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Summary

By working with an extensions of the classical set of electromagnetic equations, we imple-

mented some numerical techniques to study the near-field of a biconic antenna. Though

the usual Maxwell’s equations are included in the model, the generalization is necessary to

handle the possible creation of regions displaying non-vanishing divergence in proximity

of the boundaries, where perfect conductivity is not given for granted. Finite-difference

schemes have been primarily used in a three-dimensional domain described by cylindri-

cal coordinates. The numerical experiments include the simulation of solitary waves in

vacuum and their behaviour when passing through media of different conductivity. In a

successive development these waves are studied in conjunction with boundary constraints,

due to the their interaction with the conductive guides. The goal of this analysis, only

in part achieved, is a full understanding of the passage of the electromagnetic wave from

the state of guided evolution to the one when the signal travels in free space.

In chapter 1, we introduce the equations of electromagnetism with a bit of historical

background. To this end we will briefly refer to the work of James Clerk Maxwell (1831-

1879). The original Maxwell’s theory has been revised by other scientists, known as “the

Maxwellians”, and it has undergone through several changes according to the progress in

both physics and mathematics. In the modern texts of physics and engineering, the set of

equations known under the name of Maxwell’s equations differs from the earliest version

written by Maxwell himself at the end of the nineteenth century.

At the end of the first chapter, we will recall some features of the tensor formulation of

the electromagnetic equations in the framework of the theory of relativity.

In chapter 2, we introduce the extension of the equations of electromagnetism proposed in

[12]. The main idea is to postulate the existence of electromagnetic fields of divergence dif-

ferent from zero also in space regions where charges and currents sources are not present.
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Thanks to this feature, in vacuum, the Ampère law contains a current terms due to the

movement of the wave itself. The model is completed by introducing a new vector field

V and a potential p. The presence of these fields, which are among the unknowns of the

system, necessitates the adoption of further two equations borrowed from fluid dynamics.

The extended model is analyzed throughout the chapter and special considerations are

carried out in the case of the so called free-waves. Then, solitonic and spherical solutions

of the extended model, which do not solve the Maxwell’s equations, are considered. In

the last part of the chapter a discussion on boundary conditions is introduced.

In chapter 3, we present the numerical schemes used to discretize the extended set of

electrodynamics equations. For practical reasons we decided to work with low-order finite

difference methods. The equation have been divided in sub-groups and different numer-

ical schemes have been applied to each one. All the methods considered are defined on

the same discrete grid, so that all the fields are approximated on these nodes. The group

constituted by the equations involving the time derivatives of the electric and the mag-

netic fields has been discretized by the Lax-Wendroff scheme. Some considerations on

the hyperbolicity of this group of equations have been made in order to investigate the

stability of the method.

Another group of equations, recalling the inviscid Burger’s equation, has been approx-

imated using an upwind approach. Finally, the numerical treatment of the boundary

conditions on the conductive guides is discussed, by taking in to account strategies that

allow to model the mutual interaction between the dynamical sources on the guides and

the fields between them. At the nodes of the external boundaries free outward flux con-

ditions has been imposed. We mention the problem of imposing boundary conditions on

the rotation axis in the case of cylindrical coordinates.

In chapter 4, we analyse some numerical experiments based on the methods developed

in chapter 3. A first set of experiments is related to the test of the approximated equa-

tions on simple problems involving solitonic solutions. Comparisons are made with exact

solutions. The simulation of guided waves is successively considered. A simple example

constructed with parallel guides show that a suitable treatment of boundary conditions

may act on the travelling wave by modifying its phase. To continue we consider the case

of a soliton, in cylindrical coordinates, that is constrained in its movement by two con-

ducting straight wave guides that cuts its support. Successively it is treated the case in

which a soliton crosses a layer between two regions, of the computational domain, with
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different electromagnetic properties. We then considered the problem of a biconic antenna

in cylindrical coordinates, by placing a source of electromagnetic field at the entrance of

the region delimited by a couple of conductive guides.

In chapter 5, some conclusive remarks about the results achieved and the problems en-

countered, are discussed. Some open questions remain, opening the way to further works.

The thesis ends with a collection of appendices dedicated to collateral topics that have

been removed from the main body for the sake of readability. Some appendices are related

to theoretical considerations about the set of extended equations, whereas some others

clarify some features of the numerical experiments.
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Sommario

Dopo aver esteso il classico set di equazioni dell’elettromagnetismo, note in letteratura

come equazioni di Maxwell, in modo da ampliare anche l’insieme delle loro soluzioni, sono

stati applicati ad esse opportuni schemi numerici alle differenze finite al fine di costruire

un set di loro approssimazioni implementabili su computer. Si è quindi proceduto alla

simulazione numerica di onde elettromagnetiche solitoniche nel vuoto, attraverso mezzi

lineari e infine inserendo guide conduttive. Unendo i risultati ottenuti in precedenza è

stato costruito un modello di antenna biconica con l’intento di investigare il comporta-

mento del campo elettromagnetico nel passaggio da un’espansione vincolata, dall’antenna

stessa, ad una libera.

Nel capitolo 1, le equazioni dell’elettromagnetismo sono inquadrate in una cornice storica.

In particolare, si accenna al lavoro del fisico James Clerk Maxwell (1831-1879). La teo-

ria, originariamente sviluppata da Maxwell, fu rimaneggiata da altri scienziati, chiamati

“i Maxwelliani”, subendo numerose modifiche a seguito dei progressi che avvennero nei

campi della fisica e della matematica. Non a caso nei moderni testi di fisica ed ingegneria,

con il termine equazioni di Maxwell ci si riferisce ad un insieme di equazioni assai diverse

da quelle scritte da Maxwell alla fine del diciannovesimo secolo.

Il capitolo termina con un richiamo alla teoria della relatività, in particolare vengono

esposte le equazioni dell’elettromagnetismo in forma tensoriale.

Nel capitolo 2 si analizza un’estensione delle equazioni di Maxwell proposta in [12]. Il

fulcro della versione estesa risiede nell’ipotizzare l’esistenza di campi elettromagnetici la

cui divergenza possa essere diversa da zero anche in regioni dello spazio in cui non siano

presenti sorgenti né di cariche né di correnti. Come conseguenza di questa assunzione, la

legge di Ampère, nel caso di un onda elettromagnetica che si propaga nel vuoto, conta

un termine di corrente dato dal propagarsi dell’onda stessa. Il modello si completa con
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l’aggiunta di un campo vettoriale V e di un potenziale p, entrambi incognite del sistema

di equazioni. A fronte dell’incremento del numero di funzioni incognite vengono incluse

nel modello due ulteriori equazioni provenienti dal campo della fluidodinamica. Il set di

equazioni cos̀ı ottenuto viene analizzato in dettaglio, dedicando particolare attenzione a

varie tipologie di sue soluzioni. Ad esempio, sono esaminate soluzioni solitoniche e sferiche

che invece non risolvono le classiche equazioni di Maxwell. L’ultima parte è dedicata alle

condizioni al bordo adatte a descrivere situazioni in cui elementi conduttori occupano

regioni spaziali dove esistono dei campi elettromagnetici.

Nel capitolo 3 vengono presentati gli schemi numerici utilizzati per approssimare l’estensione

delle equazioni dell’elettromagnetismo. Sono stati presi in considerazioni schemi alle dif-

ferenze finite di basso ordine. Il set di equazioni è stato suddiviso in quattro sottoinsiemi,

ciascuno dei quali è stato discretizzato mediante un diverso schema numerico. Tutti i

metodi numerici considerati sono stati definiti sulla medesima griglia, cosicché tutti i

campi venissero approssimati negli stessi nodi. Il primo sottoinsieme, che comprende le

equazioni differenziali in cui compaiono le derivate temporali dei campi elettrico e mag-

netico, è stato discretizzato con il metodo di Lax-Wendroff. Al fine di chiarire delle

questioni relative alla stabilità del suddetto metodo, è stato portato avanti uno studio

sulla natura iperbolica di questo primo gruppo di equazioni.

Un altro sottoinsieme notevole è costituito da due equazioni che somigliano a quelle che

definiscono il problema di Burger non viscoso. Per questo gruppo si è optato per una

discretizzazione tramite un metodo di tipo upwind.

Infine, viene analizzato il trattamento numerico delle condizioni al contorno da imporre

nel caso siano presenti delle guide d’onda conduttrici. In particolare, si cerca di modelliz-

zare una situazione in cui sia permessa una reciproca interazione tra le sorgenti presenti

sulle guide ed il campo elettromagnetici che si propaga tra esse. Nei nodi che fanno parte

della frontiera esterna del dominio computazionale sono state imposte delle condizioni di

flusso libero uscente, ed è accennato il problema della determinazione dei campi sull’asse

di rotazione di un sistema di coordinate cilindriche.

Nel capitolo 4 sono presi in considerazione alcuni esperimenti numerici condotti appli-

cando gli schemi descritti nel capitolo 3. Inizialmente sono stati considerati i casi rela-

tivamente semplici, di soluzioni solitoniche in coordinate cartesiane e cilindriche, con cui

sono stati testati i metodi numerici. Tali test sono stati fondati sul confronto tra soluzioni

approssimate ed esatte. Si passa quindi alla simulazione di onde guidate. Dapprima si è
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considerato il caso di due guide parallele, in mezzo a cui un’onda subisce un’alterazione

della propria fase a seguito dell’interazione con le guide stesse. È stato successivamente

simulata l’evoluzione di un solitone in coordinate cilindriche costretto a muoversi tra due

guide d’onda incidenti al suo supporto. Successivamente si è analizzato il caso di un soli-

tone che attraversi una regione del dominio in cui si affacciano due mezzi contraddistinti

da una diversa permittività. In ultimo, inserendo una sorgente di campi all’ingresso di una

regione delimitata da una coppia di guide conduttrici, è stata condotta una simulazione

del campo elettromagnetico emesso da un’antenna biconica.

Nel capitolo 5 sono stati riassunti i risultati ottenuti ed i problemi sorti durante questo

lavoro. Alcune domande sono rimaste aperte, vi è quindi un ampia prospettiva per pros-

eguire lo studio in questo campo.

La tesi termina con una serie di appendici in cui sono esposti alcuni argomenti rimossi

dal corpo principale per non appesantirne la lettura. Qui sono esposte ulteriori consid-

erazioni relative alle soluzioni del modello esteso delle equazioni dell’elettromagnetismo e

dei chiarimenti in merito alla parte di esperimenti numerici.
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On the equations of electromagnetism

1.1. Maxwell’s equations

James Clerk Maxwell is acknowledged as the father of the mathematical theory of elec-

tromagnetism. He was born on 13 June 1831 in Edinburgh, the same city in which he has

completed his studies before at the Academy and than at the University, where he had

the possibility to apprehend electricity and magnetism from James Forbes. The empirical

approach of the latter was in contrast with the more theoretical one, based on mathemat-

ical fluid theories, adopted by mainland European physicists. Maxwell studied Michael

Faraday’s works, from which he gained understanding on concepts such as force fields and

force lines, he also read the books of Sir William Thomson, André-Marie Ampère, Gustav

Kirchhoff, Franz Ernst Neumann and Heinrich Friedrich Weber.

From these readings he moved his first steps trying to give a mathematical expression to

Faraday’s field conception by using methods inspired from Thomson’s field mathematics.

In alternative to Thompson’s approach based on electric and magnetic potentials, Maxwell

made the lines of force the central concept of his theory. By considering a geometrical

net of lines of force and orthogonal surfaces over Faraday’s field, he was able to catch the

mathematical field laws directly in terms of field quantities.

In the paper On Physical Lines of Force, Maxwell exhibited a mechanical model for

the magnetic field based on the Thomson’s idea of the vortical nature of magnetism.

Furthermore, this model accounted for the mechanical forces of magnetic origin and elec-

tromagnetic induction. From this article came out the earliest evidence of his equations

of electromagnetism, which also included the novel proposal of the displacement current

that led Maxwell to conclude that light could be seen as a transverse electromagnetic

wave.

Maxwell soon modified the model switching from the mechanical interpretation to a field
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theory inspired by the work of Fararday. Thanks to that improvement he was able to

include electrostatics and optics, providing the full set of electromagnetic field equations

and the expression of the velocity of light in terms of electromagnetic quantities. These

progresses bring to the paper A Dynamical Theory of the Electromagnetic field [28], where

the vortex model is replaced by a dynamical justification of the field equations and the

magnetic field is treated as a “hidden mechanism” whose motion is controlled by the

electric current. Last but not least, a wave equation is obtained by combining field equa-

tions, reaching a truly electromagnetic optics in which light has the nature of a waving

electromagnetic field. In [28] the equations of the electromagnetic field are carried out

as the existing relations between fundamental electromagnetic quantities, whose writing

where enforced by the thorough use of the mathematical notation, as here reported:

“[. . . ] In order to bring these results within the power of symbolical calculation, I then

express them in the form of the General Equations of the Electromagnetic Field. These

equations express -

(A) The relation between electric displacement, true conduction, and the total current,

compounded of both.

(B) The relation between the lines of magnetic force and the inductive coefficients of a

circuit, as already deduced from the laws of induction.

(B) The relation between the lines of magnetic force and the inductive coefficients of a

circuit, as already deduced from the laws of induction.

(C) The relation between the strength of a current and its magnetic effects, according to

the electromagnetic system of measurement.

(D) The value of the electromotive force in a body, as arising from the motion of the body

in the field, the alteration of the field itself, and the variation of electric potential

from one part of the field to another.

(E) The relation between electric displacement, and the electromotive force which pro-

duces it.

(F) The relation between an electric current, and the electromotive force which produces

it.

(G) The relation between the amount of free electricity at any point, and the electric

displacements in the neighbourhood.
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(H) The relation between the increase or diminution of free electricity and the electric

currents in the neighbourhood.

There are twenty of these equations in all, involving twenty variable quantities.[. . . ] ”

p′ = p+ df
dt

r′ = r + dg
dt

q′ = q + dh
dt

 · · · · · · · · · · · · · · · (A)

µα = dH
dy −

dG
dz

µβ = dF
dz −

dH
dx

µγ = dG
dx −

dF
dy

 · · · · · · · · · · · · · · · · · · · (B)

dγ
dy −

dβ
dz = 4πp′

dα
dz −

dγ
dx = 4πq′

dβ
dx −

dα
dy = 4πr′

 · · · · · · · · · · ·(C)

P = µ
(
γ dydt − β

dz
dt

)
− dF

dt −
dΨ
dx

Q = µ
(
αdzdt − γ

dx
dt

)
− dG

dt −
dΨ
dy

R = µ
(
β dxdt − α

dy
dt

)
− dH

dt −
dΨ
dz

 · · · (D)

P = kf

Q = kg

R = kh

 · · · · · · · · · · · · · · · · · · (E)

P = −ρp
Q = −ρq
R = −ρr

 · · · · · · · · · · · · · · · · · · · · · · · · · (F )

e+
df

dx
+
dg

dy
+
dh

dz
= 0 · · · · · · (G)

de

dt
+
dp

dx
+
dq

dy
+
dr

dz
= 0 · · · · · · · · · · · · · (H)

In these equations of the electromagnetic field we have assumed twenty variable quantities,

namely,

For Electromagnetic Momentum F G H

” Magnetic Intensity α β γ

” Electromotive Force P Q R

” Current due to true conduction p q r

” Electric Displacement f g h

” Total Current (including variation of displacement) p’ q’ r’

” Quantity of free Electricity e

” Electric Potential Ψ

Between these twenty quantities we have found twenty equations, viz.
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Three equations of Magnetic Force (B)

” Electric Currents (C)

” Electromotive Force (D)

” Electric Elasticity (E)

” Electric Resistance (F)

” Total Currents (A)

One equation of Free Electricity (G)

” Continuity (H)

[. . . ]

It is important to notice that electric and magnetic fields are given in terms of compo-

nents, because the vector algebra was a novel mathematical tool at the time of Maxwell

and he was used to the much more applied fluid-mechanics notation.

The new dynamical theory, that takes his final and exhaustive formulation in the book

A Treatise on Electricity and Magnetism [29] written in 1873, mainly differs from the

vortex model on the physical interpretation of the nature of charges and currents. In the

vortex model, the electric current corresponded to the flow of particles between vortices

and charges to their accumulation, while in the dynamical theory, Maxwell defined the

electric current as a transfer of polarization, and charge as a discontinuity of polarization.

Maxwell’s concept of polarization is something totally different from the current meaning

of polarization, for instance it does not distinguish between electric polarization and elec-

tric displacement, the first one existing in physical media while the second one occurring

in free-space.

For what concerns the equations of electromagnetism, the main improvement done in

[29] with respect to [28], was the introduction of a quaternion formulation. This kind of

notation has been developed by William Rowan Hamilton and brought to the attention

of Maxwell by his friend Peter Guthrie Tait, and let Maxwell to rewrite his equation in

a compact differential form and also to introduce their integral formulation. The quater-

nion notation is clearly explained in [2], were it is presented as the fundamental step

towards the reduction of the equation in a vector form, whereas for other authors this ad-

vance should be properly attributed to Oliver Heaviside, as we will see in the next section.

As Darrigol remarks1, in Maxwell’s theory all the basic concepts of field, charge and

current have macroscopic meaning, matter and ether were treated as a single continuous

1See [7], Chapter 4.
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medium without speculating on their microscopic models. Another brilliant Maxwell’s in-

tuition has been the rejection of the ideas of direct action at a distance and electric fluids,

both very popular between physicists at the time; he could overtake them by combining

the novel field theory approach, proposed by Faraday, with the geometrical interpretation

of the fields themselves in terms of the line of force. It is known that Maxwell’s major

work [29] lacked of consistency under several aspects and it is a very hard reading, how-

ever it has been the guide for almost all further improvements in electrodynamics. Recent

studies of his scientific production have established that Maxwell theory was far more

consistent than has usually been admitted. Siegel2 has shown the vortex model accounts

for all electrodynamics and electrostatic phenomena known to Maxwell.

1.2. Modern formulation

The electromagnetic theory developed by Maxwell did not get attention until the pub-

lication of the book A Treatise on Electricity and Magnetism in 1873. In the following

years the theory did not know a great diffusion as well. This initial indifference could be

explained by taking in to account two main facts: on one hand Maxwell left his theory

incomplete3, on the other hand it encountered the disagreement of Sir William Thomson

(Lord Kelvin) that was the highest authority in electricity at the time. Thomson, who

was a great exponent of mechanical reductionism, did not believe in a purely electromag-

netic theory of light able to reduce optics directly to electricity and magnetism. For this

reason he completely disagreed with Maxwell’s rejection of vortex model as a concrete

mechanical basis of his theory.

Nevertheless, in the last decades of the 1800 a group of physicists approached Maxwell’s

theory and brought it to the limelight within national borders first, and further on the

European continent. They were able to produce substantial modifications spreading it

through the scientific community and preparing it to his great success. This group of

scientists, usually referred as the Maxwellians, counts for example Horace Lamb, who

eliminated the scalar potential from the equations showing that it was redundant, George

Francis FitzGerald, who established that the displacement currents do not have to be the

linear displacement of some substance, John Henry Poynting and Oliver Heaviside, who

were able to relate the energy flux in an electromagnetic field with Maxwell’s equations.

2See [33].
3Maxwell died in Cambridge in 1879, at the age of 48.
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Another group of Maxwellians studied the magneto-optical properties of light, by modi-

fying the Maxwell’s Lagrangian and producing confirmation of Maxwell’s theory of light.

One of the most debated Maxwellians is Heaviside, without any doubt an enthusiastic

proponent of Maxwell’s ideas. He has the merit to have clearly rewrite the theoreti-

cal apparatus, using the vector algebra formalism, cutting out the unpopular quaternion

notation of the electromagnetic equations. Heaviside eliminated both of the potentials

from Maxwell’s equations and introduced the use of capital bold letter E, D, B, H to

indicate electric field strength, electric displacement, magnetic induction and magnetic

field strength respectively. He also adopted the notation “curl” and “div” to indicate the

rotor and the divergence of a field4. However, as it is pointed out in [37], while some

authors refer to him as the father of the modern formulation of the Maxwell’s equations,

others authors such Waser argue that this claim is an overstatement, since the condensa-

tion from 20 to 4 equations was made by Maxwell himself with the quaternion formulation.

In Germany, Maxwell’s theory was mainly handled by Heinrich Hertz and August Föppl.

They both tried to achieve the clarity that was lacking in Maxwell’s exposition and publi-

cized in mainland Europe his work. However whereas while Hertz’s did not adopt a mod-

ern mathematical structure, Föppl’s did it, first following the vector analysis approach

of Heaviside, then by publishing Introduction to the Maxwellian Theory of Electricity, a

clear and well organized book about electrodynamics5. By the way, in [1] the equations

of electromagnetism are listed separately in the second and third part of the book. Only

in paragraph 606 two of the four equations of the modern set are coupled and referred to

as the Heaviside-Hertz equations. Their expression is
ε

c

∂E

∂t
= curlH − 4πσ

c
E

−µ
c

∂H

∂t
= curl{E −Ee}

where c is the speed of light and capital bold letters are here used to replace the capital

bold german characters of the original text.

4The notation will be finally turned in to the modern one with ∇· and ∇× by Josiah Willard Gibbs.
5Probably the first of this kind, since Heaviside books were only a collection of articles.
6The title of the paragraph could be translated as Differential Equations of Electromagnetic Field for

Bodies at Rest.
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As a last step in this brief exposition of the history of electromagnetic equations, we

shall consider the formulation given by Hendrik Antoon Lorentz in [27], where he listed

a full set of equations for the microscopic electromagnetic field in the framework of his

own electron theory. Right at the end of the article, he provided five equations for the

macroscopic fields, interpreted as some spatial average of the microscopic one. They read

is more or less as follow:

DivD = ρ

DivS = 0

RotB = 4πS

RotE = −Ḃ
DivB = 0

Here again capital bold letter are used in place of german characters present in the

Lorentz’s article. Moreover, Lorentz uses the notation Rot and Div for rotor and di-

vergence, as well as the dot to indicate the derivative with respect to time. The field

S, called current field, is defined as the sum of four contributes: the time variation of

the electric displacement Ḋ, the conduction current I, the convection current C and the

Röntgen current R.

The modern formulation of Maxwell’s equations, that can be found in common texts

of physics and engineering, is the following7



∇ ·D = 4πρ

∇×H − 1

c

∂D

∂t
=

4π

c
J

∇×E +
∂B

∂t
= 0

∇ ·B = 0

(1.1)

where ρ, J are the charge and current source in the medium respectively. In addition,

these equations are coupled with some constitutive relations: one expresses the electric

displacement D in terms of the electric polarization P of the medium and the electric

7This formulation is taken from [23].
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field E, the other one expresses the magnetic field H in terms of the magnetization M

of the medium and the magnetic induction B. The corresponding formulas are reported

below

D = ε0E + P

H = µ0B −M .

Finally, to complete the set of equations, it is usually also added the Lorentz’s force

equation, expressing the electromagnetic force acting on a point charge q that travels

through an electromagnetic field with velocity v, i.e.

F = q(E + v ×B).

In vacuum and in absence of field sources, the equations in (1.1) reduce to

∂E

∂t
= c2∇×B

∂B

∂t
= −∇×E

∇ ·B = 0

∇ ·E = 0

(1.2)

Although (1.1) and (1.2) are nowadays the most common formulations, advanced frame-

works allow to express the electromagnetic equations in alternative way. As an example8,

we mention the tensor version of the Einstein’s relativity theory, or the one based on dif-

ferential forms developed by Elie Cartan. Furthermore, as pointed out in [37], a certain

number of scientist have tried to extend the “classic” set of electromagnetic equations

inspired by different reasons; we could cite a first proposal that has been advanced by

Hertz, in order to make Maxwell’s equations invariant with respect to Galilei transfor-

mation, and another one done by Paul Dirac with the intent to symmetrize the four

equations, by postulating the existence of magnetic monopoles.

8See [2].
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To close this historical presentation, we report some phrases wrote by Darrigol9 at the

beginning of Chapter dedicated to Maxwell.

“Glorification, however, tends to obscure the true nature of Maxwell’s achievements. It

was not a god who wrote these signs, but a man who had gone through two of the best

British universities and had carefully studied Faraday and Thomson for himself. His elec-

tromagnetism and his style of physics, innovative though they were, owed much to Thom-

son, who had already transformed British physics in an even more significant manner and

had defined basic concepts and new perspectives of electromagnetism. The heroic account

also deforms Maxwell’s results. His electrodynamics differed from today’s ’Maxwell’s the-

ory’ in several respects, as basic as the distinction between source and field. It was not a

closed system, and it included suggestions for future electromagnetic research.”

1.3. Tensor form

Following a very standard path10, we briefly present here the tensor form of the electro-

magnetic equations in vacuum. This will help us later in order to make some comparisons

with another theory developed to generalize the equations, as we will discuss in the next

chapter.

Consider the two electromagnetic potentials A and Φ, that verify the following relations

B =
1

c
∇×A E = −1

c

∂A

∂t
−∇Φ. (1.3)

To determinate uniquely the choice of the two potentials, we will assume the Lorenz gauge

condition reported below

∇ ·A+
1

c

∂Φ

∂t
= 0.

Within the space-time cartesian coordinates framework (x0, x1, x2, x3) = (ct, x, y, z) the

electromagnetic field tensor is defined as

Fαβ = ∂αAβ − ∂βAα,

9See [7], Chapter 4.
10See [23], chapters 6 and 11.
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where ∂α is the α-component of the differential operator ( ∂
∂x0

,∇) and Aα is the generic

entry of the tensor (−Φ,A).

Taking in to account the definition (1.3), the electromagnetic field tensor with two covari-

ant indices is written as

Fαβ =
∂Aβ
∂xα

− ∂Aα
∂xβ

=


0 Ex Ey Ez

−Ex 0 −cBz cBy

−Ey cBz 0 −cBx
−Ez −cBy cBx 0

 (1.4)

while its contravariant version is obtained through the application of the metric tensor

gαβ = gαβ = diag{1,−1,−1,−1}, as show below

Fαβ = gαγgβδFγδ =


0 −Ex −Ey −Ez
Ex 0 −cBz cBy

Ey cBz 0 −cBx
Ez −cBy cBx 0

 . (1.5)

According to Einstein’s notation, in (1.5) one has to sum up from 0 to 3 on repeated

indices. From the expression

∂αF
αβ = 0 (1.6)

the first and the fourth equations of the system (1.2) are then obtained by choosing β =

1, 2, 3 and β = 0 respectively. Similarly, the second and the third equations immediately

follow from

∂αFαβ = 0, (1.7)

where Fαβ is the dual field tensor11, that in brief could be obtained from Fαβ by ex-

changing E with B and B with − 1
c2E, i.e.

Fαβ =


0 −Bx −By −Bz
Bx 0 1

cEz − 1
cEy

By − 1
cEz 0 1

cEx

Bz
1
cEy − 1

cEx 0

 .

11As defined in [23], chapter 11.
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Finally, the electromagnetic Lagrangian density assumes the form12

L = −FαβFαβ = 2(|E|2 − c2|B|2). (1.8)

Maxwell’s equations are linked to the stationary points of this functional. As usual, it

is possible to recover these equations by writing L in terms of the scalar and vector

potentials Φ and A and successively differentiating with respect to the variations δΦ and

δA13.

12Hereafter | . | is the standard Euclidean norm in three-dimensional space.
13For a detailed exposition of this procedure see [25] chapter 4 and [23] chapter 12.
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An extended formulation for the electrodynamics

In this chapter we will present the extension of the electromagnetic equations (1.2) pro-

posed by Daniele Funaro in a series of works1, where substantially the free divergence

equation ∇ · E = 0 is rejected, while it is postulated the possibility to have non-zero

divergence for the electric field in vacuum and in absence of charge sources. This assump-

tion will produce an extra current term in the Ampère’s law. Two new variables and two

new equations have been added to system (1.2) to built up the novel set of equations, as

it will described in section 2.3.

One of the motivations that led to formulate the above extension is the need to ex-

pand the set of possible solutions of the electromagnetic equations. For instance, it is

quite astonishing to observe that some elementary electromagnetic phenomena, such as

solitary signal-packets, cannot be described by using (1.2). The extended set of equations

has the advantage of fully incorporating “photons” within the framework of a differential

model, even if in order to achieve this result it is necessary to abandon some aspects of

the Maxwell’s original model.

The remarkable unifying feature of this approach is that it does not make any actual dif-

ference between a photons and other electromagnetic phenomena as, for instance, waves

emanating from an antenna.

With this interpretation, the photon is not the “carrier” of the electromagnetic field, but

becomes a pure wave, carrying along electric and magnetic components. Due to the lack

of time, before going on through the exposition, let us state that is far from our intentions

to debate on fundamental physical topics, such as the quantum mechanics conception of

photon. These issues are discussed in [13], [14] and in chapters 5 and 6 of [12] .

After giving an overview on the idea of solitonic solution, we will examine an exam-

1Some of those are [11], [12], [13] and [14].
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ple to outline the reason why these kind of solutions are missing in the usual framework

of equations (1.2). Finally we will formulate the extended version of the equations and

give an insight of some of the features of the mentioned model.

2.1. Solitary waves

The first issue is to clarify the meaning hereafter attributed to the word soliton, since it

does not exists a consensus general definition2. The term is commonly referred at any

solution of a certain nonlinear equation which

i) represents a wave of permanent form,

ii) is localized, decaying or becoming constant at infinity,

iii) interacts with other solitons retaining its form3.

According to this description, we will call soliton every smooth electromagnetic wave with

compact support travelling along a straight trajectory at the speed of light. Taken at two

different time values, the supports of such wave have to be similar.

From a mathematical point of view, we can restate the observation done at the beginning

of the chapter by saying that Maxwell’s equations (1.2) have a poor set of finite-energy

solutions of the type above described. Indeed soliton are not admitted.

Despite the lack of a general definition of soliton, there are many specific cases in which

solitary travelling waves belong to the set of solutions of nonlinear partial differential

equations.

This is the case of the Korteweg-de Vries equation4, introduced at the end of the 19th cen-

tury to describe wave motion in shallow canals, and then applied to the study of plasma

physics by Norman J. Zabusky and Martin D. Kruskal. In 1965, they find for the first

time a soliton5 as result of some numerical simulations of the solutions of the Korteweg-de

Vries equation.

Few years later, the spectral transform technique was developed by Clifford S. Gardner,

John M. Greene, Martin D. Kruskal and Robert M. Miura, and the method was applied to

2See [9].
3When the principle of superposition holds.
4See [38].
5See [40].
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Cauchy problems involving Korteweg-de Vries equations, nonlinear Schrödinger equation

and others. For example, by considering stationary Schrödinger equation, a soliton turns

out to be a solution corresponding to an initial datum whose spectral transform has a

vanishing reflection coefficient and only a discrete eigenvalue in his whole spectrum6. The

corresponding time evolution produces a wave of constant shape that moves at constant

speed.

To conclude this dissertation about solitonic solutions we want to point out the problem of

interaction between solitons. As we are going to discover, the extended formulation here

proposed consist on a nonlinear set of partial differential equations, otherwise solitonic

solution would not be allowed. The non-linearity can in many circumstances invalidate

the linear superposition principle. For this reason, it is not guaranteed that solitons retain

their original shape after collision.

Even if some other considerations relative to the linear superposition principle are going

to be carried out in section 2.7, treating the case of spherical waves, the topic concerning

the collision of soliton with both other solitons or matter will not be treated in this thesis.

2.2. Non-Maxwellian wave fronts

We will try to give an idea of the reason why the couple of conditions ∇ · B = 0 and

∇ ·E = 0 cannot be both satisfied at the boundary of the compact support of an elec-

tromagnetic soliton. This issue, and all the other that will follow in this section, are

discussed in detail in the chapter 1 of [12]. For shake of brevity, we have omitted a num-

ber of argumentation that will further clarify the concepts here exposed.

In the current framework becomes very important the concept of wave-front. This is

the piece of a two-dimensional surface locally enveloped by the vectors E and B. Those

geometric entities cannot be defined for each electromagnetic wave, indeed in many cases

it is impossible since the envelopes intersect each other. On the contrary, a case in which

wave-fronts exist is the one of the free-wave that will be treated in section 2.4. For waves

of this kind, in each point of the empty space, the vectors E and B are mutually orthog-

6The proposed characterization it is quite meaningless without the background given in first chapter
of [6]. It has been reported just to give an idea of how a soilton could be defined in a rigorous way.
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onal7 and such that |E| = c|B|.
To follow the evolution of the wave-front let introduce the vector field V . It is a velocity

field and in the case of a free-wave it is locally orthogonal to the vectors E and B and

normalized to c. At each instant, the light rays are determined by the field V according

to the following fact: in its propagation, a light ray remains locally orthogonal to each

wave-front. The energy is so carried away at the speed of light along the direction indi-

viduated by the Poynting vector E ×B, locally tangent to each ray. This means that for

a free-wave (V ,E,B) is a right-hand oriented triple of orthogonal vectors.

The fronts of an electromagnetic wave, differing each other in intensity and polariza-

tion, are consecutively generated, producing a continuum along the propagation direction.

Once generated by a source, wave-fronts develop without influencing each other, unless

they find an obstacle, as for instance another group of wave-fronts.

Without loss of generality, by fixing a cartesian system of coordinates (x, y, z), we can

describe a soliton that travels along the x-axis with the help of the following electric and

magnetic vector fields

E =
(
ex, ey, ez

)
f
(
t− x

c

)
, H =

(
hx, hy, hz

)
f
(
t− x

c

)
. (2.1)

Here f is a bounded function and all the components of E and H are zero outside a

certain two-dimensional set Ω. Moreover, the electric and magnetic fields only depend

on the coordinates y and z. In this way the vector field V is oriented as the x-axis, i.e.

V = (Vx, 0, 0). As an immediate consequence of the V orientation, we have that the

components Ex and Bx must be zero, otherwise the mutual orthogonality of E, H, V

would be lost. By excluding trivial solutions, the only possibility is that ex = hx = 0.

We can now proceed by replacing the electric and magnetic fields in the system (1.2), i.e.

7See [25].
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∂E

∂t
=

1

ε0
∇×H

∂H

∂t
= − 1

µ0
∇×E

∇ ·H = 0

∇ ·E = 0.

Since we are in vacuum it follows that ε = ε0, µ = µ0 and B = µ0H, where ε0 and

µ0 are vacuum permittivity and permeability. In the simplified case we are examining,

one gets

0 =
1

ε0

(∂Hz

∂y
− ∂Hy

∂z

)
(2.2)

∂Ey
∂t

= − 1

ε0

∂Hz

∂x
(2.3)

∂Ez
∂t

=
1

ε0

∂Hy

∂x
(2.4)

0 = − 1

µ0

(∂Ez
∂y
− ∂Ey

∂z

)
(2.5)

∂Hy

∂t
= +

1

µ0

∂Ez
∂x

(2.6)

∂Hz

∂t
= − 1

µ0

∂Ey
∂x

(2.7)

from which it is possible to prove that ey, ez, hy, hz are harmonic functions, as we will

check below only for ey(y, z). Let us start by taking the partial derivative of (2.3) with

respect to y on both sides. Then by exchanging the order of derivation and using relation

(2.2) we get

∂

∂t

∂Ey
∂y

= − 1

ε0

∂

∂x

∂Hy

∂z
.

Switching the derivatives on the right-hand side and by using (2.4) we obtain

∂

∂t

∂Ey
∂y

= − 1

ε0

∂

∂z

(
ε0
∂Ez
∂t

)
. (2.8)

Taking a further derivative with respect to y, exchanging the order of derivation on both

sides and applying relation (2.5) we can write

∂

∂t

∂2Ey
∂y2

= − ∂

∂t

∂2Ey
∂z2

.
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Finally, it is necessary to write down explicitly Ey and Ez and, unless f is constant

in time, it is proved that ey is an harmonic function since

∂f

∂t

(∂2ey
∂y2

+
∂2ey
∂z2

)
= 0.

Then it is well known that if ey, ez, hy and hz are harmonic functions in Ω and they

are required to vanish at the boundary, than they must vanish on the entire set.

We have just shown that, if Ω is flat and bounded there is no possibility to get a solitonic

solution of the electromagnetic equations (1.2) in vacuum, without introducing internal

singularities or boundary discontinuities. Notice that, applying the same argument here

used to prove ∆Ey = 0, from equation (2.8) one can also deduce that ∇ ·E = 0.

At this point, according to what is stated in first chapter of [12], we define Maxwellian-

waves (in vacuum) those waves where the vector fields E and H are both divergence-free

at any point. Forcing fields of (2.1) to be those waves one obtains the trivial null solu-

tion. An example of Maxwellian-wave is the transverse monochromatic plane wave. This

is a travelling solution of of (1.2). By supposing that it travels along the x-direction of

a cartesian reference frame (x, y, z), this wave is described by the following electric and

magnetic fields

E =

(
0, c sin

(
ωt− ωx

c

)
, 0

)
, H =

(
0, 0, sin

(
ωt− ωx

c

))
,

where ω is the frequency having the dimension of the inverse of time. It is easy to see

that wave-fronts are planes orthogonal to the x-direction. Unfortunately, this kind of wave

does not exist in nature since it has associated an infinite energy. This is a consequence

of the fact that it is not possible to constrict the fields E and H to be non-vanishing only

in a bounded region of each wave-front. A detailed exposition of this fact can be found

in chapter 1 of [12].

Otherwise a wave-front that has the shape of the surface of a sphere it is of Non-Maxwellain

type: it is impossible to satisfy both the local orthogonality between E and H and the

free-divergence conditions near the poles8. This topic will be further discuss in section

2.27.

8See [12] chapter 1, [14] and [16]
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2.3. The extended set of equations

According to [12], by letting the divergence of the electric field be different from zero, even

in some spatial regions that do not contain classical charges, we arrive at the following

extended formulation of the electromagnetic equations

∂E

∂t
= c2∇×B − ρV

∂B

∂t
= −∇×E

∇ ·B = 0

∂p

∂t
= θ ρE · V

ρ

[
DV

Dt
+ θ

(
E + V × B

)]
= −∇p

(2.9)

where ρ = ∇ · E. This nonlinear system counts ten unknowns, namely, the three com-

ponents of the electric field E, the three components of the magnetic induction B, the

three components of the velocity field V and the scalar function p. Hereafter, we will only

consider the case of linear homogeneous media, corresponding to D = εE and B = µH.

By comparing the extended version (2.9) with the usual Maxwell’s equations (1.2), we

can observe that only the Faraday’s Law and the free-divergence equation for B are left

untouched. Therefore, the other equations deserve some comments.

The first equation

∂E

∂t
= c2∇×B − ρV (2.10)

is the Ampère’s law where, in absence of external sources of charge and current, the

additional term −ρV has to be interpreted as a free flow of immaterial current, with

density ρ, associated with the movement of the electromagnetic wave.

18



The just mentioned term can be summed up to another one, due to the flow of current

along a conductive medium that may interact with the wave. By taking in to account

these additional contributions, it is possible to model the mutual interactions between

wave and guides, as we will see in the last section of this chapter.

Going on, we find an equation that recalls the Euler’s equation for inviscid fluids:

ρ

[
DV

Dt
+ θ

(
E + V × B

)]
= −∇p. (2.11)

On the left-hand side we find ρ, i.e. the divergence of the electric field, multiplied by the

sum of two terms: the first one is the total derivative9 of V with respect to time and the

second one is a forcing term of electromagnetic nature, based on the vector E + V × B.

The constant θ appearing in (2.11) is a fundamental constant of the model, and has the

dimension of a charge divided by a mass10.

On the right-hand side appears the gradient of the scalar field p which, in analogy with

the Euler’s equation, plays the role of a pressure. We will actually treat the potential p

as a pressure term, even though from a dimensional analysis turns out that p is measured

in V
s2 .

An equation like (2.11) are usually coupled with Maxwell’s equations in some plasma

physics models, for instance the one related to magnetohydrodynamics11. Nevertheless,

in such models a number of particles moves has a fluid and V has the meaning of the

fluid flow velocity, p is a proper pressure and both mass density ρm and charge density

ρq compares. On the contrary, in our model massive charge particles are not involved

and V , p and ρ has the meaning already explained above. Furthermore, as stated in [16],

equation (2.11) combines the evolution of electromagnetic entities with that of a (non

material) inviscid fluid.

Finally, an energy conservation argument leads to the equation

∂p

∂t
= θ ρE · V , (2.12)

which reveal the possible arising of a pressure as a consequence of a lack of orthogonality

between E and V .

9The total derivative operator has the following expansion
D�

Dt
:=

∂�

∂t
+ (� · ∇)�.

10It has been estimated θ ≈ 2.85× 1011 Culomb/Kg. See [13] appendix G and [15].
11See [20] and [31].
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As for the Maxwell’s equations, by multiplying the first two equation by E and B respec-

tively and summing up, we get an energy balance equation

1

2

∂

∂t

(
|E|2 + c2|B|2 +

2

θ
p
)

= −c2∇ ·
(
E ×B

)
.

This equation differs from its classical counterpart as it counts an extra term due to

the time variation of p. Nevertheless, in the case that we are going to consider in the

following section the standard Poynting equation will be recovered as a consequence of

the orthogonality between the fields E and V .

Hence considering again equation (2.10) and by taking its divergence one find the fol-

lowing continuity equation for the current term ρV

∂ρ

∂t
= −∇ ·

(
ρV
)
. (2.13)

This last equation could be used to further expand the time derivative of (2.10) to get

∂2E

∂t2
= c2∇×

(∂B
∂t

)
−
[
−∇ ·

(
ρV
)]
V − ρ∂V

∂t
.

Then, using Faraday’s law and applying the vector formula ∇×(∇×E) = ∇(∇·E)−∆E,

we can rewrite it as

∂2E

∂t2
= c2∇×

(
−∇×E

)
+
[(
∇ρ · V

)
+ ρ ∇ · V

]
V − ρ∂V

∂t
,

∂2E

∂t2
= c2∆E − c2∇ρ+

(
∇ρ · V

)
V + ρV ∇ · V − ρ∂V

∂t
. (2.14)

It is clear from the context that here ∆E has the meaning of vector Laplacian. We can

further note that last equation for ρ = 0 reduces to classical vector wave equation.

2.4. The case of free-wave

We will distinguish between free-waves and constrained waves by meaning, on one side of

waves such that the triplet (V ,E,B) is a local right-handed cartesian reference system
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and |E| = c|B|, while on the other side of waves for which the mutual orthogonality of

the fields does not hold in general.

Of course when ρ, DV
Dt and p are identically zero, Maxwell’s equations (1.2) are directly

recovered. Another interesting subcase is obtained by setting p = 0 and DV
Dt = 0. With

this last choice (2.9) reduces to

∂E

∂t
= c2∇×B − ρV

∂B

∂t
= −∇×E

∇ ·B = 0

ρ
(
E + V × B

)
= 0.

(2.15)

From the fourth equation, i.e.

ρ
(
E + V × B

)
= 0 (2.16)

one could easily deduce the orthogonality of the couple of E and B, and of the couple E

and V . Indeed, multiplying (2.16) by B gives E ·B = 0, while multiplying (2.16) by V

produces E · V = 0. So we can state that free-waves are solutions of (2.15).

Further on, we can notice that it comes natural to require |V | = c for a free-wave that

propagates in vacuum. As it is pointed out in first chapter of [12], this relation holds in

many circumstances12, for instance an interesting case occurs when V is compatible with

the following expression

V = c
E ×B
|E ×B|

which also ensure the orthogonality of the whole triplet (V ,E,B), thus via relation

(2.16) also |E| = c|B| is recovered.

Another interesting feature is given by taking (2.14) in the case of (2.16) holds, and

by assuming that V is a stationary field, orthogonal to B and such that ∇ · V = 0.

12It is also the case of the solitonic wave considered in section 2.6
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Under these hypotesis the considered equation is simplified to

∂2E

∂t2
= c2∆E − c2∇ρ+

(
∇ρ · V

)
V . (2.17)

The operator at the right-hand side contains only second partial derivatives in the direc-

tion of V and this may explain why solitons may be generated with this model. This

last statement could be clarified by further explanations which, to avoid weigh down this

section, are provided in the appendix I.

In addition, as it is shown in chapter 2 of [12], the new system of equations is invari-

ant under Lorentz transformations.

To conclude this section, we analyse the tensor version of (2.15) and compare it to the

one relative to (1.2) shown in section 1.3. To this end, it is necessary to introduce the

tensor Vα = (V0,−V ) and its contravariant version V β = gβδVδ = (V 0,V ). The same

potential A and Φ defined in (1.3) and the same electromagnetic field tensors (1.4) and

(1.5) are here used to rewrite equations (1.6) in the new way.

We obtain first vector equation of (2.15), that is

∂Fαβ =
ρ

c
V β , (2.18)

when β = 1, 2, 3 . Note that for β = 0 tensor equation (2.18) produces ρ = ∇ ·E. This

last is not actually an equation, but confirms the definition we have given to ρ.

The second and the third equations in (2.15) are the same as in system (1.2). They indeed

correspond to the same dual tensors and relations (1.7) shall hold.

Another tensor relation must now be added, i.e.

FαβVβ = 0,

that retrieves equation (2.16) for β = 1, 2, 3 , while for β = 0 states the orthogonal-

ity between E and V .

The Lagrangian for the extended formulation is the same as the Maxwellian case. This

is given by (1.8), nevertheless it is necessary to add a constraint on the potentials13 to

enforce that A and V are lined up. Thus we must find the stationary points of

13See [16].
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L = 2
(
|E|2 − c2|B|2

)
under the condition

cA = ΦV .

It is remarkable that the Lagrangian proposed in [16] is identical as the classical one.

Usually the attempts to generalize Maxwell’s equation in a nonlinear way relay on the

modification of the Lagrangian. For instance one may consider the Born-Infeld theory14,

in which the idea behind the modification of the Lagrangian is the so called principle of

finiteness of physical quantities, that led Max Born and Leopold Infeld to assume the

existence of an upper limit for the electromagnetic field strength. Soliton-like solution,

later called “BIons”, are admitted by this model.

Although the Born-Infeld theory, as the great part of nonlinear electrodynamics theories,

have quite nothing in common with the extension here considered, they reveal the effort

of a part of the scientific community to move towards new theories that can embrace a

larger number of electromagnetic phenomena.

14See [4].
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2.5. The equations in various systems of coordinates

By using the linearity relation B = µH we rewrite the system of extended equations (2.9)

as follow

∂E

∂t
=

1

ε
∇×H − ρV

∂H

∂t
= − 1

µ
∇×E

∇ ·H = 0

∂p

∂t
= θ ρE · V

ρ

[
DV

Dt
+ θ

(
E + µV × H

)]
= −∇p.

(2.19)

We have already seen that this 3-dimensional electromagnetic problem has 10 unknowns.

This number may decrease in special symmetric configurations. Some examples in carte-

sian coordinates and cylindrical coordinates are going to be proposed here. Both the

frameworks here considered, allow to reduce a 3-dimensional problem in terms of a col-

lection of equivalent 2-dimensional problems.

Since hereafter we will frequently recall these special configurations, let us call cartesian

framework the one relative to cartesian coordinates and cylindrical framework the other

one relative to cylindrical coordinates.

Cartesian Framework

For what concerns the so called cartesian framework let us start by fixing a cartesian co-

ordinate frame (x, y, z) and assume that all the fields do not depend on the z-coordinate.

Thus, we now solve the equations in the plane (x, y), by observing that derivatives with

respect to z are zero.

In such a framework the divergence of the electric field takes the form

ρ :=
∂Ex
∂x

+
∂Ey
∂y
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and the equations of the system (2.19) are rewritten as

∂Ex
∂t

=
1

ε

∂Hz

∂y
− ρ Vx

∂Hx

∂t
= − 1

µ

∂Ez
∂y

∂Ey
∂t

= −1

ε

∂Hz

∂x
− ρ Vy

∂Hy

∂t
=

1

µ

∂Ez
∂x

∂Ez
∂t

=
1

ε

(
∂Hy

∂x
− ∂Hx

∂y

)
− ρ Vz

∂Hz

∂t
= − 1

µ

(
∂Ey
∂x
− ∂Ex

∂y

)

∂Hz

∂x
+
∂Hz

∂y
= 0

∂p

∂t
= θ ρ

(
Ex Vx + Ey Vy + Ez Vz

)

ρ

[
∂Vx
∂t

+ Vx
∂Vx
∂x

+ Vy
∂Vx
∂y

+ θ
(
Ex + µ

(
VyHz − VzHy

))]
= −∂p

∂x

ρ

[
∂Vy
∂t

+ Vx
∂Vy
∂x

+ Vy
∂Vy
∂y

+ θ
(
Ey + µ

(
VzHx − VxHz

))]
= −∂p

∂y

ρ

[
∂Vz
∂t

+ Vx
∂Vz
∂x

+ Vy
∂Vz
∂y

+ θ
(
Ez + µ

(
VxHy − VyHx

))]
= 0.

By further requiring that electric and velocity fields have to be orthogonal to the magnetic

one, which is lined up with the z-direction, we come out with a transverse electric mode

wave. This solves the following system, that only has six unknowns depending on two

spatial coordinates and time
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∂Ex
∂t

=
1

ε

∂Hz

∂y
− ρ Vx

∂Ey
∂t

= −1

ε

∂Hz

∂x
− ρ Vy

∂Hz

∂t
= − 1

µ

(
∂Ey
∂x
− ∂Ex

∂y

)

∂p

∂t
= θ ρ

(
Ex Vx + Ey Vy

)

ρ

[
∂Vx
∂t

+ Vx
∂Vx
∂x

+ Vy
∂Vx
∂y

+ θ
(
Ex + µVyHz

)]
= −∂p

∂x

ρ

[
∂Vy
∂t

+ Vx
∂Vy
∂x

+ Vy
∂Vy
∂y

+ θ
(
Ey − µVxHz

)]
= −∂p

∂y
.

(2.20)

Cylindrical framework

Since we will deal with problems displaying radial symmetry, it is advantageous to opt

for cylindrical coordinates15 (r, ϕ, y). In such a case, the 3-dimensional space is split in a

collection of half-planes whose intersection is the rotation axis, here taken as the y-axis.

The unknowns in this situation are not supposed to depend on the variable ϕ. We are

now going to write the equations in the cylindrical framework. This will be useful later

to study a biconic antenna.

By applying the divergence operator in cylindrical coordinates to the electric field one

obtains

ρ :=
1

r

∂(rEr)

∂r
+
∂Ey
∂y

.

Therefore, the system (2.19) takes the following form16

15Here (r, ϕ) are polar coordinates in each plane of the 3-dimensional space obtained by fixing y.
16By taking in to account that in cylindrical coordinates (r, ϕ, y) the rotor operator is written as

∇× F =
( 1

r

∂Fy

∂ϕ
−
∂Fϕ

∂y
,
∂Fr

∂y
−
∂Fy

∂r
,

1

r

∂(rFϕ)

∂r
−

1

r

∂Fr

∂ϕ

)
.
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∂Er
∂t

= −1

ε

∂Hϕ

∂y
− ρ Vr

∂Hr

∂t
=

1

µ

∂Eϕ
∂y

∂Eϕ
∂t

=
1

ε

(
∂Hr

∂y
− ∂Hy

∂r

)
− ρ Vϕ

∂Hϕ

∂t
= − 1

µ

(
∂Er
∂y
− ∂Ey

∂r

)

∂Ey
∂t

=
1

rε

∂(rHϕ)

∂r
− ρ Vy

∂Hy

∂t
= − 1

rµ

∂(rEϕ)

∂r

1

r

∂(rHr)

∂r
+
∂Hy

∂y
= 0

∂p

∂t
= θ ρ

(
Er Vr + Eϕ Vϕ + Ey Vy

)

ρ

[
∂Vr
∂t

+ Vr
∂Vr
∂r
− VrVϕ

r
+ Vy

∂Vr
∂y

+ θ
(
Er + µ

(
VϕHy − VyHϕ

))]
= −∂p

∂r

ρ

[
∂Vϕ
∂t

+ Vr
∂Vϕ
∂r

+
VrVϕ
r

+ Vy
∂Vϕ
∂y

+ θ
(
Eϕ + µ

(
VyHr − VrHy

))]
= 0

ρ

[
∂Vy
∂t

+ Vr
∂Vy
∂r

+ Vy
∂Vy
∂y

+ θ
(
Ey + µ

(
VrHϕ − VϕHr

))]
= −∂p

∂y
.

Similarly to what has been done before, we restrict ourselves to consider the case in which

the electric field and the velocity field have only components only along the r-direction

and the y-direction, while the the magnetic field is oriented along ϕ. Reminding that the

dependence on ϕ disappears, we obtain the following system in six variables
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∂Er
∂t

= −1

ε

∂Hϕ

∂y
− ρ Vr

∂Ey
∂t

=
1

rε

∂(rHϕ)

∂r
− ρ Vy

∂Hϕ

∂t
= − 1

µ

(
∂Er
∂y
− ∂Ey

∂r

)

∂p

∂t
= θ ρ

(
Er Vr + Ey Vy

)

ρ

[
∂Vr
∂t

+ Vr
∂Vr
∂r

+ Vy
∂Vr
∂y

+ θ
(
Er − µVyHϕ

)]
= −∂p

∂r

ρ

[
∂Vy
∂t

+ Vr
∂Vy
∂r

+ Vy
∂Vy
∂y

+ θ
(
Ey + µVrHϕ

)]
= −∂p

∂y
.

(2.21)

2.6. Exact solutions: solitons

By assuming the extended system of electromagnetic equations (2.19) rather than the

classic one (1.2), the set of admissible solution is enlarged, as anticipated at the begin-

ning of this chapter. Some of these brand-new solutions are going to be presented here.

In particular, we will consider two solitons, one relative to the cartesian framework and

another one related to the cylindrical framework.

Cartesian framework

In the cartesian coordinate system (x, y, z), we fix a positive real number τ and a point

C ≡ (xC , yC) of the plane z = 0. We can then define the functions
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φx(x) :=


1

2

[
1 + cos

(
(x− xC)

π

τ

)]
if |x− xC | ≤ τ

0 elsewhere

φy(y) :=


1

2

[
1 + cos

(
(y − yC)

π

τ

)]
if |y − yC | ≤ τ

0 elsewhere

φ(x, y) := φx(x)φy(y).

The function17 φ(x, y), assumes values in the interval [0, 1] and has as compact sup-

port the set
{

(x, y) ∈ R2
∣∣∣ |x− xC | ≤ τ, |y − yC | ≤ τ}, centered in C. Here, τ is half of

the side of the squared support.

Successively we consider φ(x − ct, y) which correspond to the function φ(x, y) shifting

along x (positive direction) with velocity c as time increases. The constant c is the speed

of light. A direct computation18 shows that the following choice of fields E, H and V is

an analytical solution of (2.20)

E =
(

0 , c φ(x− ct, y) , 0
)

H =
(

0 , 0 ,
1

µ
φ(x− ct, y)

)

V =
(
c , 0 , 0

)
.

(2.22)

Since the fourth equation of (2.20) is satisfied when ∇p = 0, the field p is determined up

to a constant. We suggest to choose p identically zero in the whole space-time domain.

17See figure 2.1.
18See Appendix II.
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Figure 2.1: Contour lines and surface representation of the function φ(x, y) for C = (0.5, 0.5)
and τ = 1.5. The red segments denote the bounds of the squared support.

Other solutions can be found by changing the shape of the soliton. An example is obtained

by substituting φ with φ2 as follow

E =
(

0 , c φ2(x− ct, y) , 0
)

H =
(

0 , 0 ,
1

µ
φ2(x− ct, y)

)

V =
(
c , 0 , 0

)
.

(2.23)

Cylindrical framework

To discuss the next exact solution it is necessary to fix a three dimensional cylindrical

coordinate system (r, ϕ, y). We then choose two positive real numbers τ , Kτ and two

points C ≡ (rC , yC), P0 ≡ (0, y0) of the half-plane defined by ϕ = 0. Successively, we

have to introduce the following coordinates transformation
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T : R2 −−−−−→ R2

(r′, y′) 7−−→ (r, y)
with


r = r′ cos

(
Kτ (y′ − y0)

)
y = y0 + r′ sin

(
Kτ (y′ − y0)

)
and its inverse one

T−1 : R2 −−−−−→ R2

(r, y) 7−−−→ (r′, y′)
with


r′ =

√
r2 + (y − y0)2

y′ = y0 +
1

Kτ
arctan

(
y − y0

r

)
.

Figure 2.2: Schematic representation of the transformations T and T−1.

The (r′, y′)-plane could be interpreted as the (x, y)-plane, so that the transformation

T−1 brings the function φ into its cylindrical version. This last statement and figure 2.2

could clarify the following construction. Note that P0 it is a fixed point of both transfor-

mations T and T−1. The point T−1(C) plays the role of the center of a square of side

2τ . This is the support of the soliton described in cartesian coordinates (r′, y′) through

the function φ(r′, y′). This last function is the same of φ(x, y) as it was defined in the

cartesian framework, one has just to write r′ and y′ instead of x and y respectively. Is

is clear that the same variable renaming it can be naturally extended to the functions

φx(x, y) and φy(x, y), which becomes φr′(r
′, y′) and φy′(r

′, y′). Furthermore, choosing

yC = y0, we have that C it is fixed point too of T and T−1. This means that, the squared
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support in the (r′, y′)-plane, that in general is defined as

{
(r′, y′)

∣∣∣ |r′ − T−1((rC , yC)) · (1, 0)| ≤ τ , |y′ − T−1((rC , yC)) · (0, 1)| ≤ τ
}

it simplifies to

{
(r′, y′)

∣∣∣ |r′ − rC | ≤ τ , |y′ − yC | ≤ τ}.

Now it is possible to construct three new functions. Two of those are defined on the

(r, y)-plane by going from each point (r, y) to its correspondent (r′, y′) through the trans-

formation T , then its coordinates are used to evaluate φr′(r
′, y′) and φy′(r

′, y′). The third

one it is given by the their product. At the end we obtain

φr′(r
′(r, y)) :=


1

2

[
1 + cos

(
(r′(r, y)− rC)

π

τ

)]
if |r′(r, y)− rC | ≤ τ

0 elsewhere

φy′(y
′(r, y)) :=


1

2

[
1 + cos

(
(y′(r, y)− yC)

π

τ

)]
if |y′(r, y)− yC | ≤ τ

0 elsewhere

which allow to define

ζ(r′(r, y), y′(r, y)) := φr′(r
′(r, y)) φy′(y

′(r, y)).

The positive constant τ is related to the shape of the function ζ, but in the (r, y)-plane it

does not play the role of the half of the side of the domain as it was in the (r′, y′)-plane.

The support of ζ it is not squared. A picture of ζ it is shown in figure 2.3. The positive

constant Kτ produces an elongation or a compression19 along the angular direction of the

support of ζ. The action of Kτ is symmetric with respect to the straight line passing from

P0 and C.

19The elongation occurs when Kτ is greater than 1, on the contrary the compression is given by values
of Kτ lower than 1.
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It is worthwhile to notice that with this setting the function ζ is not separable with respect

to the variables r and y.

The time dependent function ζ(r′ − ct, y′) describes the shift of ζ(r′, y′) along the ra-

dial directions outgoing from P0, as time passes. With the following choice, the fields

solve20 the system (2.21)

E =
(
− c

r
ζ(r′ − ct, y′) Uy , 0 ,

c

r
ζ(r′ − ct, y′) Ur

)

H =
(

0 , − 1

µr
ζ(r′ − ct, y′) , 0

)

V =
(
c Ur , 0 , c Uy

)
.

(2.24)

where

Ur(r, y) :=
r√

r2 + (y − y0)2
, Uy(r, y) :=

y − y0√
r2 + (y − y0)2

.

Since the last three equations of (2.21) are satisfied when p is constant in space and

time, this field is determined up to a constant, so that we suggest to choose p identically

zero in the whole domain.

Another possible exact solution is easily recovered from (2.24) by substituting ζ with

ζ2, obtaining

E =
(
− c

r
ζ2(r′ − ct, y′) Uy , 0 ,

c

r
ζ2(r′ − ct, y′) Ur

)

H =
(

0 , − 1

µr
ζ2(r′ − ct, y′) , 0

)

V =
(
c Ur , 0 , c Uy

)
.

(2.25)

20See Appendix II

33



Figure 2.3: Contour lines and surface representation of the function ζ(r, y) for C = (0.5, 0.5),
P0 = (0, 0.5), τ = 0.1, Kτ = 2π. The bounds of the support correspond to the red lines.

To conclude, we would like to observe that the velocity field V taken in (2.24) and (2.25)

has non vanishing divergence in each point of the (r, y)-plane, as show below

∇ · V =
1

r

∂

∂r

(
rVr
)

+
∂Vy
∂y

=
c

r
Ur +

∂Ur
∂r

+
∂Uy
∂y

= c
( 1√

r2 + (y − y0)2
+

(y − y0)2

(r2 + (y − y0)2)3/2
+

r2

(r2 + (y − y0)2)3/2

)

=
2c√

r2 + (y − y0)2
.

(2.26)
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2.7. Exact solutions: spherical waves

We want to review the definition of “spherical” wave in both the Maxwellian and the

Non-Maxwellian framework, by comparing the behavior of wave-fronts generated by an

infinitesimal dipole. In this circumstance, it is convenient to work with a spherical system

of coordinates (R,ϑ, ϕ).

Figure 2.4: Spherical system of coordinates. R ≥ 0, ϑ ∈ [0, π], ϕ ∈ [0, 2π[.

An electromagnetic wave displaying perfect spherical fronts is given, in appendix D of

[13], by the following triplet of fields

E =
(

0,
c

R
g1(ϑ, ϕ)f(ct−R),

c

R
g2(ϑ, ϕ)f(ct−R)

)

H =
(

0, − 1

µR
g2(ϑ, ϕ)f(ct−R),

1

µR
g1(ϑ, ϕ)f(ct−R)

)

V =
(
c, 0 , 0

)
,

(2.27)

where f , g1 and g2 are arbitrary smooth functions. In order to have ∇ · B = 0, the

following relation must be satisfied21

∂
(
g2 sinϑ

)
∂θ

=
∂g1

∂ϕ
. (2.28)

Note that the electric and magnetic fields have no component along the radial direction

and E ·H = 0. These fields shift along the radial direction with velocity c modulated by

the function f(ct−R). The wave-fronts turn out to be the skin of spheres centered in the

21We recall the form of the divergence operator in spherical coordinates (R, ϑ, ϕ):

∇ · u =
1

R2

∂

∂R
(R2 uR) +

1

R sinϑ

∂

∂ϑ
(sinϑ uϑ) +

1

R sinϑ

∂uϕ

∂ϕ
.
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origin, where an infinitesimal oscillating dipole is placed.

By explicitly computing the divergence of the electric field

∇ ·E =
c

R2 sinϑ
f(ct−R)

(
∂
(
g1 sinϑ

)
∂θ

+
∂g2

∂ϕ

)

it turns out22 that there are no possibilities to impose the free divergence condition re-

quired from equations (1.2), unless one chooses the trivial null solution. On the contrary

the above triplet (2.27) verifies the extended set of equations23.

Let us observe that the field V has a non vanishing divergence, i.e. ∇V = 2cR−1. We

can further observe that, for R tending to infinity, ∇ · E decreases faster than E. This

shows that the non-linearity of the equations becomes weaker and weaker as the fields

are evaluated far from the source. From this observation it follows that the superposition

principle, that as a consequence of the non-linearity of the equation does not hold, it

may be recovered for sufficiently large values of R, since the term ρV decays faster as

R increases. This agrees with the fact that the superposition principle is true in many

applications involving wave propagation, as for instance the constructive and destructive

interference.

In the framework of the standard electrodynamics equations, the Hertz’s solution24 for

the infinitesimal dipole is usually taken as an example of spherical wave that solves (1.2).

Up to a multiplicative constant the electric and magnetic fields associated to the Hertzian

solution take the form given here below

E =

(
2 cosϑ

R2

( 1

R
f1 + kf2

)
,

sinϑ

R

( k
R
f2 +

1

R2
f1 − k2f1

)
, 0

)
,

H =

(
0, 0, −k sinϑ

R

√
ε

µ

(
kf1 −

1

R
f2

) )
.

(2.29)

Where f1 = sin(ckt− kR) and f2 = cos(ckt− kR). The constant k has the dimension of

the inverse of a length.

In this case, the divergence of both electric and magnetic fields is identically zero and

22The complex function g1 − i g2 sin(ϑ) is holomorphic on the Riemann sphere, so it has to vanish.
See [16].

23The proof of this statement is given in appendix I.
24See [22].
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it is trivial to observe that E · B = 0. Nevertheless, the relation between electric and

magnetic fields intensity |E| = c|B| does not hold. As discussed in appendix D of [13], the

behavior of the wave-fronts of the Hertz’s solution is hard to understand, especially in the

near field zone. The envelope of the electric and magnetic fields does not correspond to

sphere, wave fronts have toroid shape and do not move according to geometrical optics25

The Hertz’s dipole wave propagates according to geometrical optics rules, following the

radial direction outgoing from the dipole, only on the plane orthogonal to the dipole and

passing through its center. At great distance from the source it can be show that the be-

haviour of the electromagnetic fields is more or less closer to the one of a spherical wave26,

on the contrary close to the dipole this is no more true. For instance, the Poynting vector

is not everywhere radial and sometimes it is directed toward the source27 (See figure 2.5).

Figure 2.5: Contour lines of the norm of the electric field and Poynting vector (black) relative
to the Hertzian solution 2.29. The exact solution is evaluated on a squared grid with 50 × 50
nodes. The contour lines relative to values greater than 1000 are not displayed. Note that in
proximity of the source (placed at (0, 1/2)) the Poynting vector it is not radial.

25To find an in-depth exposition of those facts see [13] appendix D and [12], chapter 1.
26See [23] chapter 9.
27See [30].
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2.8. Boundary conditions

Since later we will be interested in the study of the electromagnetic fields generated by a

biconic antenna, (and, more in general, with guided propagation of electromagnetic waves)

it is necessary to investigate how fields interact with conductive boundaries. The matter

is not simple and there exists a lot of literature about the topic of boundary conditions

both from the physical and the engineering point of view.

As pointed out by John David Jackson in [24] there is bit of confusion around the be-

haviour of electromagnetic energy radiated by an antenna.

This process could be divided in three parts: first the energy emerges from a localized

source, then is guided by the antenna conductor and ultimately becomes free to form the

radiation described by the asymptotic Poynting vector.

Jackson identifies in the second part of the process a possible source of misunderstanding

in the treatment of the antenna problem. Indeed many researchers believe that the cur-

rent of each volume element along the guides is the real source of the radiated energy.

This approach induces to think that a suitable a priori choice of source field on the body

of the antenna is the right way to solve correctly the problem. On the other hand, a

radiating antenna may be seen as an electromagnetic boundary value problem, in which

the current distributed on the guides emerges as a part of the solution, not as an input.

It is commonly accepted that the antenna structure does not itself radiate, but rather

guides the energy from the input source and launches it into its final radiation pattern.

For instance if one considers the case of an antenna composed by thin straight conducting

elements, which could be approximated with elements of infinitesimal section, it can be

shown that an oscillating sinusoidal current is distributed on them. Nevertheless, this

is only an ideal case in which it is possible to predetermine electric and magnetic field

on the conducting elements28 that match quite well experimental results. Even though

in such cases specifying plausible fields source on the guide elements may be appropri-

ate, it does not mean that this strategy also works for the treatment of a realistic antenna.

It is standard to approach at the boundary condition problem relative to an electro-

magnetic wave in presence of a conductive guide, by considering the general problem of

the boundary conditions at interface between different media, as we are going to recover

for the extended framework.

28It is the case of centered linear antenna in which the length of its arms is smaller with respect to the
wavelength. See [23], chapter 9.
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Let U be a finite volume of the three dimensional space, denote with

- dv a volume element,

- ∂U the closed surface bounding U ,

- du an element of area on ∂U ,

- n the outward normal, defined on ∂U , to the enclosed volume.

Let S be an open surface of the three dimensional space, denote with

- ds a surface element,

- ∂S the contour of S,

- dl an oriented line element on ∂S,

- n′ a normal, defined on S by applying the right-hand side rule according to the

orientation of dl.

It is possible to give an integral formulation of first three equations of system (2.9) plus

the definition of divergence, obtaining

∫
S

∂(εE)

∂t
ds =

∫
S

∇×H ds−
∫
S

(ερfreeV + Js) ds

∫
S

∂(µH)

∂t
ds = −

∫
S

∇×E ds

∫
U
∇ · (µH) dv = 0

∫
U
∇ · (εE) dv =

∫
U

(ρfree + ρs) dv.

Here the hypothesis of linear homogeneous media, i.e. D = εE and B = µH , is

assumed. The term Js is the contribution of the current source across the surface S, ρs

is the contribution of the charge sources present in the volume U , while ρfree counts the

contribution due to electric fields that has non-zero divergence also in absence of sources.

At this point we have all the elements necessary to use the divergence theorem29 and

29

∫
U
∇ · F dv =

∮
∂U

F · n du, where field and domain of integration satisfies certain regularity prop-

erty. See [23] and [19].
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Stokes’s theorem30, to rewrite the previous system of integral equations in the following

form

∫
S

[
∂(εE)

∂t

]
· n′ ds =

∮
∂S

H · dl−
∫
S

(ερfreeV + Js) ds

∫
S

∂(µH)

∂t
ds = −

∮
∂S

E · dl

∮
∂U

(µH) · n du = 0

∮
∂U

(εE) · n du =

∫
U

(ρfree + ρs) dv.

(2.30)

The system (2.30) has the same form as its analogue relative to classical Maxwell’s equa-

tions. This means that by taking two different linear homogeneous media separated by a

surface where the normal n has been uniquely defined, and by indexing with 1 the fields

relative to the half-space from which the normal is outward and with 2 the fields relative

to the half space from which the normal is in-going respectively, it is possible to invoke

appropriate geometrical arguments31 (See figure 2.6) to carry out the following continuity

equations for the electric and magnetic fields at the boundary

n× (E2 −E1) = 0

n× (H2 −H1) = Jsurf

(µ2H2 − µ1H1) · n = 0

(ε2E2 − ε1E1) · n = σsurf

(2.31)

Here Jsurf and σsurf indicates the current and the surface charge density on the separa-

tion surface between media 1 and media 2. These last two quantities, which in general

are function of the point considered on the surface, are related to the ρfree, ρs and Js

previously defined.

30

∫
S

(∇× F ) · n ds =

∮
∂S

F · dl, where field and the domain of integration satisfies certain regularity

property. See [23] and [19].
31The detailed procedure here omitted can be found in [23], chapter 1.
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Figure 2.6: Schematic diagram of the surface between different media. The volume U is a small
pillbox, half in one medium and half in the other one. The rectangular contour S is partly in one
medium and partly in the other one, and is oriented with its plane perpendicular to the surface.

The equations presented above are used to theoretically investigate the interaction be-

tween a perfect electric conductor (PEC) and an electromagnetic wave, from which it is

possible to deduce the characterization of null tangential electric field component at the

interface.

A PEC it is an idealized medium that does not allow the propagation of electromagnetic

waves in its interior. On the boundary surface between a PEC and another medium could

exist a density of charge or current when an electromagnetic field interacts with the con-

ductor.

Consider the case of an empty domain that is partially filled with a PEC. Suppose that

the boundary between them is a straight line. If the normal to the the boundary is di-

rected from the empty space into the perfect conductor, then, according to the notation

of (2.31) the PEC is indexed as 2, while the empty space is indexed as 1.

It is known that the PEC does not allow the propagation of electromagnetic fields in its

interior, so it turns out that E2 = 0 and H2 = 0. One can finally recover from (2.31) the

equations that describe the behavior of an electromagnetic wave on the boundary between

the empty space and the PEC, i.e.
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n×E1 = 0

n×H1 = −Jsurf

H1 · n = 0

E1 · n = −σsurf
ε1

.

Thus, the tangential component (with respect to the boundary), of the electric field has

to vanish on the separation surface. The same holds for the normal component of the

magnetic field.

Charges and currents on the boundary change in order to produce suitable discontinu-

ities of the normal component of the electric field and the tangential component of the

magnetic field, necessary to the preservation of a null electromagnetic field inside the

conductor.

It is important to remark that, only in the static case, there is no electric field inside

a conductor. Of course, since a PEC is a conceptual media, one could assume that the

charge inside it instantly moves in response to field variations, in order to produce the

correct surface density ensuring the absence of the electric field in its interior.

Nevertheless, under specific hypothesis related to the frequency of the electromagnetic

radiation, a real conductor can be approximated by a PEC media, and this is the case of

the skin effect32.

This is the reason why to impose that the tangential component of the electric field and

the normal component of the magnetic field both vanish is a way to express boundary

conditions for a conductive wave guide.

To conclude this section, we want to introduce an additional contribute to the computa-

tion of the electric field at the boundaries, that enforces the dependence on the behaviour

of the field at the interior of conductive wave guides. Once the normal component at the

guide has been determined according to the above conditions, it is further subjected to

the following transport equation

∂En
∂t

= (c− vg) n×∇En. (2.32)

32It occurs when the skin depth is much smaller than the section of a conductor. The skin depth is the
distance in which the electric fields exponentially decays to zero inside a conductor.
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Here, the constant vg is a positive real number lower than c. The imposition of this

condition produces a transport of the normal component of the electric field along the

boundary trasversal direction. In the case vg = c the right-hand side of (2.32) vanishes

and the classic PEC conditions are recovered since no transport occours. The numerical

treatment of (2.32) is exhibited in section 3.5, while its application and the produced

effect on simulated electromagnetic fields can be found in section 4.2.
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Numerical methods

In this chapter we describe the numerical methods used to approximate both systems

(2.20) and (2.21).

Due to the originality of formulation (2.19), examples of numerical treatment of the whole

system of equations are not available in literature1.

However, regarding each equation one can find plenty of suitable numerical methods.

We decided to focus our choice on low-order finite difference schemes. It was our intention

to deal with easy-implementable discrete equations, through this may have a negative im-

pact on computational costs.

One of our purposes was to quickly reach a working model, able to catch the behaviour

we were interested in and leave to future developments the research of higher accurate

methods.

Since we were oriented to finite difference schemes, our first choice has been the pop-

ular Yee scheme2. By the way, soon it turned out that this was not a suitable method3.

Basically, the main problem with the Yee scheme arises in the treatment of fields with

divergence different from zero changing with time. The structured grid, used in the Yee

scheme forces instead the conservation of such a quantity.

We finally decided to split each one of systems (2.20) and (2.21) in three parts as show

below.

1Numerical simulations related to problems involving a simplified version of the extended equations
(2.19) have been carried out in [11], [17], [18] and [36].

2See [39] and [35].
3See appendix IV.
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Subdivision of system (2.20), relative to cartesian framework

∂Ex
∂t

=
1

ε

∂Hz

∂y
− ρ Vx

∂Ey
∂t

= −1

ε

∂Hz

∂x
− ρ Vy

∂Hz

∂t
= − 1

µ

(
∂Ey
∂x
− ∂Ex

∂y

)
(3.1)



ρ

[
∂Vx
∂t

+ Vx
∂Vx
∂x

+ Vy
∂Vx
∂y

+ θ
(
Ex + µVyHz

)]
= −∂p

∂x

ρ

[
∂Vy
∂t

+ Vx
∂Vy
∂x

+ Vy
∂Vy
∂y

+ θ
(
Ey − µVxHz

)]
= −∂p

∂y
.

(3.2)

∂p

∂t
= θ ρ

(
Ex Vx + Ey Vy

)
(3.3)

Subdivision of system (2.21), relative to cylindrical framework

∂Er
∂t

= −1

ε

∂Hϕ

∂y
− ρ Vr

∂Ey
∂t

=
1

rε

∂(rHϕ)

∂r
− ρ Vy

∂Hϕ

∂t
= − 1

µ

(
∂Er
∂y
− ∂Ey

∂r

)
(3.4)



ρ

[
∂Vr
∂t

+ Vr
∂Vr
∂r

+ Vy
∂Vr
∂y

+ θ
(
Er − µVyHϕ

)]
= −∂p

∂r

ρ

[
∂Vy
∂t

+ Vr
∂Vy
∂r

+ Vy
∂Vy
∂y

+ θ
(
Ey + µVrHϕ

)]
= −∂p

∂y
.

(3.5)
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∂p

∂t
= θ ρ

(
Er Vr + Ey Vy

)
(3.6)

In both cases the first part is strictly related to the classic Maxwell’s equations. This three

equations can be seen as a sub-problem in which only the components of the electric and

magnetic fields play the role of unknown. The additional term −ρV , that compares in

the Ampère’s law, introduces the components of the vector V as variable coefficients of

both partial differential equation systems (3.1) and (3.4). This feature will be clarified by

looking to the reformulations of (3.1) and (3.4) in to (3.11) and (3.13) respectively.

The second group, i.e. (3.2) for the cartesian framework and (3.5) for the cylindrical

framework, is constituted by the couple of equations involving velocity derivative with

respect to time, in which also compares the nonlinear term (V · ∇)V . That term, to-

gether with the presence of ρ at the denominator of a fraction, will be the source of many

difficulties for the numerical approximation, as we will see in section 3.3.

Finally, the third part, i.e. (3.3) for the cartesian framework and (3.6) for the cylindrical

framework, consist on the single equation describing the time variation of p.

Thanks to the presented subdivision, each block can be attached with a suitable numerical

method, as it is show in the following sections.

3.1. Lax-Wendroff scheme

Both groups of three equations (3.1) and (3.4) constitute an hyperbolic system of par-

tial differential equations, as we are going to show later on in this section. We decided

to approximate it by the Lax-Wendroff scheme4. Such a numerical method is one-step

explicit in time and provides second-order accuracy, at least in the case of scalar partial

differential equations with constant coefficients. Concerning with the simulation of soli-

tary electromagnetic waves the scheme has already been applied in [36] and [11].

Since we have to deal with a system of equations in two spatial dimension and non con-

stant coefficients, we will mainly work with the vector version of the Lax-Wendroff5.

To begin with, it is useful to recall the definition6 of a hyperbolic system of first or-

4See [26].
5See [36], [34] and [21].
6See [21].
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der partial differential equations with constant coefficients in d dimensions.

Given n scalar equations written in the following form

∂F

∂t
=

d∑
ν=1

Mxν

∂F

∂xν
(3.7)

with F : Rd × [0, T ] −−−−−→ Rn and Mxν ∈Mn×n(R) ∀ν = 1, . . . , d.

one can consider a Cauchy problem by adding an initial condition F (x, 0), x ∈ Rd.
Hereafter we consider the initial data, for t = 0, assigned when needed together with

some boundary conditions at the inflow boundary.

Definition. 3.1 Given the system (3.7), consider the matrix P to be the linear combina-

tion of the matrices Mxν defined in the following way,

P (ω) =

d∑
ν=1

ωνMxν , ω := (ω1, . . . , ωd) ∈ Rd, with

d∑
ν=1

ω2
ν = 1.

System (3.7) then is called

- strictly hyperbolic if, for every vector ω, the eigenvalues of P (ω) are real and

distinct,

- symmetric hyperbolic if all matrices Mxν are symmetric7,

- strongly hyperbolic if there is a constant K > 0 and, for every ω, a non-singular

transformation T (ω) exists with,

sup
ω

(
max
|x|=1

| T−1(ω) x | + max
|x|=1

| T (ω) x |
)
≤ K

such that T−1(ω)P (ω)T (ω) is a diagonal matrix with real eigenvalues,

- weakly hyperbolic if the eigenvalues of P (ω) are real.

To extend the above definitions, to the case of non-constant coefficients, i.e. when the

matrices Mxν are functions of the coordinates xν and t, it is necessary to require that

those properties hold pointwise, i.e. for each (x1, x2, . . . , xd, t) in the domain of definition

7This condition ensures that the matrix P (ω) is symmetric too. A consequence of the so called spectral
theorem is that each symmetric real matrix can be diagonalized through an orthogonal matrix. If P (ω)
is symmetric, then have real eigenvalues and admits an horthonormal basis of eigrnvectors.
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of the problem (3.7).

From the definition it is clear that strictly, symmetric and strongly hyperbolic systems

are also weakly hyperbolic systems. It is also true that strictly and symmetric hyperbolic

systems are strongly hyperbolic systems8.

Some authors9 name hyperbolic systems those systems of partial differential equations

(3.7), such that the matrix P (ω) is similar to a diagonal matrix with real eigenvalues

and the matrices T and T−1 have are uniformly bounded with respect to a certain norm.

These properties are strictly related to the notion of well-posed problem10, where it is

required the existence of a unique regular solution that cannot indiscriminately grow dur-

ing its time evolution. In the case of non-dissipative hyperbolic problems with constant

coefficient and initial datum F (x, 0) = F0(x), except for weakly hyperbolic systems, in-

equalities like the following one hold

||F (x, t)||L2 ≤ Keα(t)||F0(x)||L2 .

Here α and K are two given real constants independent on the choice of F0(x). By

the way, in some particular cases the exponential term at the right-hand side can be elim-

inated.

In chapter 6 in [21], three theorems are given, where well-posedness is ensured for strongly

hyperbolic systems with constant coefficients and for symmetric and strictly hyperbolic

systems with variable coefficients.

The results of well-posedness for both the constant and variable coefficients cases, fol-

low from the fact that it is possible to build a symmetrizer, as stated by the following

theorems11.

8The non trivial proof of this last implication can be found in chapter 6 of [21].
9For example see [34] and [32]. In the chapter 1 of [34] and in the chapter 7 of [32] the definition of

hyperbolic system of partial differential equations is given for the one-dimensional case. This is the case
of the system 3.1 in which one fix d = 1, thus the matrix P reduces to the only Mx1 . Both definition
requires that Mx1 is diagonalisable with real eigenvalues. The higher dimensional case is treated only in
chapter 9 of [34]. Here the definition of hyperbolic system recalls the one of strongly hyperbolic systems
given in definition 3.1 of this thesis.

10A consensus definition of well-posed problem do not exist, for instance one can refer to the one given
in chapter 4 of [21].

11See [21], chapter 6
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Theorem. 3.1 Let M be a matrix with real eigenvalues and a complete set of eigenvectors

that are the columns of a matrix T . Then, given a real positive diagonal matrix D, the

matrix S := (T−1)tDT−1 is positive defined and SM is a symmetric matrix.

The matrix S is called symmetrizer of M and plays an important role in the determination

of the well-posedness of an hyperbolic problem, as stated in the following theorem.

Theorem. 3.2 Assume that a symmetrizer can be chosen as a smooth function of all

variables on which the matrix P (ω) depends. Then the initial value problem (3.7) is well

posed. If the system is strictly hyperbolic, then there is a smooth symmetrizer.

Note that in the case of constant coefficients P (ω) depends only on the components of

ω, while in the case of variable coefficients P (ω) depends on the components of ω, on the

spatial coordinates xν and on the time t.

Our purpose is to work with equations (3.1) and (3.4), so that we shall consider d = 2,

furthermore, in order to use discrete schemes it is necessary to consider a bounded do-

main. These considerations allow to rewrite the systems of partial differential equations

in the following form

∂F

∂t
= Mx1

∂F

∂x1
+Mx2

∂F

∂x2
, (3.8)

where F : [a1, b1]× [a2, b2]× [0, T ] −−−−−→ Rn and Mx1
,Mx2

∈Mn×n(R).

The general coordinates notation (x1, x2, t) used here takes the meaning of (x, y, t) when

it is referred to equations (3.1), and of (r, y, t) when it is referred to equations (3.4).

Similarly, the hyper-rectangle [a1, b1] × [a2, b2] × [0, T ] and the vector function F =

(F1, F2, F3) indicate [ax, bx]× [ay, by]× [0, T ] and (Ex, Ey, Hz), or [ar, br]× [ay, by]× [0, T ]

and (Er, Hϕ, Ey), depending on whether one considers cartesian or cylindrical frameworks.

Definition. 3.2 Given the vector function F , depending on two space variables x1, x2

and on a time variable t, defined on the finite set [a1, b1]× [a2, b2]× [0, T ] and given three

positive integer N1, N2, Nt it is possible to construct the discretization parameters

∆x1 =
b1 − a1

N1
, ∆x2 =

b2 − a2

N2
, ∆t =

T

Nt
.
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Our discrete grid will be the following collection of points of the three dimensional space

Gx1,x2,t =
{

( a1 + i∆x1 , a2 + j∆x2 , k∆t )
∣∣∣ i ∈ [0, N1], j ∈ [0, N2], k ∈ [0, Nt]

}
.

Furthermore, with spatial sub-grid we will refer to the set containing only the spa-

tial nodes

Gsubx1,x2
=
{

( a1 + i∆x1 , a2 + j∆x2 )
∣∣∣ i ∈ [0, N1], j ∈ [0, N2]

}
.

For shake of simplicity, we avoid the use of different step length for the two spatial direc-

tions, thus hereafter we can consider only the case ∆x1 = ∆x2 = h.

By denoting with fki,j the numerical approximation of F at the grid point ( a1 + ih , a2 +

jh , k∆t ), i.e.

fki,j ∼ F ( a1 + ih , a2 + jh , k∆t ),

the Lax-Wendroff scheme allows to compute the approximated solution at time (k+ 1)∆t

knowing it at time k∆t via the following formula

fk+1
i,j =

[
In − λ2

(
M2
x1

+M2
x2

)]
fki,j +

λ

2
Mx1

(
In + λMx1

)
fki+1,j +

λ

2
Mx2

(
In + λMx2

)
fki,j+1−

λ

2
Mx1

(
In − λMx1

)
fki−1,j −

λ

2
Mx2

(
In − λMx2

)
fki,j−1 +

λ2

8

(
Mx1

Mx2
+Mx2

Mx1

) (
fki+1,j+1 + fki−1,j−1 − fki−1,j+1 − fki+1,j−1

)
.

(3.9)

Here λ = h/∆t, and In denotes the identity squared matrix of dimension n.

The system of discrete equations (3.9) refers to the case of constant coefficients, nev-

ertheless, it may be used in the case of variable coefficients by freezing the variables x1,

x2 and t in the expression of the matrices Mx1
and Mx2

.

50



The stencil related to the discrete equation (3.9) is shown in figure 3.1.

The discussion about domain boundary conditions it is postponed at section 3.6.

Figure 3.1: The stencil of the Lax-Wendroff scheme in the case of two spacial and one temporal
dimensions.

To ensure stability of (3.9) the following condition should be satisfied

λ
(

max
i
|σx1
i |
)
≤ 1

2
√

2
, λ

(
max
i
|σx2
i |
)
≤ 1

2
√

2
(3.10)

where {σx1
i }i=1,2,3 and {σx2

i }i=1,2,3 are the eigenvalues relative to Mx1
and Mx2

respec-

tively. Theoretically the conditions (3.10) are suitable in the case of an hyperbolic system

with constant coefficients.

Nonetheless, in the numerical simulations involving systems with variable coefficients, we

have fixed ∆t recovering inequalities like (3.10). In particular, by estimating a constant
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Σ that bounds both max
i
|σx1
i | and max

i
|σx1
i | for each t, stability condition becomes

λ < (2
√

2Σ)−1.

This choice of stability condition in the case of variable coefficients it is sufficient to over-

come numerical instability in most of all the simulation considered. To be honest, the

research of stability conditions12 for our systems with variable coefficients has been left

incomplete for lack of time.

We now discuss the stability of the Lax-Wendroff scheme when applied to the systems of

equations (3.1) and (3.4). As we are going to see, in both cases we will have to deal with

a system of partial differential equations with variable coefficients. Moreover, one has

to remember that the components of the velocity vector are functions of the spatial and

temporal coordinates. Furthermore, if one consider the case of an electromagnetic wave

that propagates in a domain in which different media are present, also ε and µ become

functions of the spatial coordinates. For our purposes, the latter generalization is not

necessary, we avoid this further complication by placing ourselves in a uniform medium.

Actually, in section 4.3, we investigate the case of a wave that cross a layer between a lin-

ear homogeneous medium (whose permittivity is ε1) and the vacuum (whose permittivity

is ε0). Thus, only in that case, the matrices Mx1 and Mx2 have a coefficient ε that is a

function of the space coordinates. In particular, ε = ε1 in the points that belong to the

region occupied by the medium, while ε = ε0 in the remaining part of the domain.

Cartesian framework

By considering the system (3.1), it is convenient to rewrite its equations by substituting

to ρ its formulation in cartesian coordinates:

∂Ex
∂t

=
1

ε

∂Hz

∂y
− Vx

∂Ex
∂x

− Vx
∂Ey
∂y

∂Ey
∂t

= −1

ε

∂Hz

∂x
− Vy

∂Ex
∂x

− Vy
∂Ey
∂y

∂Hz

∂t
= − 1

µ

∂Ey
∂x

+
1

µ

∂Ex
∂y

.

(3.11)

12In [21] the problem of establish conditions on h and ∆t that guarantee numerical stability of discrete
schemes is treated in the case of systems with variables coefficients. Specific stability conditions for the
Lax-Wendroff scheme are given only for strictly or symmetric hyperbolic problems.
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By using the notation introduced in (3.8), we obtain

F =


Ex(x, y, t)

Ey(x, y, t)

Hz(x, y, t)

 , Mx =


−Vx 0 0

−Vy 0 − 1
ε

0 − 1
µ 0

 , My =


0 −Vx 1

ε

0 −Vy 0
1
µ 0 0

 .

The characteristic polynomials of Mx and My are

det
(
Mx − κ I3

)
= −κ2 (Vx + κ) + (Vx + κ) 1

εµ = (Vx + κ)(c2 − κ2),

det
(
My − κ I3

)
= −κ2 (Vy + κ) + (Vy + κ) 1

εµ = (Vy + κ)(c2 − κ2).

Thus, in both situations, two out of three eigenvalues of each matrix are equal to the real

constants c and −c, each one having algebraic multiplicity 1. The third eigenvalue is −Vx
for Mx and −Vy for My, which are functions of x, y and t.

We have the following results

Proposition. 3.1 The system of equations (3.11) is weakly hyperbolic according to defi-

nition 3.1.

Proof. To carry out the analysis required to apply definition 3.1, we actually need to

compute the eigenvalues of the matrix

P (ω) = ωxMx + ωyMy, ω = (ωx, ωy) ∈ R2 s.t. ω2
x + ω2

y = 1.

P (ω) =


−ωxVx −ωyVx ωy

1
ε

−ωxVy −ωyVy −ωx 1
ε

ωy
1
µ −ωx 1

µ 0

 , (3.12)

det
(
P (ω)− κ I3

)
= (ωxVx + ωyVy + κ)(c2 − κ2).

Thus, the eigenvalues of P (ω) are c, −c and −(ωxVx + ωyVy) that are real numbers.

This proves that system (3.11) is weakly hyperbolic.
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As it stated at the beginning of this section, the weak hyperbolicity it is not enough

to ensure well-posedness of our problem. The matrix P (ω) defined in (3.12) it is clearly

non symmetric, neither has distinct eigenvalues for each values of ω and (x, y, t). It is

impossible to achieve a stronger result without showing the existence of a smooth sym-

metrizer, but this go behind our purposes.

Proposition. 3.2 The system of equations (3.11) is not strongly hyperbolic according to

definition 3.1.

Proof. Let us consider the constant coefficient case Vx = c and Vy = 0.

Let us further assume that ε = µ = c = 1.

Under this assumptions the matrix P (ω) reduces to

P (ω) =


−ωx −ωy ωy

0 0 −ωx
ωy −ωx 0

 .
The eigenvalues of P (ω) are 1,−1,−ωx. Thus, recalling that ωx and ωy are two real

numbers such that ω2
x + ω2

y = 1, we can conclude that:

i) when ωx 6= ±1 the matrix P (ω) has three distinct real eigenvalues, thus it is diag-

onalizable;

ii) when ωx = ±1, and consequently ωy = 0, the matrix P (ω) is diagonalizable if

mg(−ωx) = 2, i.e. rank(P (ω) + ωxI3) = 1.

Considering the case i) and by solving the three systems of equations (κ = 1,−1,−ωx)

(
P (ω)− κI3

)
x1

x2

x3

 =


0

0

0


it is possible to compute the three columns of the matrix T (ω):
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T (ω) =


ωx −ωy 0

−ωx ωx 1

1 1 1

 .
Since det(T (ω)) = −2ωy, and ωy 6= 0 as a consequence of ωx 6= ±1, the matrix T (ω) is

invertible and

T−1(ω) =



1− ωx
2ωy

−1

2

1

2

−1 + ωx
2ωy

−1

2

1

2

ωx
ωy

1 0


.

The norms of the matrices T and T−1 are defined as ||A|| = max
|ν|=1

|Aν|. We have:

||T (ω)|| =

√
2 +

√
1 + ω2

x

2
,

||T−1(ω)|| ≥ 1 + ω2
x

3(1− ω2
x)
.

The last norm is not bounded since it can indiscriminately grow when ωx tends to ei-

ther 1 or −1. It is clear that, independently on the choice of T ((1, 0)) and T ((−1, 0)), we

get

sup
ω

(
||T (ω)||+ ||T−1(ω)||

)
> K ∀K ∈ N,

which means that the definition of strongly hyperbolic problem is not satisfied in our

case.

�

We apply the Lax-Wendroff scheme to the set of weakly hyperbolic equations in cartesian

coordinates (3.11) on a finite domain [ax, bx]× [ay, by]× [0, T ]. To this end, we introduce

a grid Gx,y,t.
According to (3.10), a sufficient condition for stability is λ ≤ (2

√
2 max{Vx, Vy, c})−1.
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Cylindrical framework

By considering the system (3.4), it is convenient to rewrite its equations multiplying the

first and the third equations by r and explicitly expressing the definition of ρ in cylindrical

coordinates. We get

∂(rEr)

∂t
=

1

ε

∂(rHϕ)

∂y
− Vr

∂(rEr)

∂r
− r Vr

∂Ey
∂y

∂Ey
∂t

= − 1

r ε

∂(r Hϕ)

∂r
− Vy

r

∂(rEr)

∂r
− Vy

∂Ey
∂y

∂(rHϕ)

∂t
= − 1

µ

∂(rEr)

∂y
+
r

µ

∂Ey
∂r

(3.13)

that, by using notation of (3.8), leads to

F =


rEr(r, y, t)

rHϕ(r, y, t)

Ey(r, y, t)

 , Mr =


−Vr 0 0

0 0 r
µ

−Vyr
1
rε 0

 , My =


0 − 1

ε −rVr
− 1
µ 0 0

0 0 −Vy

 .
Though the matrices Mr and My, that look a bit different from the ones involved in

the cartesian case since they contain the extra variable r, the computation of the eigen-

values provides the same results

det
(
Mr − κ I3

)
= −κ2 (Vr + κ) + (Vr + κ) 1

εµ = (Vr + κ)(c2 − κ2),

det
(
My − κ I3

)
= −κ2 (Vy + κ) + (Vy + κ) 1

εµ = (Vy + κ)(c2 − κ2).

Thus, also in this case, two of the three eigenvalues of each matrix are equal to the real

constants c and −c, with algebraic multiplicity 1. The third eigenvalue is −Vr for Mr and

−Vy for My, which are functions of the coordinates r, y and t.

We have the following result:

Proposition. 3.3 The system of equations (3.13) is weakly hyperbolic according to defi-

nition 3.1.

Proof. To carry out the analysis required to apply definition 3.1 we need to compute
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the eigenvalues of the matrix

P (ω) = ωrMr + ωyMy, ω = (ωr, ωy) ∈ R2 s.t. ω2
r + ω2

y = 1.

P (ω) =


−ωrVr −ωy 1

ε ωyrVr

−ωy 1
µ 0 ωr

r
µ

−ωy 1
rVy ωr

1
rε −ωyVy

 ,

det
(
P (ω)− κ I3

)
= (ωrVr + ωyVy + κ)(c2 − κ2).

Thus eigenvalues of P (ω) are c, −c and −(ωrVr + ωyVy) which are real numbers.

�

We apply the Lax-Wendroff scheme to the set of weakly hyperbolic equations in cylindrical

coordinates (3.13) on a finite domain [ar, br]× [ay, by]× [0, T ]. To this end, we introduce a

grid Gr,y,t. According to (3.10) stability condition turns out to be λ ≤ (2
√

2 max{Vr, Vy, c})−1.

3.2. Approximation of the divergence

To begin with, it is important to notice that the divergence of the electric field is com-

puted implicitly by the Lax-Wendroff scheme. This is clear when we compare (3.1) with

(3.11) and (3.4) with (3.13).

Nevertheless, since we are going to approximate equations (3.2), (3.3), (3.5) and (3.6)

with the finite-differences schemes that will be defined in the following sections, there is

the need to compute explicitly the divergence of the electric field ρ. In order to estimate

ρ on the same grids Gx,y,t and Gr,y,t used for the Lax-Wendroff scheme, we approximate

ρ(ih, jh, k∆t) ∼ ρki,j by centred finite-differences approach.

The explicit form of the scheme depends on the coordinate system considered, and, in the

case of cylindrical coordinates the possible presence of the rotation axis in the domain

may originate some problems. Thus, we prefer to discuss separately the cartesian and the

cylindrical frameworks, as already done in the presentation of the Lax-Wendroff scheme.

The computation of the divergence at time k∆t will involve only the values of the electric
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field at the same time k∆t. At the borders of the computational domain, where central

difference cannot be implemented, forward difference will be used instead.

Cartesian framework

At the interior of the computational domain defined by the grid Gx,y,t, the discrete diver-

gence of the electric field in cartesian coordinates is expressed as follows

ρki,j =
Ex

k
i+1,j − Ex

k
i−1,j

2h
+
Ey

k
i,j+1 − Ey

k
i,j−1

2h

i = 1, . . . , Nx − 1

j = 1, . . . , Ny − 1
. (3.14)

Near the boundaries we use the following scheme

ρki,j =



Ex
k
0,j − Ex

k
1,j

−h
+
Ey

k
0,j+1 − Ey

k
0,j−1

2h
j = 1, . . . , Ny − 1

Ex
k
Nx,j − Ex

k
Nx−1,j

h
+
Ey

k
Nx,j+1 − Ey

k
Nx,j−1

2h
j = 1, . . . , Ny − 1

Ex
k
i+1,0 − Ex

k
i−1,0

2h
+
Ey

k
i,0 − Ey

k
i,1

−h
i = 1, . . . , Nx − 1

Ex
k
i+1,Ny − Ex

k
i−1,Ny

2h
+
Ey

k
i,Ny
− Eyki,Ny−1

h
i = 1, . . . , Nx − 1

Ex
k
0,0 − Ex

k
1,0

−h
+
Ey

k
0,0 − Ey

k
0,1

−h

Ex
k
Nx,0 − Ex

k
Nx−1,0

h
+
Ey

k
Nx,0
− EykNx,1
−h

Ex
k
0,Ny − Ex

k
1,Ny

−h
+
Ey

k
0,Ny
− Eyk0,Ny−1

h

Ex
k
Nx,Ny − Ex

k
Nx−1,Ny

h
+
Ey

k
Nx,Ny

− EykNx,Ny−1

h

(3.15)
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Cylindrical framework

Similar considerations are carried out in the case of the cylindrical coordinate system.

At the interior of the computational domain defined by the grid Gr,y,t the discrete diver-

gence of the electric field is written as

ρki,j =
Er

k
i,j

ar + ih
+
Er

k
i+1,j − Er

k
i−1,j

2h
+
Ey

k
i,j+1 − Ey

k
i,j−1

2h

i = 1, . . . , Nr − 1

j = 1, . . . , Ny − 1
. (3.16)

The evaluation of the divergence of electric field at the domain boundary13 (Figure 3.2)

could be obtained by applying forward difference. Nevertheless, it is important to distin-

guish between the case ar = 0 or ar > 0, or in other words we must treat in a different

way computational domain that have the axis of rotation r = 0 as left side or not.

Figure 3.2: Representation of the computational domain [ar, br]× [ay, by].

13The nodes placed on the straight lines r = ar, r = br, y = ay , y = by in the sense of definition 3.2.
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When ar > 0 a scheme similar to (3.15) is recovered as shown below

ρki,j =



Er
k
0,j

ar
+
Er

k
0,j − Er

k
1,j

−h
+
Ey

k
0,j+1 − Ey

k
0,j−1

2h
j = 1, . . . , Ny − 1

Er
k
Nr,j

ar +Nrh
+
Er

k
Nr,j − Er

k
Nr−1,j

h
+
Ey

k
Nr,j+1 − Ey

k
Nr,j−1

2h
j = 1, . . . , Ny − 1

Er
k
i,0

ar + ih
+
Er

k
i+1,0 − Er

k
i−1,0

2h
+
Ey

k
i,0 − Ey

k
i,1

−h
i = 1, . . . , Nr − 1

Er
k
i,Ny

ar + ih
+
Er

k
i+1,Ny − Er

k
i−1,Ny

2h
+
Ey

k
i,Ny
− Eyki,Ny−1

h
i = 1, . . . , Nr − 1

Er
k
0,0

ar
+
Er

k
0,0 − Er

k
1,0

−h
+
Ey

k
0,0 − Ey

k
0,1

−h

Er
k
Nr,0

ar +Nrh
+
Er

k
Nr,0 − Er

k
Nr−1,0

h
+
Ey

k
Nr,0
− EykNr,−1

h

Er
k
0,Ny

ar
+
Er

k
0,Ny − Er

k
1,Ny

h
+
Ey

k
0,Ny
− Eyk0,Ny−1

h

Er
k
Nr,Ny

ar +Nrh
+
Er

k
Nr,Ny − Er

k
Nr−1,Ny

h
+
Ey

k
Nr,Ny

− EykNr,Ny−1

h
.

(3.17)

Unfortunately, when ar = 0 the divergence becomes singular at r = 0, at which correspond

the nodes with i = 0, thus it is impossible to define the scheme for that nodes placed on

the left side of the computational domain, in such case boundary scheme (3.17) reduces
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to the following one

ρki,j =



Er
k
Nr,j

Nrh
+
Er

k
Nr,j − Er

k
Nr−1,j

h
+
Ey

k
Nr,j+1 − Ey

k
Nr,j−1

2h
j = 1, . . . , Ny − 1

Er
k
i,0

ih
+
Er

k
i+1,0 − Er

k
i−1,0

2h
+
Ey

k
i,0 − Ey

k
i,1

−h
i = 1, . . . , Nr − 1

Er
k
i,Ny

ih
+
Er

k
i+1,Ny − Er

k
i−1,Ny

2h
+
Ey

k
i,Ny
− Eyki,Ny−1

h
i = 1, . . . , Nr − 1

Er
k
Nr,0

Nrh
+
Er

k
Nr,0 − Er

k
Nr−1,0

h
+
Ey

k
Nr,0
− EykNr,1
−h

Er
k
Nr,Ny

Nrh
+
Er

k
Nr,Ny − Er

k
Nr−1,Ny

h
+
Ey

k
Nr,Ny

− EykNr,Ny−1

h

(3.18)

The problem of the attribution of a value to the divergence of the electric field at the

rotation axis, i.e. ρk0,j , will be discussed in section 3.6.

3.3. An explicit upwind scheme for the Euler like equations

In both systems of equations (3.2) and (3.5), there are the time derivatives of the com-

ponents of the field V . In a finite-differences framework those equations are suitable to

compute the time evolution of the discrete approximation of V . The cartesian version

(3.2) differ from the cylindrical one (3.5) only for the use of the x coordinate instead of r

coordinate and for a minus sign in the Lorentz force term E + µV ×H.

In order to simplify as much as possible the discussion, in this section the distinction

between cartesian and cylindrical frameworks is avoided by treating only the cartesian

case. The numerical methods proposed and all the considerations carried out for this case

trivially hold for the cylindrical framework too, by taking into account a few differences.

Thus, hereafter in this section we will refer only to the equations (3.2) that are rewritten
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below

ρ

[
∂Vx
∂t

+ Vx
∂Vx
∂x

+ Vy
∂Vx
∂y

+ θ
(
Ex + µVyHz

)]
= −∂p

∂x

ρ

[
∂Vy
∂t

+ Vx
∂Vy
∂x

+ Vy
∂Vy
∂y

+ θ
(
Ey − µVxHz

)]
= −∂p

∂y
.

(3.19)

Before proceeding, and with the aim to emphasize the various contributions present in

the last two equations, we introduce the following notation

Lx = θ
(
Ex + µVyHz

)
Ly = θ

(
Ey − µVxHz

)

Dx = Vx
∂Vx
∂x

+ Vy
∂Vx
∂y

Dy = Vx
∂Vy
∂x

+ Vy
∂Vy
∂y

Gx =
1

ρ

∂p

∂x
Gy =

1

ρ

∂p

∂y
.

(3.20)

Basically the variables of each equation are grouped in three blocks. The first ones,

referred with Lx and Ly, will be called Lorentz force terms, the second ones, referred with

Dx and Dy, will be called convection terms, whereas the third ones, referred with Gx and

Gy, will be called gradient terms. With the help of the above setting the equations (3.19)

can be rewritten as
∂Vx
∂t

= −(Dx + Lx +Gx)

∂Vy
∂t

= −(Dy + Ly +Gy).

(3.21)

With the exception of the Lorentz force terms, the approximation of (3.21) presents sev-

eral drawbacks. In order to compute the convection terms one needs to evaluate the

derivatives of the a component of the field V along the direction defined by V itself.

One can recognize in this system the so called inviscid Burger problem in two dimensions,

with notable forcing terms. The solutions of this problem can display shock-waves that

are difficult to simulate in the numerical procedure.

By considering the gradient terms things get even worse, since, to compute it, it is nec-

essary to divide the approximation of the components of ∇p by the approximation of

ρ. Both discrete fields can assume the value zero, or a value very close to zero, in some
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nodes of the discrete grid. Thus, one have to pay attention not to perform meaningless

operations like to divide a number by zero or to divide zero by zero.

The existing finite difference methods for Navier-Stokes equations, have been found to

be unsuitable for our problem. This happens because, most of those methods have been

developed for the incompressible case14, that does not match our needs since the diver-

gence of the field V can be different from zero15.

We have explored some numerical schemes designed specifically for the equations in (3.19).

In truth, we have followed different strategies including implicit methods, or explicit meth-

ods with additional diffusive term regulated through viscosity coefficient.

After some analysis and numerical tests, in which those schemes have been compared, we

decided

• to use an upwind-like scheme to treat the convection terms,

• to use finite-differences to compute the gradient terms at each node (i, j) in which

ρki,j 6= 0.

This approach will be the one that we describe in this section.

The approximation of (3.21), on the grid Gx,y,t and in the framework of finite difference

will then consist of the following discrete equations


Vx

k+1
i,j = Vx

k
i,j −∆t(Dx

k
i,j + Lx

k
i,j +Gx

k
i,j)

Vy
k+1
i,j = Vy

k
i,j −∆t(Dy

k
i,j + Ly

k
i,j +Gy

k
i,j)

(3.22)

In this way it is possible to compute the values of V at time k∆t+∆t, on the spacial sub-

grid Gsub
x,y , by knowing the values of V , and the other involved fields, at time k∆t on the

same sub-grid. There are also some boundary conditions that will be discussed in section

3.6. To close this section, the numerical treatment of the three typologies of terms is given.

To compute the approximation of the Lorentz force terms, at each time-step k∆t, it

14As an example see [3].
15Two examples in which this occurs are exhibited is section 2.6 and section 2.7.
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is sufficient to evaluate its analytical expression on the sub-grid Gsub
x,y , i.e.

Lx
k
i,j = Ex

k
i,j + µ Vy

k
i,j Hz

k
i,j

Ly
k
i,j = Ey

k
i,j − µ Vx

k
i,j Hz

k
i,j

(3.23)

To compute the approximation of the convection terms, at each time-step k∆t, two

one-dimensional upwind difference, one along the x-direction and the other along the

y-direction, replace the directional derivatives Vx
∂
∂x and Vy

∂
∂y operators on the discrete

sub-grid Gsub
x,y . The resulting scheme is

Dx
k
i,j =

[
max(Vx

k
i,j , 0)

Vx
k
i,j − Vx

k
i−1,j

h
+ min(Vx

k
i,j , 0)

Vx
k
i+1,j − Vx

k
i,j

h

]

+

[
max(Vy

k
i,j , 0)

Vx
k
i,j − Vx

k
i,j−1

h
+ min(Vy

k
i,j , 0)

Vx
k
i,j+1 − Vx

k
i,j

h

]

Dy
k
i,j =

[
max(Vx

k
i,j , 0)

Vy
k
i,j − Vy

k
i−1,j

h
+ min(Vx

k
i,j , 0)

Vy
k
i+1,j − Vy

k
i,j

h

]

+

[
max(Vy

k
i,j , 0)

Vy
k
i,j − Vy

k
i,j−1

h
+ min(Vy

k
i,j , 0)

Vy
k
i,j+1 − Vy

k
i,j

h

]

(3.24)

To discretize the gradient terms, at each time-step k∆t, we use the discrete divergence of

the electric field, computed as described in section 3.2 and central finite difference on the

sub-grid Gsub
x,y , to approximate the partial derivatives of ∇p. Thus, we write

Gx
k
i,j =

pki+1,j − pki−1,j

2h ρki,j

Gx
k
i,j =

pki,j+1 − pki,j−1

2h ρki,j

(3.25)

At the nodes of Gsub
x,y such that ρki,j is equal to zero, instead of computing the velocity

with (3.22), the value at the previous time step is retrieved, i.e. Vy
k+1
i,j = Vy

k
i,j and

Vy
k+1
i,j = Vy

k
i,j .
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3.4. An explicit scheme for the equation involving p

In the equation (3.3) explicitly appears only the time derivative of p, that can be ap-

proximated with forward difference. In the cartesian framework, by using the numerical

divergence ρki,j , defined as in section 3.2, and the values of the fields Ex, Ey, Vx and Vy

computed at time k∆t on the spatial grid Gsub
x,y , one can formulate the following discrete

equation

pk+1
i,j − pki,j

∆t
= θ ρki,j

(
Ex

k
i,jVx

k
i,j + Ey

k
i,jVy

k
i,j

)
.

An explicit scheme for p is than derived by isolating pk+1
i,j on the left-hand side of the

last equation, i.e.

pk+1
i,j = pki,j + ∆t θ ρki,j

(
Ex

k
i,jVx

k
i,j + Ey

k
i,jVy

k
i,j

)
. (3.26)

3.5. Boundary conditions on conductive guides

According to what has been stated in section 2.8, we are going to discuss here how the con-

ductive wave guides, present the computational domain, have been numerically treated.

Note that the electric and magnetic fields at the nodes that belong to the conducting

guides cannot be computed through the Lax-Wendroff scheme used for the other nodes.

In the next chapter, we will numerically simulate electromagnetic fields related to com-

putational domains where a couple of straight wave guides are present. The wave guides

are placed in such a way that the approximated fields will be constrained to move be-

tween them. Two examples are displayed in figure 3.3. Thus, it is possible to distinguish

between an internal region, as the part of the domain delimited by the guides, and an

external region. Furthermore, at each point of a guide, an outward normal is defined by

taking a unit vector orthogonal to the guide itself and directed from the internal region

to the external region.
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Figure 3.3: Two examples of wave guides (in gray) placed into the computational domain. In
yellow is highlighted the internal region, while the external region is left blank.

The procedure used to attribute the values of the electric and magnetic fields at a node of

the wave guide, say it (i∗, j∗), at time k∆t, is described below. Since it will be used in both

cylindrical and cartesian frameworks, we will refer to the approximated magnetic field,

that in both cases has only a scalar component, using the symbol Hk
i∗,j∗ . Furthermore,

with En
k
i∗,j∗ and Et

k
i∗,j∗ we denote the components of the electric field in the directions

of the outward normal (n) and along the guide itself (t), respectively.

At each node of the boundaries, the magnetic field and the tangential component of the

electric field are computed through the equations16

Hk
i∗,j∗ = 2Hk

i′,j′ −Hk
i′′,j′′ ,

Et
k
i∗,j∗ = 0.

(3.27)

The nodes (i′, j′) and (i′′, j′′), belonging to the spacial sub-grid Gsubi,j , are the first one and

the second one, respectively encountered when moving from (i∗, j∗) towards the outward

normal direction.

The normal component of the electric field is computed with the following equation,

inspired by the transport equation (2.32),

En
k
i∗,j∗ = 2En

k
i′,j′ − En

k
i′′,j′′ + λ(1− vg)

(
En

k
i′,j′ − En

k
i′′′,j′′′

)
. (3.28)

16The magnetic field is computed through the application of Neumann boundary conditions in the
direction of the outward normal to the guide. Neumann boundary conditions will be the object of the
following section.
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Here the node (i′′′, j′′′) is taken in such a way the difference En
k
i′,j′ −En

k
i′′′,j′′′ is forward

in the direction of the boundary at which (i∗, j∗) belongs, according to the fact that the

electromagnetic wave moves from the left-hand side to the right-hand side. The dispo-

sition of the nodes involved in equations (3.27) and (3.28), in the cases of figure 3.3, is

shown in figure 3.4.

Figure 3.4: Positions of the nodes (i′, j′), (i′′, j′′) and (i′′′, j′′′), involved in the computation of
boundary conditions (3.27) and (3.28), at a node (i∗, j∗) belonging to the wave guides displayed
the figures 3.3. We suppose that the electromagnetic wave is moving from left-hand side to the
right-hand side. The wave guides (in gray) slit the domain into an internal region (in yellow)
and an external region (in white).

In the last equation the parameter vg, that can be fixed to be in [0, 1], weights the

transport of the normal component of the electric field at the boundaries. The choice

vg = 1 brings back to the case of PEC boundary conditions, and En
k
i∗,j∗ is computed with

the same discrete equation used for Hk
i∗,j∗ .
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3.6. Free exit condition from the computational domain boundaries

All the numerical experiments discussed in the following chapter have been performed in

the bounded domain [0, 1]× [0, 1]. As we have seen through this chapter, finite difference

techniques are used to discretize a system of partial differential equations. Thus, some

boundary conditions are required, at each time step, at the nodes that lie on the bound-

aries. According to definition 3.2, these nodes have one of the two indices i, j equal to 1,

Nx or Ny for the cartesian framework or to 1, Nr or Ny for the cylindrical framework.

Since the choice of a limited domain comes form computational needs, when it is possi-

ble, it comes natural to handle the boundaries as they are not existing. To this end, we

decided to impose vanishing conditions on the outward flux, in such a way to avoid un-

desired reflections. These kind of conditions, of Neumann type, are realised by imposing

that some first derivative vanishes in correspondence to the domain boundaries. Several

types of conditions have been considered, depending on the way with the field approaches

to the boundary.

For example, if one considers the case of a soliton in cartesian coordiantes17 moving

along the x-direction, it is possible to determine the values of the component Ey(1, y, t)

at the right side of the the squared domain [0, 1]× [0, 1] by imposing that
∂Ey
∂x = 0 in all

points having x = 1 and y ∈ [0, 1]. Indeed, by fixing j̄ ∈ {0, . . . , Ny} and subtracting the

Taylor expansions of Ey at the nodes (Nx − 2, j̄) from the Taylor expansion of Ey at the

node (Nx − 1, j̄) multiplied by 2, one gets

2Ey
k
Nx−1,j̄ − Ey

k
Nx−2,j̄ = 2Ey

k
Nx,j̄
− EykNx,j̄ + h

∂Ey
∂x

(1, ȳh) + o(h),

which, thanks to the constraint on the derivative, gives the following finite difference

approximation

Ey
k
Nx,j̄

= 2Ey
k
Nx−1,j̄ − Ey

k
Nx−2,j̄ . (3.29)

The above condition ensures that the soliton exits without reflections through the left side

of the domain. This happens because such a soliton travels along the normal direction to

the boundary.

The Neumann conditions described in the above example, in the case of a generic field f

17For instance the soliton defined in section 2.6.
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and extended to cover each side of the discrete grid Gsub
x,y at time k∆t, are:



fk1,j = 2fk2,j − fk3,j j = 2, . . . , Ny − 1

fkNx,j = 2fkNx−1,j − fkNx−2,j j = 2, . . . , Ny − 1

fki,1 = 2fki,2 − fki,3 i = 2, . . . , Nx − 1

fki,Ny = 2fki,Ny−1 − fki,Ny−2 i = 2, . . . , Nx − 1

fk1,1 = 2fk2,2 − fk3,3

fkNx,1 = 2fkNx−1,2 − fkNx−2,3

fk1,Ny = 2fk2,Ny−1 − fk3,Ny−2

fkNx,Ny = 2fkNx−1,Ny−1 − fkNx−2,Ny−2.

(3.30)

Actually, avoiding reflections is a difficult task to reach in general, as this feature occurs

with no major troubles only for particular configurations. Boundary conditions of this

kind have been applied to all the fields of our numerical simulations, except for the case of

cylindrical coordinates at i = 1, where the right side of the domain is the rotation axis. In

such a case imposing Neumann boundary conditions has no meaning, since the rotation

axis is a symmetry axis for all the fields. In addition, the equations of system (2.21)

are not defined in r = 0. This exception has been solved by imposing the electric and

magnetic fields to vanish on the rotation axis. This choice is suitable for the fields Hϕ and

Er. The vector field H has to rotate around the y axis and in the case Hϕ(0, y, t) 6= 0, for

some y and t, then in each plane ϕ = ϕ̄ (where ϕ̄ is fixed in [0, 2π]) a radial component

of H appears. This is in contrast whit our hypothesis of H directed only along the ϕ

direction. By considering the divergence of the electric field in cylindrical coordinates, i.e.

∇ ·E =
Er
r

+
∂Er
∂r

+
∂Ey
∂y

.

Thus, we expect that Er = αr + o(r) when r → 0 (here α is a real constant), other-

wise the first term in the divergence will diverge at r = 0.
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The determination of Ey in such a way to impose consistently boundary conditions at

r = 0 it is non trivial. As it will be remarked in the conclusion, due to lack of time this

problem cannot be adequately treated during this work.
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Numerical Simulations

This chapter is dedicated to the presentation of some numerical simulations obtained by

applying the schemes described in chapter 3. These numerical methods belong to the

family of finite-differences schemes.

We will mainly choose as computational domain the parallelepiped [0, 1] × [0, 1] × [0, T ].

This means that space variables belong to the square [0, 1] × [0, 1], while time variable

takes values in [0, T ], where T will be specified in each numerical experiment.

Inside the computational domain, according to definition 3.2 and relatively to the carte-

sian case, a discrete grid Gx,y,t is constructed by fixing a positive integer N and considering

h := 1/N , so that ∆x = ∆y = h, and ∆t = λh. In the cylindrical case the same pro-

cedure is replicated by reminding that the grid will be named Gr,y,t and the step-length

∆r is used instead of ∆x. Notice that, by choosing equal step-lengths in both spatial

dimensions, on each side of the spatial domain [0, 1]× [0, 1] are placed N + 1 nodes, for a

total of (N + 1)2 nodes.

The constant λ is related to the stability condition of the Lax-Wendroff scheme, and

it will be always chosen in such a way conditions (3.10) are satisfied.

The speed of light in vacuum is normalized to 1. Similarly, also the vacuum permittivity

and permeability coefficients have been both set to 1. The constant θ has been fixed to

0.1. Though other values may be taken, this choice comes from heuristic considerations1

concerning the balance of the terms in equations (3.22).

Summarizing, the general setting for all the numerical simulations reported in this chapter

is the following one

1This choice is also suggested by some preliminary tests whose aim was to ensure numerical stability
in the case of the numerical experiments proposed in this chapter. Those rudimentary tests will not be
discussed here. Nevertheless, due to lack of time, the research of a constant which has a more significant
connection with the theoretical value of θ is left to further works.
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• the computational domain for the spatial variables is the square [0, 1]× [0, 1],

• the time variable takes values in [0, T ],

• N is a positive integer,

• h = 1/N is the space-step length in both spacial direction,

• ∆t = λh is the time-step length,

• Nt is the number of part in which the time interval [0, T ] is divided, i.e. Nt = b T∆tc,

• the speed of light c in vacuum is normalized to 1,

• both the constants ε and µ take the value 1,

• the mass-charge coupling constant is set to θ = 0.1.

4.1. Numeric approximations of free-solitons in vacuum

The first series of experiments is aimed to checked if the numerical approximations of the

fields defined in (2.22) and (2.24) are actually close to their analytical counterparts. This

comparison is necessary in view of the approximation of the extended equations.

In truth, only the Lax-Wendroff scheme will be fully operative in the numerical simu-

lations discussed in this section, since the solutions considered have the fields V and p

constant with respect to time. As stated in section 2.6, in the case of travelling solitons it

is convenient to choose DV
Dt = 0 and p = 0. We want this feature to be preserved during

the approximation. The discrete equations (3.22) and (3.26) will be also implemented, in

order to investigate their consistency.

Some numerical simulations of a solitonic solution of equations (2.20) and (2.21) have

been carried out for example in [36] and [11]. In those cases the velocity field V was fixed

and the pressure does not appear.

In order to compare exact solutions with their numerical approximations, we follow the

strategy described below. Suppose that F is one of the scalar fields (or a component of

a vector field) that solves exactly the system (2.20). Let k∆t a discrete time value. We

will name F kan the matrix whose entries are obtained through the evaluation of F at time

k∆t, at the nodes of the discrete sub-grid Gsubi,j . We will indicate with F knum the numerical
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approximation of F on the same sub-grid obtained after k steps of the schemes described

in the previous chapter, starting from the initial condition F 0
an. It is clear that F knum is a

matrix of the same size as F kan and that, in addition, F 0
an = F 0

num.

According to the above introduced notation, we can examine the behaviour of the two

following errors:

ε(F ) :=
1

Nt

Nt∑
k=1

errk(F ), εΓ(F ) :=
1

Nt

Nt∑
k=1

errkΓ(F ),

where

errk(F ) :=
1

(N + 1)2

Nx∑
i=1

Ny∑
j=1

|F kan(i, j)− F knum(i, j)|,

errkΓ(F ) :=
1

Nk
Γ

∑
i,j∈Γk

|F kan(i, j)− F knum(i, j)|.

Here in the definition of errk(F ) and errkΓ(F ) the matrix indices i, j are written as function

variables to avoid confusion with the other subscripts. The vertical bar has the meaning

of absolute value2. Finally, the set of matrix indices named Γk, that compares in the

definition of errkΓ(F ), contains the indices of each node belonging to the support of the

soliton at time k∆t, while Nk
Γ is the cardinality of Γk.

It turns out that, at fixed time k∆t, the real number errk(F ) is the L1 norm between

the exact solution and the approximated one evaluated at each node of the spatial sub-

grid Gsubi,j . Moreover, errkΓ(F ) is the restriction of errk(F ) to the nodes belonging to

the support of the soliton at time k∆t. The error ε(F ) is the norm defined over the

Bochner space L1({0,∆t, . . . , Nt∆t};L1(Gsubi,j )), while similarly εΓ(F ) is the norm related

to L1({0,∆t, . . . , Nt∆t};L1(Γk)).

The same notation will hold in the case of equations (2.21).

Cartesian framework: a comparison between exact and numerical solution

We now consider the numerical approximations in cartesian coordiantes of the fields as-

sociated to the soliton in (2.22). To investigate how the choice of N and λ influence

such approximations, we evaluate the errors ε and εΓ for the fields |E|, Hz, ρ and Vx, for

different values of those two parameters. The results pertaining to this series of numerical

experiments are reported in table 4.1. The following choice of parameters has been made:

2Let M = {mi,j}i,j be a (n1 × n2)-matrix, then |M | := {|mi,j |}i,j .
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• the center C of the soliton at initial time t = 0 is (0.25, 0.5),

• the half-side of the support is τ = 0.1,

• T = 0.65.

This choice T = 0.65 ensures that the support of soliton remains entirely contained in

[0, 1] × [0, 1] for the whole duration of the simulation. The other parameters not men-

tioned here have been set according to what was stated in the introduction of this chapter.

N λ ε(|E|) εΓ(|E|) ε(Hz) εΓ(Hz) ε(ρ) εΓ(ρ) ε(Vx) εΓ(Vx)

50 1/3 0.0039098 0.061627 0.0039098 0.061627 0.086405 1.4524 0 0

100 1/3 0.0012306 0.021853 0.0012322 0.021893 0.027133 0.49985 0 0

200 1/3 0.00033087 0.0063341 0.00034473 0.0063706 0.0076031 0.14493 0 0

400 1/3 0.000092747 0.0017528 0.00009333 0.0017672 0.0020471 0.039825 0 0

50 1/4 0.0043803 0.065118 0.0043803 0.065118 0.095066 1.5128 0 0

100 1/4 0.0013127 0.023029 0.0013142 0.023065 0.028696 0.52175 0 0

200 1/4 0.00036411 0.0066551 0.00036573 0.0066949 0.0080152 0.15125 0 0

400 1/4 0.000098445 0.001846 0.000099063 0.0018613 0.0021601 0.041667 0 0

50 1/6 0.0049558 0.067772 0.0049562 0.067781 0,10588 1.561 0 0

100 1/6 0.0013929 0.023901 0.0013947 0.023946 0.030236 0.53802 0 0

200 1/6 0.00038098 0.0068868 0.0003827 0.0069292 0.0083485 0.15581 0 0

400 1/6 0.00010296 0.001913 0.00010361 0.0019292 0.0022497 0.042993 0 0

50 1/8 0.0052815 0.068905 0.0052819 0.068915 0.11202 1.5814 0 0

100 1/8 0.0014465 0.024232 0.0014483 0.024277 0.031272 0.54402 0 0

200 1/8 0.0003884 0.0069694 0.00039017 0.007013 0.0084954 0.15744 0 0

400 1/8 0.00010482 0.0019369 0.00010548 0.0019534 0.0022866 0.043465 0 0

Table 4.1: Numerical result relative to the numerical simulation of the same cartesian
soliton for different values of N and λ. The duration of each simulation is T = 0.65.

As expected, from table 4.1 it turns out that the error committed in the approxima-

tion of the support decrease as N increases. This behaviour is independent of λ. This is

true for all the fields here considered. The reason why error committed in the approxi-

mation of the divergence of the electric field is higher with respect to the other ones is

explained in appendix III. The approximation error of the non zero component of the

velocity field, i.e. Vx, goes below machine precision, so we can conclude that in the case
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of the cartesian soliton discrete equations (3.22) work as expected.

From results of table 4.1, we can estimate that the global finite-difference scheme is only

of the first order in space. Moreover, by observing table 4.2, we can conclude that the

numerical method provides a first order approximation in time.

N λ
1

Nt
errNt(|E|) 1

Nt
errNt(Hz)

1

Nt
errNt(ρ)

50 1/4 6.0173 ·10−5 6.0173 ·10−5 0.0012249

50 1/8 3.8761 ·10−5 3.8761 ·10−5 0.00077796

50 1/16 2.0728 ·10−5 2.0728 ·10−5 0.00041465

50 1/32 9.9856 ·10−6 9.9856 ·10−6 0.0002001

50 1/64 4.7258 ·10−6 4.7258 ·10−6 9.4954 ·10−5

50 1/128 2.2872 ·10−6 2.2872 ·10−6 4.6031 ·10−5

100 1/4 9.307 ·10−6 9.307 ·10−6 0.00019321

100 1/8 5.2593 ·10−6 5.2593 ·10−6 0.0001084

100 1/16 2.9949 ·10−6 2.9949 ·10−6 6.1341 ·10−5

100 1/32 1.5834 ·10−6 1.5834 ·10−6 3.2345 ·10−5

100 1/64 7.7955 ·10−7 7.7955 ·10−7 1.5928 ·10−5

100 1/128 3.7694 ·10−7 3.7694 ·10−7 7.7105 ·10−6

200 1/4 1.2883 ·10−6 1.2985 ·10−6 2.7167 ·10−5

200 1/8 6.8607 ·10−7 6.919 ·10−7 1.4425 ·10−5

200 1/16 3.6469 ·10−7 3.676 ·10−7 7.6449 ·10−6

200 1/32 2.0137 ·10−7 2.0283 ·10−7 4.2023 ·10−6

200 1/64 1.0572 ·10−7 1.0645 ·10−7 2.2017 ·10−6

200 1/128 5.2222 ·10−8 5.2587 ·10−8 1.0882 ·10−6

Table 4.2: Numerical result relative to the simulation of the same cartesian soliton for different
values of N and λ. The duration of each simulation is T = 0.65. The error is estimated by
evaluating the L1-norm at each node of the spatial subgrid Gsubi,j only at t = Nt.

In figure 4.2 different approximated fields are plotted for different values of k, i.e. for

different time values. We observe that the Nuemann boundary conditions imposed at

the right-hand side of the domain allow for a correct exit of the soliton. Another feature

that one can clearly see from figure 4.2 and figure 4.1 is that the Lax-Wendroff scheme

adds some non-physical wiggles to the tail of the soliton. This is a question of numerical
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inaccuracy3.

Figure 4.1: Contour lines representation of the matrices |E|Ntnum and |E|Ntan relative to the choice
of N = 400, λ = 1/4 and T = 0.65. The soliton travels from the left-hand side to the right-hand
one.

3The question of little numerical inaccuracy in the approximation of travelling solitons is discussed
also in [36].
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Figure 4.2: Contour lines representation of the matrices Hz
k
num (top-left), |E|knum (top-right)

and ρknum (bottom) relative to the choice of N = 200 and λ = 1/4 for k = 0, 90, 250 (t = k∆t). In
each picture the three matrices relative to one of the field are over-plotted. The supports of the
soliton at the considered times are completely disjoint, but the tails due to numerical inaccuracy
of the Lax-Wendroff scheme sometimes overlap with the previous fields. For this reason are
displayed the red segments that may help to distinguish between them. The solitons travels from
the left side to the right side of the domain in each picture. At k = 0 the center of the support
is (0.5, 0.5).
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Cylindrical framework: a comparison between exact and numerical solution

We will consider the numerical approximations of the fields that define a cylindrical soliton

according to (2.24). To investigate how the choice of N and λ influence such approxi-

mations we will evaluate the errors ε and εΓ concerning with the fields |E|, Hz, ρ, Vr,

Vy and p, for different values of the two parameters. The results relative to this series of

numerical experiments are reported in table 4.3. The following choice of the parameters

has been performed:

• the center C of the soliton at initial time t = 0 is (0.25, 0.5),

• the constants related to the shape of the soliton have been fixed at τ = 0.1 Kτ = 2π,

• T = 0.65.

The choice T = 0.65 ensures that the support of soliton remains entirely contained in

[0, 1]× [0, 1] for the whole duration of the simulation. All the other parameters not men-

tioned above have been set according to what stated in the introduction of this chapter.

Unfortunately, one finds out that the schemes are not numerically stable. By this we

mean that the approximated fields have an indiscriminate growth. This drawback occurs

for each choice of N and λ that we tried. We observed that the node from which the

instability is generated never belongs to the support of the soliton. An example is shown

in figure 4.3. By analysing in detail the behaviour of several numerical simulations, it is

possible to conclude that the instability arises from the discrete Euler equation (3.22),

because some entries of the matrices Vx
k
num and Vy

k
num become greater than 1. As a

consequence of this fact, the eigenvalues of the matrices Mr and My, that define the Lax-

Wendroff scheme (see section 3.1) increase, compromising the stability of the whole set of

discrete equations.

Again, we stress that at the discrete time instant in which the instability arises (let us

say k∗∆t) the grid node (i∗, j∗) where the computation of the discrete velocity produces

unsuitable results, does not belong to the support of the soliton. We also recall that the

electromagnetic field, the divergence of E and the scalar field p, theoretically, should be

zero at the node (i∗, j∗, k∗) of Gr,y,t. Nevertheless, as it happens also in the cartesian

case previously analysed, the Lax-Wendroff scheme allow for the creation of tails in the
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approximated electric and magnetic fields4. Those tails are due to numerical inaccuracy

of the scheme and this latter may cause the instability affecting our experiments. Another

element that supports these conclusions is that the numerical simulation relative to figure

4.3, where N = 100 and λ = 1/4, blows up at k∗ = 77, whereas by choosing N = 100,

λ = 1/10 it blows up at k∗ = 1729. In the first case, the soliton is inside the computa-

tional domain, while in the second case the soliton has enough time to exit through the

right-hand side. The instability is generated at two different nodes of the sub-grid Gsunr,y

depending if we are in the case λ = 1/4 or λ = 1/10.

We guess that stability can be recovered by choosing λ suitably small, but this may

result in extremely expensive simulations in terms of computational costs. To avoid those

drawbacks a more practical strategy has been adopted, as described below.

We decided to impose the following constraint on the entries of the matrices Vr
k+1
i,j and

Vy
k+1
i,j after that they have been computed with the discrete equations (3.22)

Vr
k+1
i,j =


Vr
k+1
i,j if

(
Vr
k+1
i,j − Vr

k
i,j

)2
+
(
Vy

k+1
i,j − Vy

k
i,j

)2 ≤ (RV ∆t)2

Vr
k
i,j otherwise

Vy
k+1
i,j =


Vy

k+1
i,j if

(
Vr
k+1
i,j − Vr

k
i,j

)2
+
(
Vy

k+1
i,j − Vy

k
i,j

)2 ≤ (RV ∆t)2

Vy
k
i,j otherwise

(4.1)

here RV is a real positive number that, in the simulation concerning the results of table

4.3, has been set to 1. The conditions (4.1) are checked for Vr
k+1
i,j and Vy

k+1
i,j each time

they are computed with (3.22). In each node (i, j) in which the L2 norm of the difference

between
(
Vr
k+1
i,j Vy

k+1
i,j

)
and

(
Vr
k
i,jVy

k
i,j

)
is grater than RV ∆t, the the discrete velocity

vector is not adjourned.

4See figure 4.2 and 4.6.
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Figure 4.3: Instability in the numerical simulations of a cylindrical soliton. In the case relative
to this figure N = 100 and λ = 1/4. At k = 77∆t the matrix p77num has some entries that are
no more representable as floating point numbers. The instability is generated by the discrete
equations (3.22), as it is clear by comparing the two top picture relative to V k

num for k = 68 and
k = 69. Then the instability affects all the other fields. For example consider the pictures of the
approximated magnetic field for k = 69 and k = 74 at the bottom. Note that the grid node in
which the instability arises it is outside of the support of the soliton. The constraints (4.1) on
the discrete velocity field are not imposed in this simulation.
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N λ ε(|E|) εsupp(|E|) ε(Hϕ) εsupp(Hϕ) ε(ρ) εsupp(ρ)

50 1/3 0.027869 0.11368 0.026887 0.11212 0.12518 0.49963

100 1/3 0.008963 0.03592 0.0085947 0.035668 0.038423 0.15556

200 1/3 0.002784 0.010322 0.0026447 0.010482 0.015231 0.068609

400 1/3 0.00097079 0.0032021 0.00090034 0.0032816 0.007568 0.037818

50 1/4 0.029336 0.12021 0.028586 0.11865 0.14071 0.58354

100 1/4 0.0091224 0.03788 0.0088695 0.037625 0.041561 0.17175

200 1/4 0.0026881 0.010632 0.0025912 0.010694 0.013952 0.058945

400 1/4 0.00086331 0.0030908 0.00081794 0.0031412 0.0060992 0.028287

50 1/6 0.03085 0.12573 0.030259 0.12413 0.15876 0.67158

100 1/6 0.0093042 0.039611 0.0091377 0.039348 0.046363 0.20049

200 1/6 0.0026286 0.011023 0.0025658 0.011007 0.014243 0.060822

400 1/6 0.00077878 0.0030587 0.00075105 0.0030681 0.0052137 0.022727

50 1/8 0.031686 0.12821 0.031135 0.12657 0.16861 0.71553

100 1/8 0.0094174 0.040372 0.0092789 0.04009 0.049269 0.21758

200 1/8 0.002621 0.011255 0.0025694 0.011216 0.014938 0.065921

400 1/8 0.0007521 0.0030911 0.0007283 0.0030777 0.0050892 0.022289

N λ ε(Vr) εsupp(Vr) ε(Vy) εsupp(Vy) ε(p) εsupp(p)

50 1/3 0.024341 0.0099555 0.052034 0.0027867 0.0003828 0.00067948

100 1/3 0.021276 0.0043145 0.048336 0.001344 0.00016564 0.00032969

200 1/3 0.018982 0.0020715 0.040371 0.0007973 0.000079117 0.0001646

400 1/3 0.0232854 0.0011347 0.0410601 0.00056652 0.000038657 0.00008153

50 1/4 0.027142 0.010164 0.056244 0.0027928 0.00028134 0.00049736

100 1/4 0.022191 0.0044155 0.047467 0.001312 0.00012179 0.00024317

200 1/4 0.019627 0.0021085 0.04155 0.00067202 0.000058196 0.00012116

400 1/4 0.020326 0.0010567 0.039092 0.00042861 0.000028391 0.000059963

50 1/6 0.026466 0.010497 0.054699 0.0028098 0.00018358 0.00032303

100 1/6 0.023231 0.0044817 0.049367 0.0012742 0.000079146 0.00015786

200 1/6 0.021314 0.0021334 0.04481 0.00064484 0.000037615 0.000078091

400 1/6 0.018496 0.0010556 0.038349 0.00032951 0.00001831 0.000038502

50 1/8 0.029425 0.010629 0.063043 0.002871 0.00013704 0.00024054

100 1/8 0.025489 0.0045197 0.053667 0.0013109 0.000058484 0.00011621

200 1/8 0.022112 0.0021526 0.044401 0.00060352 0.000027534 0.000056951

400 1/8 0.020008 0.0010469 0.039321 0.00030279 0.000013347 0.000027961

Table 4.3: Numerical result relative to the numerical simulation of the same cylindrical
soliton for different values of N and λ. The duration of each simulation is T = 0.65.
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Figure 4.4: Contour lines representation of the matrices |E|240num and |E|240an relative to the choice
of N = 100 and λ = 1/4. T = 0.65 = 260∆t.

Figure 4.5: Contour lines representation of the matrices |E|knum (left) and ρknum (right) relative
to the choice of N = 100 and λ = 1/10 for k = 1700. The soliton reach the right side of the
domain after 820 time iterations. Than it goes out thank to the imposition of Neuman boundary
conditions. The figure shows that a reflected wave is generated for the electric field (also for the
magnetic field). The reflect wave is divergence free.
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From table 4.3 one can notice that the error committed in the approximation decrease as

N increase for all the considered values of λ. This is true for all the fields here examined.

Considerations similar to those carried out for the cartesian case, explain why the error

committed at the approximation of ρ, in the nodes belonging to the support of the soliton,

is high with respect to the other ones.

By comparing the values of the errors ε and εsupp, it is possible to observe that the

behaviour of each considered field outside the support of the soliton is not perfectly ap-

proximated. Together with the problems related to the numerical implementation of the

Lax-Wendroff scheme discussed before5, there are some other features that can contribute

to explain this fact.

To begin with, the Neumann conditions imposed at the domain boundary do not guaran-

tee the soliton to exit without reflections, as we can see for example in figure 4.5.

Moreover, the scalar field p, defined up to a constant factor, has been set identically zero at

t = 0 in accordance to what stated in section 2.6. Nevertheless, in a relatively small num-

ber of time steps, through the discrete equation (3.26) a discrete pressure pknum emerges

as a consequence of the lack of orthogonality between the approximated electric and ve-

locity fields Ek
num and V k

num. When the discrete pressure appears has the same shape

of the numeric divergence of the electric field, as show in figure 4.7. This figure exhibit

another annoying property: while ρknum moves together with the support of the soliton,

the discrete pressure pknum, once created, does not “travels”, but remains practically con-

stant. This fact is explained by considering the structure of equation (3.26): the discrete

divergence ρknum is not zero only in the travelling support of the soliton. The creation of

new discrete pressure at time k∆t, sum up the one existing at time (k− 1)∆t. This takes

place only in the set of nodes belonging to the support. At each nodes (i, j) ∈ Gsubr,y that

do not belong to the support of the soliton, ρknum is zero and the equation (3.26) reduces

to pk+1
i,j = pki,j , which means that the discrete pressure is conserved. This behaviour is an

artefact due to how the numerical scheme works. It has no counterpart in the analytical

solution. It would be interesting to find a way to modify the discrete equations in order

to remove this drawback.

5See figure 4.4.
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Figure 4.6: Contour lines representation of the matrices Hϕ
k
num (top-left), |E|knum (top-right)

and ρkan (bottom) relative to the choice of N = 100 and λ = 1/4 for k = 0, 120, 260 (t = k∆t).
In each picture the three matrices relative to one of the field are over-plotted. The supports are
completely disjoint. The soliton travels from the left side to the right side of the domain in each
picture.
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Figure 4.7: Contour lines representation of the matrices pϕ
50
num (top-left), pϕ

700
num (top-right),

ρ50num (bottom-left) and ρ700num (bottom-right) relative to the choice of N = 100 and λ = 1/10.
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We have introduced the constraints (4.1) in order to avoid the numerical instability that

arises by performing the simulations here considered. It would be likely not to use (4.1)

in general. We have explored two strategies in order to increase the duration of the sim-

ulations, even though this does not remove the instabilities for arbitrarily long numerical

experiments. We expect that reducing λ, for fixed N and T , will have a positive impact on

the stability of the simulation. Moreover, since another possible drawback is connected to

the spurious modes that can arise by computing the divergence using central differences,

we have considered the following upwind approximation (along the direction of V ) of ρ

in place of (3.16)

ρki,j =
Er

k
i,j

ar + ih
+
Er

k
i+1,j − Er

k
i−1,j

2h
Uri,j +

Ey
k
i,j+1 − Ey

k
i,j−1

2h
Uyi,j

i = 1, . . . , Nr − 1

j = 1, . . . , Ny − 1
.

(4.2)

Our choice of the computational domain implies ar = 0. Furthermore, according to (2.24)

we have

Uri,j =
ih√

(ih)2 + (jh− 1/2)2
, Uyi,j =

jh− 1/2√
(ih)2 + (jh− 1/2)2

i = 1, . . . , Nr − 1

j = 1, . . . , Ny − 1
.

(4.3)

The results of a series of numerical experiments confirm that the more λ is small the

longer the simulation is stable. The use of (4.2) in place of (3.16) in some cases enforce

the stability of the numerical scheme, but this is not a general feature. For example,

simulating a soliton on a discrete grid defined by taking N = 200, λ = 1/16 and T = 0.65,

the numerical scheme with (3.16) does not produce instability, while the one with (4.2)

do it.
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4.2. Guided Waves

In this section we take in to account some numerical simulations where suitable fixed wave

guides are placed into the computational domain.

For the sake of simplicity, we consider straight wave guides intersecting the nodes of the

sub-grids Gsubx,y and Gsubr,y in the cartesian and cylindrical frameworks, respectively. The

configurations of the wave guides used in the numerical experiments of this section are

displayed in figure 3.4 and figure 4.15. This way of placing the wave guides allow us to

define a subset of nodes, that, at each time k∆t, belongs to the sub-grids Gsubx,y and Gsubr,y

identifying the guides.

According to what was stated in section 2.8, the boundary conditions defining the be-

haviour of the fields on the wave guides, will be imposed in order to take into account the

mutual interaction between the guides themselves and the electromagnetic field existing

in the nearby free-space. The procedure followed to impose the boundary conditions is

described is section 3.5.

Cartesian framework: wave propagation between two parallel guides

Here, we consider the computational domain [ax, bx]× [0, 1]× [0, T ], with ax, bx ∈ R+. In

the space domain [ax, bx] × [0, 1] the usual sub-grid Gsubx,y is fixed and two parallel wave

guides are placed at y = 0 and y = 1. We will refer to two different Maxwellian solutions

that are reported below:

E =
(

0 , c cos(x− ct) , 0
)
, H =

(
0 , 0 ,

1

µ0
cos(x− ct)

)
(4.4)

E =
(

0 , c sinx sin(ct) , 0
)
, H =

(
0 , 0 ,

1

µ0
cosx cos(ct)

)
. (4.5)

The exact solution (4.4) is a travelling plane wave such that the oscillating electric and

magnetic fields have the same phase. On the contrary, the fields of the exact solution

(4.5) produce a standing wave, since they have a difference of phase equal to π/2.

The aim of the simulations discussed here is to investigate the possibility that a standing

wave can be transformed into a travelling one through the influence of the guides. This

transition is observed when the parameter vg (defined in section 2.8 and section 3.6) is

different from 1, i.e. when a transport of the normal component of the electric field at

the guide is activated.
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In a first series of numerical experiments, the fields (4.4) and (4.5), evaluated at t = 0 are

set as initial condition on the domain defined by choosing6 ax = −π and bx = π. Periodic

boundary conditions, that identify x = −π with x = π, are imposed. The following choice

of the parameters has been performed

• N = 20,

• λ = 1/10,

• T = 5.

Initial vg Related Comments

condition Figures

Tr. 1 Figure 4.8 The electric and magnetic fields travel unperturbed.

The wave guides act as in the PEC case.

Tr. 0 Figure 4.9 The electric and magnetic fields start travelling with

the same phase.

After some time iterations, a little phase shift arises.

The reached configuration seems stable.

St. 0 Figure 4.10 The electric and magnetic fields start travelling

out-of-phase of a factor π/2 in both space and

time dimensions.

During the simulation the phase shift decreases.

The configuration that emerges resembles the

stable one described above.

St. 1 Figure 4.11 The electric and magnetic fields start travelling

out-of-phase of a factor π/2 in both space and

time dimensions.

The phase shift is conserved during the simulation.

Table 4.4: In this table are compared the behaviours of a series of experiments in which an
electromagnetic wave may evolve between two conductive parallel guides. Conductive guides can
produce a delay in the propagation of the wave in its neighbourhood, this feature is trimmed by
the coefficient vg. In the column headed “Initial condition”, the label “Tr.” refers to solution
(4.4) evaluated for t = 0, while the label “St.” refers to solution 4.5 evaluated at t = 0. The
discretization parameters are defined by setting N = 20 and λ = 1/10.

6In general it is only required that bx − ax is a multiple of the wave length.
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The outcomes of the corresponding simulations are summarized in table 4.4. The case

that we are interested in is the one related to the third row of the table. A standing

initial condition, where the electric and the magnetic are π/2 out-of-phase, slowly turns

into something very close to a travelling wave by the action of the boundary conditions.

By comparing this case with the one relative to the fourth row, it turns out that without

introducing the transport term in the boundary conditions (by setting vg = 0), the wave

do not diminish the phase shift between the electric and magnetic fields.

The cases relative to the second and third rows have different initial conditions but, after

a transient period, they settle down on similar travelling configurations, different from the

one of the first row, where the wave is a typical Maxwellian plane wave (vg = 0). In both

cases, when vb = 1, by observing figure 4.9 and figure 4.10, we note that the intensity of

the electric and the magnetic fields increases during the simulation. This trouble, due to

the choice of the explicit time advancing method, is corrected by reducing the time step,

as documented in table 4.5.

λ max
∣∣EyNtnum∣∣ max

∣∣Hz
Nt
num

∣∣
1/16 6.9495 6.4062

1/32 3.1171 3.3702

1/64 1.5022 1.9736

1/128 0.7345 1.3780

Table 4.5: This table is relative to the numerical settings described in the third row of table
4.4. Thus, a stationary electromagnetic field at t = 0 evolves between two wave guides such that
vg = 0. The duration of the simulations here considered is T = 5. We recall that T = Nt∆t and
λ = ∆t/h, with h = 1/N . Four simulations relative to the choice N = 20 have been performed
for decreasing values of λ. Here are reported the values max

(x,y)∈Gsubx,y

∣∣EyNtnum∣∣ and max
(x,y)∈Gsubx,y

∣∣HzNtnum∣∣
to show that those numbers decrease with λ. Theoretically, those norms should be around 1.
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Figure 4.8: Relative to first row of table 4.4.
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Figure 4.9: Relative to second row of table 4.4.



Figure 4.10: Relative to third row of table 4.4.



Figure 4.11: Relative to fourth row of table 4.4.



The periodic boundary conditions imposed at x = −π and x = π, allow us to simulate the

case in which the electromagnetic wave propagates indefinitely between the guides. By

imposing periodicity one neither has to care about how the wave is generated at the en-

trance of the “tube”(the region of the domain delimited by the guides), nor how the wave

exits at the end of the “tube”. When a domain of finite extension along the x-direction

is considered, the periodic boundary conditions have to be substituted by suitable inflow

and outflow boundary conditions, to be imposed at x = ax and at x = bx respectively.

From the above example (in particular we refer to third row of table 4.4) we see that

a standing wave turns into a travelling one after a considerably long transient. We ex-

pect that, in order to reproduce this behaviour without periodic boundary conditions, the

length of the “tube” bx − ax and the duration T of the simulation have to be sufficiently

large.

The natural inflow boundary condition at x = ax is given by imposing, at each time-step,

the exact solution (4.5) evaluated at x = ax and y ∈ [0, 1]. Nevertheless, the action of the

conductive wave guides produces a reduction of the phase difference between the electric

and the magnetic field. As in the case of periodic boundary conditions, the standing

initial condition changes into a travelling wave after a certain number of time iterations.

During this process unsuitable oscillations arise, for both fields, in the neighborhood of

the points that have x = ax. Such a behaviour is displayed in figre 4.12.

Imposing Neaumann boundary conditions at x = xb does not help to cure this behaviour.

This occurrence is shown in figure 4.13, where Neumann boundary conditions are im-

posed both in the cases of travelling and standing solutions, for a wave guide of the type

vb = 1. When the electric and magnetic fields are out of phase, i.e for the standing wave,

the boundary conditions at the right-hand side of the domain do not allow the wave to

“exit”, on the contrary when the electric and magnetic fields have the same phase, i.e

for the travelling wave, the boundary conditions become of the outflow type and work as

expected.

Imposing Neumann conditions at x = bx for a standing wave that evolves between guides

of the type vb = 0 produces a growth of the electric and magnetic fields at x = bx, as one

can observe in figure 4.12.

Thus, to replicate the behaviour of the fields as in the third row of table 4.4, on a spacial

sub-grid with 20 nodes per unit length, it has been necessary to consider T = 10 and

bx − ax = 12π.
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Figure 4.12: Approximated electric and magnetic fields at the center y = 1/2 of two conductive
guides placed at y = 1 and y = 0. The guides have an extension of 12π along the x direction. In
this numerical simulation 20 nodes for unit length are placed. λ = 1/64.

Figure 4.13: At the top the electric and magnetic fields are out of phase and the outward flux
boundary conditions at the right-hand side of the domain do not preserve the behaviour of the
initial condition. On the contrary, at the bottom, the electric and magnetic fields have the same
phase (overlie each other) and the boundary conditions work as expected.



Cylindrical framework: guided soliton

A three dimensional biconic antenna, schematized in figure 4.14, has a radial symmetry.

As anticipated in section 2.5, by assuming that the electric and magnetic fields solve the

equations in cylindrical framework (no dependence on the ϕ coordinate), the problem

involving this device can be studied in a two dimensional environment. In particular, as

shown in figure 4.14, in the (r, y)-plane the antenna consists of a couple of straight wave

guides of the same length, the first one with angular coefficient γg > 0 named upper guide,

and the second one with angular coefficient −γg named lower guide.

Figure 4.14: Schematic diagram of biconic antenna. At the left-hand side it is displayed in a
three-dimensional cylindrical reference frame, at the right hand side it is displayed its intersection
with the half-plane ϕ = 0.

Since the sub-grid Gsubr,y is equispaced in the r and y directions, a suitable choice for

the insertion of the wave guides is of at angle ±π/4 (γg = 1) with respect to the distribu-

tion of the nodes of the grid.

For practical reasons the intersection between the upper and the lower guides, i.e. the cen-

ter of the biconic antenna, will be placed outside the computational domain [0, 1]× [0, 1].

Let us denote by Pg = (rg, yg) this point. We will take yg = 1/2 and rg < 0. Actually, this

is only a virtual point, since in the adopted cylindrical coordinate system the r coordinate

cannot be negative. Nonetheless, the use of Pg helps us in the geometric definition of the

two wave guides.
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Figure 4.15: Two conductive guides (red) placed on a squared grid.

Together with yg = 1/2 and γg = 1, the two wave guides can be identified by fixing

the hollowing parameters

• `, the minimum distance between the upper and the lower guide inside the compu-

tational domain,

• L, the length of both guides.

Note that rg = −`/2, whereas the upper and lower guides are described by the following

equations

y = r +
1 + `

2
with r ∈

[
0,

L√
2

]
,

y = −r +
1− `

2
with r ∈

[
0,

L√
2

]
.

In particular the wave guides will be fully contained into the computational domain if
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the condition 2`+
√

2L < 1 is satisfied.

It is convenient to fix ` as a multiple of 2h, L as a multiple of h
√

2 and take N to be an

even number. In such a way, on each column of the discrete spacial grid are placed N + 1

nodes (the central node corresponds to y = 1/2). The wave guides intersect the grid Gsubr,y

at the following nodes:

Gupr,y =
{

(ih, jh)
∣∣∣ j = i+

1 + `

2h
, with i = 0, . . . ,

L

h
√

2

}
,

Glowr,y =
{

(ih, jh)
∣∣∣ j = −i+

1− `
2h

, with i = 0, . . . ,
L

h
√

2

}
.

(4.6)

An example illustrating the position of the wave guides in the discrete domain is given in

figure 4.15.

On the discrete guides Gupr,y and Glowr,y , boundary conditions are imposed by fixing the value

of vg and following the strategy described in section 3.5. The nodes involved in the com-

putation of the boundary conditions are displayed on the right-hand side of figure 3.4.

It is important to notice that the Lax-Wndroff stencil centered at a node (i, j), such that

(i, j + 1) belongs to Gupr,y (or, similarly, such that (i, j − 1) ∈ Glowr,y ), has just one of the

diagonal edges laying in a node outside of the boundary as show in figure 4.16. To ensure

that the boundary conditions are effective in the whole region delimited by the guides, we

decided to apply the discrete equations (3.27) and (3.28) also at the following sets of nodes

Gup−extr,y =
{

(ih, jh)
∣∣∣ i = i∗, j = j∗ + 1, with (i∗, j∗) ∈ Gupr,y

}
,

Glow−extr,y =
{

(ih, jh)
∣∣∣ i = i∗, j = j∗ − 1, with (i∗, j∗) ∈ Gupr,y

}
.

Figure 4.16: The Lax-Wndroff stencil (red) centered at a node (i, j), that is placed in the region
between the guides (blue), has its diagonal edge (i − 1, j + 1) laying in a node outside of the
boundary.
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Finally, the electric and magnetic fields are set to zero in the external region by im-

posing, at each time-step k∆t, that the values of the approximated fields Er
k
i,j , Ey

k
i,j and

Hϕ
k
i,j are zero on the following subset of nodes

Gup−zeror,y =
{

(ih, jh)
∣∣∣ i = i∗, j = j∗ + 2, with (i∗, j∗) ∈ Gupr,y

}
,

Glow−zeror,y =
{

(ih, jh)
∣∣∣ i = i∗, j = j∗ − 2, with (i∗, j∗) ∈ Gupr,y

}
.

At this point we have all the elements to numerically simulate the evolution of a soli-

ton having its support between the wave guides. To this purpose we fixed the following

parameters.

• The center C of the soliton at initial time t = 0 is (0.1, 0.5),

• the constants relative to the shape of the soliton are τ = 0.05, Kτ = 9π,

• the duration of the simulation is T = 0.5,

• N = 200,

• λ = 0.1,

• ` = 14h,

• L = 70h
√

2,

• vg = 0.

Some plots of the numerical solution have been collected in figure 4.17. It is possible to

observe that the soliton continues unperturbed along its path after the interruption of the

guides.
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Figure 4.17: Contour representations of the norm of the approximated electric field relative to
the numerical simulation of a solion between two conductive guides (red).
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4.3. Optical Lens

In this section we will consider the case in which a region of the computational domain

is occupied by a linear homogeneous medium, such that the phase velocity of the electro-

magnetic radiation through that medium is lower than c. In particular, in the numerical

experiment presented below, the medium is defined by giving a permittivity coefficient

ε1 > ε0, while the permeability coefficient is µ0.

Figure 4.18: Representation of a computational domain where the region between two conductive
guides (blue) is occupied by a medium (yellow). In red is highlighted the layer between the
medium and the empty space.

Suppose that the medium is located at the right-hand side of the computational do-

main, and in such a way that the interface, between it and the empty space, is symmetric

with respect to the straight line y = 1/2, as shown in figure 4.18. The interface can be

defined on the interval [rs1, rs2], where rs1 = L/
√

2, through the functions

y = s(r), y = 1− s(r). (4.7)

The following propertis are assumed to be satisfied

• s(r) is monotonically decreasing,

• s(rs1) =
1 + `+ L

√
2

2
,
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• s(rs2) =
1

2
,

• lim
r→rs2

1

s′(r)
= 0.

At any point (r, s(r)), where r belongs to the interval ]rs1, rs2[, the outward normal (di-

rected from the region occupied by the medium to the empty part of the domain) forms

an angle of β = − arctan
(
1/s′(r)

)
with the r-axis.

The velocity field V , that exists in the region filled with the medium, is radially dis-

tributed with respect to the center Pg of the biconic antenna. Thus, at the point (r, s(r))

of the interface, the angle α1, between the outward normal and the vector V , is equal to

β − arctan(Vy/Vr).

Reminding that the refractive indices can be express as η =
√
εµ, we can apply the Snell’s

law7 that relates the above defined angle α1 with the angle α0, formed by the outward

normal and the vector V at the right-hand side of the point (r, s(r)) (in the empty region),

through the following equation

√
ε1 sinα1 =

√
ε0 sinα0. (4.8)

A picture of the situation just described is given in figure 4.19.

Figure 4.19: Diagram of refraction and reflection of an incoming electromagnetic wave directed
to the interface between two media with an incident angle α1. The medium at the upper part has
an higher refraction index than the one of the medium in the lower part. In the medium under
the interface the refracted radiation is directed as the solid line (α0 is determined according to
the Snell’s law), while the reflected radiation is directed as the dotted line and forms an angle of
α1 with the normal.

7See [5].
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Our purpose is to choose the function s(r) in order to obtain a velocity field directed

along the r-axis in the region at the right-hand side of the layer. To this end two con-

straint have to be satisfied at each point (r, s(r)):

i) arctan(Vy/Vr) < β, that ensure that the vector V approaches the point (r, s(r)) in

the half plane over the normal direction to the layer, and consequently that leaves

the point in the complementary plane;

ii) α1 < αcrit, where αcrit = arcsin(
√
ε0/
√
ε1) is the critic angle, when this condition

is violated the phenomenon of the total internal reflection occurs, i.e. the wave is

completely reflected by the layer between the media, so that it remains trapped in

the medium at the left-hand side of he domain.

By noting that α0 = β at every point (r, s(r)) and recalling the definition of α1, the

equation (4.8) can be rewritten as

√
ε1 sin

(
β − arctan

(
Vy
Vr

))
=
√
ε0 sin(β).

From the last equation it is possible to isolate β obtaining the following expression for

s′(t)

s′(r) =

√
ε0
ε1

√
(r − rg)2 + (s(r)− yg)2 − (r − rg)

s(r)− yg
. (4.9)

Through the nonlinear relation (4.9) it is possible to approximate s(t) with the following

iterative procedure.

1) Fix a step-length h̄ and set (rs1, s(rs1)) as the current point (rc, yc) of the layer.

2) Evaluate the slope s′(rc) of the tangent to the layer at current point (rc, yc) through

the equation (4.9).

3) Find the new point (rc+1, yc+1) by computing rc+1 = rc+ h̄ and yc+1 = yc+s′(rc)h̄.

4) If yc+1 > yg set (rc+1, yc+1) as the current point (rc, yc) and repeat the operations

2) and 3); otherwise continue to 5).

5) Complete the sequence of N̄ points, obtained with the above process, by adding the

last point (rN̄+1, yN̄+1) such that rN̄+1 = s(rs2) and yN̄+1 = yg.
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6) The sequence of points {(rc, yc)}c=1,...,N̄+1 obtained with this procedure is the ap-

proximation of the layer.

By choosing h̄ << h it is possible to distinguish between the nearest nodes, of the discrete

grid, placed at the left-hand side of s(r) and the ones placed at the right-hand side. Let

us name this two sets of nodes Gleft−sr,y and Gright−sr,y . We can then impose at the layer

some boundary conditions for the approximated field V k
i,j , in order that the Snell’s law

holds. In particular, at any discrete time k∆t, the new discrete velocity V k+1
i,j is com-

puted according to (3.22), and successively at each node (i, j) ∈ Gright−sr,y the following

conditions are imposed

Vr
k+1
i,j = c, Vy

k+1
i,j = 0.

We can now perform a numerical simulation similar to the one discussed in the previ-

ous section, a soliton that moves between the guides of a biconic antenna, but this time

place a medium in the region delimited by the guides and the curve s(t). The compu-

tational domain is the one illustrated in figure 4.18. At time t = 0 the velocity field is

everywhere radial, with respect to the center of the antenna, except at the nodes (ih, jh)

at the right-hand side of s(r) and such that jh ∈ [s(rs1), 1 − s(rs1)]. At this last group

of nodes the velocity field is directed as the r-axis. It must be precised that in the region

occupied by the medium8 the norm of the velocity field is (
√
ε1µ0)−1, while in the rest of

the domain it is c.

The following choice of the parameters has been performed.

• The center C of the soliton at initial time t = 0 is (0.25, 0.5),

• the constants relative to the shape of the soliton are τ = 0.05, Kτ = 9π,

• the duration of the simulation is T = 0.75,

• N = 200, λ = 0.1,

• ` = 14h, L = 70h
√

2,

• vg = 0,

• ε1 = 4.

8The presence of the medium influences also the ratio between the norms of the electric and the
magnetic field througth the relation

√
ε1|E| =

√
µ0|H|.
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Some plots of the numerical solution have been collected in figure 4.20. By comparing

it with figure 4.17, it is possible to observe that the presence of the medium straighten

the soliton when it cross the layer. A reflected waves appears at the left-hand side of the

layer while the soliton pass through it. The presence of the noise at the ends of the guides

can be caused by the discontinuities of the velocity field, that in those regions change its

distribution from a radial one to a uniform one.
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Figure 4.20: Contour representations of the norm of the approximated electric field relative to
the numerical simulation of a soliton between two conductive guides (solid red lines). The region
delimited by the guides and the dotted red line is occupied by a medium whose permittivity is
higher than the vacuum one.
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4.4. Antenna

We have already described the structure of a biconic antenna at the beginning of the sec-

ond part of section 4.2. In that section some numerical experiments for a guided soliton

where taken in to account.

Here we consider the case in which the electromagnetic field is emitted by a source. Once

emitted the field is subjected, during its evolution, to the presence of conductive guides,

as it happened for the soliton of section 4.2.

The source is modeled by giving time-dependent inflow boundary conditions, at a certain

set of nodes. Since we expect that the emitted radiation advances according to the radial

direction outward from the center of the antenna, these nodes are placed in the gap ex-

isting between the two wave guides at the left-hand side of the computational domain.

We are going to consider below two numerical experiments that differ from the set of

nodes where inflow boundary conditions are imposed (see figure 4.21). In the first one the

source is located at the nodes belonging to the part of the rotation axis included between

the wave guides, i.e.

Gin1
r,y =

{
(ih, jh)

∣∣∣ i = 0, |jh− 1

2
| < `

2

}
.

In the second experiment the nodes of the source are contained at the interior of the

circle centered in Pg = (rg, yg) and with radius given by the distance between the center

of the antenna and the nodes where the guides intersect the rotation axis, i.e.

Gin2
r,y =

{
(ih, jh)

∣∣∣ (ih− rg)2 + (jh− 1

2
)2 <

`2

2

}
.
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Figure 4.21: Representation of the set of nodes (in red) Gin1r,y , at the left-hand side, and Gin2r,y , at
the right-hand side, where inflow boundary conditions are imposed, as defined in section 4.4.

Similarly to what have been done in section 4.2 in the case of the “tube”, an electro-

magnetic field is present at t = 0. This initial condition is defined by the following vector

fields

E =
(
− c

r
sinR cosϑ sin(ct) , 0 ,

c

r
sinR sinϑ sin(ct)

)
,

H =
(

0, − 1

µ0 r
cosR cos(ct) , 0

)
,

V =
(
c cos

(π
2
− ϑ

)
, 0, c sin

(π
2
− ϑ

) )
.

(4.10)

Here R =
√

(r − rg)2 + (y − yg)2 and ϑ ∈ [0, π] is the angle measured clockwise from the

straight line passing through the point Pg and parallel to the y-axis. The inflow boundary

conditions are imposed evaluating the fields in (4.10) at the nodes of Gin1
r,y or Gin2

r,y , for

each t = k∆t.

In both of the numerical simulations considered, numerical errors arise in the neigh-

bourhood of the inflow region, after a relatively small number of time iterations. This

undesired behaviour compromises the entire evolution of the emitted radiation. It occurs
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near the entrance of the guides in such a strong way that the information present at the

source is no more effective.

It is also interesting to compare the orientation of the vectors of the electric field at the

nodes in proximity of the source in the cases relative to the biconic antenna, with the

ones relative to the cases of the guided soliton and the “tube” without periodic boundary

conditions. To this purpose some pictures are collected in figure 4.22. The behaviour at

the origin of the instability looks the same for all the considered cases.

To close this section, we want to remark that a number of changes and different choices of

inflow boundary conditions have been tried. These are not reported here, also because we

were not able to overcome our troubles. Thus, for lack of time, we were not able to find

the right combination between the information at the inflow and the boundary conditions

at the conductive guides in order to perform a complete simulation of the radiation from

a biconic antenna. We are however confident that with some more effort, soon or later,

this work can be completed.
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Figure 4.22: The approximated electric field in four different cases related to the arising of
undesired growth of the numerical solution. At the top-left the case of a biconic antenna where
the inflow conditions are given at the gap between the guides. At the top-right the case of a biconic
antenna where the inflow conditions are given at the nodes of the circular sector Gin2r,y (defined
in section 4.4). At the bottom-right the case of the “tube” with inflow boundary conditions (see
figure 4.12). At the bottom-left the case of the guided solton. Actually, the last one does not
show an unstable behaviour, nevertheless the displayed field is a numerical artefact (it is present
in both simulation of figure 4.17 and figure 4.20) that resemble the unnatural distribution of the
other three cases.
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Conclusion

5.1. Overview on the results

Our purposes were to better understand the physical process related to the emission of

an electromagnetic field by a biconic antenna. We have decided to describe the process

by adopting an extension of the Maxwell’s equations and then carry out the related nu-

merical simulations by applying finite-differences methods.

The biconic antenna emission begins with a dynamical source that produces an electro-

magnetic field, that successively evolves between two wave guides. During this transient

the interactions between the fields and the guides act on the electromagnetic field itself

in such a way that, at the end of the guides, the field will continue to propagate as a

free-wave.

A certain number of features related to the above process have been experimented. To this

end, the set of the extended equations (2.9) has been discretized through techniques based

on finite-differences. The set of discrete equations has been tested in the case of solitonic

solutions, and then applied in different situations. We used different coordinates systems

in order to deal with kinds of electromagnetic radiations, such as free waves, guided waves

and, finally, the case in which a change of medium occurs. We mainly applied low-order

numerical schemes, since we were not actually interested in accurate solutions. Of curse

high-order techniques could be implemented as well.

The main difficulties encountered were due to the imposition of boundary conditions.

Although suitable “conductive” conditions and outward flow conditions have been suc-

cessfully implemented, for a lack of time, we were not able to extend our investigation on

inflow boundary conditions. Indeed, in the antenna simulations, some troubles arise in

the region of the computational domain where the inflow conditions are strongly affected

by the evolution of the wave itself, through a backward mechanism that still need further
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investigation. A discussion about possible developments is carried out in the following

section.

5.2. Possible improvements

To complete the model for the biconic antenna, a necessary step forward is to find the

way to impose inflow boundary conditions matching those relative to the nearly wave

guides. Boundary conditions (that may be chosen according to what stated in section

2.8) must be imposed at each time step without producing a numerical undesired growth

of the solution in proximity of the source.

In addition, as we mentioned in section 3.6, an in-depth investigation of the boundary

conditions to be imposed to the electric field at the rotation axis of the cylindrical refer-

ence frame, is needed.

Another theoretical question comes from the study of the well-posedness of the hyperbolic

systems of partial differential equations (3.1) and (3.4) introduced in section 3.1. For in-

stance, the search of smooth symmetrizers for these systems has been left behind due to

lack of time. Also the problem of finding inequalities (like (3.10)) that set an upper bound

for the ratio between the time and space discretization parameters should be considered.

These studies involve the eigenvalues of the matrices Mxi that define the Lax-Wendroff

method.

Another subject concerns with the study of the constant θ in (2.9), related to charge-mass

coupling. In the numerical simulations, where the speed of light has been normalized at 1,

the value attributed to θ was 0.1. This choice was motivated by empirical considerations,

related to stability issues.

Nevertheless, it would be convenient to attribute other values to θ. We recall that, in

equation (2.11), such a constant multiplies the term E + V × B (that emerges in the

cases in which E,V ,B are not mutually orthogonal) regulating the balance with the

other terms present in the equation. Furthermore, θ is involved also in the determination

of the time variation of the scalar field p, influencing its magnitude. Exploring the varia-

tion of θ, and its impact on the behaviour of the fields involved in the antenna simulation,

could better explain the role of the wave guides in the emission process.
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Other improvements concern with the use of higher order numerical methods.

It will be possible to simulate the electromagnetic field emitted by a biconic antenna

filled with suitable media of different dielectric constant in order to focus the signal. The

radiation generated by a source propagates between the antenna arms in a medium where

the speed of light is lower than c. During such a guided evolution, the action of the

conductive cones modifies the phase shift between the electric and magnetic fields. The

electromagnetic radiation than assumes a toroid shape. By filling the space delimited by

the antenna with a medium ending in correspondence with the cones, and such that the

layer between the medium and the outside vacuum has a suitable curvature, the velocity

field can pass from the radial distribution to another one. In this way, the emitted radia-

tion can. be focused and forced to travel transversely to the direction of the rotation axis.

Numerical simulations can then be used to collect useful information in order to project

and improve such a device.
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Appendix

I. On the wave equation related to the extended set of equations

A nonlinear wave equation (2.14) can be obtained from the extended set of equation with

the procedure shown in section 2.3, i.e.

∂2E

∂t2
= c2∆E − c2∇ρ+

(
∇ρ · V

)
V + ρV ∇ · V − ρ∂V

∂t
.

Assuming the hypothesis that V is a stationary and divergence-free field, it is possi-

ble to simplify the previous equation in order to get (2.17). Namely we have

∂2E

∂t2
= c2∆E − c2∇ρ+

(
∇ρ · V

)
V .

According to the discussion carried out in section 2.4, regarding a free-wave, we have

two characterizing properties that hold for the fields E, B and V :

i) E + V ×B = 0 (which also implies E ⊥ B and E ⊥ V ),

ii) E, B, V mutually orthogonal at each point.

In section 2.4 we have stated that the operator at the right-hand side (of equation (2.17))

contains only second partial derivatives in the direction of V and this may explain why

solitons may be generated with this model. Here we want to make clear what we mean

with this last sentence.

First of all, note that considering the Maxwellian case, where ρ = 0, equation (2.17)

reduces to the classical linear wave equation in three dimension, i.e.

∂2E

∂t2
= c2∆E.
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This equation does not admit solitonic solutions. The diffusive Laplace operator ∆ acts in

each spatial direction, not allowing the possibility of solutions travelling at constant speed

on a straight line and maintaining their shape. On the other hand, the wave equation in

one space dimension (suppose that the space variable is x)

∂2E

∂t2
= c2

∂2E

∂x2
(.1)

admits travelling solution of the type E(x − ct), where c is the shifting velocity. For

example, the travelling solution with compact support

E(x, t) =

{
cos(x− ct) + 1 x ∈ [−π + ct, π + ct]

0 otherwise

is a weak solitonic solution of (.1). As stated above, this is not true anymore in higher

dimensions.

Thus, by requiring that the operator at the right-hand side operator of equation (2.17),

i.e. c2∆E − c2∇ρ+
(
∇ρ · V

)
V , contains second partial derivatives only in the direction

of V , a constraint is imposed at the diffusive term, that can act only in the direction of

V . This recreate in the case of the three dimensional wave equation (2.17), the feature

of the classical wave equation in one dimension that allow solitonic solutions.

Going back to the standard space-time variables in R3 × R+
0 , we show that the oper-

ator c2∆E − c2∇ρ+
(
∇ρ · V

)
V contains second partial derivatives only in the direction

of V , in the special case in which V is a constant field with respect to both space and

time variables.

To this end, without loss of generality, let us fix a cartesian coordinate system (x, y, z)

such that V = (Vx, 0, 0), with Vx = c. According to the conditions i) and ii) we have

E = (0, Ey, Ez) and B = (0, By, Bz). Now, we compute

∆E =

(
0 ,

∂2Ey
∂x2

+
∂2Ey
∂y2

+
∂2Ey
∂z2

,
∂2Ez
∂x2

+
∂2Ez
∂y2

+
∂2Ez
∂z2

)
,

ρ =
∂Ey
∂y

+
∂Ez
∂z

,
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∇ρ =

(
∂2Ey
∂x∂y

+
∂2Ez
∂x∂z

,
∂2Ey
∂y2

+
∂2Ez
∂y∂z

,
∂2Ey
∂y∂z

+
∂2Ez
∂z2

)
,

(
∇ρ · V

)
V =

(
c2
∂2Ey
∂x∂y

+ c2
∂2Ez
∂x∂z

, 0 , 0

)
.

By summing up this four terms and multiplying for c2 where needed, we can fully write

down the operator

c2∆E − c2∇ρ+
(
∇ρ · V

)
V =

(
0 , c2

∂2Ey
∂x2

+ c2
∂2Ey
∂z2

− c2 ∂
2Ez
∂y∂z

, c2
∂2Ez
∂x2

+ c2
∂2Ez
∂y2

− c2 ∂
2Ey
∂y∂z

)
.

To prove our assert we must show that
∂Ey
∂z

=
∂Ez
∂y

. This is given by the relation

E = B × V , which implies
(
0, Ey, Ez

)
=
(
0, BzVx,−ByVz

)
. By considering the last

vector equality and subtracting the derivative with respect to z of the the second compo-

nent to the derivative with respect to y of the third component one obtains

∂Ez
∂y
− ∂Ey

∂z
= −c

(
∂By
∂y

+
∂Bz
∂z

)
.

The right-hand side of this last equation we find the divergence of B, which must be

zero. Finally, we can use this last equality to see that

c2∆E − c2∇ρ+
(
∇ρ · V

)
V =

(
0 , c2

∂2Ey
∂x2

, c2
∂2Ez
∂x2

)

and conclude that this operator has only second order derivatives along x, which is the

direction indicated by V .
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II. On some exact solutions of the extended set of the electromagnetic equa-

tions

The aim of this appendix is to check that some of the given solutions of the extended set

of electrodynamics equations considered in the previous chapters, actually verifies system

(2.19).

Solitonic electromagnetic wave in cartesian coordinates

In this first case we are going to consider, in the suitable cartesian coordinate frame

(x, y, z), the fields defined in (2.22) and reported here below. The goal is to prove that

they solve equations (2.20), with p = 0.

E =
(

0 , c φ , 0
)
, V =

(
c , 0 , 0

)
, H =

(
0 , 0 ,

1

µ
φ
)

where

φ = φ(x− ct, y) = φx(x− ct)φy(y),

that gives

ρ := ∇ ·E = c φx
∂φy
∂y

.

Hereafter, each single equations of the system is taken in to account

i)
∂Ex
∂t

=
1

ε

∂Hz

∂y
− ρ Vx ⇒ 0 =

1

εµ
φx

∂φy
∂y
− c2 φx

∂φy
∂y

ii)
∂Ey
∂t

= −1

ε

∂Hz

∂x
− ρ Vy ⇒ −c2 ∂φx

∂x
φy = − 1

εµ

∂φx
∂x

φy

iii)
∂Hz

∂t
= − 1

µ

(
∂Ey
∂x
− ∂Ex

∂y

)
⇒ − c

µ

∂φx
∂x

φy = − c
µ

∂φx
∂x

φy

iv)
∂p

∂t
= θ ρ

(
Ex Vx + Ey Vy

)
⇒ ∂p

∂t
= 0
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v) ρ

[
∂Vx
∂t

+ Vx
∂Vx
∂x

+ Vy
∂Vx
∂y

+ θ
(
Ex + µVyHz

)]
= −∂p

∂x
⇒ ∂p

∂x
= 0

vi) ρ

[
∂Vy
∂t

+ Vx
∂Vy
∂x

+ Vy
∂Vy
∂y

+ θ
(
Ey − µVxHz

)]
= −∂p

∂y
⇒

c φx
∂φy
∂y

[
θ
(
c φx φy − c φx φy

)]
= −∂p

∂y
⇒ ∂p

∂y
= 0.

Note that last three equations are satisfied for any choice of p constant.

Solitonic electromagnetic wave in cylindrical coordinates

Here is studied the case of the soliton in cylindrical coordinates (r, ϕ, y), which is an exact

solution of the system (2.21). This is defined by the fields (2.24) that are reported here

below

E =
(
− c

r
ζ Uy , 0 ,

c

r
ζ Ur

)
V =

(
c Ur , 0 , c Uy

)
H =

(
0 , − 1

µ r
ζ , 0

)
where

Ur(r, y) :=
r − r0√

(r − r0)2 + (y − y0)2
, Uy(r, y) :=

y − y0√
(r − r0)2 + (y − y0)2

.

We are here considering the case in which r0 is a real number. Later, we will show

that r0 must be zero as assumed in (2.24).

By construction, ζ depends on the variables r and y via the functions

r′(r, y) = r0 +
√

(r − r0)2 + (y − y0)2 and y′(r, y) = y0 +
1

Kτ
arctan

(
y − y0

r − r0

)
.

Furthermore, ζ can be factorized as the product of two functions such that one depends

only on r′ and the other one depends only on y′, i.e.
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ζ = ζ(r′ − ct, y′) = φr′(r
′ − ct) φy′(y′).

From the above decomposition we deduce that, during its time evolution, the compact

support of ζ moves along the radial directions centered at the point (r0, y0) with velocity

c. Such a motion is the combination of a translation and a dilation in the plane defined

by the axis r = r0 and y = y0.

The following identities will be useful later.

∂ζ

∂t
= −c ∂ζ

∂r′
, (.2)

∂ζ

∂r′
=

∂ζ

∂y
Uy +

∂ζ

∂r
Ur, (.3)

The first one is immediate, the second one is derived as follows

∂φr′

∂r′
φy′ =

∂φr′

∂r′
∂r′

∂y
φy′Uy + φr′

∂φy′

∂y′
∂y′

∂y
Uy +

∂φr′

∂r′
∂r′

∂r
φy′Ur + φr′

∂φy′

∂y′
∂y′

∂r
Ur

∂φr′

∂r′
φy′ =

∂φr′

∂r′
φy′U

2
y + φr′

∂φy′

∂y′
1

Kτ

√
(r − r0)2 + (y − y0)2

UrUy +

∂φr′

∂r′
φy′U

2
r − φr′

∂φy′

∂y′
1

Kτ

√
(r − r0)2 + (y − y0)2

UrUy

∂φr′

∂r′
φy′ =

∂φr′

∂r′
φy′U

2
y +

∂φr′

∂r′
φy′U

2
r .

Finally, the divergence of E is given by

ρ :=
Er
r

+
∂Er
∂r

+
∂Ey
∂y

=

− c

r2
ζUy −

c

r

∂ζ

∂r
Uy +

c

r2
ζUy −

c

r
ζ
∂Uy
∂r

+
c

r

∂ζ

∂y
Ur +

c

r
ζ
∂Ur
∂y

=

(
by using

∂Ur
∂y

=
∂Uy
∂r

)

− c
r

∂ζ

∂r
Uy +

c

r

∂ζ

∂y
Ur.

We now have all the elements to verify that our fields are solutions of the equations

of the electromagnetism in cylindrical coordinates.

i)
∂Er
∂t

= −1

ε

∂Hϕ

∂y
− ρ Vr ⇒
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c2

r

∂ζ

∂r′
Uy =

c2

r

∂ζ

∂y
+
c2

r

∂ζ

∂r
UrUy −

c2

r

∂ζ

∂y
U2
r

∂ζ

∂r′
Uy =

∂ζ

∂y
U2
y +

∂ζ

∂r
UrUy

∂ζ

∂r′
=

∂ζ

∂y
Uy +

∂ζ

∂r
Ur, that is true since (.3) holds.

ii)
∂Ey
∂t

=
1

rε

∂(rHϕ)

∂r
− ρ Vy ⇒

−c
2

r

∂ζ

∂r′
Ur = −c

2

r

∂ζ

∂r
+
c2

r

∂ζ

∂r
U2
y −

c2

r

∂ζ

∂y
UrUy

∂ζ

∂r′
Ur =

∂ζ

∂r
U2
r +

∂ζ

∂y
UrUy

∂ζ

∂r′
=

∂ζ

∂r
Ur +

∂ζ

∂y
Uy, that is true since (.3) holds.

iii)
∂Hϕ

∂t
= − 1

µ

(
∂Er
∂y
− ∂Ey

∂r

)
⇒

c

µr

∂ζ

∂r′
=

c

µr

∂ζ

∂y
Uy +

c

µr
ζ
∂Uy
∂y

+
c

µr

∂ζ

∂r
Ur +

c

µr
ζ
∂Ur
∂r

− c

µr2
ζUr

∂ζ

∂r′
=

∂ζ

∂y
Uy + ζ

∂Uy
∂y

+
∂ζ

∂r
Ur + ζ

∂Ur
∂r

− 1

r
ζUr

some terms cancel out by using (.3)

0 = ζ

(
∂Uy
∂y

+
∂Ur
∂r

− 1

r
Ur

)

0 = ζ

(
U2
r√

(r − r0)2 + (y − y0)2
+

U2
y√

(r − r0)2 + (y − y0)2
− 1

r
Ur

)

0 =
ζ√

(r − r0)2 + (y − y0)2

(
1− r − r0

r

)
,

note that this equation is satisfied, independently of ζ, only if r0 = 0.

iv)
∂p

∂t
= θ ρ

(
Er Vr + Ey Vy

)
⇒

∂p

∂t
= θ ρ

(
− c2

r
ζUrUy +

c2

r
ζUrUy

)
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∂p

∂t
= 0

v) ρ

[
∂Vr
∂t

+ Vr
∂Vr
∂r

+ Vy
∂Vr
∂y

+ θ
(
Er − µVyHϕ

)]
= −∂p

∂r
⇒

ρ

[
c2Ur

∂Ur
∂r

+ c2Uy
∂Ur
∂y

+ θ
(
− c

r
ζUy +

c

r
ζUy

)]
= −∂p

∂r

ρ

[
c2Ur

U2
y√

(r − r0)2 + (y − y0)2
− c2Ur

UrUy√
(r − r0)2 + (y − y0)2

]
= −∂p

∂r

∂p

∂r
= 0.

vi) ρ

[
∂Vy
∂t

+ Vr
∂Vy
∂r

+ Vy
∂Vy
∂y

+ θ
(
Ey + µVrHϕ

)]
= −∂p

∂y
⇒

ρ

[
c2Ur

∂Uy
∂r

+ c2Uy
∂Uy
∂y

+ θ
( c
r
ζUr −

c

r
ζUr

)]
= −∂p

∂y

ρ

[
− c2Ur

UrUy√
(r − r0)2 + (y − y0)2

+ c2Uy
U2
r√

(r − r0)2 + (y − y0)2

]
= −∂p

∂y

∂p

∂y
= 0.

Summarizing we note that last three equations are satisfied by each choice of p constant.

In addition we have found the constraint r0 = 0.

Spherical electromagnetic wave in spherical coordinates

By using a spherical system of coordinates (R,ϑ, ϕ), with ϑ ∈ [0, π] and ϕ ∈ [0, 2π), we

check that the fields considered in (2.27), and reported below, are exact solutions of the

extended equations (2.15).

E =
(

0,
c

R
g1(ϑ, ϕ)f(ct−R),

c

R
g2(ϑ, ϕ)f(ct−R)

)
H =

(
0, − 1

µR
g2(ϑ, ϕ)f(ct−R),

1

µR
g1(ϑ, ϕ)f(ct−R)

)
V =

(
c, 0 , 0

)
.
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Here f , g1 and g2 are assumed to be smooth functions that satisfy the following identity

∂
(
g2 sinϑ

)
∂θ

=
∂g1

∂ϕ
(.4)

that correspond to require that the divergence of the field H is zero. Another important

relation can be obtained by deriving f with respect to both R and t, i.e.

∂f

∂t
= −c ∂f

∂R
. (.5)

We recall the expressions for divergence and curl of a generic field F , expressed in spher-

ical coordinates

∇ · F =
1

R2

∂

∂R

(
R2FR

)
+

1

R sinϑ

∂

∂ϑ

(
sinϑFϑ

)
+

1

R sinϑ

∂Fϕ
∂ϕ

,

∇× F =

(
1

R sinϑ

[
∂

∂ϑ

(
Fϕ sinϑ

)
− ∂Fϑ

∂ϕ

]
,

1

R

[
1

sinϑ

∂FR
∂ϕ
− ∂

∂R

(
RFϕ

)]
,

1

R

[
∂

∂R

(
RFϑ

)
− ∂FR

∂ϑ

] )
.

In the case of the fields here considered we obtain

ρ := ∇ ·E =
1

R sinϑ

∂

∂ϑ

(
sinϑEϑ

)
+

1

R sinϑ

∂Eϕ
∂ϕ

=
c

R2 sinϑ
f

[
∂

∂ϑ

(
g1 sinϑ

)
+
∂g2

∂ϕ

]
,

∇×E =

(
1

R sinϑ

[
∂

∂ϑ

(
Eϕ sinϑ

)
− ∂Eϑ

∂ϕ

]
, − 1

R

∂

∂R

(
REϕ

)
,

1

R

∂

∂R

(
REϑ

) )

=

(
c

R2 sinϑ
f

[
∂

∂ϑ

(
g2 sinϑ

)
− ∂g1

∂ϕ

]
, − c

R
g2
∂f

∂R
,
c

R
g1
∂f

∂R

)

=

(
0 , − c

R
g2
∂f

∂R
,
c

R
g1
∂f

∂R

)
.

∇ ·H =
1

R sinϑ

∂

∂ϑ

(
sinϑHϑ

)
+

1

R sinϑ

∂Hϕ

∂ϕ
=

1

µR2 sinϑ
f

[
− ∂

∂ϑ

(
g2 sinϑ

)
+
∂g1

∂ϕ

]
= 0,

∇×H =

(
1

R sinϑ

[
∂

∂ϑ

(
Hϕ sinϑ

)
− ∂Hϑ

∂ϕ

]
, − 1

R

∂

∂R

(
RHϕ

)
,

1

R

∂

∂R

(
RHϑ

) )
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=

(
1

µR2 sinϑ
f

[
∂

∂ϑ

(
g1 sinϑ

)
+
∂g2

∂ϕ

]
, − 1

µR
g1
∂f

∂R
, − 1

µR
g2
∂f

∂R

)
.

=

(
1

µc
ρ , − 1

µR
g1
∂f

∂R
, − 1

µR
g2
∂f

∂R

)
.

Note that ∇ · H is zero since we have assumed the condition (.4). We can proceed

by showing that the fields written above are solution of the extended equation of elec-

tromagnetism in the case of free wave (2.15). The equations are first reported in vector

form, and then each component is individually verified.

i)
∂E

∂t
= c2∇×B − ρV ⇒

0 =
1

εµc
ρ− cρ

c

R
g1
∂f

∂t
= − 1

εµR
g1
∂f

∂R

c

R
g2
∂f

∂t
= − 1

εµR
g2
∂f

∂R
.

The first one holds since εµ = 1/c2, while to verify the second and the third ones,

one has to use (.5).

ii)
∂B

∂t
= −∇×E ⇒

0 = 0

− 1

µR
g2
∂f

∂t
=

c

µR
g2
∂f

∂R

1

µR
g1
∂f

∂t
= − c

µR
g1
∂f

∂R
.

The second and the third scalar equations hold as a consequence of (.5).

iii) ∇ ·B = 0 it is ensured by condition (.4),

iv) ρ
(
E + V × B

)
= 0 ⇒

123



0 = 0

c

R
g1f −

cµ

µR
g1f = 0

c

R
g2f + µc

(
− 1

µR
g2f
)

= 0.
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III. On the numerical error on the approximation of the divergence of a

soliton

In the numerical experiments related to the cartesian soliton, discussed in section 4.1, it is

involved the numerical computation of ρ, i.e. the divergence of the electric field. Accord-

ing to what is stated in chapter 3, at each time-step the Lax-Wendroff scheme computes

the divergence implicitly, however a direct computation of such a quantity is also needed

to proceed with the numerical schemes dedicated to the update of velocity and pressure.

In this case, ρ is approximated through the finite-differences scheme described in section

3.2, that has been tested in the case of cartesian and cylindrical solitons producing the

results summarized in table 4.1 and table 4.3.

Proceeding with the analysis of those results it turned out that the error committed in

the approximation of ρ decrease as the number of nodes increase. Nevertheless, looking

at the columns relative to ε(ρ), of both tables 4.1 and 4.3, one note that those values are

one order of magnitude high when compared with the columns in which ε is evaluated for

the electric and magnetic fields.

The aim of this appendix is to give an explanation of such a fact. We believe that the

origin of this anomaly is in the approximation of the derivatives of the components of the

electric field at the nodes near the boundary of the support. This conclusion is supported

by the numerical experiment described below, the results of which are reported in table .1.

If, as we expect, the error in the approximation of ρ depends on how the functions that

define electric and magnetic fields of the solitons go to zero in proximity of the bound-

ary, then this feature must be highlighted by comparing the solitonic solutions (2.22) and

(2.23). Both these solutions have squared support and travel at the speed of light along

the x-axis. The main difference between them is that in the definition of the electric and

magnetic fields of (2.22) appears the function φ, while in the definition of (2.23) appears

φ2.

We recall here that in both cases the electric field has only the y component, which

is defined as cφ in the case of (2.22) and by cφ2 in the case of (2.23). In addition we have

φ(x, y) := φx(x)φy(y). By computing the divergence of the electric fields in both cases

(we use the subscripts φ and φ2 to distinguish between them) at t = 0 one finds

ρφ = c φx
∂φy
∂y

,
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N h NΓ N∂Γ εΓ(ρφ) ε∂Γ(ρφ) εΓ(ρφ2) ε∂Γ(ρφ2)
100 0.01 441 80 0.12911 0.3059 0.11584 0.0056144
200 0.005 1681 160 0.034155 0.1539 0.031047 0.00071052
300 0.0033 3721 240 0.015453 0.10271 0.014063 0.00021101
400 0.0025 6561 320 0.0087689 0.077067 0.0079793 0.00008908
500 0.002 10201 400 0.0056413 0.061665 0.0051323 0.00004563

Table .1: Numerical result relative to the evaluation of the error committed in the approximation
of the divergence of the electric field, in the cases of two solitons defined through the function φ
or φ2. Different space-steps h = 1/N are considered, while the time is fixed at t = 0.

ρφ2 = 2c φ2
x φy

∂φy
∂y

,

where

∂φy
∂y

=


−π
τ

sin
(

(y − yC)
π

τ

) if |y − yC | ≤ τ
and |x− xC | ≤ τ

0 elsewhere

By comparing the analytical expressions of ρφ and ρφ2 one note that, at the side of

the support parallel to the x-axis, the first one goes to zero as a sin(y) as y → ±π, while

the second one goes to zero as a
(
1 + cos(y)

)
sin(y) as y → ±π. By computing the nu-

merical divergence of both the initial configurations of the electric and magnetic fields in

(2.22) and (2.23) and then evaluating the errors εΓ(ρφ) and εΓ(ρφ2), defined in section

4.1, as well as their restrictions to the boundaries of the support ε∂Γ(ρφ) and ε∂Γ(ρφ2).

We obtain the results of table .1. Different space grid refinements have been used. The

setting of the parameters has been done according to what is decided in section 4.1.

From the table it is clear that, while the errors in the approximation of ρφ and ρφ2 are

close one to each other when considered on the whole support, there is instead a big

difference if one restricts this comparison the boundary of the support.
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IV. On the Yee’s scheme

In this appendix we briefly present the Yee’s scheme introduced in [39]. After describing

the main features of the method1, we will highlight some drawbacks that discouraged us

to apply it to the problems proposed in this thesis.

By using the notation of section 1.2 for the modern formulation of Maxwell’s equations

(1.1), we can write the equations of electromagnetism, relatively to a region of the void

space in absence of electric or magnetic sources, as follow:

∇×H − 1

c

∂D

∂t
= 0

∇×E +
∂B

∂t
= 0

∇ ·D = 0

∇ ·B = 0.

(.6)

Let us place ourselves in a cartesian reference frame (x, y, z).

The six scalar equations constituting the first two vector equations of the previous system,

form the basis of the Yee’s scheme, also referred as FD-TD (finite-difference time-domain).

The algorithm does not need to explicitly implement the the third and the fourth vector

equations in (.6). The space grid will be structured in such a way that the location of the

electric and magnetic fields components and their numerical space derivatives, are well-

suited to reproduce the action of the curl operator. As a consequence of this choice, the

divergence-free conditions for the electric and magnetic fields will be implicitly satisfied.

By assuming that neither the electromagnetic field nor the space geometry have any

variation in the z direction, we can rewrite the components of the first two vector equations

1We will follow the guideline in [35], chapter 3.
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in (.6) as

∂Hz

∂t
=

1

µ

(∂Ex
∂y
− ∂Ey

∂x

)
∂Ex
∂t

=
1

ε

∂Hz

∂y

∂Ey
∂t

= −1

ε

∂Hz

∂x

∂Ez
∂t

=
1

ε

(∂Hy

∂x
− ∂Hx

∂y

)
∂Hx

∂t
= − 1

µ

∂Ez
∂y

∂Hy

∂t
=

1

µ

∂Ez
∂x

.

(.7)

Note that the first three equations only depend on Hz, Ex and Ey, whereas the other

three only depend on Ez, Hx and Hy. The first group defines the so called “transverse

electric mode” of the electromagnetic wave, the second set defines the “transverse mag-

netic mode”. These two modes are decoupled2, so that they are completely independent

in the vacuum space case (the one we are considering here).

As done in section 2.5, we consider the TM mode i.e.

∂Hz

∂t
=

1

µ

(∂Ex
∂y
− ∂Ey

∂x

)
∂Ex
∂t

=
1

ε

∂Hz

∂y

∂Ey
∂t

= −1

ε

∂Hz

∂x
.

(.8)

The Yee’s scheme relative to (.8) uses a three-dimensional grid, spaced of half space-step

h/2 in both spatial directions (h = 1/N , where N is a fixed integer) and of half time-step

∆t/2 along the time axis (∆t = T/Nt, where Nt is a fixed integer). The electric and mag-

netic fields are approximated on such a grid, in order to ensure that every E component

2The coupling actually comes into play when boundary conditions are taken in to account.
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is surrounded by four H components, and every H component is surrounded by four E

components. This construction is shown in figure .1.

Figure .1: Disposition of the nodes at whichHz (green), Ex (blue) and Ey (red) are approximated
o the grid relative to the Yee’s scheme (.9).

According to what stated above and with the standard finite-difference notation, the

Yee’s scheme is written as follow:



Hz
k+ 1

2

i− 1
2 ,j+

1
2

= Hz
k− 1

2

i− 1
2 ,j+

1
2

+
∆t

hµ

(
Ex

k
i− 1

2 ,j+1 − Ex
k
i− 1

2 ,j−1 − Ey
k
i,j+ 1

2
+ Ey

k
i−1,j+ 1

2

)

Ex
k
i− 1

2 ,j
= Ex

k−1
i− 1

2 ,j
+

∆t

hε

(
Hz

k− 1
2

i− 1
2 ,j+

1
2

−Hz
k− 1

2

i− 1
2 ,j−

1
2

)

Ey
k
i,j+ 1

2
= Ey

k−1
i,j+ 1

2

− ∆t

hε

(
Hz

k− 1
2

i+ 1
2 ,j+

1
2

−Hz
k− 1

2

i− 1
2 ,j+

1
2

)
.

(.9)

Each derivative of the components of the electromagnetic field in (.9) is approximated

with a central-difference. It is important to notice that such a discrete scheme leads to

the knowledge of the approximated values of Hz, Ex and Ey only at a certain subset

of the grid’s nodes. Namely the components Ex are computed at the grid nodes with

fractional x-coordinates and integer y-coordinates, the components Ey are computed at

the grid nodes with fractional y-coordinates and integer x-coordinates, and finally the

components Hz are computed at the grid nodes with both fractional x and y-coordinates.

Thus, it comes natural to choose the nodes with both integer x and y coordinates in order

129



to compute the numeric divergence of the electric field:

ρki,j =
1

h

(
Ex

k
i+ 1

2 ,j
− Exki− 1

2 ,j
+ Ey

k
i,j+ 1

2
− Eyki,j− 1

2

)
. (.10)

By substituting in (.10) the expressions of Ex and Ey given in (.9) it turns out that all

the contributions relative to the magnetic field sum up to zero, as shown below

ρki,j =
1

h

[
Ex

k−1
i+ 1

2 ,j
+

∆t

hε

(
Hz

k− 1
2

i+ 1
2 ,j+

1
2

−Hz
k− 1

2

i+ 1
2 ,j−

1
2

)

−Exk−1
i− 1

2 ,j
− ∆t

hε

(
Hz

k− 1
2

i− 1
2 ,j+

1
2

−Hz
k− 1

2

i− 1
2 ,j−

1
2

)

+Ey
k−1
i,j+ 1

2

− ∆t

hε

(
Hz

k− 1
2

i+ 1
2 ,j+

1
2

−Hz
k− 1

2

i− 1
2 ,j+

1
2

)

−Eyk−1
i,j− 1

2

+
∆t

hε

(
Hz

k− 1
2

i+ 1
2 ,j−

1
2

−Hz
k− 1

2

i− 1
2 ,j−

1
2

)]
=ρk−1

i,j

(.11)

This last equations state that the divergence of the electric field is conserved during time

iterations. This behaviour is comparable to the one relative to the Lax-Wendroff scheme

when Vx = Vy = 0.

The troubles concerning the approximation of the extended equations (2.19) by the Yee’s

scheme arise when one tries to select the subset of the grid nodes where the approximated

components of the velocity field have to be computed. All the different dispositions of

the nodes in which Vx and Vy are approximated lead to difficulties in writing down a

numerical approximation of the equations that involves the total derivative of V and the

gradient of p. In order to obtain a scheme for the complete set of equations considered,

it would be necessary to introduce the averages of some of the approximated quantities

and this produces further complications of the equations and their implementation. On

the contrary, by applying the Lax-Wendroff scheme all these troubles are overcome, since

all the approximated fields are available at the nodes of the grid.

We would like also to point out that, by using the Yee’s scheme, the imposition of the

boundary conditions is complicated by the fact that at each node is impossible to express

both conditions for the electric and magnetic fields. One can actually impose conditions

only for one of the components Ex, Ey or Hz (See figure .1). On the contrary, the Lax-

Wendroff method allows to express boundary conditions for all the components of the

electromagnetic fields at each node belonging to the boundaries.
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V. On the code implementing the Lax-Wendroff scheme

The MATLABr code implementing the function relative to the Lax-Wendroff scheme in

the case of cylindrical framework is given below.

% The function implements the Lax-Wendroff scheme for the p.d.e. sistem:

% dQ/dt = Mr dQ/dr + My dQ/dy

% Q=(rU,rV,W) where U,V,W represent the components of the vector field

% depending on the variables r,y,t.

% Mr and My are the 3x3 matrices of the coefficients of the derivatives.

%

% INPUT:

% - Lambda the ratio between the spatial-step and the time-step.

% - r is a vector containing the coordinates of the nodes along the radial

% direction.

% - U,V,W are the matrices of the components of the vector field (at

% time t*Deltat) evaluated on a cartesian grid (i*Deltar,j*Deltay)

% defined on a plane orthogonal to the polar plane (r,phi):

% U is the component of the field in the r radial direction,

% V is the component of the field in the phi angular direction,

% W is the component of the field in the y direction, normal to the

% polar plane defined by the other two components.

% - CV1, CV2 are two matrices of the same size of U,V and W

% needed to construct Mr and My. The entries of these matrices are the

% components of the velocity vector field (Vr,0,Vy).

% - CM1, CM2 are two matrices of the same size of U,V and W

% needed to construct Mr and My. The entries of these matrices are the

% values of the constants epsilon and mu at each node of the grid.

% - Stab, is a boolean: if is 1 stability analysis is activated, i.e. the

% computation of RoMax.

% - ele_LW are the linear indices of the nodes in which the scheme is applied;

% if they are not given they are automatically set as the internal

% elements of the matrices (i=2:Nr-1, j=2:Ny-1).
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%

% OUTPUT:

% - UNew,VNew,WNew are the matrices of the components of the vector

% field (at time (t+1)*Deltat) evaluated on a cartesian grid

% (i*Deltar,j*Deltay) of a plane orthogonal to the polar plane (r,phi):

% UNew is the component of the field in the r radial direction,

% VNew is the component of the field in the phi angular direction,

% WNew is the component of the field in the y direction, normal to

% the polar plane defined by the other two components.

% - RoMax is a vector whose kth-entry is equal to the maximum eigenvalue

% between these of Mr and My at the iteration k.

%

% NUMERICAL SCHEME:

% (q is the numerical approximation of Q)

%

% q(iDr,jDy,(t+1)Dt) = [ Id - Lambda^2 (Mr^2 + My^2) ] q(iDr,jDy,tDt)

% + 1/2 Lambda Mr (Id + Lambda Mr) q((i+1)Dr,jDy,tDt)

% + 1/2 Lambda My (Id + Lambda My) q(iDr,(j+1)Dy,tDt)

% - 1/2 Lambda Mr (Id - Lambda Mr) q((i-1)Dr,jDy,tDt)

% - 1/2 Lambda My (Id - Lambda My) q(iDr,(j-1)Dy,tDt)

% + 1/8 Lambda^2 (Mr My + My Mr) (

% q((i+1)Dr,(j+1)Dy,tDt) + q((i-1)Dr,(j-1)Dy,tDt)

% - q((i-1)Dr,(j+1)Dy,tDt) - q((i+1)Dr,(j-1)Dy,tDt) )

function [UNew,VNew,WNew,RoMax] = LaxWendroffScheme_Cyl(Lambda,r,U,V,W,...

CV1,CV2,CM1,CM2,Stab,ele_LW)

if nargin==10

[Nj,Ni]=size(U);

ele_LW=sub2ind([Nj,Ni],2:Nj-1,2:Ni-1);

end

I=diag(diag(ones(3)));
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UNew=zeros(size(U));

VNew=zeros(size(V));

WNew=zeros(size(W));

RoMax=zeros(size(ele_LW));

[jLW,iLW]=ind2sub(size(U),ele_LW);

Id=ones(length(U),1);

R=Id*r;

U=R.*U;

V=R.*V;

for k=1:length(ele_LW)

i=iLW(k);

j=jLW(k);

Mr=[ -CV1(j,i), 0, 0;

0, 0, r(i)/CM2(j,i);

-CV2(j,i)/r(i), 1/(r(i)*CM1(j,i)), 0 ];

My=[ 0, -1/CM1(j,i), -r(i)*CV1(j,i);

-1/CM2(j,i), 0, 0;

0, 0, -CV2(j,i) ];

if Stab

RoMax(j,i)=max([abs(eig(Mr));abs(eig(My))]);

end

qc = [ U(j,i), V(j,i), W(j,i) ]’;

qn = [ U(j+1,i), V(j+1,i), W(j+1,i) ]’;
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qs = [ U(j-1,i), V(j-1,i), W(j-1,i) ]’;

qw = [ U(j,i-1), V(j,i-1), W(j,i-1) ]’;

qe = [ U(j,i+1), V(j,i+1), W(j,i+1) ]’;

qne = [ U(j+1,i+1), V(j+1,i+1), W(j+1,i+1) ]’;

qse = [ U(j-1,i+1), V(j-1,i+1), W(j-1,i+1) ]’;

qsw = [ U(j-1,i-1), V(j-1,i-1), W(j-1,i-1) ]’;

qnw = [ U(j+1,i-1), V(j+1,i-1), W(j+1,i-1) ]’;

TC = (I-Lambda^2*(Mr^2+My^2)) * qc;

TN = 1/2*Lambda*My*(I+Lambda*My) * qn;

TS = -1/2*Lambda*My*(I-Lambda*My) * qs;

TE = 1/2*Lambda*Mr*(I+Lambda*Mr) * qe;

TW = -1/2*Lambda*Mr*(I-Lambda*Mr) * qw;

TDiag = 1/8*Lambda^2*(Mr*My+My*Mr) * (qne+qsw-qse-qnw);

LW=TC+TN+TS+TE+TW+TDiag;

UNew(j,i)=LW(1)/R(j,i);

VNew(j,i)=LW(2)/R(j,i);

WNew(j,i)=LW(3);

end
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