] [27] [28]: 

o Consistency: data replicated on a different server must be the 

same; 

o Availability: data must be always accessible; 

o Partition tolerance: data and databases must always be accessible 

despite machine or network failures. 

 

 
Figure 6 The CAP Theorem 

 Query Language: meanwhile RDBMS use the Structured Query 

Language, NoSQL databases use a language that depends on the 

database itself. 

We can then highlight the consequences as follows: 

o Relational Database Management Systems use a standardized 

and yet very powerful language which allows using a very 

structured query. The design of an RDBMS depends only on the 

nature of the data; 

o NoSQL databases are very heterogeneous, and every database 

server solution has its own language. The provided query 

language is not so strong as the SQL, and data retrieval (for batch 

Availability

Partition 
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Consistency
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processing) is sometimes only possible by using other frameworks 

(e.g. Apache Storm, Apache Flink..). 

The database design depends on the application and on the 

nature of the data to be handled.  

 

 Flexibility: RDBMSs have a fixed schema that must be pre-defined 

before data insertion and NoSQL databases have a dynamic schema 

that has not to be pre-defined. Another point is the data type to be 

managed: as RDBMS can only handle structured data, the NoSQL 

database can handle any kind of data (structured, semi-structured and 

unstructured); 

 

 Data Management and Access: while in SQL databases, data is 

normalised and redundancy is avoided, in NoSQL databases “data 

redundancy” is inevitable due the lack of relationship between data. 

When performing replication across computer clusters, availability is 

always increased but performance is only decreased in RDBMS, with 

long time and storage consumption consequences; 

 

 Security: most of the NoSQL databases do not provide with a lot of 

mechanisms capable of ensuring many security measures types. 

Meanwhile, cryptography in some NoSQL server is guaranteed, features 

like authentication, access control, secure configurations, and auditing 

are not guaranteed in NoSQL databases. Due to this situation, data 

security is way more impacted when stored data is stored in different 

computer cluster located in different locations. RDBMSs provide with all 

the security features described above. 

 

Basing on the comparison shown above and the use case requirements, 

software solution might use SQL, NoSQL or both database types and achieve 

the final goals providing the end-user with the best performance and 

experience. These choices must be based on the project purposes and its 

constraints. 
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3.2 Message Brokers Systems  
Sensors are installed on machines and are responsible for acquiring and 

sending a high volume of data over time. In order to cope with this scenario, 

Message Brokers Systems [29] [30] come in hand, as they provide with the 

possibility of: 

 acquiring high volumes of data;  

 storing it in a shape of logs (data retention); 

 serving multiple publishers and subscribers. 

 

These solutions are publishing-subscribing systems which allow multiple 

device and software solutions to intercommunicate each with other: moreover, 

frameworks like Kafka integrate a functionality which allows the developers to 

analyse data on the fly. This is an interesting solution when the hardware 

usage must be optimized, as the end-user does not need to use other 

frameworks in addition to the ones used for acquiring data. In literature, many 

articles talk about them and provides the reader with use-cases and bench-

markings [30], [31], [32], [33], [34], [35] [36] [37]. The Message Brokers Systems 

allow the development of efficient pipelines, establishing interconnections 

between all the used IT solutions by means of the same software interface and 

thus, becoming the core of the final software solution. Moreover, frameworks 

like Apache Kafka provide with the possibility to retain data for certain amount 

of time, providing with the possibility to recover and analyse batches of data. 

Message Brokers use different communication models: the common consists 

in using queue and topic, creating different streams of data which can be 

transformed (e.g. transformation from XML to JSON) and lately consumed. 

 

 

Figure 7 Example of a Message Broker System Architecture 
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The functioning mechanism of these systems is depicted in [Figure 7]:  

1. Producers receive data from other devices and are responsible for 

sending it to the Broker System; 

2. The Broker acquires data from the Producers and is responsible for 

routing it in different queues, according to the Producers’ instructions 

and the system load; 

3. Messages are then received by the Consumers: these are the connection 

point between the Broker and the end device or software solution that 

will read and use the streamed data. These messages can be also pre-

processed by the consumers, providing with the possibility to serve the 

end-system with data in the desired way. 

 

Message Broker Systems carry multiple properties: 

 Scalability: data transfer speed can be always assured by splitting the 

data in different queues. Moreover, Brokers can be clustered providing 

load balancing and replication capabilities; 

 

 Flexibility: basing on the use-case, communications between different 

endpoints (producers and consumers) can be established and 

interrupted without letting the system be faulty. Moreover, data can be 

filtered, providing the endpoints with the needed data; 

 

 Extensibility: nowadays, Brokers Systems provide with the possibility to 

use different programming languages. This allows the company to 

continue using its already used technology without the need of using a 

new one, letting the integration of the chosen Broker System feasible; 

 

 Fault tolerance: Brokers not only carry replication capabilities but 

provide with the possibility to store the managed data on the disk, 

preventing data loss in case of faults. Moreover, in case a server or a 

node responsible for transferring data is being lost, the Broker can 

automatically manage this situation, by stopping non-responsive 

services and dynamically managing the existing queues. 
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3.3 Delivering containerised applications with Docker and 

Orchestrations Tools 
When delivering software solutions composed of a multitude of different code 

components and services, companies need to install every single used 

software and must make sure that its software solution is compliant with the 

customers' system environment. This means that, not only the software 

solution must be compatible with the hardware and operative system 

provided by the customer, but also dependencies need to be satisfied [38] [39] 

[40]. The usage of classical Virtual Machines running on top of the same 

Hypervisor provides isolation and scalability of the applications but can 

increase the used resources, the redundancy and the overhead because 

multiple deployed Operative Systems are being used at the same time. 

Moreover, use cases like big data processing and provisioning require the 

ordinary user to install and use complex big data analytics solution which 

might be a significant challenge.  

The problems shown above can be handled by adopting the popular Docker 

containerisation solution and scale its containers by means of Kubernetes. This 

chapter provides the reader with a brief description of them, highlighting the 

advantages. 

 

3.3.1 Docker 
Docker is an open platform which allows companies in developing, shipping 

and running different applications very quickly [41] [42]. Unlike the traditional 

“hypervisor - virtual machines” [43] architecture where VMs are an abstraction 

of the physical hardware and all of them are placed on top of a hypervisor 

(which coordinates them), with docker the abstraction is obtained at the 

application layer [Figure 8]. Applications and their dependencies are packaged 

inside “Containers” and can run as isolated processes (by means of cgroups 

and kernel namespaces [44]) on the same host, sharing the OS kernel. By using 

Docker, the redundancy of multiple virtual machines is reduced, and 

Containers can run in multiple virtual machines as well: for example, an 

application may need to read data stored on a database that resides in a 

different virtual machine and both might be docker containers as well [45], 

maximising the utilisation of the server resources. 
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Figure 8 Difference between regular "Hypervisor-Virtual Machines" solutions and Docker 

The advantages of docker are the following [39]:  

 Portability: all the applications and dependencies are packaged in 

Containers. These can be easily moved to different platforms, allowing 

to use the same software solution in the same way and providing 

applications which can run with the same original behaviour; 

 

 Lightweight: instead of using several virtual machines, which causes 

redundancy and an increase in resources utilisation, Docker containers 

are an abstraction of the needed application which does not need to run 

on a specific Host OS. Starting and stopping a Docker Container is a fast 

process if compared to managing multiple virtual machines; 

 

 Optimised resource utilisation: we can run more containers on the same 

Host OS and define the amount of resources to be allocated. Moreover, 

containers can share the same data, reducing or removing redundancy; 

 

 Fit for microservices architecture: Docker Containers provide with the 

possibility to deploy software solutions as microservices, reducing the 

complexity provided by monolithic architectures and improving their 

maintainability and performances. 

 

Docker works by means of a client-server architecture: clients (Docker 

Containers) communicate with the server (Docker Daemon) which is hosting 

them. The Daemon is responsible for running the Containers: the 

communication among them is established by means of a network bridge 

(docker0). 
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The main components of Docker are [46]: 

 Docker Engine: this is the layer on top of which Docker runs. It’s a 

lightweight runtime responsible for running the containers; 

 

 Docker Client: a command-line tool is used for communicating with the 

Docker Daemon; 

 

 Docker Daemon: it is responsible for executing the commands sent with 

the Docker Client and runs on the host machine;  

 

 Docker Image: it is a template used to create a Docker Container and is 

buildable by means of the Dockerfile; 

 

 Dockerfile: it is a script used to store all the instructions necessary to 

build a Docker Image [Figure 9]; 

 

 
Figure 9 A Dockerfile packaging a Kafka Streams Application 

 Docker Registry [47]: consists of a server-side application which holds 

the docker images and might be public (Docker Hub) or private (used 

for internal releases). Developers and DevOps can easily use a remote 

registry to push and pull their applications and deploy them into 

production very quickly; 

 

 Union File System (UFS) [48]: images are composed of different layers 

and when multiple images are using the same data, then this layer is 

being used by all of them without duplicating it; 

 

 Docker Container: built off docker images, Containers contain all the 

necessary files in order to run the desired application; 

 

 Volume: data part of a container. This data is not part of the UFS and 

consists of a directory, stored on the Host OS HDD, responsible for 

persisting container’s data and share it between multiple containers. 
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3.3.2 Containers Orchestration with Kubernetes 
In case a set of multiple containers is supposed to run on a computer cluster, a 

container orchestrator is a very important solution: it allows to manage 

multiple containers which reside on different servers. Containers management 

not only means starting and stopping containers but also their automatic 

deployment, scaling (creating a different number of replicas and providing 

with high availability), monitoring, scheduling, coordinating, securing and 

connecting them [49]. 

According to Forbes [50] and by querying the trends of the moment [Figure 

10], Kubernetes is the most popular Orchestration Tool until now. Moreover, 

after a deep study about the Docker Orchestrators of the moment, [49] states: 

“Kubernetes is one of the most complete orchestrators nowadays on the 

market”.  

 

 

Figure 10 Most popular Orchestration Tools based on interest (snippet taken by Claudio Santo Longo from 

Google Trends, 2019, https://trends.google.it/trends/explore?q=kubernetes,Docker%20Swarm,Mesos) 

 

Most popular means, more interest in the tool and more support by the 

community as well as continuous development and improvement of the 

software. 

 

 



 

35 | P a g e  

 

Kubernetes [51] [52] [53] [54], developed by Google in 2014, is an open-source 

platform for managing containerised applications and provides the end-user 

with: 

 Storage Orchestration: possibility to mount on-premise or in-cloud 

storage systems; 

 

 Service discovery: exposure of docker containers by means of DNS or IP 

addresses; 

 

 Load balancing: network traffic is automatically balanced and 

distributed, maintaining the deployment stable; 

 

 Automated rollouts and rollbacks: describe the desired state of the 

deployed containers, deploy and exchange the old with the new 

releases; 

 

 Automatic bin packing: allocate resource usage to running containers;  

 

 Self-healing: containers which suddenly fail are subtly restarted, always 

providing with the pre-defined number of up and running replicas; 

 

 Secret and configuration management: sensitive information is stored 

and used in order to provide with more control and less exposure of the 

deployed applications. 

 

The Kubernetes architecture is depicted in [Figure 11] and briefly explained as 

follows [55] [56]: 

 Containers: they are running on a Worker Node (a Virtual Machine or 

Physical Server), they are responsible for running the application and 

they are inside a pre-defined Pod; 

 

 Pod: is a management unit in Kubernetes which comprises one or more 

containers. Each of them has a unique IP-address, storage, namespace 

and option which define how the containers should run. Every container, 

inside of it, shares this networking and storage resources. We can use a 

.yaml file to define the Pod attributes like metadata and Apiversion.  

The number of Pods replica can be specified and managed by means of 

a “Deployment” .yaml file or instruction. 
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Finally, Pods can be accessed by means of a “Service” .yaml file or sets 

of instructions which define their access policies; 

 

 Worker Node: a virtual machine or physical machine, responsible for 

running Pods and its managed by the Master Node; 

 

 Master Node: is the entry point for every administrative task for 

managing the Kubernetes cluster. Has an Api Server, a scheduler and a 

controller manager that watches the desired state of the object it 

manages and its current state (matching them). 

 

 

Figure 11 Kubernetes Architecture 

 

Kubernetes can be managed through SSH and an installable Web-based 

Dashboard [Figure 12]. 
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Figure 12 Kubernetes Web Dashboard 

 

3.4 The hardware in the loop 
When working with automated machines, the comprehension of their 

performance due to working conditions is fundamental. The execution of 

extensive tests on real machine might be a usual but very expensive 

procedure: during the preparation and execution of the tests, materials and 

energy are being extensively used, resulting in increasing costs and testing 

time. 

In order to cope with this scenario, the Hardware In the loop (HIL) [57] [58] [1] 

[59] [60] technique is currently taken into consideration and applied for a fast 

Verification & Validation (V&V): it connects the real machine controllers with a 

simulated version of the machine. This technique can be applied to already 

developed machines, as well as to machines under development, because it 

allows the System Engineer (SE) to rapidly and safely design and test a 

machine before constructing it: the simulated machine interacts with the 

controllers to be tested and behaviour of the coupled machine-controller is 

obtained accordingly. HIL is also used for testing entire production lines. 

On the other hand, the application of the Hardware in the Loop technique is 

made difficult by the development of a reliable real system model: a machine 

is a complex system which cannot be dominated if taken as a whole. 

This situation is coped by applying the Modular Machine Development (MMD) 

approach: machines are reproduced by functional decomposing them into 
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mechatronics parts. Therefore, these complex systems are a result of the 

interconnection of sets of mechatronic subsystems which are simulated as 

single components. All the subsystems internal behaviour is hidden from the 

others thus, they communicate through interfaces. If the developed 

subsystems can be used in different machines, they can be deployed in form 

of libraries which can be applied multiple times and independently from the 

machine taken under consideration, if applicable. 

The development steps of a machine system model, according to the 

Hardware In the Loop technique, is explained as follows: 

1. Machine decomposition: according to the Modular Machine 

Development approach, the machine is decomposed in subsystems. This 

allows the modelling of them; 

 

2. Identification of the discrete event (DE) behaviour: this step allows to 

model the machine according to its DE behaviour, defining whether its 

behaviour is a result of its sensors or internal PLC components;  

 

3. Identification of the continuous event (CE) behaviour: in each state, the 

identification of CE phenomena is fundamental; 

 

4. Loop control: this step defines the identification of CE behaviour used in 

closed and open control loops; 

 

5. Development of a mathematical model of the system; 

 

6. Testing sessions of the machine modules. 
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3.5 Industry 4.0 
Technologies are rapidly evolving: information and automation systems are 

gaining benefits from this and an incredible evolution in such systems might 

be obtained by connecting both worlds.  

Thus, starting from the Hannover fair of 2011, the term “Industry 4.0” or 

“Industrie 4.0” [61] [62] was born [63]: a German government initiative [64], 

part of the technology strategic plan for 2020. The aim is to create a “Smart 

Factory” of the future capable of shifting the industrial plant decision-making 

production from “centralised” to “decentralised”. 

The principles of Industry 4.0 are: 

 Decentralised decision-making: the automated system must be capable 

of analysing the current machine working status and make decentralised 

decisions; 

 

 Information transparency and interoperability: sensor data must be 

collected from the operating machines, providing with the possibility to 

analyse it and generate insights; 

 

 Technical assistance: ability to predict failures in time, basing on the 

collected sensor data. 

 

Basing on the principles shown above, Industry 4.0 comprises the following 

terms and technologies, which are: 

 Internet of Things (IoT) or Industrial Internet of Things (IIoT) and 

Embedded Systems (ES): integration of sensors in an automated 

machine for monitoring purposes and remote controlling; 

 

 Cloud Computing and Internet of Services: usage of internet-based 

services capable of providing with scalability, reliability, performances 

and allowing to operating leverage [65]; 

 

 Cyber-Physical Systems: monitoring physical processes by acquiring 

data from them, applying this data on a simulated reproduction of the 

production plant and provide with automatic decentralised decisions 

[66] (in accordance with “The Hardware in the loop” technique, [Chapter 

3.4]). 
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4 The Methodology 
With the SIRO Project, Elettric80 S.p.A. wants to constantly monitor its LGV 

machines, in order to provide a better after-sales service as well as enhancing 

the efficiency of its machines, by analysing the most occurring alarms over 

time and consequentially improve their machine quality and performances.  

For this purpose, a system capable of acquiring sensor-data is mandatory: 

fleets of LGV machines were currently equipped with PLCs capable of 

obtaining this information and sending it to a pre-defined destination. 

Data must be then analysed in real-time or in batch and generate insights in 

form of alarms and trends: the accordingly developed software solution must 

help the maintenance technicians, in order to do maintenance in time, and the 

company engineers to improve the quality of these machines. 

This project has been accomplished in collaboration with the University of 

Modena and Reggio Emilia, and its related software solution has been already 

delivered and installed in an existing industrial plant. 

This chapter starts by showing the requirements acquired during the first 

meeting held with Elettric80 [Chapter 4.1], followed by the proposed 

conceptual architecture that could fit with them [Chapter 4.2]. Basing on the 

architecture and the requirements, the specific architectural components have 

been chosen accordingly and explained in this chapter [Chapters 4.3, 4.4, 4.5]. 

 

Figure 13 An operating LGV machine 
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4.1 Projects requirements acquisition 
Several meetings have been organised by the University of Modena and 

Reggio Emilia (Unimore) with the intent of studying the machines, main topic 

of this project, and defining an architecture that had to be capable of coping 

with the project objectives which aim to remote monitoring and improve the 

LGV machines performances. 

Managers and technicians have been widely engaged for understanding the 

LGV machines and the needs encountered by them on the field: technicians 

were doing maintenance basing on the alarms raised by the machines and 

mostly basing on their own experience. Sometimes, the raised alarms could 

lead to extensive maintenance which was causing downtimes and letting the 

relationship with their customers being harder time to time: these situations 

could be solved by introducing Elettric80 maintenance technicians in the 

customers' warehouse and by letting them assist the maintenance operations.  

The usage of proprietary technicians in the customers' warehouse is, of course, 

a cost that impacts the machines selling process: eliminating or reducing the 

failure causes is a way to reduce these costs and to improve the after-sales.  

Thus, the participation of Elettric80 technicians was fundamental to 

understand how the LGV machines work and which were the most important 

needs the software solution had to meet: this allowed Elettric80 and Unimore 

to define the objectives of the project. 

Moreover, during these meetings, the following information have been 

acquired: 

 The LGV machines work by means of two types of equipment: 

o Incremental encoders: these are used to track the incremental 

movement of the LGV machines over time. Incremental encoders 

acquire information which are transmitted by a driving wheel.  

As the wheel is subjected to wear, this kind of system must be 

calibrated over time; 

o Laser-scanners: reflective bars are installed in the whole 

warehouse and the LGV machines can define their position by 

transmitting a laser to these bars. This system allows the LGV 

machines to freely drive inside the warehouses and accomplish 

pick and place operations. 
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 Maintenance is done basing on the alarms raised by the machines and it 

might be sometimes false due to other factors: this leads to an extensive 

inspection of the machines which could be speeded up by the Elettric80 

technician experience; 

 

 Technicians must manually monitor the machine's activities and 

recalibrate the navigation system when needed; 

 

 Elettric80 had already deployed a communication system on their 

machines which is capable of transmitting sensor data. 

 

One of the concerns of the technicians was regarding the navigation system 

recalibration: this must be monitored and accomplished by them manually. 

The LGV machines wheels wear over time and this leads to a wrong encoder 

calculation, thus to a wrong machine navigation: this situation is solved by 

directly recalibrating the encoder.  

Thus, Unimore and Elettric80 agreed on developing a machine monitoring 

solution capable of: 

 Acquiring and storing sensor data over time; 

 Analysing the acquired data in real-time; 

 Raising alarms in real-time and notify the in-plant technicians; 

 Showing the acquired and analysed data in real-time on web-based 

dashboards; 

 Being scalable and adaptable to any situation where thousands of LGV 

machine could operate. 

 

For this project, they wanted to only raise alarms basing on the calibration of 

the encoder. 

Moreover, another requirement, requested by Elettric80 during the last project 

month, was regarding the possibility to integrate in the architecture even 

some software which could be easily accessed, used and modified by the 

company even after the end of the project: sensor data trends and 

maintenance tickets, are vital for the company and must be accessed with 

already used in-house technologies and expertise. The company wanted to 

integrate the software solution inside its commercial offer as well as using it 

for monitoring its machines and improve them. 
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Moreover, the used technologies implemented in the machine monitoring 

solution had to be open source. 

Elettric80 provided Unimore with a workbench (shown in Chapter 4.3) that is 

composed of a PLC unit and an encoder, for testing purposes: this allowed the 

research group of the university to check the PLC unit code and to 

communicate with it, reproducing the possible data an LGV machine could 

generate and acquiring it with the machine monitoring solution under 

development. 

 

4.2 Conceptual Architecture 
Basing on the acquired requirements, a conceptual architecture responsible 

for coping with such complexities, described in [Chapter 4.1], has been 

designed. It refers to the lambda architecture [67] [68] [69] [70] [71], which 

considers the following concepts: 

 Data Source: streams of data coming from different sources must be 

acquired at the same time; 

 Data can be analysed in batches and/or when acquired (stream); 

 Data is stored on NoSQL or SQL databases; 

 Data is then shown on a Dashboard or by means of Business 

Intelligence software solutions; 

 

In this specific case, we must develop an architecture that has to cope with 

automated machines in movement: thus, this architecture communicates with 

IIoT devices which might be several (a warehouse, customer of Elettric80, 

manages more than 100 LGV machines at the same time).  

The interconnection of the software solution with the machines is the first and 

important step for this project: if a proper and secure communication channel 

is not being established, the data acquisition might be the weakest point of 

the entire architecture. 

Moreover, our architecture must be scalable and adaptable to any required 

workload: some warehouse might have 10 LGV machines and other customers 

more than 100 thus, this solution must be capable of handling such 

complexity. 

Data must be analysed in real-time and then stored on databases which must 

be accessible in an easy way.  
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In order to analyse data streamed on the fly, connect all the components and 

ensure scalability, a broker message is mandatory. 

Basing on the requirements, data must be then browsable in terms of 

temporal sequences as well as in real-time: Elettric80 is interested in watching 

the sensor data trends over time in terms of batches and as the user is 

watching a Scada system. If the software solutions used for this solution are 

not properly chosen, they might be a bottleneck for this last layer. 

Figure 14 shows the Conceptual Architecture on which the final software 

solution is based, and it is explained below: 

 

 

Figure 14 Conceptual Architecture acquiring data from 1-n machines 

 

 Machines: every automated machine must be capable of packaging the 

information coming from its sensors and of sending it to the machine 

monitoring solution, which resides on a Server.  

The definition of the package structure is fundamental for the other 

architectural components, as it allows them to interpret the sent 

messages and transform them into a more readable structure. A 

communication channel between machines and the Server must be 

enabled and reliable over time, otherwise information might not be 

feasible for the afterwards analyses and visualisation; 

 

 Data Acquisition: this architectural component is responsible for 

acquiring data from the Machines, parsing and sending it to the 

Message Broker component. When this component receives the 

message, checks its integrity and if it is compliant.  
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Once these steps are being accomplished, the Data Acquisition 

component parses the received message and it sends it to the Message 

Broker; 

 

 Message Broker: this is the core part of the structure as it is responsible 

for receiving the data coming from the sources and then letting it be 

available for the other components as a unified interface. This means 

that, the other architectural components can access the Broker in the 

same way and use the same libraries, letting them be usable multiple 

time. The Message Broker is also scalable and reliable, letting the 

messages being divided into multiple topics, partitions and brokers. 

Moreover, some Message Brokers provide with the possibility to retain 

data for a certain amount of time (or number of messages per Partition), 

letting the stream processing to read many of them at once; 

 

 Stream Data Processing: this architectural component is responsible for 

reading data on the fly and do analyses. It is composed of a set of 

scripts which carries algorithms into them: they are responsible for 

doing different analyses types and publishing their results on the 

Message Broker; 

 

 Alarm Notifier: this architectural component is responsible for reading 

data that is being published by the Stream Data Processing or the Data 

Acquisition on the Message Broker(s) and alert the technicians in case 

an alarm is raised; 

 

 Data Storage: this architectural component is responsible for receiving 

data from the Message Broker(s) and store it. The databases must be 

designed carefully, as a transition to another database or solution might 

be very time and resource consuming. Basing on the system 

requirements, this component might consist of one or different 

database types, allowing the data management and analysis being 

easier: different SQL and NoSQL databases can be mixed basing on the 

requirements and analyses to be done afterwards; 
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 Data Visualisation: this architectural component, consisting of a web-

based dashboard, is responsible for showing the machines data and the 

output of the data analytics algorithms. Basing on the requirements, 

data can be shown in a batch or in a real-time fashion:  

o Batches of data: data is being read and shown on a dashboard. 

The objective is to show trends in a chosen time window (by the 

user) thus, batches of data are retrieved from the database and 

plotted;  

o Real-time data: the dashboard continuously read data from the 

Message Broker, providing the end-user with the current machine 

working status, in a real-time fashion. 

 

Starting from this conceptual architecture and basing on the requirements, the 

software solutions to be used have been chosen accordingly. 

In this chapter, the most prominent and chosen technologies are explained. 

 

4.3 Chosen equipment for data acquisition 
PLCs belonging to the working LGVs machines are not only responsible for 

controlling them, but also for packaging and sending the collected machine 

sensor data. 

 

Elettric80 had already implemented a communication channel between the 

machines and the warehouses in which are located: thus, it provided us with a 

workbench which allowed us to test and debug their PLC code as well as 

building the machine monitoring software solution on top of it. 

 

This solution allowed us to deep understand the structure of the code, to 

troubleshoot the PLC coded sensor data acquisition technique, to save time 

and resources by directly working with it. 

The provided workbench [Figure 15] [1] was consisting of: 

 PLC: Beckhoff CX5020-0111; 

 Power Supplier: Siemens SITOP modular 5A; 

 1/2phasig 6EP1 333-3BA; 

 Incremental Encoder used for analysing the data acquirable from it; 

 Modem-Router: Netgear N600.  
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Figure 15 The workbench provided by Elettric80 

 

Like in the real LGV machines, this workbench is capable of transmitting data 

by means of a UDP protocol.  
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4.4 Chosen database  
Basing on the system requirements, two types of data must be acquired over 

time: machine sensor data and maintenance tickets. Data must be collected as 

it arrives to the software solution and the system must be scalable.  

Moreover, Elettric80 needs a system which allows it to browse the 

maintenance tickets and trends in an easy way, even after the end of the 

project: a database which can be easily used by the company and which is 

compliant with its already used technologies, is mandatory. 

Thus, two databases have been designed for coping with the project 

complexities:  

 Apache Cassandra: a NoSQL database, to be used for storing sensor 

data, with fault tolerance and scalability properties; 

 

 MySQL: an RDBMS to be used for collecting the machines maintenance 

tickets, define alerting rules and aggregated sensor data over time. 

 

In this chapter, a brief overview of both databases is done. 

 

4.4.1 Apache Cassandra 
Apache Cassandra is an open-source [72], distributed NoSQL wide columnar 

data store [Chapter 3.1] that can ingest and process massive amounts of data 

very fast [73] [74] [75]. Deployable as On-Premise, in Cloud and in a Hybrid 

Data Environment, Cassandra was originally developed by Facebook for its 

inbox search system and later become an open-source project. 

It provides the following features: 

 Fast writes: it provides fast writing capabilities [73], letting it be an 

interesting database for storing sensor data storage [76].  

 

 Elastic Scalability: horizontal scale-up or scale-down of the cluster is 

made possible in Cassandra without the need of restarting it;  
 

 Fast linear-scale performance: throughput is increased as the number of 

nodes becomes bigger; 
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 Flexible data storage: structured, semi-structured, and unstructured data 

can be stored. It can accommodate changes in the database structure, 

allowing the end-user to add more column to the existing tables as well 

as adding more tables to the same keyspace (database); 

 

 Easy data distribution: Cassandra distributes data across multiple 

datacentres by means of replication functionalities; 

 

 Always on architecture: Cassandra is a database with no single point of 

failure. 

 

Cassandra is designed to handle heavy data workloads, distributing data 

across multiple nodes (servers) [Figure 16] by means of a peer-to-peer 

distribution model. All the nodes are interconnected: when a node is down, 

the other nodes can anyway handle read/write requests. Moreover, as data is 

distributed, Cassandra is capable of understanding if a node does not contain 

the most recent data and of performing, consequentially, an automatic repair. 

Requests are handled by a node, called Coordinator, which is responsible for 

the managing, reading and writing operations.  

 

Figure 16 Cassandra Architecture 
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Cassandra can be queried by using its own language, that is like SQL, and is 

called CQL: unlike SQL, CQL has several limitations like the join operations 

which are not supported. 

As a wide column data store, Cassandra stores data in terms of tables of rows 

and columns. 

The primary key is composed of: 

 Row Key: it uniquely identifies rows or groups of rows if used in 

combination with “Cluster Columns”; 

 Clustering Key: it organises the rows inside each Row Key. 

 

 

Figure 17 A Cassandra Table Sample 

In [Figure 17], an example of a Cassandra table is depicted: Temperature and 

Pressure (Column-Values) are browsable by using the Row-Key and 

Clustering-Key. 

Used by many companies, like Facebook and Spotify, this database type is 

recognized as one of the most powerful databases for operations/second 

performance [73]. 

Thus, Cassandra has been chosen because of its throughput and scalability 

properties, needed in a complex environment where data must be collected 

very quickly and must be always available. Moreover, it can be installed on 

Windows and Unix OS’, letting it usable on many different projects. 

 



 

51 | P a g e  

 

4.4.2 MySQL 
MySQL is an open-source RDBMS that uses the SQL language [77]: it is 

provided by Oracle and widely used worldwide [78] [79] [Figure 18]. 

The RDBMSs are database management systems that operate in compliance 

with the relational theory, formulated by the British computer scientist Edgar F. 

Codd: a system must operate on the data through relationships between the 

different tables in which these are divided and sorted.  

In the relational model, data within a database is organised in different tables 

which are related each to other. All the data that an RDBMS processes is saved 

in tables that can be related through keys. 

In an RDBMS, all the tables are composed of columns and rows.  

Each column of a table represents a specific attribute and are organised in 

terms of records.  

A record is usually uniquely identified, or numbered, using a primary key which 

allows a unique assignment. 

An RDBMS has been introduced in the machine monitoring software solution 

because of the powerfulness of the SQL language and because of the 

requirement of Elettric80 to analyse and manage data on its own, by using its 

already known technologies: it allows to do join and better search data 

without using other frameworks. For this purpose, alarms data and aggregated 

data are being stored on it. 

MySQL has been chosen as RDBMS as it is the most used open-source RDBMS 

[78] [79] [Figure 18] and for its performances [80].  

 

Figure 18 Database Ranking (snippet taken by Claudio Santo Longo from DB-Engines, 2019 solid IT gmbh, db-

engines.com/en/ranking) 



 

52 | P a g e  

 

Moreover, it provides the end-user with a GUI which allows it to fast design 

and deploy a database schema [Figure 19]. 

 

Figure 19 A MySQL Workbench schema sample 

It can be installed on Windows and Unix OS’ and it is well supported by Oracle 

and by the community. 

 

4.5 Chosen streaming solution 
Broker message and stream analytic frameworks have been considered for 

developing the final software solution. 

 

For the presented use-case, Apache Kafka [81] [68] has been chosen because 

of its capabilities and usability: with its publishing-subscribing system, this 

framework provides with high throughput capabilities, handling large volume 

of data coming from many sources and providing results to many other 

devices. 

 

It is becoming very popular and supports SCALA, JAVA and Python. 

Kafka has three main capabilities, which are: 

 Establishment of a Publishing-Subscribing system connection;  

 Storage of stream of records for data retention purposes; 

 Real-Time data processing, by means of Kafka Streams. 
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Kafka allows the IT-Architects to develop real-time streaming pipelines, 

connecting several devices in a reliable and secure way [82].  

Its architecture is shown in a High-Level way in Figure 20. 

 

 

Figure 20 High-Level Apache Kafka Architecture 

Producers send data to a defined topic and partition: data is being retained for 

a predefined time or volume and can be used by other consumers. Multiple 

consumers can have access to the same data retained in the same topic at the 

same time, for different purposes: 

 On-line Analysis; 

 Connection with stream analytic frameworks; 

 Connection with databases; 

 Connection with other software solutions. 

 

Each message retained in a topic consists of a key, value and timestamp. As 

said, a topic is composed of one or more partitions to support: 

 Parallel Processing; 

 Scalability. 

 

The order with which messages are stored in the topic is guaranteed inside 

partitions. Immutability property is provided: once the data has been stored, it 

cannot be modified anymore.  

Topics are retained in one or more brokers: this technique allows the data 

replication and so, the data loss prevention.  
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A perfect starting point is having 3 brokers: one of them is the leader and the 

others are its replica. In fact, in case the leader stops working, another leader is 

being elected. With a N replication factor, producers and consumers can 

tolerate up to N-1 brokers being down.  

Thus, a replication factor of 3 is a recommended configuration: 

 Allows one broker to be taken down for maintenance; 

 Allows another broker to be taken down unexpectedly, permitting the 

system to continuously work. 

 

Finally, a collection of Brokers is a Cluster. Kafka can run by means of 

Zookeeper: a centralized service for distributed systems, which is used for 

providing a distributed configuration service, synchronization service, and 

naming registry. It is the service responsible for managing the brokers, 

electing a new leader in case the previous dies. 
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5 The Developed Architecture 
The following chapter describes the implemented architecture [1] [Figure 21] 

[Figure 23]: starting from the original concept shown in Chapter 4.2 and 

basing on the most prominent technologies explained in Chapters 4.3, 4.4, 4.5, 

the final architecture has been designed and developed accordingly. 

 

Figure 21 The developed architecture 

 

The architecture [Figure 21] is explained as follows: 

 Working Environment: environment where the software is installed and 

running. In Figure 21, two environments are depicted: the LGV machine 

(AGV Edge) and the server on which the system monitoring solution has 

been installed (On-Premise Server); 

 

 Macro components: refer to equipment or set of functionalities that the 

software solution accomplishes (E.g. Stream Analytics algorithms); 

 

 Micro components: regard specific functions that the software solution 

accomplishes. 
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Every component copes with the project requirements and the architecture 

has been designed in order to be scalable, independently from the complex 

environment in which its consequent software solution must be installed: as 

said in Chapters 4.1, 4.2, Elettric80 has many different customers which might 

have a little (e.g. 7 machines) or a large number (e.g. 100 or even more) of 

machines which are working in their warehouses and this software solution 

must be capable of acquiring data from all the machine. 

According to the Hardware In the Loop technique [Chapter 3.4], the 

workbench provided by Elettric80 has been extensively used [Figure 22]: this 

instrumentation, with the needed software already installed and an encoder, 

allowed to simulate the machines sensor data. 

This allowed a faster development of the software solution, without the need 

of going to the company headquarter for any kind of experiment. 

Moreover, while developing the architecture, other possible extensions have 

been taken under consideration: Elettric80 expressed its interest to continue 

working with the research group in order to add more functionalities to the 

machine monitoring solution in possible future projects. 

Finally, measures which ensure the right functioning of the system have been 

taken under consideration as well (described in Chapter 5.3), providing with a 

software solution that is always up and running. 

 

Figure 22 The workbench and a pc used for developing the first release of the software solution 
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Figure 23 The developed architecture (Enlarged) 
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5.1 AGV Edge 
The purpose of this component [Figure 24] is to provide an edge computing 

solution for acquiring data coming from the machine sensors, packaging and 

sending it to the machine monitoring solution. 

Data of interest is produced by the LGV machine, used by the software 

solution for delivering predictive maintenance functionalities, can be grouped 

into the two following categories: 

 Controller data: comes from sensors which were already installed for 

controlling the LGV machines and is sent at a low frequency (e.g laser 

scanner data, temperature etc.) every 2 seconds; 

 

 Augmented data: comes from sensors which have been installed during 

the project phases (accelerometers, encoders). 

 

 

Figure 24 The AGV Edge architecture 

Meanwhile, the acquisition of controller data is done by the already installed 

PLC, the acquisition of augmented data is done by a dedicated additional PLC: 

this allowed the company to not change the original code of the already 

installed PLC. Once the augmented data is acquired by the additional PLC, it is 

transmitted to the main PLC (by means of Beckhoff ADS protocol) of the LGV 

machine. 
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Controller data and augmented data are exploited to evaluate low frequency 

“synthetic parameters”, summarising the behaviour of the system. 

Finally, the main Programmable Logic Controller is responsible for packaging 

both types of data and of sending it to the “AGV Adapter” for further pre-data 

preparation and then sent to the Message Broker.  

In the following chapter, the “AGV Edge” structure is explained. 

 

5.1.1 Computed Order Tracking 
Computed order tracking is a technique by which data, obtained from 

different sensors (each of them with its own sample time), is resampled and a 

unique time scale obtained. In this case, the following instrumentation has 

been used: 

 Sensors: accelerometers, used to obtain high-frequency vibration 

signals; 

 Encoders: used to obtain the angular positions at a lower frequency and 

detect the rotation cycles. 

Thus, by means of the encoders data, shaft revolutions are identified: in 

presence of a constant velocity, the corresponding signal is a sawtooth signal 

with the same frequency as the rotating shaft. The encoder signal is resampled 

by means of a linear interpolation implemented, as a task running in the PLC: 

by doing this, the total number of sampling points in the accelerometric signal 

is made equal to the number of the sampling points of the angular position. 

Thus, it is possible to directly relate the accelerometric signal with the angular 

position, so detecting the exact beginning and the end of a rotation cycle. 

Each cycle is considered as a single time window in which the values of the 

synthetic parameters are evaluated. 

 

5.1.2 Edge Computing 
Edge computing is made possible by exploiting both high frequency and low-

frequency data together with iterative algorithms: this operation does not 

affect the real-time behaviour. 

The following synthetic parameters are calculated: 

 RMS; 

 Kurtosis; 

 Peak Value of the accelerometers signal; 
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Augmented data, synthetic parameters and controller data related to a 10-

cycle time window are collected task by task in a data structure and then 

stored in the storage memory of the PLC as a binary log file. The interval 

between different acquisitions should be compliant with the time required for 

emptying the buffer and the available storage memory provided by the PLC: 

the time required for emptying the buffer depends on the dimension of the 

data structure, while the available storage memory depends on the specific 

used PLC. 

Calculated data is then packaged and integrated into the “Maintenance 

Protocol” component: this data is used for generating alarms regarding the 

quality of the surface on which the LGV machines is driving. 

 

5.1.3 Maintenance Protocol 
This component, based on a library created by Elettric80, is responsible for 

collecting both sensor data and the output of the “Edge Computing” 

component. Data is packaged in a binary format and sent to the warehouse 

access point by means of a UDP protocol (already established by Elettric80 

itself and depicted in Figure 25).  
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Figure 25 Sample of the documentation provided by Elettric80 Maintenance Protocol structure 

 

Depending on the LGV machine type and on the warehouse in which it is 

supposed to work, the Order Tracking and Edge Computing features are 

enabled or disabled accordingly: when enabled, the sent synthetic parameters 

are: 

 RMS for each wheel; 

 Kurtosis for each wheel; 

 Peak Values for each wheel; 

 A quality parameter based on the mean of the above ones. 

 

In order to let the data transfer work, the LGV machine makes a request for 

sending data to the “AGV Adapter” component and when the communication 

has been established, by means of an Acknowledge message exchange, the 

data transfer is started. 
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5.2 On-Premise Server 
The system monitoring solution has been installed on an On-Premise Server, 

provided by Elettric80, that has then been installed in a server rack of one of 

its customers. 

 

Figure 26 The On-Premise Server architecture 

The provided server was carrying the following characteristics: 

 CPU: Intel Xeon E5-2620; 

 Memory: 16 GB; 

 Hard-Drive: 4 HDD; 

 Network Adapter: 1000 Mbps. 

 

In this chapter, all the macro and micro components are explained, 

highlighting the challenges and showing the found solutions. 
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5.2.1 AGV Adapter 
This component [Figure 27] is a .Net application responsible for receiving, 

processing and sending the machine data to the “Message Broker” 

component. 

Once it has been started, this software is set on listening mode on a pre-

defined port, ready to acquire and handle the incoming data.  

The used connection protocol is UDP. 

 

Figure 27 The AGV Adapter macro Component 

 

This is a custom component created for the Elettric80 use-case, which must 

use proprietary libraries made by the company, for establishing the 

communication with the LGV machines. 

All its micro-components are explained as follows. 

 

5.2.1.1 Acquisition 
This component is responsible for acquiring the messages from the LGV 

machines [Figure 28]. 

The communication channel and the data acquisition steps are described as 

follow: 

1. Each LGV machine continuously sends a synchronization request; 

 

2. When the software is started, it is set on listening mode on a predefined 

port; 

 

3. The software answers to the LGV machine synchronization request, 

enabling a communication channel with it; 

 



 

64 | P a g e  

 

4. The LGV machine starts sending messages: 

a. whether the “Acquisition” component receives the message, it 

checks it as follows: 

i. interprets the message; 

ii. checks its length (the 15th message byte contains this 

information); 

iii. calculates its CRC (it calculates the XOR for each bit) and 

compares it with the CRC contained in the last byte of the 

message (they must be equal); 

b. if the LGV does not receive any ACK message, it retries sending 

the message: if it doesn’t receive any ACK anymore, it restarts 

asking for the synchronization; 

 

5. if the LGV does not receive any ACK message, it retries sending the 

message: if it doesn’t receive any ACK anymore, it restarts asking for the 

synchronization; 

 

6. The message is stored into a buffer and it is then processed by a set of 

threads; 

 

7. Finally, the message is ready to be fully interpreted; 
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Figure 28 A snippet of the code used for initialising the communication with the LGV machines 

 

5.2.1.2 Data Parsing 
Once the messages are stored in an array, they are ready to be interpreted by 

this architectural component, which works as a separate thread.  

Each message is a string of bytes that must be divided and converted in the 

proper format. 

The message processing considers: 

 The observation name; 

 The conversion type; 

 Its relative offset. 

 

Given this information, the message (in form of bytes) is split according to the 

observation offset. Then, each part is converted and assigned to a proper 

variable. 

Finally, the message is ready to be sent to the Message Broker: a topic is 

created for each machine, for each data type and receives the data coming 
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from the AGV Adapter. 

 

5.2.2 Message Broker 
Kafka has been chosen as Message Broker [Figure 29] and it is the core part of 

this architecture: it allows the interconnection between all the shown 

components in Figure 21. Every software component acquires data from Kafka 

and uses it for different purposes: 

 On-line analysis; 

 Storage on the databases;  

 Real-time view. 

 

 

Figure 29 The Message Broker component 

 

A naming convention for the Kafka topics has been based on the machine 

type, on its identification number and on the data type (e.g. telemetry data, 

analysed data, etc.): in case, for example, the LGV machine 1 wants to stream 

its telemetry data, it will send it to the ”LGV_1_Telemetry” topic. This naming 

convention allows the developers and data analysts to clearly understand the 

data type, machine number and machine type in a clear way. Kafka has been 

configured for retaining the incoming data: this allows the software solution to 

correctly restart in case the server is being restarted, without losing data. 

Moreover, as said in Chapter 4.5, Kafka provides with very high scalability 

properties, allowing the software solution to cope even with hundreds of 

machines. 
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5.2.3 Stream Analytics 
This component, depicted in Figure 30, consists of a set of Python scripts 

which are responsible for on-line analysing the streamed data: data, once is 

stored in Kafka, is being analysed and the results streamed back to the 

Message Broker. 

 

Figure 30 The Steam Analytics scripts 

Three micro-components are part of this macro-component and are shown is 

the following chapter. 

 

5.2.3.1 Odometry Analyser 
This micro-component calculates the LGV machines speed and the distance 

they have travelled, using the encoder and laser-scanner data.  

The two types of distance are compared every time the LGV machines have 

continuously travelled along a straight path for at least 10 meters.  

The result is then streamed back to Kafka; 

For proofing the reliability of the data coming from encoder and laser-scanner, 

the distance travelled by the LGV machine is calculated by using its position 

provided by its laser-scanner (in terms of coordinates) and compared with the 

encoder data (that is an incremental value). Both are incremented in-software 

over time, providing a reliable algorithm even if the LGV machine has been 

reset and consequentially its internal PLC variables values restart from “0”: we 

call the incremental laser scanner position as 
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“incremental_laser_scanner_distance” and the incremental encoder 

distance as “incremental_encoder_distance”. 

The algorithm is explained as follows: 

 

Figure 31 Flowchart explaining the algorithm logic 
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5.2.3.2 Cumulative Variables Calculator 
PLC data is sent to the On-Premise Server in real-time. Among the streamed 

variables, some of them regard values which are cumulated over time (e.g. 

encoder data, machine usage time, machine activity time, etc.). Whether the 

LGV machine is being restarted, the values of these variables which are stored 

in the machine PLC, restart from the ’0’ value.  

In order to cope with this problem, this micro-component is responsible for 

acquiring the variables which values are accumulated over time and 

accumulate their values basing on the past ones: this technique prevents to 

lose data in case the working LGV machines are being shut down for 

maintenance purposes and thus, always provide reliable data over time. 

 

 

5.2.3.3 Alarm Raiser 
This component is responsible for analysing the streamed data and raise 

alarms basing on already defined rules.  

In case a threshold is overlapped, an alarm is raised: this consists in a message 

that is then sent back to Kafka and handled by the “Alerting System” 

component for notifying the technicians, responsible for maintaining the 

operating machines. 
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5.2.4 SQL Storage 

 

Figure 32 The SQL Storage component inside the architecture 

This component consists of a MySQL database that is responsible for storing 

data regarding: 

 Plant, Machines Management, Alarms Rules Definition and Maintenance 

Activity: starting from the customers’ information, data regarding 

contacts, working technicians, machines and their installed components 

are taken under consideration. 

Every machine is composed of a list of components and every 

component type can trigger different alarms.  

Alarms are defined and assigned to the combination machine-

component. The assigned alarm comprehends variables like the type of 

threshold (above or below a defined value), the threshold value and the 

personnel that is supposed to receive an alerting message. The 

triggered alarm creates a ticket which is stored in a predefined table, 

and allows the end-user to track its resolution status;  

 

 Aggregated Data: LGV machines telemetry data is being aggregated per 

hour, days, weeks, months and years. This allows the end-user to 
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visualize this data on the dashboard by using a set of pre-defined 

queries. By means of the power of the SQL language, the end-user can 

watch trends of data on the web-dashboard by selecting the desired 

variables, time frame and thus, their trend over time. The calculation of 

these aggregated values is done by means of Python scripts that 

periodically query the Cassandra database and aggregate the acquired 

values.  

 

As said in Chapter 4.1, an SQL database has been chosen for providing 

Elettric80 with a structured open-source solution which allows them to easily 

browse and manage the stored data, even after the project.  

 

5.2.5 Alerting System 
 

 

Figure 33 The Alerting System placed inside the architecture 

 

This component [Figure 33] consists of Python scripts responsible for 

collecting, from Kafka, the generated alarms raised by the ”Alarm Raiser” 

component and send their content to the specified users via e-mail. 
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5.2.6 NoSQL Storage 

 

Figure 34 The NoSQL Database placed in the architecture 

Unlike the RDBMS, the column-oriented database design starts from the 

application point of view: as it is not possible to join the single tables, the 

database should be designed in order to store and provide the desired data 

with a simple query.  

Moreover, a single table can contain up to 2 billion of columns: in case new 

sensors have been added, their data can be anyway stored by adding its 

related column to the database table.  

As said in Chapter 4.4.1, Apache Cassandra has been chosen for acquiring data 

that is generated very fast and in large volume over time. Basing on its 

characteristics and on the fact that the project is a research project (thus, 

destinated to evolve quickly over time), Cassandra resulted to fit better in the 

complexities the project brings: sensors and other data generable from the 

machine PLC can be easily collected by adding rows to already existing tables. 
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Eight tables have been identified:  

 LGV List: register of the LGV machines which are working inside the 

customer warehouse, comprehending their identification number and 

type;  

 

 Raw Messages: a table designed to store the LGV machine identification 

number, PLC DateTime, server DateTime and the received message in a 

hexadecimal format; 

 

 Telemetry: composed of LGV number, PLC DateTime, server DateTime 

and all the variables the LGV machines can send. In this table, the high-

frequency data is collected as an average evaluated in 2 seconds. An 

example is shown at the end of this chapter [Figure 35][Figure 36]; 

 

 High Frequency: a table designed to store the LGV machines sensor 

data collected and packaged by the machine every 200ms and then sent 

every 2 seconds. This data is stored in terms of lists, in order to easily 

read and understand how and which data has been collected over time; 

 

 Odometer Data: this table collects the data calculated by the ”Odometry 

Analyzer” Python script; 

 

 Cumulative Data: this table collects the output of the ”Cumulative 

Variables Calculator” component; 

 

 Machine Status: this table is populated by a Python script that 

periodically checks whether machines are sending data. It is composed 

of LGV number, server DateTime and machine status (on-off). 
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Figure 35 Description of the telemetry table 

 



 

75 | P a g e  

 

 

Figure 36 Telemetry sample table containing acquired data 

 

5.2.7 Mirroring 

 

Figure 37 The Mirroring system placed inside the architecture 

 

This component is responsible for periodically collecting data from the 

Cassandra database and sending it to other servers via e-mail in the form of 

.csv files. The receiver server collects then the .csv files from the mailbox and 

stores their content in proper tables. 

This technique is useful when the system is working under strict security 

measures and the SMTP port is opened. 
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5.2.8 Web-Based Dashboard 

 

Figure 38 The Web-Based Dashboard placed inside the architecture 

 

The development of the web-based dashboard has been preceded by a series 

of meeting with Elettric80, during which the requirements of the company 

have been acquired.  

This interface consists of a real-time dashboard, developed by using Node.js, a 

JavaScript runtime, to locally host the application [83] [84]. 

The dashboard comprehends a set of different fully customizable charts and 

objects (like tables, buttons and drop-down menus), created by using the D3.js 

library [85]. 

The dashboard is composed of six pages on which LGV data filtering is made 

possible by using a drop-down menu.  

The pages are described as follows: 

 LGV Maintenance: this page allows the end-user to create and view the 

maintenance activities to be done or already done [Figure 39]; 
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Figure 39 LGV Maintenance page 

 

 Remaining Use Before Maintenance: this page displays several gauges 

that show the remaining useful life of several LGV machines component 

[Figure 40]; 

 

 
Figure 40 Remaining Use Before Maintenance page 

 Condition Based Monitoring: in this page, the user can monitor two 

parameters [Figure 41]: 

o Odometry quality: this part shows the calculated difference 

between the distance covered by the LGV machines, according to 

the encoder data and the laser scanner data; 

 

o Quality Factor Wheels Surface: the wheel surface quality due to 

accelerometers, output of the maintenance library. 

 

The page is divided into two sections and the user can change the 

thresholds rule parameters which trigger an alarm when the quality falls 

below its defined value; 
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Figure 41 Condition Based Monitoring page 

 LGV Monitor: on this page, the user can see the LGV machines working 

parametres about which Elettric80 was more interested [Figure 42]; 

 

 
Figure 42 LGV Monitoring page 
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 Trends: in this page, the user can create, through a provided menu, custom 

charts which are then used for observing the main LGV machines 

parameters trends [Figure 43]. Depending on the needed resolution (in 

terms of seconds, hours, days, weeks, years), data is acquired from 

Cassandra or MySQL accordingly; 

 

 
Figure 43 Interactive Graph page 

 

 Alarms page: in this page, the user can check the alarms that the system 

has raised and stored into the database over time [Figure 44]. 

 

 
Figure 44 Alarms page 
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5.3 Architecture Stress Conditions and Recovery Operations 
In this chapter, a list of stress conditions and a set of recovery operations are 

shown: the purpose of the document is to define all the fault events that may 

occur and generate a bad behaviour of the system. 

The fault causes can be divided into two macro-areas:  

 Environmental fault causes: these regard hardware, OS and network 

malfunctions; 

 

 Software fault causes: these regard all the software solution 

malfunctions. 

The developed architecture is composed of interconnected but independent 

macro component. This means that if one macro component stops working, 

the other ones are affected by this malfunction in terms of not receiving data 

anymore. 

A set of automatic recovery operations have then been defined and applied to 

the system, guaranteeing its reliability: all the macro components are 

constantly monitored and recovered in case they are no longer working 

properly. 

 

5.3.1 Software fault causes 
The software solution is up and running 24/7 in the Customer Server Room.  

As we know, many factors might cause the occurrence of blocking faults that 

might stop the system from working properly. 

All the components are constantly monitored and recovered in case a fault 

occurs. 

In the following chapters, a list example of symptoms, their root causes and 

their solutions are shown. 

We must note that, the name of the customer of Elettric80 has been hidden by 

its request. 
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5.3.1.1 The system is no longer storing data in the database 
During the nominal working state, the system might stop storing the telemetry 

data. 

In this case, Cassandra has been taken as an example: this process applies to 

the other databases included in the infrastructure. 

This could be due to several causes: 

 Cassandra does not work anymore; 

 Kafka subscribers and consumers are no longer working; 

 Kafka is no longer working; 

 The data acquisition solution is no longer working; 

 All the LGV machines are not responding. 

Figure 45 shows a flowchart regarding the Cassandra troubleshooting, in case 

it is not storing data anymore. 

 

Figure 45 Cassandra fault root cause analysis flowchart 



 

82 | P a g e  

 

Moreover, in Figure 45, the Stream Analytics scripts and all the 

interconnections between Kafka and the other modules are defined as 

“Pub/Sub Scripts”. 

All the “Decisions” (red diamond) consist of scripts which are periodically 

executed by the Operative System: this means that an OS Task is responsible 

for triggering the execution of a script that checks if services are running and if 

the machines telemetry is being constantly acquired. 

To manage the high system complexity, the activity of each macro component 

can be separately verified: this ensures the possibility to check their working 

status, independently each to the others. 

We have to note that if one macro component stops working, the data flow is 

stopped accordingly. 

 

 

5.3.1.2 The dashboard is no longer showing data 
The dashboard is interconnected with Kafka and the databases: it shows data if 

the other modules are running. 

Figure 46 shows all the verifications done in order to re-establish the correct 

functioning of the system, in case it stops working correctly. 
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Figure 46 No data shown by dashboard” troubleshooting 

 

Figure 46 is similar to Figure 45 and the components are constantly kept under 

control. 

5.3.1.3 The data acquisition solution is no longer working 
A script is responsible for defining if the data acquisition solution, SIRO AGV 

Adapter, is no longer working: it connects to the Cassandra database and 

checks if the data is being constantly collected. 

If there is no new data, three events may have occurred: 

 The data acquisition solution might be no longer active, or a deadlock 

might have occurred; 

 One of the interconnected components might be no longer active; 

 The LGV machines might no longer communicate with the server; 
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Figure 47 “SIRO AGV Adapter” troubleshooting 

A script is responsible for checking if new data is being stored in Cassandra 

over time. If not, the SIRO AGV Adapter might have incurred in a deadlock and 

thus, it is restarted. This operation can be accomplished only if Cassandra is 

active. 
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5.3.2 Environmental fault causes 
The software solution resides in a server located in a customer server room 

and it is running 24/7. 

During its nominal working state, there might be environmental faults, which 

could be: 

 Loss of internet connection; 

 Operative System faults (BSOD, etc.); 

 LGV machines no longer communicating with the server. 

It is possible to automatically monitor the server machine activity status by 

using specific software, capable of acquiring the machine resource usage and 

of sending alerting messages in case particular events occur (if CPU and 

Memory usage exceed a predefined threshold if the machine is capable of 

sending its telemetry data over time, etc.). 

The used software is DataDog [86] (https://www.datadoghq.com/): this is a 

software solution capable of acquiring software and hardware metrics and 

alert specific users basing on predefined rules. 

Figure 48 shows a Datadog dashboard that constantly monitors and report 

Hardware usage and Cassandra activities over time. 

 

 

Figure 48 Datadog dashboard 

 

Figure 49 shows the Datadog alerting rules: if Cassandra or the server stop 

responding, predefined of users are alerted via email. 
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Figure 49 Alerting Rules 

Figure 50 shows a set of procedures to be followed in case the server is no 

longer reachable. 

 

Figure 50 Server Fault Troubleshooting 
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6 Results 
The result of this project is, firstly, the development of a conceptual 

architecture which is based on the lambda architecture. 

Secondly, the machine monitoring solution requested by Elettric80. 

The conceptual architecture was the first step to be taken in order to define 

the roadmap of the entire developed system. 

The requirements acquisition allowed to define the main points to be 

addressed, which were: 

 How to acquire data from automated machines; 

 How to interpret data and how to structure it for analytical purposes; 

 How to efficiently stream the collected data, in a distributed 

environment, letting it be available for all the required software 

components; 

 How to efficiently store the collected data in a distributed environment, 

in which many actors are involved; 

 How to analyse data in an efficient way: this point is connected with the 

defined way of streaming and storing data.  

If data is inefficiently streamed and stored, then it cannot be analysed in 

an efficient way; 

 How the results are shown. 

 

Basing on these technical requirements, a state of the art review has been 

done [Chapters 2, 3] and a conceptual pipeline has been developed and is re-

shown in Figure 51: 

 

Figure 51 The conceptual architecture 
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The architecture has been developed in terms of micro-services: other services 

can be connected with others, ensuring total modularity. Moreover, as it is not 

monolithic, services and scripts can be replaced by others or updated without 

impacting the capabilities of the entire system. 

Finally, basing on the requirements, the final architecture has been developed 

accordingly [Figure 52].  

 

Figure 52 The developed architecture 

 

In the developed software solution, the following features have been 

implemented: 

 Machine data was pre-processed and was sent to specific software, 

developed for handling the communication with the machines, 

acquiring data and sending it to the Message Broker; 

 

 The Message Broker was responsible for letting the data be transparent 

to all the other components; 

 

 Scripts used the data contained in the message broker for analysing it 

on the fly; 
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 Databases were used for storing the machines data and the manually 

defined data (e.g. alarms); 

 

 Data was sent to other servers, in a way which ensures an easy and 

secure data transferring methodology; 

 

 Data could be overseen by means of a web-based dashboard, which 

allows the end-user to use it independently from the used device. 

 

The architecture was designed in order to let it cope with any different 

Elettric80 customers scenarios: as said in Chapter 4.1, customers had 

thousands of machines and the system had to cope with such complexity.  

Solutions like Apache Kafka and Apache Cassandra have been chosen for their 

scalability and reliability properties, allowing the system to even work with 

several machines.  

 

Finally, the software solution received a name: MyHound [Figure 53].  

 

Figure 53 The MyHound Logo 

This provided us with the possibility to easily and efficiently identify the 

software solution, that has been developed for this use-case, with the intent of 

extending it to other similar use-cases and thus, projects. 
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7 Discussion 
As said, starting from the requirements acquisition, a literature review and a  

methodology definition have been done accordingly: this allowed the 

development of a conceptual architecture which can be replicated in these 

project types. 

 

In fact, industrial projects regarding machine monitoring solutions, including 

automated machines, always required the following practices and 

components: 

 A deep study of the automated machine involved in the project as well 

as the environment in which has to work and its constraints. When 

developing the software architecture, analysis of the required hardware 

that must be used is fundamental; 

 

 Development of a data structure to be sent from the machine and that 

has to be compliant with the objectives of the project: this means that, 

sometimes we might deal with projects in which sensor data is vital for 

the development of the machine monitoring solution. Other use-cases 

might only require the machine working state and the generable alarms. 

Thus, machine PLCs must be programmed in order to package all its 

sensor data and send it to the server responsible for acquiring this 

information; 

 

 Establishment of a communication protocol with a device responsible 

for collecting data: this depends on the controller that has been 

installed on the automated machine as well as on the capabilities of the 

device for that has been designed for collecting data; 

 

 A system responsible for letting the data be transparent to all the 

component is needed, but might vary depending on the number of 

machines which must be monitored: when several machines and their 

sensor data must be handled, a message broker is a useful solution 

which provides with scalability. Otherwise, data can be directly stored on 

databases which can then be browsed afterwards; 

 

 A system responsible for storing data is needed when afterwards 

analyses are mandatory. Depending on the project and system 

constraints, NoSQL or SQL databases or together might be tied, 
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obtaining the best from the combination of both; 

 

 A system responsible for showing data is necessary: we cannot pretend 

from a company to interface itself with the provided databases, because 

they might not have the necessary technical knowledge as well as the 

system might not appear complete at the end; 

 

 

The work thesis regards the development of an architecture that had to be 

scalable and adaptable to any required workload as, during the requirements 

acquisition, Elettric80 expressed its interest in using the developed 

architecture in warehouses where many machines were working: if these 

constraints would have not been taken under consideration, further revisions 

of the entire architecture would have been needed and we could have lost the 

customer because of the time we would have spent. 

Open-Source and edge technologies have been used for this architecture: 

these had to be innovative and usable at the same time. When choosing the 

components, researches about their capabilities and how much they were 

supported by the community and developers (as well as they roadmap) has 

been done: this ensures the usability of these technologies even after the 

accomplishment of the project. 

Before their implementation, tests about their real capabilities and analyses 

about the effort needed to use them have been done: small exhibitors have 

been developed and used to prove them. 

Finally, the chosen software components have been implemented. 

As it happens with large projects, requirements might vary and change time to 

time: this requires the teams in charge of the development to be agile and 

work according to the newly acquired requirements.  

Elettric80 resulted from the developed software solution enthusiast and 

together, with the research group, learnt a lot from this experience:  

 The research group became agile and capable of coping with the new 

requirements as well as explaining complex structures and architecture 

in a simple and effective way. 

In order to do so, a platform for fast agile and development as well as 

project management tools have been used: Atlassian Jira [Figure 54] [87] 

Bitbucket [88]. 
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Figure 54 A Jira Dashboard used for the Siro Project 

 

With Atlassian Jira, management of the project and team was possible: 

tasks could be easily assignable and connectable with the git repository 

project, stored in Bitbucket. Moreover, by means of an editable 

dashboard, the team could easily track and show the status of the work; 

 

 The company learnt the used new edge technologies (like Cassandra 

and Kafka) and how to implement them in complex environments. 
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8 Conclusions and Future Works 
This work thesis is focussed on the development of a software solution 

responsible for acquiring machine data and transform it into useful 

information for its end-users. The platform has been developed for acquiring 

signals from many machines and handle volumes of data in a scalable way.  

A dashboard is responsible for monitoring the machine and provide results 

about their performances. 

As it is a pipeline made of different solutions tied together, its deployment 

might be complicated when a certain performance grade must be reached.  

Basing on this experience and on other industrial projects, software 

deployment has been always critical when its complexity was increasing: this 

problem can be solved by shipping Docker containers. 

As said in Chapter 3.3, all the components can be Containerised and shipped 

to production: this allows the deployment of an entire pipeline without the 

need of installing every single package manually. In fact, the deployment of all 

the components might be automatic and easy at the same time by using the 

Docker Compose tool [89]. 

Chapter 3.3.1 suggests Docker as containerisation system, allowing to have the 

same experience from the same software on different systems.  

When scalability and a system capable of administering it automatically is also 

needed, all the containers can be also managed by means of Kubernetes, as 

described in Chapter 3.3.2. 

Docker and Kubernetes allow to manage complex environments in an easier 

way, handling availability and scalability by means of a unique system: 

 Docker allows to deploy a micro services-oriented software solution in 

an easy way; 

 

 Kubernetes allows to manage the docker containers (and thus the used 

software), scaling and monitoring them. 

 

Moreover, both solutions can then be remotely administered, making the 

development and shipping to production even faster and easier. 
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