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Abstract 

In this paper, the nonlinear vibrations and energy exchange of single-walled carbon nanotubes (SWNTs) are 

investigated. The Sanders-Koiter theory is applied to model the nonlinear dynamics of the system in the case of 

finite amplitude of vibration. The SWNT deformation is described in terms of longitudinal, circumferential and 

radial displacement fields. Simply supported boundary conditions are considered. The circumferential flexural 

modes (CFMs), radial breathing modes (RBMs) and beam-like modes (BLMs) are studied. A numerical model 

of the SWNT dynamics is proposed. The three displacement fields are expanded in the nonlinear field by using 

approximate linear eigenfunctions. An energy method based on the Lagrange equations is used to reduce the 

nonlinear partial differential equations of motion to a set of nonlinear ordinary differential equations, which is 

solved using the implicit Runge-Kutta numerical method. The nonlinear energy exchange along the SWNT axis 

is analysed for different initial excitation amplitudes. The internal resonances between CFMs, RBMs and BLMs 

are investigated. The transition from energy beating to energy localization in the nonlinear field is studied. 
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Introduction 

In this paper, we are going to study the problems of energy exchange and localization along the 

SWNT axis by considering appropriate parameters and models, where energy transfer and spatially 

localized excitations represent very interesting phenomena in the nonlinear dynamics of solids and 

structures [1-2]. The analogies between continuous shells and discrete SWNTs led to large application 

of the elastic shell theories for the SWNT structural analysis [3-10]. 

In this paper, the discrete SWNTs are modelled as continuum elastic thin circular cylindrical 

shells considering equivalent mechanical parameters. The nonlinear dynamics of the SWNT is studied 

by applying the Sanders-Koiter nonlinear thin shell theory. An energy method based on the Lagrange 

equations is used to reduce the nonlinear partial differential equations of motion to a set of nonlinear 

ordinary differential equations, which is solved using the implicit Runge-Kutta numerical method. 

The nonlinear energy exchange along the axis of a simply supported SWNT is analysed for 

different amplitudes of initial excitation. The internal resonances between CFMs, RBMs and BLMs 

are considered. The transition from energy beating to energy localization in nonlinear field is studied. 

 

1. Sanders-Koiter nonlinear shell theory 

In Figure 1, a circular cylindrical shell having radius R, length L and thickness h is represented; 

a cylindrical coordinate system (O; x, θ, z) is considered, where the origin O of the reference system is 

located at the centre of one end of the cylindrical shell. 

In Figure 1, three displacement fields are represented: longitudinal u (x, θ, t), circumferential v 

(x, θ, t) and radial w (x, θ, t); the radial displacement field w is considered positive outward; (x, θ) are 

the longitudinal and angular coordinates of an arbitrary point on the middle surface of the shell; z is 

the radial coordinate along the thickness h; t is the time. 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

mailto:matteo.strozzi@unimore.it


Strozzi Matteo, Manevitch Leonid I., Smirnov Valeri V., Pellicano Francesco 

 

 
 

 

Figure 1. Geometry of the cylindrical shell. (a) Complete shell; (b) cross-section of the shell surface. 

 

1.1 Displacement fields and strain-displacement relationships 

The nondimensional displacement fields ( , , )u v w
 
can be written in the following form [5] 
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where (u,v,w) are the dimensional displacement fields and R is the radius of the shell. 

The nondimensional middle surface strains of the shell ,0 ,0 ,0( , , )x x     are expressed as [8] 
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where η = x/L is the nondimensional longitudinal coordinate of the shell and α = R/L. 

The nondimensional middle surface changes in curvature and torsion ( , , )x xk k k   
are [8] 
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1.2 Elastic strain and kinetic energy 

The nondimensional elastic strain energy Ẽ of a cylindrical shell is expressed as follows [5] 
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with β = h/R. 

The nondimensional velocity fields ' ' '( , , )u v w  
are obtained from the dimensional displacement 

fields ( , , )u v w  
and the nondimensional time τ in the following form [5] 
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The nondimensional kinetic energy T of a cylindrical shell is given by [5] 
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where 2 2

0 /R E   . 

 

2.  Numerical solution of the Sanders-Koiter nonlinear shell theory 

In order to obtain a numerical solution of the SWNT nonlinear dynamics, a two-steps procedure 

is used: i) the three displacement fields are expanded using approximated eigenfunctions obtained in 

linear field; ii) the Lagrange equations are considered in conjunction with the nonlinear elastic strain 

energy in order to obtain a set of nonlinear ordinary differential equations of motion. 

 

2.1 Nonlinear vibration analysis 

In the nonlinear analysis, the full expression of the nondimensional elastic strain energy (6), 

which contains terms up to the fourth order (cubic nonlinearity), is considered. 

The three displacement fields ( , , )u    , ( , , )v    , ( , , )w     are expanded in the form [10] 
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where ( , ) ( , )j nU   , ( , ) ( , )j nV   , ( , ) ( , )j nW   are linear mode shapes and , , , , , ,( ( ), ( ), ( ))u j n v j n w j nf f f   are 

unknown time laws (step i). 

 

2.2 Lagrange equations 

Expansions (9) are inserted into the expressions of elastic strain energy (6) and kinetic energy 

(8); the nondimensional Lagrange equations of motion for free vibrations can be expressed as [10] 
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where the maximum number of degrees of freedom Nmax depends on the number of vibration modes 

considered in the expansions (10). 

The nondimensional lagrangian coordinates '( , )i iq q  can be written in the form [10] 
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where the nondimensional lagrangian coordinates 
iq  correspond to the previous nondimensional 

modal coordinates , , , , , ,( ( ), ( ), ( ))u j n v j n w j nf f f   . 

Substituting the vector functions ( )i iF q E q    and '' '( )i iMq d T q d    into equation (10), 

where M denotes the mass matrix, we obtain [10] 

 
'' ( ) 0i iMq F q   max[1, ]i N  (12)  

 

Inserting the vector function 
1

, ( )x i iF M F q  in equation (12), the nondimensional Lagrange 

equations of motion for free vibrations can be expressed in the following form [10] 
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, 0i x iq F   max[1, ]i N  (13)  

 

By using the Lagrange equations (13), a set of nonlinear ordinary differential equations is found 

(step ii), which is solved numerically by applying the implicit Runge-Kutta method. 

 

3.  Numerical results 

In this section, the nonlinear energy exchange along the axis of a simply supported SWNT is 

analysed. The dynamical system is conservative (no damping); as initial condition, a localized energy 

in one half of the SWNT axis is given, and then it is checked if the energy remains localized; different 

initial excitation amplitudes are considered; the internal resonances between circumferential flexural 

modes (CFMs), radial breathing modes (RBMs) and beam-like modes (BLMs) are studied. 

 

3.1 Circumferential flexural modes (n = 2) 

The energy localization is a strongly nonlinear phenomenon, which depends on the amount of 

the energy provided to the SWNT. When the initial energy is quite small, a resonant interaction of two 

CFMs having close frequencies takes place and the initial localized energy is immediately destroyed, 

with a periodic redistribution of the energy between the two halves along the SWNT axis in the time. 

This process can be interpreted as the beating between two particles, each one containing about 

one half of the SWNT axis: in the case of small amplitude initial energy, a periodic energy exchange 

between the two halves of the SWNT takes place. 

When the amplitude of the initial energy is large enough, the nonlinearity preserves the energy 

localization in the initially excited part of the SWNT. The nonlinear oscillations of the SWNT become 

localized ones if the amplitude of the initial energy exceeds a threshold, which depends on the SWNT 

length. This energy localization is due to the intensive nonlinear resonant interaction between the two 

CFMs. The initial excitation amplitude corresponding to the transition from energy beating to energy 

confinement in one half of the SWNT axis is called “energy localization threshold” [10]. 

In Figure 2, the time evolution of the energy distribution along the axis of a simply supported 

SWNT is reported, the aspect ratio is L/R = 20, the natural frequencies of the two resonant CFMs (1,2) 

and (2,2) are f1,2 = 0.29317 THz and f2,2 = 0.31165 THz, respectively, with f2.2/f1,2 = 1.063 (1:1 internal 

resonance): for this specific SWNT, the energy localization threshold is equal to X(0)loc = 0.14593. 

In Figure 2(a), the initial excitation amplitude is X(0) = 0.080 (lower than the energy threshold), 

and a periodic energy exchange between the two halves of the SWNT axis takes place. The initial 

excitation domain (τ = 0) corresponds to the second half of the SWNT axis (0.5 ≤ η ≤ 1) (localized 

initial energy): the time evolution shows that the localization is promptly lost and the energy spreads 

on the first half of the SWNT axis (0 ≤ η ≤ 0.5). 6 dof 
model 
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In Figure 2(b), the initial excitation amplitude is equal to X(0) = 0.160 (higher than the energy 

threshold), and an energy localization in the second half of the SWNT axis (initial excitation domain) 

is given; in this case, the time evolution shows that the energy never flows toward the first half of the 

SWNT axis, and a perfect energy confinement is manifested. 

 
Case Time history Total energy distribution 

       (a)

(0) 0.080X 

 

 
 

       (b)

(0) 0.160X 

 

  

Figure 2. Time evolution of the total energy distribution along the axis of a simply supported SWNT; L/R = 20; 

resonant CFMs (1,2),(2,2); energy localization threshold X(0) = 0.14593. (a) Initial excitation amplitude 

X(0) = 0.080 (energy beating). (b) Initial excitation amplitude X(0) = 0.160 (energy localization). 
 

3.2 Radial breathing modes (n = 0) 

In the case of small amplitude initial energy, a weak resonant interaction of two RBMs having 

close frequencies takes place, the initial localized energy is immediately destroyed and a periodic 

energy exchange between the two halves of the SWNT axis arises. The time scale of this periodic 

energy redistribution is inversely proportional to the natural frequencies difference of the RBMs. 

When the amplitude of the initial energy increases, a strong resonant interaction of the two 

excited RBMs takes place and the effect of the nonlinearity increases; again, the initial localized 

energy is immediately destroyed and a periodic energy exchange between the two halves of the 

SWNT axis is present, with the same time scale of the previous small amplitude initial energy case. 

In the case of the RBMs (differently from the CFMs), the nonlinear oscillations do not become 

localized ones for any amplitude of the initial excitation energy and a periodic energy exchange 

between the two halves of the SWNT axis is always present, where the time period of the nonlinear 

energy beating is not dependent on the initial excitation amplitude. 

In Figure 3, the time evolution of the energy distribution along the axis of a simply supported 

SWNT is reported, the aspect ratio is L/R = 20, different initial excitation amplitudes are considered, 

the initial excitation domain (τ = 0) corresponds to the second half of the SWNT axis (0.5 ≤ η ≤ 1) 

(localized initial energy), the natural frequencies of the two resonant RBMs (1,0) and (2,0) are f1,0 = 

4.47371 THz and f2,0 = 4.48048 THz, respectively, with f2.0/f1,0 = 1.001 (1:1 internal resonance): for 

this specific SWNT, the nonlinear energy localization phenomenon is not present. 

In Figure 3(a), the small initial excitation amplitude X(0) = 0.050 is given (weak interaction of 

the RBMs), and a periodic weakly nonlinear energy exchange between the two halves of the SWNT 

axis arises (low peak of total energy distribution), with energy beating period τb. 

In Figure 3(b), the high initial excitation amplitude X(0) = 0.200 is applied (strong interaction 

of the RBMs), and a periodic strongly nonlinear energy exchange between the two halves of the 

SWNT axis is given (high peak of energy distribution), with the same energy beating period of Figure 

3(a). 
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Case Time history Total energy distribution 
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Figure 3. Time evolution of the total energy distribution along the axis of a simply supported SWNT; L/R = 20; 

resonant RBMs (1,0),(2,0); nonlinear energy beating period τb = 2075. (a) Initial excitation amplitude 

X(0) = 0.050 (energy beating). (b) Initial excitation amplitude X(0) = 0.200 (energy beating). 

 

From the previous numerical analyses for the RBMs nonlinear oscillations it was found that, for 

any amplitude of initial excitation, the initial energy localization in the second part of the SWNT axis 

is promptly lost, and a periodic energy exchange between the two halves of the SWNT axis arises, 

where the nonlinear energy beating period τb is not dependent on the initial excitation amplitude. 

 

3.3 Internal resonance between beam-like (n = 1) and circumferential flexural (n = 2) modes 

In the case of small amplitude initial energy, a weak resonant interaction between a BLM and a 

CFM with m = 3 longitudinal half-waves having close frequencies takes place, the initial localized 

energy is destroyed and a periodic energy distribution along the three parts of the SWNT axis arises. 

When the amplitude of the initial energy increases, a strong resonant interaction between the 

two excited BLM and CFM takes place and the effect of the nonlinearity increases; again, the initial 

localized energy is immediately destroyed and a periodic energy distribution along the three parts of 

the SWNT axis is present, where the time scale of this periodic energy distribution is lower than the 

time scale of the small amplitude initial energy configuration. 

In the case of internal resonance between BLM and CFM with three longitudinal half-waves, 

the nonlinear oscillations do not become localized ones for any amplitude of the initial excitation 

energy and a periodic energy distribution along the three parts of the SWNT axis is always present, 

where the time period of the energy redistribution τr is dependent on the initial excitation amplitude. 

In Figure 4, the time evolution of the energy distribution along the axis of a simply supported 

SWNT is reported, the aspect ratio is L/R = 30, different initial excitation amplitudes are considered, 

the initial excitation domain (τ = 0) corresponds to the three parts of the SWNT axis (0.1 ≤ η ≤ 0.3, 

0.4 ≤ η ≤ 0.6, 0.7 ≤ η ≤ 0.9) (localized initial energy), the natural frequencies of the resonant BLM 

(3,1) and CFM (3,2) are f3,1 = 0.06109 THz and f3,2 = 0.06969 THz, respectively, with f3.2/f3,1 = 1.141 

(1:1 internal resonance): for this SWNT, the nonlinear energy localization is not present. 

In Figure 4(a), the small initial excitation X(0) = 0.020 is given (weak interaction of BLM and 

CFM), and a periodic weakly nonlinear energy distribution along the three parts of the SWNT axis 

arises (low peak of total energy distribution). 

In Figure 4(b), the high initial excitation X(0) = 0.050 is given (strong interaction of BLM and 

CFM), and a periodic strongly nonlinear energy distribution along the three parts of the SWNT axis is 

given (high peak of energy distribution), with a lower energy redistribution period τr than Figure 4(a). 
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Case Time history Total energy distribution 
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Figure 4. Time evolution of the total energy distribution along the axis of a simply supported SWNT; L/R = 30; 

internal resonance between the BLM (3,1) and the CFM (3,2); nonlinear energy redistribution period τr. 

(a) Initial excitation amplitude X(0) = 0.020. (b) Initial excitation amplitude X(0) = 0.050. 

 

Conclusions 

In this paper, the nonlinear vibrations and energy exchange of SWNTs are studied by using the 

Sanders-Koiter shell theory. Simply supported boundary conditions are applied. The circumferential 

flexural modes (CFMs), radial breathing modes (RBMs) and beam-like modes (BLMs) are analysed. 

The nonlinear energy exchange along the SWNT axis is considered for different initial excitation 

amplitudes. The transition from energy beating to energy localization in nonlinear field is evaluated. 

In the case of two resonant CFMs, the energy localization phenomenon is present. An initial 

excitation amplitude lower than the energy localization threshold gives a periodic energy exchange 

between the two halves of the SWNT axis (energy beating). Conversely an initial excitation amplitude 

higher than the energy threshold gives an energy localization in one half of the SWNT axis (initial 

excitation domain) and a perfect energy confinement is manifested (energy localization). 

In the case of two resonant RBMs, the energy localization phenomenon is not present. A small 

initial excitation amplitude (weak interaction of the RBMs) gives a periodic weakly nonlinear energy 

exchange between the two halves of the SWNT axis (low peak of total energy distribution). Similarly, 

a high initial excitation amplitude (strong interaction of the RBMs) gives a periodic strongly nonlinear 

energy exchange between the two halves of the SWNT axis (high peak of energy distribution) with 

the same energy beating period of the small initial excitation amplitude case. Therefore, for the RBMs 

nonlinear oscillations it was found that, for any amplitude of initial excitation, the initial energy 

localization is lost, and a periodic energy exchange between the two halves of the SWNT axis arises, 

where the nonlinear energy beating period is not dependent on the initial excitation amplitude. 

In case of internal resonance between a BLM and a CFM with three longitudinal half-waves, 

the energy localization phenomenon is again not present. A small amplitude initial energy gives a 

weak resonant interaction between the BLM and the CFM, the initial localized energy is destroyed 

and a periodic energy distribution along the three parts of the SWNT axis arises. When the amplitude 

of the initial energy increases, a strong resonant interaction between the two excited BLM and CFM 

takes place and the effect of the nonlinearity increases; again, the initial localized energy is 

immediately destroyed and a periodic energy distribution along the three parts of the SWNT axis is 

present, where the time scale of this periodic energy distribution is lower than the time scale of the 

small amplitude initial energy configuration. 

 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

I 
III 

I III 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

II 

II 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

6 dof 
model 

18 dof 
model 

τr τr τr τr 

τr τr τr τr τr τr τr 



Strozzi Matteo, Manevitch Leonid I., Smirnov Valeri V., Pellicano Francesco 

 

 
 

References 

[1]    Manevitch L.I., Gendelman O.V. Tractable Models of Solid Mechanics. Formulation, Analysis 

and Interpretation. Berlin: Springer-Verlag; 2011. 

[2]    Vakakis A.F., Manevitch L.I., Mikhlin Y.V., Pilipchuk V.N., Zevin A.A. Normal Modes and 

Localization in Nonlinear Systems. New York: Wiley; 1996. 

[3]    Liew K.M., Wang Q. Analysis of wave propagation in carbon nanotubes via elastic shell 

theories. International Journal of Engineering Science, 2007, Vol. 45, p. 227-241. 

[4]    Wang C.Y., Ru C.Q., Mioduchowski A. Applicability and Limitations of Simplified Elastic 

Shell Equations for Carbon Nanotubes. Journal of Applied Mechanics, 2004, Vol. 71, p. 622-631. 

[5]    Strozzi M., Manevitch L.I., Pellicano F., Smirnov V.V., Shepelev D.S. Low-frequency linear 

vibrations of single-walled carbon nanotubes: analytical and numerical models. Journal of Sound and 

Vibration, 2014, Vol. 333, p. 2936-2957. 

[6]    Wang L., Hu H. Flexural wave propagation in single-walled carbon nanotubes. Physical Review 

B, 2005, Vol. 71, p. 195412 (7). 

[7]    Batra R.C., Gupta S.S. Wall Thickness and Radial Breathing Modes of Single-Walled Carbon 

Nanotubes. Journal of Applied Mechanics, 2008, Vol. 75, p. 061010 (6). 

[8]    Smirnov V.V., Manevitch L.I., Strozzi M., Pellicano F. Nonlinear optical vibrations of single-

walled carbon nanotubes. 1. Energy exchange and localization of low-frequency oscillations. Physica 

D, 2016, Vol. 325, p. 113-125. 

[9]    Chang T. A molecular based anisotropic shell model for single-walled carbon nanotubes. 

Journal of the Mechanics and Physics of Solids, 2010, Vol. 58, p. 1422-1433. 

[10]    Strozzi M., Smirnov V.V., Manevitch L.I., Milani M., Pellicano F. Nonlinear vibrations and 

energy exchange of single-walled carbon nanotubes. Circumferential flexural modes. Journal of 

Sound and Vibration, 2016, Vol. 381, p. 156-178. 


