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Introduction

In the last decade, the concrete implementation of quantum information devices is facing a
notable development. Nowadays, the manipulation of the quantum bits provides a new paradigm
for solving seemingly intractable problems. New applications are developed in the fields of quantum
computing, quantum simulations, quantum sensing and quantum metrology. See, for example, the
quantum computing facilities provided by IBM for the general audience [1].

The optimal physical implementation of the qubit is not yet well defined [2]. Although recent
advancements based on superconducting and single-ion qubits showed the capability to process
several qubits, alternative approaches are actively being proposed. Here, we focus on their real-
ization in semiconductor nanodevices [3]. An electron in the Integer Quantum Hall (IQH) regime
can be a very promising candidate for a qubit due to its long coherence time and its potential
to be integrated into classical electron circuitry. In this regime, magnetically-driven edge states
form conductive and chiral channels following the border of a confined two-dimensional electron
gas (2DEG). Like classical skipping orbits, the path of an edge channel is not backscattered by
an obstacle, rather it goes around the obstacle following its profile under certain conditions of
smoothness and dimensionality [4].

Numerical and experimental studies [5, 6] measured the coherence length of edge channels,
which is of the order of 10 um, in absence of localized impurities, thus preventing the loss of
coherence typically affecting electron states in semiconductor nanodevices. Additionally, the wide
investigation of interedge scattering ensures nowadays a very high control on these devices, which
has been proposed to implement logic gate operations on the qubit.

Over the years, single-qubit operations and two-electron interference have been realized in
a large variety of devices, making them a possible candidate for electron quantum optics and
flying qubit implementations of quantum computing architectures. One of the first interferometry
devices is the electronic Mach-Zehnder interferometer (MZI), where only the first edge channel is
energetically available (bulk filling factor one) [7, 8, 9]. Here, the incident beam impinges on a
quantum point contact (QPC), acting as a beam splitter, and it is scattered into a superposition of
the reflected and transmitted beams. The chirality of edge channels, together with a modulation
of the potential landscape via top gates, leads the two beams to follow different tunable paths,
where a phase difference is accumulated. Finally, the two beams are recollected on a second QPC,
where they interfere. In this case, the electronic wavefunction faces a self-interference, with the
phase difference being controlled by the magnetic field and by the variation of voltages applied
to the top metallic gates. This device is usually exploited to observe Aharonov-Bohm oscillations
in the transmission probability, which prove the coherent nature of electron transport in edge
channels. This early geometry of a MZI is however affected by a fundamental topological limit
that jeopardizes its viability as a quantum gate: at the second beam splitter, the reflected beam is
backscattered into the area between the two channels, thus preventing concatenation in series of
multiple devices and its integration into complex scalable architectures. This topological limit is
the common denominator of first implementations of single-qubit interferometers.

In order to solve this issue, a new geometry has been recently proposed by Giovannetti et al. [10],
where two copropagating edge channels are available (bulk filling factor two), and interchannel
scattering is exploited to realize single-electron interference. Here, the beam splitter scatters the
incoming electron into the first two copropagating edge channels, which are then separated by a
top gate. In a first experimental implementation by Karmakar et al. [11], the electron is initialized
in one of the first two spin-resolved edge channels and the beam splitter is realized with a large
periodic array of magnetic nanofingers, which are rectangular top gates with a parallel sinusoidal
magnetic field to rotate the spin. Ref. [12] shows Aharonov-Bohm oscillations driven by a variation
of the magnetic field, whose low-visibility is caused by electron-electron interactions between the
two channels, which induce charge fractionalization.
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Differently from the experimental work of Karmakar et al., in our numerical simulation of
self-interference we do not exploit the spin degree of freedom and consider interchannel scattering
between the first two copropagating edge channels belonging to different Landau levels [13]. We
design a realistic beam splitter, which is a small single potential dip, rather than an array of
nanofingers, so that the length of copropagation of the two channels is reduced. The geometry of
the beam splitter is tuned to produce a flat transmission probability of about 0.5 to increase the
visibility of the full-scale MZI, while the smoothness of the phase shifter aims at reducing unwanted
interchannel mixing.

A scalable geometry, as the one provided by the multichannel MZI, is mandatory to implement
two-qubit logic gates. An example is the Hanbury-Brown-Twiss interferometer [14, 15]. At the
heart of this device, which is essentially a beam splitter, exchange symmetry generates the Hong-
Ou-Mandel (HOM) effect: according to their nature, two identical but counterpropagating particles
impinging on a beam splitter leave the system on the opposite (antibunching) or same (bunching)
outputs. The latter behavior is observed using photons [16], while the former is expected for elec-
trons. This phenomenon is used to test the degree of indistinguishability of particles produced by
different sources, which is a key requirement for the implementation of many quantum information
protocols. However, despite Landauer-Biittiker formalism predicts a zero bunching probability for
fermions, experiments show a nonideal behavior whose origin is still under debate [17, 18].

In particular, it is well known that energy selectivity of the beam splitter plays a crucial role
in this phenomenon, together with the presence of electron-electron interactions. Regarding the
first source of nonideality, the typical assumption of monoenergetic initial states in the scattering
formalism is not adequate: the incident electron should be considered as a superposition of waves
with a different momentum, each one scattered with a different amplitude by the central QPC,
whose energy selectivity is not flat. The two outgoing states are not orthogonal and do not com-
pletely cancel each other [19, 20]. To access such phenomena, the inclusion of energy dependence
of the impinging electron is a fundamental condition [21].

Two of the above MZIs [13] can be concatenated in parallel to generate a solid-state conditional
phase shifter, which is a basic building block to produce entangled states for two-qubit logic gate
operations [22]. This device contains four channels, two (ground and first excited) at each side of
the 2DEG where the single-electron interferometers are hosted. Self-interference at each side is here
affected by a selective Coulomb interaction, that couples those electron states traveling in the first
excited channels only [23]. Here, indeed, the distance between the two electron paths is decreased
so their mutual interaction is increased. According to its strength, Coulomb coupling affects the
two-electron state at the output of the device, by selectively rotating only the component of the
wavefunction with both electrons in the first excited states.

In the literature, the numerical simulation of interferometric devices in the IQH regime usually
exploits the chirality of edge states to reproduce electron transport in effective 1D geometries [14,
24, 25, 26]. Moreover, as in the earliest experimental implementation of electron interferometers,
the numerical modeling assumes the electrons to be injected in the edge channels as delocalized
currents, so that the properties of the system, e.g. the electron bunching probability or the visibility
of the self-interference pattern, are determined by ensemble measurements. With contrast to this
approach, we adopt a time-dependent numerical modeling of single and two-electron transport in
a Hall nanodevice by using the Split-Step Fourier method [27]. In this framework, electrons are
described by localized wavepackets in the IQH regime [28, 29, 30, 31, 32] that propagate in a 2D
simulation grid, where an external potential profile mimics the effect of metallic gates on top of a
full-scale heterostructure. This method provides the time-dependent wavefunction for a single or
two-particle system, so that we can access the dynamical properties of the system directly from
the one- or two-electron state. The memory cost for its allocation in the latter case requires a
parallel implementation of the algorithm in the MPI paradigm and the use of HPC resources, e.g.
Marconi supercomputer at CINECA in Bologna [33] or Marenostrum Tier-0 system at BSC in
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Barcelona [34].

To apply the Split-Step Fourier method, we compute the exact shape of the edge states in
the heterostructure by means of LAPACK routines, so that the design-related performances of the
device are estimated more accurately. Then, we model the localized wavefunction encoding the
electron state as a Gaussian wavepacket of edge states, in order to mimic the injection of single-
electron excitations in edge channels, as recently done in experimental implementations of Hall
interferometers [35, 36, 17]. Despite single-electron detection is still not viable with the current
nanotechnology, a large number of electron interferometers in the IQH regime have been inte-
grated with single-electron sources (SESs) [37, 38, 39, 40], thus proving the viability of flying-qubit
implementations for logic gates in the IQH regime.

Moreover, the use of a time-dependent approach to model electron transport does not require
to speculate on the energy selectivity of the gates, which is exactly accounted for by the evolution
of the wavefunction; additionally, the simulation of two-electron transport in a full-scale geometry
allows us to include exactly electron-electron interaction and exchange correlation between the two
charges, and to analyze their interplay with the realistic geometry of the device.

In this manuscript, we present in Chapter 1 the origin of edge states in the IQH regime and their
theoretical description for confined 2D heterostructures. After reviewing the earliest interferometry
experiments based on edge states, we describe in Chapter 2 the theoretical frameworks to simulate
electron injection in the edge channels hosted by the 2DEG. Chapter 3 presents the Split-Step
Fourier method that we implemented numerically to simulate single and two-electron transport
in the IQH regime. The numerical modeling and performances of single and two-channel MZIs
in the IQH regime are compared in Chapter 4. Chapter 5 describes two-electron bunching in an
HOM interferometer and its numerical implementation in our time-dependent framework, while
in Chapter 6 we simulate the selective Coulomb interaction in the active region of a conditional
phase shifter, thus validating our scalable geometry of the multichannel MZI as a building block to
realize two-qubit logic gates. Finally, we show in Chapter 7 how a time-dependent approach based
on localized wavepackets can be adopted also in the Wigner formalism to model electron transport
in nanodevices, and how it can solve the inconsistencies arising when applying the Frensley’s inflow
boundary condition to simulate electron injection from Ohmic contacts [41].
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Part 1

Numerical modeling of edge-state
transport






Chapter 1

Edge states: theoretical framework

1.1 The Integer Quantum Hall regime

In the presence of a magnetic field B, the linear momentum p of noninteracting electrons with
effective mass m* and charge -e is modified by an additional term:

P> p+eA, (1.1)

where A is called magnetic vector potential. The presence of an electric field further adds the
scalar potential -e¢ to the single-electron Hamiltonian, which generally reads:

(p+eA)

H= 1.2
Tt e (12)
where A and ¢ are related to the electric and magnetic field by the following relations:
0A
E = —-Vop— — 1.3
B = VxA. (1.4)

The scalar and vector potential are not uniquely defined. Indeed, they can be fixed up to the
gradient or time derivative of an arbitrary scalar function A(r,t):

A = A+VA (1.5)
. 0A
o = b5 (16)

such that the new vector and scalar potential, A’ and ¢’, generate the same magnetic and electric
field induced by A and ¢ through Eq.(1.3) and Eq.(1.4). A change of the factor A(r,t) in Eq.(1.5)
or Eq.(1.6) is called gauge transformation.

By using the new potentials of Egs.(1.5) and (1.6) in the Hamiltonian of Eq.(1.2), one proves

that the eigenstate of H, 1, is modified by the application of a phase factor that leaves unchanged
the physical description of the system:
W = e T, (1.7)
The vector and scalar potential can be represented by many different gauge choices, and gauge
transformations always allow to switch from a gauge to another one. Here, we consider sub-cases
of the Coulomb gauge, that contains all the potentials for which the following relation is true:

V-A=0. (1.8)

3



1 — Edge states: theoretical framework

In the present work, we are interested in the numerical simulation of electron transport in
semiconductor heterostructures: the electrons are confined in a narrow semiconductor quantum
well, that forms a 2DEG. In its perpendicular direction, the strong confinement determines a large
energy level spacing, so that the electron dynamics is well approximated by a two-dimensional one
in the zy-plane. Here, we consider a perpendicular magnetic field B = (0,0, B) oriented along the
2-direction, and assume ¢ = 0.

1.1.1 The Symmetric gauge

In the present framework, a possible choice is the Symmetric gauge, where the vector potential
reads:

B
AS = 5 (—y,x,O) . (19)
The Hamiltonian of the system is defined according to Eq.(1.2):
N 1 .
Hg = 2m*(—1hV+eAS)2 (1.10)
1 5 0% 0 5 0% 0] e?B? 9
= —h*— + iheBy— —h*—— —iheBx—
2m* (( 8x2+16 y8x>+< 0y? e x@y + 4 (@ +y7)
1 2 PO 2 N B 5
= —— ( (2 — eBips) + (P}, + eBip,) + —— (&% +9°) (1.11)
2m 4
= Tulpey) + Ty (2,p,) + Vs(z,y) (1.12)
which is diagonalized by the following 2D state:
L1 (g21q2
W(r,y) = flo+igle T, (1.13)

where f(z + iy) can be any analytical function (the ground state, and any other eigenstate, are
therefore infinitely degenerate) and [, is the so-called magnetic length. The eigenfunctions of Hg
are not factorizable, due to the symmetries in the z and y coordinates of the present Hamiltonian.

The magnetic length /,,, defines the length scale on which the confining effects of the magnetic
field on charged particles are relevant, according to the intensity of the magnetic field:

ZQ

= ‘ n (1.14)

qB

e.g. ly ~ 11 nm for B =5 T. In the Symmetric gauge, l,, defines the standard deviation of the
ground state, that is a Gaussian distribution in the Z- and §-directions. The probability density of
the excited states is instead described by a ring centered in the origin (0,0) with a quasi-Gaussian
profile in the radial direction.

The center of the eigenstates can be translated from the origin to (z¢, ya), by applying a gauge
transformation. Let us apply the vector v = (zg, yg) to the Hamiltonian of the system, Hg. The
translated Hamiltonian:

A

‘FI;S = %(xG,yG)HSW (115)
is diagonalized by the new eigenstates:
@In(x7y) = 'fd(l‘G)yG)\I/n(xa y) = \I’n(l‘ — TG,y — yG)7 (116)

which must also be the eigenstates of the old Hamiltonian Hg, for a translationally invariant system
in the zy-domain, as in the case of a 2D infinite plane with a uniform magnetic field.
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1.1 — The Integer Quantum Hall regime

In the translated Hamiltonian, the new vector potential is:

A =2 (o). (e~ 26)0). (1.17)

According to Eq.(1.5), a possible choice for A must therefore fulfill the condition:

VA=Ag —Ag = g (ye, —z¢,0), (1.18)
as in the following case:
Az, y) = g (yez — rcY) - (1.19)
This gauge choice provides the eigenstate of Hg centered on (z¢g, ya):
U, (2,y) = F U, (x,y) (1.20)

1.1.2 The Landau gauge

In the Landau gauge [42], there are two possible definitions of the vector potential:

AL = B(0,2,0), (1.21)
AL/ = B (—y,0,0) . (122)

The first one is typically used for free electrons in the g-direction, while the second one is usually
applied to electrons with a free motion along the Z-direction.

In the presence of a translationally invariant potential Ve,¢(z) in the Z-direction, the Hamilto-
nian for the first gauge reads:

A 1
Hy = o—(-ilV+ eAr)? + Veue(2) (1.23)
1 2 82 2 82 : 0 21R2/(,.2

1 .
= 5 (0o + (B + 2eBip,) + €*B*(2%)) + Vew(2)

2m*
= Tz(pw) + Ty(xvpy) + VB(x) + ‘A/ezt(x)v (1'24)

whose eigenstates coincide, up to a local phase factor, with the eigenstates of the Symmetric gauge,
U ,,, with the same energy’, since a gauge transformation can not change the physics of the problem.
In order to switch from Ag to A, the A factor must fulfill the condition:

B
VA=A -Ag = E(y,x,O), (1.25)
as, for instance,
B
Alz,y) = Sy, (1.26)

that can be applied to Eq.(1.7) in order to compute the eigenstates of the Symmetric gauge in the
Landau gauge.

n detail, they can be obtained as linear combinations of the “proper” eigenstates of the Landau gauge, due to
the fact that they are highly degenerated.



1 — Edge states: theoretical framework

By contrast to the Symmetric gauge, the Hamiltonian in the Landau gauge (see Eq.(1.23)) is
diagonalized by eigenstates that can be factorized in the & and g-coordinates; an Ansatz of the
associated Schrédinger equation is indeed

U(z,y) = x(x)e™, (1.27)

with a delocalized plane-wave term that describes a free motion along the g-direction. x(x) is
instead a transverse eigenfunction, that diagonalizes the 1D effective Hamiltonian:

~ 1 2 ~
ok = Sy (—Tﬁaagﬂ + 2heBxk + €2B%z? + h2k2> + Vewr (2) (1.28)
Rr 9?1, B\ -
= o T <“ eBk> + Vet ()
= T(pa) + Vess(), (1.29)

By applying Eq.(1.27) to the Landau Hamiltonian in Eq.(1.23), one proves that
H (k) x(z) = E x(2). (1.30)

ffzf I contains the kinetic energy of a free particle in the xy-domain, plus an effective potential
Vers(z), which is the sum of an external potential Ve, (z) and a parabolic magnetic confinement

Ve(z, k) = %m*wf (z — x0)°, (1.31)

where -
= —— 1.32
zo(k) B (1.32)

is the center of the parable. Due to the shape of Ve s (z, k), the eigenstates of the Landau Hamilto-
nian generally depend on the wavevector of the free motion, k = k,, or, equivalently, on the center
of the parabolic potential x.

For a purely parabolic potential, i.e. when V.,.(z) = 0, the eigenergies are identified by an
additional discrete quantum number n:

1
E=E, =h|w (n—|—2>, n e N, (1.33)

and are called Landau levels.
The transverse part of the eigenstates W, (x,k) = xn(7,k)e?*¥ are the ones of an harmonic
oscillator,

Im

2 _
Xn(z, k) = Np_1Ag (x — x9, l;") Hop—1 (x xo) , (1.34)

with #,, corresponding to the Hermite polynomials [43]:

Hal@) = (1) fime™ = 20t () = H,,y (1.35)
Ho(z) =1, '
where Ag(z,0) defines a Gaussian probability amplitude wavefunction:
1 22
Ag(z,0?) = e 1.2 (1.36)

V2oro? ’
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1.2 — Coherent states for electron transport

200 | |
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Figure 1.1: Time evolution of a coherent state with o, = o, = [, = 11 nm, o = —500 nm and
yo = 100 nm in presence of translationally invariant sharp barrier at y < 0 nm. The wavepacket
behaves as a skipping orbit. Note that the shape of the coherent state is modified due to the
scattering at the barrier.

and the normalization factor IV, is given by:

1
Vorn!

The two directions & and g are still coupled by the magnetic field: the transverse part of
the eigenfunction, x(z, k), is centered along x(, while the wavevector k of the motion along § is
also related to the central position of the eigenfunction along the Z-direction, due to Eq.(1.32).
The total energy E depends instead only on the quantum number n. The Landau levels are not
dispersive in the wave-vector space k, thus determining a zero group velocity, and a zero net flow
of charge in the direction given by k, thus not allowing for charge transport along the g-direction.

Due to the presence of a plane-wave part along the g-direction, the normalization of the eigen-
states requires a spatial confinement along g with periodic boundary conditions within L,. The
Landau state then reads:

N, =

(1.37)

eik:y

VL,

\Ijn,k(xv y) = Xn ($7 k) (138)

1.2 Coherent states for electron transport
For a charged particle in the symmetric gauge, the Hamiltonian in Eq.(1.11) is very similar to

the one of an harmonic oscillator, except for the mized term that contains the product of r and k
parameters, thus making the Hamiltonian not factorizable.
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1 — Edge states: theoretical framework

As it happens for edge states and skipping orbits, the coherent states are the quantum analogue
of the cyclotron orbits. Their expression is given in Ref. [44]:
S (—20) 4 (y—10) 2+ 25gn( B) (—i ;

‘Ilc(a'}7y) — Noe 4l$”((z 97(]) +(y yO) + Sgn( )( ’ngerZ’y[)CE))’ (1.39)
where zg and yo, the initial position of the coherent state, can be arbitrarily fixed. The expression
for the state in Eq.(1.39) describes the initial position of the coherent state, which is a Gaussian
wavepacket centered in (zg, yo) with standard deviations o, = oy = ;..

Such states are characterized by the lowest possible uncertainty principle allowed by the Heisen-
berg’s principle:
B2
2 2\ _ 2 2\ _
(A2?) (Ap7) = (Ay?) (Apy) = (1.40)
which confirms that this state is the maximally closed to a classical one.
The time-dependent Schrodinger Equation

ih%llfc(x,y) = HgU,, (1.41)

provides the evolved state [44]:

- 4,1% (e (1) +ike (t)wef ﬁ (y=ye (1) +iky (t)y

U.(z,y,t) = Noe , (1.42)
where
. (t) = 2o cos(wet) + yo sin(wet) (1.43)
Ye(t) = yo cos(wet) — o sin(wet) (1.44)
ko (t) = —% (1.45)
ky(t) = +$ (1.46)

These equations describe a uniform circular motion around the origin (0, 0) for the point with

initial position (z,yo) and velocity equal to v = nf* K2+ ki = ;Ij\ Va2 + 43, ie. the center of

the Gaussian wavepacket.

As visible from Eq.(1.42), in case the standard deviations are both equal to the magnetic length,
the Gaussian wavepacket maintains its shape unchanged during the time evolution. An example
is displayed in Fig. 1.1: here, for o, > [,,, the trajectory of the circular motion is the same as
0 = lm, but the shape of the wave-packet pulses along the #-axis [44].

In classical physics we can choose any possible initial position and initial velocity for a particle
traveling in a uniform magnetic field, while all coherent states have an orbit that is centered at
the origin. To reproduce a cyclotron orbit, we therefore need to apply a gauge transform, that
introduces a further degree of freedom to our system.

For a general initial position (x(,y(), we need to translate z( into z{, and yo into y;, that is:

’_ I _
m/ - T+ (a:/o xo)i x4 zg (1.47)
v =y+ o —w)=y+ye
The origin (0, 0) is moved into (g, ya), and the translated coherent state reads:
— L (z—z))?+ikyo(z—2 — L (y—y))? ikyo(y—1
V' (2,y) = Noe 1%, "7 70 Hikeo(z=06)  — g (v=vo) Hthwolu=va) (1.48)
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1.3 — Chiral transport in edge channels
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Figure 1.2: (a) Effective potential V. ¢; and its two components Vg and V.. for an edge state with
xo = 450 nm from Ref. [23]. Vs coincides with the magnetic well term Vg in the regions far from
the potential barriers, while near the barriers it changes abruptly due to the confining barrier V..
(b) Band structure E,,(zo(k)) for the first five Landau Levels, computed numerically, in presence
of the square external potential profile V,,¢(x) (light blue shaded area) at B = 5 T. Energies are
displayed as a function of the parameter xq(k) by using Eq.(1.32).

which is a coherent state only for the new gauge, with:

Ay =2 (-l - 10). (v~ 70)0), (1.49)

The gauge transformation is realized by a A that fulfills the condition VA = Ag — Ag. The
eigenstates are then related by:

Uo(z,y) = e F W (2,y) = (1.50)
= ei%(ycx—xcy)Noe_ﬁ(”C_f‘())z“kwgce—ﬁ(y—yé)g'*‘ikyoy (1.51)
/ 2h
- _ 2
TG T e o (1.52)
Yo = Yo+ gkso

Similarly to the classical cyclotron orbit, this final state is characterized by an arbitrary couple
of initial position (z{,y;) and initial wave-vector (kzo, kyo), that can be chosen independently one
from the other. When the coherent state is initialized near a potential barrier, a skipping orbit is
reproduced only during the first bounces on the barrier: at each bounce the coherent state faces a
higher deformation, and after few bounces, the original form and the coherence is completely lost.

1.3 Chiral transport in edge channels

In the presence of a confining potential th(m) in the transverse direction, the eigenfunctions
of the Landau Hamiltonian can still be factorized along the z- and §-directions:

\Iln,k(xa y) = Sﬁn(x, k)eiky' (153)

Here, the transverse functions ¢, (z,k) depend on the quantum numbers n and k, but do not
correspond anymore to the solutions of the harmonic oscillator. The Landau levels are so perturbed
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1 — Edge states: theoretical framework
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Figure 1.3: (a) Transverse component ¢, 1 (z) of the first two edge states (n = 0,1) for zy = 450 nm
from Ref. [23] (b) Band structure of E,[zo(k)] at the right border of the device.

by a positive correction €, (k), thus being now dispersive on the wavevector k:
1
E=EFE,; = hlwl||(n+ 3 + en(k). (1.54)

The specific shape of €,(k), and therefore the dispersion relation of the energy bandstructure,
depends then on the shape of the external potential Veut ().

For electrons of a 2DEG nanodevice, the external potential Ve, () is typically flat in the central
region, while it defines a barrier near the edges of the device itself. Far from the barrier, where
Vezt(z) ~ 0 the effect of the potential is negligible, and the solutions of the effective Schrédinger
equation are the eigenstates x,(z) of the harmonic oscillator, and €, (k) is zero. The energy
bandstructure is indeed generally flat in the center of the confined 2DEG. Near the edges, where
Vext(x) # 0, due to the relation between zp and k, the transverse confinement bends upwards the
energy bandstructure and it induces a net group velocity for those states localized at the border of
the device. These states are called edge states, and allow for coherent electronic transport in the
direction given by k.

The most simple confining potential is the sharp barrier Vi, in Fig. 1.2(a), that is described
by a sum of Heaviside functions

Veat () = Vinaa [O(=(2 + L)) + O(z — L)], (1.55)

with a separation between the two edges Ax = 2L and an height V4. Here, L = 450 nm
and Ve = 10 eV. Vi adds to the parabolic confining potential Vg, which is induced by the
perpendicular magnetic field in the Landau gauge.

Then, when the wavevector k(xg) approaches the barrier, €, (k) increases (see Fig. 1.2(b)), and
the transverse component of the eigenstate o(z, k) ceases to be symmetric with respect to zg, as
visible from Fig. 1.3(a). Note that, through the inverse of Eq.(1.32), we can express the bands
E, (k) also in terms of xy.

The shape of ¢, (x, k) may be then quite different from the corresponding harmonic oscillator
eigenfunction x,(z,k). For these states, 2y is no more the center of symmetry, but still a good
quantum number. The corresponding wavevector k(xo) thus depends on the origin of the coordi-
nate system: it is a gauge-dependent parameter. However, the difference between k£ and the true

10



1.3 — Chiral transport in edge channels

wavevector of the electron is given only by a fixed constant, as we will later detail. The normal-
ization procedure of the edge states is the same as the one for the Landau states in Eq.(1.38), and
requires a spatial confinement along the g-direction with PBC. The normalized eigenstate in 2D
reads:

\I/(J),y) = @n(mvk)eiky (156)

1
Viy

Orthogonality of Edge states In the Dirac notation, the eigenstate of the Landau Hamiltonian
(Eq. (1.56)) is:
(Wi} = [k)on(K)), (1.57)

with |k) corresponding to the plane-wave contribution, such that (y|k) = \/%eiky, and |, (k))

Y
a transverse part corresponding to the eigenfuction of the confined potential Veyy = Vey + VB,
which is a parabolic well distorted by an external potential.
Landau and Edge states are characterized by the following orthogonality rules:

1. Two states |¥,, ) and | ¥, ;) with different values of the quantum numbers n or k are always
orthogonal?
(U gor | Uy ) = O 0(k — K. (1.58)

2. Two states with different quantum number k but with equal quantum number 7 are orthog-
onal in the plane wave part, while the transverse factors, |¢,(k)) and |p, (k')), are in general
not, orthogonal.

3. Two states with the same wave-vector k but with different quantum number n are orthogonal
due to the fact that the well eigenfunctions |, (k)) and ¢,/ (k)) are orthogonal by definition.

Classical analogies and Chiral behaviour By comparing the quantum and classical expres-
sions for energy,

1 1 1

imv2 = §mw37’2 = h|we] (n - 2) , (1.59)
we can provide a relationship between the radius of the quantum and the classical orbit of the
Landau states:

T =IlmV2n —1, n € N. (1.60)

Therefore, each eigenenergy E,, is characterized by a quantized classical radius of value r,, in
the corresponding eigenvalue. r, is discretized in multiples of the magnetic length, and it expresses
the spatial extension of the eigenstate along the Z-direction, for a given n [42, 45].

Moreover, the classical radius can be interpreted as the effective space for the charge to behave
as a free particle subject to a magnetic field only, i.e. it describes a circular orbit in the bulk,
rather than contributing to a charge flux at the edge. This is clearly visible from Fig.Fig. 1.3(b):
the n-th Landau level starts to bend when distance between the center of the state, xg, and the
center of the barrier approaches r,. The Landau state in the bulk of the confined 2DEG in the
IQH regime, turns then into an edge state.

In the classical interpretation of the IQH regime, the Landau states with fixed n and zg corre-
spond to linear combinations of classical cyclotron orbits with center (xg,y): these, indeed, have

2In the numerical simulations, for a device with finite size along §, the Dirac delta in k of Eq.(1.58) becomes a
Kronecker delta, due to the discretization of the k-space.
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Figure 1.4: Hall resistance curve and longitudinal magneto-resistance curve measured on a two-
dimensional electron system from Ref. [46]. The Hall bar geometry and the respective electrical
set-up are shown on the left.

an associated zero probability current. Edge states with fixed n and zy are instead seen as convolu-
tions of skipping orbits with center (xg,y). The latters are characterized by a non-zero probability
flux and a coherent current propagation along the edge.

Charge transport in edge channels has therefore a chiral nature, with a direction that depends
on the magnetic field: an electron initialized in an edge state contributes to charge transport only
in a precise direction - which is reversed at the opposite edge of the device. Due to their immunity
to backscattering, edge channels are ideal candidates for the coherent ballistic transport required
in quantum computing devices [4]. Furthermore, thanks to their quasi-1D nature, the process of
charge transport taking place inside them can be easily modeled by using the 1D scattering matrix
formalism [42, 47].

1.4 Solid-state interferometers in the IQH regime

The first experimental observation of the IQH Effect dates back to 1980 [46]. In its experiment,
Von Klitzing shows that the application of a magnetic field perpendicularly to electron current
in a high-mobility 2D electron gas, e.g. the inversion layer of a MOSFET, creates a transverse
potential difference in the device called Hall potential (see Fig. 1.4).

For any material containing a 2DEG, at low temperatures and strong magnetic fields the
transverse potential is characterized by a constant resistance, which is universally quantized as
follows:

Ry = neN, (1.61)

e2n’
while the corresponding longitudinal potential and resistance go to zero. This phenomenon can
be interpreted through the bending of the Landau levels, that in this condition governs ballistic
transport. The finite dimensions of a real system, described as a confined 2DEG, entail indeed a
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1.4 — Solid-state interferometers in the IQH regime
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Figure 1.5: (Top) Band structure in real space of the device for the Landau levels at different
values of B. (Bottom) Evolution of the edge channel paths with increasing magnetic field.

spatial confinement of the electronic wavefunction. Except for the possible presence of impurities
or localized disorder producing trapped states, the unperturbed Landau levels are flat in the bulk,
where there is no confinement. At the edges, instead, the Landau levels bend and intersect the
Fermi level, thus becoming electron channels available for conduction.

These channels extend in the longitudinal direction of the device, following the confining edge
and provide a conductive rail where electrons can propagate without being affected by backscat-
tering, due to their chiral nature [48]. This can be interpreted semiclassically by considering the
effect of the magnetic field on the charge motion: when an electron inverts its velocity due to
backscattering, the Lorentz force pushes it again towards the border of the device, and the initial
direction of the motion is restored. In the quantum perspective, the chirality of edge channels allow
a constant electron flow only in a certain direction of the device: an eventual impurity on their
path is then bypassed. This correspond to a zero longitudinal resistance and a fixed transverse
resistance, that is inversely proportional to the number of edge channels that can participate in
the transport.

Within this quantum picture, an increase of the magnetic field pushes the Landau levels towards
higher energies, so that when one of them crosses the Fermi energy (see top panel of Fig. 1.5),
the corresponding states moves towards the bulk of the device (bottom panel of Fig. 1.5). This
correspond to an electron back-scattering from one edge to the opposite one, and then an increase
in the longitudinal and transverse resistance. When the Landau level has totally overcome the
Fermi energy, the corresponding edge channel is completely depopulated, and again electronic
transport is completely characterized by a fixed number of channel without back scattering (zero
longitudinal resistance and constant transverse resistance). This mechanism can be triggered by
increasing or lowering the magnetic field, or by shifting directly the Fermi level, e.g. by changing
the electronic density.

Electron devices operating in the IQH regime are usually fabricated in a high mobility 2DEG
embedded in a semiconductor heterojunction (e.g. GaAs-AlGaAs), with Ohmic contacts connected
to the edges of the structure as source/drain leads. Within this regime, a strong perpendicular
magnetic field originates a new correlated state that behaves as an incompressible liquid with a
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1 — Edge states: theoretical framework
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Figure 1.6: Examples of solid-state interferometers in the IQH regime. (a) Scheme of a MZI on the
left and SEM picture of the device on the right from Ref. [15]. A centrally located small Ohmic
contact, serving as D2, is connected to the outside circuit by a long metallic air-bridge. Two
smaller metallic air-bridges bring the voltage to the inner gates of BS1 and BS2 - both serve as
beam splitters for edge states. (b) Diagram of the Hanbury-Brown-Twiss interferometer of Ref. [15]
on the left panel and scanning electron micrograph of the actual sample on the right. Sources S1
and S2 inject streams of particles, which are split by beam splitters A and B, later to recombine
at beam splitters C and D. Each particle can arrive at any of four different drains, D1-DA4.
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Figure 1.7: (a) Interference pattern in the Mach Zehnder interferometer of Fig. 1.6(a). The left
panel displays the two dimensional color plot of the current collected by one detector as function
of magnetic field and gate voltage at an electron temperature of aLij 20 mK. B = 5.5 T and the
two QPCs were both set to transmission T1 = T2 = 0.5. Red (blue) stands for high (low) current.
The visibility of the interference is 0.62. (b) HOM trace Agq from Ref. [17] as a function of the
time delay between the sources 7 for three values of the emission time 7. = 30 ps (red squares),
7. = 100 ps (blue squares) and 7. = 180 ps (black dots). The plain lines represent exponential fits,
Aq(r) =1 — e ITl/Te,

fixed and well-defined density n [48]. Such parameter is related to the number of Landau Levels
that are filled in the bulk of the confined 2DEG, which is called bulk filling factor (FF):
nhe
= —. 1.62

YT B (1.62)
Metallic gates on top/bottom of the heterostructure control the bulk FF by depleting the 2DEG, as
in the heterostructures of Fig. 1.6. In order to control the path of the edge states in specific regions
of the device, v can also be locally varied by means of modulation gates, as in our multichannel
implementation of the MZI presented in Chapter 4.
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1.4 — Solid-state interferometers in the IQH regime

The long coherence length of edge states provide therefore the ideal framework to implement
semiconductor logic gates for quantum computing architectures, where single-qubit transformations
are realized through single-electron interferometry and qubits are coupled by Coulomb interaction.
See Fig. 1.7 for an example of two of the most common interference pattern in Hall nanodevices:

(a) Aharonov-Bohm oscillations in a MZI and (b) Pauli dip in the bunching probability of an HOM
geometry.
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Chapter 2

Single-electron sources for Hall
interferometers

In the earliest experimental implementations of electron interferometry, particles are injected
in the edge channels through Ohmic contacts [49, 50, 8, 15, 51, 12], and the electron wavefunction
is localized only along the transverse direction of the device. Therefore, the interference is realized
between currents of electrons and the quantum properties of the system are provided by ensemble
measurements of noise or the detection of the transmitted current [49, 50], while its numerical
modeling is based on the scattering-state formalism in a stationary framework and effective 1D
geometries [14, 24, 25, 52].

In this picture, creation and annihilation operators applied to the ground state (a filled Fermi
sea with negative energies) define the many-body electron state that represents the flow of electrons
from the leads, while each component of the logic gate is described by a scattering matrix with
properly defined reflection and transmission coefficients. Within this approach, the zero frequency
cross correlation of the current fluctuations is related to the single-particle detection probability in
an output or to the joint detection probability in two different outputs. This framework has been
applied to study the entanglement generated by Coulomb interaction between an interferometer
and a detector in Ref. [24], to predict the violation of Bell’s inequality in the Hanbury-Brown-Twiss
interferometer, as in Ref. [14] or to explain the unexpected increase of the visibility at large biases
in multichannel implementations of the MZI in Ref. [25].

However, the current nanotechnology enables the injection of single localized carriers in the
IQH regime [38, 53, 39, 36], with the qubit state encoded in the Landau index n or in the spatial
localization of the edge channel. Thanks to the quasi-parabolic dispersion of the edge state,
a localized wavepacket traveling in an edge channel is traditionally modeled in an effective 1D
geometry as a wavepacket of plane waves [28, 37, 54, 19], while the use of a full 2D approach with
time-dependent solvers is less common in literature [29, 20, 55, 13].

With contrast to the current availability of single-electron injection, the detection of a flying-
qubit is still a challenging task due to the high velocity of the wavepacket with respect to the
interaction time with the detector [56].

2.1 Levitons
Typically, for a system of fermions, the perturbation produced by an external voltage bias
affects all states below the Fermi energy, and generates a complex superposition of particles and

holes. In 1996, Levitov et al. suggested a protocol to inject single-electrons in edge channels
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2 — Single-electron sources for Hall interferometers

with a properly time-dependent perturbation V'(¢) of Lorentzian shape [57, 58, 59]. This minimal
excitation of the Fermi sea, called leviton, contains only one electron charge and no holes. Fig. 2.1
shows the probability density of a leviton in the real space, which is lorentzian, and in the energy
domain. Only recently leviton-based SESs have been implemented experimentally and integrated
into two-particle interferometers, as in Ref. [36, 60], where the electron HOM effect is demonstrated.

With contrast to alternative injection protocols, this quasi-particle is injected at the Fermi
energy, and therefore it is less affected by energy relaxation processes [30]. Moreover, the generation
of levitons require only the application of a properly designed voltage pulse on the source lead and
no additional nanolithography of the sample. Theoretical and experimental works [36, 60] prove
the generation of a minimal excitation containing a single electron charge in HOM and Hanbury-
Brown-Twiss interferometers; here, a QPC partitions the leviton quasi-particle, and shot noise
measurements provide the number of electron and holes in the beam. With contrast to alternative
shapes of V(t), this number is equal to a single electron charge for Lorentzian pulses, thus ensuring
the absence of additional holes propagating in the device.

Numerical modeling in 1D

The time-dependent perturbation V(¢) to emit a single electron in the conduction band has a
Lorentzian shape:

h 27

R

(2.1)

where 7 is the emission time and ¢y the instant of maximum voltage.

For simplicity, we initially discuss the shape of levitons in 1D, where edge states are replaced by
plane waves. In the energy domain, the bias V() produces a normalized electronic wavefunction
given by [37]:

B(E) = 2re~ i) E-Er)g(E _ ), (2.2)

with Er Fermi energy of the system. For a given energy dispersion E = E(k), the wavefunction

) = et

i L Lewviton
hote)]

I Farmi saa

Figure 2.1: Schematic picture of a leviton in the (left) real space and in the (right) energy domain
from Ref. [36]
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2.1 — Levitons

in real space, called Leviton, is given by the Fourier transform of ®(F), as follows:
1 P i
z,t) = — [ dke*P(k e~ rEk)(t=to)
vie.t) = o= [ vt i)
1 ; dE i
— E/dke"“ {(I)(E(k)) ‘dk ] e~ wEE)(E=to) (2.3)

By assuming a generally parabolic dispersion E(k) = a(k — k1)? + ¢, with a = h?/(2m*), the
Leviton wavefunction in the k-space reads

D(k) = V2re o —ito) (W —kp—2ka(h=kr)) o0 (| — )0 [(kp — k1) (k — kr)) . (2.4)

Then, the real space profile in 1D is computed from the Fourier transform: ¢ (y) = \/% [ dk e*vap(k).
In the case of a linear dispersion in 1D, i.e. E(k) = v-k, the Leviton wavefunction has a Lorentzian
shape in real space [37]:

1
VT (y = yo) —v(t —to) +i%
where I' = 2v7 is the full width at the middle height of the density probability | (y,t)|2.
For a small excitation in the energy space in a 2DEG, the plane waves are replaced with the
edge states p(z, k) ~ ¢(x,kr), so that:

Y(x,y) = \/%—Ww(w, kr)(y), (2.6)

Moreover, to switch from a 1D representation to a 2DEG, we need to define the initial wavefunction
(t = to = 0) in the direction of propagation by adding the factor exp(ikry) (with E(kr) = Er) to
give the desired group velocity to the wavepacket:

— L g elkFy
A NCIE R e, =0

whose density profile is Lorentzian, as expected:

=

1
vLy)l® =~
e = e )

(2.8)

Do (DN

ry2°
+(3)
Its Fourier transform

1 .
k)= —— [ dke *V(y) = 2.9
Dk = —== [ ke i) (29)
= —ie_%(k_kF)(Qiy‘H'Fsgn(kF))\/fG)[(k — kr)sgn(kp)|sgn(kr), (2.10)
is exponential in the wavevector k and provides the group velocity:

1

(vg) =N (k) = kp + (kr) - (2.11)

Here, sgn(kr) selects the wavevectors k associated with an energy E(k) > Er, as required by the
Leviton energy dispersion. For parabolic bands, this corresponds to k > kp if kp > 0, and k < kp
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2 — Single-electron sources for Hall interferometers

if kp < 0. By assuming ¢(x, k) = ¢(x, kr), the wavepacket reads:

1 oy 7
vl = —= [ k(e e i) (2.12)

- r
N (mk )el FY D)
O o —wo) +1- (kp) - T

(2.13)

Note that Eq.(2.13) is gauge invariant: it is indeed valid also for a limited region of wavevectors
k belonging to a parabolic band (E(k) = a(k — k1)? + ¢), if (kr) is replaced by sgn(kr — k).

2.2 Mesoscopic capacitor

The injection of localized wavepackets can also be realized by means of mesoscopic capacitors,
i.e. dynamic quantum dots weakly connected to the lead where a single charge is injected or
absorbed [61]. In 1993, Biittiker proposed their injection protocol in the IQH regime [62]. Their
experimental implementation in a solid-state devices is based on a tunable QPC that controls the
tunnel-coupling between the quantum dot and the 2DEG [38], as shown in Fig. 2.2. Here, due
to the presence of the perpendicular magnetic field, edge states run along the boundary of the
confined region and generate the discrete levels in the dot.

This source provides no DC current, but only AC current of alternated electrons and holes.
The quantum dot is initially in a Coulomb blockade regime, with the same Fermi energy Er inside
and outside the source. A periodic voltage bias V(¢) shifts above the last occupied level Er and
a single-electron pulse, called Landau quasi-particle, is injected into the 2DEG. In the next semi-
period, when the drive is zero, a hole is injected; indeed the depleted level drops below the Fermi
energy and the quantum dot collects an electron from the 2DEG.

Ensemble measurement of the high-frequency current autocorrelation function are usually per-
formed to estimate the quality of this SES. In particular, the experimental implementation of a
mesoscopic capacitor in Ref. [63] shows the existence of a fundamental noise, called quantum jitter,
which is entirely determined by the quantum uncertainty on the emission time of a single charge
from the source.

Numerical simulations [30] prove that mesoscopic capacitors are less robust against interchannel
and intra-channel interactions with respect to Lorentzian pulses in presence of a double FF. Levi-
tons are indeed quasiclassical charge density waves that does not entangle with the environment,
while the Landau quasi-particles are superpositions of such density waves, so that entanglement

(a) (b)

2eV (1)

ol @ |®

Figure 2.2: Injection protocol of a Landau quasi-particle by means of a mesoscopic capacitor from
Ref. [40]. (a) Time-dependent potential applied to the quantum dot displayed in the right panel.
(b) Scheme of single-electron injection and absorption for a mesoscopic capacitor connected to a
2DEG in the IQH.
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2.3 — Quantum dot pumps

with the second edge channel can destroy their coherence. These interchannel interactions at FF
2 manifest through charge fractionalization and a non-zero bunching probability in the electronic
HOM interferometer [64, 65, 66, 67, 68, 69]. In detail, Ref. [17, 68] shows that, because of this
source of decoherence, the minimum of the bunching probability (called Pauli dip) does not van-
ish for a fermionic two-particle system, but rather depends on the emission time of the Landau
quasi-particle .

Numerical modeling in the energy domain

With regards to their numerical modeling, according to Ref. [70, 71], the electronic wavepacket
for an initial time ty and position x = x( reads :

(z) = AO(z — zq)e Foleralemz(@—m0), (2.14)

and, by assuming a linear dispersion E = hvk with « = vt [64]:

@(t - tO) —ieq(t—to)/h —(t—t 2
¢(t) =2 ", ieg( 0)/ e ( 0)/( "'e). (215)
Ve

Here, v = #, and T, is the emission time of the electron from the capacitor, while ¢ is the electron
energy. The wavefunction can be rewritten in the energy domain as a Lorentzian function:

+oo
1[)(6, tO) —N / dt @(t _ to)ei(efeo)(tftg)/hef(tfto)/(Q-rE)e#»ietg/h

+oo
_ NeJrieto/h/ dt Ale—co)(t—10) /R —(1—t0) /(272)

to

—+oo
_ NeJrieto/h/ dtei(efeo)t/heft/(?re)
0

+
— Ne+iet0/h/ Ocdtei(e—eo+i%)t/ﬁ
0

N +iet0/h
= 67.1” (2.16)
€—¢€g+ 153

where I' = Tﬁ and N is the normalization factor. A typical value for the electron emission time is
Te =~ 62 ps, and the energy €q is of the order of half the quantum dot level spacing, A = 1.4 K [64].

2.3 Quantum dot pumps

To avoid the decoherence effects induced by intra and interchannel interactions affecting Landau
quasi-particles, the single electron should be injected at an energy much larger than the energy of
the Fermi sea. In this case, single electrons are injected by quantum dot pumps, which are coupled
to the source region and to the device by time-dependent confining potentials [73].

A scheme of this SES is presented in Fig. 2.3. The potential barrier connected to the electron
reservoir is lowered below the Fermi sea and then it is progressively raised in order to trap one
or a small number of electrons in the confined region. Then, the same potential barrier is further
increased, to exceed the other confining barrier, and the trapped electrons are so injected in the
2DEG with an energy well above the Fermi energy of the 2DEG, usually 100 meV larger [74].

Ryu et al. proposed a theoretical protocol to generate and detect almost identical Gaussian
wavepackets from non-identical quantum dot pumps [72]. In presence of strong magnetic fields,
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2 — Single-electron sources for Hall interferometers

(@) Envance v,

(b)

Figure 2.3: Injection protocol of a quantum dot pump proposed in Ref. [72]. (a) SEM picture of
the double-well quantum dot with tunable barriers that selects and injects a single charge in the
device. (b) Scheme of the injection process conveyed by the two tunable barriers. (c) Generation
and injection of Gaussian wavepackets in edge channels.

the electron captured in the quantum dot evolves into a coherent state that is insensitive to details
of the emission process; then, when it tunnels from the quantum dot to the 2DEG, for a small
enough tunneling time, the electron state assumes the shape of a single Gaussian packet.

Due to the high energy of injection, such wavepackets are robust against inter and intrachannel
interactions but will relax and loose energy, this leading to visibility loss. Regarding the relaxation
processes induced by inelastic scattering with acoustic and optical phonons, recent theoretical
studies [75] and experimental works [76, 77] address the specific energy distribution of the emitted
carriers and analyze the magnetic and energetic regime to quench decoherence.

In the next chapter we describe our numerical modeling of localized charges in the IQH regime.
In order to ensure an higher control of their dynamics, we mainly simulate wavepackets with a
Gaussian shape in the real and wavevector space, as the excitations generated by quantum dot
pumps. Indeed, numerical simulations of a wavepacket with a lorentzian distribution in the real
space, as a Landau quasiparticle (Fig. 2.4), or an exponential distribution in energy, as a leviton
(Fig. 2.5), prove that the shape of these excitations can not be easily preserved during their
evolution.
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Figure 2.4: Time evolution of the density probability of leviton-like wavepacket in the longitudinal
direction of a confined 2DEG. By applying our time-dependent solver for electron transport, we
combine edge states at the border of the device with the weights in Eq.(2.10) and I' = 50 nm, and
evolve the localized charge with the Split-Step Fourier method. The right panel shows that, at the
end of the propagation, the tails of the density probability in the real-space are strongly perturbed
by the time evolution.
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Figure 2.5: Dynamics of a single-charge wavepacket of edge states with a Lorentzian distribution in
the energy domain (Eq.(2.16) with I' = 0.001 €V) inside the multichannel geometry of the MZI [13].
The present energy distribution entails an exponential distribution in the ¢ direction of the 2D
real-space, due to the quasi-linear bandstructure at the edge (see Sec. 4.2.3). The exponential
shape of the excitation determines the presence of a large tail, also for relatively small energy
broadenings, which can not be easily controlled during the time evolution.
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Chapter 3

Numerical model for Gaussian
wavepackets in 2D
heterostructures

In the following chapters, the choice of the initial wavefunction of the propagating carrier is
arbitrary. We mostly consider a minimum uncertainty wavepacket (i.e. with Gaussian shape)
as the one that is generated by the protocol described in Ref. [72]; however, we also provide
specific examples aimed at assessing the impact of the initial electron energy distribution on the
transmission characteristics of the system.

Due to the analogy between a wavepacket of plane waves and a wavepacket of edge states,
electron transport in the IQH regime is traditionally studied by means of 1D analytical models. As a
reference, we adopt this scheme in our theoretical investigation of the multichannel MZI [13] and the
two-particle HOM interferometer [21]. Within this simplified model, products of scattering matrices
describe the effect of quantum logic gates on the system wavefunction, while the probability of
detection or joint detection at the drains are obtained by integrating over the energy dispersion
of the final wavepacket. However, in addition to require a number of approximations on the
energy dependence of the transmission coefficient, such model does not reproduce exactly Coulomb
repulsion for interacting particles. Indeed, electron-electron interactions in a 2D scenario generally
differ from the 1D case [26], as proved by the computation of bunching probability of two strongly-
interacting particles (see Sec. 5.3.2).

The exact simulation of single-particle or two-particle transport in wavepackets of edge states
requires alternative approaches, able to describe exactly the potential background experienced
by the carriers. To this aim, we implemented in-house a numerical solver of the time-dependent
Schrodinger equation for a single-particle and a two-particle wavepacket in 2D, where the potential
background V,,.(x,y) affecting the traveling wavepacket mimics the effect of top gates in a realistic
electron interferometer. The wavefunction is then evolved with the Split-Step Fourier Method,
based on the iterative application of a properly defined evolution operator. In order to study
two-particle correlations in Hall interferometers, we also developed a two-particle version of the
simulator, which has been parallelized in the MPI paradigm to overcome memory occupation
problems. Together with an exact simulation of electron-electron interactions in 2D, this time-
dependent model provides the dynamic properties of the system from the propagating wavepacket,
which is computed in real space at each iteration step and in a full-scale 2D geometry.

After presenting in Sec. 3.1 the numerical modeling of single-charge excitation in our software,
we provide a detailed description of the algorithm adopted for the time evolution in Sec. 3.2.
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3 — Numerical model for Gaussian wavepackets in 2D heterostructures

The computational issues and numerical performances for the application of the Split-Step Fourier
method in 2D are finally presented in Sec. 3.3.

3.1 Gaussian wavepackets of edge states

The numerical modeling of the single-electron excitations generated by SES (see Chapter. 2) in
our time-dependent framework requires, as initial wavefunction, a localized electron state ¥ (z, y;0)
to evolve with the Split-Step Fourier method. Despite edge states are delocalized along the direction
of propagation, g in the present case, the bandstructure near the edge is dispersive; edge states
are characterized by a non zero group velocity, that implies a net probability current propagating
along the edge of the device.

Similarly to a wavepacket of plane waves in a 1D geometry, to represent a localized particle in
the IQH regime we linearly combine the edge states gpmk(x)eiky on the wavevector space:

U(z,y) = \/% Z/dk Fo(k)e* o (2, ), (3.1)

where F,, (k) is the weight function that depends on the wavevector k and on the quantum number
n. Despite we usually assume that the electron is injected selectively in one channel n and no
superposition between different Landau Levels is initially present, we can in principle combine also
cyclotron-resolved edge states, i.e. with different Landau index. This initialization procedure not
only provides a localized wavepacket, but also a wavefunction which is normalizable to unity, so
that its squared modulus can be interpreted directly as a probability.

In the previous chapter, we described three different models to reproduce the single-electron
excitations generated by SES. These differ in the shape of the weight function, in the real or recip-
rocal space. We summarized above the numerical modeling of Landau quasi-particles and Levitons,
which are characterized by a lorentzian and exponential distribution in energy, respectively. In the
following, we describe our numerical modeling of Gaussian wavepackets of edge states to mimic the
injection of a single-electron excitation from a quantum dot pump [72]. By selecting states from
the same Landau level, the ground one in detail, the weight function reads

1 —iky 4/ 202 —02(k—ko)? —ikyo
Fall) = 8.0 [ dyeui) = {2 e = F(F). (3.2

Here, yq is the initial position of the wavepacket in the direction of propagation, o the standard
deviation in the real space and o} = 1/v/20 the wavepacket broadening in reciprocal space. The
value of kg, which is the central wavevector of the Gaussian wavepacket, is computed from Eq.(1.32)
by means of the transverse initial position zg.

Note that, as the band dispersion E,[k(zo)], Fy.(k) shows also a dependence on zy due to the
relation k = k(zg). This is equivalent to combine those states that are centered in z((k) and near
to the one centered around (ko). Then, for a Gaussian distribution F'(k) - which is significantly
different from zero only in the range kg & 30y - the states that mainly contribute to the wavepacket
dynamics are contained in the range:

6orLh 2
Ay = |zo(ko + 30%) — zo(ko — 301)| = ‘e; =3 (3.3)

As an example, we report in Fig. 3.1(a) the bandstructure of the first two Landau levels,
together with the weight function F(k) to combine the edge states. The parabolic bending at the
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3.1 — Gaussian wavepackets of edge states
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Figure 3.1: Numerical simulation of a Gaussian wavepacket of edge states at initial time ¢ = 0
in presence of a translationally invariant potential as in Eq.(3.4) with V, = 10eV, A = 3nm
and 2, = 0 nm. (a) Bandstructure of the first two Landau levels at yo = 350 nm and weight
function F, (k) in Eq.(3.2) with n = 0, £p = 20 nm. (b) Transverse profile of the single-electron
wavepacket generated from the linear combination presented in panel (a). (c¢) Longitudinal profile
of the probability density for the Gaussian wavepacket in panel (a) at initial time ¢ = 0 and final
time ¢t = tp. Note that the this probability is still Gaussian at the end of the dynamics and that
the o is increased due to the time evolution according to Eq.(3.11)

border of the wavevector/center space k = k(x() is generated by the confining potential barrier
Vezt(x) modeled as follows:

— VO
1 —|—exp(%)7

V(x) (3.4)

where V5 = 10eV and A = 3nm. The Gaussian wavepacket is initialized at a distance xo(kg) of
20nm from the turning point x; of the barrier. The related profile in the transverse direction is
reported in Fig. 3.1(b). The 2-direction refers to the probability distribution of the wavepacket.
While, along the §-direction, the shape is clearly Gaussian, on the Z-direction it depends on the
specific profile of the edge states - and therefore, on the smoothness of the barrier.

We stress that in the IQH regime we can choose a proper space interval Axg for the state to
combine, so that the bandstructure of Ey[zo(k)] is almost linear. The k& components have then
a similar group velocity, and the edge-state packet does not spread while traveling. This differs
from a Gaussian wavepacket propagating in free space, whose bending is always parabolic, so
that the spreading of the distribution probability can not be avoided. Moreover, our numerical
simulation of full-scale electron interferometers (see Chapter 4 for a MZI, Chapter 5 for the HOM
interferometer and Chapter 6 for a Conditional Phase Shifter) prove that this wavepackets maintain
all the properties of edge states, as the chirality and the long coherence length.
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3 — Numerical model for Gaussian wavepackets in 2D heterostructures

3.1.1 Time-evolution of a Gaussian wavepacket

To calculate analytically the time evolution of the wavepacket in Eq.(3.1), we consider a Gaus-
sian wavepacket with a sufficiently large standard deviation o, so that the region of states |k) that
we are combining is very limited in the reciprocal space. As a consequence, by fixing n = 0:

(1) the energy bandstructure can be locally approximated by a parable,
Eoy = Eo(k) ~ ak? + bk +c=a(k — k1)? + ¢, (3.5)

with b = —2ak; and ¢ = ak? + ¢/, and a small enough due to the quasi-linearity of the band
for higher energies.

(2) the well eigenfunctions v1(x, k) that we are combining have approximately all the same shape
and the same center xo(ko):

o1(z, k) ~ @1(x, ko) Vk. (3.6)
Under these condition, the state described by Eq.(3.1) becomes [78]:

(y=v0)?2

2 2 2 . T 402 +ikoy

(2, y) ~ \/% /dk 4/2%6% (k=ko)? =ik kY 5 (1 k) — #@1(%%)- (3.7)

This form of the wavepacket is consistent with the chiral behaviour of edge states, that act
as 1D conductive channels for the device. Indeed, Eq.(3.7) can be factored along the two axes,
as well as the time-evolved wavefunction. The shape of the wavepacket along & does not change,
due to the fact that the ¢1(z, k) are the eigenstates of the effective 1D Hamiltonian. Along the
g-direction, instead, the particle travels as a free Gaussian which is governed by the parabolic band
of Eq.(3.5). The time evolution of ¥(x,y) with respect to the Landau Hamiltonian Hj, is then
given by:

o 1 [202 . i
U(z,y;t) = e #HrU(2,y) = e /dk \ %6_02(k_k0)261k(y_y°)<,01(x, ko)e o)t (3.8)

By factoring out the Z-part of the wavefunction from the integral we get the time-evolved state:

2
(v—vo+2ikgo?+5L)

e_i%t@ 4(i%t+02) e_kgo'z
\I/(x7y7t) = @l(kao) - ) (39)
NENCEE
with a probability density given by:
X (y7y0+2a(k%—k1)t)2
- 2.2
| (,y;t)[* = e D) fpi(as ko)l (3.10)

2 (o + 255)

| (x,y; t)|2 describes a traveling Gaussian along the f-axis, with a real-space spreading that is

governed by the smoothness a. From |¥(z,y;t)|*, we can further estimate the time evolution of
the standard deviation, which is given by:

o2(t) = ((72 Lot ) . (3.11)

o2h?
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3.1 — Gaussian wavepackets of edge states

3.1.2 Gauge-dependent parameters and mass renormalization in the
IQH regime

With contrast to a Gaussian wavefunction propagating in free space, our wavepacket of edge
states is characterized by a wavevector ky which is a gauge-dependent parameter, and therefore
can not describe a physical quantity. Note, indeed, that a rigid translation of the origin of the
system along the Z-axis cannot change the physics of the problem, but it modifies the center of
the well eigenfunctions zp, and therefore also the center of the wavepacket kq(xg). Moreover,
Eq.(3.10) contains an additional gauge-dependent parameter, ki, which is computed by fitting the
bandstructure. Ak = kg — k; is instead a gauge-independent quantity. Therefore, it properly
describes the effective wavevector for the time-evolved squared modulus of ¥(z,y;t), which is also
proved to behave like the probability distribution of a Gaussian wavefunction in free-space [79, 80,
81]. Then, by computing the group velocity from the quasi-parabolic bandstructure,

2@(]{)0 — kl)
Vg = (3.12)
we can define an effective magnetic mass m} with respect to the smoothness of the energy band-
structure (a) :

so that the group velocity reads
h(ko — k
vy = % (3.14)
B

The last equation shows that the potential barrier and the magnetic field induce a renormal-
ization of the electron mass, which affects the group velocity of the edge state wavepacket with
respect to the one of a free particle of effective mass m* in Gallium Arsenide.

3.1.3 The wave-packet method for single and two-particle wavefunctions

According to Eq.(3.1), a generic electron wavepacket ¥(z,y) can be represented as a linear
combination of edge states weighted by F, (k), generally depending on the cyclotron index n and
the wavevector k. A scattering process modifies the weight function F,, (k) to a new one, F),(k), so
that the scattered wavepacket reads:

W (z,y) = % 3 / dk F! (k)e® o (z, k), (3.15)

In case of an elastic scattering processes, i.e. triggered by energy-conserving interactions, the
composition of the wavefunction in terms of the wavevectors F', (k) can change, but the energy
composition F(E) = Y F,(k(E)) of the final state ¥'(x,y) is the same as in the initial one,
U(z,y): F(E) = F/(E) VE. However, in case ¥'(z,y) is only a portion of the final state, e.g.
the reflected or the transmitted part of the wavefunction coming out from the device, this does
not apply. The present case requires the energy weights F(E) to determine the reflection and
transmission probabilities of the device for any energy component E.

In order to extract the values of F), (k) from Eq.(3.15), we compute the Fourier Transform of
U’ (z,y) only along the g-direction; this is equivalent to project W'(x,y) over the set of the plane
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3 — Numerical model for Gaussian wavepackets in 2D heterostructures

waves (y|k) = ¢’*¥ with momentum k along y:

U (z, k) = \/ﬂZ/dye Ky (2, ) Z/dkF Yon(x k) /dye(k Ky

Z/dk F! (k) (x, k)5 (k — k)
ZF (@, k). (3.16)

By resorting to the orthogonality of the well eigenfunctions for a fixed wavevector k, we compute
F, (k) by projecting W'(z, k") over the corresponding well eigenfunction ¢, (x, k), that is:

/ dw o (o, KV (2, k) = S FL(K) / 0 g7 (2, K Yo (2, k)
" FL (K)o

= F (k). (3.17)

The link between the energy F and the wavevector k is given by the bandstructure. In detail,
if we call U'(x,y) the transmitted state, the transmission probability for the energy F between the
initial, n, and the final Landau level, m, is given by:

|En (B2

TE) = 5, mE

(3.18)
where k and k& are, respectively, the wavevector in the input and output region of the device, which
are associated with the energy E. If the confining potential has the same profile in both regions,
we have k = k/, otherwise we have to resort to the bandstructure to find the appropriate values of
the wavevectors in Eq.(3.18).

Since the wavepacket contains many components with different energy F, a single run of a
simulation, followed by a Fourier analysis of the final state, provides the scattering probabilities over
a broad range of energies. To this aim, we usually apply the wave packet method to characterize
the scattering properties of our nanometric devices [27].

This projection can be generalized for a two-particle wavefunction in 2D as follows. The two-
particle state is written as a linear combination of the eigenstates:

U(z1,y1, %2, Y2) = Z / dkadkp Fly (ko kg)on (21, ka)om (@2, kg)eevrettovz (3.19)

by means of a 4D weight function F,, (kq,ks), where n and m refers to the cyclotron index of
particle 1 and particle 2 respectively, while £, and kg to the corresponding wavevectors.

Similarly to the single-particle case, the weight functions F) . (ka, kg) are computed by Fourier
transform the 4D scattered wavefunction ¥’ on the y;y2-domain, where the edge state is a product
of plane waves: (y1y2|kakg) = e*a¥1e*5v2. Indeed:

]_ ik’ ik
V' (21, kY, 22, k) = %Z/dyldyze Favre =RV 0! (21, y1, 22, y0) (3.20)

= Z (kLK) on (21, Kl ) om (2, k). (3.21)
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3.2 — The Split-Step Fourier method in 2D

The squared modulus of the two-particle weight function, |Fy,,(kl,,k})|?, is therefore the prob-
ability that particle 1 is in the state with Landau index n and wavevector k., and particle 2 in
the state with Landau index m and wavevector kﬁ. This probability is prov1ded by projecting

U (1, k., 2o, kj) over the product of the well eigenfunctions ¢; (71, ka)p;(72, k). Indeed:

/dxldxg @f(xl,k;)go;(mg,k’ﬁ)\i/’(ml,k;,xg,k;;) (3.22)
= Z /dxldx?901(xlvka)WJ(x%kﬁ)‘Pn(Ilvka)@m(x%kﬁ)
= Z 1o k5)0i 0 m
= nm(k‘;,k‘ﬁ). (3.23)

3.2 The Split-Step Fourier method in 2D

To numerically simulate the electron dynamics in a confined heterostructure, we need to solve
the time-dependent Schréedinger Equation:

ihiaq'(g’ty;t) = HV(z,y;t), (3.24)

where H is generally the Hamiltonian of our system, given by the sum of a kinetic operator and a
potential one H = T'+ V. For a time-independent Hamiltonian H in a 2D real-space domain at
time ¢, we solve Eq.(3.24) by applying the evolution operator

U(t) = e wtH, (3.25)
to the initial state of the system ¥(x,y;0):
U(z,y;t) = Ut)¥(z,y;0). (3.26)

The evolution operator in the form of Eq.(3.25) can be applied also in case of a time-dependent
Hamiltonian, provided that the time interval for the evolution, ét, is small enough with respect to
all the characteristic times encoded in H (¢):

U(ot) ~ e wOHH®, (3.27)

6t—0

Therefore, the evolution of W(x,y;t) over a time interval ¢t = N 0t under the effect of any Hamilto-
nian H (t) can be obtained by N successive applications of the operator in Eq.(3.27). The Split-Step
Fourier method can, in principle, be implemented numerically very easily with an iterative pro-
cedure. The difficulty lies in the representation of the evolution operator: the kinetic T and the
potential 1% operators do not commute and T contains the second derivative of the wavefunction
with respect to the position, whose exponential is very difficult to calculate. As we will see in the
next section, this will be solved by introducing Fourier transform in the definition of the evolution
operator.
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3 — Numerical model for Gaussian wavepackets in 2D heterostructures

3.2.1 The algorithm for 2D dynamics in IQH regime

According to the Trotter-Suzuki factorization [82], the evolution operator for a a short time
interval 6t can be written as the product of two or three exponential functions,

O (t) = e hot-T+0) (3.28)
~ o £t T = £tV Lo(5¢7) (3.29)
o~ e*%“'%e*%5t'Te*%5t'%eo(5t3)7 (3.30)

with a negligible 3rd-order correction in time [83].

The first and the last exponential factors in Eq.(3.30) depend on the potential V', which is a
scalar function of the position in real space, r = (z, y). The kinetic part, instead, is a second
derivative in real space, and local in the Fourier space only:

2v72 272
T= (—h V* ) = (h k) : (3.31)
2m T space 2m k space

We can introduce a sequence of direct (F) and inverse (F~!) Fourier transforms in the evolution
operator to switch from the real to the reciprocal representation:

1 teo oo - =
FU(2,y) = ) / e " P (2, y)dFi = U(hk,, hk,)  (§= hk) (3.32)

— 00

Each factor of the evolution operator is so applied to a wavefunction which is defined in the most
convenient representation. Indeed:

e—%&t-’f”qj(x, y) _ f—le—%ét-’f‘(ﬁm,ﬁy)ij(pm,py) — J,—_-—le—%étT(hkm,hky)J—_\Ij(‘r’ y) (333)

which is a scalar function in the Fourier space. This method, called indeed Fourier Split-Step
method, finally provides the evolution operator:

U(6t) = e #0tF Frlo— g0t po-foty (3.34)

The final wavefunction after ¢ = Nt time-step evolution is given by the iterative application
of the evolution operator for a small enough time interval d¢:

U(z,y;t) = U6 NU(z,y;0) (3.35)

i i 7 i v\ NV
= (e_ﬁgt?]—"_le_ﬁét‘T}'e_ﬁ‘;t%) U(z,y;0). (3.36)

The computational cost for the evolution is however lowered by the following definition of the final
wavefunction [83, 84]:

i V i 3 i A\ N i v
U(a,yit) = e 7002 (f—le—ﬁ‘”'Tfe—ﬁ“V) et W (x, y;0), (3.37)
or:
U(z,yt) = fiotY [ iseV o1 —ieed )Y —ist ¥ )
Jy;t) = eTEOVT (e ROV FT e T ROVEF) e ROV U(x, ;5 0). (3.38)

The evolved wavefunction in the latter formulation has a numerical error of the order o(dt?) (one
order less than Eq.(3.29)). However, the unitarity of the U operator implies that is the norm of
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3.2 — The Split-Step Fourier method in 2D

the wavefunction, which described the probability distribution of the electron system, is conserved
during the entire evolution.

Moreover, in presence of a magnetic field B the canonical momentum p is modified by the
vector potential as p — gA. The kinetic energy T contains therefore a mixed position-momentum
term, that depends on the adopted gauge. In the Landau gauge for a 2DEG with A = B(0, z,0),
the kinetic operator reads:

N 1 N o A
T=ge 3 (0= qd)’ =Ty (@py) + Ty (9:50)- (3.39)
1=1,Y,2

Within this shape, we can not perform a 2D Fourier transform on the xy-domain. Indeed, pr,x is
local on the real-space in the & direction only, and on the reciprocal space for the ¢ direction only:

FoTy, (G, 0x) = T,y (y, Bky). (3.40)

Thus, it requires the application of F, and F, !, which are 1D Fourier transforms and antitrans-

forms in the longitudinal direction of the device. Analogously, T}, ,, needs to apply the Fourier
transform and antitransform in the transverse direction, i.e. F, and F, L. Finally, in presence of

the magnetic field, the time-evolved wavefunction! is:

. - . A N . “ . N N . -
ise. ¥V —_ist. 1 —digs¢. —1 —igt. _ise ¥
U(z,y;t) = et HOLE (e it (v+vabs)fy16 w0t Ty e 7, File ,LatTpx,y]_-m) e FEY (2,42 0),

(3.41)
3.2.2 Split-Step Fourier method for two particles in 2D
Let us consider the case of a two-particle Hamiltonian,
Hio = Hy + Hy + Viz, (3.42)

where H; = PIZ(x“ Yi) = Tl(xz, Yi) + ‘Z(xl, y;) for i = 1,2 is the single-particle Hamiltonian in 2D,
while Via(x1,y1,22,y2) the 4D interacting potential of the two-particle system. We can rearrange
the Hamiltonian as the sum of a 4D kinetic and potential operator:

H(zy, 91,0, y2) = T(x1, 91, T2, y2) + V (21, 91, T2, 92), (3.43)

WhereT:T1+T2 andf/:ffl—i—VQ—i—Vlg.
To apply the definition of the evolution operator in Eq.(3.34), we then need a 4D Fourier
transform and antitransform in the two-particle domain r = (21, y1, Z2, y2):

~ i 5¢. V(I1,y12’12,y2)

U(dt)y=en

i V(zy,y1,22,92)
—R 0t =

]:;Dlef%ét-f(xl,y17w27y2)_7:4De (3.44)

The presence of the magnetic field and the introduction of the Landau gauge still couple the
real-space coordinates to the reciprocal ones. Therefore, in the two-particle picture, the kinetic
operator is defined as:

T = Z M (3.45)

IThe same results are valid in the Symmetric Gauge, and the decomposition given by Eq.(3.39) is still valid in
a

any gauge in which Bfi =0 Vi

33



3 — Numerical model for Gaussian wavepackets in 2D heterostructures

However, we remark that this coupling involves the real and reciprocal-space coordinates of the
same particle, i.e. p,, and Z; or p,, and §;. Then, we can split the 4D Fourier transform/antitransform
of Eq.(3.44) into two separate 2D Fourier transform/antitransforms separately acting on the
x = (x1,22) and y = (y1,y2) space. The final time-evolved wavefunction reads:

isy Vi(®1,y1,22,92) TRy
U(x1,y1,22,y2;t) = en 2 (e ROLV(@Ly1,2,52)

) . . ) . . N
-1 = 30t-(Tpy, a1 +Tpy, z0) -1 =it (Tpp, +Tp,,)
]:yhyze " vt V2t Fy ]:a;l,acze h 1 2! Frl za

i V(21,y1,22,y2)
— ot ——lp 22

e U (21,1, 22, y2; 0). (3.46)

3.2.3 Initialization procedure for electron wavepackets

As visible from Eq.(3.46), the application of the Split-Step Fourier method requires as an input
parameter the initial wavefunction of the system, namely ¥(x,y;0) and ¥(xy,y1,22,y2;0) for
the single-particle and two-particle case, respectively. However, for a nanometric device with a
complicated potential landscape, the computation of the eigenstates of its 2D Hamiltonian can
be very demanding. To get over this hurdle, we design in the external potential V = V_,; an
initialization region, which is translationally inviariat in the direction of propagation, i.e. the
g-direction. Here, the wavefunction is adequately described by a strongly localized wavepacket,
which mimics the single-charge excitation injected inside edge channels by SES.

The presence of a translationally invariant potential V(x,y) = V(z) together with the use of
the Landau gauge, implies for the 2D single-electron Hamiltonian a free term in the y-direction,
H(z,y) = T(x,y) + V(x). For a free particle along §j, we can use the effective 1D Hamiltonian
flsz of Sec. 1.1.2 to map the local one. The diagonalization of the effective Hamiltonian,

A o2, k) = Enpn(a, k), (3.47)

provides the transverse part, o, (x, k), of the local edge states. To devise an electron wavepacket lo-
calized on the § direction, we realized a properly weighted combination of the transverse eigenstates
for a number of wavevectors k.

This solution is correct only in the region where V(x,y) = V(z); they generally are not the
eigenstates of the whole device. However, in our time-dependent model, the probability density
at initial time is non-zero in the initialization region only, where ¢, (x, k) coincide with the true
eigenstates. The application of the ﬁ(ét) operator modifies the shape of the wavepacket, without
requiring to numerically compute the 2D eigenstates of the complex potential profile V(z, y) outside
the initialization region.

In case of a two-particle Hamiltonian, we initially assume the two particles to be far enough not
to interact. The state of each electron, with coordinates r? = (29,¢?), is then separately designed
in its initialization region. According to the local shape of V..:(r) where r{ # 0, each particle is
well described by a single-particle wavepacket 1, (x;,y;) at time ¢t = 0.

For distinguishable particles, we evolve the product state of the single-charge wavepackets at
initial time, which is:

U(z1,y1,22,y2;t = 0) = Yo (@1, y1)Ys (22, ¥2), (3.48)

where the subindexes of ¥ refers to transverse eigenstates computed in two translationally invariant
regions with V' >~ V,,(z) and V' ~ Vg(x), respectively. In presence of exchange symmetry, the initial
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3.2 — The Split-Step Fourier method in 2D

many-body wavefunction for a two-electron system is computed from the Slater determinant:

1
U(21,y1,22,y2;t = 0) = NG det (iig;:g;; Zjig;:g;;) = (3.49)

- % a1, 9105 (22, 42) — Y (22, y2) 5 (1, 9)] (3.50)

3.2.4 Imaginary potentials as absorbing leads

Absorbing processes performed by metallic leads in the device can be simulated numerically
by adding a purely imaginary potential Vs to the one V' in Eq.(3.44). To produce an absorbing

A~

effect, Im[Vgps] < 0. The time-evolved wavefunction is [84]:

. & . A A ~ N . s
U(z,y;t) = etRot Y (e—%6t~(V+Vabs)f—1e—%§t'Tf) e—%am%w(x’y;o). (3.51)

This expression does not contain the imaginary potential Vips in the first half evolution; at the
beginning of the evolution, the particle is localized in a region far from the absorbing contacts,
where Vgps =~ 0. On the other side, the last half anti-evolution would be a positive real exponential,
exp(+iot - Vibs /2h), which increases the norm, thus adding non-physical effects in the evolution.
The time evolution is no more norm-conserving and U is therefore a non-unitary operator.

3.2.5 Discretization and boundary conditions

The numerical implementation of the Split-Step Fourier method requires the discretization and
bounding of direct and reciprocal space. For an area in space with dimensions L, and L,, the
2D grid is discretized into N, x N, points. The grid spacing along the two axes in the real and
reciprocal space are therefore given by:

oxr =
oy =

and similarly also for the k, axis. This produces a simulation grid in the reciprocal space which
is given by N, x N, points. Moreover, the FF'T algorithm from the MKL library that is used to
perform the Discrete Fourier Transforms, are optimized for simulation grids with N, and N, points
as powers of 2. Due to the presence of periodic boundary conditions (PBC) in our real domain
L, x L,, any wavefunction exiting from a border of the simulation domain will re-enter inside the
domain from the opposite side. Note that the presence of PBC affects the confining potential too.
As a consequence, in presence of the magnetic field, the electron feels a very large confinement in
the transverse directions of the device.

Additionally, due to the coupling among the axes x and k, given by k, = —eBxz/h in the
Landau gauge, each position x is associated to a certain wavevector, thus entailing the two following
requirements.

25z
——
>,
&
|
3By
2

fmax — _kmin —
x

<

1. For an origin at the center of the device, there is an additional maximum wavevector given
by:
= eBL
e = =, 3.52
v o, (3.52)
In order to avoid that the wavefunction reaches a region of space in which it cannot be
properly represented in terms of wavevectors, the following condition must hold:

ke < ke, (3.53)
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3 — Numerical model for Gaussian wavepackets in 2D heterostructures

2. Furthermore, dx and Jdy must be small enough with respect to the magnetic length ,,,
otherwise the representation of edge states will not be accurate and they will not behave like
the eigenstates of the Hamiltonian.

Regarding the convergence and the reliability of the Split-Step Fourier method:
3. 6t must be smaller than any characteristic time encoded in H(t).

4. for a time-independent H, §¢ must be small enough if compared to the transition times vy of
the wavepacket between two grid points, given by dz/vg.

5. The product A~ '6¢-V at the exponent of the evolution operator Uy (6t) must be small enough
if compared to the period of the exponential (27), i.e.

(3.54)

I‘hanks to the Virial theorem?, if the previous condition is satisfied, Eq.(3.44) holds also for
UT(5t).

6. The spacing of the grid dx in real space must be small enough if compared to the variations
of the wavefunction along x or, equivalently, the maximum wavevector k2'** in Fourier space
must be large enough to describe the highest-momentum component of the wavefunction.

The discretization of the real and reciprocal space implies the discretization of the operators
and the wavefunction. Indeed, the the continuous wavefunction is represented by a matrix:

U(z,y) = U, = U(z,y)Vdr\/dy, (3.55)

so that the integration of the squared modulus of the wavefunction can be obtained with the sum
function:

/ W (z,y)Pdady — Y [V, ,[%. (3.56)
x,Y

Operators like the evolution one, Uv(ét), are instead 4D tensor operators. However, in our
implementation of the evolution operator they always act in the space in which they are diagonal.
Then, they can be replaced with 2D matrices containing the diagonal of the corresponding 4D

operator: )
(Uv)ay = (Uv)aysoy = € 700 Vo, (3.57)

The tensor product ﬁv(5t)\ll(x, y,t) becomes then a point-to-point matrix product, which is equiv-
alent to the product of two discretized scalar functions:

U(z,y,t+0t) = Oy (6)U(w,y) = Wy, = (Uv)ay Vo (3.58)

3.3 Parallel implementation and HPC-related performances
of the Split-Step Fourier method

Our numerical approach enables to explore single and two-particle dynamics in a large variety
of two-dimensional devices, e.g. interferometers and quantum dots. With contrast to station-
ary approaches, it only requires a proper geometry of the external potential V. (x,y) as input

HT) = (7-VV) ~n(V)
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3.3 — Parallel implementation and HPC-related performances of the Split-Step Fourier method

parameter, to reproduce the effect of top metallic gates on the particle motion. It also enables
the numerical simulation of time-dependent potentials, which could be used to model, e.g., the
electron injection processes or the effects of AC biases on devices, or to model the dynamics of
flying qubits [29]. On the other hand, the simulation of two-particle transport and correlation in
a full-scale geometry involves a non negligible computational load.

The execution of our code, written in Fortran 90, is divided into an (i) initialization process, (ii)
the evolution of the electron wavefunction and (iii) measurement through projection. Eventually,
the system properties can also be measured dynamically during the evolution step, by directly
using the 2D or 4D wavefunction of the system.

3.3.1 OpenMP parallelization of the single-particle version

In the initialization process, we set the input parameters to design the external potential
Vewt(z,y) affecting the path of edge channels inside our device. V,,; generally contains a transla-
tionally invariant region where the single-electron wavepacket is initialized. Here, we diagonalize
the effective single-particle Hamiltonian in Eq.(1.28) by means of LAPACK routines, which provide
the transverse portion of the edge states ¢, (). The latters are then combined in a wavepacket,
according to the chosen wavevector dispersion oy.

The Split-Step Fourier method is performed by recursively applying the evolution operator
U(6t) for a small enough time interval §t (see Sec. 3.2.5). As detailed in previous sections, within
this method the evolution operator is split into a product of evolution operators, to separate those
terms in the Hamiltonian that are diagonal on different spaces. To switch from the real to the
reciprocal space and vice-versa, Intel wrappers of the Fastest Fourier Transform of the West
(FFTW) from MKL library are used.

In absence of the magnetic field, two-dimensional FFTW may be used. On the contrary, in
the IQH regime the Landau Gauge couples the momentum p,(p,) with the real-space coordinate
on the §(2)-direction. Therefore, the Split-Step Fourier method in presence of the magnetic field
entail one-dimensional FFTW related to the Z(g)-direction separately.

A scheme of the algorithm is reported in Fig. 3.2(a). These one-dimensional FFTW must be
performed for each point of the simulation grid on the §(#)-direction, and vice-versa. Such loop has
been parallelized with OpenMP, each task performing a series of one-dimensional Fourier transform

‘ MareNostrum (BSC) Marconi A2(CINECA) Hydra (UNIMORE)

Location Barcelona (Spain) Bologna (Italy) Modena (Italy) Model
Lenovo Adam Pass Lenovo NextScale

Processors Intel Xeon Platinum Intel Xeon Phi 7250 Intel Xeon CPU E5-2640
8160 24C CPU (KNL) v3

Freq 2.1 GHz 1.40 GHz 2.60GHz

Nodes 3240 3600 40

Cores 48 cores/node 68 cores/node 16 cores/node

Hypertreading | NO YES NO

RAM 96 GB/node 96 GB/node 64-128 GB/node

Peak Perfor- | 11 PFlop/s 11 PFlop/s

mance

Network 100Gb Intel Omni-Path Intel OmniPath Archi- InfiniBand interconnects
Full-Fat Tree tecture 2:1

Table 3.1: Technical information on the supercomputing machines and hardwares used in our
computations.
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l (b)
(a) =
DO x = (global range ) I _
CALL FFTW [W(x.)] g o8| .
an (]
CALL FFTW [W(x,)] 5 \
END DO S 06+ \ i
F \
DO x, = (global range ) (c) T—l 0.4 - : .
DO x, = (local range) S \
CALL FFTW  [W(x,.:X,..)] : | v
5 02 11024x1024 —a—
CALL FFTW?  W(x,.x,)] | ¢ 1024x2048
yly2 1% = 1024x4096
END DO 2048X4096
END DD 0 | | 1 | |
2 4 6 8 10 12

|\Iprocs

Figure 3.2: (a) Algorithm for the application of the evolution operator according to the Split-
Step Fourier method to simulate single-electron transport. OpenMP tasks execute chunks of the
first DO loop. (b) Numerical performances for the single-particle version of our code parallelized
with OpenMP. Each task performs a chunk of the DO loops in panel (a). Relative clock times
for different grid sizes are compared. (c) Algorithm for the application of the evolution operator
according to the Split-Step Fourier method to simulate two-electron transport. MPI processes
execute the double DO loop according to their local range. Note that FFTW calls are blocking,
i.e. they are executed simultaneously for all the MPI processes. Consequently, all the processes
execute the FFTW with regards to the same x; parameter.

on £(§) according to its interval of iteration on §(%). Fig. 3.2(b) shows the HPC performances
for an increasing number of tasks and different grid sizes. The ratio between the clock time of a
single iteration with Ny, tasks and the clock time of a single iteration for the serial version is
here displayed: for such simulation grids, performances are significantly increased by increasing
the number of OpenMP tasks involved, and saturates similarly when Np,ocs >~ 10.

3.3.2 MPI parallelization of the two-particle version

If OpenMP is satisfactory to simulate also very large two-dimensional systems (up to the meso-
scopic scale) in a single-particle picture, the numerical simulation of two-particle transport requires
HPC resources. Indeed, the two-particle wavefunction contains four degrees of freedom, i.e. two
real-space or reciprocal-space coordinates for each particle. Differently from the common approach
to two-particle dynamics in the IQH regime, we prefer not to use a one-dimensional model exploit-
ing the chiral nature of edge channels, but we consider a two-dimensional system to investigate the
effect of realistic potential landscapes, whose shape determines energy-dependent effects.

In a 2D system, the two-particle wavefunction W(x1,y1,x2,y2) requires the allocation of an
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3.3 — Parallel implementation and HPC-related performances of the Split-Step Fourier method

(N x M)? complex matrix on an N x M real-space simulation grid. Due to its large memory cost,
the wavefunction must be allocated by adopting multi-node data distribution on a supercomputing
machine. As an example, the two-particle wavefunction, allocated as a 4D complex array with
double precision, requires about 1 TB on a 512 x 512 simulation grid. This amount of memory can
not be provided by a single node even in supercomputing machines, as visible from Tab. 3.1.

To this end, the code has initially been parallelized with a one-dimensional distribution of ¥ in
the MPI paradigm: the §5 index only is defined on a local range for each MPI process involved in
the computation, so that each MPI process allocates in its own memory a portion of the two-particle
wavefunction. The Split-Step Fourier method is so applied by each process to its own portion of the
distributed wavefunction. In presence of the magnetic field, two-dimensional Fourier transforms
on the &1, Z2(91, §2) domain, which are not coupled by the Landau Gauge, are performed for each
point of the local g1, (%1, %2) grid (see Fig. 3.2(c)). According to the chosen Landau gauge, one
loop (e.g. the one on #;,#2) can be performed serially, while the second one (e.g. the one on
91, 92) requires collective MPI communications during the execution of the FFTWs, whose number
of calls depends on the grid points on the global directions.

In this algorithm, HPC performances are affected by the (i) size of the chunk of ¥ manipulated
by each MPI process with total number Npyocs, Pioe, and (ii) the number of communications
involved. By increasing Nprocs, the size of ;.. decreases, but the number of communications
increases. In a one-dimensional distribution, however, the number of MPI cores involved in the
computations can not be larger than the number of grid points in the global direction. This fixes
a maximum number of MPI processes involved, that limits HPC performances for the sizes of our
simulation grids.

In the second version of the software, the previous parallelization scheme has been replaced by a
Cartesian topology of the MPI processes: we distribute the two-electron wavefunction with respect
to both &3 and §; coordinates. A scheme of the distribution protocol is reported in Fig. 3.3(a). A
number N? of MPI processes are distributed on the #o-direction and a number of NY. . MPI

procs procs
processes are distributed on the §js-direction. Per-row and per-column communicators are created

(a) y2 A (b) Y2 FFTW(Y1,Y2)
| AN A A
N PER COLUMN
P [
/ ? O
] AY ;2
’ \ X1yl
| CPU C#U ” C\QU || CNJ | 2 FFTW(X1,X2)
Memor’ Me*mry Memay Memory
| | | I - PER ROW
High Speed Interconnect Network 1

x1,yl

Figure 3.3: Parallelization protocol adopted to allocate and evolve the two-particle wavefunction.
(a) Cartesian topology adopted for the MPI pool in a distributed-memory machine. The wave-
function is distributed among the MPI processes P; according to the local range of ro = (22,y2)
(b)Communication protocol during the execution of the 2D FFTWs with per-row and per-column
communicators.
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(a) MPI POOL = 32 MPI POOL = 256 (b) 180 e 8
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Figure 3.4: (a) Clock time to execute one step of the Split-Step Fourier method for different
Cartesian topologies and MPI pools on MareNostrumIV.(b) HPC performances for the execution
of one step of the Split-Step Fourier method by increasing the number of MPI processes, which are
equally distributed on the Z and g-direction of the simulation domain.

to organize MPI communications during the execution of the Fourier transforms, as depicted in
Fig. 3.3(b). Therefore, both loops are performed in parallel. However, in the present scheme the
number of MPI processes is not limited by the size of the simulation grid in the direction where
the wavefunction is distributed. Moreover, collective communicators generally involve a smaller
number of processes (only the ones on the same row or column) during the execution of FFTW.
As evident from Fig. 3.4(a), for a given value of Ny ocs, the clock time to execute a DO loop
depends on the Cartesian topology adopted in the MPI paradigm. This generally differs if the
FFTWs are executed on the & or fj-directions. This follows from the different cache usage entailed
by the Landau gauge, which couples the p, and & operators only. Note from Fig. 3.4(a) that,

Neores Nnodes
16000 | | | 300 ‘ : : |
12000 _(a) s 200 _(b) .
8000 B 100 + 4
4000 | | 1 1 | | | |
T T T T T T T T
800 |- HYDRA 7 15 - .
600 - MARCONI B 10 L i
400 -  MARENOSTRUM -
200 | - 51 7
0 0 , , ,
64 128 256 512 1024 64 128 256 512 1024

Figure 3.5: Minimum number of (a) cores and (b) nodes to allocate the 4D wavefunction on
different supercomputing machines for a 2D simulation domain with N grid points per size.
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indeed, the topology with the lowest computational cost does not correspond to the one with the
same number of processes on the two directions, and that the computing time is higher in the
one-dimensional distribution. Therefore, by adopting a Cartesian topology we can decrease the
computational cost by tuning the number of MPI processes on the two directions, adequately to
the hardware and network of the supercomputing machine exploited. Tab. 6.1 summarize the

technical information of the supercomputing machines we mainly exploit: the local HPC facility,
named HYDRA, at the LABCsai Laboratory mostly for single-particle simulations, MARCONI
A2 at CINECA (BO, Italy) and MareNostrum4 at BSC.

Regarding the two-particle simulations, memory is the main constraint in the application of
our software. The number of MPI processes involved in the computations, indeed, has to scale
very fast when we double the simulation mesh, to exploit the optimization of FFTW routines on
domains with 2V points per size. Fig. 3.5 provides the minimum number of (a) cores and (b) nodes
to allocate the 4D wavefunction on the 3 supercomputing machines of Tab. 3.1.

Finally, Fig. 3.4(b) shows the clock time to execute a single loop of the Split-Step Fourier
method as a function of the number of cores (Neores) for a 2D domain with 256 points per size
on Marconi A2. Note that the abscissa scales as 2. The clock time generally decreases with
respect t0 Neores and saturates for at Neores =~ 1024 (yellow line). However, the consumption
in terms of CPU hours (the one accounted for the computation on supercomputing machines)
takes also into account the number of cores involved (purple line) or nodes (blue line), the latter
depending on the hardware itself. As an example, on Marconi A2, the best compromise between
fast computations (minimum of the yellow line) and low CPU costs (maximum of the purple and
blue lines) is Nproes = 256.

3.4 Kwant software for support calculations

Kwant is an open-source Python package that has been designed to simulate single-particle
transport in a finite or infinite mesoscopic system described by a tight-binding model, and it
allows the numerical simulation of 1D, 2D and 3D geometries. The software provides a number
of subroutines to compute the properties of the system, e.g. the local density of states, the
propagating wavefunctions, or dispersion relation once the tight binding model is set. Moreover,
it can be exploited as building block to extract more complex physical properties as the non
equilibrium Green’s function.

To this aim, one has to initially define the infinite mesoscopic system, by connecting the Hamil-
tonian of the finite scattering region with the one of semi-infinite leads. The latters provide the
incoming and outgoing plane waves inside the scattering region, in order to simulate single-particle
transport in the Landauer-Buttiker formalism. A scheme of a 2D and 3D tight-binding system is
displayed in Fig. 3.4.

One-particle annihilation and creation operators are used to rewrite the Hamiltonian in a time-
resolved quantum representation, i.e. H(t) = }_,; H;j(t)c;c;. The Hamiltonian of the infinite
system is divided into sub-blocks, labeled with the index 0 for the central scattering region and
with a number from 1 to M for the leads of the system. As a reference, we refer to the simple
example of a one dimensional chain with two leads; the Hamiltonian has the following matricial
form:

Hopy Ho1i Hp
H=|Hyo Hnu Hi
Hyy Hyy Hy

Here, each diagonal block H;; contains an onsite energy in the leads (Hp) or in the scattering
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(b)

scattering region

Figure 3.6: (a) Structure of an exemplary tight-binding system modeled with Kwant. Sites be-
longing to the scattering region are represented by black dots, sites belonging to one of the three
semi-infinite leads by red dots. (b) A 3D model of a semiconducting quantum wire (gray cylinder)
simulated with Kwant. The balls represent lattice sites. The red region is a tunnel barrier, used
to measure tunneling conductance, and the blue region is a superconductor.

regions (Hg), an hopping term in the leads (V) or in the scattering region (Vg) and an hopping
term between each lead and the scattering region (Vis).

Due to the translational invariance of the leads where they originate, propagating waves are
rewritten as a delocalized state, corresponding to the superimposition of plane waves. The Hamil-
tonian of the lead is then diagonalized,

(Hp + VA P 4+ Vi) Xn = Exn, (3.59)

to compute the eigenvalues and eigenstates of the semi-infinite system. This produces two types
of eigenstates, according to the \ parameter that affects the normalization of the wavefunction.

o If |\,| = 1, the eigenstates define propagating modes with ), = e’*"  which are normalized
in accord to the expectation value of the particle current. In detail, < I >= +1 for incoming
modes and < I >= —1 for outgoing ones.

o If |As| < 1, the eigenstate describe evanescent modes, that do not contribute to the transport
in the mesoscopic device, such that < I >= 0.

Finally, to compute the scattering states the wavefunctions in the leads and the ones in the scat-
tering region are matched trought the equation HVU,, = e¥,,.

Kwant combines flexibility and the ease of use, together interoperability. The first peculiarity
requires an high-level language, Python in particular, while the second one an universal low-level
language interface and simple data structure. This is why the application of the Kwant library
needs to separate the numerical simulation in two steps: first, the construction of the thight-binding
Hamiltonian of the system, and then the finalization into a low-level representation. Ref. [85]
proves that this results in higher performances with respect to alternative transport methods in
time-independent frameworks.
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Part 11

Numerical simulations of Hall
interferometers






Chapter 4

A multichannel geometry for the
Mach-Zehnder interferometer

The electronic MZI combines two of the most basic single-qubit devices for quantum computing,
the beam splitter and the phase shifter, to observe self-interference of the carrier wavefunction. In
the following, we initially review the first geometries implemented in semiconductor heterostruc-
tures in the IQH regime. Then, we will present a new solid-state implementation at bulk FF 2
based on cyclotron-resolved edge states [10, 12] (see Fig. 4.1(a)), and our numerical simulations of
self-electron interference in this new geometry.

In an MZI, the electron faces a self-interference between the reflected and transmitted compo-
nents of its wavefunction generated by a beam splitter. A scheme of its functioning is depicted in
Fig. 4.1(b) The electron state |¢;) is initialized in one of the two available channels |0) ,[1), e.g.
|1y = ¢o|0) +c1|1) with ¢g = 1 and ¢; = 0, and then it is split into a coherent superposition of the
reflected and the transmitted component by a first electron beam splitter, i.e. |17) = ¢{]0) + ¢ |1).
The probability of this scattering process is related to a transmission coefficient ¢;; from an initial
channel ¢ = 0,1 to a final channel j = 0,1, so that the electron wavefunction |¢;;) is computed by

applying the matrix
B = (too tor (4.1)
tio tu

to the initial state: |ir) = BWI>- For an ideal beam splitter, |¢;;|> = 1/2, regardless the energy
of the electron state.

Then, the phase shifter separates the paths of the two basis states, |0) and |1), in order to
introduce a relative tunable phase, generally depending on the geometry of the system and on the
intensity of the magnetic field. The effect of such gate on the electron state is described by the
application of the following scattering matrix to |¢;r):

A el®o 0
¢ = ( 0 ei(i)l) ) (42)

where we assume that no additional interchannel scattering is present, as in an ideal apparatus.
The two channels are forced to follow different paths, lo and [, so that each component of the
electron state accumulates a phase

i = % l(p —qA)ds; =& + xi, (4.3)
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4 — A multichannel geometry for the Mach-Zehnder interferometer

that depends on the line integral of the total momentum on the specific path of the channel [;,
with ¢ = 0,1. &; and x; are called the dynamic and magnetic phase difference and depend on the
linear momentum and on the vector potential respectively:

1
& = 7 /ip x dr (4.4)

1
Xi = ~ /qA x dr (4.5)

The dynamic phase difference between the two channels ¢ = 0,1 reads

1
A¢=& - 6o= ([ prdr- [ pdr)— kAL (16)
I lo
where Al = [y —1j is the length difference between the two paths, while the relative magnetic phase
is computed from the flux of the magnetic field through the area enclosed by the two channels (.5)
via the Stoke’s theorem
D

e (&
Ay = - = — A-ds=—-BS=m—. 4.7
X = X1 — Xo h/SVX s= W‘I’o (4.7)

Here, &9 = 4 = 2.0678 - 10~ Wb is the magnetic flux quantum.
Finally, the two beams are recollected on a second beam splitter, where they interfere. The

final wavefunction is then computed from
[rv) = BOBly). (4.8)

In our numerical simulation, we further project the output state |¢)ry) on one of the two basis
states |i), in order to calculate the transmission probability to the i-th channel:

T = [{ilvrv)I*. (4.9)

As proved in the following, in absence of decoherence phenomena, the intensity of the transmission
probability oscillates with the magnetic field or the geometrical parameters of the phase shifter,
thus manifesting an interference pattern.

(b) ALV

M BS  /
A 11
I IT
, BS M

Figure 4.1: (a) The multichannel geometry of a MZI in the IQH regime [86, 13]. Electrons are
injected in the first (n = 0) or in the second (n = 1) Landau level from the two sources Sy and Ss.
Fy and F; label the potential dip acting as an half-reflecting electron beam splitter. Vj is a top
gate that separates the paths of the two edge channels, which are finally recollected at the second
beam splitter. Two contacts D; and D selectively absorb electrons according to their Landau
index. (b) Scheme of a MZI. The red and blue solid lines represents the two paths of the electron
state, which are separated by the two beam splitters (BS).
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4.1 — The MZI in the IQH regime

4.1 The MZI in the IQH regime

In solid-state implementations, the visibility of the oscillations in the transmission amplitude,
vis= ——————— (4.10)

estimates the degree of decoherence induced e.g. by impurities [87, 88], phonons [89] or background
charges that typically affect electron transport in semiconductor heterostructures. However, the
IQH regime proved to be an ideal playground for electron interferometry, thanks to the long-
coherence length of the edge states where the carrier is initialized.

In this framework, the quantum logic gates are realized by locally depleting the 2DEG, with
metallic gates of top of the heterostructure that affect locally the bulk FF. The external confining
potential V. felt by the electrons is locally varied, so that the path of the edge channel can
be tuned according to the quantum logic operation to be performed. The specific design of the
external potential V...(x,y) depends on the type of edge states exploited to define the basis set.
According to the bulk FF of the device, two implementations are therefore possible.

(i) For a unitary filling, the gquantum rails are defined by the counterpropagating edge states
with opposite momentum but same Landau index, e.g. |0) = @,xe™¥ and [1) = ¢, e~ Y,
which are located at opposite sides of the confined 2DEG.

(ii) At FF larger than one, the two (or more) channels available at each side of the device
i) = @n,ke*¥ define a suitable basis set for logic gate operations. With contrast to the first
scenario, these edge states propagate in the same direction of the device, but differs in the
Landau index n;.

4.1.1 The QPC at bulk FF 1

The earliest proposals of Hall MZIs are based on counterpropagating states from the same
Landau level at bulk FF 1. Here, the coherent superposition of the two electron paths must be
realized by a nanostructure able to scatter the electron from the edge state @, xe’*¥ to the one with
opposite chirality ¢, _re~ ¥, spatially located at the opposite border of the device. This requires
the introduction on the electron path of a QPC, a narrow constriction in the 2DEG that reduces
the lateral distance between the two confining barriers of the device, thus favoring the presence of
interchannel tunneling. Then, when the two borders are further separated, the wavefunction splits
between the two paths with an energy-dependent transmission probability given by |t;;(F)|?, with
¢t = 0,1 and 5 = 0,1 labeling the input and the output channels, respectively.

If applied to electron states with an energy broadening, the energy selectivity of the QPC has a
significant role on device performances. Ref. [7] provides an empirical definition of the transmission
t(k) and reflection r(k) coeflicients for the scattering of an edge state in the first channel on a full-

scale QPC:
r(k)| _ 1
L(k)] B \/exp(:l:a(k — k) +1)’ (4.11)

where k is the (gauge-dependent) wavevector of the impinging electron, k. and « are fitting pa-
rameters depending on the design of the gate, as the opening size and the smoothness of the lateral
barrier.

With the simulation in Fig. 4.2(a), we validate ¢(k) and r(k) coefficients in Eq.(4.11). Here,
we simulate the scattering of a single-electron wavepacket |¢) with o = 40 nm and central energy
E° = 11 meV at a QPC with an opening size of d, = d, = 32.2 nm. The transmitted [¢r)
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Figure 4.2: (a) The top panel displays the reflection R(k) and transmission T'(k) coefficients of a
QPC with an opening size d = 32.2 nm, computed by means of the wave-packet method (dot) with
a single-electron wavepacket with ¢ = 60 nm and a central energy E° = 11 meV. Numerical data
are fit by Eq.(4.11) (solid line). The bottom panel compares the probabilities that an edge state
with wavevector k belongs to the the initial (black line), reflected (blue line) and transmitted (red
line) wavepacket. (b) Scheme of the 2D external potential mimicking the single-channel MZI (grey
area). The initial wavepacket (red shape) is partitioned between the two channels (red and blu
arrows), which follow different paths. Note that the reflected channel (blue one) is not available
at the output port of the device.

and reflected |¢r) components of the electron wavefunction are defined at the right |R(k)) or left
|L(k)) sides of the device [7] by means of the Gaussian weight function for the initial state F(k),
as follows:

) = |¥r) + |¥r), (4.12)
) = /dkF(k)r(k)|L(k)>:/dkFL(k)|L(k)>, (4.13)
r) = / dk: F(k)E(K) |R(k)) = / dk: Fr(k) [R(K)) (4.14)

The wave-packet method provides the reflection and transmission probability for a given wavevector
k by projecting the wavepacket on the local eigenstates |L(k)) and |R(k)):

[FL(k)® _ (L(k)| L))

r(k)[* = TR = FRE (4.15)
. Fe®)P [RGB
1kl FRE - PP (4.16)

The numerical data provided by this method (dots in top panel of Fig. 4.2(a)) are then fit by the
empirical equations (solid line) for r(k) and ¢(k).
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4.1 — The MZI in the IQH regime

Eq.(4.11) clearly shows an energy asymmetry in the reflection and transmission probabilities.
Indeed, the high-energy components in the wavepacket have an higher probability to be transmitted
by the QPC, while the low-energy components are preferentially reflected. This is confirmed by
the shape of the reflected (blue line) and transmitted (red line) wavepackets displayed in the
bottom panel of Fig. 4.2(a). This specific design of the QPC splits the initial wavefunction into
two localized states, that are characterized by identical integrated probabilities (50%), if the initial
wavepacket (black line) has a central wavevector kg that is properly aligned with the turning point
of the energy selectivity, i.e. kg = k.. However, for a non negligible broadening of the wavepacket
energy distribution, as in the present case, the reflected and transmitted components are differently
distributed on the wavevector space.

Furthermore, we observe that the probabilities R(k) = |r(k)|> and T(k) = [¢t(k)|* on the
Fourier space are properly fit by two Fermi-like distributions, so that the probability that a state
with wavevector k is reflected (|Fr(k)|?) or transmitted (|Fr(k)|?) reads:

2 _ 1 2 _ _ 2

‘FR(k>| - eXp(Oér(kfkr)+1)|F(kj)| _Fl)ét<k kt)‘F(k” ) (417)
2 _ 1 2 _ _ 2

L0 = ey PP = Fa (b= b PP (4.18)

The optimal parameters for an half-reflecting beam splitter are therefore k; = k. = k. and oy =
—a, = a.

Moreover, in the case of a Gaussian weight functions F'(k) for the initial single-electron wavepacket,
it is convenient to use a Gaussian distribution instead a Fermi-like one to compute the above prob-
abilities. Indeed,

1 (a(k —ke) +7)°

exp(a(k —ke) +1) =oxp [_ 4y ’ (4.19)

with v = 41n(2). This approximation is appropriate for the most relevant wavevectors in the
wavepacket spectrum, i.e. the components near the turning point of the energy selectivity, k.,
while those states at very high or very low energies are over- or under-estimated, respectively.
However, for a large electron wavepacket centered around k., these contributions are in the tails of
the wavepacket, and therefore they do not significantly affect the scattering process at the QPC.

Indeed, this approximation has been successfully adopted to predict analytically the visibility
of a single-channel MZI [7], and the bunching probability in two-particle HOM experiments driven
by exchange interaction [21] with strongly localized wavepackets, as later detailed.

4.1.2 Phase Shifter at bulk FF 1

The coherent superposition of counterpropagating edge states must be split laterally to induce
a relative phase shift between the two electron paths. In the solid-state implementations under
study, operating at FF 1, this is forced by the opposite sign of the effective wavevector Ak in the
two edge channels of the 2DEG.

However, in order to create a loop area S at bulk FF 1, the geometry of the Hall phase shifter
must force the two channels to propagate in the same direction of the device, despite their opposite
group velocity. This is achieved by the external potential mapped in Fig. 4.2(b), where the phase
shifter is integrated into a full MZI.

Two QPCs link a potential mesa with local FF 0 (as in the confining potential) to an indentation
with local FF 1 (as in the bulk) inside the confining barrier of the 2DEG. The initial state (red
wavepacket of Fig. 4.2(b)) is split by the first QPC into a reflected (blue arrow) and transmitted
(red arrow) component that counterpropagate next to the lateral barriers of the mesa (for negative
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4 — A multichannel geometry for the Mach-Zehnder interferometer

Ak) and of the indentation (for positive Ak) respectively, due to the opposite slope of the potential
confining barrier in the initial horizontal path. In absence of additional energy-degenerate states,
the two channels follow the border of each confining potential without additional interchannel
scattering.

Edge states with Ak < 0 are therefore confined at the outer edge of the indentation (see
Fig. 4.3(a)), while the state with Ak > 0 originate at the edge of the potential mesa. At the
bottom end of the phase shifter, where the two channels are recollected at the second QPC, the
reflected component of the final state propagates back inside the indentation zone, so that it can
not be reused as an input for a possible following stage of quantum processing. This is the main
limitation of this solid-state implementation, and prevents the exploitation of Hall interferometers
at bulk FF 1 for many-qubit architectures. Indeed, this geometry of the device requires an Ohmic
contact, called air bridge, at the inner edge of the indentation/outer edge of the potential mesa to
absorb the back-reflected channel.

To simulate the presence of the air bridge, that absorbs a wavefunction traveling along the
g-axis and limited along the Z-axis, we follow the proposal of Ref. [83], and introduce in the inner
edge of the mesa, facing towards the indentation, the following potential:

Vabs (@, y) = ivaobs Zelz _21;1)]:1(17 ; xC)a
cosh? ((252)°)

(4.20)

where d is the characteristic decay length, 7. (x — () a Fermi-like function with smoothness 7 and
turning point xg, and Vaobs is the value on the top of the lead, which must be negative to absorb
the wavefunction [13, 7]. By adding Vgps(z,y) to the external potential, the reflected component
of the electron state vanishes, and the final norm of the wavefunction at the end of the device
provides the total transmission probability of the MZI (|tgo|?).
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Figure 4.3: From Ref. [78]: (a) full-scale potential generated by top gates in the single-channel
MZI of Ref. [7] (blue region) and dynamics of a single-electron wavepacket with o = 60 nm; (b)
scheme and geometrical parameters of the MZI to implement the 1D effective model. The device is
divided into 3 sections: (I) in blue, where the channel | D) is filled, (II) in green, where two paths
|L), |R) propagate after the first QPC, and (III) in orange, where the final channel |Ds) - the only
one transmitted outside region II by the second QPC - is measured.
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4.1 — The MZI in the IQH regime

Together with preventing its scalability, the presence of the air bridge poses a technological
limit to the miniaturization of the loop area, thus affecting the performances of Hall interferometers
with counterpropagating channels. An efficient engineering of the MZI requires indeed a small loop
area to observe the interference pattern with a large visibility [10]. Due to this topological limit,
this design of the beam splitter and phase shifter have been mainly integrated into Fabry-Perot
interferometers [90, 91, 92, 93, 94], while their experimental implementation in semiconductor
MZIs is more recent [8, 15, 9].

4.1.3 Visibility of the MZI at bulk FF 1

In realistic implementations of Hall interferometers, where non-monochromatic beams of elec-
trons or energy-broadened wavepackets are injected, the energy dependence of phase shifting must
be also accounted for. Indeed, the line and surface integrals in Eq.(4.6) and Eq.(4.7) actually
depend on the distribution of the edge states in the transverse direction of the device, due to the
energy-dependence of the center z{j(F). The interference pattern is so affected by phase averaging
on large energy windows [95], which is detrimental for the visibility of the transmission amplitude,
also in absence of decoherence induced by impurities or thermal smearing.

In the literature, the visibility of an electronic MZI is usually predicted by introducing a 1D
effective model based on the analogy between edge states in 2D heterostructures and plane waves in
1D effective geometries. In Ref. [7], we study numerically a singe-channel interferometer at bulk FF
1 and generalized this result for localized wavepackets of edge states, and compare the theoretical
predictions to the results of full-scale numerical simulations in our time-dependent framework.

In the typical effective 1D scheme, the device is divided into three regions, as displayed in
Fig. 4.3(b), containing the QPCs and the phase shifter. The initial state is a linear combination
of plane waves |D;) along the §-direction, (y|D;) = e**¥:

wn) = [ drE@®ID), (4.21)

where F (k) = N exp(—0c?(k—kg)?) is a Gaussian distribution centered at ko with spatial dispersion
0. By means of the scattering matrix method, the final transmission probability from channel 0
to channel 1 for a single k-component of the wavepacket at the end of the device reads|7]:

T(k‘) = |<D2|‘I’[}[>|2 = TO — T]_COS(AX — k‘QAl), (422)
where Ty = |ror1|? + [tot1]? and Ty = 2roritoty, Ay is the magnetic phase and Al the relative
length difference between the two channel paths.

We assume

(i) energy-independent coefficients r;(k) = t;(k) = % of the half-reflecting beam splitter,

(ii) an energy-independent phase Ay — koAl,

so that the total transmission probability for a Gaussian wavepacket can be computed analytically:
T =2 / k| F ()T (k) = Ty — Tye™ 5% cos(Ay — koAl). (4.23)

The relative phase depends on the geometrical parameters of the MZI in Fig. 4.3(b):

Ap— kAl = [%H(aL + LO)} B+ o (4.24)
- [%HB - 21%} ar + o, (4.25)
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4 — A multichannel geometry for the Mach-Zehnder interferometer

and the transmission amplitude oscillates with the relative path difference ay, and with the intensity
of the magnetic field B:

(ap—L1)?
T(ap,B) = Ty—Tie” LT COS(%BH(CLL + Lo) — 2ke(ar — L1))
_(ap—Lp?
= To—Tie 22 cos(kear + ¢q) (4.26)
(ap=L1)?
= Ty—Tlcos(kgB+¢p), T,=Te =7 . (4.27)

This model predicts an oscillating behavior of the transmission probability as a function of the
magnetic field B and geometrical parameter ay,. However, in presence of a localized wavefunction,
T(ar) in Eq.(4.26) is also characterized by an exponential decrease in the visibility, which is not
present in the magnetically-driven Aharonov-Bohm pattern T'(B) in Eq.(4.27).

Within our time-dependent approach, we explain the damping in the visibility by resorting to
the dynamics of the two localized reflected and transmitted wavepackets inside the phase shifter [7,
28]. Coherently to its energy selectivity, the first QPC splits the initial wavefunction in a reflected
and transmitted component that are localized in space. If the outer and inner edge of the phase
shifter have the same length and smoothness, the reflected and transmitted wavepackets propagate
with a very close group velocity. When Al # 0 they recollect at the second beam splitter with
a time delay induced by the path difference, and interfere according to their relative phase. For
a larger path length difference, the two wavepackets do not overlap in space, so that the inter-
ference is suppressed. However, in contrast to the prediction of the simple theoretical model in
Eq.(4.26), full-scale numerical simulations of the Aharonov-Bohm pattern in the MZI [7] show that
the actual length scale for this process is larger than the spatial broadening of the wavepacket, o.
Such discrepancy is proved to decrease for ¢ — oo, that is when the electron wavepacket is well
approximated by a delocalized plane-wave with a high resolution in energy. This trend is typical
of scattering processes where assumption (i) is adopted, as usually done in literature.

We can increase the realism of our model by including the energy selectivity of the QPC. By
resorting to the empirical coefficients r(k), t(k) in Eq.(4.11), we compute Ty and T; as a function
of the real-space broadening of the wavepacket and the geometrical parameters v and « [20]:

2
o o o
To = —= T =2= —— . 4.2
0= 9% 1 ZeXP< 222) (4.28)
The visibility reads
) 1 yo?
vis =  exp <222> . (4.29)

%2 = 02 +a? /4y represents therefore the length scale for the damping of the transmission amplitude
induced by the energy selectivity of the QPC. The actual visibility is lower than the ideal value
1, which is restored only in the limit «/2,/7 << o. This condition identifies the case with a
delocalized plane wave as electron state, or a QPC with a selectivity smooth enough to neglect the
energy dispersion of the wavepacket.

However, assumption (ii) is still present in this model. The validity of this approximation
depends on the energy broadening of the injected wavepacket with respect to the smoothness
of the energy dispersion E, (k) in the channel: for a large slope a, the states involved in the
wavepacket have a dispersion that is large in energy, but small in space, so that zo(k) is expected
to be almost independent from k. To reduce the impact of assumption (ii), the injection of single-
electron wavepacket with a high energy resolution is clearly mandatory. However, phase averaging
also depends on the miniaturization of the loop area, which is here limited by the presence of the
Ohmic contact. Better performances are possibly achieved in a multichannel implementations of
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the MZI, where the loop area can be decreased by almost 2 orders of magnitude with respect to
the single-channel geometry [10].

4.1.4 Towards a new design: multichannel geometry at bulk FF 2

At bulk FF 2, the first two cyclotron-resolved edge states with Landau index n = 0,1 and same
chirality define the basis states. In this case, the implementation of the beam splitter requires
elastic interchannel mixing, to be realized by a potential sharpness on the edge state path [96, 97],
that extend on a scale of a few magnetic lengths [6]. For B = 5 T, this length is about 11 nm,
which is certainly feasible with current technologies. In the present scenario, the two channels
always copropagate at the same side of the confining barrier, thus solving the topological limit
affecting nano-interferometers at bulk FF 1.

In the earliest experiments of electron beam splitters at bulk FF 2, abrupt potentials - called
nanofingers - are inserted on the path of the edge states to generate interchannel scattering.
However, without a fine shaping of its geometry, the potential dip acts as a beam splitter with a low
transmission coefficient, far from the target of 50% for an ideal functioning of the MZI [6]. By means
of arrays of nanofingers, the total transmission probability is increased in Quasi-Corbino [98; 99]
and quasi-Fabry Perot interferometers [93]; however, these devices are still affected by a topological
limit in scalability, as for counterpropagating edge states: the inner edge channel (n = 1) is confined
inside the loop area, where it must be absorbed by an Ohmic contact.

Recent numerical simulations [6] show that a significant enhancement in the transmission prob-
ability can be achieved when the spatial periodicity among the nanofingers matches the resonant
condition, as experimentally proven by using spin-resolved edge states. Here, an additional periodic
in-plane magnetic field flips the edge spin to generate interchannel scattering [12].

However, due to the large dimensionality of the array, the two channels copropagate for long
distances next to each other, and favor decoherence phenomena between the spin-resolved chan-
nels [100, 101], as already exposed in experiments on traditional MZIs [102, 103] and HOM geome-
tries at bulk FF 2 [17, 104]. The injected electrons interact with the Fermi sea of the copropagating
channel, and the charge is fractionalized between the two quantum rails [30]. This effect produces
decoherence and significantly affects the visibility of the device[25].
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4 — A multichannel geometry for the Mach-Zehnder interferometer

4.2 Copropagating edge states for single-electron interfer-
ometry

Instead of using spin-resolved edge states, our research focuses on a multichannel MZI where
the two copropagating channels belong to different Landau levels with n = 0,1, as proposed by
Giovannetti et al. in Ref. [10].

However, the application of the resonant condition for cyclotron-resolved edge states would
require a much smaller spatial periodicity (few A)[11], which is beyond the current limit of nan-
otechnology. The interchannel mixing is here generated by carefully designing a sharp potential
dip to mimic an electron beam splitter. As a consequence, in our new geometry the length in which
the two channels need to run on the same edge (i.e. the region at FF 2) is limited to the small
beam splitter region, thus reducing the effect of the decoherence phenomena affecting copropa-
gating spin-resolved edge states [25]. Furthermore, these interchannel interaction can be further
quenched by introducing potential mesas to laterally separate the quantum rails [13, 31].

In the following, we will initially present our design of a steep and smaller geometry to realize
coherent mixing between channel n = 0 and channel n = 1. The present electron beam splitter is
devised to induce a quasi-flat energy selectivity on the energy broadening of the initial wavepacket.
By adding the phase shifter and an absorbing potential, we then simulate self-electron interference
in a full scale MZI with our time-dependent method [13]. Finally, we compare the numerical
interference pattern in the transmission probability amplitude with the predictions of a simplified
analytical model, and show that the present geometry presents higher performances with respect
to the design based on a FF 1.

4.2.1 A new shape for the beam splitter: the potential dip

At bulk FF 2, the electron wavepacket is initialized in one of the two available channels with
Landau index n = 0,1 and scattered by a solid-state beam splitter to both Landau levels, as
schematically depicted in Fig. 4.4(a).

Numerical simulations based on delocalized plane waves [96] show that a coherent edge mixing

(b)

4

t12

Figure 4.4: (a)Scheme of the scattering process at the beam splitter. The two horizontal lines
represent the two edge channels involved in the process (red for the first Landau Level and blue
for the second Landau Level), where carriers propagate from left to right. The coefficients ¢;; label
the transmission probabilities from the initial state i to the final state j. (b) Rendered picture of
the potential Vpg profile modeling the beam splitter in Eq.(4.2.1) with Ay = |y — y1| = 17.6 nm
, Az = |29 — 21| = 20.0 nm and 7 = 0.55 nm~1..
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Figure 4.5: (a) Energy-dependent transmission probabilities between the two channels for the
electron beam splitter modeled by Eq.(4.2.1) with Ay = |yo — y1| = 17.6 nm , Az = |zg — 21| =
20.0 nm and 7 = 0.55 nm~!. The black line identifies the minimum energy of the third Landau
level (n = 2). (b) Energy-dependent transmission coefficient too for different sizes (Az, Ay) and
(c) smoothness 7 of the potential dip in Eq.(4.2.1).

is achievable by introducing, on the path of the edge channels, spatial inhomogeneities on a scale
smaller than the magnetic length [,,,. Abrupt potential profiles scatter elastically an impinging
plane wave with wavevector k, and redistribute the incoming wavefunction on the available states
(the first two Landau Levels in the present case, with n = 0 and n = 1), with a transmission
coefficient tﬁf from the initial ¢ = 0,1 to the final f = 0,1 channel. This coefficient generally
depends on the energy of the incoming state, on the value of the magnetic field B and on the shape
of the local potential.

In presence of single-electron injection, or more generally of an energy bias, the above mecha-
nism applies to all the states involved in the energy distribution of the injected particle. Therefore,
the transmission probability of the potential profile mimicking the beam splitter must be constant,
ie. |tj3;»S(E)|2 = 1/2 with 4,j = 0,1, for each energy component E of the electron wavepacket. By
taking into account the energy dispersion of the scattered state, the sharpness must be carefully
designed to maximize the overlap between the reflected |¢g) and transmitted |1pr) components of
the wavepacket in the k-space. An ideal functioning of the MZI - a perfectly coherent device with
an unitary visibility in the Aharonov-Bohm pattern - requires that the two contributions |¢g),
|r) cancel each other completely, after the interference at the second beam splitter.

Fig. 4.4(b) displays our design of the potential profile V,;(x) at the beam splitter: this is a
sharp squared potential dip smoothed at the corners with Fermi profiles, which is modeled by the
following surface:

_ Vas(L+eap[—mps(z —a1)]) " (1 + eap[—Ts(y —y1)]) "
Ves(zy) = 1+ exp(mps(xz — xg)) 1+ exp(ms(y — yo)) (4.30)

where 7pg is the smoothing parameter, and xo,z1 (yo,y1) define the position of the horizontal
(vertical) edges of the beam splitter.
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Figure 4.6: (a) Probability distribution of a single-electron wavepacket initialized in the first (red
wavepacket) or second (blue wavepacket) Landau level before and after the scattering at the po-
tential dip in Fig. 4.4(b), and corresponding integrated transmission probabilities. (b) Energy and
magnetic dependence of the transmission coefficients too (left panel) and ¢1o (right panel) of the
electron beam splitter in Fig. 4.4(b). Datas are computed by means of the Kwant software [85].
(¢) Numerical simulation of the electron density probability in presence of a triangular potential
dip, 40 nm long and with no extra smoothness. The beam splitter is embedded in a device with
three leads, L1, Ly and L3, that mimic the selective injection/absorption of electron current in the
first or in the second Landau level [10, 12, 13]. The electron density probability after the beam
splitter is a coherent superposition of the first and the second channel. In both cases, the beam is
initialized in the first edge channel at £ = 20.4 meV and it is scattered to the second channel with
about (50 + 4)% probability.

Energy-dependence of a sharp potential dip at bulk FF 2

The energy-dependent transmission coefficient tgcs (E) is computed by numerically simulating
a single-electron scattering at the QPC, and resorting to the wave-packet method. We simulate the
scattering of a Gaussian wavepacket of edge states (|¢r)), initialized in n = 0 or in n = 1, with
an energy broadening op ~ 1.5 €V and central energy E° = 20.4 meV. The Fourier analysis of
the scattered wavefunction after the beam splitter (|1;;)) in the two scenarios provides the energy
selectivity of the gate.

Figure 4.5(a) shows the energy dependence of the transmission probability |tﬁs (E)|? fori,j =
0,1. Due to flux conservation, the interchannel (off-diagonal) transmission probabilities are the
complementary of the interchannel ones. The transmission probabilities |tﬁ»s (E)|? are approxi-
mately constant in the energy distribution of the initial wavepacket with n = 0, defined by |F(E)|?
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4.2 — Copropagating edge states for single-electron interferometry

in Fig. 4.5(a), thus showing its functioning as an ideal beam splitter. Fig. 4.5(b) displays the in-
trachannel transmission probability [t2%(E)|? for different values of the geometrical parameters in
Eq.(4.2.1),i.e. Az =20—2z1, Ay = y0—yl and 7; it clarifies that Az = 20 nm, Ay = 17.6 nm and
7 = 0.5 nm~! represent the best choice for our operating regime, characterized by a wavepacket
initialized in n = 0 at EY = 20.4 meV and in presence of a perpendicular magnetic field with value
B=5T.

The top panel of Fig. 4.6(a) shows the single-electron density probability before and after the
scattering at the potential dip. In our operating regime, the Gaussian wavepacket initialized in
the (left) n = 0 or (right) n = 1 channel is transmitted/reflected with an integrated probability
about 1/2. Therefore, the scattered wavefunction after the beam splitter is well approximated by
a coherent superposition of two wavepackets belonging to the first and to the second Landau level,
with a probability about 0.5:

[rr) = coltho) + calibr), (4.31)

with |eg|? & 1/2 and |c;|? ~ 1/2 for both scenarios. Here, we observe a small discrepancy between
the sum of the two scattered intensities and unity. This is due a small scattering to the edge states
in the third Landau level: its minimum energy, E,—2 = 3fiw, = 21.6 meV (black line in Fig. 4.5(a))
is indeed covered by the high-energy components of our initial wavepacket.

Magnetic-field dependence

The magnetic-field dependence of the transmission coefficient tBiS is instead provided by means
of stationary simulations with the Kwant software [85]. This library provides the scattering matrix
of an external potential V.,; - the sharp potential dip in the present case - for a given energy of
injection through the smatrix.transmission() method. We compute the probability |tﬁS(E, B)|?
in the range of values B for which Aharonov-Bohm oscillations in the transmission amplitude at
the output of the MZI are expected, together with tuning the energy F according to the broadening
of our initial wavepacket. A map of |t?f(E7 B)|? is displayed in Fig. 4.6(c).

The transmission probability between two different channels slowly increases with the magnetic
field. We therefore expect that the visibility of Aharonov-Bohm oscillations will slightly depend
on the value of B, in contrast with the prediction of stationary models for both single and multi-
channel implementations of the MZI (see Eq.(4.27) and Eq.(4.55), respectively). The magnetic-field
dependence of the transmission amplitude is later confirmed by our dynamical simulation of the
single-electron scattering in a full-scale MZI at bulk FF 2 [13] (see Sec. 4.2.3).

Alternative shapes for the beam splitter

The realization of a coherent superposition of two localized states in the first and second
Landau levels after the electron beam splitter with almost equal probabilities is possible also
with alternative shapes of the potential dip. As an example, in Fig. 4.6(c), we map the density
probability of a single-energy electron state in presence of a triangular potential dip. The beam
splitter is inserted into a simple device with two leads for a selective injection of the first or second
edge channel and its selective absorption.

The oscillations of the electron probability density between the two channels in the 2D real-space
domain prove that a coherent superposition is generated from the scattering process. As for the
sharp potential dip in Fig. 4.4(b), the central energy of the wavepacket is selected to induce a 50%
scattering probability between the two channels. In present calculations, for both rectangular and
triangular potential dips the scattering probability from the first to the second channel computed
with Kwant software shows a small variation, around 5%, for an energy dispersion of 0.2 meV,
which is comparable to the energy uncertainty usually obtained in experiments[17].
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4.2.2 The mesa structure for phase shifting

At bulk FF 2, the output basis states copropagate at the same side of the device, where their
energy dispersion E, (k), with n = 0,1, depends on the local smoothness of the confining potential.
At a given energy E, the two different wavevectors k™ with n = 0,1 involve the localization of the
edge states in the transverse direction, ¢, x(x), around separated centers xj.

Then, to induce a tunable phase shift between the two paths, we further force this spatial
separation by introducing an external potential that locally modifies the bandstructure, as reported
in the bottom panel of Fig. 4.7(a). Here, a potential step in the transverse direction of the 2DEG
shifts upwards the first Landau level, while the second one is pushed inside the bulk region. While
crossing this mesa, the energies involved by the wavepacket are localized at the outer edge of the
potential mesa for the second Landau level, while the first Landau level is localized at the inner
edge, next to the lateral confining barrier.

From a technological perspective, this corresponds to the application of top gates that locally
vary the depletion of the 2DEG, or equivalently the bulk FF, as depicted in Fig. 4.7(b). The width
of the potential step controls the relative path of the two channels, Al, together with the area
enclosed by them.

We remark that this geometry solves the scalability issue of the previous phase shifter: the
two channels are both available as an output of the quantum gate. However, it requires a careful
engineering in order to avoid additional interchannel mixing. To this aim, we devise the phase
shifter with the following smooth external potential:

VG(:Z:7y) = ‘/5]:7'3 (CE - l‘s) + %fTb(x - ZIJb), (432)
(c)
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Figure 4.7: (a) Bandstructure E,[z¢(k)] of the device at y = —800 nm (region I) for n = 0
and n = 1 compared to the potential profile (blue shaded area). The orange striped interval
defines the energy broadening of the initial wavepacket. Only the first Landau Level is filled with
F(x), as illustrated by the dotted Gaussian curve around zy = —50 nm. (b) Band structure of
the device at y = —200 nm (region II) and potential profile of the mesa structure. The energy
broadening fills the two edge channels at the two sides of the potential, inducing two different
paths for n = 0 (red dashed line) and n = 1 (blue solid line), localized around zy = 120 nm and
zo = —100 nm, respectively. (c) Potential profile of the confining barrier for the phase shifter
based on copropagating edge states. The additional mesa with local FF 1 separates the first edge
channel (red line, running along the inner edge) to the second one (blue line, running along the
outer edge).
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Figure 4.8: (a) 2D map of the external potential profile V.,; at the edge of the mesa structure.
The dark blue region has bulk FF 0, the light blue region bulk FF 1 and the white region bulk
FF 2, so that the two channels (solid lines) are separated and follow different paths. (a) 2D map
of the transmission probability from the first to the first channel [too(E, B)|? computed with the
Kwant software.

where the local curvature 7, must ensure an adiabatic separation of the two edge channels [6],
with a negligible mixing among them. This is achieved by selecting Vi = 11 meV, V;, = 31 meV,
7, = 0.25 nm ™' and 7, = 0.2 nm ™!, as proved by support calculations based on the use of Kwant
software: Fig. 4.8 shows the transmission probability |ti2(E, B)|?, for an electron state with a
well-defined energy E in the present geometry: in this operating regime, interchannel scattering
from the first to the second Landau level is clearly negligible.

Finally, to design a multichannel MZI at bulk FF 2, we need to account for the different
group velocities of the electrons propagating in the two cyclotron-resolved channels [13]. The
bandstructures of the first and the second Landau level differ in the inner and outer edge of the
mesa, where the reflected and transmitted wavepackets are localized. Even with no path difference,
the two components of the wavefunction do not recollect simultaneously at the second beam splitter,
thus reducing the visibility of the interference pattern. In detail, vg > v;. Therefore, we introduce
an indentation in the outer confining potential of the phase shifter (region II in Fig. 4.9), so
that the larger length of the channel n = 0 compensate this effect. Additionally, we increase the
smoothness of transverse potential profile inside the indentation, and then also the group velocity
of the wavepacket in n = 0.

4.2.3 Electron self-interference in the multichannel MZI

The self-interference of a single-electron wavefunction has initially been observed in the double-
slit experiment, and reveals the wave-particle dual nature of the electron wavefunction in quantum
mechanics. Double-slit experiments have the potential to directly measure the phase of electrons,
but are difficult to perform under strong magnetic fields, due to the formation of skipping orbits
that breaks the symmetry of the interferometer (see Sec. 1.2). With a suitable design of a solid-
state beam splitter and phase shifter, the 1D chirality of edge states provides instead the ideal
playground to implement an electron MZI.

Together with unraveling the coherence of edge states in the IQH regime, self-interference in
a Mach-Zehnder geometry can also be exploited to perform basic quantum operations, while the
concatenation of these devices allows to generate entangled states, as in a conditional phase shifter,
or to devise many-qubit architectures as the Hanbury-Brown-Twiss interferometer.

In the following, we detail the geometry adopted to simulate a full-scale MZI in the IQH regime,
and prove that our scalable design of the device and fine tuning of the beam splitter ensures a large
visibility of the self-interference pattern by comparing the predictions of a simplified 1D analytical
model with numerical data from the Split-Step Fourier method.
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Figure 4.9: Top view of the two-channel MZI and electron probability density of the initial
wavepacket |U|? in the first edge channel with n = 0. The dashed red (n = 0) and solid blue
(n = 1) lines describe the intended path of the two edge channels. The four regions of the device (I-
IV) are indicated. Region IV contains the measurement apparatus, where the imaginary potential
Vabs (gold shape at y = 500 nm) absorbs the first Landau Level. Only the electronic wavepacket
in the second channel reaches the right side of the device, where the transmission measurement is
performed. The central energy of the wavepacket is E° = 20.4 meV.

Full-scale numerical simulations of the 2D multichannel MZI

Figure 4.9 shows the potential profile V., (blue area) implementing the multichannel MZI in the
IQH regime proposed in Ref. [10]. The device is divided into four regions, where the wavepacket,
highlighted in red, propagates.

e Region I is the initialization region of the electron wavepacket and it is translationally in-
variant in the g-direction. The exact shape of the edge states generated by our design of V¢
are extracted by using LAPACK routines, and then combined in a Gaussian wavepacket with
E° =20.4 meV and ¢ = 60 nm. As reported in the top panel of Fig. 4.7(a) the energy broad-
ening of the simulated wavepacket presents available edge states in both channels, n = 0,1.
However, we initialize the electron state in n = 0, by selecting F,, (k) = Fy(k)dn,0, so that the
Gaussian wavepacket does not contains initially edge states from the second Landau level.

e Region II incorporates the core of the interferometer: two electron beam splitters enclose the
phase shifter to realize the self-interference. The shape of the beam splitter is engineered as
the sharp potential dip in Fig. 4.4(b), that produces a smooth energy selectivity around 50%.
The phase shifter is a mesa in the potential landscape with local FF 1 (light blue shaded
region) and a smoothness that prevents interchannel mixing. The tunable length of the two
electron paths varies with the length (L) and width (W) of the mesa in Fig. 4.9.

Here, the reflected and transmitted components of the wavefunction propagate with a group
velocity vy, that depends on the transverse potential profile of the mesa and on the Landau
index n. The overlap between the two wavepackets at the second beam splitter is therefore
affected by the time difference between the propagation in the first and the second channels,
inside region II: the highest overlap - and consequently visibility - is expected only when
the two paths As,, each one divided by the corresponding group velocity, i.e. As,,/ vy, are
the same for channel 0 and channel 1. A time delay between the two components of the
wavefunction is here present, and it decreases exponentially the transmission amplitude from
the first to the second channel.

o Finally, region III and region IV contain an additional mesa with an imaginary potential,
to mimic an absorbing lead, which is transparent to the second channel only. The density
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probability of the wavefunction at the end of the device provides the final transmission
probability from the first to the second channel, P;g. By varying the magnetic field B, or
the loop area A = W - L, Aharonov-Bohm oscillations originates in the total transmission
amplitude, P{St.

With regards to the full-scale numerical simulations, we assume GaAs parameter m* = 0.067m,
for the hosting material, ¢ = 60nm for the initial wavepacket and n = 0 at initial time. The
geometry of the device is characterized by V3, = 0.031 eV, 7, = 0.25 nm ™! for the confining potential,
|71 —22| = |y1—y2| = 20 nm and 755 = 0.5 nm ™! at the beam splitter, V, = 0.011 eV, 7, = 0.2 nm ™!
for the mesa structure and Vaobs = —100 eV, d = 30 nm for the absorbing potential. According to
the discretization conditions entailed by the Split-Step Fourier method, we set 6z = §y ~ 0.5nm ™!
and § = 10~ 16s.

1D analytical model based on plane wave with a pseudo-spin

We initially predict the transmission probability P{g? of our multi-channel MZI with a simplified
analytical 1D model for single-electron interferometry. This is grounded on the description of edge
channels as strictly one-dimensional systems and the application of logic gates trough scattering
matrices.

In this effective 1D geometry, an edge state of the n'® Landau Level, gan’ke““y is mapped by a
plane wave along the g-direction, |k,n), with the energy dispersion of the corresponding Landau
Level, k(E,n):

Oni(x)e™ — |k, n), (4.33)

where (y|k,n) = ¥ is adimensional. To describe a localized wavepacket on the §-direction, we
initially compute the wavefunction by combining different edge states of the n = 0 level, with the
Gaussian weight F'(k) of Eq.(3.2):

o) :/dk:F(k)|k,n:1> :/dEF(k:(E,l)) {gg _1B0), (4.34)

|E,n) denotes |k(E,n),n) for brevity, and |¥1) (|¥rr)) is the one-dimensional wavefunction in
region I (IIT). Within this simplified model, the Landau index n = 0,1 is a pseudo-spin degree of
freedom.

The application of the scattering matrices for the beam splitters (B) and the phase shifter (<f>)
provides the wavepacket in region III:

|Um) = BB,

/ dEF(k(E,0) {dk] . B®B|E,0). (4.35)

dE

Note that in this description the energy dependence of the transmission coefficients is neglected for
simplicity. In region IV an absorbing potential collects the contribution of the first Landau Level,
so that at the end of the device only the component of the wavefunction in n = 1 survives. For a
single-energy state E':

Pio(E') = (E' 1|¥)|* = ’ / dEF(k(E,0)) L‘ZZ] . (E' 1B®B|E0)| . (4.36)

By assuming elastic scattering of each wavevector component,
(E'1|B®B|E0) = §(F — E')(E'1|B®B|E0), (4.37)
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the total transmission probability is computed by integrating over the whole range of energies:

2
|(E' 1|B®B|E' 0)|2. (4.38)

Pplet = / dE'Pyo(E') = / dE'

F(k(E',0)) [jEk]n_o

In order to solve Eq.(4.38), we consider the general 2x2 matrix form of operators B and ¢ on

the pseudo-spin basis: _
D boo bOl 2 erro 0
B= (blo b ) b= 0 e |- (4.39)

The phase ¢; (i = 1,2) includes the contributions of the magnetic (x;) and the dynamical (&;)

phases
1
pi= /(P —qA) - ds =& + ¢i, (4.40)

where the integration is performed along the path of the edge channel ¢ on the mesa. The trans-
mission coefficients b;; are related by the probability flux conservation:

|bis]* + [bi;|° = 1, (4.41)
bl = [bil, (4.42)
bial® = [by]* (4.43)

For an ideal functioning of the device, we tune the beam splitter to 50% of transmission, |b;;|* =
1/2, so that the coefficients b;; differ only by a phase factor ¢, e.g. b1 = bgoe?.

The wavefunction in region III for a single-energy component in the first channel, |1;) = |E,0),
is computed:

B®B|E,0) (4.44)
= (b%oeiwo + b01bloei”1)|E,0> + (blobooeiwo + b11b1061”1)|E,1), (445)

[Y11r)

and then projected on a generic |E’,1) state to provide the single-energy probability:
(E' ) = |(E'1|B&B|E,0)?
|boobio|?|e¥0 + e“Peter|?

2|b00b10|2[1 + COS((D)}7 (446)

with ® = ¢ + 1 — ©o.
Finally, the total transmission probability

[1 + cos(D)]. (4.47)

Plot = / dE'P1o(E’") = 2|boobiol? / dE’

F(k(E',0)) [ddm neo

is computed by integrating over the energy broadening of our operating regime.

In order to define a gauge-independent dynamical phase, we consider a quasi-linear dispersion
of the two Landau Levels around the central energy of the wavepacket E°, and we rewrite p in
terms of the constant energy E and of the group velocity v!! in region II:

1 1 [E—-E° E—-E°
§i:ﬁ/ip-ds:ﬁi UZH ds = thH AS; (4.48)

where AS; is the length of the path of channel ¢ in the domain of the mesa. Note that, if a linear
dispersion is appropriate for the second Landau Level, it is a stronger approximation for the first
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one. Such assumption is the main source of discrepancy between our exact numerical results and
the present theoretical model.
Furthermore, if we apply the Stokes theorem for the magnetic contribution y; of Eq.(4.40):

Xﬁ — A,J;(fqui. dS = Efz (‘7 X /4)' dS (4'49)
h J; h Jg

we can rewrite the total phase as

P=p+

0
E-F <A51 ASO> eBA (4.50)

h vl vt o’
with A = L, -L,+(20y+L,)-dx, the area enclosed by the paths of the two channels, which is tuned
by changing the width W of the mesa along the #-direction (see Fig. 4.9), ASy = 26, + 2L, + L,,
and AS; = 26, + 26, + L,. By assuming a linear dispersion k(FE) for the first Landau level in
region I, dk/dE = 1/1}5, we can perform the integration over the energy in Eq.(4.38), and compute
the total transmission probability from channel 1 to channel 2:

o2

vé)2
Pltgt = 2|b00b10|2/dE6(vf)2[1+C08(@)] (451)
g
1 AT
= 5 1 + exp _W COS(@ ) 5 (452)

where ' = % + .

The argument of the cosine exposes the dependence of PJ§* on the magnetic field B and on
the width W of the mesa. Indeed, according to the geometry of the step potential in Fig. 4.9, the
mesa has an area A =W - L+ (26, + L) - 0, such that the two following definitions of ®' hold:

BL
<1>’:<6h >W+<I>0:kWW+<I>O (4.53)

where &g = ¢ + %(25@, + L), and ®; = ¢. Besides, according to Fig. 4.9, the paths of the two
channels are equivalent to ASy = 26, +2W + L and AS; = 26, + 20, + L. By using an effective
standard deviation 3 = ovf!/v}, the total transmission probability is

1 _ 2
P =1 (1 +exp (JWQEZVO)) cos(cb')) , (4.55)

with Wy containing the geometrical correction to the paths of the two edge channels, and @ =

egs + ¢ that varies with the magnetic field B or the width of the mesa W, related to the loop area

A.

The Aharonov-Bohm pattern

Finally, we perform the numerical simulations of single-electron interference in the full-scale
MZI by means of the Split-Step Fourier method. We vary the magnetic field between 4.94 and 5.06
T at a fixed width of the mesa, W = 200 nm, and provide the magnetically-driven Aharonov-Bohm
pattern in the transmission amplitude from the first to the second channel P{§*(B). By tuning the
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P (B) PI(W)
expression Numerical Theoretical | expression Numerical Theoretical
fit model fit model
Ap 0.462+£0.004 0.5 Aw 0.460£0.002 0.5
Ag 0.374£0.005 0.5 Ay 0.400£0.004 0.5
kg (T™h) 127.4+0.4 110 kw (nm~1)  1.750 1.9
B, (T) 4.9824+0.001 - L; (nm) 192.5 -
Y (nm) 21.745 18.3
Ly 193.84+0.3 -

Table 4.1: Comparison between fitting parameters for the results of exact numerical simulations
and the corresponding parameters of the theoretical model of Sec. 4.2.3. The two cases of Fig. 4.10
are considered, namely with a variable magnetic field (left column) or mesa width (right column).

width of the mesa W between 50 and 350 nm at fixed magnetic-field, B = 5 T, we also observe
the interference pattern of P{g'(W) induced by a variation of the dynamical phase difference.

The transmission probability provided by our exact time-dependent method is finally compared
to Eq.(4.55) in Fig. 4.10. The transmission probability from the first to the second channel can be
generally rewritten as

W —wg)?
PioY(B) = Ap + Aze” 222 cos(kp(B — By)) (4.56)
for a variation of the magnetic field B [Fig. 4.10(a)], and
(W—wg)?
PIoH (W) = Aw + Ajye” 257 cos(kw (W — Wp)) (4.57)

for a variation of the width W of the mesa region [Fig. 4.10(b)]. These equations are used as
fitting functions for the numerical results provided by our time-dependent approach; a comparison
between predicted and numerical values is presented in Tab. 4.1.

Consistently with the wavepacket nature of our single-electron state, a variation of the width
W affects the oscillations of the transmission probability with an exponential damping, which
arises when the two wavepackets in the region of the mesa reach the second potential dip with a
time delay. For a width W large enough, the two wavepackets do not overlap anymore and the
interference is quenched, as predicted and also in the single-channel implementation of the device
where localized charges are injected[7, 20, 28].

However, the length scale ¥ for the damping in the visibility in the present case is given by

Y=o (4.58)

and it decreases with the standard deviation of the initial wavepacket o. The length scale ¥ does
not directly depend on the geometrical parameters of the beam splitter, but on the dynamics of
the wavepackets in the ground channel in region I and region II. In fact, a smoother slope of the
indentation in region II reduces the group velocity vl above the mesa with respect to same in
the initialization region, v). This can be interpreted as an effective dilatation of the width W in
Eq.(4.55), that determines a larger phase difference.

Furthermore, Fig. 4.10(b) shows that at the two margins of the Aharonov-Bohm pattern the
amplitude oscillations are larger than the predicted ones. The analytical function Pjo(W) is a
good approximation for the interference pattern in a full-scale MZI only when the asymmetry
between the two electron paths in the loop area is small, as shown in the inset of Fig. 4.10(b).
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Figure 4.10: AB oscillations of the transmission amplitude at the end of the device. (a) The plot
shows the behavior of Pf§’ as a function of the magnetic field for the numerical simulation (dots)
and its sinusoidal fit (blue line) based on the analytical of the previous section (Eq.(4.55)). A fixed
path mismatch for the two channels, W = 200 nm, is simulated. (b) Aharonov-Bohm oscillations
as a function of the width of the mesa W at B = 5 T. Numerical data (dots) and the Gaussian
fit (solid line) based on the theoretical model show a good agreement only in the central region

(inset).

This discrepancy follows from the assumption, in our analytical model, of a linear bandstructure
for n = 0,1 in the loop area. This is indeed a good approximation for the second channel alone.
In presence of a linear bandstructure, the derivative of k(E,n) in Eq.(4.38),

dk(E,n) 1
I 4.
dE vl (4.59)

does not depend on the energy, and the |F(k(E,n))[?/v} is a renormalized Gaussian weight func-
tion. Moreover, we neglect the energy dependence of the dynamical phase AS; in region II, thus
assuming that all the edge states in the wavepacket follow the same path, regardless their energy.
The validity of these approximations clearly depend on the energy broadening of the simulated
wavepacket.

Regarding the magnetically-driven Aharonov Bohm pattern in Fig. 4.10(a), we observe a slight
increase in the transmission amplitude, which is not predicted by the analytical 1D model, which
assumes an unitary module for the transmission coefficients in the ® matrix and neglects the
magnetic dependence of the coefficients in the B matrix. In a realistic scenario, a decrease of
the magnetic field B reduces the energy resolution between the Landau Levels, thus enhancing
additional interchannel scattering at the edges of the phase shifter, as confirmed by the stationary
simulations with Kwant in Fig. 4.8 and by the numerical simulations of Ref. [96]. Region II does not
act anymore as an ideal MZI, and the visibility is reduced. Moreover, this effect has an interplay
with the magnetic dependence of the beam splitter coefficients b;; (see Fig. 4.6(b)). A decrease in
the value of the magnetic field modifies the smoothness of the quasi-flat energy selectivity, thus
reducing the validity of the ideal condition |b;;| = 0.5 for the most relevant components in our
wavepacket.

In conclusion, with the geometry in Fig. 4.9 for a full-scale MZI, we measure a maximum
visibility vis = 0.87, when injecting Gaussian wavepackets with ¢ = 60 nm and E° = 20.4 meV.
This value is larger than the same in the single-channel geometry [7], mainly due to the weaker
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4 — A multichannel geometry for the Mach-Zehnder interferometer

energy selectivity of the present beam splitter compared to the QPC. We further stress that, in our
simulations, the energy broadening of the Gaussian single-electron state is larger than its typical
experimental value [17, 64], thus ensuring that the selectivity of the beam splitter is still adequate
- and actually even better optimized - for larger wavepackets.

Together with increasing the visibility, the use of a simple potential dip with a small spatial
extension (about 20 nm) prevents decoherence effects induced by charge fractionalization. If,
according to Ref. [30], the length over which fractionalization arises depends on the emission time
and group velocity of the wavepacket through Ly, = vg - 7e, for a Gaussian wavepacket with
o = 100 nm, an energy broadening I' = 1 meV, velocity v, = 100 nm/ps and then an emission
time 7. = R/, the length of charge fractionalization results to be Lfpqc =~ 0.07 pm, which is larger
than the length of the beam splitter region of our device. We expect that for larger emission times,
as the ones typically exploited for experimental implementations of SESs [17], L yqc is even wider
(typically 3 p m [30]), while the size of our beam splitter is even more optimized to produce a 50%
interchannel mixing.

We also remark that, in order to reduce the length of copropagation, the two channels can be
further separated by using top gates, as in Ref. [12]. This is achievable with a proper depletion of
the 2DEG, to reduce locally the bulk FF to 1, as in the loop area of the full-scale MZI. In Ref. [13]
we propose a protocol for the selective injection and absorption of edge channels: one lead, L,
has a local FF one and injects the electron in the first edge channel, while two leads, Ly at FF 1
and L3 at FF 2 adsorb the first and second edge channels, respectively. The introduction of top
gates, together with the use of our type of beam splitter, could quench significantly the effect of
interchannel interaction and avoid, or at least strongly reduce, this source of decoherence, without
affecting the performances of the device.

Finally, we remark that the present geometry solves the scalability problem of the single-channel
MZI, and potentially enables its concatenation in series. This property is essential to implement
two-qubit interferometers and integrate this device in complex quantum computing architectures,
as the solid-state implementation of the Conditional Phase Shifter that we present in Chapter 6.

66



Chapter 5

Two-electron bunching in the
HOM interferometer

In this section we present the dynamics of two-fermion antibunching in a solid-state HOM
interferometer, where the electrons are partitioned by a QPC, acting as an half-reflecting beam
splitter. The two interfering charges are injected at the opposite inputs of the device, as single-
charge Gaussian wave packets of edge states in the IQH regime at bulk FF 1. We compute the
bunching probability P, at the outputs and characterize the minimum of the Pauli dip in presence
of exchange and/or Coulomb interaction, for a number of strongly-localized wavepackets with
different values of the real-space broadening o. By introducing the screening in electron-electron
repulsion, we analyze the effect of charge localization on the non-zero bunching probability for the

Figure 5.1: Rendered picture of HOM interferometer. The external potential (gold) reproduces the
QPC in the 2DEG, and the wavepackets (blue shapes) define the unconditional density probability
of particle 2 at t = 0. « and [ are the initial counterpropagating states for ¢ = 20 nm, while T
and B label the top and bottom regions of the HOM interferometer. Their domains are sparated
by the diagonal dashed line
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5 — Two-electron bunching in the HOM interferometer

present regime.

Indeed, experimental implementations of the device in the IQH regime are typically affected
by spurious interchannel interactions, which lead to charge fractionalization and decoherence, thus
preventing the observation of full antibunching. The Floquet scattering-state and capacitive mod-
els have been extensively adopted to explain the origin of such interactions. However, in these
frameworks Coulomb repulsion between the two interfering charges is usually neglected. Moreover,
experimental implementations are usually characterized by large wavepackets in real space, which
ensure and ideal functioning of the electron beam splitter but quench the interplay between the
energy broadening of the wavepacket and the energy selectivity of the QPC.

Differently, we aim to study the unexplored regime of strongly-localized single-electron excita-
tions in presence of the exact screened and unscreened Coulomb interaction and a realistic geometry
of the HOM interferometer. We then compare the bunching probabilities for a two-electron sys-
tem in our time-dependent approach to the predictions of a simplified theoretical model based on
the one-dimensional scattering formalism, and obtain quantitatively the entanglement-generation
capabilities of the QPC by measuring the spatial entanglement between the two outputs of the
device.

5.1 State of the art

The HOM experiment has been firstly implemented with photons [16]. Here, two indistin-
guishable particles generated from independent sources interact at a half-reflecting beam splitter
and are then recollected at two detectors. The two-particle statistics is tested by measuring the
coincidence counts: due to their bosonic nature, identical photons are simultaneously detected at
the same output if the two sources are synchronized. The bunching probability, or equivalently the
coincidence counts in an experimental implementation, then measures one. When the two sources
are desynchronized by a factor At, the bunching probability tends to 1/2 in the limit At — oo, as
expected for distinguishable particles, which are randomly partitioned.

In the electronic counterpart of the photonic HOM experiment, the fermionic statistics is instead
expected to induce a perfect antibunching of the two charges, according to the Laundauer-Biittiker
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E. Bocquillon et al. Science 339, 1054 (2013);
DOI: 10.1126/science. 12325672

Figure 5.2: (left) Numerical simulations of the electron bunching probability in a 1D model with
energy dependent effects and exchange interaction from Ref. [78], and (right) experimental results
in a 2DEG from Ref. [64]. Note that the time scales are different, due to the different energies and
energy spreads of the single-charge wavepackets.
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5.2 — Effect of QPC scattering asymmetry

theory: the simultaneous presence of two indistinguishable particles is prevented indeed by Pauli
exclusion principle [105].

To measure the coincidence counts, single-shot detection of flying electrons in a semiconductor
implementation is advisable. However, this is not achievable yet, and the bunching probability is
typically recovered from low-frequency current noise in the output current [106].

The earliest experimental implementations of two-electron interferometry are realized by in-
jecting a continuous stream of electrons in an HOM device [107], or in an HBT architecture [49,
15]. However, the use of electron beams prevents the interference to be directly interpreted as
the overlap between single-electron wavepackets. Sources able to generate single-electron excita-
tions have been introduced for the first time by Bocquillon et al. in 2013, to reproduce the HOM
experiment in the IQH regime [64]. Two mesoscopic capacitors inject a Landau quasi-particle in
edge channels with an opposite chirality. The two excitations interact at a QPC where they are
partitioned. By tuning the synchronization time At, the excess low frequency noise is measured
at one of the outputs. The excess noise as a function of At is characterized by a minimum, called
Pauli dip, which proves the generation of coherent and indistinguishable particles from indepen-
dent sources. However, its value differs from zero, differently from the theoretical predictions of
stationary models (see Fig. 5.2).

This apparent violation of the Pauli exclusion principle is confirmed by experiments at bulk
FF 2 [108, 65]. Refs. [30, 68] prove that this decoherence process is induced by the nature of those
Landau excitations, that are generated by mesoscopic capacitors. These sources inject indeed linear
combinations of edge-magnetoplasmons excitations, whose coherence is destroyed by Coulomb
interchannel and intrachannel interactions. If copropagating channels run parallel for a long enough
distance, L frqc = ﬁ%, the charge of the single-electron pulses splits between the two Landau levels.
This decoherence phenomena, called charge fractionalization, increases the minimum of the Pauli
dip for larger wavepackets [17], and it can be avoided by increasing the lateral distance between
the two channels with a local variation of the FF [13], or by looping the inner one [31].

On the other side, time-dependent numerical simulations [19, 21] prove that the non-zero Pauli
dip is also intrinsically related to the localized nature of the electron state, which can not be
captured in a stationary picture for edge transport. By studying the two-electron tunneling at
a barrier in an effective 1D scenario, Ref. [19] provides the bunching probability for an exchange
and Coulomb-driven scattering of two counterpropagating Gaussian wavepackets of plane waves.
In a time-dependent approach, the wavepackets contains all the energy-related information about
the system, including the energy selectivity of the barrier, which is unknown a priori. The sys-
tem is initialized to split each electron wavepacket with 50% of integrated transmission probability.
However, this condition is not enough to generate an ideal beam splitter, as pointed out in our mul-
tichannel implementation of the MZI (see Sec. 4.1.1). Indeed, the QPC transmit mainly the highest
energy components, while the lowest ones are reflected. The reflected and transmitted wavepackets
after the scattering at the beam splitter are not identical, so that the exchange symmetry cancels
out only those states that overlap in the Fourier space at the same output. The residual non-zero
overlap between the wave-vector distribution of the refiected and transmitted wavepackets increases
the bunching probability. With contrast to the bunching in presence of charge fractionalization, if
the wavepacket size o is increased, the ideal full anti-bunching is gradually restored.

5.2 Effect of QPC scattering asymmetry

Numerical simulations of electron scattering on a QPC already exhibit that the energy depen-
dence of such gate reduces the degree of indistinguishability between its reflected and transmitted
components. In the single-channel MZI, this energy selectivity decreases the visibility, as observed
in Ref. [7]. This effect is present also in two-electron interferometers, as in the HOM geometry,
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5 — Two-electron bunching in the HOM interferometer

and produces a residual bunching probability in presence of exchange interaction only [19].

In the following, we will initially present an effective 1D geometry to compute analytically the
bunching probability P, with respect to the real-space broadening ¢ of a Gaussian wavepacket.
Then, we use the single-particle version of our software to analyze the transmission coefficient
of the QPC and properly initialize the system. Finally, we simulate two-electron dynamics in a
Hall-driven HOM interferometer in presence of exchange interaction only. With contrast to the
simplified analytical model in 1D, our computational approach is able to account for the interplay
between the geometry of the device and the energy-broadening of the wavepackets exactly. Indeed,
our method does not require the use of empiric transmission coefficients, but only a proper design
of the external potential V,,; mimicking the HOM interferometer.

5.2.1 1D analytical model for electron bunching

In order to provide an analytical bunching probability in the electron HOM experiment, we
adapt the 1D effective model in Sec. 4.1.3 to the present geometry, and introduce the empiric
reflection and transmission coefficients in Eq.(4.11), we already validated to study single-qubit
interferometers [13, 7]. Thanks to the chirality of edge states, the 2DEG system is modelled as a
1D rail where the QPC is replaced by a symmetric scattering barrier. Electrons are injected at
opposite sides of the 1D rail, as counterpropagating states. The antibunching probability, i.e. the
the probability of finding the electrons in opposite outputs is evaluated by using the scattering
matrix formalism [42, 109, 47].

Plane-wave model

In a steady-state scenario, the edge state @,—o x(z)e’*¥ is mapped by a plane-wave (y|k) =
e’* with an effective parabolic dispersion E,, (k) characterized by a magnetic mass mp. The
counterpropagating state ¢,—o,—x(x)e”*¥ is then mapped by (y| — k) = e~  as reported in the
scheme of Fig. 5.3(a). In the reciprocal space, the wavefunctions generated by the two sources, |«)
and |B) are defined on the pseudo-spin basis {|k),| — k)}. In the following, we assume |«a) = |k)
and |8) = | — k)

The two electrons, 1 and 2, initialized in |«) and |8) with the exchange symmetry, impinge on
a symmetric potential barrier localized in y € [—a,+a]. Its effect is described by the scattering
matrix S in Eq.(5.17). For a a plane wave coming from the left side of the barrier (¥, (y) = (y|k)),
the scattering process generates:

A

SU, (y) = ite™* 4+ rel?e (5.1)

with a global phase factor e** that does not get modified by the scattering process, also for a
wavevector-dependent case, e.g. ¢(k) = kyo'.
For a couple of indistinguishable electrons, the initial state in the Dirac notation

)0 = —=(1a)l5) — 18)la)) (52

Sl

IThis is the case of desynchronized sources. This term is important when we apply the scattering operator to
a wavepacket: only the wavevectors multiplying the coordinate y change their sign, while those appearing in the
phase do not. Otherwise, we can change sign to any wavevector in the wavepacket, and then change sign to any
k-dependent phase
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5.2 — Effect of QPC scattering asymmetry

is in the plane-wave description given by:

V(0) =V (y)V_(y2) = V_(y1) ¥4 (v2)

— eik:yl e*ik}yg eid) _ eikyl 6i¢eiky2 . (5.4)

After the interaction with the barrier, we apply Eq.(5.1) to the initial state ¥y and compute the
scattered wavefunction at infinite distance from the barrier:

U(o0) = (itei}”’1 + 7"@7“”“)(ite*”’“y2 e 4 rethy2 ew) — (ite*ikylew + retkyt ei‘z’)(iteiky2 + reik”)
- _t2(eik(y1—y2) _ eik(y’z—?h)) + r2(e_ik(y1_y2) _ eik(y2—y1))_ (5.5)
For any dephasing ¢, the wavefunction has a partially destructive interference, so that both elec-
trons are transmitted or reflected and perfect anti-bunching is observed.
‘Wave-packet model

In the following, we model the injection protocol of single-electron excitations by initializing
the two electrons in Gaussian wavepackets of plane waves:

(y—vg)?

Valy) = Nye~ 302 eiko(y—yo)7 (5.6)
(y—v))? . ’
wﬁ(y) = Nze_ 403 eflko(y7y0)7 (5.7)
where
1 202
N, = Ny = {22 (5.8)

V2ro?’ m

are the normalization constants for the real and reciprocal space, respectively. In the Dirac nota-
tion, the initial state reads:

a(B)) = / Ak, (k, K2, 55 @) ) (5.9)

where Fy(k, ko, yo) is the Gaussian weight function centered at yo in the real space and at kg in
the reciprocal one. The wavepackets have the same same energy distribution but group velocities
with opposite directions. They are emitted by two sources at opposite sides with respect to origin
of the 1D rail, y = 0, at the times t and t + At, respectively.

For a small At, the broadening of the wavepacket in o is negligible, so that:

yo = —(yo + Awo), (5.10)

and -
Ay = vgp - At = ——2At, (5.11)

mp

where mp is the effective mass deriving from the curvature of the edge states band, that we
assumed to be parabolic. 2

With contrast to a 2D geometry, in the 1D scenario the output channels, I and II, coincide
with the input channels o and 3. The corresponding stationary states, |I) and |IT), outgoing from

2Previous considerations hold both for delays At > 0 and timing advances At < 0.
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Figure 5.3: Scheme for the application of the (a) plane-wave model and (b) wavepacket model to
two-electron bunching in an effective 1D geometry of the HOM interferometer.

the scattering region, differ from |a) and |3) in the sign of the momenta only, i.e. ky = —krr =
_kaVV:e frft.roduce the projections operators Pr and Piy:
P = /Idkf/ldk:} Ver) (x| @ [I)) (k)| (5.12)
Pio = [ dkur [ iy ) Gl ki) (0, (513)

where the two terms in the projectors correspond to the contribution of the first (|k;)(k;| for
i = I,II) and the second (|k)(k}| for i = I,II) particle respectively. The integration is carried
over the wavevectors of the scattering states that belong to region I or region IT in Fig. 5.3(b);
the probability of finding two particles in region ¢ = I, I] is therefore given by:
b . 2
p; = |lim P; |¥(1))| , (5.14)
t—o0

with |¢(t)) the two-particle wavefunction at time t.
According to the topology of the original 2D system, an injected plane wave |«) impinging from
the left of the QPC and |3) from the right are scattered to the output states as follows:

Ska) = r(k) [kr) + (k) [krr), (5.15)
Skg) = t(k) k1) + (k) k), (5.16)

where S is the single-particle operator described by the matrix:
S = <T(k) t(k)>. (5.17)

For a scattering state with positive k (i.e. coming from the left), the scattering amplitudes r(k)
and t(k) are given by the empiric equations,

1 N (+alk — ko) +7)
r(k) = \/exp(+a(k "))+l P 870 ’ (5.18)
t(k) = Z\/exp(—a(kl— ko)) 11 P [_ o 8];0) | (5.19)




5.2 — Effect of QPC scattering asymmetry

with v = 41n2 (see Sec. 4.2.3). By adopting the Gaussian approximation, the coefficients read:

][ ]er () en (s50-w)en () o

Note that for negative k (i.e. scattering states coming from the right) we substitute k& with —k,
and the central wavevector ky with —kq.

The scattering process described by the operator S =R+T applies independently to each plane-
wave component of our Gaussian wavepackets |a) and |8). This produces a reflected |a(3), R) and
a transmitted |« (3),T) state:

o R) = /dkFg(k7k37y3)r(k)|k):/dk k) v (k) Ey (k, — ko, o), (5.21)
0, T) = / dRE, (k, kS o )t (k)|k) = / dk (k7Y t(k) o (k, ko, o), (5.22)
B.R) = / dkE, (k, kE 52 e (k) |k) = / dk (k7Y r(k)Ey (, +ko, —3), (5.23)
8.7) = [ k(e kG o)) = [ dk 167 t06)Fo (. ko, (5.24)

with k§ = ko, y§ = vo, k:g = —ko, yg = —yp. Due to the introduction of g, in the second equalities,
we modify the Gaussian distribution F, according to the relative sign of the scattering states in the
1D geometry. This equals to a change in the central momentum of the wavepacket together with
a change in the sign of the k-dependent phase in case of reflections. Indeed, in the limit o — oo
the scattering state is so properly described:

(=9

lim F,(k, —ko, y)) = 6(k + ko)e"v0 (5.25)

g— 00

Jim (ylvp) = [ dk (ylk) Fo(k, =Ko, yp)

dk et Y5k + ko)e "o

—_—

— o—iko(y—y) (5.26)

Jim (018, R) = [ di ylb) r(8) P b, o, 1)

= / dk et *p(k)3(k — ko)etikvo

= etiho(Wtvo) () (5.27)
We then compute the stationary state
_ S5la)818) ~ 518) S |a)
|W(o0)) = 7
_ (o, R) +1a,T)) (I8, R) +18,T)) = (I8, R) +18,T)) (la, R) + |ev, T)) (5.28)
7 , .
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5 — Two-electron bunching in the HOM interferometer

and we separate the bunching and anti-bunching contributions, corresponding to

|\IJ(OO)> = |¢abun> + |wbun> 5 (529)
1

[Yabun) = 7 (la, B) |5, R) + [, T} |3, T) — |8, R) [ev, R) = |8, T) |, T)) (5.30)

[Ybun) = % (la, R)|8,T) + |, T} [B, R) — |8, R) |, T) — |8, T) |ev, R)) . (5.31)

Note that, the localization of the wavepackets ensures the orthogonality between the scattered
states of |a) and |8), i.e

(a,R|a,T) =0, (5.32)
(8, R|B,T) =0, (5.33)

The bunching probability
Pb = <¢bun|wbun> =1- Pab =1- <¢abun|'¢abun> (534)

is computed by using the projected states

|¢¢un>::fﬁ|¢%un>::;}§<kufw\5,13-—|ﬁ,zv|a,fw> (5.35)
fwﬁm::afwmm::§EWxTHﬂJw—anwmzw (5.36)

as follows

We then compute separately the two contributions:

(lun |Vbun) = (o, Rla, R) (B,T18,T) — (o, RIB, T) (5.37)
< bun‘wbun = Oé T|a T> <B7R|ﬂ7 >_ ‘<Oé7T|ﬁ,R>|2 (538)
with
a, R|a, = e ’ 0)? r , 5.39
(o Rla, B) = [ di Ne 204800 o ) (5.39)
(B.718.7) = [ i Npe 00 ) P, (5.40)
(a, R|B,T) = / dk N2e=20" (htko)® o =ik(yotvo) o (k)¢ (k), (5.41)
B,RIB,R) = [ dk N2e=20"(k=ko)* 14(k)2 5.42
k

(a,T|8,R) = / dk N2e=27" ko) |1 ()2 (5.43)
(a,T|B, R) = / dk N2e20" (k=ko)® o ik(votuo) g (k) (). (5.44)

For an half-reflecting and half-transmitting potential barrier, i.e. (a, Rla, R) = (8, R|8,R) =
(o, T, T) = (B8, T|8,T) = 1/2, the interference terms are the only responsible for anti-bunching.
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5.2 — Effect of QPC scattering asymmetry

We finally replace r(k) and ¢(k) with their expressions in the Gaussian approximation of Eq.(5.20)
and carry on the integrations analytically:

§ oyl
Oé,Rﬁ,T = (+¢ de2exp -2 0'24_0[7 k+k02 e_lkAyfz
k 3 5
Y
) ) 2
- J;Z pettisy 2;267 = (5.45)
2 4 1
o, T|B,R) = (—i dk N2 exp | —2 024_&7 k— ko)? | etikAyZ —
k 3 5
Y
—1 . 2
= —QZN,fe“’foAy 72;26* = (5.46)

Here, we introduce a new geometrical parameter, 3, related to the energy broadening of the
wavepacket (o) and the smoothness of the energy selectivity of the QPC (a):

Y=4/o%+ a—z. (5.47)
8y

The bunching probabilities in region I and I1,

1 102 _ay?

<¢£un’z/)l{un> = <¢Z%n’¢1{@{n> = Z - 1?67 =3 ’ (548)
are finally summed up to compute the total bunching probability:
Pola, Ay) = (@, T|a, T) (B, R|B, R) + (o, R, R) (8, T|8,T) — 2 |{a, R|B, T)|* (5.49)
1 1 0’2 _ay?

An ideal beam splitter requires then a negligible energy-dependence of the transmission and
reflection coefficients, i.e. r(k) = t(k) = 1/y/2 Vk. This condition is fulfilled for a — 0 (¥ = o),
so that the bunching probability becomes

Py(0, Ay) = % (1 - e> : (5.51)

as expected for a fermionic system. Pauli exclusion principle prevents indeed the wavefunction of
two indistinguishable electrons to occupy the same output channel at the same time, that is when
the time-delay between the emission of the two wavepacket goes to zero (Ay — 0). For synchro-
nized sources, indeed, the reflected and transmitted components of the two scattered wavefunctions
from opposite inputs reach at the same time the two output channels, where they interfere destruc-
tively. Instead, for large time delays (Ay — o0), the two electrons are partitioned at the QPC
independently: the two charges are equally bunched and antibunched, and P,(0,00) = % An
intermediate delay gives an outcome between the full anti-bunching and the random partitioning,
ie. Py e (0;3).

Eq.(5.50) represents however a more general equation for the bunching probability able to
include energy-dependent effects related to the energy broadening of the wavepacket and the energy
selectivity of the QPC. The full antibunching that characterize the plane wave model is restored
not only for a — 0, but also if 0 — co. More generally, full antibunching is restored when o >> a
(X = o), which correspond to the injection of very large wavepackets that can be considered as a
plane wave with respect to the geometry of the QPC.
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5 — Two-electron bunching in the HOM interferometer

5.2.2 2D numerical bunching probability

In a steady-state framework, where the injection of plane waves is assumed, P is expected to be
zero for an half-reflecting beam splitter, due to the exchange symmetry of a fermionic two-particle
state, even neglecting Coulomb interaction [48].

Differently, by using a time-dependent model in a 1D effective framework, as well as a wavepacket
description of the electron state in a stationary model, we proved in the previous section that the
energy broadening of the single-electron state affects the bunching probability. This behavior is
confirmed by our full-scale time-dependent simulations of the two-electron bunching in 2D for
different wavepacket sizes.

In our approach, the time-dependent wavefunction is evolved by means of a parallel implemen-
tation of the Split-Step Fourier method in a two-dimensional potential landscape, that reproduces
the field generated by top gates in the typical GaAs/AlGaAs heterostructure. The energy broad-
ening of the single-particle is directly included in the propagating state and time is an intrinsic
variable of our simulations, so that we can access the dynamical properties of the two-particle
system.

It should be noticed that traditional approaches in the literature bypass the huge computational
load for such simulations by using scattering matrices in effective 1D schemes, which proved not
to fully capture the interplay between two-electron correlations and the realistic geometry of the
device, as for electron bunching. Here, we privilege the exact solution by developing a scalable
parallel numerical solver of the time-dependent Schrodinger equation for two particles in a 2D
realistic geometry.

In the following, we will describe the initialization of our operating regime in the HOM geometry,
from the building up of the single-particle wavepackets to the exact two-particle wavefunction in
2D. Then, we analyze the transmission coefficient of the electron beam splitter by combining single-
particle simulations and the wave-packet method. Finally, we present the results of our full-scale
two-electron bunching in presence of exchange only.

Initialization of the device

According to our numerical modeling of electron injection in an edge channel, the particle
state emitted by each source is a Gaussian combination of edge states from the first Landau Level

<p17k(x)eiky:
W y) = / Ak, (k, ko, 30)e ™ 0 1 (), (5.52)

where F,(k, ko, y0) = v/ 02/27736_"2(’“_k0)2e_iky° is the weight function in the k space centered at
ko = —%xo and o is the real-space broadening in the ¢ direction.

Each source S, and Sz generates a single-charge state, 1, (z,y) and ¢g(z,y), that is initial-
ized in a translationally invariant region of the HOM interferometer (region o and 8 in Fig. 5.1,

respectively). The external potential in the two regions is a smooth confining barrier:

a _ VE)OC N yge’ Y
ext(z) - eXp(Ta(a? _ x?)) +1 - Vb f"’a (l‘ ‘Tb)’ (553)
Vﬁ
Vin(e) = : V) Fry(—a + ), (5.54)

exp(mg(—z + xf)) +1 B

with a smoothness parameter 7, height V} and a turning point x;, which refers to the center of the
Fermi-like function F(z).

To implement an HOM experiment, the initial wavepackets ¢ (z,y) and ¥g(z,y), must be (i)
indistinguishable and (ii) counterpropagating. At ¢ = 0, the first requirement is ensured by the
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Figure 5.4: Energy bandstructure of the first 3 Landau levels E,[zo(k)] (solid line) generated by
the confining barrier V,¢(x) with V, = 10 ¢V and 7 = 3 nm in the TOP initialization region of
the HOM interferometer. The dotted black line identifies the Gaussian weight function Fylzo(k)]
for the linear combination of edge states (dots on Fy[zg(k)]) in the single-electron wavepacket.

identical smoothness 7® = 7% and height V= Vbﬁ of the confining barriers, which induces the same
bending for the Landau Levels in the two regions. The opposite direction of propagation follows
instead by the different chirality of the edge channels in region o and 8 due to the antisymmetry
of the confining barrier, V.2, (z) = V.2, (—x). For synchronized sources, i.e. a zero time delay dt in
the emission process, and due to kf = —kg and y§ = —yg , the two wavepackets are expected to
impinge on the beam splitter simultaneously. Fig. 5.4 displays the transverse potential profile with
Vp, =10 eV and 7 = 3 nm, together with the bandstructure Ey[zo(k)] and wavevector distribution

probability |Fo[zo(k)]|? for ¥, (x,y) in our operating regime.

As visible from the energy-dependence of the distribution |Fy[zo(k)]|?, our implementation of
the HOM interferometer operates at bulk FF 1. This is done to prevent the presence of those inter-
channel interactions that are proved to affect the coherence of single-electron excitations traveling
in an edge channel at a larger bulk FF. Ref. [30] proves this to be the main source of decoherence
when cyclotron-resolved channels copropagate for large distances. As an example, at bulk FF
2, many-body Coulomb interactions generate an entanglement between the outer channel, where
the single-electron is injected, and the inner channel, acting as the environment, thus bringing
quantum information away from the wavepacket.

A unitary bulk FF ensures therefore the absence of charge fractionalization[65], that is not
included in our numerical model. Moreover, even in absence of this coupling to environmental
channels, decoherence may arise due the creation of electron/hole pairs generated by the space
and time-dependent electric potential of the single-electron excitation, that is a traveling bare
charge injected above the Fermi sea. However, this decoherence scenario is expected to be less
stringent[30] than coupling to environmental channels and more favorable to its control.

After setting v (z,y) and ¥g(z,y) as the injected states in a full-scale HOM geometry, we
observe the dynamics of the two-electron interferometer entailed by our engineering of the device.
Design-related performances are estimated exactly, as well as the electron dynamics induced by the
local shape of the edge states. To include two-particle correlations as the exchange interaction, we
finally compute the two-electron state from the orbital states ¥4 (z,y) and ¢g(z,y) by assuming a
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Figure 5.5: (a) Conditional probability (red contour lines) for particle 1 P*(x1,y1,23,y5,t) =
| U (21,91, 25, y5,t')]? at ' = 0.3 ps (left column) and ¢ = 0.9 ps (right column) for the selected po-
sitions (green dots) of particle 2, (x3,y3) = (—11.5,50) nm (first row) and (23, y5) = (50, —11.5) nm
(second row), in the potential landscape of the HOM. Note that, due to Pauli exclusion princi-
ple, the wavefunction always vanishes at (x1,y1) = (x2,y2). By selecting different couples of
coordinates (x3,y3) the conditional probability shows the evolution of one of the two or both
single-particle wavepackets, as indicated by the arrows. (b) Rendered picture of the QPC. Red
and blue wavepackets define the single-particle density probability before and after the scattering.
The impinging wavepacket (red shape) before the QPC is partially transmitted into a channel with

the same chirality (red shape) and partially reflected to the channel with opposite chirality (blue
shape).

symmetric spin part of the wavefunction:

Yalz1,y1)Vp (22, y2) — Yal®e, y2)vs(21, Y1)
7% . (5.55)

‘I’($1,y1;$2,y2) =

From a computational perspective, the allocation of the two-electron state above has a memory
burden that significantly increases the numerical cost of the present simulations with respect to the
previous works [13, 7]. The adopted parallelization technique and its performance on HPC facilities
are detailed in Sec. 3.3. In summary, we partitioned the domain of particle 2, (z3,y2), between
interconnected supercomputing nodes with the MPI paradigm, and developed a parallel version of
the Split-Step Fourier [27] (see Sec. 3.2) to evolve the distributed two-particle wavefunction.

The amount of information provided by the 4D wavefunction in a two-electron system becomes
accessible only by reducing the number of degrees of freedom, as in the computation of the dy-
namical bunching probability. Additional information on the two-electron system in the HOM
interferometer could be extracted from the conditional probability, which is the probability of find-
ing particle ¢ at (z;,y;) by selecting the coordinates of particle j (i # j). An example is displayed
in Fig. 5.5(a), at two different times in two different positions. Note that, coherently with the Pauli
exclusion principle for a fermionic system, this probability is always zero when (z1,y1) = (22, y2).
Moreover, the dynamics of the single-electron wavepacket can also be observed via the uncondi-
tional probability of one particle, which measures the probability of finding particle i at (z;,v:),
regardless the position of particle j, with i # 5.
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5.2 — Effect of QPC scattering asymmetry

Electron beam splitter

The present solid-state implementation of the HOM device requires a proper design of the
QPC, to partially scatter the impinging electron wavefunction into the two counterpropagating
edge channels. This effect is produced by the following external potential,

VS (x,y) = VoF(—z —00)F(x — 2)F(—y — 00) F(y — yn)
+ WF(—z+ar)F(x — o00)F(—y +yr)F(y — )
(5.56)

The parameters x;, and zr define the left and right side of the barrier along the Z-direction, and
yr and yp the top and bottom side of the barrier along the g-direction, respectively. Note that in
the present geometry x, = xp = —xr and yr = —yp.

An ideal QPC working as an half-reflecting electron beam splitter in the HOM interferometer
scatters an impinging wavepacket to the opposite channel with an energy-independent probabil-
ity [7]. A rendered picture of scattering process at the QPC is displayed in Fig. 5.5(b). By fixing
the injection energy of our initial wavepacket, which is conserved during the two-particle interfer-
ometry in absence of inelastic scattering, we are also fixing the central position of the wavepacket
with respect to the confining barrier at the QPC. The smoothness, height and QPC opening size
must be chosen accordingly, and require a study of the energy selectivity entailed by our specific
design of the beam splitter.

The coefficients of the energy-dependent scattering matrix in Eq.(5.17) can be computed by
applying the wave-packet method, described in Sec. 3.1.3. According to this method, the single-
electron wavefunction |4} after the scattering at the logic gate must be Fourier transformed in the
g—direction only. By projecting the Fourier-transformed wavefunction on the edge states at the
output of the device, we calculate the weight function F'(k) of the electron state. At bulk FF 1,
due to the opposite chirality of the two channels, the wave-packet method requires to numerically
simulate the scattering process in the geometry of Fig. 5.6(a).

After the partition at the QPC, the wavefunction is split into a reflected |,) and a transmitted
|t)+) component characterized by an opposite direction of propagation. As already pointed out in
the single-channel MZI of Sec. 4.2.3, at bulk FF 1, the two counterpropagating wavepackets |i;)
and |¢;) can be forced to propagate in the same direction by introducing a region with local FF
0 between them. |¢,) runs along the outer edge, while |1);) propagate at the inner edge of the
confining potential. The bandstructure of |¢,) and |¢y), E(k:) and E(k,) present then the same
chirality, but are shifted by a geometry/gauge-dependent parameter related to the distance between
the turning points of each barrier. The origin of the two bandstructures and the corresponding
weight functions F.(k), Fi(k) must therefore be aligned to the turning points of the barrier in
the initialization region. Finally, the ratios between the properly-shifted weight functions in the
Fourier spaces, F(k,), F(k;) and F(k;) provide the transmission and reflection coefficients r(k)
and t(k) of the QPC.

By means of the empiric formula for the reflection and transmission coefficients

[283} = [ﬂ exp (— Ak 8?) +W)2), (5.57)

the numerical data are fit to compute a and ko, as done in Ref. [7], with v = 41n(2). As visible from
Eq.(5.57), in order to scatter the single-electron wavepacket at the QPC with a 1/2 transmission
probability, the central wavevector ky must coincide with the center of the energy selectivity of the
QPC, i.e. kg = k. This choice fixes the group velocity v, of the wavepacket, as well as its distance
from the confining barrier.
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Figure 5.6: (a) External potential profile V., for the application of the wave-packet method to
compute the transmission coefficient of the QPC (orange area) and probability distribution of a
single-electro Gaussian wavepacket of edge states (blue shapes) before (I) and after (R,T) the scat-
tering at the QPC with o = 60 nm. (b) Transmission coefficients of a QPC computed by means of
the wave-packet method (dots) and numerical fit with Eq.(5.57) (solid line) for different symmet-
ric opening sizes. (c¢) Transmission coefficients of a QPC computed by means of the wave-packet
method (dots) and numerical fit with Eq.(5.57) (solid line) for different values of the smoothness
T.

Moreover, we observe that the exact relation between the empiric parameter a and k; and the
geometrical ones, 7, d; and d, is generally unknown. Indeed, in a two-dimensional QPC, a change
in one of the geometrical parameters of the device modifies both the smoothness a and the center
k; of the energy selectivity in a non-trivial way. For example, in order to modify the smoothness
of the energy selectivity a, we need to tune the geometrical smoothness 7, thus also affecting
the group velocity. In order to change v, alone, the center xy of the wavepacket must be further
distanced from the turning point of the lateral barrier. However, this would also modify the central
energy /wavevector of the wavepacket. The single-electron state is no more equally reflected and
transmitted by the QPC, which does not act as an ideal beam splitter anymore.

A relevant merit of our numerical method is indeed that we only need to define the geometry
of the two-dimensional QPC as an input of our simulations, without providing any guess on the
energy selectivity, as in a real experiment. Then, thanks to the application of the Split-Step Fourier
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5.2 — Effect of QPC scattering asymmetry

method, the energy selectivity is exactly accounted for during the evolution of the two-particle
wavefunction in the external potential V..(x,y) we designed.

In our software, in order to avoid asymmetry effects in the observation of electron antibunching,
we need a proper choice of the initial position zy of the wavepacket with respect to the confining
barrier, to be performed according to the design of the QPC, i.e. its smoothness 7 and the QPC
opening with an area d, - d,. The transmission probability T'(k) = |F;(k)|>/|F(k;)|? is computed
by means of the wave-packet method previously described and displayed in Fig. 5.6(b) for different
opening sizes of a symmetric QPC, with 7 = 3 nm. Due to the symmetry in the geometry of the
QPC, T'(k) is sensitive to the area, rather than a length of the QPC. This is equivalent to a tuning
of the k; parameter in the empiric ¢(k) coefficient, and, in an equivalent 1D scattering at a simple
quadratic barrier, to a variation of the barrier height V.

Fig. 5.6(c) displays instead how the energy selectivity is affected by a tuning of the smoothness
7 at constant QPC size d, = dy = 32.2 nm. With contrast to the previous case, this variation
modifies both k; and a; parameters in Eq.(5.57). Due to the relation zg(k), an increase in the
smoothness of the lateral edge reduces indeed the sharpness of the LLs and the energy dispersion
E(k) at the confining barrier. This affects not only the central wavevector ko but also the group
velocity v, of the Gaussian wavepacket that is half-transmitted.

Measurement: the bunching probability

In a realistic experiment the measurement of the coincidence counts for single-electron wavepack-
ets would require single-shot detection of flying electrons in a semiconductor device. Though robust
protocols have been proposed theoretically [56], this is beyond the current technology. Conse-
quently, one has to resort to ensemble measurements on a stream of single-electron wavepackets,
as done when probing electron interference with DC currents (e.g. in Ref. [49]).

Differently, in our numerical simulations we directly compute 4D time-dependent wavefunction
for a two-particle system in a 2D geometry. From an experimental perspective, the access to the
dynamics of the full two-particle wavefunction and its dependence on several parameters, as the
spatial dispersion of the carriers, represents a formidable ingredient to assess the origin of low-
frequency fluctuations in the electrical current. In fact, the low-frequency noise is proportional to
the overlap between the two electron states, and provides the degree of indistinguishability of the
two electrons impinging on the beam splitter. By introducing desynchronization between the two

t=0 ps t=0.7 ps t=0.9 ps t=1.1ps

100
—_ 50
E
> 50

-100

-100-50 0 50 100 -100-50 0 50 100 -100-50 0 50 100 -100-50 0 50 100
x (nm) x (nm) x (nm) x (nm)

Figure 5.7: Unconditional probability of particle 1 P(x1,y1,t') = [ [ dradys|¥(z1,y1, 22,92, t')|?
at different time steps ¢’ in the potential landscape of the HOM. The snapshots show that the
stationary regime is achieved between 0.9 ps and 1.2 ps. Note that due to exchange correlation,
the unconditional probability of particle 1 shows the evolution of both wavepackets.
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5 — Two-electron bunching in the HOM interferometer

sources the full minimum of the Pauli dip can be characterized without resorting to a challenging
detection of coincidence counts.

Essentially, low-frequency fluctuations in the electrical current is usually computed, as in the
first HOM experiment with single electrons injected from two mesoscopic capacitors at opposite
arms of the device [64]. Ref. [70] proves that the low frequency current noise at one of the outputs is
proportional to [1—| < ¢1|¢a > |?], where < ¢1|p2 > is the overlap between the two electron states,
and provides the degree of indistinguishability of the two electrons impinging on the beam splitter.
By introducing desynchronization between the two sources the full minimum of the Pauli dip can
be characterized, as with coincidence counts in photonic HOM experiments or by computing the
exact two particle wavefunction in our simulations.

By computing the exact two-particle wavefunction in 2D, we can directly measure the bunching
(antibunching) probability Py (P,p) from its definition, i.e. the probability that the two electrons
are detected at the same output (opposite outputs) at the same time. In our device (Fig. 5.1)
the outputs are labelled as region 7" and region B. The 4D domain (r1,r2) = (z1,y1; T2, y2) is
therefore partitioned into 4 distinguishable regions labeled S; ;, where the indexes ¢ = T, B refers
to particle 1, while j = T, B to particle 2. The joint probability of detection at the same side of
the device is computed by integrating the two-particle state as follows:

Py = / |\I/(T1,T2)‘2d$1dy1d$2dy2 + / |\If(7“1,r2)|2dx1dy1dx2dy2. (558)
Srr

SeB

The antibunching probability is similarly computed by integrating over Srp and Spr; bunching
and antibunching probability are related by Ps, = 1 — Pp. Thanks to the use of the Split-Step
Fourier method, our numerical simulations provide the dynamical bunching probability Py(¢) from
the time-dependent 4D wavefunction W (rq,ra,t).

5.2.3 Two-electron detection driven by exchange

In the following, we present the numerical results for a series of HOM experiments in the IQH
regime with B =5 T. By considering GaAs (m* = 0.067m.) as the hosting material, we vary the
spatial broadening o of the two indistinguishable electron wavepackets (o = 10, 12.5, 15, 17.5, 20 nm),
to observe the interplay between the HOM geometry and two-electron exchange correlations in dif-
ferent scenarios.

Fig. 5.7 displays the dynamics of the unconditional probability of particle 2. When the two
wavepackets interact at the QPC (¢ = 0.7 ps), the bunching probability in Fig. 5.8(a) reaches its
maximum. Then, when the two wavepackets leave the QPC, it decreases without vanishing, even
in the stationary regime achieved at t ~ 1.0 ps. An increase of ¢ decreases the final bunching
probability linearly, so that we expect the full antibunching to be restored in the plane wave limit
(0 = 0).

Moreover, we compare the outcomes of our time-dependent numerical solver with the predic-
tions of the simplified analytical model described in Sec. 5.2.1. In the inset of Fig. 5.8(a), the
stationary values(t = 1.2 ps) of the bunching probability P,(c) are fit by Eq.(5.51) with Ay = 0,

ie.: )
1 1o
P =_ ———, 5.59
(o) =3~ 55 (5.59)
with ¥2 = 02 + a?/8y. The fit shows a linear trend in the bunching probability with respect to
the wavepacket size o, with a = (60 &+ 1) nm. Indeed, our strongly-localized wavepackets present a
spatial broadening that is comparable to the opening size of the QPC, i.e. d; = dy = 32.2 nm. By
choosing this operating regime, we characterize the interplay between the transmission coefficient
T(k) of the electron beam splitter and the exchange interaction between the two electrons, to
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Figure 5.8: Numerical simulations of the exchange-symmetry driven HOM interferometer. (a)
Bunching probability of the two-fermion state in absence of Coulomb interaction for different
spatial dispersions o. (inset) Numerical fit of Eq.(5.50) (black dashed line) with the stationary
bunching probabilities in panel (a) at ¢ = 1.2 ps. This provides the geometrical parameter in
Eq.(5.57) for our QPC, a = 60 + 1 nm. (¢) Bunching (empty dots) and antibunching (full dots)
probabilities for an antisymmetric (red) and symmetric (black) two-particle wavefunction with
o = 20 nm. Only exchange symmetry is present.

explain how the energy broadening affects the Pauli dip. Alternative regimes, as the one in Ref. [64],
would not provide this amount of information: there, the energy distribution of the single-electron
wavepackets is very narrow (of the order of 1072 meV) and the QPC transmission amplitude vs.
energy curve is essentially flat on that scale.

If Ay # 0, the generalized formula of the bunching probability

o 1 1 0'2 —Ay2/02
Py(o) = 5 5%z , (5.60)
clearly depends on the overlap between the reflected and transmitted single-electron wavepackets
generated after the QPC, —2(aT|SR). The amplitude of this overlap depends on the smoothness
of the transmission probability on the wavevector space, which affects the shape and energy dis-
tribution of the reflected and transmitted wavepackets. Indeed, the bunching probability vanishes
for a very narrow broadening in space, i.e. in the plane-wave limit with ¢ — oo, or for a very
smooth energy selectivity of the QPC, a — 0. The latter case requires the use of a very sharp
potential dip, that could be implemented with the multichannel beam splitter at bulk FF 2 in
Ref. [13]. Within this condition, the overlap on the k-space between the reflected and transmitted
wavepackets increases, thus inducing a destructive interference in the two-particle process. By de-
creasing the sharpness in real space of the beam splitter, the reflected and transmitted components
becomes distinguishable, so that a non zero electron bunching probability is restored

Instead, for a symmetric wavefunction, this overlap provides a positive contribution to the
bunching probability, i.e. +2(aT|SR). This case is displayed in Fig. 5.8(b). Here, we compare the
dynamical bunching and antibunching probabilities of a two-particle wavefunction with ¢ = 20 nm
in presence of exchange symmetry only: in the stationary regime, the two configurations are
characterized by exchanged values of P, and Py.

Finally, Fig. 5.9(a) displays P, for desynchronized sources (Ay # 0) in presence of exchange
interaction only (blue dots, Vs = 0). With contrast the the regime of synchronized sources,
Ay = 0, the stationary bunching probability does not depend on the exchange statistics for Ay —
00, where the random partition limit is achieved (see Eq.(5.50)). In a time-dependent scenario,
by increasing Ay, the two electrons impinge on the beam splitter with a growing time delay,
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5 — Two-electron bunching in the HOM interferometer

so that the overlap between the two wavepackets decreases. This reduces the relevance of their
relative exchange symmetry, and gradually restores the classical probability of joint detection
for two distinguishable particles. By fitting the numerical data with Eq.(5.50), we compute the

characteristic length for this transition, that is A = 2,/02 + % ~ 30 nm at ¢ = 15 nm, (blue solid
line in Fig. 5.9(a)).

5.3 The role of Coulomb repulsion

Thanks to the use of a 4D domain for the system wavefunction, we can simulated the scattering
of two electrons in 2D in presence of the exact Coulomb repulsion between the two charges. We
initially introduce the long-range potential:

62

dre\/(z1 — 22)% + (y1 — y2)® + 2’

Via(@1,y1,22,y2) = (5.61)

in the two-electron Hamiltonian of the system. € is the medium permittivity and d, accounts for
the finite thickness of the 2D heterostructure in the divergence at x1 = z2 and y; = yo.

5.3.1 Coulomb-driven antibunching

Initially we simulate bunching in the HOM interferometer for two distinguishable particles, so
that the scattering process is exclusively driven by electron-electron repulsion, together with the
effect of the QPC. The wavefunction at initial time is represented by the product state:

Ve (xr, Y1, w2, y2;t = 0) = o (21, y1)Vs(22, Y2)- (5.62)

Fig. 5.9(b) displays the stationary value (¢ = 1.2 ps) of the bunching probability for a range
of d, parameters and ¢ = 20 nm. Antibunching clearly increases with the Coulomb repulsive
interaction. For a large enough d, parameter (d, = 100 nm), the random partition limit for
distinguishable particles is restored. The two wavepackets evolve indeed independently without
interacting significantly at the QPC. The overlap term in Eq.(5.49) vanishes:

(aT|BR) ~ 0 (5.63)
so that the bunching probability reaches 50% only if

(@(P)T|a(B)T) = ((B)Rla(B)R) = 1/2. (5.64)

The fullfillment of this condition shows that in the present regime the two wavepackets 1, and g
are properly initialized, to be identical and both half-transmitted by the QPC.

Additionally, for d, — 0, the bunching probability exhibit the difference between a 1D electron-
electron repulsion and the same interaction in a 2D geometry. In the first scenario, the two
electrons, being confined on the same rail, are forced to get across the same coordinate, e.g.
1 = x9, with Coulomb repulsion acting as an infinite barrier for d = 0. On the contrary, the two-
dimensional geometry presents alternative paths with a finite barrier, where the electron charge
is only partially reflected by the Coulomb potential. This allows partial bunching, as displayed in
Fig. 5.9(b), where P}, saturates instead of vanishing by decreasing the d, parameter.
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5.3 — The role of Coulomb repulsion

5.3.2 Interplay between Coulomb repulsion and exchange interaction

Exchange symmetry is then added to the interacting system, to compute the dynamical bunch-
ing probability in Fig. 5.10(a), while Fig. 5.10(b) compares the stationary values of P, in presence
of electron-electron repulsion and/or exchange interaction. As visible by comparing the two frame-
works, in our operating regime Coulomb repulsion dominates on the exchange interaction: by
adding the indistinguishability in the two-electron wavefunction, indeed, the bunching probabil-
ity is equally lowered for all the broadenings o with respect to the separable case. Furthermore
we show, in Fig. 5.9(a), the stationary bunching probability of indistinguishable and interacting
electrons (V12 # 0) for different initial displacements Ay and o = 15 nm: numerical data (green
squares) are fit by

ooty ?

T exp(—
o2y T aZp /8 A(o2;p +aZp,/87)

(green dashed line), which corresponds to Eq.(5.51) with an effective ocry and

aeff:2w27,/2‘f‘ff—agff, (5.66)

that are used as fitting parameters. The fit provides ocyy ~ 21 nm and a.yy ~ 86 nm, which are
larger than the counterparts in the non interacting scenario (inset of Fig. 5.8).

As visible in both separable and non separable interacting framework (Fig. 5.10(a)), the effect
of long-range Coulomb interaction turns out to depend on the spatial broadening of the wavepacket
0. The stationary bunching probabilities of the separable and non-separable cases are compared
in Fig. 5.10(b). In presence of long-range Coulomb interaction, Pj(o) differs from the quasi-linear
trend in the inset of Fig. 5.8(a), where the antibunching is exclusively driven by the exchange
interaction.

) (5.65)
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Figure 5.9: (a) Bunching probability as a function of the initial displacement Ay between two
indistinguishable wavepackets (o = 15 nm) with zero (blue) and non zero (green) Coulomb inter-
action Viz with d = 1 nm. For Vi = 0 the numerical data (blue dots) are compared to Eq.(5.50)
(blue line) with o = 60 nm, while for Vi3 # 0 numerical data (green dots) are fit by the equation
g(z) (green dashed line) as explained in the main text. The fit provides an effective broadening
Oefs = 21.7540.03 nm and an effective geometrical parameter a. sy = 84.0£0.1 nm. (b) Stationary
bunching probability (¢ = 1.2 ps) in presence of long-range Coulomb interaction without exchange
symmetry for different d parameters in Eq.(5.61) and o = 20 nm .

85



5 — Two-electron bunching in the HOM interferometer

0.5 0.5 — ‘ : — S
l o= Vi2
0.4 ,g: V13 and exchange
03 o= V'1; and exchange @
o 1o 0.4 - g
0.2
0.1
3 [ ]
0.0 &= 0.3 -
0.0
=)
o
0.5 0.2 - 4
0.4
0.3
& i 0.1 - .
0.2
0.1 |
i (c)
0.0 M= L L L L L 0.0 L | L | L | L | L | L | L | L
0 0.2 0.4 0.6 0.8 1 1.2 0 5 10 15 20 25 30 35 40
t (ps) o (nm)

Figure 5.10: (a) Bunching probability in presence of long-range Coulomb interaction without
exchange symmetry and (b) with exchange symmetry for different o and d = 1 nm. (¢) Comparison
between the stationary bunching probability of two distinguishable electrons (yellow dotted line)
and indistinguishable electrons (green dotted line) with long-range Coulomb interaction. We also
report the stationary bunching probability of two indistinguishable electrons in presence of screened
Coulomb interaction for ¢ = 20 nm and a cutoff length o, = 5 nm (blue circle).

5.3.3 Effects of screening

Finally, we add the effect of screening on two-electron bunching for the largest wavepacket, i.e.
o = 20 nm. To this aim, we include an exponential damping to Coulomb repulsion, so that the
range of interaction is reduced:

V(e —29)2+(y1—y2)?

062 e_ oc
V/ =
12(1:1,y1,x2,y2) Arre \/(361 — 362)2 + (yl _ y2)2 + d%’

as done in Ref. [18] for two wavepackets that scatter at a 1D double barrier. Here, the parameter
C is a global constant that quantifies the interaction, while o, determines its spatial range. The
stationary bunching probability is reported in Fig. 5.10(b) for ¢ = 20 nm, 0. = 5 nm and C =1
(blue dot) and compared to the unscreened simulations. The value of the bunching probability in
the screened scenario is very near to the one of the exchange-driven scattering process, reported in
the inset of Fig. 5.8(a). This suggests that, for the present damping parameters, exchange-driven
bunching is restored, and the dominance of the Coulomb interaction is gradually suppressed in the
intermediate regimes.

We further stress that our operating regime differs from the one adopted in traditional HOM ex-
periments, where SESs do not generate strongly-localized excitations, but rather wavepackets with
an emission time of the order of tens of picoseconds (two orders of magnitude larger than in our
geometry)[64]. The simulation of larger wavepackets is beyond the current limit of our computing
capabilities, already involving massive parallelization and costly intra-node data communication
protocols on top-level European supercomputing hardware. In order to fulfill a number of bound-
aries entailed by the Split-Step Fourier Method, as avoiding aliasing or the underestimation of the
wave-packet dynamics, a significantly larger number of grid points would be required.

(5.67)
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However, we can propose some predictions by considering our numerical results and the ana-
lytical model we implemented to support our findings.

(i) Regarding the non-interacting case, Eq.(5.58) can be used to estimate the bunching prob-
ability for wavepackets with a sigma of the order of micrometers in the present geometry.
Our QPC is characterized by a smoothness in the k-space given by a = 60 nm, so that if
o0 =107%m, then ¥ ~ ¢ and the bunching probability is approximately zero.

(ii) In presence of long-range interaction, we do not observe a full antibunching by increasing the
wavepacket size. In the range of energies we are considering, the long-range Coulomb repul-
sion produces a saturation of the bunching probabilities by increasing sigma. In Fig. 5.10(c)
we introduce the stationary values of P} for two additional numerical simulations of indis-
tinguishable electrons with ¢ = 25 and 30 nm. The green dashed curve confirms that,
in our operating regime, the bunching probability saturates to a non zero value for larger
wavepackets.

Such predictions apply to the present scenario, where the bunching is sensitive to the energy
selectivity of the QPC and the long-range Coulomb interaction is considered. Indeed, the bunching
probability in presence of screening suggests that the dominance of the Coulomb interaction is
suppressed. Therefore, for a proper choice of o, the bunching probability eventually decreases to
zero for larger wavepackets, as experimentally observed.

5.4 Von Neumann entropy for the spatial entanglement

Finally, we measure the dynamical Von Neumann entropy of the antibunched configuration in
the two-electron system, which represents the degree of non-separability of the spatial representa-
tion of the two-particle wavefunction.

We partition the Hilbert space into two separate subsystems, the top (T') and the bottom (B)
region in the inset of Fig. 5.11(a), so that H = Hyr ® Hp. Due to the indistinguishability of the
two electrons, we fix the position of particle 1 in the top region ((z1,31) € T'), and particle 2 in
the bottom one ((x2,y2) € B); we expect the opposite configuration to be equally entangled due
to the symmetry of the two single-electron wavepackets at ¢ = 0.

The exact computation of the density matrix for two particles in a 2D real space requires the
allocation of a density matrix with a large memory cost, together with challenging communications
between the MPI processes involved in our parallelization scheme. Thanks to the chirality of the
edge states, we can reduce the computational burden and compute the von Neumann entropy by
projecting the two-particle wavefunction on the 1D path of edge channels at the outputs of the
device. We therefore fix the g-coordinate of the two rails, with correspondence to the expected
maximum of the density probability distribution, namely y; = yf € T and y» = y3 € B. To
provide yi and y5, we identify the maximum of the two single-electron wavepackets at t = 0, in the
Z direction. Note indeed that the initial distance between the 1D rail of the edge channel and the
turning point of the confining barrier must coincide before and after the scattering with the QPC.
The process is indeed energy conserving, and the bandstructure has the same bending before and
after the opening of the beam splitter. Then, in the present case, y7 = 11.5 nm and y; = —11.5 nm
(black dashed lines in the inset of Fig. 5.11(a)).

The conditional two-particle wavefunction,

¢(‘x17x2) :W(‘xhyiaany;) (568)
is then renormalized, so that the density matrix reads:
pri(T1, 22577, 15) = @1, 12)" (2], 25). (5.69)

87



5 — Two-electron bunching in the HOM interferometer

Note that the von Neumann entropy generally does not depend on the subspace chosen to be
traced out. However, in our parallelization scheme the real-space domain of the second particle is
distributed among the MPI processes in a Cartesian topology. Therefore, the following definition
of the reduced density matrix has the lowest computational cost:

pr(z1, ) :/ dry ¢(x1,72)0" (22, 2)). (5.70)
zr2E€B

Each MPI process can indeed allocate its contribution to the global reduced density matrix

pr(z1,2}), by summing over its local domain 7o = (x2,y2). Then, MPI processes gather their

local reduced density matrix to ta master process. The latter finally calculates the spatial entan-

glement by means of the von Neumann entropy:

S =Trlpr In(pr)]. (5.71)

Fig. 5.11(a) shows the dynamics of the von Neumann entropy S, with exchange symmetry only.
An increase of the spatial distribution o of the wavepacket quenches the entanglement, so that we
expect it to vanish in the plane-wave limit. In Fig. 5.11(b) we compare the stationary von Neumann
entropy in presence of: (i) exchange symmetry alone (red solid line), (ii) a separable wavefunction
with Coulomb interaction (green dashed line), (iii) Coulomb interaction and a symmetric wave-
function (blue dotted line). In the latter case, the Coulomb repulsion, which acts as an additional
barrier, further prevents the two particles to reach the opposite regions, so that entanglement is
reduced. The von Neumann entropy in the interacting scenario with exchange interaction does not
differ from the one in the distinguishable case: the two electrons are already prevented to occupy
the same coordinates due to the infinite barrier represented by Via at (z1,y1) = (z2, y2).

5.5 Bunching probability for alternative single-electron ex-
citations

As detailed in Sec. 3.1, the use of Gaussian wavepacket of edge states in our discussion is aided
by their higher numerical control during time evolution, with respect to alternative shapes for an
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Figure 5.11: Entanglement between T and B regions in the antibunched configuration. (a) Von
Neumann entropy for different 0 and d = 1 nm in presence of exchange symmetry only; the dotted
black lines in the inset show where the full scale wavefunction is projected with respect to the
top-view of the potential profile. (b) Comparison between the stationary Von Neumann entropy
in the different scenarios.
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5.5 — Bunching probability for alternative single-electron excitations

electron wavepacket, together with the recent interest towards the generation of single-electron
excitations with a Gaussian shape [72] by means of quantum dot pumps.

However, experimental works on two-electron bunching mainly exploit alternative SES to study
two-electron bunching in the HOM interferometer. By neglecting Coulomb interaction between the
two charges, we adopt a semi-analytical approach to predict the bunching probability for alternative
shapes of the localized electron wavefunction.

In Sec. 5.2.1, we calculate the bunching probability for two indistinguishable electrons in an
effective 1D model:

Po(Dy) = (Yalva) (Wlvh) + (Walva) (WElvE) — 21 (walvh)?, (5.72)

where « and  is the wavepacket index, while ¢ ed r label the transmitted and reflected component
of the single-electron wavepacket, respectively.

The scalar products in Eq.(5.72) are here computed by means of the weight functions F(k),
F.(k) and F;(k) in the Fourier space, for a single-electron wavepacket that scatters at a QPC.
After simulating the dynamics of the single-electron excitation in the full-scale geometry of the
HOM interferometer, we apply the wave-packet method to compute the above weight functions.

By accounting for the presence of a discrete simulation grid, so that ¥(z,y) — ¥,, =
U(xz,y)Vdx/dy, we rewrite the scalar products in Eq.(5.72) as follows:

Whlvh) = Whlvh) = Y |F®), (5.73)
k
Whlvn) = Wilvp) = Y IF(k)P, (5.74)
k
Whlep) = —i Y F(k)F(k)e*ay, (5.75)
k

where the phase factor e’*2¥ has been introduced a posteriori to simulate the time delay induced
by desynchronized sources.

5.5.1 Lorentzian wavepackets in the energy domain

A large number of electronic HOM experiments have been realized by using mesoscopic capac-
itors, to alternatively inject electrons and holes. These single-charge excitations are called Landau
quasiparticles and are characterized by a Lorentzian distribution in energy (see Sec. 2.1 for details).
By neglecting many-body effects airising from the nature of this quantum excitation, we exploit
our time-dependent numerical method to simulate the injection of a "Landau quasi-particle', by
assuming that this is only defined by the shape of its energy distribution. The single-electron
wavefunction reads: _

ietg
Ne™®

U(e, ty) = = Foi(E(k,n = 0)) (5.76)

€—e€g+ zg
where g is the injection time, €y the injection energy and v = i is the FWHM.

The electron wavefunction in the energy domain is therefore weighted by F[E(k,n = 0)] =
U (e, tg), while in the wavevector space it depends on the specific bandstructure E = E(k(zg)). For
a linear E(k), F(k) can be approximated by a Lorentzian shape, so that in the real space it has
an exponential decay on the direction of propagation, the § direction. The actual shape, however,
depends on the specific bending of the Landau levels at the injection coordinate, 1.

In Fig. 5.12 we show our numerical simulation of an HOM experiment with Lorentzian wavepack-
ets. Panel (a) displays the energy bandstructure k = k(F) for the first Landau level in our operating
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Figure 5.12: (a) Energy distribution of the Lorentzian wavepacket at ¢ = 0 ps with I' = 1 meV
(purple line) and corresponding distribution on the wavevector space k (light blue line). The
red dashed line identifies the bandstructure of the first Landau level, which relates energies and
wavevectors.(b) Electronic density probability at ¢ = 0 ps for the lorentzian wavepacket with
I' = 1 meV. (c) Two-electron bunching probability for desynchronized sources computed by
means of our semi-analytical method in presence of single-electron wavepackets with a Lorentzian
distribution in energy. The minimum of the Pauli dip for different values of I" are compared in the
bottom panel.

regime, as well as the energy-dependent and wave-vector dependent weight function, Fy (F) and
Fy (k) respectively. Both are characterized by a lorentzian shape, due to the quasi-linearity of
E = E(k) in the range of energies we are simulating, together with the use of a small enough
I' parameter. The central energy is indeed large enough to lie far from the bottom part of the
first Landau level, where the bending is mostly quasi-parabolic, and small enough to reduce the
effect of scattering-induced filling of the second Landau Level. Indeed, in case of energy-conserving
scattering processes, only those states with a flat dispersion, i.e. not contributing to electron trans-
port, can be significantly filled. The central energy is ¢g = 20meV and ' = 2,1,0.5,0.25meV. The
real-space profile is displayed in panel (b). The exponential damping in the j—direction is here
clearly visible.

By means of the Split-Step Fourier method, we evolve the single-electron wavefunction in
the HOM geometry and provide the weight functions for the initial, reflected and transmitted
wavepackets; with Eq.(5.72) we finally compute the purely exchange-driven bunching probability.
Fig. 5.12(c) displays the Pauli dip for a set of I' parameters, while in panel (d) we show P,(T") for
synchronized sources.

Here, the minimum bunching probability has a lower value, with respect to a Gaussian wavepack-
ets. This follows from the higher localization in the energy domain of a Lorentzian distribution
of states with respect to a Gaussian one. Indeed, due to the presence of larger tails in the first
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5.5 — Bunching probability for alternative single-electron excitations

case, the number of states that contribute significantly to the two-electron destructive interference
is smaller. The narrower peak induces therefore to a larger overlap between the reflected and
transmitted components of the two wavepackets.

By increasing the time delay between the injection from the two sources, we observe that the
bunching probability saturates for values smaller than 1/2, regardless the value of T'. Note indeed
that, due to its smaller energy dispersion, it is numerically more difficult to identify the central
coordinate xg(kg) of the electron wavepacket that realizes the ideal condition for the QPC, i.e.
T(ko) = 0.5.

In summary, in this chapter, we contribute to shed light on the apparent violation of Pauli
exclusion principle in two-electron bunching by presenting the numerical results of our full-scale
modeling of a solid-state electron beam splitter at bulk FF 1 and the time-dependent simulation
of two-electron bunching in a Hall HOM interferometer.

Our numerical method includes exactly the interplay between a realistic geometry of the QPC
in 2D and correlation in the two-particle wavefunction, so that we can relate the non-zero bunching
probability to the exact energy selectivity of the electron beam splitter, according to its specific
design. A full understanding of this interplay is important for the integration of the HOM interfer-
ometer into sophisticated computing architectures as the Handbury-Brown-Twiss interferometer.
Moreover, it can also be exploited to measure the degree of indistinguishability of electrons ge-
nerated from different sources [110], or to study the statistics of exotic particles as anyons in the
fractional quantum Hall regime [111]. Furthermore, the electron HOM experiment in the IQH
regime has been recently applied to study the decoherence phenomena affecting quasi-particles
emitted from SESs [65].

The decrease in the bunching probability by increasing the spatial localization confirms, for a
full scale 2D spatial geometry, the findings of Ref. [19], where this effect is explained with a 1D
time-dependent model as a signature of the non-orthogonality between the states scattered by the
potential barrier.

By means of a simplified analytical model in 1D, we relate the stationary bunching probability
to the non-perfect overlap between the transmitted and reflected wave-packets generated from
the single-electron scattering at the QPC. This model clarifies the interplay between the spatial
dispersion of the wavepacket o and the geometry of the QPC, which is encoded in the single-particle
parameter ¥ of Eq.(5.50).

By comparing the predictions of the analytical model and the results of the full-scale numerical
simulations, we also validate the empiric equations for the reflection and transmission coefficients
of a QPC in Eq.(4.11), which is used to predict analytically the bunching probability in the HOM
interferometer and the transmission amplitude in the multichannel MZI. Moreover, By using a
semi-analytical model based on the wavepacket approach and the full-scale numerical simulation
of single-electron scattering at the beam splitter, we also estimate the electron bunching probability
for wavepackets with a Lorentzian distribution in energy, as the Landau quasi-particles emitted
from mesoscopic capacitors. Thus, we demonstrate that our findings do not depend qualitatively
on the shape of the excitation.

We show how the perfect antibunching is recovered in the plane-wave limit and point out
the role of exchange symmetry by simulating the HOM experiment both for a symmetric and
an antisymmetric wavefunction. As an additional advantage in treating exactly the two-particle
scattering, we include electron-electron repulsion in the Hamiltonian to evaluate the interplay
with the fermionic statistics. We observe that in a 2D real-space geometry, differently from the
typical 1D scenario adopted in literature, the bunching probability does not vanish for an infinite
repulsive Coulomb interaction. Additionally, for unscreened interacting particles, we find that
Py(o) saturates to non zero values. Our conclusions do not contradict the results obtained in
Ref. [64], as in the experiment the device does not generate strongly-localized excitations, but
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5 — Two-electron bunching in the HOM interferometer

rather wavepackets with an emission time of the order of picoseconds, i.e. 2 orders of magnitude
larger than in our geometry. Furthermore, by including an exponentially-decaying screening in our
interacting regime, we show how the effect of Coulomb repulsion can be suppressed with a proper
choice of the damping length, so that the limit of exchange-driven bunching is restored, also for
interacting particles.

Finally, a dynamical measurement of the spatial von Neumann entropy between the top and
bottom regions of the device allows us to assess the spatial entanglement between the two anti-
bunched carriers; we found that long-range Coulomb interaction quenches the entanglement by
enhancing the Pauli dip with respect to the antisymmetry alone.
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Chapter 6

Conditional phase shifter for
entanglement generation

A universal set of logic gates for quantum computing requires a two-qubit device able to gen-
erate entanglement from a product state, in addition to arbitrary single-qubit operations, as the
ones implemented with the beam splitter and the phase shifter in Sec. 4.2.1 and Sec. 4.2.2 respec-
tively. Entanglement can be realized by means of the conditional phase shifter, that generates
non-separable two-qubit states, by selectively adding a phase 7 to a specific configuration of the
two-qubit state.

In a two-level system with states |0) and |1), the two-qubit transformation performed by the
conditional phase shifter is described, on the ordered basis {|00), |01}, |10),]11)}, by the following
matrix:

T(y) = , (6.1)

S O O
oo = O
O = OO

which selectively rotates the |11) component of the two-qubit wavefunction by a phase factor -,
without affecting the relative weight of the four states. Thus, the detection of quantum entangle-
ment requires a composite transformation able to alter the detection probability of the states and
to create maximally entangled Bell’s states[112].

Differently from early solid-state proposals based on quantum wires [22], we propose and study
its realization in the IQH regime with the geometry reported in Fig. 6.1. Here, two of our multi-
channel MZIs [13] are concatenated in parallel to generate a two-qubit gate. Due to a bulk FF 2,
two cyclotron-resolved Landau Levels (n = 0 and n = 1) run at each side of the confining lateral
potential. By varying the width of the mesa with local FF 1 (W), the lateral distance between the
two counterpropagating channels with n = 1 is increased or reduced, while the two channels with
n = 0 can be further spaced by increasing the indentation where they propagate.

Single-electron sources (labeled with Sy and S; in the figure) inject identical electrons, e.g. in
the ground state (n = 0), at each side of the device. Each single charge is partitioned between the
two copropagating edge channels by the electron beam splitter, that is here the sharp potential
dip studied in Sec. 4.2.1. In the central area of the device, the strength of Coulomb interaction be-
tween the two counterpropagating carriers depends on their Landau indexes. To induce a selective
coupling, we properly tune W and limit the active region (zoomed area in Fig. 6.1) to the outer
edges of the area at bulk FF 1, which is accessible only by the edge channels with n = 1.
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Figure 6.1: Rendered picture of our proposal for a solid-state implementation of the conditional
phase shifter [23]. Two multichannel MZIs of Ref. [13] are concatenated in parallel at each side
of the device. The two channels with Landau index n = 1 interact in the active region (squared
yellow box), while the channels with n = 0 are further separated by increasing the width W of the
region at FF 1. The inset displays the initial and final single-electron density probability of the
two particles in the n = 1 channels.

Here, Coulomb repulsion is the coupling force that induces the T transformation. When two
electrons in n = 1 approach each other, electron-electron repulsion transforms part of their kinetic
energy into a repulsive coupling potential, so that the velocity along their path is reduced. The
relative distance returns then to the original value, and the potential energy is transformed back
into kinetic energy when the initial velocity is restored. This turns into a delay in the propagation
of the two electrons compared to the non-interacting case, that corresponds to a phase factor in
front of the |11) component of the two-qubit wavefunction.

By resorting to our numerical solver for two-electron transport in a 2D topology, we simulate
the Coulomb-driven scattering between two single-electron wavepackets in the active region of the
conditional phase shifter, and prove that Coulomb interaction can act as a selective entangler in this
geometry. In Sec. 4.2.3 we showed that our time-dependent numerical method is able to reliably
analyze the geometry-dependent properties of the MZI. With contrast to effective 1D models, it
requires indeed the design of the full-scale potential profile V,,; affecting electron transport in the
device and so that no guessing on the energy dependence of the transmission coefficients is needed.
Moreover, in the HOM experiment presented in Sec. 5.3.2, we observed that the manipulations
of the 4D wavefunction for two electrons in 2D ensures the exact inclusion of bare or screened
Coulomb interaction. Our full-scale approach is then even more suitable in the present device,
where the geometrical parameters of the system, e.g. the length of the coupling region and the
distance between the channels, affect the strength of Coulomb repulsion and the corresponding ~y
factor.

The system is initialized with two counterpropagating states ¥, ;(z,y) and ¥ ;(z,y) localized
at each side of the confined 2DEG. The two wavepackets are characterized by wavevectors k., and
kg that are identical in module but opposite in sign. The Landau index of the two states depends
on the system under study: we generally define the (n,m) configuration as the two-electron state
generated by fixing 1q i=n (%, y) and Y3 j=m(z,y). Exchange interaction is then eventually added
by computing the Slater determinant, as in the HOM interferometer of Sec. 5.3.2.
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Figure 6.2: Bandstructure of the active region induced by the sharp potential profile (blue shaded
area) for the (a) first and (b) second Landau level (green lines) at B = 5 T. The blue dots define
the centers of the edge states contained in the wavepackets. The purple line define the transverse
profile of the probability density for a wavepacket injected with a central energy E° ~ 15 meV
and o = 40 nm. (c) Map of the active region of the device (blue) and initial density probability
distributions of two single-electron wavepackets (red) in the three configurations under study: (00)
both electrons in channel 1, (01) one electron in channel 1 and one electron in channel 0, (11) both
electrons in channel 1. Black arrows define the direction of propagation of the wavepackets.

6.1 A toy model with sharp barriers

The active region of the conditional phase shifter is here modeled by a translationally invariant
external potential that defines two confining barriers with distance d.

We initially adopt a toy model where we assume the active region to be described by sharp
square walls, as displayed in Fig. 6.2 (blue shaded area). The transverse profile of the external
potential V.. (x) is described by a combination of Heaviside functions in the #—direction, as follows:

Veat () = Vo[0u (z — 2R) + On (2L — 2], (6.2)

with V, = 250 meV and |zg — x| = d.

As in the multichannel MZI, we operate with two cyclotron-resolved channels at each side, and
simulate the injection of electron wavepackets in the available channels. Tab. 6.1 reports the central
energies and group velocities for the set of wavepackets with ¢ =40 nm and n =0orn =1. In
our operating regime, single-charge wavepackets with a Gaussian shape are injected with the same
central energy EJ = EY = 15 meV, while, due to the different smoothness of the corresponding
Landau levels, the group velocities differ significantly: vg = 2-10° m/s and v; = 0.7-10% m/s.
The distance between the two confining transverse barriers runs from d = 100 nm to d = 200 nm.
Moreover, we investigate Coulomb-driven scattering at smaller distances, in order to prove that
tunneling is negligible for d > 40nm.

Fig. 6.2 shows the transverse profile of the probability density for a single-electron wavepacket
with 0 = 40 nm (purple solid line) in the (a) first and in the (b) second Landau Level. The picture
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displays only the positive domain of the device in the & direction, while the negative counterpart
of the transverse density probability is symmetric by construction. The single-electron density
probability at initial time vanishes at the origin, so that we expect that the two counterpropagat-
ing wavepackets do not overlap significantly in the transverse direction. This suppresses elastic
tunneling between the two channels and ensures that the scattering is purely driven by Coulomb
repulsion.

To discuss the selective coupling in the conditional phase shifter, we analyze two-electron dy-
namics and correlations in the three different initial configurations reported in Fig. 6.2(c), named
(00), (01) and (11).

6.1.1 Coulomb-driven scattering in the (00) configuration

The effect of Coulomb interaction is here encoded in the difference between the final density
probability of the second particle in the interacting case and in the non-interacting scenario. Due
to the presence of exchange, we expect that at final time (V. ~ 0) the probability of one of the
two particles, e.g. particle 2, integrated on the other one, shows the real-space configuration of
both single-electron wavepackets in the two outputs. An example is presented in Fig. 6.3 for two
indistinguishable electrons in the (a) 0 channel and (b) 1 channel.

The difference between the maxima of the two distributions at the outputs of the device in the
interacting and non-interacting scenario, namely dy depends on the geometry of the active region.
In detail, it can be strongly affected by the distance between the two lateral edges, the wavepacket
size and the smoothness of the confining barriers. With regards to the last parameter, a proper
design of V(z) with sharp lateral barriers is necessary to induce a quasi-parabolic dispersion of
the second or first Landau Level, rather than a linear one. This ensures indeed a larger dy: in the
presence of linear dispersion, the kinetic energies of the two wavepackets are initially decreased
and finally increased by the same amount, so that the effect of electron-electron repulsion would
not be equally detectable.

Two-electron scattering is initially driven by a long-range Coulomb interaction
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Figure 6.3: Density probability of particle 2 in the (a)(00) and (b)(11) configuration at different
iteration times in the geometry of the toy model with d = 180nm, ¢ = 40nm and E° ~ 15 meV.
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6.1 — A toy model with sharp barriers

while screening effects, e.g. induced by metallic gates or background electrons, are later accounted
for by means of an exponential damping in the Coulomb potential, i.e.

_ Ce? exp(—\/(a?1 —x2)* + (y1 — y2)?/0c)
47T6T\/(£L'1 —x2)% + (y1 — y2)% + d?

Via (6.4)

where o, describes the effective interaction length, C' the amplitude of the screening and dz avoids
the divergence at r; = ro.

First, we simulate Coulomb-driven scattering of two indistinguishable electrons both in channel
n =0, i.e. in the (00) configuration, for a number of wavepacket sizes o = 20, 30, 40, 50, 60 nm and
d, = 1 nm. In presence of exchange interaction, the antisymmetric wavefunction ¥(z1,y1, Z2,y2)
is initialized with the two electrons in both wavepackets. The two-particle probability,

73(d?2,y2) =/dﬁfl/dyl|‘1’($17y1,5€27y2)|2 (6~5)

shows therefore the dynamics of both single-electron wavepackets in the 0 channel.

To define the quantum rails where the two electrons propagate, we select the two maxima of
P(z2,y2) in the transverse direction at initial time ¢ = 0, i.e. z; = M and x5 = 23!, Then,
we calculate the maxima in the §—direction of the above probability projected on z3!, P(z3, y2),
at the end of the Coulomb-driven scattering for the interacting (y» = Y3/) and non interacting
(y2 = Y3¥1) simulation. The spatial shift induced by Coulomb interaction is finally computed as
5y = 4 — Y1),

Effects of the bandstructure on the spatial shift Jy

Fig. 6.4 displays dy as a function of the distance between the two barriers, d, for different
values of . Our numerical simulations show a decrease in dy by increasing the lateral distance
between the two edges, which slightly depends on the wavepacket size. In particular, dy is generally
enhanced for smaller wavepackets, when d > 120 nm, since the stronger localization of the electron
charge increases the electron-electron repulsion. For smaller values of the parameter d, the spatial
shift dy starts to invert its trend.

We relate this behavior to the bending of the Landau levels in the present operating regime. In
addition to depending on the transverse shape of the external potential V,¢(z), the smoothness
of the Landau levels is affected by the finite size of the simulation box. This follows from the
use of periodic boundary conditions to compute the edge states. In the effective 1D Hamiltonian
H_.gy(x), the parabolic magnetic potential Vg (z) centered at zo(k) adds to the designed potential
profile Vg +(x). When the center of the right barrier, zr, approaches the positive boundary of
the simulation box, L., the magnetic confinement Vp(x) at the negative boundary of the device,
x — —Lg, is very large. An electron wavepacket initialized at zo — xgr experiences therefore a
large magnetic barrier in addition to V. (x).

When z((k) is distant from the edge, the finite-size of the simulation box becomes less effective.
Finally, when x(k) — 0, the quasi-parabolic dispersion at the right and left borders of Vi.:(z)
overlap, so that the minimum of the Landau levels increases; this is depicted in Fig. 6.5, which
shows the bandstructure of the (a) first and (b) second Landau Levels for different values of the
parameter d, together with the energy broadening we use to compute the Gaussian wavepackets.
Here, we initialize the center of the wavepacket xo(ko) at a fixed distance from the turning points
of the confining barrier, x7, or zr. Therefore, the central energy E? and the energy broadening
o' of the wavepacket slightly decreases by reducing d, as reported in Tab. 6.1.

Additionally, Fig. 6.5(b) shows that the bandstructure of the second Landau level is generally
characterized by a smoother bending, thus inducing a smaller energy broadening for n = 1 with
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6 — Conditional phase shifter for entanglement generation

respect to a wavepacket initialized in n = 0. We further observe that in our operating regime the
energies are well below the third Landau level, whose minimum is represented by the grey dashed
line at E3, ~ 21 meV.

Coulomb energy exchanged during the two-electron scattering

To estimate the amount of Coulomb energy exchanged during the scattering in the (00) configu-
ration, we initially map the Coulomb potential Vi5(x1, y1, 2, y2) by fixing the 21 and x5 coordinates
to the maxima of the single-electron wavepackets, namely z; = 2 (right channel) and z = 2!
(left channel):

62

dmer/ (21" —23")2 + (y1 — y2)? + d2
The Coulomb potential energy V (2, y1, 237, y2) is then averaged over the discrete set of jj—coordinates
that define the path of each edge channels, i.e. y1 = —yo =Y with Y € [-L,, L,], where L, is the
positive coordinate of the boundary in the g—direction.

By accounting for the spatial distribution of the wavepackets, we average the Coulomb potential
V(z%,Y;25,—Y), on a 2D Gaussian distribution F(x,z*,y,y*) centered in z* = 2™ and y* =Y,

V(mi\4,y1;xé\/17y2) = (66)

Fla,a™,,Y) = age— @220 (=) /207), (6.7)

with o, and o, real-space broadening of the distribution in the transverse and longitudinal direc-
tion,respectively. The integrated Coulomb energy exchanged during the scattering per length size
reads:

1
gc - f/dexldedyldy2F<xlal‘{waylaY)V(‘Tiwﬂxxéw7_Y)F(manéway27_Y)' (68)

Yy
E. is displayed in Fig. 6.4(b) as a function of the distance d for different values of 0. Here, we
approximate the spatial distribution of a single-electron wavepacket with n = 0 by means of the
above Gaussian distribution F(z,2™,y,Y) with 0, = 5 nm and o, = 0.
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Figure 6.4: (a) Spatial shift dy and (b) integrated Coulomb energy per length size &, (Eq.(6.8))
exchanged during the scattering of two indistinguishable electrons in the (00) configuration as a
function of the distance between the edges of the confining potential d, and for different wavepacket
sizes o.
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Figure 6.5: Bandstructure E™[zo(k)] of the (a) first and (b) second Landau levels for different
values of the distance between the two edges of the device, d. The gray line identifies the minimum
energy of the third Landau level; The selected energies (dots) for the electron wavepackets in (a)
and (b) are both centered at E° ~ 15 meV and ¢ = 40 nm. Note that the energy broadenings of
the electron wavepackets do not fill the third Landau level in neither cases.

The integrated Coulomb energy in Fig. 6.4(b) confirms that for smaller wavepackets Coulomb
repulsion is higher, as a result of the increase in charge localization. This difference decreases
with the distance d, coherently to the fact that Coulomb repulsion becomes less effective when the
electrons are further separated.

However, this simple model does not take into account the real shape of the edge states and
their corresponding bandstructure. Electrons with higher energies, or equivalently an higher group
velocity, feel a smaller Coulomb barrier with respect to slower ones. By reducing the distance,
as displayed in Fig. 6.5, the energy broadening of the wavepackets at ¢ = 40 nm moves towards
lower energies, that is the wavepacket decreases its velocity. This effect is stronger for smaller
wavepackets with respect to larger ones, so that at short distances (d < 120 nm) dy increases with
.

dist(nm) E ol EY ol

100 14.83 1.56 14.61 0.50
120 14.99 1.57 14.67 0.49
140 15.14 1.59 15.00 0.55
160 15.30 1.60 15.05 0.57
180 15.45 1.61 15.11 0.58
200 15.61 1.63 15.16 0.59

Table 6.1: Fit parameters of the weight function F'(E(k)) for a single-electron wavepacket in the
first (n = 0) or second (n = 1) channels in presence of the confining potential of Eq.(6.2) with
Vp, = 250 meV and |xg — x| = d. The energy-dependent weight function is approximated by
the Gaussian distribution F,(E) = exp(—(F — E%)?/20%), with E the central energy of the
wavepacket and o} the energy broadening.
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6 — Conditional phase shifter for entanglement generation

dist(nm) ‘ |.F00|2 |F01|2 |F‘02|2

10 0.94001700 0.48252783E-05 0.26253228E-03
20 0.75805192 0.22146294E-03 0.24468394E-04
30 0.69461795 0.23929992E-01 0.11382228E-03
40 0.91427170 0.27233537E-01 0.33283118E-03

Table 6.2: Squared modulus |F,,,,,|* defining the probability that electron 1 with n = 0 in the
right channel and electron 2 with n» = 0 in the left channel at initial time are promoted to n;
and ny at the same side of the device respectively. Note that |Fpg|? generally differs from unity
because of the distinguishability of the two electrons; the complementary amount of probability
refers indeed to the probability that electron 1 is scattered to ny and electron 2 is scattered to ng
at the opposite side of the device.

6.1.2 Two-electron tunneling, bunching and entanglement in the (00)
configuration

In the following, we use the wave-packet method (see Sec. 3.1.3) to compute the weight functions
Fyyn, (K1, ko) of the two-electron wavefunction and prove that interchannel tunneling is absent for
d > 40 nm. For distinguishable electrons, the squared modulus |F;;(k1,ke)|* (with i,5 = 0,1)
defines the probability of finding the two-particle state ¥ in a configuration with particle 1 in
the edge state with k = k; and n = ¢ and particle 2 in the edge state with k = ky and n = j.

By summing over the wavevectors k, we compute |Fy;|* = [Y°, >, Fij(ki, k2)|?, which is the
probability of finding the two particles in the configuration ny = i, no = j, regardless their
wavevector.

Let us consider two distinguishable electrons, that are initialized in the two counterpropagating
states of Fig. 6.2(c), case (00). Particle 1 is in a state centered at k; and particle 2 in a state centered
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Figure 6.6: Squared modulus of the weight functions F,,, ,,(k1,k2) presented in Sec. 3.1.3 with
ny = 0 and ny = 0 (a) at initial time for distinguishable electrons and (b) at final time for
indistinguishable electrons in presence of a geometry with d = 40 nm.
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Figure 6.7: Squared modulus of the weight functions F,, ,,(k1, k2) presented in Sec. 3.1.3 at final
time for distinguishable electrons with ¢ = 40 nm and n = 0 in a geometry with different values
of the parameter d.

at ko, so that k1 = —ko = k. At t = 0 the weight function Fyo(k1, k2) is a 2D Gaussian distribution
centered at k1 = k and ko = —k, as visible in Fig. 6.6(a). In presence of exchange symmetry, the
squared modulus of the weight function is instead characterized by a 2D Gaussian distribution
peaked at k; = —k and ko = +k. As visible from Fig. 6.6(b), which displays |Fyo(k1, k2)|* at
the end of the Coulomb-driven scattering process, the presence of exchange symmetry in the two-
particle wavefunction prevents the observation of new states arising from interchannel tunneling.
The promotion of an electron to an higher cyclotron resolved channel is instead detected by a non
zero probability |Fj;|?, with ¢ or j different from zero. Tab. 6.2 shows that for distinguishable
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Figure 6.8: Bunching probability P,(¢) during the Coulomb-driven scattering for two (a) distin-
guishable and (b) indistinguishable electrons initialized in Gaussian wavepackets with ¢ = 40 nm
in the (00) configuration for different values of the parameter d. Note that tunneling is present in
this regime.

6'0 T T T T
(b)
~ 40 d=40nm -
= d=50nm
Y20 :
']
0.0 U 1 1 1
40 50 80 100 120 140 160 180 0.5 1 1.5 2 2.5 3
d (nm) t (ps)

Figure 6.9: Von Neumann entropy of two indistinguishable electrons in the (00) configuration with
o =40 nm as a function of (a) the distance between the two confining barriers d at final time and
(b) the time for d = 40, 50 nm .

electrons and small d parameters this probability is always below 2%; this proves the absence of
tunnel coupling between cyclotron-resolved channels due to Coulomb interaction in the stationary
regime.

In Fig. 6.7 we map the probability distribution |F;;(k1, k2)|? at the end of the scattering process
for distinguishable electrons, with d = 10, 20, 30, 40 nm. By starting from the configuration in
Fig. 6.6(a), we observe that the two electron states in the Fourier space (k1, ko) are fully reflected
for d < 10 nm, while full transmission arise when d > 40 nm. Interchannel tunneling between the
two counterpropagating states characterize therefore the intermediate regime (10 < d < 40 nm),
with Coulomb interaction acting as a partitioner.

The bunching probability of the two electrons is then investigated. We partition the 2D real-
space domain in a TOP (y > 0) and a BOTTOM (y < 0) region, and calculate such probability
with

b :/ dridra|W(ry,7)|? —l—/ dridra| ¥ (ry, 7)), (6.9)
Str SeB
where Spr and Sgpp correspond to the 4D domain in the configuration space with y1,y2 > 0 and
Y1, Y2 < 0 respectively.
Fig. 6.8 displays P, for a (a) separable and (b) antisymmetric wavefunction. By selecting a

102



6.1 — A toy model with sharp barriers

#
350 5 T T T T T —
El (@ ' ' T g X (b) d=100 nm —8— B
5 . 3007 ] ' d=120 nm ,
g d=200 nm —%— L
N o250 L _ 4+ 3
g . . . \ : 3 100 =
= 200 L 100 =
______________________ L2 9
2 100
z ' ' ' " 0o=25 nm _ 3| 2 0 50 100 150
= o,=50 nm —=— E 0 |
3 a0 0=100nm —&— 1 £ O lnm
a Ry 0e=150 nm —S— 2z
E e s 1 FE oo &40 s
g | M
3 T < 30 [
S ar - —e__ . B
2 k. TTe— 1+ w20
[ R S - il
g‘ 204 A ] F w 10 -
€ B -} =
- o  — S | 0 1 1 1 1 1 5 0 e
80 100 120 140 160 180 200 0 so 100 150 200 250 3pp O 50 100150
di(nmj ac (nm) ac tnm)

Figure 6.10: (a) Integrated Coulomb energy per length size £c as a function of d in the (00)
configuration and in presence of screening with different values of the parameter o.. The top
panel shows ¢ in presence of long-range Coulomb interaction. (b) Spatial shift dy in presence of
screening for two indistinguishable electrons initialized in wavepackets with o = 40 nm in the (00)
configuration. The dashed horizontal lines correspond to the unscreened value of dy in presence
of long-range interaction. (c) Ratio between the spatial shifts oy with an effective screening o,
and with a long-range Coulomb interaction (0. = o0). (d) Ratio between the the von Neumann
entropies S at d = 100 nm with an effective screening o, and with a long-range Coulomb interaction
(oc = 00).

small value for d,, we ensure that the two electrons experience a very large Coulomb interaction
with respect to their energies. For the simulated values of d, we measure a non-zero bunching
probability that raises by reducing the distance. As in the HOM geometry, this proves that -
for our operating regime - Coulomb repulsion in 2D does not prevent the two electrons to be
transmitted; this differs from the expected bunching probability in an equivalent 1D scenario,
where the two electrons are forced to propagate on the same rail, and experience an infinite barrier
at 1 = xo. With contrast to the case of the HOM interferometer, this bunching is fully quenched
by the exchange interaction, regardless the distance between the two rails.

As in the HOM interferometer, we then compute the von Neumann Entropy S of the system
and measure the spatial entanglement between the two rails where electrons counterpropagate. In
this scenario, the RIGHT (x < 0) and LEFT (z > 0) region of the device define separate subspaces
of the 2D Hilbert space, respectively Hy and Hpg, so that H= IfL &) H}.

To reduce the numerical cost, we select the configuration with particle 1 in the right channel
and particle 2 in the left one, and project the two-electron wavefunction on the rails at 1 = z
and zo = zf, where the density probability of the single-electron wavepackets at ¢ = 0 is peaked.
Fig. 6.9(a) displays the von Neumann entropy as a function of the parameter d in the stationary
regime, while panel (b) displays the dynamical evolution S(t) for d = 40 nm and d = 50 nm. S
shows a logarithmic increase of the spatial entanglement, which is generated by Coulomb interaction
only, due to the absence of tunneling for d > 40 nm.

6.1.3 Screened Coulomb coupling in the (00) configuration

In this subsection, we analyze the effect of screening by introducing an exponential damping
in the Coulomb repulsive potential, Eq.(6.4), between two indistinguishable electrons in the (00)
configuration and with ¢ = 40 nm.

Fig. 6.10(a) displays the energy exchanged during the Coulomb scattering for a range of d
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Figure 6.11: (a) Spatial shift dy for two indistinguishable electrons in the 3 different configurations
with ¢ = 40 nm and in the presence of long-range unscreened Coulomb interaction. (b) Ratio
between the integrated Coulomb energy per length size ¢ in the (00) configuration and in the
(11) configuration.

values between 100 and 200 nm, with C = 1 and o, = 25,50,100,150 nm. The energy exchanged
during the scattering is significantly different in presence of screening (bottom panel) and in the
unscreened case (top panel); the discrepancy visibly increases with the value of d due to the
exponential damping in the Coulomb repulsion.

In Fig. 6.10(b), we provide the spatial shift dy for the (00) configuration, in the additional
presence of screening. By choosing d = 100, 120, 200 nm, we ensure that no tunneling is present.
The ratios between the values of the parameter dy in the screened scenario and in the long-range
case reported in Fig. 6.10(c) show that the screening reduces the effect of the Coulomb interaction
of a factor 1/2. As illustrated by Fig. 6.10(d), the reduction of the von Neumann entropy is even
stronger.

6.1.4 Coulomb-driven scattering in the (11) and (01) configurations

To demonstrate the selectivity of the two-electron coupling induced by Coulomb interaction, we
compare the value dy generated in the previous scenario to the one in the (11) configuration. Note
that the probability distribution of a single electron wavepacket with n = 1 is characterized by a
double peak in the transverse direction, as previously observed in e.g. Fig. 6.5(b). The presence of
a larger density probability in the bulk for the (11) configuration increases the strength of Coulomb
interaction in the the middle of the active region with respect to the (00) case.

This is confirmed by Fig. 6.11(a), where we compare the spatial shifts dy as a function of the
distance d in the 3 configurations, (00), (01) and (11): Coulomb repulsion affects more strongly
two electrons with n = 1. The discrepancy between the values of dy in the three cases increases
significantly when the distance between the two charges is reduced.

However, the different strength of Coulomb interaction in the different configurations is not
sufficient to explain this discrepancy. Fig. 6.11(b) displays the ratio between the integrated energy
exchanged during the scattering in the (00) configuration and in the (11) configuration, which is -
in our operating regime - between 80% and 90%. We also need to account for the bandstructure of
the second Landau level, which has a smoother dispersion with respect to first one, thus reducing
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Figure 6.12: (a) Comparison between the spatial shifts dy for two indistinguishable electrons with
o = 40 nm in the three different configurations and d = 200 nm. (b) Longitudinal profile of the
probability density of particle 2 in the positive domain of the device (TOP region) for different
values of the o, parameter.

the group velocity and increasing dy.

Finally, Fig. 6.12(a) compares the spatial shifts in presence of screening for the three scenarios
with ¢ = 40 nm, and a distance between the edges of the confining barrier d = 200 nm. If the
screening is included with o. comparable to the width of the active region, the spatial shift dy in
the (00) or (01) configuration approaches the precision of our simulation grid. This is not the case
for the (11) configuration, which is instead characterized by a spatial shift oy that is still visible in
our numerical simulations. An example is reported in Fig. 6.12(b), which shows the longitudinal
profile of the density probability of particle 2 in the TOP region of the device for different values
of o, at the end of the scattering.

Our numerical simulations then predict that by properly tuning the geometrical parameters
of the active region with modulation gates, or by varying the effective length for the screening,
e.g. by modifying the electron density of the 2DEG, it is possible to quench the effect of Coulomb
repulsion for all configurations except the (11) one, so that electron-electron repulsion acts a
selective entangler also for this simple geometry, whose length size can be clearly engineered state
of the art nanotechnology.

In the next section we further simulate Coulomb-driven scattering between two indistinguishable
electrons in a more realistic geometry of the active region, and predict the phase shift « that rotates
the (11) component of the two-electron wavefunction of the full-scale conditional phase shifter.

6.2 Towards a realistic conditional phase shifter

Here, the confining barrier is modeled with a smoothed profile in the Z—direction:

1 1
Vewt () =V ( T — ) , (6.10)
14+e = l1+e =

with V, = 0.31 eV, A = 3 nm and x; = 55 nm. Fig. 6.13 shows the potential profile in the transverse
direction (blue shaded area), together with the bandstructure of the second Landau level (orange
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dashed line) and the density probability of a single electron wavepacket with n = 1, ¢ = 40nm,
and an injection energy of E° = 20.4 meV (black dashed line). Note that this regime reproduces
the geometry and the injection protocol of the multichannel MZI described in Chapter 4, which
is the building block of our proposal for a solid-state implementation of the full-scale conditional
phase shifter.
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Figure 6.13: Energy band structure (orange dashed line) of the second Landau level E4(z) in the
presence of the confining barrier V., defined in Eq.(6.10) with V;, = 0.31 eV, A = 3 nm and z;, =
55 nm (blue shaded area). The black dashed line displays the transverse probability distribution
of the electron wavepacket in the second edge channel at the initial coordinate yy = 350 nm and
E% = 20.4 meV in arbitrary units.

Consistently to our previous study of an ideal geometry with two square potential steps, we
expect a stronger Coulomb interaction between the counterpropagating electrons with n = 1. The
sharper bending of the first Landau level determines a smaller magnetic mass m}p with respect
to a wavepacket with the same energy distribution but higher cyclotron index, n. The smaller
group velocity for n = 1 induces a larger shift in the real-space dy. Moreover, for a fixed injection
energy E°(k), the center xf(k) of a set of edge states with n = 0 is closer to the profile of the
confining barrier with respect to the same parameter with n = 1. Then, the transverse probability
distribution of two wavepackets in the second Landau level is higher in the bulk with respect to
the case of two wavepackets initialized in the ground state. This further increases the effect of
Coulomb interaction in a symmetric geometry of the active region.

6.2.1 Self-electron interference for the phase factor

The relation between the spatial shift dy and the « factor in the T matrix can not be trivially
determined by the wavevector k alone, due to its gauge dependence. We resort indeed to the
longitudinal separation L.ff, that is necessary to produce a 27 rotation in each single-electron
MZI at the edge of the device.

By means of our single-particle solver, we simulate the dynamics of the single-electron inter-
ference in the potential of Fig. 6.13. At initial time, the single-electron wavefunction is a coherent
superposition of two wavepackets in n = 0 and n = 1 with the same energy distribution centered at
E°(k) = 20.4 meV, that corresponds to the output state of the half-reflecting potential dip designed
in Sec. 4.2.1. The wavefunction scatters then on a second beam splitter, so that the integrated
density probability at the end of the device in n = 0 is expected to present the interference pattern
of a full-scale MZI with a zero loop area.

Differently from Ref. [13], in the present geometry we artificially introduce a relative shift in
the g—direction between the two components of the initial wavefunction, AY. This spatial shift
corresponds to a relative phase factor in the single-electron wavefunction between the wavepackets
inn =0 and n = 1, and mimic the effect of Coulomb repulsion on the second edge channel in
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Figure 6.14: Evolution of the single-electron probability distribution (orange) in the effective ge-
ometry of a multichannel MZI (light blue shaded area), with two translationally invariant regions
before and after the electron beam splitter of Sec. 4.2.1. The wavefunction is initialized at ¢ = 0
in a coherent superposition of two wavepackets of edge states with ¢ = 40nm, same central energy
E° = 20.4 meV and different cyclotron indexes n = 0,1.
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Figure 6.15: (a) Interference pattern of the effective geometry for the MZI as a function of the
longitudinal distance Ay between the two wavepackets of the initial state in Fig. 6.14. T measures
the probability that the electron state is transmitted to the output channel 0, for different spatial
broadenings of the wavepacket o = 60,40 nm. (b) Comparison between the longitudinal profile of
the probability distribution of particle 2 at final time in the positive domain of the active region
with (red solid line) and without (green dashed line) electron-electron interaction. s is the
maximum of the probability distribution in the Z direction.

presence of a counterpropagating state. In the single-electron simulation, AY rotates the final
state at the output of the MZI. The spatial periodicity L.fs of the interference pattern in the
transmission amplitude for the 0 channel, T'(Ay), has to be related with v: if L.f; corresponds to
a 27 rotation in the output state of single-electron Mach-Zehnder experiment, the same rotation,
v = 27, is obtained by introducing a selective Coulomb repulsion that shifts the final position of
the two wavepackets in n = 1 by a factor dy = Leyy.

6.2.2 The v factor in the full-scale device

The interference pattern of the single-electron simulation is displayed in Fig. 6.15(b). The ef-
fective length L.y depends slightly on the wavepacket size o, which instead affects more strongly
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6 — Conditional phase shifter for entanglement generation

the visibility of the oscillations in the transmission amplitude. The two component of the single-
electron wavefunction are indeed characterized by a different group velocity vy in the two channels,
which does not depend significantly on the wavepacket size. However, this prevents the two compo-
nents to impinge on the beam splitter simultaneously, so that for smaller wavepackets their overlap
is reduced. Within the present regime, we measure an effective length L.s; = 20 nm.

The dynamical simulation of the Coulomb-driven scattering of two indistinguishable electrons
in the second edge channel provides instead the shift dy in this geometry. Fig. 6.15(b) shows the
two peaks of the probability distribution for particle 2 at the top of the device. The red solid line
reproduces this probability in the non-interacting scenario, and the green dashed line the same
parameter in presence of electron-electron repulsion. The difference between the coordinates of the
maxima in the two distributions is Jy = 11 nm.

We finally relate the shift dy to the corresponding ~ in the T transformation by using L.ss as
a reference in the following equation, 5

Y

Leys

v =27 , (6.11)
which provides v = 7 in the full-scale conditional phase shifter. This proves the feasibility of a
selective phase shifter with a factor 7 in our geometry, where the smoothed barriers are character-
ized by a relative distance W = 110 nm at B = 5 T. A proper increase of the distance between the
outer edges of the two mesas at the nanometer scale is expected to induce a rotation that ranges
from 7 /2 to 2, thus making this device a viable approach for conditional phase shifting driven by
Coulomb interaction.
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Chapter 7

On the incompatibility between
Frensley’s inflow boundary
conditions and stationary Wigner
distribution functions

The numerical simulation of a quantum electron device requires a partition between an active
region and the reservoirs. Instead of simulating a close system, one has to deal with an open
quantum system. The Wigner distribution function [113], dealing with the phase-space of open
quantum systems, has a large tradition in the simulation of quantum electron devices, but it
requires reasonable physical arguments to fix the properties of electrons at the spatial borders of
the active region. To guarantee irreversibility, Frensley suggested the reasonable assumption of
treating the reservoir as a blackbody; he assumes that the energy (or momenta) distribution of
electron emitted into the device is described by the thermal equilibrium distribution function of
the reservoir, while the outflowing electrons are absorbed without reflection [41]

From an intuitive point of view, Frensley boundary conditions are very reasonable. Hovewer,
its practical application in simulations can lead to unphysical results. The problem discussed in
this chapter appears because the definition of the momentum of the Wigner distribution function
- through a Wigner-Weyl transformation - is not the same as the orthodox one. Although its
marginal probability coincides, the former momentum depends on position, while the latter does
not. We show that this mathematical incompatibility can have dramatic consequences in time-
independent scenarios, as for scattering states in a single/double potential barrier.

The situation is even more dramatic when dealing with a resonant state, where an electron
with positive orthodox momentum at the left, induces unexpected inflowing negative Wigner-Weyl
momenta at the right. In the literature, the solutions to this incompatibility is either criticizing
the Frensley’s boundary conditions [114] or looking for a new phase-space distribution[115]. On
the contrary, we show that this apparent incompatibility is simply solved by using time-dependent
approaches, where electrons are defined as wave-packets with a spatially limited quantum non-
locality.

This discussion has been presented at the International Wigner Workshop during the IWCN2019
- International Workshop on Coumputational Nanoelectronics in Evanston, Illinois (USA),
by L. Bellentani, E. Colomés, Z. Zhan, P. Bordone, A. Bertoni, and X. Oriols.
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7 — On the incompatibility between Frensley’s inflow boundary conditions and stationary Wigner distribution functions

7.1 Boundary conditions on a joint momentum-position space

7.1.1 Properties of the Wigner distribution function

Despite in quantum mechanics the probability distribution of a dynamic variable, as the mo-
mentum or the position, has an appropriate classical limit, classical mechanics provides also the
description of correlations between such variable dynamics by means of a joint probability distri-
bution, p.(z, k).

For a quantum system with state p on the phase space, the quantum distribution pq (z, k) with
pe(x, k) as its classical limit should fulfill the probability axioms:

() [ [ dedkpola. k) = 1,

(i) pola,k) >0,

and the marginal distribution should provide the usual position and momentum probability distri-
butions, i.e.:

[ ot ) = (o), (7.1)
[ ot ) = o). (7.2)
Several attempts have been done to provide a quantum distribution on a joint momentum-position

space, as with the Wigner distribution function, fy (z,%k). This is defined as the Weyl-Wigner
transform of the density matrix:

fw(k,z) = %/p(x + 5,2 — s)e” 2ks (s, (7.3)

If the system is described by a pure state, the density matrix reads p = [¢)(¥)| and the Wigner
distribution is:

fw(k,x) = W—lh/w(x + 8)e 2Ry (2 — s)ds, (7.4)

while for a mixed state [1)) =), p;[¢)(1;| on the basis {|¢;)}, it is defined as follows:
1 —2iks, ) *
fw(k,z) = o sz/l/h(l‘ + 5)e™ =Yt (z — s)ds. (7.5)

It is proved that the requirement of non negativity is not always covered [116], so that fy (x, k)
can not be directly interpreted as a probability distribution. By integrating over the space and
momentum coordinates, the trace of the state p is restored, i.e. [ [dkdzfw(k,xz) = Tr[p] = 1.
Moreover, the property p = pf ensures that fy (k,z) is real.

The Wigner distribution function is usually integrated to compute the expectation value of an
operator fl,

(A) =) pilwilAlgi) = TrlpAl, (7.6)
according to the following relation:
1
(A) = s //fw(k,x)A(x)dkdx. (7.7)
11
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7.1 — Boundary conditions on a joint momentum-position space

Similarly, for a momentum-dependent operator B(k), the expectation value reads:

(B) = % / / fw (k, z)B(k)dkdz. (7.8)

The extension to a two particle system follows then straightforwardly:

1 ) )
fw(xy, 29, k1, ko) = (ﬂ_h)Q/dsl/dszlll(:clJrsl,ngrsQ)\Il*(xlsl,xg82)62191516219232d81d52,

(7.9)
which is clearly separable if the two particles are distinguishable and not interacting, so that, if
(21, 22) = ¢1(21)P2(72), then

Jw (@1, w2, k1, k2) = fiy (x1, k1) fiy (w2, ko). (7.10)

7.1.2 Frensley’s inflow boundary conditions

Despite the Wigner function cannot be directly interpreted as a probability distribution, it
represents a powerful tool to study a nanodevice integrated in an electron circuit as a confined
quantum systems connected to semiclassical leads [117, 118, 119, 120]. Thanks to its definition on
the (z, k) space, it provides indeed simultaneous information about the position and the momentum
of the particle.

The use of the density matrix in presence of open boundaries provides an ideal framework to
describe both phase coherent phenonema and dephasing effects in nanostructured devices [121,
122], where it is not possible to adopt a periodic description of the system. For a finite quantum
core, as the one depicted in Fig. 7.1(a), boundary conditions are mandatory to take into account
the finite size of the scattering region connected to external charge reservoirs by electric contacts.

In 1987 Frensley proposed the inflow boundary conditions [41] to ensure the absence of re-
flection for the electron wavefunction coming from the semi-infinite contact toward the scattering
region. For a simplified 1D geometry, we adopt the U boundary condition scheme displayed in
Fig. 7.1(b): this translates into fixing entirely the Wigner distribution function for all positive
(negative) momenta at the left (right) border of the active region. These boundaries fix the in-
flowing semi-classical, i.e. positive-definite, carrier distributions f%(k) and f%(k) at the left and
right interfaces located at xj and x g, respectively:

fw (@ =ap,k>0)= fp(k), (7.11)
fw(w =gk <0) = fp(k). (7.12)
(a) (b) : |
k>0 I I
—_ i |
..'U"l "u'-: I"-. -'-: -.‘- .-'l; I-U: : X;' : X
- 2 28 >SS »
Right reservoir IXL ! AWaVaVAYAY:
| | -
Left reservoir I U SCHEME 1 k<0

Figure 7.1: (a) Rendered scheme of an electron nanodevice. (b) The "U" scheme adopted in a 1D
geometry to model electron transport from the reservoir to the active region of the device.
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7 — On the incompatibility between Frensley’s inflow boundary conditions and stationary Wigner distribution functions

The carrier distributions f2(k) and f%(k) are typically the Fermi-Dirac distributions in the mo-
mentum, and depend on the Fermi level of each contact.

The problem we are discussing arise in the above equations. The Frensley’s inflow boundary
condition impose the localization of the momentum in the Wigner description of a confined nanos-
tructure. Indeed, to fulfill Eq.(7.11) and Eq.(7.12), the momentum in the Weyl-Wigner transform
of the density matrix must be explicitly referred to the position of the right or the left interface.
On the contrary, in the orthodox theory the momentum of a particle is non-local, and indeed
it is represented trough a plane wave in the real space: (z|k) = 1/v/2me™*®. The effects of this
inconsistency are illustrated in the next section.

7.2 Inconsistencies for a stationary picture

The inflow boundary conditions on the Wigner distribution function have been applied firstly
by Frensley in 1987 to simulate electron transport in a Resonant Tunneling Diode, where the
negative differential resistance has been successfully reproduced [41].

However, recent numerical simulations [114, 123] highlight that the electron current computed
from the Wigner distribution function is generally higher than the one provided by alternative
numerical tools, e.g. by the Non-Equilibrium Green function. In detail, Ref. [114] analyzes the
interplay between the size of the contact region in the RTD and the accuracy of the Frensley
inflow boundary conditions on the Wigner distribution function. Jiang et al. observe that the
I-V curves provided by the Wigner function method are similar to those simulated by the NEGF
method for low bias potentials as the length of the contacts increases. This shows that, in order to
provide exact results, the interface for the inflow boundary condition should be located at infinite
distance from the active region. The application of the inflow boundary condition to the Wigner
distribution function is therefore always affected by a numerical error related to the finite size of
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Figure 7.2: (Top) Scheme of the GaAs/AlGaAs heterostructure simulated with the Wigner method
and NEGF method in Ref. [114], with a resonant tunneling diode in the active region and (Bottom)
convergence of the I-V current computed with the Wigner function and NEGF method.
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7.2 — Inconsistencies for a stationary picture

the simulation region.

Moreover, it is proved that a probability distribution of states f°(k) injected at a boundary
according to Frensley’s inflow condition does not always provide a Wigner distribution function in
the active region of the device, or, in the coherent limit, the solution is not unique [124]. To solve
this, Ref. [115] proposes an alternative definition of the Wigner distribution function, based on a
generalized Weyl-Wigner transform of the density matrix. Instead of using a basis set of plane
waves, the transform of p is applied on a basis composed by the scattering states of the active
region. The Weyl-Wigner transform of the density matrix on the {|k)} basis set,

]_ ik(x+s ik(x—s
Uoy g (T, k) = — /dswal(x +s)e” At )1/);2 (x —s), (7.13)
is so generalized on the basis {|5)} as follows:
u/ala2ﬂ1ﬂz (x) =Q / dste, (z + s)xz}l (x4 5)xp, (x — 5)U, (x — 8), (7.14)

where 2 is the volume of the simulated region. By using as generalized basis states {|3)} the
scattering states of the quantum core, the unphysical features usually arising from the use of the
conventional Wigner distribution function are removed.

Both approaches expose the incompatibility between Frensley’s boundary condition and the
Wigner distribution function. In the first case, Jiang et al. conclude that a reasonably valid
solution requires contact lengths large enough, according to the size of the scattering potential
inside the nanostructured core. The second approach proposed by Zaccaria et al. provides instead
an alternative definition of the Wigner distribution function based on the scattering states, to
match with Frensley’s inflow boundary conditions.

However, both solutions imply a dependence between the distribution of the inflowing states
and the scattering process in the active region. We aim instead at identifying a framework for
the Wigner distribution function that preserves the independence of electron injection from the
scattering inside the nanostructured core. Despite it is not possible to provide the exact shape of
the electron wavepacket injected from an Ohmic contact, we expect indeed that a description by a
scattering state (extended everywhere) is not physical. We expect that an electron inflowing from
the reservoir at the interface should not be described by a state accounting for the scattering process
before the event itself. As we prove in the next sections, this contradiction is naturally overcome
in a time-dependent picture, where electrons are encoded in spatially localized wavepackets.

7.2.1 Inconsistencies for a monoenergetic injection of plane waves

In the following, we will firstly expose the origin of this inconsistency by analyzing the Wigner
distribution function for a monoenergetic electron state that propagates in the active region of the
device. We initially compute the Wigner distribution function fy (x,k) in a stationary scenario
where electrons are injected as monoenergetic plane waves with wavevector kg inside the scattering
region from the left boundary of the system:

FL (k) o< 6(k — ko). (7.15)

No electrons are instead injected from the right reservoir, where we expect to have only outflowing
states, i.e.

fh(k) = 0. (7.16)
The nanostructured core is designed with two different potential profiles: a (i) simple and a (ii)
double potential barrier, as displayed in the (top) and (bottom) panels of Fig. 7.3, respectively.
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Figure 7.3: 1D scheme of the simulated nanodevices and corresponding transmission probability in
the wavevector space. (Top) Single potential barrier (blue shaded area) and squared modulus of the
propagating wavefunction computed by Kwant at kg = 0.30 nm~'. The arrow in the transmission
probability at the right side of the panel shows that the selected state is half-reflected. Gray areas
identify the position of the contacts, i.e. 2y = —350 nm and zr = 350 nm. (Bottom) Equivalent
scheme for the double barrier scenario with the resonant state kg = 0.23 nm~*.

On the right side of each panel we show the transmission probability for the scattering potential
on the left. The arrows highlight the selected wavevectors, which are an half-reflected state for
case (i), and a resonant one for case (ii). The scattering state iy, (z) is provided by the Kwant
software, by simulating a one-dimensional system large enough to contain the active region of the
device, plus the contacts from where electrons are injected. The grey areas define the interface
with the reservoir: we select a right, 2r and a left 2, interface far enough from V' (x) # 0 to ensure
that the electron wavefunction inside the contacts is properly described by a linear combination of

plane waves with wavevectors tkg.
Then, we apply the definition of the Wigner distribution function as the Weyl-Wigner transform
of the density matrix for the state ¢y, (z),

k) = 5 [ o, o 90 (o s)e s, (.17)

which is displayed in Fig. 7.4 for a selected set of x values. The green triangle locates the injected
wavevector kg, while the gray areas define the location of the reservoir according to our modeling
of the nanodevice. By adopting the U scheme described in Fig. 7.1(b), we assume that the left
reservoir injects electrons with k£ > 0, and the right reservoir electrons with k¥ < 0. Therefore, the
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following boundary conditions apply:

fW(-Tka>0) O(5(k—k0)7 (718)
fw(l'R,k} < 0) =0. (719)

The Wigner distribution functions computed from the Weyl-Wigner transform at the interfaces,
ie. fw(zr,k) and fyw(xg, k), are highlighted in red in Fig. 7.4.

(i) The simple potential barrier

For the single barrier case in Fig. 7.4(a), the Wigner distribution function presents more features
than the simple delta at the left interface, which is expected from the Frensley’s inflow boundary
condition in Eq.(7.18) at positive values of k. In detail, it is characterized by the expected peaks
at k = tko, that corresponds to the injected (positive) and reflected (negative) states due to the
scattering at the potential barrier. The height of such peaks is large but finite, due to the finite
size of the domain to numerically compute the Weyl-Wigner transform of the density matrix.

Moreover, fw(zr,k) shows an additional peak at k¥ = 0 and additional oscillations for all
positive values of the wavevector 0 < k < kg. These features are not included in the inflow
condition at the interface, and are related to the specific shape of the scattering potential V' (z) in
the nanostructured core. Furthermore, these oscillations do not disappear by moving the interfaces
far away from the active region: the Wigner distribution function is indeed stationary for = < xp,
or r > ITR.

(ii) The resonant double barrier

These inconsistencies becomes more visible in the presence of a double barrier. The map of
the Wigner distribution is displayed in Fig. 7.4(b). Similarly to the previous scenario, the Wigner
distribution function shows a peak at +kg, while the negative counterpart at the left interface is
here absent due to the unitary transmission probability of the injected state.

However, in the present configuration, stronger oscillations characterize a range of wavevectors
k > ko, as well as the negative wavevector range 0 < k < ko at both interfaces. Therefore, due
to the presence of strong oscillations at & < 0 for x = xg, in the double barrier case the Wigner
distribution function fy (x, k) violates not only Eq.(7.18), but also Eq.(7.19).

The origin of spurious oscillations

The presence of spurious oscillations at 0 < k < kg is clearly related to the shape of the
propagating wavefunction in proximity to the potential barrier.

Indeed, at the left interface (z = z), if s is not too large, g, ~ e?Fo(@+s) 4 pe=iko(@+s) 5o that
the integrand for the Wigner distribution function reads:

wko (l‘ + 5)1/]; (.’L‘ _ S)e—Qiks — (eiko(x+s) + re—iko(ac—i-s))(e—iko(ac—s) + r*eiko(m—s))e—%ks
0
_ efiko(w+s)e+ik:0 (a:fs)ef2iks + refiko(w+s)67iko(w75)ef2iks
+ eikg(m—&-s)rxeiko(m—s)e—%ks + re—iko(z+s)r*eiko(ac—s)e—Qiks
_ 672i(k7k0)s + r672i(kga:+ks) + T*e2i(k0z+ks) + ‘7’|2€72i(k0+k)s. (720)
Note that generally r = |r|e’®. By integrating over a large enough space in the s coordinate, and

assuming that the contribution near to the scattering potential is negligible, the fy (x, k) can be
approximated by:

fw(zp, k) =6k — ko) + |T\25(k + ko) + ‘7’|6i¢672ik016(k) + |r|efi¢e+2ik°x5(fk) (7.21)
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Figure 7.4: Wigner distribution function fy (z, k) projected on a set of x values for the (a) simple
potential barrier and (b) double potential barrier. The green triangle locates the wavevector of
the electron state injected from the reservoir. Gry areas define the reservoir and the yellow line
identifies the range of inflowing states where the Frensley’s boundary conditions apply. The Wigner
distribution function at the interface is highlighted in red.

The first two delta functions correspond to the peak observed in the Wigner distribution function
at the wavevector of injection ky and at the opposite value, —ky. These identify the outflowing
states. The last two contributions correspond instead to an oscillating term localized at k = 0,
which then arises from the interference between the injected plane-wave and the reflected one at
infinite distance from the scattering region.

However, for a value of s large enough, the scattering state has a shape that can not be described
simply as the sum of two plane wave, i.e. the injected and reflected ones. Here, 1)y, (x) is a linear
combination of plane waves with a generic wavevector k/. By adopting a time-dependent picture
for electron transport, we show in the next section that the oscillations arising at 0 < k < kg are
related to the specific shape of the wavefunction in proximity to the potential barrier.

7.3 Charge localization in a time-dependent picture

As a solution to the incompatibility between the Frensley’s inflow boundary condition and the
Wigner distribution function, we propose the modeling of electron transport in a time-dependent
picture, where charges are injected as wavepackets rather than using stationary states.

We stress that by introducing the time-dependence in electron transport, both Wigner distri-
bution function and charge distribution at the interface become time-dependent in principle. The
introduction of time as a degree of freedom in the distributions at the interface could naturally
solve the inconsistency, by arguing that the boundary on the inflowing states relates to the initial
time only. At ¢t = 0, the Wigner distribution function is computed from a state that is an injected
wavepacket. At later times, the electron state is affected by scattering and therefore the Wigner
distribution function can eventually be modified at the interface. For ¢ > 0 the charge distribution
at the interface is not bound to the Frensley’s inflow condition anymore. In the following we show
that our findings are not related to the time dependence of the inflow distribution at the boundaries

Fig. 7.5(a) shows the wavepacket dynamics in the potential landscape of a single barrier. We
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7.3 — Charge localization in a time-dependent picture

assume the injection of a Gaussian wavepacket ¥y, (x,0), centered at ko at the interface:
1 _(@==)?
e o
Vo22r
and evolve the localized wavefunction by means of a on-dimensional implementation of the Split-
Step Fourier method. After the interaction at the barrier, the reflected and transmitted wavepack-
ets reach the two interfaces and are absorbed by the contacts. We then compute the Weyl-Wigner
transform of the density matrix for the time evolved state ¢ (z,t). Fig. 7.5(b) compares the initial
Wigner distribution function (¢ = 0) to the final one, which is composed by the 3 contributions
signed as R, T', INT.

Initially, fw(x,k) is non zero in correspondence to a Gaussian distribution of states centered
at kg. This is clearly not a delta function, as for the monoenergetic state, but correspond to a very
narrow distribution in the wavevector space, whose broadening depends on the size of the injected
wavepacket. In the present scenario, an analytical form of the Wigner distribution function can be
provided:

P(x,0) = e'holr=o) (7.22)

(e—eq)?  _ (k—kg)?

1
fw(z,t=0) = —he 20)2 g 2op)? (7.23)
T

which is the product of two Gaussian distributions centered at xy and k¢ with a real-space broad-
ening o and a size o, = 1/20 in the wavevector space.

At the end of the scattering, when the reflected and transmitted wavepackets reach the two
interfaces, the Wigner distribution function is characterized by two Gaussian distributions centered
at kg and —ko, plus an oscillating contribution centered at k£ = 0. By assuming that the final state
is properly described by the sum of two counterpropagating Gaussian wavepackets centered at kg

and —kq:
1 _ (k—kg)? _ (ktk)?)

Y(z, t=1p) = (7 a2 4e a0 ), (7.24)
2(1 4 e*6/29%) /2702

the Wigner distribution function is approximated by:
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Figure 7.5: (a) Evolution of a Gaussian wavepacket in the active region containing a simple po-
tential barrier. (b) Wigner distribution function fy (z,k,t) at initial (¢ = 0) and final time, where
the wavepacket is split into 3 contributions: R, T and INT. Green arrows define the direction of
propagation for each wavepacket.
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Figure 7.6: (a) Wigner distribution function fw (z,k,t) at intermediate time ¢ = tjs for the
Gaussian wavepacket of plane waves that propagates in presence of the simple potential barrier.
(b) Stationary Wigner distribution function computed by integrating over time the time-dependent
Wigner distribution. Here, we assume each electron to be injected as an independent wavepacket.

The cosine clearly shows that the oscillatory term at & = 0 originates from the interference
between the transmitted and the reflected wavepackets. With contrast to the stationary picture,
this term does not reach the interfaces, but it is quenched by the spatial localization of the electron
wavefunction due to the presence of the damping exponential term depending on o.

In order to observe the additional oscillations for 0 < k& < kg, we select an intermediate
simulation time t = ¢, and compute the Wigner distribution function for the corresponding time-
evolved electron state. As depicted in Fig. 7.6(a), oscillations arise when the density probability of
the electron wavefunction is non zero in proximity to the scattering potential. These oscillations
spread along the whole k-space during the time evolution, but do not reach the two interfaces due
to the spatial localization of the electron wavepacket.

Finally, we observe that the stationary picture can be recovered from our time-dependent mod-
eling of electron transport. Here, due to the charge localization, we expect that this procedure
does not provide those spurious oscillations affecting the Wigner distribution function in the sta-
tionary scenario, so that the Frensley’s inflow boundary conditions can be applied. In detail, we
assume the continuous injection of single-electron wavepackets in time centered at kg. In presence
of non-interacting electrons, that are separately injected one at a time within the approximations
of Ref. [86], the stationary Wigner distribution function for the injection of a stream of electrons
is well approximated by integrating the time-dependent Wigner distribution function over time.
The result is mapped in Fig. 7.6(b): if the two interfaces are well separated from the scattering
region as in the present case, the Wigner distribution function at the boundaries fulfills Eq.(7.18)
and Eq.(7.19). The inflowing states determine indeed a non-zero fy (x, k) only at left interface for
k = ko, while all additional oscillations are quenched.

Finally, in Fig. 7.7 we show the time-dependent Wigner distribution function for a Gaussian
wavepacket that interacts with the double potential barrier at 4 different iteration times. In the
present regime, we select a central wavevector kg that corresponds to the resonant state in the
stationary picture. However, due to the presence of an energy broadening which is larger than
the resonant peak, we expect to observe a reflected component of the Gaussian wavepacket that
outflows from the scattering region. As visible in Fig. 7.7, the distribution fw (x, k, t) for the present
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Figure 7.7: Map of the time-dependent Wigner distribution function fy (x,k,t)at different iter-
ation times in presence of the double potential barrier. The central wavevector of the Gaussian
wavepacket is the resonant state of the scattering potential, ky = 0.23 nm™!.

system is characterized by the interference pattern we already observed in the simple barrier case.
However, for a proper choice of the interfaces as well as of the wavepacket size, these oscillations
are localized inside the scattering region. Only the reflected and transmitted wavepackets (red
shapes) reach the two interfaces, thus affecting the boundary condition.

7.4 Non-locality of the orthodox momentum

In the previous sections we highlight the inconsistencies that arise when matching the Wigner
distribution function to the Frensley’s inflow boundary condition. We also observed that the
additional oscillations of the Wigner distribution fy (x,k) at the interfaces are not related to
the position of the boundary, namely z; and zg for the left and right side of the active region
respectively.

These spurious features arise indeed due to non-local nature of the orthodox momentum p. In
a stationary framework, the scattering state ¢y, (x) that describes the electron state in presence
of a potential barrier is described - at an appropriate distance from the potential itself - as a
linear combination of plane waves with wavevector +kg, which are non-local by definition. In
proximity to the potential barrier, the electron state is actually a linear combination of plane
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waves with different momenta —kg < k' < kg, depending on the scattering process. Then, the
Wigner distribution function fy (x, k) for such state involves an integral on the whole domain that
correlates, at any position x in the simulation box, a local momentum k that contains information
regarding all the momenta in the electron state ¥y, (z), i.e. —kg < k' < ko.

Differently, the Frensley’s inflow boundary condition refers to a local momentum, i.e. the one
at the boundaries xj, or g, which in principle should not be related to any other event affecting
the electron state elsewhere in the device, except electron injection from the reservoir. The Wigner
distribution function provides a simultaneous description of the position and momentum of the
particle through its definition on the (z, k) domain, thus enabling - from a mathematical point of
view - the application of boundaries for the momenta at the interface.

However, as explained above, if the Wigner distribution function is computed with the scatter-
ing states in a stationary picture, the momentum k at a given position = contains information on the
events affecting the electrons in the whole device, due to the non locality of the orthodox momen-
tum. This incompatibility manifests when applying these spatially-dependent boundary condition
to the Wigner distribution function, which can be interpreted as a projection of a non-local infor-
mation (the orthodox momentum in the scattering states) on a local one (the momentum at the
interface). For infinite extended states the difference between the non-local orthodox momentum
and the local momentum in Frensley’s approach prevent to fulfill the boundary conditions.

The most natural solution to this inconsistency is to "force" a local description to the wavefunc-
tion by encoding the electron state in a wavepacket. This is a local wavefunction that correlates a
given position of the one-dimensional domain x to a set of wave-vectors k with a probability distri-
bution that depends on the position itself. For an adequate distance from the scattering potential
and a small enough broadening of the wavepacket in real space, the electron state is composed by
a narrow set of wavevectors centered at kg that define the injection process (the density matrix
is zero anywhere else). When approaching the scattering potential, new states contributes to the
electron wavefunction. When the wavefunction splits at the potential barrier, two contributions
propagate in the opposite direction. The new states arising from the scattering process are corre-
lated to the center of the active region only, and still do not contribute to the Wigner distribution
at the interface, so that the injection is not affected by scattering process.

We further observe that, in an orthodox picture, the momentum at the end of the scattering
process of a single-electron wavepacket impinging on a potential barrier is oriented in the two
opposite direction of propagation for the reflected and transmitted wavepackets. This does not
represent an issue for the Frensley’s boundary conditions, which fixes the distribution of the in-
flowing states at the interfaces only. However, this is still a signature of the non locality of the
orthodox momentum: indeed, the Wigner distribution in the middle of the active region is char-
acterized by an oscillating interference term, whose spatial extension depends on the wavepacket
size. The orthodox quantum mechanics solves this non locality with the collapse theory: when
the outflowing electron is thermalized, the interference term vanishes. An alternative solution is
represented by the use of the conditional wavefunction in the Bohmian distribution, which always
allows a simultaneous definition of position and momentum for a wavepacket description of the
electron state [116, 125].
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Abstract: Measuring properties of quantum systems is governed by a stochastic (collapse
or state-reduction) law that unavoidably yields an uncertainty (variance) associated with the
corresponding mean values. This non-classical source of uncertainty is known to be manifested
as noise in the electrical current of nanoscale electron devices, and hence it can flaw the good
performance of more complex quantum gates. We propose a protocol to alleviate this quantum
uncertainty that consists of (i) redesigning the device to accommodate a large number of electrons
inside the active region, either by enlarging the lateral or longitudinal areas of the device and
(i) re-normalizing the total current to the number of electrons. How the above two steps can be
accommodated using the present semiconductor technology has been discussed and numerically
studied for a resonant tunneling diode and a Mach-Zehnder interferometer, for classical and quantum
computations, respectively. It is shown that the resulting protocol formally resembles the so-called
collective measurements, although, its practical implementation is substantially different.

Keywords: quantum computing; classical computing; Mach-Zehnder Interferometer; resonant
tunneling diode; quantum uncertainty; measurement

1. Introduction

Assessing the future of emergent technologies is not an easy task. Today there is a lively debate in
the scientific community about whether classical or quantum computing will offer better performance
in the coming future. At present, the field effect transistor is still the most efficient device to perform
classical computations. The electronic industry is able to fit 10! transistors all together in a single chip,
working at frequencies of a few GHz [1]. State-of-the-art transistors, with nanoscale dimensions, are
quantum devices in the sense that their ability to convert the input into output information is based on
quantum laws governing electron transport [2]. In digital binary classical computing, the logical state
‘1" is encoded into a value of a well-defined measurable physical property of the transistor, while the
logic state ‘0’ corresponds to a different value of such property. Usually the physical properties used in
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electron devices for classical computing are the electrical current or the voltage in different (input and
output) terminals. It is important to notice that although the transistor is a quantum device whose
performance is determined by the evolution of quantum states, these quantum states are not directly
used to encode information in classical computing.

In quantum computing [3], contrarily, the logical state ‘1" is directly encoded in a quantum state
of the physical system, namely |1) — 11 (7, t) where 7 represents the degrees of freedom of the system.
Similarly, the logical state ‘0" corresponds to another quantum state |0) — (7, t). Because of the
quantum superposition principle, a sum of the two physical states, a|1) + b|0) where a and b are
complex numbers, is also a valid physical state of the system. As a consequence, quantum mechanics
offers the possibility of operating simultaneously on the logical states ‘1" and ‘0". This opens classically
inaccessible computing possibilities.

Many companies and researchers are advocating for quantum computing. Among many others,
for example, Google has said that its state-of-the-art quantum chip will be the first to perform
calculations beyond the best existing classical supercomputers [4]. Other companies and researchers,
on the contrary, understand quantum computing as an exciting discipline, with an unquestionable
scientific interest, but argue that quantum technologies will not substitute our classical computing
machines at home (because quantum computers are complex, expensive and built using a more
immature technology) [5,6]. In any case, without making any risky prediction, what seems clear today
is that classical and quantum computing are both valuable research avenues.

Any classical or quantum computation using quantum devices is implemented following three
main steps: (i) initial preparation of the quantum state, (ii) unitary evolution of the state and (iii) the
final measurement of the state. In this paper, we will focus on the last step for both classical and
quantum computations. The measurement step is linked to the quantum uncertainty [7] that implies a
practical inconvenience since it gives rise to quantum noise at the output of the device (The reader
can argue that the uncertainty disappears when the quantum state is prepared as an eignestate of the
projective (measuring) operator. However, typically, the preparation of the state of an electron being
injected into the active device region from the contact (reservoir) is done by the contacts itself, which
do not provide such eigenstates). Solid-sate quantum electron devices are unquestionably the best
technology to implement classical computing. It is, however, not clear today which will be the best
technology for quantum computing. In any case, it seems clear that the possibility of implementing
quantum computing algorithms with solid-sate devices would benefit from the maturity of the existing
technology and offers the possibility of making quantum computing platforms compatible with
classical ones.

The paper is structured as follows. In Section 2, we will propose a simple protocol that allows
evading the quantum uncertainty associated with the measurement process in quantum electron
devices, for either classical or quantum computing applications. This is the main result of this
work. In Section 3, we will first investigate the measurement of the electrical current under this
protocol for a resonant tunneling diode (RTD) understood as a quantum electron device useful for
classical computing. Later, in Section 4, we will analyze the measurement of the electrical current
in a Mach-Zehnder interferometer (MZI) which is tailored to design the logic gates suitable for
implementing quantum computing. We will conclude in Section 5. More technical details are presented
in the appendices.

2. Quantum Uncertainty: The Problem and the Solution

In this section, in order to simplify the discussion and better understand the problem and the
solution explained here, we made the following simplifying assumptions. First, we will focus on
a quantum electron device with just one degree of freedom indicated by 7. The consideration of
more realistic situations, with many degrees of freedom in a quantum device, would not modify the
conclusions drawn here and would only complicate the notations and understanding of the results.
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See Appendix A for the straightforward generalization of the present results to an unmodified (original)
quantum device with many degrees of freedom in the active region.

Second, we will assume that the measurement of the electrical current of the quantum electron
device is done through a projective (strong) operator and that the state of the system after the
measurement is just an eigenstate of this operator. In other words, we will assume that the measurement
process is done with a projective value measure (PVM), while it has been argued that the realistic type
of measurement of the electrical current is better described by a positive operator valued measure
(POVM) [8,9]. In any case, the explicit consideration of a POVM to describe the measurement process
will not add any relevant point in the discussion. In Appendix C, we explain with more detail the
measurement of the electrical current in a realistic quantum electron device as a POVM.

2.1. The Problem

The first step to implement a classical or quantum computing algorithm using quantum devices
is the initial preparation of the quantum state associated with the quantum electron device ¥;, (7,0).
In quantum computing, the initial state is directly linked to a combination of two states, ¢ (7,0) and
Po(7,0), respectively associated with the logical values ‘1" and ‘0’, whereas in classical computing,
the link between logical information and initial quantum state is not direct. Typically, a quantum
device for classical computation is connected to the external world through the contacts (also know
as reservoirs) that determine the electron wave function depending on temperature and doping
conditions. The input logical information is then linked to a value of an observable I, not directly to
the quantum state. We have used the symbol I to remind readers that hereafter, we will consider the
electrical current as the physical magnitude where information is encoded.

The second step is the manipulation of the initial quantum state through the quantum electron
device (also known as gate in the literature). Typically, such manipulation, whether in classical or
quantum computing is done through a (usually unitary) operator U(t,0). In quantum computing,
the final state (7, ) = U(t,0)¢;, (7,0) is directly linked to the output logical information, while in
classical computing the output logical information is linked to an observable I associated with this
final state through a measurement process that we describe below. See Figure 1a where different gates
of an RTD which are connected to exemplify a classical computation gate connected through output
values of the electrical current (or voltage), while the connection among different gates of the quantum
computing device is done through the wave function itself as depicted in Figure 1b.

The third and last step, both in classical or quantum computing algorithms, is the measurement
step. To get the final observable value I in classical computing, the quantum electron device has to
be measured through a (non-unitary) process. Such non-unitary process is depicted as an ammeter
in Figure 1. The evolution from the final state to the measured state, ou(7,t) — ¢;(7, 1), is called
collapse or reduction of the wave function. The subindex I here refers to the measured state of the
current which corresponds to an eigenvalue I of the eigenfunction (7, t) associated with the operator
I. In quantum computing, the final wave function ,,; (7, t) is not directly measurable in a single shot
measurement. Instead, the logical information assigned to this final quantum state has to be indirectly
deduced from the measurement of an observable assigned to such final state. See Figure 1b. Notice that
the measurement in quantum computing has to be done only once, at the end of the gate, because each
measurement collapses the wave function, destroying the required superpositions of different states in
the quantum computing algorithms.

The process of measurement involves a quantum uncertainty which is a consequence of the fact
that each time a quantum measurement is done, the wave function collapses into an eigenstate of the
operator [ associated with the measuring apparatus. The observable output Iy is a random value
equal to the eigenvalue associated with the mentioned eigenstate. In general, and this is true for the
measurement of the electrical current, the final state before measurement 9, (7, t) is not an eigenstate
of the current (7, t) # Pout(7,t). In fact, the final state can be written as a superposition of many
different current eigenstates. Thus, each time we repeat an experiment to obtain information about
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the output current, we get different values. This randomness in the output values can be quantified
through the probability distribution P(I) = |{1;(7)|pout(7,1))|? given by Born’s law. From a quantum
engineering point of view, this quantum uncertainty (seen as noise in the current) is inconvenient for
efficiently processing logical (either classical or quantum) information.

4 N\
/_\}Unitary Evolution ‘/_\

|1/)> Resonant Tunneling Diode |1/}>

v T

(a)
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/)= d|0) + 1) ") =d'|0) + b"|1)

Mach-Zehnder Interferometer

N (b) ' Y,

Figure 1. (a) Schematic of classical computing exemplified with RTD where only the active device is
governed by unitary quantum evolutions (enclosed in the cyan color dashed line), while the contacts
and the cable leads to quantum decoherence which provides a fixed value of the current obtained in
the measuring apparatus (shown at the right end). (b) Schematic of quantum computing exemplified
with an MZI where the quantum wholeness require that a coherent unitary evolution appears in all the
gates (enclosed in the cyan color dashed line). Only at the end, when the wave function is measured,
decoherence can be accepted.

In classical computations, the uncertainty on the electrical current can be eliminated by using
the ensemble value of the current (I) computed from a large number of identical experiments, each
one giving I', with the subindex i identifying the experiment. The ensemble value is defined as
(I) = (Z?g” I/ Nexp, where Neyp — o0 is the number of experiments. In principle, this ensemble
value would require repeating the same experiment for a large set of Ny, identical quantum electron
devices. In practice, by invoking ergodic arguments, the repetition of the experiment is substituted
by measuring at different times in the same quantum electron device. Thus, instead of defining the
signal of the output logical value as the instantaneous current I' (which has noise) one defines it
as the DC value of the electrical current (I) computed during a large time interval (which has no
noise). This solution is efficient for reducing the noise, but it requires a large measuring time. (In our
simulation example with an RTD with a device active region length of 10 nm, the injection time of
0.05 ps and the velocity of electrons as 10* m/s, the time after which we get the non-fluctuating value
of the current is around 50 ps. In any case, the measuring time is again a parameter that depends on
many factors, like injection time, velocity of electrons, electron density, level of tolerable uncertainty.
etc., and that can be enlarged or reduced as desired by manipulating these parameters.)

The quantum uncertainty described above represents also a problem for quantum computing.
In fact, although the logical output information in quantum computing is encoded in the final wave
function 9, (7, t) (not in an observable I 1, the quantum state o, (7, t) is not itself an observable
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(i-e., it cannot be measured in a single shot measurement). Thus, the quantum state of the system needs
to be deduced from the expectation value (I). Again, the measurement process of such observable
(I) has the same inconveniences mentioned above for classical computing, due to the quantum
uncertainty. We notice that in a quantum computing algorithm, with many interconnected quantum
gates, the measurement of the observable is done only at the last gate. In fact, trying to measure at an
intermediate gate would be understood as a type of decoherent phenomena that would dramatically
perturb the unitary evolution required in typical quantum algorithms. In Figure 1 we encircle the
regions of the connected gates where the dynamics of electrons are supposed to be governed by unitary
quantum evolutions. From Figure 1, one can understand why decoherence is a serious problem
for quantum computing, but not for classical computing. In an array of interconnected classical
computing devices, the decoherence that can appear at the output of each particular device due to the
measurement does not affect the performance of the algorithm because the interconnection between
devices is done in terms of observables (not in terms of wave functions).

In summary, the electrical current in nanoscale devices, for classical or quantum computing,
has an inherent quantum uncertainty, seen as noise in the measured value of the electrical current.
Since the information is usually encoded in the average value (I) of the electrical current, we require
an effort to wash out the noise from the measured current to get valid information. The typical solution
in the literature to wash out the noise is repeating the experiment many times (or using the ergodic
theorem to get (I) after a large time).

2.2. The Solution

In this work, we explain a novel solution to the problem discussed above about reducing the
quantum noise induced by the measurement process. We argue in this paper that such noise can
be eliminated by modifying the quantum device to accommodate N — oo electrons, simultaneously.
We will show that the dispersion of a random distribution of the (normalized) electrical current of
N — co electrons tends to zero, which implies eliminating the quantum noise.

Let us consider an original or unmodified quantum electron device (before applying our protocol)
that has only one transport electron, at each time, responsible for the measured current. Such electron
at time t;,, is described by a single particle quantum state |!(t;,)) where the superindex 1 refers
to this first electron. We are measuring the current through a single particle operator [!. If the state
|1 (t;,)) is not an eigenstate of the operator I, then, the measurement of the I gives rise to the quantum
noise discussed in the previous subsection (we notice again that the generalization to more electrons is
done in Appendix A).

The solution that we propose to minimize the quantum noise requires designing a new quantum
device (that we will refer to as the modified quantum device or just the quantum device) so that this
new device satisfies the following two conditions:

e Condition 1: We enlarge the original quantum electron device in order to accommodate a large
number of electrons N — oo simultaneously. Then, the many-particle wave function ¥r(t;,) that
defines this N electrons at time ¢;;, is:

¥ (tin)) = [9! (tin)) @ [$?(tin)) @ oo @ [N (i), (1)

where the wave function |¢/(t;,)) is the single electron wave function that corresponds to the i-th
electron prepared under the same conditions that we have used to prepare the wave function
|1 (tin)) in the original quantum electron device.

Strictly speaking, the condition N — oo is inaccessible in a practical scenario. We will see
numerically in the following sections that a finite number of electrons is enough to drastically
reduce the quantum noise. Identically, if the number of transport electrons in the original
(unmodified) quantum electron device is already larger than one, the solution proposed here is
still perfectly valid. See Appendix A for a generalization of the present protocol to more than one
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electron in the unmodified electron device. Finally, as can be seen in Equation (1), we assume a
many-particle wave function of non-interacting electrons. This is obviously an approximation in
realistic quantum devices since these electrons will suffer exchange and Coulomb interactions.
These issues will be further elaborated in the practical implementation of this protocol in next
two section.

We mention that some (small) variation in the preparation of the state [ (t;,)), [?(tin)),... forming
Y1 (ti,) is allowed. For example, the time delay between the injection of different single electron
wave packets can vary. Also the central position of the wave packets along the lateral dimension
of the device can be different. Similarities between different wave packets have to be enough to
justify that the probability distribution of the values of the current is identical for all single electron
wave packets.

o Condition 2: We substitute the measuring apparatus associated with the single particle operator

' with a new measuring apparatus whose associated many-body operator I is:

T 4 T2 4.+ IN
T — N 7

()

where 7! = 1® ... ® I ® ... ® I acts only on the quantum state [ (t;,)) and 1 is the identity
operator in the small Hilbert space of each degree of freedom. Notice the presence of the factor
N — o0 in the denominator of the operator [r.

In next section, we will show the physical soundness of the many-particle operator in Equation (2)
for typical semiconductor electron device technology.

Now let us formally demonstrate that the dispersion of the electrical current of the modified
quantum device (satisfying condition 1 and condition 2) is zero. For the operator I defined in
Equation (2), we calculate the variance of the (I2) as the mean square value of the operator It as:

N o
(¥r|(Ir)*¥r) = Z¢II Fly') + g S (@' gty (| T |, (3)
i 1,j#1

By construction of the wave function in Equation (1), we know that the mean values (y/|[/|p/) are
all identical for any j. Therefore, we can consider (/|[/|y/) = (p!|'|yp!) because all electrons are
described by the same wave function and we can rewrite Equation (3) as follows,

A N X~ N(N -1 o «
(¥l r) = o 2l + Y gty ). @
Therefore, when N — oo, we get:
(I3) = (Frl(Ir)?[¥r) = (') (@ T |y") = (IM)% 6)

Now, we have to demonstrate that the logical information provided by the modified quantum
device dealing with It is the same as the one that one gets from the original quantum device. As we
discussed, the logical information of the original quantum device was represented by the mean value
of the current (') and not by the instantaneous value I' (which was too noisy due to quantum
uncertainty). It is quite simple to demonstrate that It = (I') for N — co. By construction, we know
(1YY = (I}, from Equation (2) we get (I7) = N(I')/N = (I') and with Equation (5), we conclude that
the dispersion ¢y, of the distribution of the total current It is zero:

ot = (I) — (Ir)* = 0. (6)
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The result ¢, = 0 in Equation (6) implies that the distribution of I7 is a delta function around (.
This implies that in every measurement one gets the mean value of the single particle average current
It = (IY).

It can be easily checked that the state in Equation (1) in the limit N — oo is, in fact, an eigenstate
of any operator of the type of Equation (2) at any time. This state, with this unusual property, has been
used by one of the co-authors to study the quantum-to-classical transition [10]. In addition, a similar
state and operator as the ones invoked in our condition 1 and condition 2 has been used to develop
the new concept of collective measurements [11,12]. Such collective measurements do really invoke
multiple physical repetitions of the quantum system, while in our paper we make use of this idea in
the same many-particle state and operator and in a single (modified) quantum device. In other words,
the demonstration provided above is mathematically equivalent to the one that appears in the theory
of collective measurements, but their physical implementation in the laboratory is radically different.
In the rest of the paper, we will show how these two conditions can be effectively implemented with
the semiconductor electron device technology in a single device for classical and quantum computing.

3. Application to Classical Computing Device: Resonant Tunneling Diode

As an example for the application of the discussed protocol in a classical computing device, we
consider the computation of the electrical current in an RTD. This type of electron device is a pure
quantum device, whose performance is based on tunneling, and has been successfully implemented
in some particular high frequency applications particularly to explore the missing THz gap for
various analog and digital applications [13-16]. The main element that defines an RTD is a double
barrier potential created, for example, by alternating Gallium Arsenide (GaAs) and Aluminum
Gallium Arsenide (AlGaAs) III-V semiconductors with different energy gaps, as shown in Figure 2.
The combination of low band gap and high band gap semiconductors leads to the formation of a
well in the potential energy profile, which gives rise to discrete set of energies inside, known as
resonant energies.

As depicted in Figure 2, two reservoirs or contacts emit or collect the electrons through the RTD
structure. We name the left contact as source (also known as emitter in the literature) and the right
contact as drain (also known as collector in the literature). These contacts are responsible for the first
step of classical computing algorithm: the preparation of the initial quantum states. The energy of the
injected electrons is determined by the Fermi-Dirac statistics (depending on the doping conditions of
the contacts). A regular injection of electrons is assumed according to the discussion of the Appendix B.
The second step of the classical computing algorithm is carried out by the barrier structure that
determines whether the injected electrons are effectively transmitted or not. An electron incident on
the double barrier with an energy equal to one of the resonant energies tunnels through the barrier,
being transmitted with a transmission coefficient T close to one, while electrons with other energies
have a transmission coefficient close to zero. An external potential between the drain and source
potentials, modifies the double barrier potential energy profile, controlling the ON and OFF currents.
One value of the current can be assigned to the logical output information "1” and the other to the "0’

The last step of the classical computing algorithm is the measurement of the ON or OFF current
which implies the measurements (collapse) of the quantum wave function assigned to electrons inside
the RTD, which provides the undesired quantum uncertainty in the output values of the current.
We discuss next how the conditions of Section 2.2 can be implemented.

3.1. Implementation of Condition 1 and Condition 2

We consider that the RTD depicted in Figure 2 corresponds to the modified design of the device
that accommodates a large number of N electrons simultaneously inside. In this particular device,
enlarging the lateral area A is enough to enlarge the number of electrons inside the RTD. We can
reasonable assume that the contact prepares the wave packets of each electron in a similar way so
that the condition 1 of our protocol in Equation (1) is easily satisfied. Certainly, a point that requires
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further discussion is how to ensure that the many-body wave function of electrons in the active region
of this modified device can be approximated by the non-interacting wave function in Equation (1).
In the Appendices A and B some qualitative indications are mentioned. A different solution for
minimizing the undesired Coulomb and exchange interactions will be discussed in next section,
for quantum computing.

To satisfy the second condition we have to ensure that all electrons inside the device contribute
equivalently to the measured value of the electrical current. A detailed discussion of the conditions
that have to be satisfied by the quantum device to ensure this point is provided in the Appendix C.
We anticipate here that such discussion is greatly simplified by associating to each electrons a
quantum (Bohmian) trajectories, whose positions and velocities are well-defined even in absence
of a measurement, in addition to the orthodox wave function. Then, the electrical current due to the
simultaneous contribution of all electron leads to the following expression,

N N iy
Lep(£) = ) I'(t) = q”"L( ) )
i=1 i=1

As discussed in the Appendix C the above expression assumes that the lateral dimensions of the (two
terminal) electron device are much larger than the longitudinal one, and that the contacts are formed by
metals with a fast screening time in comparison with that on the active region. The condition 2 of our
protocol to define the current operator as in Equation (2), requires to define the output instantaneous

value of the current as,

(o) = 22, ®

The value of N(t) ~ N can be assumed to be proportional to the enlarged lateral area, and the value
IT(t) computed from L., (t) after knowing the ratio of the modified /unmodified areas. The detailed
discussion on the definition of the current and the implications of condition 2 is given in Appendix C.

3.2. Numerical Results

In this subsection, to show how the quantum uncertainty of the values of the measured electrical
currents can be controlled, we compute the autocorrelation function of the current It defined as:

(Ir(t)Ir(h) = [ atf [ aig (s, 1), ©)

where P(I¥, I¢) is the probability associated with the subsequent measurement of the multiparticle
state |¥1) at two times #; and t, > t;, with I and I§ defined as the output values of the current at
times ¢; and tp, respectively.

As indicated in the previous section, for practical reasons in the computation of the particle and
displacement components of the current, we will use a wave function plus a Bohmian trajectory for
each electron in the computation of the dispersion of I7 in the modified quantum device through
expressions in Equations (7) and (8). The measurement of the current in an electrical device is a
weak measurement process [8] in the sense that the perturbation of the wave function due to the
measurement process is not very dramatic. This type of measurement is mathematically represented
by three subsystems: the quantum system, the measuring apparatus plus an intermediate system or
ancilla. In fact, the system interacts with the ancilla during the measurement (not with the apparatus)
and the apparatus measures the ancilla (not the system). This indirect way of getting information of
the system by measuring the ancilla implying that the output value of the total current has the quantum
noise of the system plus the quantum noise of the ancilla. In our particular example, the ancilla is just
the cable (in fact there are a very large number of electrons) connecting the RTD with the ammeter [8].
As indicated in the previous section, for practical reasons in the computation of the particle and
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displacement components, in addition to the wave function, each electron will be described by a
Bohmian trajectory.

AlGaAs

Figure 2. A 3D schematic of the RTD where the green material represents GaAs while the red represents
AlGaAs. The alternating AlGaAs-GaAs-AlGaAs structure results in a potential well with discrete
resonant energies.

As we have mentioned, the elimination of the quantum uncertainty in the measured current
implies that the total wave function in Equation (1) is an eigenstate of the many-particle operator
in Equation (2). Then, the first measured value of the current I (#;) at time #; has no influence
on the output of a second measurement I7(t;) at time tp, and it can be shown [17] that the two
time probability of the autocorrelation given in Equation (9) can be written as the product of two
independent probabilities, which leads to the following expression of the two time correlation in
Equation (9),

(Ir(t)Ir(t)) = [ dif [ g Gagp()p(s)
— [attbph) [aigigpg) (10)
= (Ir(t2)){Ir(t)) (11)

The condition in Equation (11) is a test of the fact that the quantum uncertainty has disappeared in the
measurement process of the modified device. Please note that from a pure engineering point of view,
the autocorrelation mentioned above contains rich information on the high frequency response of the
quantum device. In order to get the frequency response of the device we compute the power spectral
density which is just the Fourier transform of the autocorrelation function (since the current signal
has a constant mean, it is in a wide sense a stationary process, hence the auto-correlation depends
only on the time difference t = t, — t;. Therefore the auto-correlation function and the PSD form
a Fourier transform pair). We therefore define the power spectral density due to the unmodified
system, i.e., the system where the protocol is not applied, as Py,modified = F1{(Ir(t2)Ir(t1))} while
Puodifiea = F{(IT(t2))(Ir(t1))} for the modified system where the protocol is implemented. Here F
represents the Fourier transform operator. Finally we can define the relative error (RE) as:

IEDrrzodified - IEDu'rlmodified
7

RE =
Priodi fied

(12)

which is plotted in Figure 3. The RE in Equation (12) contains quantum noise at all frequencies. Since
all electrical devices are, in fact, a low pass filter, it is interesting for engineering purposes to quantify
the error as a function of the frequency. A value of the RE equal to zero indicates that the quantum
uncertainty (of the system and ancilla) has been eliminated which has a direct correspondence with the
increase in the transport electrons in the device that can be further attributed to a large transmission or
a large average current. Besides this it is also easy to see that to arrive at a zero quantum uncertainty
we do not need an infinite number of electrons.



Appl. Sci. 2019, 9,0 10 of 21

In our simulation the total number of electrons injected is given by N = t/1;,, where t is the total

simulation time (the time after which the mean current reaches a constant value) and T;,, is the injection

— qTfe

time of electrons. Now we know that (It) = “=-¢ where T is the transmission coefficient and f, is the

Fermi function which we assume to be unity. So it is straightforward to see that N = % We used

the total time of simulation as 50 ps,, T = 0.7, f, = 1 and (I7) = 5 pA . These values correspond to a
point in graph where the uncertainty starts to disappear which gives us the value of N ~ 2232. Which
is a large value but not infinite.

Relative Error Relative Error

15.05 15.20

13.16 13.30

-11.28 +11.40

I 9.387 10

- 9.500

- 7.500 I~ 7.600

(1) (uA)
(1) (nA)

~5.613 ~ 5.700

- 3.725 I~ 3.800

1.838 1.900

. ; -0.05000 : )
0.3 0.6 0.9 0.3 0.6 0.9
Transmission Coefficient (T) Fermi Function (fg)

(a) (b)

0.000

Figure 3. (a) Plot between the relative error, the transmission coefficient and the average current with
the Fermi function fixed to unity. The relative error which is an indicator of quantum randomness,
goes to zero, when the number of electrons in the device quantified by transmission coefficient and the
mean current becomes very large (blue shaded region) while the relative probability of error is greater
(in the red region) when the number of particles in the device is very small. In the green region the
uncertainty already starts to disappear. (b) The same plot but with a constant transmission probability
as unity and varying Fermi function also demonstrate the same outcome.

4. Application to Quantum Computing Devices: Mach-Zehnder Interferometer

We provide now an example of our protocol for reducing the quantum uncertainty in a quantum
computing device. Quantum computing algorithms require a suitable set of quantum gates to
reproduce logical operations [18-20]. With respect to most recent implementations, mainly based on
superconducting [21] or single-ion qubits [22], solid-state devices are promising candidates because of
their scalability and potential to be integrated into classical circuitry. In this section we will study how
the quantum uncertainty can be eliminated in a solid-state MZI acting as quantum gate.

It is important to notice that any practical implementation of a quantum gate tends to have a
non-negligible interaction between the quantum system and the environment (in terms of scattering
with photons, background charges, impurities etc.) even when no measurement is designed.
This interaction affects the expected unitary evolution of the state of the quantum system and produces
loss of the logical information encoded in the state (decoherence). In solid-state MZI proposal,
decoherence can be successfully minimized by injected electrons in edge states, chiral conductive
channels generated in the Integer Quantum Hall regime [23]. Then, a strong enough magnetic field
B is applied perpendicularly to a 2DEG, so that the band structure is discretized into Landau levels.
In proximity to the confining potential of the device, the system eigenstates form chiral channels
where an electron propagates coherently for large distances [24]. The chirality of such edge states
prevents the electron to be back-reflected by eventual impurities on its path, unless it is scattered to
the counterpropagating edge channel by a narrow quantum point contact [25,26]. Coherent transport
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of electrons in edge states has been tested in a large variety of semiconductor devices, as Fabry-Perot
interferometers [27], Hanbury-Brown-Twiss [28] and Hong-Ou-Mandel interferometers [29], thus
validating the Integer Quantum Hall regime as an ideal framework to implement solid-state quantum
logic gates [30].

Our MZI is schematically depicted in Figure 4. To simplify the discussion, as done along the
whole paper, only one degree of freedom (one qubit) is considered for the unmodified quantum device.
The generalization of the present protocol to a realistic quantum computing gate with more qubits,
is explained in Appendix A. We consider that a contact or reservoir (as elaborated in Appendix B)
is connected to the source contact (S1) in Figure 4a filling only one Landau level and all injected
electrons have the same wave function |0), but displaced in time by the distance 7;,vy, as depicted
in Figure 4b. At this point, we have not yet constructed the superposition of states to get our initial
qubit. In our device setup, a potential dip or a quantum point contact acts as a half-reflecting beam
splitter by randomly scattering the electron in one of the two available edge channels [31-33] so that
the description of the quantum electron in the central region of our MZI is given by the quantum
bit a|0) + b|1). This conclude the first step of the preparation of the quantum state. Then, a tunable
potential mesa generated by top gates further separates the two quantum rails, so that the traveling
electron accumulates a different phase according to its path [34] as shown in Figure 4a. The two
electron beams are then recollected at the second beam splitter to produce the electron interference
which is the second step in a quantum device for the (unitary) manipulation of our initial quantum
logical information. The final step is the measuring of the observable associated with the final qubit
a’|0) + b'|1) by the detectors D1 and D2 in Figure 4. As in the case of the RTD, typically the electrical
current (which is proportional to the transmission probability from source i = 1 to detector j = 1,2) is
used to indirectly identify the final qubit [35].

-
|
a’|0) +0'[1))
|

SR o B
|
|0) I
al0)y + b|1) I
Source |
L] :
| ‘ -
[ [1) 1
1

TinUy Beam Splitter

(@) (b)

Figure 4. (a) 3D view of the potential landscape felt by the electrons in the MZI at bulk filling factor 2
in the Integer Quantum Hall regime, in presence of a perpendicular magnetic field [34]. Electrons are
injected in the first edge channel by the source S1, and collected at the end of the device by the drain
D1 (D). The paths of the electrons in the interferometer is defined by the red (blue) line for the first
(second) Landau level. (b) Schematic diagram and functioning of the MZI. Electron injection with
non-interacting and non-overlapping wavepackets is shown in gray, while the region encapsulated by
the cyan color dashed line box defines the region where the unitary evolution of the quantum states
is preserved.

The magnetically dependent transmission probability T»1(B) for an electron in the input channel
S1 to be detected at D2 can be analytically computed by means of a simplified 1D model based on the
scattering matrix approach, as in Ref. [34] and reads:

Tp1(B) = 2T(1 — T)(1 + cos(®)), (13)



Appl. Sci. 2019, 9,0 12 of 21

where T is the transmission coefficient of the single beam splitter and ® is the total phase difference
accumulated in the MZI:
_ qBA

=" 4. (14)

Aharonov-Bohm oscillations in the transmission amplitude [36] are then driven by a variation of the
magnetic field B or the loop area A, affecting the phase ®. This platform can be used to implement
other electron interferometry schemes for single electrons, e.g., Fabry-Perot geometries [27], or two
interacting electrons [31,37,38]. Let us notice that the consideration of more qubits in the unmodified
quantum device will just require occupying different Landau levels, but the basic understanding of
how the uncertainty in the measurement can be controlled will not be modified by the presence of
more qubits.

4.1. Implementation of Condition 1 and Condition 2

As with Section 3, here too we ensure that our modified quantum device satisfies the conditions
mentioned in Section 2.2. Here condition 1 can be obtained with a different strategy than the one used
for the RTD since electrons are entering in the MZI one by one (as in a quantum wire). The strategy
is enlarging the length L of the arms of the active region of the device (between S1 and D1, D2) to
increase the number of simultaneous single particle wave packets that fit inside the device. We argue
in the Appendix B that a natural way in the injection of electrons from the contacts in the device is
at time intervals T;,, as defined in Equation (A8) in Appendix B. Neglecting the thermal noise of the
contacts the spatial separation between electrons is therefore given by t;,v, as plotted in Figure 4.
Notice that such spatial separation ensures that the consideration of non-interacting electrons required
in Equation (1) is more accurate for our modified MZI than for the RTD mentioned before.

As indicated in Appendix C, the consideration of metallic contacts with a lateral area A satisfying
VA > L is necessary condition to be able to successfully use Equation (7) in the computation of the
experimental current. Notice that enlarging the lateral area A does not imply an increment of the
number N of electrons here since electrons can only enter inside the device, one by one, in the 1D edge
channels. Besides this condition 2 can again be obtained by post-processing the experimental current
Lexp as indicated in Section 3, by fixing the total time T that we allow the electrons to enter inside the
enlarged active device region, N = T/ Tj,,.

4.2. Numerical Results

To prove the discussions in the previous sections numerically we implemented the Mach-Zehnder
like behaviour in the simulations. We were able to attain the Aharonov-Bohm oscillations where the
maximum and the minimum value of the current obtained in one of the drains of the MZI oscillates
with the change in the magnetic field (see Figure 5a). These oscillations are a signature of the correct
working of our simulations. As expected, we observe that the instantaneous current It (t) computed
in the quantum device with a large number of electrons is much less noisy than the ones with fewer
electrons, as plotted in Figure 5b. The noise in the current value due to fewer electrons results in very
high fluctuations in the instantaneous value (black line in Figure 5b) which forces the experimenter
to record the values in several experiments to finally get an ensemble value which is non-fluctuating.
However, with the successful application of our protocol the fluctuation of the instantaneous value
of the current almost disappears (cyan line in Figure 5b) as a result one needs to make just one
measurement to get the correct value of the current. The final step of this protocol is determining the
value of N which as discussed above can be givenby N = T/ 1;,.



Appl. Sci. 2019, 9,0 13 of 21

R R T T
Qo2 _
N I
e [ A R O S A R B O 2
S —+
SRR

ST A R R R TR T

0 l‘l e N :‘ ‘ll l: L I'\I ‘I . 2 T T T
497 4.98 4.99 5.00 20 40 60 80

Magnetic Field, B (Tesla) Time (ps)
(a) (b)

Figure 5. (a) The Aharonov-Bohm oscillations of the mean current resulting due to the interference of
the wavepackets at the output of the Detector 2 oscillating between the maximum and minimum limit
of the mean current. (b) The instantaneous current normalized to the number of particles is plotted
at the output of the detector 2 of the MZI with respect to the simulation time, for different number of
electrons N. As expected, the noise in the current reduces with the increase in the number of transport
electrons due to the elimination of quantum uncertainty demonstrating the successful implementation
of the protocol discussed in the text.

5. Conclusions

The measured current associated with a quantum device with few electrons has a quantum
uncertainty due to the intrinsic stochastic process of the quantum measurement of the electrical current.
From an engineering point of view, this quantum uncertainty becomes an undesired quantum noise
that makes the discrimination of the final state in classical or quantum gates more difficult. To avoid
the quantum uncertainty in the evaluation of the output value, one usually repeats the measurement
at different time (using ergodic arguments) to compute a time-averaged value free from uncertainties.
We have presented in this paper a new protocol that modifies the original quantum electron device to
accommodate a larger number of electrons inside, so that the total electrical current of the modified
device (when normalized to the number of electrons inside) gives the value of the output current
without quantum uncertainty. We provide numerical examples for classical and quantum computing,
with an RTD and MZI, respectively. We demonstrate that the many-particle wave function associated
with the modified device is, in fact, an eigenstate of the many-particle electrical current operator.
The similitude and differences of our protocol with the collective measurements is mentioned in the
text. The results of our protocol can be alternatively understood as a consequence of the central limit
theorem (see Appendix E). Although the assumption of non-interacting quasi-particles can seem
reasonable in nanoscale electron devices, further work is needed to check whether or not the presence
of strong Coulomb and exchange correlations among electrons located inside the device can affect the
present predictions. In addition, the discussion on the advantages of the protocol presented here needs
to be explored for the quantum measurements of transient currents and delay time of classical and
quantum gates.
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Appendix A. Generalization to an Unmodified Quantum Device with Many Electrons

In the text, to simplify the notation and the discussion of our protocol, we have assumed that
the unmodified (original) quantum device has only one electron in the active region.This assumption
is obviously unrealistic in many scenarios for either classical or quantum computing. For example,
in quantum computing, we need a nanoscale devices with, at least, the number of electrons equal to
the number of qubits we want to deal with. We show in this appendix that the very same protocol
described in the text for one electron can be straightforwardly generalized to deal with an unmodified
(original) quantum device with many electrons present in the active region of the nanoscale device.

We consider an unmodified (original) quantum device with M electrons in the active region.
To simplify the discussion, we will write the quantum state in the position representation. Then, each
electron is described by the degree of freedom Xj with j =1,2,..., M. Such quantum system is described
by the M-particle wave function:

P(x1, X2, .0 X0, Ein) (AT)

Notice that we do not assume any particular shape of this M-particle wave function so that exchange
and Coulomb interaction among the M electrons is taken into account in the definition of this M-particle
system (without any restriction).

Now, we consider N set of M electrons which are prepared under the same conditions as the
ones in Equation (Al). In other words, the quantum dynamics of each set of these M electrons
can be described by the same wave function in Equation (A1). Thus, we define N x M degrees
of freedom for the modified quantum device as x’ with i = 1,2,..., N counting the repetitions and
j =1,2,..., M counting the number of electrons in each repetition. We define N wave function identical
to Equation (A1), but with a superindex i = 1,2, ..., N indicating which is the repetition we are
dealing with:

l[Ji (xﬁ, xé, s x;/l, tin) (A2)
Introducing the wave function in Equation (A2) into the quantum state of the modified quantum
device written in Equation (1), in the position representation, we have:

‘I’T(x%, ...x]IQ],I, tin) = l[Jl(x%,..., x}w, tin) ~1/J2(x%,..., x%A, i) * et le(xll\],..., x%, tin) (A3)

Clearly, we have assumed in our definition of ‘I’T(x%, ...xﬁ, tiy) in Equation (A3) that there is no
Coulomb or exchange interaction between the subset of electrons {x’l‘,..., xlj‘w} and the subset of
electrons {xll, s xéw} for any j # k, but no restriction is imposed on the interaction among the M
electrons of each subset. The rest of the demonstration till the final result in Equation (6) with (IIZT =0
are basically the same that we wrote in Equations (3)—(5) for the evaluation of mean values.

A relevant point in our discussion is that even with our best technological means to exactly
reproduce the same wave function in Equation (A1) with another set of M electrons, the quantum
dynamics of these new set of electrons is not exactly identical to the previous one because of the
inherent quantum uncertainty. The key element in our demonstration is that all these N different
uncertainties of the set of M electrons have to follow an identical probability distribution given by the
same wave function i in Equation (A1).
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We notice that we have discussed in this appendix that if a system of N x M electrons are described
by Equation (A3) (what we call condition 1 in the text) and if we use a (center-of-mass-type) operator
in Equation (2) (what we called condition 2 in the text), then, the uncertainty in the measurement
disappears in the lim N — co. A different question is how to ensure that a modified quantum device is
effectively described by Equation (A3) and the measurement by the operator in Equation (2). This last
point is what we discussed in detail in the implementations of our protocol with a RTD and a MZI in
the text.

Finally, let us notice that the results in this appendix can be understood in a quite different
way. It can be used to justify that some amount of Coulomb interaction (between nearest neighbors)
can be accepted between the different N subsets. Let us consider again an unmodified system
with only one electron described by the wave function ¢(x1, t;,,). Let us consider that some of the
electrons of the N subsets (not all) do have interaction among them. We define M as the number of
electrons that have interaction among them (for example we can consider two-electron interaction,
but neglect three-electron interaction). Then, the wave function that define these interacting electrons
is l/)i(xé, xé, vy xﬁw tin). If we assume that the (normalized to the number of electrons) probability
distribution of the electrical current assigned to zpi(xi, xé, . xﬁw, tin) is not much different than the
probability distribution of the electrical current assigned to 1(x1, t;,), then, the demonstration in this
appendix can be used to justify that our protocol can be reasonably valid when some interaction is
accepted between nearest neighbors {x£, ..., x,} and {x], ..., x}}.

Appendix B. The Injection Time

The phase space density of electrons in a reservoir can be anticipated by assuming that each degree
of freedom of an electron needs a phase space area equal to 27t, which is usually derived by using the
single particle wavefunction of electrons as the Bloch states and then introducing the Born-von Karman
boundary conditions. The interpretation of this result for two wave packets with spatial dispersion oy
and wave vector dispersion o3 = 1/0y, center positions xg; and x(y, and center wave packets kg; and
kop is simple. When they are far away from each other in the phase space, i.e., |xy1 — Xp2| >> 0y or
|ko1 — ko2| >> 0%, the norm of the two-electron wave function is equal to the unity. However, when
the wave packets are approaching each other, the probability decreases. In particular, for x,; = x,»
and k,; = ky, we get ¢ (x) = 1/)2(x) and CD(X1,X2) = 1 (Xl)lpl (xz) — 1p1(x2)1p1 (xl) = 0. This is
the time-dependent wave packet version of the Pauli exclusion principle (or exchange interaction)
mentioned for time-independent Hamiltonian eigenstates.

For example, for electrons in a 2D space (with the position 7 = {x,y} and wave vector
k= {kx,ky}), we consider a volume of the phase space equal to AxAzAk,Ak;, with the degrees
of freedom {x, zo, ky, k; } satisfying xo < x < xo + Ax, zg < z < 2o + Az, kyy < ky < kyo + Aky and
k.o < k; < ky9 + Ak;. The total number of electrons in this phase space cell taking into account the

properties of a fermion are,
_ AxAzAky Ak,

" eme (A

where (277)? is the volume occupied by a single electron in the 2D phase space. Then, the time of
injection of an electrons in the x direction from this volume of the phase space will be given by:
Ax

Ty = = (2m)?
"= o = 270

1
vy AzAk Ak,

(A5)

where v, is the electron velocity in the phase space volume. It can be demonstrated [39] that
interpretation of Ax and Ak, in terms of the wave packets mentioned above implies:

Ax = o,V2m, (A6)
Aky = oV 271 (A7)
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We notice that the condition oy - 03 = 1 implies the desired condition Ax - Ak, = 27. Then, the injection
time in Equation (A5) is just:
Ty = 2, (A8)

Oy

which only depends on the properties of the reservoir.

Appendix C. Description of the Current Signal and Condition 2

We discuss here which are the necessary considerations to design the modified (new) quantum
device that allows us to assume that all electrons inside it have identical simultaneous contribution to
the total current I7.

The first step is identifying the proper single particle operator I'. Then, once we identify ',
we can compute the eigenstates [¢! (t;,)) and the eigenvalues I' that will correspond to the measured
output results. However, identifying the electrical current operator is not so simple for several reasons.
First, the measured current in an ammeter at time t;,, is not just the particle current, defined as the
number of particles crossing a particular surface of the device, but it also includes the displacement
current. The latter component of the electrical current is proportional to the time-dependent variations
of the electric field on a particular surface of the device. Typically, such component is not relevant
at low frequencies, but at larger frequencies no instantaneous current conservation at time ¢;,, can be
guaranteed without it. What is the operator associated with the measurement of the total, particle
plus displacement, current? The answer is not trivial at all. In fact, the measurement of the electrical
current in quantum electron devices has an additional difficulty. The measurement of the electrical
current corresponds to a generalized or weak measurement, which are mathematically described by a
POVM. So, the proper question is even more complicated now: What is the POVM associated with the
measurement of the total, particle plus displacement, current ?

Fortunately, we can describe the measurement of the total electrical current in a quantum electron
device without having to anticipate the POVM. We will use in this appendix an explanation of the
measurement process of the total electrical current using the Bohmian quantum theory. Such theory is
formally equivalent to the orthodox quantum theory, it gives the same empirical results, but it does
not require to identify a priori the measurement operator. Such theory defines a quantum system
assigned to one electron by the orthodox wave function ! (7,¢) plus a quantum trajectory 7' (t) =
{x1(t),y' (t),z' (t)} constructed from a velocity field given by the wave function itself. Such trajectory
allows the definition of the properties of a quantum system, like the instantaneous electrical current
I'(t), independently of the fact of being measured or not . An identically prepared state for a second
experiment will be described by the same wave function $2(7,t) = '(7,t), but with a different
trajectory 72 (t) = {x2(t),y*(t),z%(t)}. The quantum uncertainty in the output value of the electrical
current is due to the different initial positions of the trajectories, which describe an ensemble of
identical experiments. The selection of the initial positions of the i-th trajectories is selected according
to the quantum equilibrium [40].

According to the Bohmian theory, for the electron with trajectory 7! (t) = {x!(¢),y'(t),z'(t)} and
velocity 7' () = {vl(t), v]l/(t), vl(t)}, the electrical (particle plus displacement) current I'(t) generated
in a surface of the quantum device is given by the Ramo-Shockley-Pellegrini theorem [41]. If we
assume that each dimension of the lateral contact area A of the quantum device is much larger than
the length L between contacts (from source to drain), i.e., V/A > L, and this contacts are ideal metals
(with an instantaneous screening time), then the total current generated by an electron crossing the
device between the metals is given by the expression:

o) = 12D fe( - o, - 1), (19)

where O(t) is the Heaviside function representing the time dependence of the single electron current

pulse with t] and #!

i L4 = th +t, being the entering and leaving times, respectively, and ¢, is the
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electron transit time. The pulse starts when the electron enters the device and ends when the electron
leaves it. We notice that the integration in time of Equation (A9), during the time interval L/vy, gives

1
the fundamental electron charge | fout (t)dt = q.

tl
As discussed in the Appendi,x B, we do not have a perfect control on the preparation of the
electrons leaving the contacts and entering inside the device but, assuming the contact to be in
(quasi) thermodynamic equilibrium we can anticipate the energy distribution of the injected electrons
(Fermi-Dirac distribution) and the interval time between consecutive injection of electrons. The total
(particle plus displacement) instantaneous current Iy of the device is then given by:

N(t) N(t

Lxp(t) = Y I'(t) = qv"L(t), (A10)
i=1 1

—~
=

where N(t) is the number of electrons inside the device at time t. Expression (A10) has the desired
property that the current due to all electrons inside the device is just the sum of currents due to
individual electrons. Notice, however, that Iy, in terms of Bohmian currents is not exactly equal to
the I defined in Equation (2) reinterpreted in terms of Bohmian currents, because a factor N in the
denominator of Equation (2) is missing in Equation (A10).

Finally, we emphasize that the Bohmian trajectories have been introduced in this last part just
to simplify our practical discussion about the measurement of the total (particle plus displacement)
current in quantum electron devices, but it has no fundamental role in the demonstration of the
proposed protocol. In other words, the validity of the main result in Equation (6) can be equivalently
demonstrated with orthodox quantum mechanics (as we have done) or with Bohmian quantum
mechanics. The knowledge that we gain from the Bohmian development done here is that the total
(particle plus displacement) current measured in experiments do satisfy the required superposition
of currents associated with individual electrons and that a factor N(¢) has to be added into the

experimentally measured current of the modified quantum device I, to properly define I7 as I (t) =

I‘;}’ES) where two proper ways of computing N(t) are explained in the RTD and MZI applications

mentioned in th text.

Appendix C.1. On the Assumption of a Large Lateral Area in the Active Region

The size of the lateral area A is a very important point in our protocol since we want that each
electron inside the device active region contribute to the measured electrical current. If the electrical
current were only due to the particle (conduction) current component, then, only the electrons crossing
the drain (or source) surface, would have contributed to the current. However, it is well known that
the electrical current is due to both particle and displacement currents. In fact, an electron far from
the drain surface can still affect the current if its dynamics generates a significant perturbation in the
electric field. If the lateral area is large compared to the longitudinal onesi.e., v/A > L, then, effectively
all electrons inside the active device region can contribute to the measured current, as required by the
operator in Equation (2). The formal derivation of this issue is presented in Ref. [8]. Thus, the large
lateral area is an important point of our protocol.

Only when L < W, H, then, one can ensure that all electrons are equally contributing (through
the displacement current) to the total current and hence condition 2 in the main text is satisfied.

Appendix C.2. On the Assumption of an Instantaneous Screening Time in the Metallic Contacts

Next we discuss the motivation behind approximating the screening time in the metalic contacts
to be instantaneous. The fact that we assume a screening time in the contacts (metals) much smaller
than in the active region is something usual in electron semiconductor devices. Typically, the screening
time in metals is considered to be negligible in comparison with the screening time in a semiconductor.
The implications of this condition is that we do not need to simulate the electrons deep inside
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the source/drain contact (without entering in the device) generating displacement current in the
drain (or source) contact. This is possible only if we assume the screening time in the metals to be
(almost) instantaneous.

Appendix D. Effects of Exchange Symmetry on the Total Current Many Body Operator

In the text, we have assumed that the many-particle wave function in Equation (1) has no exchange
symmetry. Here, we discuss the physical soundness of such approximation. Let us evaluate the effects
of exchange symmetry on the squared total current of Equation (2) for two particle case, which can be

rewritten as:
U 1 &
(I7) = 3 LALL) + 7 ) (L), (A11)

i=1 i=1,j#i

where indexes i, j refers to the particle with coordinate x' in the phase space. We assume the system
wave function described by the two-fermion state with exchange symmetry

¥ (x1,x2) = —= (9" () () — ()9 (x%)), (A12)

where the superindex k of the state ¢ refers to the injection time (e.g., ¢! is injected at t;,, while ? is
injected at t;, + T;;). Within this definition of the state, the diagonal average values of the first value in
Equation (A11) read:

1
(M) = 2 2t @ 9?) + (@) (| (1))
(D) ") = 2l (g 1y?), (A13)
for i = 1,2. We reasonably assume an initial negligible overlap of the wave packets,
(P[9P = by p, (A14)

which is conserved during the evolution of the two electrons, carrying out the same procedure for the
second diagonal element we get:

1
() + (P12) = S (! [()2[g) + (92 1(1)[9h)), (A15)
as for distinguishable particles. Similarly, the first non-diagonal term of Equation (A11) is computed:
1
() = (") 22 ]g?) + @ 1 y?) (9! Py
U I ) = W21 D) oI ?), (A16)

Computing the same for the second non-diagonal element we get,

(I'P) + (1Y) = S (! [ IMg") (92| ] g?). (A17)

N —

So using Equations (A15) and (A17) in Equation (A11) we get,

B = Tyl ¥
' 41:1 41:1,];&1
13 1 & o
= XYY+ 5 X @Iy I), (A18)

I\
_

i=1,ji



Appl. Sci. 2019, 9,0 19 of 21

The mean value of the squared of the total current for distinguishable particles is therefore
recovered by assuming (| I|y/) d; j- This constraint is fulfilled by Equation (A14), together with the
definition of the current operator, which is related to momentum (proportional to a spatial derivative
in the real space) and position operators. Indeed, we expect that for a weak measurement of the current
discussed in the text, the state |¢/)’ produced by its application to a wave packet (/) = I|y/)) is
characterized by a spatial localization that does not significantly differ from the unperturbed state |y/),
so that ('|I|y/) = 0 is valid.

Appendix E. The Ontological Meaning of the Total Measured Current [ and the Classical
Central Limit Theorem

We discuss here a simple interpretation of the main result given in Section 2.2. The ammeter
mentioned in the text does only measure the value of the total current [r. Therefore, strictly
speaking, the currents fl, fz/ etc. contributed by the single electrons, have not been measured,
so the electrons have no (orthodox) definite value of their current. We are invoking here the well
known eigenvalue-eigenstate link. The i-th electron has a well-defined value of the current when
its wavefunction is an eigenstate of the single particle current operator Zi. However as explained in
Section 2.1, the single particle state describing the i-th electron is not a current eigenstate. Therefore
there is no orthodox value for the current assigned to the i-th electron.

In any case, let us assume that we can assign (unmeasured) values of the current of each electron
(fori = 1,.,,N) at any time (The physical correctness of this assumption will be provided below).
Thus, the definition of the total current in Equation (2) in terms of operators can be translated into an
expression in terms of variables which takes well-defined values:

'+ 7244+ IN
= N )

It (A19)
We eliminate the “hat” in Equation (A19) to clarify that now Z' is not an operator, but a variable. Then,
assuming again the independence among the variables Z' and that the total current can be given by
the above sum, the simple application of the classical central limit theorem will be enough to certify
that the variance of I goes to zero when N is large enough.

However, the reader can argue that such simple understanding is not appropriate because, as we
emphasized at the beginning of this appendix, the current of each electron has no well-defined value.
Such values are not measured by the ammeter and, strictly speaking, the values associated with the
current operators 71, 72 are undefined in the orthodox theory.

In any case, the simple understanding based on the central limit theorem, can be invoked by
using a quantum theory with a definition of the reality of the properties of electrons independent of
the measurement process. This understanding is supported for example from modal interpretation of
the quantum world where the reality of some properties of electrons (like its electrical current) has a
well-defined value independently of the fact that they are measured or not. This understanding
is consistent with our paper where the Bohmian theory [40], which is the most famous modal
interpretation today, is invoked for the computation of the currents. At the end of the day, the discussion
about the (hidden) reality of the values of the current of each electron are not relevant for the
empirical results presented along the work. Bohmian and orthodox theories are empirically equivalent
for all known experiments. The above discussion provides a simple and intuitive understanding
of the physical soundness of providing a many-body quantum state in Equation (1) with no
quantum uncertainty.
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Conclusions

By resorting to coherent carrier transport in Hall edge states, the numerical simulation pre-
sented in this thesis show the viability of semiconductor-based quantum gates to process quantum
information. Indeed, carriers propagating in edge channels are topologically protected from deco-
herence phenomena, so that, as long as the coherent dynamics of carriers is preserved, serial oper-
ations of quantum gates can be realized. The search for quantum computing devices is nowadays
a prominent research effort, specially in the field of semiconductor nanoelectronics; furthermore,
quantum information processing framework and entanglement theory have an important role also
in the assessment of coherent dynamics beyond computer science and physics [126].

By solving exactly the Schrodinger equation for a single- or two-particle system in an arbitrary
2D external potential, we successfully reproduced coherent electron transport in the IQH regime.
We observed that the interplay between an orthogonal magnetic field and the confining potential
of a 2DEG generates specific paths of quasi-1D edge channels. Moreover, we demonstrate that
the peculiarities of transport in edge channels, as chirality and immunity to backscattering, are
generally preserved also for localized wavepackets that are linear combination of edge states. With
our numerical modeling, we can therefore propose unexplored flying-qubit implementations of
quantum computing architectures, as for the multichannel MZI in Chapter 4 or the solid-state
Conditional Phase Shifter in Chapter 6. Furthermore, the numerical modeling of single-electron
wavepackets mimics the injection of localized quasi-particles with a single charge performed by
single-electron sources. This injection protocol is usually adopted in the most recent experiments
on electron interferometry, where the qubit state is described by the spin degree of freedom, the
Landau index or the spatial localization of the carrier. In our framework, we showed that by
encoding the qubit on the which-path localization at bulk FF 1 or on the index of the Landau level
at bulk FF 2, it is possible to realize electron interferometry in solid-state devices for a universal
set of quantum gates.

Among the possible protocols for the injection of single carriers in edge states, we adopted the
recent proposal of Ref. [72] and simulated a minimum uncertainty wavepacket of edge states. This
injection protocol is based on the use of quantum dot pumps to generate and detect almost iden-
tical Gaussian wavepackets from non-identical sources. Furthermore, the evolution of a localized
charge in the IQH regime with a Gaussian real-space broadening is easier to control numerically
with respect to alternative shapes of the energy distribution. We proved indeed analytically and
numerically that a Gaussian wavepacket of edge states preserves its shape during the evolution in
time on a 2D real-space domain. We stress however that the method adopted in our works for
the numerical propagation of the wavepacket does not rely on a specific form of the initial state.
In fact, various modelings of the single-electron excitation at initial time can be implemented to
evaluate how the energy broadening affects the operating regime of the device. As an example,
by using the Split-Step Fourier method in a single-particle description, in Ref. [13] we reproduce
the dynamics of a single-electron wavepacket with a Lorentzian distribution in the energy domain,
and in Chapter 5 we analyze the scattering of a Leviton-like wavepacket with a QPC to compute
the two-electron bunching probability.
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Furthermore, we proved that the use of strongly-localized wavepackets with a tunable energy
distribution is a more reliable tool to study energy-dependent phenomena in solid-state interfer-
ometers with respect to the use of stationary states and the scattering matrix method. The latter
approach, which is usually adopted in the literature, exploits the chirality of edge states to ana-
lyze the single or two-electron interferometry in an effective 1D geometry. On the contrary, here,
we have addressed the problem in a full-scale 2D geometry, through the definition of an external
potential mimicking the effect of gates on top of the heterostructure. We then did not need to de-
fine arbitrarily the energy-dependence of the scattering matrices involved; our dynamical approach
requires instead the design of the external potential at initial time, as in a real experiment. The
Split-Step Fourier method applies indeed to all the energies involved in the initial wavepacket, so
that, while propagating the localized charge in a realistic potential landscape, it exactly accounts
for the energy selectivity of the quantum gates.

Moreover, the application of the wave-packet method to the evolved wavefunction provides the
energy dependence of the transmission probability for an arbitrary design of the 2D quantum gate.
In Chapter 4, we exploited this procedure to devise a realistic solid-state electron beam splitter,
whose geometry ensures an ideal transmission probability (7' = 1/2) of the impinging wavepacket.
We proved that a sharp enough potential dip at bulk FF 2 scatters a localized wavepacket initialized
in the ground channel in a coherent superposition of two states localized in the two available
channels. We observed that its geometry can be tuned to generate a quasi-flat energy selectivity,
so that the overlap between the reflected and transmitted wavepackets is increased with contrast to
a traditional QPC. By numerically simulating its functioning in a full-scale MZI at bulk FF 2, we
measured a larger visibility of the interference pattern with respect to alternative geometries at bulk
FF 1, and showed that the scalability issue affecting previous implementations at bulk FF 1 can be
solved by using copropagating edge channels. We also proved that the small spatial extension of the
potential dip, together with the use of tunable potential mesa at bulk FF 1, is expected to reduce
the decoherence induced by charge fractionalization between copropagating channels. Furthermore,
thanks to the numerical engineering of the transverse confining potential in the 2DEG, we were
able to directly relate the smoothness of the external potential to the exact bending of the Landau
levels at the edges of the device. For example, we exploited this relation in the multichannel MZI
to engineer single-electron wavepackets with a quasi-linear energy bandstructure and a reduced
spreading in the real space at the end of evolution in time, or to locally modify the group velocity
in the indentation region.

In addition to improve the design-related performances of our gates, by implementing the
Split-Step Fourier method for a two-particle system in 2D, we included the exact screened or un-
screened long-range Coulomb repulsion between the propagating charges in a full-scale geometry.
In the HOM interferometer, the method enabled to study the exact interplay between exchange
interaction and electron-electron repulsion, which in usually neglected in alternative numerical ap-
proaches [17]. By simulating strongly-localized wavepacket with an energy broadening comparable
to the energy selectivity of the beam splitter, we observed how the bunching probability is affected
by the non orthogonality of the two wavepackets generated by a QPC. Thanks to the introduction
of screening effects, we further analyzed the transition from a Coulomb-driven to an exchange-
driven two-electron bunching, and observed that the saturation of the bunching probability with
the wavepacket size, which is in contrast to the plane-wave limit predicted by stationary models,
is a signature of the dominance of Coulomb interaction in our operating regime.

The potentiality of our numerical approach manifests also in the Conditional Phase Shifter.
Here, the exact simulation of electron-electron interaction in a realistic geometry is desirable to
analyze the effects of the Coulomb potential acting as a selective coupler. In the manuscript,
we proposed a solid-state implementation of the Conditional Phase Shifter based on the above
scalable architecture of the MZI and tested the functioning of its active region. By simulating two-
electron scattering between counterpropagating channels at bulk FF 2, we proved that the confining
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potential of the 2DEG can be designed to differently affect the final electron state according to
its Landau index, so that this device operates as a selective entangling two-qubit gate. We also
predicted the two-qubit rotation induced by Coulomb interaction in a realistic geometry of the
potential landscape, whose realization is feasible with the current nanotechnology.

Finally, our numerical simulations of electron interferometry in edge channels expose the po-
tentialities of a time-dependent description based on strongly-localized wavepackets. In Chapter 7
we also illustrate that, together with being the most intuitive way to describe electron transport,
the use of a dynamical approach for electron transport allows to overcome the inconsistencies
arising when matching the stationary Wigner distribution function of a quantum device to the
Frensley’s boundary conditions, and ascribe the origin of this incompatibility to the non-locality
of momentum in orthodox quantum mechanics.

In summary, with our time-dependent solver it is easy to include electron-electron interaction in
the system, and to assess the dynamical properties of one or two-particle wavepackets in Hall inter-
ferometers. However, the two-particle version of our software requires the allocation and evolution
of a time-dependent 4D wavefunction and then the use of supercomputing machines. We showed
that, for its allocation, the 4D wavefunction has to be distributed among different computing nodes,
thus entailing costly MPI communications during the execution of the Fourier transforms involved
by the Split-Step Fourier method. To improve the numerical performances of our software, we
identified a parallelization protocol based on a Cartesian topology of the MPI processes, where
data distribution can be arranged according to the hardware of the supercomputing machine; this
indeed enabled us to successfully reproduce two-electron interferometry in full-scale geometries
of a confined 2DEG in the IQH regime. Possible perspectives for further research are then the
numerical simulation of unexplored solid-state two-qubit gates as the Hanbury-Brown-Twiss inter-
ferometer at bulk FF 2 [10] to test Bell’s inequality, or the study of electron-hole collisions in a
Hall HOM interferometer [70]. Moreover, with our method it is easy to include time-dependent
potentials. These finds an important application in the numerical simulation of electron-transport
sustained by surface acoustic waves (SAW) [127, 128, 129, 130, 131], or in the numerical simulation
of the emission process from single-electron sources, as mesoscopic capacitors [37] or quantum dot
pumps [72].
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