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Abstract

Italiano

I veicoli moderni rappresentano un esempio rilevante di un sistema cyber-fisico
estremamente diffuso. I meccanismi controllati tramite software spaziano da
semplici funzionalità attivate dall’autista, come i tergicristalli o i finestrini
elettrici, fino a funzionalità più automatizzate, complesse, e riguardanti sistemi
legati alla sicurezza fisica, come il controllo motore, il servosterzo, il sistema
elettronico di stabilità, o il sistema anti-bloccaggio. Queste funzionalità sono
efficaci nel ridurre il numero totale di incidenti automobilistici e morti stradali.
Nonostante tutto però offrono nuove vie agli attaccanti informatici, che pos-
sono esplorare e sfruttare un’ampia gamma di attacchi software control la
logica di controllo implementata nelle centraline. Queste minacce non sono
solo teoriche. Recenti studi e inchieste giornalistiche hanno dimostrato gli
effetti di diversi attacchi informatici contro veicoli non modificati, sfruttando
le connessioni cellulari per ottenere accessi non autorizzati nella rete interna
del veicolo e controllare le funzionalità legate al motore, ai freni, e al sistema
di sterzo. Questa tesi propone diverse soluzioni per aumentare la sicurezza
informatica delle reti interne dei veicoli moderni, analizzando il ciclo di vita
completo a partire dalla prevenzione degli attacchi fino al ripristino delle
condizioni sicure a seguito del rilevamento di una intrusione. La prevenzione
degli attacchi informatici richiede l’adozione di protocolli di comunicazione
sicuri che includono integrità e autenticazione delle comunicazioni per comuni-
cazioni interne che richiedono elevata sicurezza. In questo campo, questa tesi
esplora i diversi compromessi richiesti dalle strategie di gestione di materiale
crittografico, considerando il ciclo di vita del veicolo. La rilevazione di attacchi
informatici rappresenta l’argomento principale di questa tesi, proponendo
diversi algoritmi di rilevazione delle intrusioni progettati particolarmente per
essere efficaci nella rilevazione di intrusioni sulle reti interne dei moderni
autoveicoli. Tutti gli algoritmi proposti sono validati e testati tramite analisi
sperimentale su dati provenienti da un veicolo reale. Per sopperire alle limi-
tazioni causate dalla mancanza di specifiche pubbliche delle comunicazioni
interne dei veicoli, questa tesi propone inoltre un algoritmo per l’estrazione au-
tomatica di segnali da pacchetti di dato provenienti dalle reti veicolari interne.
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Questo algoritmo permette inoltre di applicare metodologie di rilevazione di
anomalie più precise sui singoli segnali estratti. Infine, questa tesi propone
due nuove strategie per ripristinare il veicolo in uno stato sicuro a seguito
di intrusioni non autorizzate. Il primo approccio utilizza tecniche adattate
dalla teoria dei controlli, mentre il secondo approccio sfrutta la modalità
limp-home (un meccanismo di protezione presente nelle centraline) a servizio
della sicurezza informatica.

English

Modern vehicles represent a prominent example of widespread cyber-physical
systems. Mechanisms controlled by software range from simple tasks activated
by drivers, such as windshield wipers or power windows, to completely auto-
mated, complex and safety-relevant systems, such as engine control, power
steering, Electronic Stability Program (ESP) or the Anti-lock Braking System
(ABS). These features are effective in reducing the overall number of car acci-
dents and fatalities. However they also open new avenue for cyber-attackers,
that can now explore (and possibly exploit) a wide range of software-based
attacks against the control logic implemented by ECUs. Similar threats are
not only theoretical. Recent research and media reports showcased several
cyber-attacks against recent, unmodified licensed vehicles, which exploited
cellular connections to penetrate the automotive network and obtain remote
control over the engine, brakes and power steering systems. This thesis pro-
poses many solutions for improving the cyber-security of the internal network
communications of modern vehicles, and addresses the whole cyber-security
life-cycle ranging from the prevention of cyber-attacks to their detection in
operational vehicles and up to the proposal of automatic countermeasure
that can mitigate the physical consequences of cyber-attacks. Prevention of
cyber-attacks requires the adoption of secure protocols that include integrity
and authentication guarantees for safety-relevant in-vehicle communications.
In this field this thesis explores the trade-offs among different strategies for
the management and distribution of cryptographic material, taking into con-
sideration the full life-cycle of a modern vehicle. Attack detection represents
the main focus of this thesis, that proposes several novel intrusion detection
algorithms specifically designed for the detection of realistic cyber-attacks
against modern internal vehicle networks. All the proposed intrusion detection
algorithms have been validated through experiments carried out over real
communications among ECUs, gathered from modern unmodified vehicles.
To overcome the limitations caused by the lack of public specifications of
internal communications in real vehicles, this thesis also proposes a novel
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algorithm for automatic reverse-engineering of automotive dataframes that
allows to apply more fine-grained intrusion detection algorithms. Finally, the
thesis proposes two novel strategies for reacting to a detected cyber-attack.
The first is based on approaches borrowed from the control theory domain.
The second leverages the limp-home mode (a protection mechanism already
implemented by ECUs) in the service of cybersecurity.
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Chapter 1

Introduction

Cyber-physical systems (CPS) are highly integrated mechanisms in which one
or more subsystems are monitored and controlled by software, possibly with a
high degree of autonomy and minimal requirements of external inputs coming
from users. A prominent example of widespread cyber-physical systems
is represented by modern passenger vehicles, that are composed by many
mechanical parts controlled by Electronic Control Units (ECUs), which are
programmed to perform different tasks in the automotive system. Mechanisms
controlled through ECUs range from simple tasks activated by drivers, such as
windshield wipers or power windows, to completely automated, complex and
real-time systems, such as engine control, power steering, Electronic Stability
Program (ESP) or the Anti-lock Braking System (ABS). These software-
driven safety-relevant features are extremely effective in reducing the overall
number of car accidents and fatalities. However they also open new ways for
cyber-attackers, that can now explore (and possibly exploit) a wide range
of software-based attacks against the control logic implemented by ECUs.
These threats are also magnified by the current trend toward an increasing
connectivity of modern vehicles. It is now common that vehicles integrates
Bluetooth connectivity with smartphones (hence an indirect connection to
the Internet) or direct Internet connectivity through cellular networks.

Similar threats are not only theoretical. Recent research and media
reports showcased several cyber-attacks against modern, unmodified licensed
vehicles, which exploited cellular connections to penetrate the automotive
network and obtain remote control over the engine, brakes and power steering
systems. These recent works exposed different vulnerabilities of the networking
protocols and communication buses enabling communication among safety-
relevant ECUs. These systems are based on outdated standards, that have
been designed for simpler ECUs and completely isolated networks, and do
not provide any security guarantee. The lack of proper security mechanisms



2 Introduction

resulted in several unauthorized accesses to the internal networks of the vehicle,
allowing attackers to sniff, spoof, and forge arbitrary messages. Several works
already proposed the application of anomaly detection algorithms to protect
internal vehicle networks, despite limited evaluation over real data gathered
from one of the many in-vehicle networks.

This thesis proposes many solutions for improving the cyber-security of
the internal network communications of modern vehicles, and addresses the
whole cyber-security life-cycle ranging from the prevention of cyber-attacks
to their detection in operational vehicles and up to the proposal of automatic
countermeasure that can mitigate the physical consequences of cyber-attacks.

Anomaly detection represents the main focus of this thesis. The ve-
hicle system is one of most prominent examples of cyber-physical system,
thus it is necessary to inspect the security solutions related to the vehicle
cyber-physical system instead of focusing only on the inspection of the com-
munication protocols. Many different anomaly detection algorithms have
already been published that addresses security on cyber-physical systems, but
none of the previous works consider the particular scenario of the automotive
cyber-physical system. This thesis proposes five novel algorithms for the
anomaly detection specifically designed for the automotive domain. All the
proposed algorithms have been validated through experiments carried out
over real communications among ECUs, gathered from modern unmodified
vehicles. The proposed algorithms meet the hard computational and mem-
ory constraints of common automotive ECUs. The detection results of the
proposed algorithms are compared over the same real dataset (in-vehicle
messages generated by a recent, unmodified, licensed car). Moreover, this
thesis also presents a comprehensive anomaly detection framework based on
these original algorithms. A further improvement of the state of the art is
represented by a novel algorithm for the automatic reverse engineering of au-
tomotive messages. This algorithm enables fine-grained analysis of individual
signals even without knowing their proprietary specifications. The signals
extracted with this algorithm are then classified based on their evolution over
time.

Prevention of cyber-attacks requires the adoption of secure protocols that
include integrity and authentication guarantees for safety-relevant in-vehicle
communications. Existing solutions proposed lightweight cryptographic pro-
tocols for guaranteeing data integrity and authenticity that are effective in
preventing many classes of attacks, e.g., by adding some sort of message
authentication mechanisms that allows well-behaving ECUs to recognize and
reject illicit messages injected in the CAN bus by an attacker. However they
do not consider all the implications of the management of cryptographic
material for the whole life-cycle of huge vehicle fleets. This thesis advances
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the state of the art by analyzing existing solutions and highlighting their
consequences on the whole vehicle manufacturing, from the design to its
disposal.

The only reaction method already published in the literature focuses
on the proposal of a notification framework designed for the dashboard
of modern vehicles. This thesis presents an approach for mitigating the
physical consequences of cyber-attacks to the automotive systems based
on security countermeasures borrowed from the control theory domain to
increase the security of the powertrain system from cyber-attacks. Moreover,
this thesis also presents a concept for another reaction mechanism that
leverages the limp-home mode (a protection mechanism implemented in
ECUs) for preventing mechanical damages to the hijacked vehicle and limiting
the vehicles functionality to a safe operational mode, activating additional
security counter-measures.

To summarize, the contributions to the state-of-the-art presented in this
thesis are the following:

• This thesis proposes 5 novel anomaly detection algorithms specifically
designed for the analysis of the CAN bus and without requiring the full
vehicle’s specifications. The proposed algorithms are designed to meet
the hard constraints of modern microcontrollers.

• This thesis proposes a novel reverse engineering algorithm developed for
extracting and label meaningful signals from CAN data frames without
requiring the full vehicle’s specifications.

• This thesis proposes two different anomaly reaction mechanisms for
internal vehicle networks, one based on the application of control the-
ory solutions and one designed to exploit existing safety mechanisms
deployed in modern vehicles. The former solution is tested in a simu-
lated environment, while the latter provides an accurate and in-depth
description of its functioning.

This thesis is organized as follows. Chapter 2 presents the technical
fundamentals required for the understanding of the following Chapters and
describes the realistic threat model considered in this thesis. Chapter 3
presents the state-of-the-art in the automotive cyber security literature and
highlights the gaps that this thesis aims to fill. Chapter 4 explores the
trade-offs among different strategies for the management and distribution
of cryptographic material, considering the full life-cycle of a modern vehicle.
Chapter 5 presents several novel intrusion detection algorithms specifically
designed for the detection of realistic cyber-attacks against modern internal
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vehicle networks. Chapter 6 describes an algorithm for the automatic reverse-
engineering of automotive messages. Analysis of cyber-attacks to the cyber-
physical model representing the powertrain section of a generic combustion
engine vehicle are proposed in Chapter 7, which also presents a novel reaction
methodology based on control theory techniques. Chapter 8 describes a
reaction strategy that limits the potential damage of a detected attack.
Finally, Chapter 9 presents the final remarks and conclusion of this thesis.



Chapter 2

Background and Threat Model

This chapter introduces the fundamentals required for the understanding
of this thesis. A brief introduction of the networking protocols deployed in
modern vehicles is provided in Section 2.1, while an accurate description of
the Controller Area Network protocol is provided in Section 2.2. The threat
model describing real vulnerabilities which modern automotive networks are
exposed to are described in Section 2.3.

2.1 Vehicular Networks

Modern vehicles are complex cyber-physical systems composed by many
microcontrollers called Electronic Control Units (ECUs). ECUs implement
all the control logic of software-driven features, including many safety-critical
functions such as the steering and braking, and many other less-critical features
such as the air conditioning and the infotainment system. ECUs are physically
connected to the vehicle network, and communicate among each others
through specialized protocols that satisfy all functional requirements of the
automotive domain, such as real-time capabilities and message prioritization,
while guaranteeing the lowest possible production costs.

Multiple networks can co-exist within the same vehicle to isolate different
functionalities, but a single network usually allows to satisfy multiple purposes
optimizing costs. As an example, entry-level vehicles might be provided with
only one network that connect ECUs involved in safety-critical features and
other ECUs implementing the infotainment system. This design choice is
one of the causes of recent successful cyber-attacks to vehicle networks, in
which attackers exploited vulnerable connectivity interfaces exposed by the
infotainment system to access safety-critical functions [90].

Vehicular networks are designed to meet the specific requirements of the
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automotive scenario:

• low cost;

• plug-in capability;

• immunity from external noises;

• ability to operate in harsh environments;

• overall robustness and reliability.

Some of the most deployed in-vehicle networks are:

• Controller Area Network (CAN): is one of the first networking
protocols designed specifically for automotive applications. CAN is a
broadcast protocol and the bus is composed only by a twisted pair, thus
increasing electromagnetic resilience and containing deployment costs.
Since its first proposal, CAN has been deployed on different industrial
scenarios and not only on internal vehicular networks. CAN is the most
deployed networking protocol in modern vehicles and is the one targeted
by cyber-analysts or hackers to subvert the vehicle system [29,45,59].
Since CAN is the primary focus of this thesis, the details of the CAN
bus are depicted in Section 2.2.

• Local Interconnect Network (LIN): is a serial network developed
as a cheaper alternative to CAN. LIN offers the same capabilities of the
CAN bus but on restricted networks (up to 16 nodes on each network
segment) arranged in a star topology.

• Media Oriented System Transport (MOST): is a high-speed mul-
timedia network technology optimized for automotive industry. MOST
uses a ring topology network and synchronous data communication for
audio, video, voice and data signal via plastic optic fiber.

• FlexRay: is an automotive network communication protocol developed
to enable ECUs to communicate with each others. It is designed to be
more reliable and faster than CAN, despite being more expensive.

2.2 Controller Area Network

The Controller Area Network (CAN) is an asynchronous serial communication
protocol which supports distributed real-time control, targeted to industrial
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applications and designed to allow data exchange among microcontrollers
without requiring a host computer. This technology represents the de-facto
standard for implementing in-vehicle communication buses among Electronic
Control Units deployed in modern cars. The current and final version of the
CAN specification is CAN 2.0, published in 1991 [26]. CAN specification is
composed by two parts: part A refers to the standard CAN format, while part
B refers to the extended format. The only difference between the two formats
is that the standard format uses 11-bits identifiers, while the extended format
uses identifiers composed by 29-bits. CAN devices using 11-bits identifiers
are usually referred to as CAN 2.0A, while devices using 29-bits identifiers
are referred to as CAN 2.0B.

Synchronization on the CAN protocol is achieved at node level to align
all the nodes on a particular CAN segment to the same bit sample point.
The synchronization mechanism of the nodes is started at network setup (i.e.
at the ignition of the vehicle), and the time required for synchronization is
called nominal bit time. The nominal bit time is composed by four sequences
of non-overlapping time segments, as depicted in Figure 2.1.

SYNC_SEG PROP_SEG PHASE_SEG1 PHASE_SEG2

Nominal Bit Time

Sample Time

Figure 2.1: Controller Area Network bit time partitioning

The four time segments used for partitioning the nominal bit time are:

1. SYNC SEG: part of the bit time used for the synchronization of the
nodes. An edge is expected in this time segment.

2. PROG SEG: part of the bit time used for the compensation of the
physical delay of the signal.

3. PHASE SEG1/2: parts of the bit time used for the compensation of
the edge phase error.

The bit sample point is the instant in which the bus level is read and
interpreted as the value of that particular bit, and is located between
PHASE SEG 1 and PHASE SEG 2.

The duration of the nominal bit time is evaluated from the nominal baud
rate as show in Equation 2.1.

tB “
1

BR
(2.1)
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The CAN protocol supports baud rates up to 1MBps, despite its most
common deployment uses 500kbps (for high-speed CAN) and 125kbps (for low-
speed CAN). Synchronization of the nodes is required for data transmission
on the network, thus nodes on the network are re-synchronized if needed in
between data transmission. The re-synchronization mechanism is achieved
via a bit-stuffing mechanism which inserts one bit of opposite polarity every 5
bits of equal polarity. This mechanism is necessary due to the non-return to
zero encoding used in the CAN. The stuffed messages are de-stuffed by the
receivers upon reception. Data transmission on the CAN bus uses a loss-less
bit-wise arbitration method for contention resolution. The CAN specification
defines each bit sent on the network as either “dominant” (logical value 0,
actively driven to voltage level by the transmitter) or “recessive” (logical
value 1, passively driven to ground level by the transmitter). The idle state of
the network is represented by the recessive value. During data transmission,
if one node sends a dominant value on the network and another node sends
a recessive value, the node sending the dominant value of the network will
win arbitration and any collision on the network is avoided, thus allowing
to send high-priority messages on the network without any delay due to
transmission errors. To avoid collisions between nodes, each transmitting
node reads the logical value of the bus after writing each bit of the message. If
any transmitting node reads a bus value different from the one it has written
on the bus it stops transmission and attempts re-transmission of the message
after the current transmission is concluded by the sender. In the example
depicted in Figure 2.2 three sending nodes are concurrently sending their
data on the CAN bus.

CAN bus

Node #1
Node #2
Node #3

t0 t1 t2 t3 t4 t5

X
X

t6

Figure 2.2: Data transmission arbitration on CAN

At time t0 transmission is started, and each node sends a dominant value.
At time t1 Node #2 sends a recessive value, while both Node #1 and Node
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#3 send a dominant value, thus Node #2 loses arbitration and stops its
transmission. Nodes #1 and #3 both send the same value on the bus until
time t5, where Node #3 sends a recessive value, thus losing arbitration to
Node #1. After time t5 the only sending node on the network is Node #1,
while each other node will not re-attempt any transmission until Node #1 has
finished. Data transmission in the CAN protocol is defined as a message-based
communication between different microcontrollers. The CAN protocol defines
four different message frames:

• Data frame, which carries data from the transmitter node to the
receivers;

• Remote frame, which is transmitted from a node to request the
transmission of a specific data frame;

• Error frame, which is transmitted by any node upon detection of
errors on the bus;

• Overload frame, which is transmitted to provide an extra delay be-
tween two consecutive data or remote frames.

Data and remote frames are separated from previous frames by an inter-
frame space. The interframe space contains the bit fields intermission and
bus idle, while part of the bus idle field is composed by the suspend transmis-
sion field for the only node that sent the last message on the network. The
intermission field is composed by 3 recessive bits, and while the intermission
is sent on the network the nodes are not allowed to start transmission of
either data nor remote frame. Following the intermission field the bus idle
state is reached, during which an indefinite number of recessive values are
found on the CAN bus. The first 8 bits of this indefinite sequence are sent
from the node which has transmitted the last message, with the meaning of
suspend transmission for the transmitting node, thus preventing it to start
the transmission of its next message.

The description of the different frames is provided in the following para-
graphs.

2.2.1 Data frame

The CAN data frame carries data from the transmitter node to the receivers.
A graphical representation of the structures of the standard and extended
CAN data frames are shown in Figure 2.3a and 2.3b, respectively.

The main fields composing the CAN data frame are:
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Figure 2.3: Data frame types comparison

• Start-of-Frame (SoF): a single bit set to dominant level;

• Identifier (ID): the identifier (ID) value assigned to the message. Its
value is used to interpret the values encoded in the data field. IDs need
to be unique on each CAN segment. The length of the message ID is
defined at 11 bits in the standard format, while the extended format
has 18 more bits encoded separately for compatibility between the two
formats.

• Remote Transmission Request (RTR): a single bit that must be
dominant for data frames and recessive for remote frames. If the message
is in the extended format, this bit value is defined as substitute remote
request (SRR) and must be recessive, while the bit with RTR meaning
is placed after the second part of the message identifier.

• Identifier Extension Bit (IDE): a single bit that must be dominant
for messages in the base format and recessive for messages in the
extended format.

• Reserved bit (r0): a single reserved bit in the base format, while
there are two reserved bits (r0 and r1) in the extended format.

• Data Length Code (DLC): a sequence of 4 bits expressing the length
(in bytes) of the following data field. Since the data field has a maximum
length of 64 bits, DLC values representing lengths from 9 to 15 are left
unused.

• Data: sequence of bits with a variable length (ranging from 0 up to
64) containing the data sent from the transmitter to the receivers.

• Cyclic Redundancy Check (CRC): field containing the CRC eval-
uated on the previous fields of the data frame. The CRC is evaluated
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on the previous bits of the message with a CRC function designed
for frames with less than 127 bits. For the evaluation of the CRC a
generator polynomial is defined by the protocol and depicted in Equa-
tion 2.2. The CRC is evaluated as the reminder of the polynomial
division (coefficients are evaluated modulo-2) between the polynomial
created with the coefficients of the message’s bits (from the SoF field
to the data, if available) with 15 bits set to 0 as the lowest coefficients,
and the generator polynomial.

X15
`X14

`X10
`X8

`X7
`X4

`X3
` 1 (2.2)

• CRC delimiter: a single recessive bit used to delimit the previous
CRC sequence.

• Acknowledgment slot (ACK): a single bit used for the acknowledg-
ment of the message. This bit is sent by the transmitter node as a
recessive value. The CRC is used for determine the consistency of the
messages between transmitter and receivers. If the received CRC and
the CRC evaluated by the receiver node are different, than the message
is marked as not consistent and not acknowledged by the receiver nodes
by writing a dominant value on the bus in this time slot.

• ACK delimiter: a single recessive bit used to delimit the previous
ACK slot.

• End-of-Frame (Eof): a sequence of 7 recessive bits.

These fields are grouped in different frame segments:

• Arbitration field: composed by the ID and the RTR fields in case of
base format, while in case of extended format it is composed by the
first 11 bits of the ID, the SRR, the IDE, the other 18 bits composing
the ID and the RTR;

• Control field: composed by the IDE, r0, and the DLC field case of
base format, while in the extended format it is composed by r0, r1 and
the DLC field;

• Data field: composed by the data field;

• CRC field: composed by the CRC and the CRC delimiter.

The bit-stuffing mechanism is applied to all the fields composing the data
frame with exception of the CRC delimiter, ACK field and EoF, that have a
fixed form.
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2.2.2 Remote frame

The CAN remote frame is sent from any receiver node in case a particular
data frame is required for its functioning. The receiver node sends a remote
frame with the ID value set to the ID corresponding to the required message.
The remote frame structure is the same of the data frame (as already depicted
in Figure 2.3), and it is possible to send remote frames in both standard and
extended format. The differences between a data frame and a remote frame
resides in the value of the RTR field (dominant for data frames, recessive
for remote frames), and the absence of Data field in the remote frame. The
different value of the RTR field allows data frames to win arbitration of the
network in case a data frame and a remote frame with the same arbitration
field are sent on the network concurrently. An example of a standard format
remote frame is depicted in Figure 2.4.
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Figure 2.4: CAN Remote frame structure

2.2.3 Error frame

The CAN error frame is sent on the network from any node upon detection
of a network error. The error frame is composed by two different fields:

• Error flags: from 6 to 12 different bits, of which the first 6 bits are of
equal value (either dominant or recessive), while the other bits are flag
errors raised by different nodes of the network.

• Error delimiter: this field is composed by 8 recessive bits and it is
used to delimit the end of the error frame.

Each node on the network is in either error active or error passive state.
If a node is in error active state, upon detection of a network error it sends
the error flag as a sequence of 6 dominant bits, while an error passive node
transmits a sequence of 6 recessive bits. Upon detection of an error active flag,
all the nodes on the network start sending their error flags. The final sequence
of dominant bits observed on the network is the result of the superposition
of different error flags transmitted by each different node. The error flag is
terminated by at least 3 bit times of bus idle state. Each node on the network
has two different error counters, namely Transmit Error Counter (TEC)



2.2 - Controller Area Network 13

or Receive Error Counter (REC), which are increased by the node upon
detection of a transmission or reception error, respectively. When at least one
between TEC or REC is greater than 127 and lower than 255, the node is in
error passive state and upon detection of an error it sends the relative error
flag. When both TEC and REC are smaller or equal than 127, the node is in
error active state and will send an active error flag upon detection of errors.
If TEC is greater than 255 the node enters the bus-off state,which prevents
the node to send any other frame on the network.

A graphical representation of the CAN error frame is depicted in Figure 2.5,
while Figure 2.6 depicts the error handling mechanism used by the nodes.

ERROR FLAGS ERROR DELIMITER

Figure 2.5: CAN error frame structure

Error
Active

Error
Passive

Bus
Off

TEC ≤ 127 AND REC ≤ 127

TEC > 255Reset

TEC > 127 OR REC > 127

Figure 2.6: CAN error handling mechanism

2.2.4 Overload frame

Overload frames are sent on the CAN bus when it is necessary to increase the
delay between two consecutive data or remote frames. The overload frame is
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composed by two different fields:

• Overload Flag: composed by 6 dominant bits, which corresponds to
the active error flag.

• Overload Delimiter: composed by 8 recessive bits, used to denote
the end of an overload flag.

Overload frames are sent by receiver nodes in case they require a delay of the
next Data or Remote frame due to internal conditions; otherwise they are
sent by any node of the network upon detection of a dominant bit transmitted
during intermission. The start of an overload frame due to the former
condition is only allowed at the first bit time of an expected intermission,
while the overload frame is sent at the next bit following the detection of the
dominant bit in case of the latter condition. At most two overload frames are
allowed between two consecutive data or remote frames.

A graphical representation of the CAN overload frame is depicted in
Figure 2.7.

OVERLOAD FLAGS OVERLOAD DELIMITER

Figure 2.7: CAN overload frame structure

2.3 Threat Model

While addressing the cyber-security of internal network communication of
modern vehicles it is necessary to define the different scenarios inspected
by both academia and industry researchers demonstrated vulnerable to real
threats [29,44,45,59,90]. The threat model inspected in this thesis is focused
on the Controller Area Network protocol, which is the in-vehicle protocol
most exposed to real threats. The CAN protocol enables communications via
a message-oriented paradigm among groups of ECUs by using the CAN ID
field. In the definition of the internal vehicle network by car makers, each
ECU is programmed to send messages with a particular pool of IDs and
only reads messages with a defined set of IDs. Since CAN uses a broadcast
channel, only ECUs programmed to read messages with a particular set
of IDs forward the content of the message to the operational level of the
microcontroller, while other ECUs only checks for integrity of the message by
CRC comparison. Similarly to most protocols for cyber-physical systems (e.g.,
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ModBus for SCADA applications), CAN does not include any cyber security
functionality because its original design assumed its usage in a physically
isolated system without external interfaces. As a result, any ECU can inject
messages with arbitrary field values on the CAN bus. To protect against
cyber attacks, researchers are putting efforts in extending the CAN protocol.
In the following, an outline on how it is possible to attack vehicles networks
is proposed.

Cyber-attacks to modern vehicles aim to modify the dynamic of the vehicle
or a target safety-relevant feature through the multi-step process described
as follows:

1. obtain a privileged access to the vehicle network;

2. acquire information about the protocol adopted in the network;

3. inject malicious messages in the vehicle network to manipulate the
information processed by the target ECU.

(1.) As represented in Figure 2.8, a modern vehicle offers internal, edge
and remote attack surfaces:

• the internal surface represents any type of direct access to a segment of
the vehicle network via a compromised ECU or by physically hijacking
the twisted pair of the CAN bus. In this thesis a powerful attacker
that managed to gain full control of an ECU connected to the same
CAN bus segment of the target ECU is considered. This scenario allows
the attacker the to access both volatile and persistent memory, and to
execute arbitrary code on the compromised ECU [52];

• the edge surface represents cabled interfaces originally exposed within
the vehicle, usually for diagnostic reasons, such as the On-Board Di-
agnostics (OBD-II) port of the CAN. It is necessary to assume that
the manufacturer assigned limited privileges to this interface, such as
read-only access to the messages exchanged on the network. Note that
if the manufacturer exposes directly the CAN bus on this interfaces,
then this attack surface falls back to the internal case;

• the remote surface represents external interfaces provided by wireless
communication services, such as Bluetooth or WiFi, possibly connected
to the Internet. Breaking security mechanisms of these interfaces, or of
related exposed applications, might allow attackers to obtain privileged
access to the ECUs that implement them and escalate to internal access
privileges.
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Figure 2.8: Attack surfaces of a modern vehicle

(2.) A successful targeted attack to the vehicle network requires detailed
knowledge about the syntax and semantic of messages transmitted over the
CAN bus. Although some aspects of the syntax of vehicle protocols are
mandated by public standards, each manufacturer adopts different choices
to encode message identifiers and signals within the message payloads. As
an example, although the CAN specifications are public, each vehicle uses
different CAN IDs and represent information by using different encoding
techniques (e.g., the engine revolutions per minute are represented through
different binary encoding and scales). This information is kept confidential
among car manufactures and suppliers and it is not released in the public
domain, thus the attacker has to apply reverse-engineering techniques to infer
these information from the CAN traffic [56,73]. If the attack is designed to
target a specific vehicle model, the attacker can run this preliminary phase
as an offline operation on an identical vehicle at his disposal. If the attacker
targets a wide-range of vehicles, reverse-engineering is executed by sniffing
the traffic within the vehicle network [90]. As an example, fuzzing attacks
have been proved effective to gain useful insights about the vehicle network
topology and to map the connected ECUs [51].

(3.) A compromised ECU connected to the CAN network is able to
operate many types of safety-critical attacks.

Known examples include: ECU shutdown [69] and ECU impersonation [16]
(also, masquerade attack) to activate the bus-off state mode on a target ECU,
thus excluding the ECU from the network and mimicking its behavior by
sending properly forged payloads to subvert the vehicle functions; denial-of-
service or replay attacks that are able to manipulate the normal behavior
of the vehicle dynamic. All of these attacks can be executed from different
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ECUs of the vehicle. However, certain scenarios might require that a specific
ECU processes some fake data injected in the network, while others only
require that any ECU accepts and processes the forged data. As an example,
a typical trade-off is to design security measures that isolate ECUs of different
segments of the network, such as powertrain, body, infotainment or a group
identified by a CAN ID.

A description of the attack scenarios inspected in this thesis is provided in
the following Sections. These attacks represent the different attack scenarios
that exposed different vulnerabilities already exploited by security researchers.

2.3.1 Replay Attack

Replay attacks on automotive internal networks are conducted by injecting
messages (or sequence of messages) on the CAN bus. The sequence of messages
used for the injection on the CAN bus is selected by the attacker after an
initial phase of reverse engineering of the values encoded in the payload,
thus injecting messages to obtaining control over the dynamics of the vehicle.
For the purposes of this thesis, two different typologies of replay attack are
considered, according to the length of the injected message sequence:

• Single ID Replay: A Single Message ID is injected on the normal
flow of the CAN bus with a particular frequency;

• Sequence Replay: A sequence of messages is injected on the normal
flow of the CAN bus with a particular frequency. The length of the
injected sequence is a parameter that will be inspected in the detection
process.

2.3.2 Fuzzing Attack

Fuzzing attacks on automotive internal networks consist in the injection
of messages forged to study the behavior of the system against unexpected
inputs. Fuzzing is one of the activities used by reverse engineers to understand
the meaning of the values encoded in the payload of a targeted message ID.
Fuzzing can be subdivided in two different typologies according to the injected
message:

• ID Fuzzing: Injection of messages with IDs values never observed on
the CAN bus and randomly generated payloads;

• Payload Fuzzing: Injection of messages with IDs values already ob-
served on the CAN bus and maliciously forged payload values.
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The former attack is usually deployed as a method to discover potential
unused IDs which carries information to different parts of the vehicle, while
the latter attack is used in the manual reverse engineer process of the payloads
of a particular inspected message ID.

2.3.3 Denial of Service

Denial of Service (DoS) of automotive internal networks consists in the
injection of messages with the highest priority to prevent all the other messages
from being transmitted on the bus. Since transmission on the CAN bus uses a
bit-wise arbitration method for contention resolution, a denial-of-service attack
on the CAN bus requires the injection of data or remote frames composed
by sequences of dominant bits in the arbitration field, thus preventing any
other node to obtain access to the network for its normal operation. Denial-
of-Service attacks on the CAN bus can be simulated in two different ways:

• Highest priority message injection: Injection of messages with the
highest priority value in the arbitration field from the set of messages
of the inspected vehicle;

• Dominant message injection: Injection of messages with all the bits
composing the arbitration field set to dominant value.

In both Denial-of-Service attack scenarios, any attacker willing to repro-
duce successfully a CAN DoS must avoid the transmission of the suspend
transmission bits following the interframe space as described in Section 2.2.

2.3.4 ECU shutdown and inhibition attacks

ECU shutdown and inhibition attacks are two different attacks designed to
remove messages from the CAN bus. The ECU Shutdown attack temporarily
removes messages with a target message ID from the network, while the ECU
inhibition attack completely removes the target message ID by disabling the
sender node. As a consequence of both ECU Shutdown and ECU inhibition
attacks, the attacker can replace the valid ECU by sending malicious messages
on the CAN bus with the removed ID by impersonating the offline ECU. This
attack is also known as ECU impersonation, and its consequences have been
already inspected by security researchers in [15,69].



Chapter 3

Related work

The work proposed in this thesis has been inspired by the lack of many
different aspects in the automotive cyber-security literature aimed to improve
the security of the internal communication networks of modern vehicles. This
Chapter describes the security solutions already proposed in literature and
analyzes the missing aspects of each inspected group of solutions.

3.1 Security solutions for intra-vehicular net-

works

In this Section an analysis of the existing proposals for the design of secure
vehicle networks is provided. In this analysis, two main challenges in the
extension of the CAN protocol with security guarantees are found: the design
of a secure transport protocol to authenticate data (Section 3.1.1) and the
distribution of the required cryptographic material (keys, certificates, shared
secrets) to all interested ECUs (Section 3.1.2).

3.1.1 Secure transport protocol for CAN

Standard security solutions designed to guarantee data integrity and authen-
ticity usually compute and concatenate to the message a tag generated with
a Message Authentication Code (MAC) protocol. This approach guarantees
that any illegitimate modification on the data (i.e., by someone that does
not know the secret key) can be detected by the recipient. However, the
CAN protocol uses fixed small-size packets and low bandwidth channels
that makes it unfeasible to attach a MAC to each message. The simplest
way to deploy efficient and secure authenticated protocols would be to use
intra-vehicular network protocols that are more flexible than CAN, such
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as the CAN` extension [97]. This protocol supports larger messages and
allows to associate MAC tags to messages in a more standard fashion [91].
However, car manufacturers are not prone to adopt them due to the increased
costs. Two approaches for extending the CAN protocol with guarantees of
data authenticity are identified. The first approach is to allow each ECU to
produce additional CAN messages to transmit MAC tags. This approach
offers the best security, however it also introduces huge network overhead
that makes it unfeasible in most automotive networks. The second approach
represents a trade-off between performance and security. It requires each ECU
to authenticate batch of messages by using a single MAC tag, to fragment
it and to send the fragments within CAN headers of the messages [67]. The
main disadvantage of the approach is that a recipient can verify authenticity
of data only once every few messages: since CAN is a real-time protocol and
ECUs process messages as soon as they are received, an attacker can inject
malicious messages without being detected for a certain time interval. A
second disadvantage is that MAC fragments are transmitted within existing
fields of CAN headers, such as the CRC, possibly affecting existing protocols
design.

Guaranteeing protection against replay attacks also requires additional
design choices at the application and architectural levels, as typical for stan-
dard communication protocols. In the context of vehicle networks, proposals
exist based on centralized time-servers [36], distributed counters [52] and
key-derivation approaches [74]. However, it is necessary to highlight that
these solutions do not impact architectural design choices because they do
not involve the distribution of additional persistent cryptographic material.
Thus, the adoption of any of these solutions is orthogonal to the analysis
proposed in Chapter 4.

3.1.2 Intra-vehicular ECU keys distribution

Three types of approaches to distribute key material to the ECUs are consid-
ered: pre-shared ECU keys, in-vehicle key distribution centers and certificate-
based key authentication.

Pre-shared ECU keys. The first approach to deploy secure protocols is
to install symmetric keys in the ECUs persistent storage, where the same
key is deployed within all ECUs that must communicate [5, 6]. Different key
distribution strategies can be adopted to obtain different trade-offs in terms
of storage overhead and security guarantees. As an example, a master key
could be stored in all ECUs or multiple group keys could be selectively stored
in ECUs depending on their roles within the vehicle (e.g., their associated
CAN IDs).
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In-vehicle key distribution centers. The second approach based on symmet-
ric cryptography requires to install additional ECUs within the vehicle that
act as Key Distribution Center (KDC) [30,36,68]. Each KDC knows the secret
keys of a subset of ECUs and releases the due session keys to enable pair-wise
or group communications. As in standard secure communication protocols,
this approach enables good security guarantees, low storage overhead and
easier management of persistent keys distribution. In vehicle networks, it has
the disadvantage of introducing additional costs due to the additional ECUs
and some network overhead.

Certificate-based key authentication. The last approach is to adopt prim-
itives based on asymmetric cryptography, such as digital signatures and
certificates, to deploy solutions that are similar to the Internet Public Key
Infrastructure (PKI) architecture [63]. Each ECU is configured with a list of
trusted Certification Authorities (CAs) and stores a key pair signed by one
of the trusted CAs. ECUs can communicate with each other by exchanging
symmetric session keys by using key exchange protocols. An optional variant
of this architecture is to also include a specialized ECU within the vehicle
that can revoke invalid certificates. Despite great advantages in terms of
security and easier management, most ECUs have tight resource constraints
and do not support asymmetric cryptography. Thus, deploying these solutions
require the addition of specialized Hardware Security Modules with increased
costs.

3.2 Anomaly Detection

Anomaly detection refers to the problem of identifying rare items, events, or
observations that are suspicious and significantly different from the majority
of the data [98]. Another definition of anomaly detection is provided in [10],
in which the authors define the anomaly detection as the problem of finding
patterns in data that do not conform to the expected behavior. In both these
works, the authors refer to two different terms: anomaly and outlier. The term
anomaly is used to address the process of identifying something unexpected
depending to the context: an anomalous traffic pattern in computer network
usually implies that a hacked device is sending sensitive data to unauthorized
destination [49], while an anomalous MRI image may indicate the presence of
malignant tumor [79]. The term outlier is used for the definition of statistical
anomalies in the data, which has been studied in the statistics community
from the late 19th century [54].

As a more general approach, it is possible to define an anomaly as a pattern
that does not conform to the expected behavior, and different straightforward
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approaches in the definition of the region representing the normal behavior
could be used. Classification-based anomaly detection techniques are one
of the most popular approaches, in which the normal model is created from
a set of labeled data and a test instance is classified into one of the classes
defined in the model [22, 84]. This approach requires data to be labeled
and equally distributed in the different classes, otherwise it is not possible
to equally compare the classes for the classification of the test instances.
Nearest neighbor-based anomaly detection techniques are an extension of the
classification-based anomaly detection techniques, in which only valid data is
used for the definition of the normal groups. Nearest neighbor-based anomaly
detection techniques are based on the assumption that normal data instances
occur in dense neighborhoods, while anomalies occur far from their closest
neighbors, thus requiring a distance measure between two data instances [7,12].
This approach allows to create detection models based on the analysis of valid
data, thus not requiring malicious data to be in the training dataset. Another
anomaly detection technique uses clustering to group similar data instances
into clusters [42, 84]. Clustering-based anomaly detection techniques are
primarily based on unsupervised learning, despite semi-supervised clustering
has also been explored by researchers [4]. Clustering-based anomaly detection
techniques allow the creation of clusters of data (similar to the nearest
neighbor-based anomaly detection techniques) without requiring labeled data.
This class of anomaly detection techniques automatically generates the clusters
of data by inspecting different features, thus further reducing the data labeling
issue. A similar approach that does not require labeled data but only requires
legit data are the statistical-based anomaly detection techniques, which
uses the underlying principle that “an anomaly is an observation which is
suspected of being partially or wholly irrelevant because it is not generated by
the stochastic model assumed” [2]. Statistical anomaly detection techniques
use a statistical model created for the description of the normal behavior
of the given data and then apply a statistical inference test to determine if
an unseen instance belongs to this model or not. Instances that have a low
probability of being generated from the model, based on the applied test
statistic, are declared as anomalies. Both parametric as well as non-parametric
techniques have been applied to fit a statistical model. While parametric
techniques assume the knowledge of the underlying distribution and estimate
the parameters from the given data [24], non-parametric techniques do not
generally assume knowledge of the underlying distribution [20].

For the purposes of this thesis, novel solutions designed to increase the
detection capabilities of current state-of-the-art detection techniques for the
cybersecurity of automotive networks are proposed in Chapters 5 and 6.
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3.3 Information security for automotive net-

works

Several works already depicted different attack typologies that can be per-
formed by sniffing and injecting messages over the CAN bus [11,37], as well as
by mangling messages used by the Tire Pressure Monitoring System [77] and
passive key-less entry systems [25]. Of particular interest are papers describing
attacks carried out remotely by exploiting the permanent Internet connection
of connected vehicles [41,59]. The first remarkable work that highlights the
potential vulnerabilities of modern vehicles is presented in [48], where the
authors exposed and demonstrated the vulnerabilities related to in-vehicle
networks and microcontrollers that can control safety-relevant features of a
vehicle. These vulnerabilities have already been proven real and exploitable
by malicious attackers, and quickly gained media visibility [29, 45, 59]. These
works inspired many cyber-security researchers from both academia and
industries to inspect the connected vehicle vulnerabilities and to propose
effective countermeasures to mitigate the problem. More related approaches
propose the implementation of anomaly detectors to analyze CAN traffic and
identify possible anomalies related to malicious activities. Several different
detectors are proposed in [65] and [81], however these works do not provide
an experimental evaluation of their proposals. Other approaches for anomaly
detection in the internal vehicle networks are based on Support Vector Ma-
chines (SVM) [32, 88, 92]. However, it is necessary to remark that ECUs
are microcontrollers with limited computational power and small memory,
thus many of these solutions might require heavy modifications before being
deployable to these devices.

Many state-of-the-art intrusion detection systems designed for the CAN
have already been proposed, and different aspects of the network are inspected
to create the normal reference used for the definition of the normal operational
region.

CAN communications are composed by messages sent cyclically between
ECUs on the shared bus, thus one of the features inspected for the definition
of an Intrusion Detection System for in-vehicle networks is frequency of
the messages. The authors of [27] proposed an algorithm that inspects the
inter-arrival time of messages with the same ID to detect possible attacks.
In their attack model they consider both cases of injection of messages
from an external device or from a compromised internal ECU. The authors
of [62] further inspect the inter-arrival time of the message IDs, and provide a
practical demonstration of the capabilities of their detection algorithm against
a simulated Denial-of-Service attack. These two proposals have been proven
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capable to achieve good detection results, but the limited adversary model on
which both algorithms are applied prevents to consider the frequency of the
messages as a complete documented feature for the detection of anomalies on
the CAN bus. Another frequency-related approach has been proposed in [85],
where a periodical inspection of the CAN bus allows the evaluation of a score
index over the data collected in a particular time interval, by means of a One-
Class Support Vector Machine (OCSVM). The result of the OCSVM is used
to detect the injection of malicious packets or to identify missing packets from
the network. The approach proposed in [85] is tested against the injection of
malicious packets with different frequencies, deploying normal models created
with different parameters for the detection phase and demonstrating that
models created with higher frequency values achieve better detection rates
than lower-frequency ones. Despite the extensive practical evaluation, the
authors do not provide any detail on the configuration parameters for their
implementation of the OCSVM, thus making their work not reproducible.

A different approach based on the inter-arrival time of CAN messages has
been proposed in [16], where an innovative method that exploits the time
intervals of messages to fingerprint the sender ECU is used. This method
allows the detection of malicious messages and identifies the ECUs sending
the messages on the network. The authors tested their algorithm against
different adversary models, such as single ID replay, ECU shutdown and ECU
masquerading (as consequence of the ECU shutdown attack) with high detec-
tion rates. The authors also claim that their algorithm performs badly against
the detection of messages sent by an ECU sending non periodic messages.
Compared to previous works, the work described in [16] provides highly accu-
rate description of the methods and formulae used for their implementation
and the described adversary model is comparable to the one described in this
thesis.

However, none of the previous work highlighted the hazards involved in
the inspection of only the message inter-arrival times on the CAN bus. There
are particular messages in a vehicular network that can be either periodical or
non-periodical, depending on the scenarios. For example, consider the case of
two CAN messages related to the Cruise Control (CC), in which one message
encodes the state of the CC in its payload (active/off) while the other encodes
the cruise speed in its payload. The latter message frequency depends on the
value encoded in the former message. It is logical to assume that, if the CC
is in set to off, then the message carrying the cruise speed would not appear
on the CAN bus, while if the CC status is active, the message carrying the
cruise speed is expected to appear on the bus with a high frequency, since it
carries safety-critical functioning information. In this scenario it is logical to
assume that, for messages whose periodicity is related to the status of some
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functionality of the vehicle, it is impossible to create an accurate detection
model based on the frequency of message inter-arrival times.

This thesis work further inspects the capabilities of a frequency-based
anomaly detection algorithm for the CAN bus by proposing an algorithm
designed for the detection of a bus-off attack on the CAN bus in Section 5.2.
The proposed algorithm is tested against two different attack scenarios and
proven extremely effective in the detection of bus-off attacks.

Different IDS based on the analyses of statistical features of the vehicular
networks have already been proposed in literature. The authors of [64]
designed an IDS based on the inspection of the entropy of the data of the
CAN bus, observing sensitive variation of the entropy value in case of injection
of malicious packets. This work evaluated that the entropy value depends on
the frequency of injection of the messages. However, this detection method
does not allow the identification of the anomalous message, thus another
method based on the self-information entropy evaluated between consecutive
values of the same signal encoded in the message payload is also proposed
in [64]. This method allows to identify the injection of malicious values
of signal if the difference from the expected value if significant, resulting
unnoticed in case of injection of values very close to the real ones. However,
the experimental evaluation of this attack is limited, and spans over just 15
seconds of CAN traffic including only a single class of CAN messages that
are not safety-relevant. This thesis work further inspects the boundaries of
detection algorithms based on the entropy measure by proposing a novel
algorithm in Section 5.5 that inspects the mean entropy value over variable
window sizes. The novel algorithm is tested against message replay and
fuzzing attacks, providing an extensive experimental evaluation. Moreover,
since it is possible to evaluate the load of the bus and that any attack on
the CAN bus could affect the utilization of the transmission network, an
algorithm that inspects the bus utilization is proposed in Section 5.6. This
algorithm inspects the normal utilization of the bus and raises an anomaly
when the utilization is outside of the defined normal utilization.

Other detection algorithms are based on the inspection of the fields of the
CAN data frames. The simplest approach is to detect CAN bus messages
having an invalid ID [53]. In this case, the normal model is just a set of
valid message IDs, either gathered from the formal specification of a given
vehicle, or learned by sniffing messages from the CAN bus. This approach
allows easy and precise identification of attacks that inject CAN messages
with an invalid ID, but can be easily foiled by attackers clever enough to inject
arbitrary messages with valid IDs. Hence this approach can be useful against
basic fuzzing techniques [51], but becomes useless against more sophisticated
or determined attacks. Since messages in the CAN bus follows a particular
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frequency it is possible to assume that there are recurrent patterns between
messages flowing on the CAN bus, which can be inspected for the detection
of unknown patterns between message IDs. For this purpose, in Section 5.3
an algorithm that inspects the sequences of message IDs of CAN data frames
is proposed, and its detection capabilities are evaluated with an extensive
experimental evaluation. Another approach to design an IDS for vehicular
networks is proposed in [43], where deep neural networks are investigated
as a possible solution to detect anomalies in the payloads of the message.
Despite the novelty of the proposed approach, current ECUs deployed in the
vehicles have not enough computational power to implement the detection
logic on-board. In Section 5.4 an algorithm for the anomaly detection of
messages based on the inspection of the payloads is proposed. This algorithm
evaluates the difference between consecutive payloads of the same ID by
means of the Hamming distance. This design choice has several advantages
with respect to the state of the art. First, it does not require full knowledge of
the syntax and semantics of CAN messages. Normal features can be learned
just by analyzing traffic traces sniffed from a licensed vehicle. Moreover,
experimental evaluations demonstrate that the proposed algorithm is able to
detect stealth attacks that involve the injection of very few CAN messages. It
is also necessary to remark that the solution proposed to improve the CAN bus
security complies with the hardware constraints of a typical automotive ECUs,
having very low memory and computational requirements. Other researches
focused their effort in the identification normal electrical characteristics of
CAN transceivers in [14] and [46]. Both these methods inspect the voltage
levels of the transceivers as their detection metric, and use sophisticated
analysis based on the inspection of the voltage level for the identification
of the transmitting ECU. Despite these solutions are proven effective in
the detection of anomalies injected on the CAN bus, both focuses on the
identification of the ECU transmitting the message. The work presented in
this manuscript uses a wider attack scenario, thus considering the ability of
the attacker to subvert the normal behavior of the single ECU on the network.

3.4 Reverse Engineering of automotive mes-

sages

Cyber attacks to modern vehicles executed by injecting forged and malicious
messages in the CAN bus [15, 44, 58, 59] spawned several research efforts
aimed to improve the security level of modern vehicles. Some works aim
to improve the security of communications over the CAN bus by applying
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cryptographic protocols [31,74]. However similar solutions require to modify
all the ECUs involved in secure communication and have profound impacts
on the whole life-cycle of the vehicle. Other less intrusive approaches apply
anomaly detection [10] and security analytic algorithms to the traffic flowing
on the CAN bus. Several algorithms for the identification of intrusions over
the CAN bus have already been proposed, mainly by applying and adapting
approaches borrowed from the IT and network security domain to the specific
characteristics of the CAN bus and its messages.

It is possible to observe that the main limitation shared by all the afore-
mentioned research efforts lies in the very few features that can be extracted
and analyzed from a generic traffic trace containing CAN messages. Indeed,
message arrival time, ID and the binary blob of its payload only enable a very
coarse-grained message classification, that can be useful in detecting simple
attacks but is bound to fail in detecting more stealth intrusions comprising
the injection of few well-designed malicious messages. This issue could be
mitigated by having access to the complete formal specifications of CAN
messages, including the list and boundaries of all signals encoded in their
payload. Unfortunately this information is only available to car makers and
their suppliers, and cannot be accessed by the general public, including the
vast majority of academic researchers. Knowledge of the semantic of CAN
messages would also be extremely useful in reconstructing the state of the
vehicle before a crash, possibly identifying driver mistakes, failures of the
vehicle, or anomalous activities attributable to a cyber attack. Authors of [66]
are the first to address this issue by proposing a list of requirements for
detection, data collection and event reconstruction following a crash. This
aspect has been further inspected by the authors of [55], who proposed a
reliable, secure, privacy-preserving and efficient mechanism to build a forensics
data collection and storage system. Despite those solutions, it is clear that
analysis of raw CAN messages require to manually inspect high volumes
of data to reverse-engineer messages syntax and semantic, reconstruct the
vehicle dynamic and contextualize the messages and their contents.

The network traffic analysis literature already includes many proposals
aiming to automatically recognize the nature of a given network packet or
flow, as an example by attributing a network communication to a specific ap-
plication or protocol. These works are mostly based on three main approaches:
matching of known signatures within network packets; analysis of source and
destination port numbers at the transport layer; applying a classification
algorithm to packet metadata [8, 61, 95]. It is necessary to remark that these
works have been designed to analyze TCP/IP network traffic and to identify
only well known network applications (such as web browsing, email, chat
and file transfer protocols). All these assumptions make these approaches
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inapplicable to the automotive domain characterized by in-vehicle networks
that leverage completely different protocols and communication patterns. As
an example, CAN messages do not include source and destination addresses
nor port numbers, are broadcast communications that do not establish a bidi-
rectional communication flow, and lack the clear separation between network,
transport and application layers that are typical of IT networks.

Some information about semantic and syntax of CAN messages can be
extrapolated through reverse engineering, as proposed in [58,59,78]. However,
all these approaches are based on manual inspection of a high number of
CAN bus messages by a reverse engineer with experience in the automotive
domain, that is a daunting and human-intensive task.

The first proposal toward automatic reverse engineering of signals conveyed
in CAN messages, specifically aimed to providing more useful features for
anomaly detection algorithms, can be found in [57]. This work proposes an
algorithm that analyzes the payload of CAN messages and tries to extract
signals and their boundaries by observing how the payloads of messages
sharing the same ID evolve over time. However, the heuristics proposed in [57]
have never been tested against real CAN messages, since their experimental
evaluation is based on CAN traffic generated by a laboratory environment
with simulated ECUs, rather than on real licensed vehicles.

This thesis work proposes a novel algorithm for the automatic identification
of signals embedded in the payload of CAN messages (Section 6.1) that
outperforms previous work [57] by detecting more than twice the number
of correct signals and exhibiting much lower execution times. Rather than
being an incremental improvement over [57], the novel algorithm includes
a completely novel set of heuristics and a completely different processing
algorithm. These heuristics reflect the domain knowledge acquired by authors
while manually reverse-engineering CAN messages generated by several real
and modern vehicles of different models and makers, and facilitate the reverse
engineering process by automatically extracting and labeling individual signals
from unknown CAN traffic traces.

Moreover, this algorithm automatically associates a descriptive label to all
extracted signals that helps a human analyst in making sense of the data. The
labels used by the algorithm are specific to the automotive domain and convey
a precise semantic meaning, while labels produced by [57] only depend on how
the signal evolves over time and do not try to describe its meaning. Finally,
the results of this algorithm and the one proposed in [57] and compared
against the complete formal specifications of a real, licensed, unmodified road
vehicle.
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3.5 Cyber-security of control systems

Modern vehicles are composed by different and complex subsystems, each
one related to one of the different parts of the vehicle ecosystem. One
of these subsystems is the powertrain, which is one of the most analyzes
subsystem in literature [13,21]. The powertrain subsystem has been inspected
for the proposal of novel models that allow to increase the performances of
the vehicle or to reduce its emissions. One of the most established fields of
research related to the powertrain is the cruise control, which is a system often
deployed in conjunction with the powertrain that allows to remove the human
component from the powertrain management, thus allowing the controller
to change the vehicle speed according to the necessities. Despite these two
systems are heavily interconnected to each other, the cruise control system has
only been inspected in conjunction with the model representing the vehicle
dynamic, and never inspected in conjunction with the powertrain on which it
is deployed. Since cyber-attacks to vehicle system often includes the injection
of maliciously-forged messages on the internal vehicle networks [58], to inspect
the consequences of these attacks it is necessary to describe the model on
which these attack are conducted. A generic attack comprises different steps,
from remote exploitation of wireless connection to the re-programming of
the critical ECUs to allow external messages to reach the internal network
of the vehicle [29,45,59]. In Section 7.1 the consequences of the injection of
different messages on the CAN bus are inspected by modeling the powertrain
section of a generic internal combustion engine on which a cruise controller
is deployed. Attacks are simulated on the system and its consequences are
inspected, highlighting possible solutions aimed to increasing the security of
similar safety-critical systems.

3.6 Reaction to detected cyber-attacks

The inspection of the different issues related to the proposal of reaction
solutions for the mitigation of cyber attacks in vehicular networks is still
a poorly addressed field of research. The only work available in literature
that partially addresses the issues is proposed in [38], in which the authors
inspected the different notifications typologies available on modern vehicles,
through the instrument cluster or via the infotainment units. For this purpose,
this thesis proposes a concept for a reaction mechanism in Chapter 8. The
proposed concept is based on alerts generated from a security framework
deployed in the internal vehicle network, enabling the analysis of the vehicle
state and proposing the correct countermeasure depending from the severity
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of the detected attack and from the vehicle state. The proposed solution
is focused on define a complete reaction framework, that also includes the
solution proposed in [38] for the complete management of the reaction process.



Chapter 4

Cryptographic key management
for modern vehicles

To prevent attackers from obtaining access to the internal vehicle networks,
it is necessary to improve the defense mechanisms of the vehicle to provide
higher security guarantees. Since this security analysis covers the complete
fleet of vehicles manufactured by a car maker, it is necessary to inspect the
whole vehicle life-cycle to deploy effective countermeasures.

4.1 Inter-vehicle security independence

To obtain unauthorized access to a vehicle, it is possible to hypothesize
that a malicious attacker might use an extension of the multi-step approach
described in Section 2.3, by leveraging the fact that multiple vehicles are
produced through an industrial serialized methodology. If multiple vehicles
share some secret information used in security protocols, the attacker can
extract information about a target vehicle from another vehicle, of the same
model or from the same Original Equipment Manufacturer (OEM). Intuitively,
this might ease the reverse engineering process described in phase (2) of the
threat model (Section 2.3) and it allows to obtain information about security
protocols deployed in the vehicle and potentially of secret cryptographic keys.
As an example, if different vehicles use the same cryptographic keys, even if
OEMs use these keys to protect ECUs communications with high granularity,
then the adversary can obtain the secret keys from a similar vehicle at his
disposal, thus using them to compromise the security of another target vehicle.
The security guarantee is defined as inter-vehicle security independence, which
defend vehicles against these attacks, thus preventing an attacker from gaining
advantages in accessing secret information stored in a vehicle by attacking
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any other vehicles.
This security guarantee is strictly related to security measures that protect

devices against white box attacks. If the assumption that an adversary can
have the same advantage in attacking a vehicle by having physical access to
any other vehicle is considered, than deploying white-box security defenses
such as temper-resistant hardware modules or white-box cryptography is of
paramount importance. However, if it is possible to distribute independent
keys for each vehicle and to guarantee inter-vehicle security independence,
then car manufacturers might achieve similar levels of security without white-
box defenses. Indeed, attacking a target vehicle would require the adversary
to physically access that very same vehicle, that is a much weaker security
assumption. This last case is by far the most critical, because it is based
on the assumption that the attacker has gained enough knowledge of the
internal network composition to forge a custom command targeted to a specific
ECU. It is impossible to prevent any malicious attacker from gaining physical
access to the vehicle, thus it is necessary to address the reproducibility of the
cyber-attack as part of the inspected scenario.

4.2 Secure architectures for vehicles life-cycle

The vehicle life-cycle is modeled by considering three main actors:

• OEM : the company that designs and produces the vehicle;

• supplier : a company that produces vehicle components. It is responsible
for providing maintenance, assistance and replacement parts during the
vehicle life-cycle, that includes software in case of electronic components;

• owner : a person that buys the vehicle and uses it;

• maintainer : a company or a private that operates maintenance on the
vehicle.

The vehicle life-cycle is represented as a finite-state machine model, where
each state represents a phase in the life-cycle of the vehicle. In each state of
the vehicle life-cycle an actor is associated (authoritative actor), which has
exclusive access to the vehicle during the corresponding phase. The actor
can cause a transition to another state of the life-cycle, possibly passing the
authority over the vehicle to another actor. The model assumes that the
actor associated to a state has physical access to the vehicle. Note that this
does not imply that the actor has full access over the vehicle, as this might
be limited by his knowledge of the vehicle components and his technical
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capabilities. As an example, it is possible to assume that a maintainer can
accomplish advanced repair operations, but it is also necessary to assume
that the owner might only be able to drive the vehicle.

In this paragraph a description of the details of the model is provided
by referring to Figure 4.1, which shows the different states of the model
and highlights the authoritative actor for each phase. The first state of the
diagram is the design of the vehicular network, where the specifications of
each ECU that will be deployed in the vehicle are defined. The authoritative
actor of this state is the OEM. One of the many results of the design state
is the ECUs specifications of the vehicle, which are given as input for the
production step, where the software to be installed on the ECUs is generated.
The ECUs hardware is bought from an external hardware producer directly
by the supplier, which is the authoritative actor for this state. The OEM
can designate different suppliers to produce part of the vehicle components
or a single supplier to produce all the components. The third state of the
vehicle life-cycle is the assembling state, in which the ECUs with the software
already installed are delivered to the OEM and assembled together with the
mechanical parts of the vehicle. The authoritative actor of this step is the
OEM. After the assembling state the vehicle is available on the market,
and after it is sold the operational state begins. The vehicle in this state is
considered fully operational and at the disposal of the owner (which is also the
authoritative actor for this state). During the operational phase both ordinary
or extra-ordinary service operations are required, thus the maintainer gains
control over the vehicle and the maintenance state is entered. Maintainers
are the authoritative actors of this step, acts as intermediaries between the
vehicle and the OEM, requiring special access to the vehicle components, its
configuration and privileged access to parts of the vehicle if needed. Once the
service is completed, the vehicle returns to the operational state. Multiple
transitions between the operational and maintenance states are expected in
the normal vehicle life-cycle.

Supporting security solutions for vehicle networks requires the design of an
architecture that supports either distribution or access of the cryptographic
material by actors involved in the life-cycle. In particular, the main non-trivial
design choices regard the production and assembling phases implemented by
the supplier and the OEM, that must generate and share inter-dependent
secret information by obtaining the best security guarantees. Depending on
the designed architecture, maintainers might have to interact in different
ways to support their customers. In this analysis the details of each protocol
required within the architecture are not inspected, thus no inspection is made
on the information sharing protocols among players or the secure management
of cryptographic keys, but peculiar traits of the architecture that depends
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Figure 4.1: Vehicle life-cycle

from the adopted security solutions for intra-vehicle communications are
highlighted for sake of completeness. Moreover, a discussion about how these
architectures can guarantee the inter-vehicle security independence is proposed,
as discussed in Section 2.3. In the following, existing security protocols are
inspected and distinguished in pre-shared ECU keys (Section 4.2.1), in-vehicle
key distribution centers (Section 4.2.2) and certificate-based key authentication
(Section 4.2.3), as described in Chapter 3.

4.2.1 Pre-shared ECU keys

Deploying a security protocol based on pre-shared ECU keys requires multiple
suppliers to share cryptographic keys with each other and with the OEM.
This requirement is mandatory for any level of granularity, such as using
a global master key, group keys, or pair-wise keys. However, some design
choice might be influenced by key granularity. If multiple suppliers produce
components that communicate with each other (e.g., associated to the same
CAN IDs), then the OEM is the only player that has a global view of the
system and that can take care of key generation and distribution. In this
case, the OEM can decide to choose either a master, group or pair-wise keys
and distribute them to suppliers accordingly. Otherwise, if a supplier has
exclusive responsibility for a certain group and a group key strategy is used,
then he can autonomously generate and manage the secret key. However,
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the main issue in these architectures is the generation and deployment of
different cryptographic keys for different vehicles due to the reconciliation of
the keys at the assembly phase. To enable inter-vehicle security independence,
suppliers must install different keys on each component and keep track of
the components that share the same keys. Then, the OEM should handle
the reconciliation of all components that share secret keys to assemble them
in the same vehicle. Although this kind of management seems theoretically
feasible, it puts a lot of burden on both the suppliers and the OEM. Moreover,
since components are not interchangeable, it introduces complex issues in
case of failures. As a result, solutions based on pre-shared ECU keys do not
seem a viable design choice to guarantee inter-vehicle security independence.

4.2.2 In-vehicle key distribution centers

Deploying a security protocol based on in-vehicle Key Distribution Centers
(KDC) requires suppliers and the OEM to share pair-wise cryptographic keys
between “normal” ECUs and the “special” ECU that implements the KDC
(also, KDC-ECU). This class of solutions might be implemented by using
different design strategies. To implement an efficient and scalable architecture,
a solution might be to allow the supplier of the KDC-ECU to monitor the
assembly phase. As an example, the OEM could maintain the production
and management of the KDC-ECU in-house. By considering this assumption,
the management of cryptographic keys can be implemented as following. The
inspected scenario is based on the requirement that the supplier received
orders by the OEM for a certain amount of components. The main objective
is to store secure cryptographic material that allows each component to
communicate with the KDC. Thus, at flashing time the supplier generates
random keys (or it uses a key derivation function) and installs them in the
ECU. Then, the supplier sends the ECUs together with keys to the OEM.
Before the assembly phase, the KDC-ECU must contain the keys of all the
ECUs that will be installed in the same vehicle. This operation seems feasible
because all dependencies are resolved in the assembly phase. However, this
architecture might require additional efforts to deploy maintenance operations.
In case of ECU failures, substituting an ECU either requires to obtain a new
ECU that stores the same key of the failed one or to update the KDC with the
key of the new ECU. Either design choices could be deployed with some effort,
although the second option, that would require an update of the KDC-ECU
storage, seems more convenient. Indeed, requiring suppliers to flash a single
ECU on-demand might be expensive.
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4.2.3 Certificate-based key authentication

Deploying security protocols based on asymmetric cryptography enables the
application of an operation flow that is similar to that of a standard PKI. The
assumption behind this design choice is that each supplier generates a certain
number of secret keys and, for each of these keys, it produces a Certificate
Sign Request (CSR). All CSRs are issued to the OEM, that approves them
and returns the corresponding certificates. In each ECU the supplier installs
a secret key, the associated certificate, and the public key of the OEM. The
software installed by the ECU will establish connections with ECUs that can
produce certificates signed by the installed OEM public key. This architecture
represents an efficient approach to install the due cryptographic material
in the ECUs, and has the great advantage of not distributing secret keys
outside suppliers and outside a single ECU. However, it does not seem able
to guarantee inter-vehicle security independence. Implementing this security
guarantee would require the OEM to use a different certificate for each vehicle
and to sign the CSRs of the suppliers accordingly. Then, the OEM would
have to reconcile ECUs as described for the pre-shared ECU keys approach,
that seems an unfeasible task. As a result, to obtain inter-vehicle security
independence, the introduction of a centralized point of control that allows
to define authorization policy on a per-vehicle basis at assembly time is not
an optional choice, even when asymmetric cryptography is used.



Chapter 5

Detection techniques based on
the CAN standard

In this Chapter different algorithms for the detection of anomalies on the CAN
bus based on CAN standard are proposed. These algorithms are designed
to be trained from data gathered from raw CAN traces, as described in
Section 2.2, thus without requiring any additional information. This Chapter
provides an initial description of the dataset gathered from an unmodified,
licensed vehicle in Section 5.1, which is required for the understanding of
the different inspected algorithms. From Section 5.2 to Section 5.6 different
detection techniques based on the CAN standard are proposed. Each one
of the proposed detection algorithm is tested against the same dataset. A
final comparison of the proposed algorithm is provided in Section 5.7, that
proposes also a detection framework based on the inspected algorithms.

5.1 Dataset description

This Section proposes a description of the dataset used in the training and
validation processes of the proposed algorithms. The description of the
dataset containing simulated anomalies based on the threat model proposed
in Section 2.3 is provided in Section 5.1.2. The latter part of the dataset
is used for the experimental evaluation of the detection capabilities of the
proposed algorithms.

5.1.1 Clean dataset description

The dataset used for the design and the test of the proposed algorithms is
collected from the high-speed CAN buses of an unmodified, licensed 2016
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Volvo V40 by physically connecting a laptop to the OBD-II port with a
PCAN-USB adapter by Peak System [71] and a D-Sub to OBD-II cable.
According to international standards, the high-speed CAN bus exposed on
the OBD-II port is the powertrain segment, which is composed by ECUs that
control different subsystems of the vehicle dynamic, such as the cruise control
system, the anti-braking system, the electronic stability control, and many
optional Advanced Driver Assistance Systems (ADAS). The CAN recording
process is configured to save metadata information about the CAN traffic
(such as the timestamp and the type of the message) in conjunction with
the fields composing the messages (CAN ID, the DLC value, and the bytes
composing the data field). These data are gathered during several driving
sessions performed on different road types (urban, suburban and highways),
traffic conditions, weather conditions and on different geographical areas
(plain, hill and mountain). The whole dataset includes an aggregated amount
of more than 10 hours of driving. The fields composing the dataset are:

• Timestamp: the relative timestamp of the message since the ignition
of the vehicle;

• Message type: type of the message frame;

• Message ID: the identifier of the message;

• Data Length Code: the length of the message payload, expressed in
bytes;

• Payload: hexadecimal representation of the payload of the message.

All the recorded messages are data frames, thus the message type field is
removed from the traces. The final clean dataset is composed by 7 CAN
traffic traces, including more than 8 million messages belonging to 50 unique
message IDs. The clean dataset is publicly available at [80].

5.1.2 Infected dataset description

The detection performance of the detection algorithms are tested against
a set of traces in which anomalies for each attack inspected in Section 2.3
are replicated. These attacks are simulated over the traces composing the
clean dataset. To avoid any possible bias toward unrealistic detection results
due to the different frequencies of messages composing the clean dataset,
IDs with different probability distributions are used for the simulation of
attacks on the clean dataset. The probability distribution of the dataset is
depicted in Figure 5.1. On the x-axis of Figure 5.1 the IDs of the dataset
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are depicted omitting one value each two for readability purposes, while the
probability distribution for each message ID is displayed on the y-axis. The
bars highlighted with a different color represent IDs belonging to the 10th,
the 50th, the 75th, and the 100th percentiles, which are used for the simulation
of different attack scenarios on the CAN bus.
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Figure 5.1: Distribution of probability of the IDs composing the dataset

The infected dataset is composed by the following attack scenarios:

• Replay attack

– Single ID: Set of traces in which a single valid ID is injected. This
set is composed by 4 different traces, each one corresponding to
the injection of one of the 4 IDs representing the 10th, 50th, 75th
and 100th percentile.

– Valid Sequence: Set of traces in which a sequence of IDs observed
in the traces is injected. Different traces are generated by injecting
sequences with different length, ranging from 2 to 10;

– Invalid Sequence: Set of traces in which a random generated
sequence of valid IDs is injected. Different traces are generated by
injecting sequences with different length, ranging from 2 to 10.

• Fuzzing attack

– Random ID: Set of traces in which a single invalid ID is injected;
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– Random payload: Set of traces where a single valid ID is injected
with randomly generated payloads. The valid ID used for the
injection of a random payload is selected using the same criteria
used for the single ID replay attack;

• Denial of Service attack In case of a Denial of Service attack, the
selection of the duration is critical for the analysis of the detection
capabilities of the algorithm. Since the duration time of the attack
affects the detection capabilities, a denial of service attack is defined
as an attack that is able to disrupt the normal communication on the
internal network for at least twice the frequency of the most frequent
message on the network. On the gathered dataset, the most frequent
message has a cycle time of 0.01 seconds, thus the duration time for a
denial of service attack is set to 0.02 seconds. Considering the scenario
in which the CAN bus is configured with an operating baud rate of
500kbps, to disrupt all the communication for the chosen time it is
necessary to inject at least 10k bits. A generic CAN data frames
composed by all the available fields has a minimum length of 108 bits
and a maximum length of 134 bits by considering the the worst case for
the bit-stuffing application, thus it is necessary to inject from 76.9p77q
to 92.6p93q messages to successfully disrupt communications for at least
0.02 seconds. For the simulation of this attack scenario 100 messages
have been injected. Two different typologies of denial of service are
inspected:

– Lowest ID: set of traces in which a sequence of messages with
the ID equals to the the lowest value observed in the dataset is
injected;

– Zero ID: set of traces in which a sequence of messages with the ID
equals to 0 is injected. (Note that the “Lowest ID” and “Zero ID”
denial of service attacks are the same in case the ID with value
0 is defined in the vehicle specifications and observed in the clean
dataset).

• ECU shutdown Set of traces where CAN messages are removed for a
variable amount of time (ranging from 10 to 120 seconds) from the CAN
bus, thus emulating an attacker that manages to drive in bus-off [15,69]
a target ECU of a vehicle for a given amount of time.

• ECU inhibition Set of traces where CAN messages with a particular
ID are completely removed. This attack scenario represents an attacker
that is able to permanently disable a target ECU. This set is composed
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by 4 different traces, each one corresponding to the removal of one of
the 4 IDs representing the 10th, 50th, 75th and 100th percentile.

5.2 Detection algorithm based on CAN tim-

ings

5.2.1 Fundamentals

Current literature already proposed different algorithms designed for the
detection of anomalies in the CAN bus through inspection of the timings
of the messages [53, 62]. In these works, the authors inspected different
methodologies to create an anomaly detection algorithm based on the analysis
of messages with the same ID. These algorithms have been proven able to
detect an anomaly after a message is received, thus there are no guarantees of
detection against both ECU shutdown and inhibition attacks since messages
are permanently removed from the network, as described in Section 2.3.4. To
provide a valuable contribution to the state of the art, the anomaly detection
algorithm exploiting message timings for its detection purposes proposed
in this thesis is designed to detect anomalies specifically for the scenario
of a ECU shutdown and inhibition attack. As a preliminary analysis, the
distribution of the inter-arrival times of the different message IDs composing
the dataset is inspected to determine if the probability distribution of the
inter-arrival times follows a particular trend. As a representative example,
the distribution of inter-arrival times for the ID 1B5 is depicted in Figure 5.2,
where the x-axis represents the values of the inter-arrival time (expressed in
milliseconds) and the y-axis shows the percentage of messages with the same
inter-arrival. From the analysis of Figure 5.2 it is possible to observe that the
distribution of inter-arrival times of the inspected message ID follows a normal
distribution centered at 20 milliseconds. All the other 49 IDs composing
our dataset exhibit similar distributions, although the mean value may vary
depending on the message ID.

The metric inspected for the detection of anomalies on the CAN bus uses
the cycle time of each message ID of the vehicle for its detection purposes.
The cycle time of each message ID is computed as the mean value of the
inter-arrival time between consecutive messages of the same ID according
to Equation 5.1, where ctID is the cycle time evaluated for each different
message ID, tpi´1q and ti are the timestamps associated to the pi´ 1qth, and
ith messages of that ID respectively, and N is the number of messages with
the inspected ID.
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Figure 5.2: Probability distribution of Inter-arrival times of messages with
ID 1B5

ctID “

řN
i“1pti ´ tpi´1qq

N
(5.1)

The cycle time is then rounded to the closest integer millisecond value.

5.2.2 Comparison with the state-of-the-art

The state-of-the-art for the anomaly detection on CAN (described in Sec-
tion 3.3) is composed by algorithms that inspect the different features available
in CAN, one being the inspection based on timing/frequency analysis. Com-
pared to the state-of-the-art, the algorithm proposed in this Section is designed
to distinguish between periodical and non-periodical messages. Moreover,
the attack scenario against which the algorithm is tested is novel and never
considered in current state-of-the-art.

5.2.3 Message timing detection algorithm

The detection algorithm uses the evaluated cycle time for the definition of the
valid waiting time that can normally occur between two consecutive messages
of the same ID. The valid waiting time for an ID is defined as ctID ¨ kID,
where ctID is the evaluated cycle time and kID is a tuning parameter of the
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algorithm that is set during the validation process for leverage imperfect
timings and delays during normal CAN communications. The final goal of
the validation process is to tune the detection algorithm to achieve zero false
positives. For the missing message algorithm, a message is considered missing
if timeCAN ´ tID ą ctID ¨ kID, where timeCAN is the current time of the
network, tID is the timestamp of the last message having the inspected ID,
and ctID ¨ kID is valid waiting time computed for that ID. The validation
phase is described as follows. At first the value of kID is initially set to 1, and
the detection algorithm is executed on the clean traffic traces. Since these
traces do not contain any attack, the detection algorithm should not generate
any alert. However, real CAN frames might incur in small delays, due to clock
drifts in the ECUs or contention on the access of the CAN bus. Hence if the
valid waiting time is equal to the average cycle time the detection algorithm
will most likely generate at least a few false positives. To avoid this issue
we repeat the validation process and increase the value of kID by 1 at each
iteration. This process terminates when the value of the parameter kID is
enough to prevent the generation of false positives on the clean traffic traces.
As an example, results of the validation process for the ID 1B5 are shown in
Figure 5.3. On the y-axis the different values of k1B5 are depicted, while the
x-axis represents the number of false positives. For readability reasons, the
x-axis represents its values in a logarithmic scale (with a small offset to to
display the value 0). As shown in Figure 5.3, the number of false positives
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Figure 5.3: Number of false positives detected with different values k for the
message ID 1B5

for the ID 1B5 drops by 4 orders of magnitude from k “ 1 to k “ 2, while no
false positives are detected with a minimum value of k “ 4. The pseudo-code
describing the detection phase of the algorithm in shown in Algorithm 1.
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Algorithm 1 Missing message detection algorithm

1: loadReferencesptimingModelq
2: for msg in CANstream do
3: timeCAN Ð msg.timestamp
4: for msgID in timingModel do
5: timeDiff Ð msgID.timestamp´ timeCAN
6: µÐ msgID.ct
7: κÐ msgID.k
8: validWT Ð µˆ κ
9: if timeDiff ą validWT then

10: raise anomaly

For the tests proposed in this thesis, the missing message algorithm is
implemented with Python 3 and tested on a server equipped with an Intel®

Core™ i7–7700HQ CPU @3.8 GHz and with 16 GB of RAM running Fedora
27 x64.

5.2.4 Detection performance of the Missing Message
algorithm

Since the missing message detection algorithm is designed for the detection
of messages missing from the inspected CAN bus, as already described in
Section 5.2.1 the detection performance of the algorithm are evaluated only
against the ECU inhibition and shutdown attack scenarios described in 2.3.

The algorithm is based on the definition of a valid waiting time which
depends on the evaluated cycle time ctID and its parameter kID. Since a
message is flagged as missing after the valid waiting time expired, an initial
detection delay is introduced by the algorithm logic. The consequences of the
detection delay in the detection phase need to consider both best and worst
case scenarios for the algorithm. Best and worst case scenarios are related to
the precise point in time at which the attack on the targeted ECU is carried
out, thus determining the instant in which the targeted ECU is sent into the
bus-off state. The best case scenario happens when the attacker manages to
activate the bus-off state on the target ECU just before a message is sent. In
this case it is possible to assume that the time elapsed between the last valid
message and the attack equals ctID ´ ε, where ε is a very small amount of
time. The reaction time of the proposed detection algorithm is defined as
the amount of time that passes between the attack and its detection. The
reaction time of the algorithm in the best case is equal to the waiting time
(ctID ˚ kID) - (ctID ´ ε), which equals to ctID ˚ pkID ´ 1q ` ε. In the worst
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case scenario the attacker is able to send the target ECU to the bus-off state
just after a message is sent. In this scenario it is possible to assume that
the time between the last valid message and the attack equals to ε, thus the
reaction time of the algorithm is equal to ctID ˚ kID ´ ε. It is clear that the
reaction time is lower for messages with low cycle times (and high frequency)
and for small values of kID, meaning that attacks on IDs that exhibit stable
cycle times can be detected faster with respect to attacks on IDs with low
frequency and high variability. As an example, considering the message with
ID 1B5, which has a cycle time of 20ms and a value of k1B5 equal to 4. Hence
the reaction time of the proposed detection algorithm against attacks on ID
1B5 is evaluated to be ranging from 60` ε milliseconds to 80´ ε milliseconds

The best-case and worst-case theoretical detection delay are compared
with the evaluated detection delays achieved by the algorithm against the
ECU shutdown and ECU inhibition attacks simulated in the infected dataset.

ECU Shutdown detection performances

The analysis of the detection delays of the algorithm against the ECU shut-
down attack is depicted in Figure 5.4. The x-axis of Figure 5.4 represents the
different message IDs on which the attack is simulated, while the y-axis repre-
sents the detection delay expressed in milliseconds. Results in Figure 5.4 are
depicted using box-plots to highlight the different results achieved throughout
different attack simulations, while the dashed lines are used to represents best
(green, bottom) and worst (red, top) theoretical performances.

Figure 5.4 shows that the missing message algorithm is able to correctly
identify missing messages from the infected dataset within the best and worst
theoretical limits. Moreover, it is noticeable that the worst case value never
exceeds 120ms, and the difference between the worst and best case is below
30ms.

ECU Inhibition detection performances

The analysis of the detection delays of the algorithm against the ECU inhi-
bition attack is depicted in Figure 5.5. The x-axis of Figure 5.5 represents
the different message IDs on which the attack is simulated, while the y-axis
represents the detection delay time expressed in milliseconds. As for the
results depicted in Figure 5.4, the dashed lines represents the best and worst
theoretical scenarios. In case of the inhibition attack, the detection delays of
the algorithm always matches the worst case theoretical scenario, which is
equal to ctID ˚ kID for each message ID.
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Figure 5.4: Comparison of the theoretical delays with the performances
achieved by the algorithm against the ECU shutdown attack

5.3 Detection algorithm based on sequences

of message IDs

5.3.1 Fundamentals

Another field inspected for the design of an anomaly detector algorithm for
CAN is based on the analysis of the message IDs. In particular, the message
IDs of CAN data frames are analyzed using detection methods based on the
N-gram analysis. N-grams have been proposed at first for natural language
processing [9,82], and have later became a methodology for the deployment of
Intrusion Detection Systems [1, 39, 47, 50, 72, 75, 93, 94, 96]. The n-gram-based
detection method requires the definition of the inspected alphabet A and of
its different elements k. As an example, in the network packet inspection the
single element k is represented by the byte-strings composing the payload of
the network packets, while the alphabet A is composed by all the different
byte-strings observed in the training dataset. The n-grams are extracted
from the different elements composing the alphabet A from the temporal
sequence of the elements k, using a sliding window of size n. The extracted
n-grams are used for the definition of the normal model deployed for anomaly
detection. In the automotive scenario inspected for this detection method,
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Figure 5.5: Comparison of the theoretical delays with the performances
achieved by the algorithm against the ECU Inhibition attack

the alphabet A is composed by the unique values of the message IDs found
in the CAN bus of the tested vehicle. Since the length of the sliding windows
is a configurable parameter, for the analysis proposed in this Section different
anomaly detection models are created by changing the value of the parameter
n.

5.3.2 Comparison with the state-of-the-art

The state-of-the-art for the anomaly detection on CAN (described in Sec-
tion 3.3) is composed by algorithms that inspect the different features available
in CAN, one being the inspection of the fields composing the CAN data frame.
Compared to the state-of-the-art, the algorithm proposed in this Section
is designed to analyze not only the validity of the ID values of CAN data
frames, but also to create a detection model based on the analysis of the
n-grams composed by the ID values, thus detecting anomalous messages in
the sequence of the message IDs. Moreover, previous work never inspected
the constraint of the microcontrollers for the implementation of their algo-
rithms. The algorithm proposed in this Section is designed considering this
key aspect, allowing different configuration according to the specifications of
the microcontrollers on which the algorithm is deployed.
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5.3.3 Message sequence detection algorithm

In the definitions of the n-grams used for anomaly detection, different values of
the parameter n are inspected to provide an accurate analysis of the detection
performance of the n-gram based detection algorithm. However, since the
value of the parameter n does not affect the definition of the algorithm,
a generic description of the phases composing the detection algorithm is
provided. The detection algorithm based on n-gram analysis is composed by
two different phases: the training phase and the detection phase. The n-grams
composing the detection model are extracted from the dataset in the training
phase. It is necessary to remark that the choice to use the whole dataset
for training purposes allows to achieve zero-false positives in the validation
process of the algorithm, thus preventing other configuration parameters to
influence the detection performance of the algorithm. In the detection phase
the detection models are used for the detecting anomalous n-grams evaluated
over the monitored CAN segment.

Training phase

In the training phase the model used for the detection phase is created by
using the CAN traffic traces gathered from the test vehicle. The n-grams
are extracted from the traces composing the clean dataset. The value of
the parameter n used for the n-gram extraction ranges from 1 to 10. The
algorithm used for the model creation is described as follows: at first, the n-
grams are extracted from each different traffic trace. Each n-gram is composed
by n consequent values of the message ID extracted from the valid traces in a
sliding window fashion. The list of all the n-grams extracted from the clean
dataset composes the detection model. It is necessary to remark that different
detection models are created, one for each of the values of the parameter
n. Moreover, since the frequency of the n-grams is not inspected in the
detection phase, only unique n-grams are found in the model, thus without
any duplicate. The pseudo-code for the training phase of the algorithm is
shown in Algorithm 2.

Detection phase

In the detection phase the models created in the previous phase are used for
the detection of anomalies in the CAN bus. Since the configuration parameter
n allows the definition of multiple detection models, it is necessary to use the
same value of the parameter n used in the model creation in the detection
phase, thus allocating a fixed window of size n that is used for the definition
of n-grams on the CAN traffic. This window is filled with the last n IDs found
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Algorithm 2 Training phase of the N-Gram based detection algorithm

1: model Ð empty listpq
2: for trace in dataset do
3: ixeÐ N
4: while ixe ‰ trace.length do
5: sequenceÐ tracerixe´N : ixes.message ID
6: if sequence Ć model then
7: model.appendpq

8: ixeÐ ixe` 1

9: savepmodelq

in the CAN message stream. When the window is fully populated, the current
n-gram is compared with the detection model. If the n-gram created over the
CAN traffic stream is not found in the detection model, than an anomaly
is raised. The algorithm than inspects the next n-gram by proceeding in a
sliding-window fashion, thus requiring only one more message ID for each
iteration. The pseudo-code for the detection phase of the algorithm is shown
in Algorithm 3.

Algorithm 3 Detection phase of the N-Gram based detection algorithm

1: n, ref Ð loadpmodelq
2: seq Ð listpq
3: for msg ID in ID stream do
4: if seq.length ă n´ 1 then
5: seq.appendpmsg IDq
6: else
7: seq.appendpmsg IDq
8: if not V alidNGrampseq, refq then
9: raise anomaly

10: seq.poppq

11: function ValidNGram(sequence,model)
12: if sequence P model then
13: return True
14: return False

For the tests proposed in this thesis, the message sequence algorithm is
implemented with Python 3 and tested on a server equipped with an Intel®

Core™ i7–7700HQ CPU @3.8 GHz and with 16 GB of RAM running Fedora
27 x64.
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5.3.4 Detection performance of the ID sequence algo-
rithm

The n-gram based detection algorithm proposed in this Section inspects the
sequences of the message IDs on the network. Since each attack scenario
described in 2.3 implies a direct modification of the sequences of the messages
on the network, the detection capabilities of the proposed algorithm are
evaluated against all the attacks described in 5.1.2.

The detection performance of the algorithm are evaluated by means of
the F´measure, which is the harmonic mean of precision and the recall.
The precision is the number of correct anomalies detected by the algorithm
over the total number of anomalies in the dataset, while the recall is the
number of correct anomalies over the total number of anomalies detected
by the algorithm. The formulas used for the evaluation of precision, recall
and F -measure are shown in Equation 5.2, Equation 5.3, and Equation 5.4,
respectively. The symbols Tp, Fp, and Fn used in the formulas denotes the
true positives, false positives, and false negatives, respectively.

precision “
Tp

Tp ` Fp
(5.2)

recall “
Tp

Tp ` Fn
(5.3)

F “ 2 ˚
precision ˚ recall

precision` recall
(5.4)

The F´measure index ranges from 0 to 1, where 0 denotes extremely
poor detection capabilities and 1 denotes perfect detection capabilities.

Replay attack detection

The detection performance of the algorithm against the replay attack scenario
(described in Section 5.1.2) are presented in this section. For the evaluation
of the detection performance of the algorithm, the values of the parameter n
used in the definition of the normal model ranges from 1 to 10. The results
of the algorithm against the single ID replay attack scenario are depicted in
Figure 5.6. The plot in Figure 5.6 compares the F´score (y-axis) achieved by
the detection algorithm by deploying detection models created with different
values of the parameter n (x-axis).

Figure 5.6 depicts the detection results of the algorithm against the single
ID replay attack scenario. The different messages used for the definition of
each attack scenario are depicted in different colors, while box-plots are used
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Figure 5.6: Detection performance of the N-gram based detection algorithm
against the single ID replay attack

to highlight variability of the results over different tests. The box-plots are
grouped according to the value of the parameter n. From the comparison
of the detection results achieved by the algorithm in the different attack
scenarios it is possible to notice that the detection performance achieved by
the algorithm depend from the distribution of the ID used for the attack
simulation: by injecting messages representing higher percentiles (thus less
frequent messages) it is possible to achieve higher detection performance
compared to the injection of messages representing lower percentiles (this more
frequent messages), regardless from the value of the parameter n. However,
in case of injection of the ID belonging to the 10th percentile (red plot) it is
possible to notice that the detection results stabilizes near F´measure “ 0.9
by using a value of n ě 5.

In case of the valid sequence replay attack scenario, the median results
achieved by the detection algorithm against the simulated attacks are depicted
in Figure 5.7.

The results in Figure 5.7 depict the median detection results achieved by
detection algorithm against the valid sequence replay attack. The length of
the attack is depicted on the y-axis, while the x-axis represents the value of
the parameter n used for the definition of the detection model. The median
F´measure values are depicted with different colors, each one representing
a different range. For readability purposes the ranges are defined using
non linear intervals to increase the accuracy of the plots for higher values
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Figure 5.7: Detection performance of the N-gram based detection algorithm
against the valid sequence replay attack

of F´measure. The range reference is depicted on the right of the plot.
The analysis of the results depicted in Figure 5.7 shows that by increasing
the value of the parameter n the algorithm detection performance increases,
while by increasing the length of the replay attack the overall detection
performance decrease. The detailed detection performances of the algorithm
are depicted in Figure 5.8, in which from Figure 5.8a to Figure 5.8i the results
of the algorithm against the injection of n-grams created with values of the
parameter n ranging 2 to 10 are shown. Detection results achieved with the
model created with n “ 1 are not depicted in Figure 5.8 since the algorithm
is not able to detect any anomaly as already shown in Figure 5.7.

The results depicted in Figure 5.8 shown that the detection performance
follows the same trend already described from the analysis of the results
depicted in Figure 5.7.

The results achieved by the algorithm against the Invalid sequence replay
attack scenario are depicted in Figure 5.9.

Figure 5.9 depicts the median detection results achieved by the algorithm
against the invalid sequence replay attack. As already described for the
results depicted in Figure 5.7, the y-axis presents the length of the injected
sequence, while the x-axis describes the different values of the parameter
n. The median F´measure values are depicted with different colors, each
one representing a different range. For readability purposes the ranges are
defined using non linear intervals to increase the accuracy of the plots for
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(a) Injection of n-grams
with n “ 2
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(b) Injection of n-grams
with n “ 3
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(c) Injection of n-grams
with n “ 4
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(d) Injection of n-grams
with n “ 5
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(e) Injection of n-grams
with n “ 6
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(f) Injection of n-grams
with n “ 7
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(g) Injection of n-grams
with n “ 8
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(h) Injection of n-grams
with n “ 9
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(i) Injection of n-grams
with n “ 10

Figure 5.8: F-Measures evaluated over the valid sequence replay attack
simulated with different values of n
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Figure 5.9: Detection performance of the N-gram based detection algorithm
against the invalid sequence replay attack

higher values of F´measure. The range reference is depicted on the right of
the plot. The detection results depicted in Figure 5.9 show that by increasing
either the length of the injected sequence or the value of the parameter n the
detection performance of the algorithm increases, achieving F´measure near
1.0 by deploying a model created with n ě 6 regardless from the length of the
injected sequence. The detailed detection performance depicted in Figure 5.10
confirm the analysis result presented in Figure 5.9, in which by increasing the
value of the parameter n it is possible to achieve higher detection performance.
As for the previous attack scenario, detection results achieved with the model
created with n “ 1 are not depicted in Figure 5.10 since the algorithm is not
able to detect any anomaly as already presented in Figure 5.9.

Fuzzing attack

The results of the detection algorithm tested against the random ID fuzzing
attack demonstrated that the algorithm is always able to achieve perfect
detection of the inspect attack scenario, achieving F´ measures of 1.0 regard-
less from the value of n. Since the random ID fuzzing attack (as described in
Section 2.3.2) is simulated by injecting messages with ID values not found
in the datasets, it is possible to detect any random ID fuzzing attack with
maximum precision and recall. The results of the detection algorithm against
the random payload fuzzing attack are the same already shown in Figure 5.6,
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(a) Injection of n-grams
with n “ 2
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(b) Injection of n-grams
with n “ 3
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(c) Injection of n-grams
with n “ 4
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(d) Injection of n-grams
with n “ 5
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(e) Injection of n-grams
with n “ 6

1 2 3 4 5 6 7 8 9 10

Model length [n]

0.0

0.2

0.4

0.6

0.8

1.0

F
-M

ea
su

re

(f) Injection of n-grams
with n “ 7
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(g) Injection of n-grams
with n “ 8

1 2 3 4 5 6 7 8 9 10

Model length [n]

0.0

0.2

0.4

0.6

0.8

1.0

F
-M

ea
su

re

(h) Injection of n-grams
with n “ 9
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(i) Injection of n-grams
with n “ 10

Figure 5.10: F-Measures evaluated over the invalid sequence replay attack
simulated with different values of n
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since the message IDs used for the generation of both attack scenarios are
the same.

Denial of Service attack

For the analysis of the detection performance of the algorithm against the
Denial-of-Service attacks, only the scenario of the lowest ID denial-of-service
is inspected. In fact, since the message with ID value 0 is not found in the
dataset, the detection performance achieved by the algorithm against the
zero ID denial-of-service attack are the same already presented in the fuzzing
attack scenario.

The detection results of the algorithm against the lowest ID denial-of-
service attack are presented in Table 5.1. The rows of Table 5.1 represent
the value of the configuration parameter n, while the values of the columns
represent the different trace of the dataset on which the attacks are simulated.
The results are depicted by means of F´measure evaluated by the detection
algorithm.

test #

n 1 2 3 4 5 6 7

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.995 0.995 0.995 0.995 0.994 0.994 0.992
3 0.998 0.999 0.998 0.998 0.999 0.998 0.998
4 0.999 0.999 0.999 0.999 0.999 0.999 0.999
5 0.999 0.999 0.999 0.999 0.999 0.999 1.0
6 1.0 1.0 1.0 1.0 1.0 1.0 1.0
7 1.0 1.0 1.0 1.0 1.0 1.0 1.0
8 1.0 1.0 1.0 1.0 1.0 1.0 1.0
9 1.0 1.0 1.0 1.0 1.0 1.0 1.0
10 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 5.1: F-Measures evaluated with the N-gram based detection algorithm
against the lowest ID denial of service scenario

The analysis of the results presented in Table 5.1 show that the algorithm
is able to achieve near-perfect detection of the denial-of-service attack by
using a model created with a minimum value of the parameter n “ 2, while
perfect results are achieved with a value of n ě 6. Furthermore, the ID used
for the generation of this attack scenario is the message with ID value equals
to 1, which is also the ID representing the 100th percentile in the distribution
of probabilities depicted in Figure 5.1.
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ECU inhibition attack

The results of the detection algorithm against the ECU inhibition attack are
depicted in Figure 5.11. Each plot of Figure 5.11 represents the detection
percentages achieved by the algorithm, since it is not possible to evaluate
the F -measure on the inspected attack scenario. The detection percentage is
evaluated as the overall number of anomalies detected over the total number
of removed messages.
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Figure 5.11: Detection percentages of the N-gram based detection algorithm
against the ECU inhibition attack

The results depicted in Figure 5.11 show that the n-gram based detection
algorithm detection performances are affected by the value of the parameter
n. The algorithm is able to detect more anomalies by using models created
with higher values of n, regardless of the message used for the attack. It is
necessary to remark however, that the algorithm struggles to detect more
than 80% of the anomalies in the best scenario.

5.4 Detection algorithm based on Hamming

distance

5.4.1 Fundamentals

The successful attacks to the automotive networks have been conducted by
modifying the values of the signals encoded in the data field (as already
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described in Section 2.3), thus it is necessary to inspect the bits composing
the data field of the messages as a metric for anomaly detection. For this
purpose, the metric used for the definition of the normal model of the vehicle
through inspection of the binary representation of the message data fields
evaluates the hamming distance on the sequences of data fields sharing the
same ID. The Hamming distance [35] is used to measures the minimum
number of substitutions required to change one string into one another, and
it is widely used in several disciplines including information theory, coding
theory and cryptography. The generic formula for the evaluation of the
Hamming distance between two words of equal length k can be found in
Equation 1:

Hdpx, yq “
k
ÿ

i“1

|xi ´ yi| (1)

The evaluated xi´yi shown in Equation 1 is equal to 0 when xi equals yi, 1
otherwise. In this particular scenario, the Hamming distance is evaluated over
two binary strings of the same length. This scenario has already been inspected
by many researcher and it is known as the Hamming cube, a variation of the
classic Hamming distance applied on strings which are comparable to vertices
of an hypercube graph. A generic binary string of length n is defined as
vector in IRn, in which each symbol in the string is considered as a coordinate
of the real plan, thus each string is evaluated as a particular vertex of the
n´dimensional hypercube. In this scenario, the Hamming distance of two
binary strings is equivalent to the Manhattan distance between the vertices
of the generated hyper-line. For detection purposes, this metric evaluates the
Hamming distance between two binary string, reducing the hypercube to a
single hyper-vector. If the length of the payload for a particular message ID
equals 64 bits, the resulting hyperspace containing all the possible vertices
would have a maximum size of 264. In this scenario, the Hamming distance
between two binary strings of length 64 is evaluated as shown in Equation 2,
where pt is a generic payload at time t and pit is the ith bit of that payload.

Hdppt, pt`1q “
64
ÿ

i“1

pit b p
i
t`1 (2)

5.4.2 Comparison with the state-of-the-art

The state-of-the-art for the anomaly detection on CAN (described in Sec-
tion 3.3) is composed by algorithms that inspect the different features available
in CAN, one being the analysis of statistical indexes evaluated over the CAN
traffic. Compared to the state-of-the-art, the algorithm proposed in this
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Section is designed detect anomalies without requiring the full knowledge
of the syntax and semantics of the CAN data field. Moreover, compared to
the other works based on statistical analysis, this algorithm is able to detect
stealth attacks that involve the injection of very few CAN messages.

5.4.3 Hamming distance detection algorithm

The algorithm designed to use the Hamming distance as its detection feature
is composed by two different phases: one phase for the creation and the
validation of the normal model, and another phase for the online detection of
anomalies. In the first phase the algorithm inspects the traces of the dataset
to compute the minimum and maximum Hamming distance of sequence of
data fields extracted from each different message ID.

The model creation phase uses 20% of the dataset, while the remaining
80% is used for validation purposes. Since the detection algorithm inspects
the difference in the Hamming distance between consecutive data fields of
CAN messages with the same ID, a preliminary phase during which messages
with the same CAN ID are grouped together is performed for each trace
composing the dataset. These sub-traces are used for the evaluation of the
Hamming distance between consecutive data fields, using the formula shown
in Formula 2. The minimum and maximum distances are saved for each
message ID, composing the non-validated model. In the validation phase the
minimum and maximum values are used for the detection of false positives.
The algorithm evaluates the Hamming distance between consecutive messages
with the same ID and, in case the evaluated distance falls outside the range
defined by rmin,maxsthen an anomaly is raised. During the validation
phase of the algorithm 0 false positives are detected, thus implying that the
minimum and maximum Hamming distance evaluated during the training
phase represent a steady feature that can be used to identify message injections.
The pseudo-code for this phase is represented in Algorithm 4.

In the online detection phase the algorithm in is able to detect anomalies
by evaluating the Hamming distance of two consecutive payloads of the same
message ID. When the evaluated distance is outside the Hamming range
associated to that particular ID, an anomaly is raised. The pseudo-code for
the online detection phase of the Hamming distance algorithm is shown in
Algorithm 5

For the tests proposed in this thesis, the Hamming-based algorithm is
implemented with Python 3 and tested on a server equipped with an Intel®

Core™ i7–7700HQ CPU @3.8 GHz and with 16 GB of RAM running Fedora
27 x64.
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Algorithm 4 Model creation and validation for the Hamming distance
detection algorithm

1: function HammingDistance(dfa, dfb)
2: distÐ 0
3: for ix in rangep0, lenpdfaqq do
4: if dfarixs ‰ dfbrixs then
5: distÐ dist` 1

return dist
6: function CreateHammingReference(dataseq)
7: prevDF Ð dataseqr0s
8: minH Ð 64
9: maxH Ð 0

10: for currDF in dataseqr1 :s do
11: currDistÐ HammingDistancepprevDF, currDF q
12: if currDist ą maxH then
13: maxH Ð currDist
14: else if currDist ă minH then
15: minH Ð currDist

return minH,maxH

16: function ValidateHammingReference(dataseq)
17: xÐ lenpdataseqq ˚ 0.2
18: minH,maxH Ð CreateHammingReferencepdataseqr: xsq
19: newMinH Ð minH
20: newMaxH Ð maxH
21: prevDF Ð dataseqrlens
22: for currDF in dataseqrlen` 1 :s do
23: currDistÐ HammingDistancepprevDF, currDF q
24: if minH ď currDist ď maxH then
25: fpÐ fp` 1
26: if currDist ą maxH then
27: maxH Ð currDist
28: else if currDist ă minH then
29: minH Ð currDist
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Algorithm 5 Online detection for the Hamming distance algorithm

1: model Ð loadpHammingReferencesq
2: prevDF Ð emptyHashTable
3: for mIDinmodel.ID do
4: prevDF rmIDs Ð NULL

5: for msg in CAN stream do
6: mID Ð msg.CANID

7: mDataÐ msg.data
8: if prevDF rmIDsnotNULL then
9: currDistÐ HammingDistancepprevDF rmIDs, currDF q

10: minH,maxH Ð modelpmIDq
11: if notpminH ď currDist ď maxHq then
12: raise anomaly

13: prevDF rmIDs Ð mData

5.4.4 Detection performance of the Hamming-based al-
gorithm

Since the algorithm that leverages the Hamming distance to detect anomalies
in the CAN traffic flows is designed to inspect the distance between between
consecutive payloads of the same message ID, its detection performances are
evaluated against the only two attack scenarios that modify the content of
the data field of the message, which are the fuzzing payload attack and the
single ID replay attack.

Preliminary analyses on the detection results highlighted that many IDs
had similar detection rates for both fuzzing payload and single ID replay
attacks. These behavior has been further inspected, denoting that IDs with
close detection results have similar Hamming ranges. Statistical analysis of
the Hamming ranges is shown in Figure 5.12, where the y-axis represent the
Hamming range and the x-axis is an identifier of the 50 different IDs that have
been found in the CAN traffic traces. IDs have been ordered with respect to
the associated Hamming range, and IDs with an Hamming range evaluated to
be equal to 0 are highlighted at the end of the plot with a light color, making
them visible. It is possible to observe that IDs can be naturally classified in
three main categories:

• NoRange: IDs for which the Hamming distance between consecu-
tive messages is always constant, hence the minimum and maximum
Hamming distances are equal and the Hamming range is 0;
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• SmallRange: IDs for which the distance between the maximum and
minimum Hamming distances (Hamming range) is always lower than a
σ reference value;

• MidRange: IDs for which the distance between the maximum and
minimum Hamming distances (Hamming range) is always higher than
σ.
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Figure 5.12: Hamming ranges evaluated for the clean dataset

The value of σ has been empirically determined to be equal to 18. This
choice allows to group together IDs with very similar detection rates, and
is motivated by the relatively high gap that exists between IDs 15th and
16th, as shown in Figure 5.12. According to this classification the NoR-
ange, SmallRange and MidRange classes comprise 7, 15 and 28 message IDs,
respectively.

Fuzzing attack detection

Figure 5.13 represents the detection results of the Hamming algorithm against
the payload fuzzing attack described in Section 2.3. For better inspection of
the detection capabilities of the algorithm, the attacks have been simulated
by injecting a malicious payload each 10, 25 and 50 normal messages. These
attack frequencies allows to better inspect the detection capabilities of the
algorithm against different injection of malicious messages.
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The detection results of the algorithm are depicted in Figure 5.13, in
which the leftmost set of bars refers to an injection every 10 messages, the
middle set of bars to an injection every 25 messages, and the rightmost set of
bars refers to an injection every 50 messages. Within each set of bars, the
first refers to the NoRange class, the second to the SmallRange class, and
the third to the MidRange class. The x-axis represents the attack frequency,
while the y-axis represents the detection rate. The results are depicted by
means of detection percentage, presenting for each class both true positives
and the false positives detected by the algorithm with different shades of the
same color.

Results in Figure 5.13 show that the proposed algorithm is able to detect
the injection of attack with percentages close to 100% in case of both NoRange
and SmallRange classes. In particular, the detection rate for the NoRange
class is always higher than 98% and for the SmallRange class is always higher
than 97%.

On the other hand, the detection rate is lower for attacks involving the
IDs classified as MidRange. In this class the detection rate varies from 20% to
30% depending on the intensity of the attack. Attacks with a shorter period
and a higher injection frequency present better detection results with respect
to those characterized by a longer period and a lower injection frequency.

Poor detection results in case of the MidRange class are a direct conse-
quence of the relatively high Hamming range that characterize IDs belonging
to this class. MidRange class is composed by IDs with Hamming range above
the selected σ, meaning that the Hamming distance between payloads of IDs
belonging to this class could change significantly during the vehicle dynamic.
Thus, by injecting randomly generated payloads there are higher probabilities
that the injected payload is close enough in terms of Hamming distance to it
neighbors, generating higher false negatives and keeping the detection rates
smaller compared to the other classes.

Single ID Replay attack detection

Figure 5.14 represents the detection results of the Hamming based detection
algorithm against the single ID replay attack scenario. As for the previous
attack scenario, for better inspection of the detection capabilities of the
algorithm the attacks have been simulated by injecting a single message each
10, 25 and 50 normal messages.

Similarly to the previous attack scenario, for each class of attacks the
three different detection results are shown, represented as sets of three vertical
bars. Left to right, the sets of bars refer to a replay message injected every
10, 25 and 50 messages, respectively. Within each set of bars, the first refers



64 Detection techniques based on the CAN standard

10 25 50
Attack frequency

0

20

40

60

80

100

D
et

ec
te

d
an

om
al

ie
s

[%
]

NoRange [TP/FP] SmallRange [TP/FP] MidRange [TP/FP]

Figure 5.13: Detection results of the Hamming based algorithm against the
payload fuzzing attack scenario

to the NoRange class, the second to the SmallRange class, and the third to
the MidRange class. The x-axis represents the attack frequency, while the
y-axis represents the detection rate. The results are depicted by means of
detection percentage, presenting for each class both true positives and the
false positives detected by the algorithm with different shades of the same
color.

It is possible to observe that the proposed method is not suitable for
the detection of replay attacks, achieving very poor results in case of the
NoRange and SmallRange classes. In particular, the proposed method never
raises an alert for replay attacks on IDs belonging to the NoRange class, while
detection rates for the SmallRange class are always below 2%. This result
could be explained by the very low Hamming range that characterize legit
messages, that are very similar among themselves. Since the replay attack
is executed by injecting a legit message out-of-place within the CAN traffic,
the anomalous message will always be injected before or after a message with
very similar bits, thus preventing the algorithm to detecting it.

Better results can be achieved for IDs belonging to the MidRange class,
and characterized by higher Hamming ranges (and higher message variability).
Detection rate for this class varies between 10% and 20%, depending on the
attack frequency. While these detection rates are small, it is necessary to
remark that the proposed detection method achieved a false positive rate of
0.
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Figure 5.14: Detection results of the Hamming based algorithm against the
single ID replay attack scenario

5.4.5 Computational costs

An accurate inspection of computational complexity and memory require-
ments for the proposed algorithm is given in this paragraph to prove its
low computational requirements that make it applicable to low-end ECUs
deployed in common vehicles.

Computational complexity: The Hamming based algorithm for live
detection requires to compare the current payload value of a specific ID with
the previous payload of the same message ID. The evaluation of the Hamming
distance of the two payloads takes place in a single loop, that compares all
the N bits composing the payload and sums the result of a bit-wise XOR
operation among the bits at the same index of the two different payloads,
adding one in case the two bits are different from each other, 0 otherwise.
At the end of this loop, the evaluated distance is compared to the reference
values for that message ID, raising an anomaly if the value is outside the
valid range. Computational complexity of the final implementation of the live
detection has been evaluated as OpNq. Where N is equal to the number of
bits forming the payloads, with a maximum value of 64.

Memory requirements: The proposed detector uses one indexed data
structure to store the previous payload for each ID. The size of this structure
is evaluated as Nid ˆ Lid, where Nid represents the number of unique IDs
flowing on the internal network and Lid denotes the number of bits composing
the payload for that particular ID. Maximum memory requirements could be
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evaluated as Nid ˆ 64, where 64 is the maximum allowed value for Lid.

From the previous analysis it is possible to evaluate that for the vehicle
used in the experimental evaluation a maximum of 400 Bytes to store the
previous messages are required, thus requiring 8 Bytes for each of the 50
unique message IDs flowing on the inspected CAN bus.

Common low-end ECUs are generally composed by microcontrollers with
1 computational core, having a working frequency in the orders of hundreds
of Mega Hertz, and with few hundreds of Kilo Bytes of RAM. For the tested
vehicle the live detector only requires up to 400 Bytes of memory, and its
operations can be carried out by a common microcontroller equipped with a
single core. Hence, the proposed live-detection algorithm can be implemented
on common low-end ECUs.

5.5 Detection algorithm based on Entropy

5.5.1 Fundamentals

Following the definition of multiple metrics based on the inspection of the
fields composing the CAN frames in the previous Sections, a metric based
on the inspection of the combination of multiple fields is proposed. This
detection method is designed to inspect the entropy of the data flowing on the
CAN bus for the detection of anomalies. Entropy-based anomaly detection
algorithms characterize the normal behavior of a set of data based on their
level of statistical entropy [19]. The entropy H of a dataset comprising i
different symbols is defined according to equation 5.5:

H “
ÿ

i

p piq log2

„

1

p piq



(5.5)

where p piq represents the probability of occurrence of the ith symbol. In
information theory, entropy represents the amount of information conveyed
in the dataset, expressed in bits. As an example, a dataset composed by only
one symbol has H “ 0 independently of its length, meaning that it conveys 0
bits of information. On the other hand, a dataset containing n independent
and identically distributed symbols has H “ log2pnq. H also represents
the expected amount of information conveyed by each message belonging
to the dataset. The value of H is also used to measure the randomness
of an information source. The use of entropy as a mean to describe the
normal behavior of an information source relies on the following underlying
assumptions:
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Figure 5.15: Preliminary analysis of entropy values evaluated on different
time windows

• the entropy of messages generated by the information source exhibits
stable statistical characteristics;

• relevant anomalies (that is: anomalies that should be detected by the al-
gorithm) introduce significant deviations in the statistical characteristics
of the entropy.

A feasibility study of this detection technique is conducted by analyzing the
first 100 seconds of the first trace of the dataset. This initial sequence of
messages has been further divided into non overlapping time windows of 1,
0.5 and 0.1 seconds, and used equation 5.5 to compute the entropy of the
set of CAN messages included in each time window. Hence, three different
time series representing the evolution of entropy (y-axis) over time (x-axis)
for the three different time granularity have been generated and depicted in
Figure 5.15.

Figure 5.15 depicts the evolution over time (shown on the x-axis) of the
entropy values (shown on the y-axis) evaluated over different time windows
(top to bottom: 1, 0.5, and 0.1 seconds). From the results of the preliminary
analysis depicted in Figure 5.15 it is possible to observe that the entropy value
is stable and independent from specific driving conditions (such as changes in
speed, sudden brakes, road turns, activation of turning lights). As expected,
entropy computed over larger time frames is higher than entropy computed
over shorter time frames, that includes fewer messages.
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To identify suitable criteria for anomaly detection the distribution of
entropy values are also analyzed and shown in Figure 5.16, where the x-
axis depicts the entropy value and the y-axis represents the number of time
windows that fall within each bin.
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Figure 5.16: Distribution of the CAN entropy measured with a time window
of 0.1 seconds.

Figure 5.16 refers to a subset of 100 seconds of CAN messages, and entropy
values are computed with a time window of 0.1 seconds. Similar distributions
are achieved for all time granularity and it is possible to compare them to
the normal distribution.

5.5.2 Comparison with the state-of-the-art

The state-of-the-art for the anomaly detection on CAN (described in Sec-
tion 3.3) is composed by algorithms that inspect the different features available
in CAN, one being the analysis of statistical indexes evaluated over the CAN
traffic. Compared to the state-of-the-art, the algorithm proposed in this
Section expands the analysis already proposed in literature and inspects the
boundaries of entropy-based anomaly detectors for the CAN bus.

5.5.3 Entropy-based detection algorithm

The algorithms based on the evaluation of Entropy values is composed by
two different phases: an initial model creation and validation phase, that
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generates all the references for each ID of the car model and validates the
preliminary results against other traces of the dataset; and the live detection
phase, designed and implemented to test the detection model against real
attack scenarios. Since entropy values appear to be rather stable over time and
distributed according to a normal distribution as inspected in the previous
Section, the anomaly detection algorithm based on the inspection of the
entropy value is based on the assumption that entropy values that are too
distant from the average entropy are unlikely, and should be considered as
anomalies. For each of the three time granularity considered in the previous
Section, two descriptive parameters are computed: the average entropy value
µe and its standard deviation σe. For each time window t, the anomaly
detection algorithm leverages equation 5.5 to compute Ht, that is the entropy
of all CAN messages included in the time frame t. An anomaly is raised if Ht

is not within in the range rµe ´ kσe, µe ` kσe, s, where k is a model parameter
that defines the sensitivity of the algorithm with respect to deviations from µe.
To tune the value of the parameter k the validation phase of the algorithm
inspects a part of CAN dataset not used for the definition of the values µe and
σe of the dataset with an initial value of k “ 1. The value of k is increased by
one until the algorithm raises no anomalies, thus achieving 0 false positives.
The lowest value of k that generates 0 false positives is k “ 3 for all three
inspected time granularity. The pseudo-code describing the model creation
and validation and live detection phases are depicted in Algorithm 6 and
Algorithm 7, respectively.

For the tests proposed in this thesis, the Entropy-based algorithm is
implemented with Python 3 and tested on a server equipped with an Intel®

Core™ i7–7700HQ CPU @3.8 GHz and with 16 GB of RAM running Fedora
27 x64.

5.5.4 Detection performance of the Entropy-based al-
gorithm

This section provides an experimental evaluation of the effectiveness of entropy-
based anomaly detection against all the attack scenarios presented in Sec-
tion 5.1.2. The model used for the detection of anomalies is the model created
with a window of 0.1 seconds, i.e. the model with the lowest entropy values
from Figure 5.15.

Replay attack

The detection performance of the entropy-based algorithm are tested against
the injection of messages already seen on the CAN bus. Since the algorithm
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Algorithm 6 Model creation and validation for the Entropy-based algorithm

1: function Entropy(messageWinCAN)
2: wLenÐ lenpmessageWinCANq
3: countersÐ InitializeCounterspq
4: for msg in messageWinCAN do
5: countersrmsgs ` `

6: probsÐ counters{wLen
7: entropy Ð 0
8: for i in messageWinCAN do

9: entropy` “ probsris ˚ log2

”

1
probsris

ı

10: return entropy

11: function ModelCreation(tw)
12: entV alsÐ emptyListpq
13: currWinÐ emptyListpq
14: startTw Ð 0
15: endTw Ð tw
16: for winDF in dataseqrstartTw : endTws do
17: entV als.appendpEntropypwinDF qq
18: startTw Ð endTw
19: endTw Ð endTw ` tw

20: saveptw, µentV als, σentV alsq

21: function ModelValidation(model)
22: tw, µtw, σtw Ð loadpmodelq
23: k Ð 1
24: startTw Ð 0
25: endTw Ð tw
26: for winDF in dataseqrstartTw : endTws do
27: currEntÐ EntropypwinDF q
28: if not µtw ´ k ˚ σtw ă currEnt ă µtw ` k ˚ σtw then
29: k Ð k ` 1
30: startTw Ð 0
31: endTw Ð tw
32: else
33: startTw Ð endTw
34: endTw Ð endTw ` tw

35: saveptw, µtw, σtw, kq
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Algorithm 7 Live detection algorithm for Entropy inspection

1: function Entropy(messageWinCAN)
2: wLenÐ lenpmessageWinCANq
3: countersÐ InitializeCounterspq
4: for msg in messageWinCAN do
5: countersrmsgs ` `

6: probsÐ counters{wLen
7: entropy Ð 0
8: for i in messageWinCAN do

9: entropy` “ probsris ˚ log2

”

1
probsris

ı

10: return entropy

11: function LiveDetection(model)
12: tw, µ, σ, k Ð loadpmodelq
13: startTw Ð 0
14: endTw Ð tw
15: for winDF in dataseqrstartTw : endTws do
16: currEntÐ EntropypwinDF q
17: if not µ´ k ˚ σ ă currEnt ă µ` k ˚ σ then
18: raise anomaly

19: startTw Ð endTw
20: endTw Ð endTw ` tw



72 Detection techniques based on the CAN standard

0 500

Time [s]

4.5

5.0

5.5

6.0

6.5

E
nt

ro
py

[#
]

1 msg/s

0 500

Time [s]

10 msg/s

0 500

Time [s]

25 msg/s

0 500

Time [s]

50 msg/s

0 500

Time [s]

75 msg/s

0 500

Time [s]

100 msg/s

Figure 5.17: Entropy values evaluated over the Single ID replay attack scenario
with different attack frequency

inspects the messages belonging to different time windows for the detection,
it is necessary to consider different frequencies of injection to provide an
accurate analysis of the detection performances of the algorithm. For this
purpose, each attack is replicated in each time window 1, 10, 25, 50, 75, and
100 times.

Single ID Replay In this attack scenario a single message is injected
in each time window many times. Since the statistical distribution of the
messages evaluated on the whole dataset does not influences the outcome of
the algorithm, for this attack scenario a single message belonging to each time
window is repeated multiple times. The detection results of the algorithm
against this attack scenario are depicted in Figure 5.17, in which (left to
right) each plot represents the entropy evaluated over different time windows
against the Single ID replay attack with different frequency (1, 10, 25, 50, 75,
and 100 injected messages). The x-axis of each plot of Figure 5.17 represents
the time, while the y-axis represents the entropy value. Two horizontal lines
in each plot are used to define the normal entropy range within no anomaly
is raised.

From the analysis of the results depicted in Figure 5.17 it is possible to
notice that the algorithm is not able to detect anomalies consistently in case
of a replay attack with frequencies below 50 messages each time window. The
algorithm is able to detect anomalies consistently starting with the injection
of 50 messages each time window. The results also depicts that, by injecting
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Figure 5.18: Entropy values evaluated over the Sequence replay attack scenario
with different attack frequency

multiple time the same message in the time window the entropy values follows
a decreasing trend. This is explained by considering that, by adding multiple
times a single message to the same time window, the probability of that
message increases and thus, according to Equation 5.5 the value of mathcalH
decreases. Moreover, it is interesting to notice that by injecting less than 50
messages in each time windows it is not possible to always detect an anomaly.
However, it is also to notice that depending on the time window, even the
injection of a single message could be detected, despite the injection attack
has higher probabilities of being unnoticed.

Sequence Replay In this attack scenario multiple messages are injected
in each time window many times by choosing a random message between the
ones belonging to the time window. The detection results of the algorithm
against this attack scenario are depicted in Figure 5.18, in which (left to
right) each plot represents the entropy evaluated over different time windows
against the Sequence replay attack with different frequency (1, 10, 25, 50, 75,
and 100 injected messages). The x-axis of each plot of Figure 5.18 represents
the time, while the y-axis represents the entropy value. Two horizontal lines
in each plot are used to define the normal entropy range within no anomaly is
raised. From the analysis of the results depicted in Figure 5.18 it is possible
to notice that the algorithm struggles to detect anomalies consistently despite
the increasing number of messages injected in each time window. This result
is explained by considering the simulated attack scenario. Since the attack
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Figure 5.19: Entropy values evaluated over different fuzzing attack scenarios

is simulated by replaying different messages randomly chosen between the
ones belonging to the inspected time window, despite the number of overall
messages in the time window increases, the probabilities of each message do
not change. As a consequence, since for the evaluation of H the probability
of the message is considered, the evaluated entropy value does not change
significantly from the normal reference, thus preventing the algorithm from
detecting any anomaly.

Fuzzing attack

In this attack scenario multiple messages are injected in each time window.
Each message is generated with a random ID and data field, thus the Fuzzing
ID and Fuzzing payload attack scenario are inspected at the same time. The
detection results of the algorithm against this attack scenario are depicted in
Figure 5.19, in which (left to right) each plot represents the entropy evaluated
over different time windows against the Fuzzing attack with different frequency
(1, 10, 25, 50, 75, and 100 injected messages). The x-axis of each plot of
Figure 5.19 represents the time, while the y-axis represents the entropy value.
Two horizontal lines in each plot are used to define the normal entropy range
within no anomaly is raised.

From the analysis of the results depicted in Figure 5.19 it is possible to
notice that, as for the results depicted against the Single ID replay attack
(Section 5.5.4), the algorithm is able to consistently detect anomalies with
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an injection of at least 50 messages each time window. Another interesting
behavior to notice is that the injection of random messages causes the entropy
value to increase, which is the exact opposite behavior observed against the
single ID replay attack. This trend is explained using the same criteria already
presented in 5.5.4. The fuzzing injection attack randomly generates messages
to inject in each time window. Since these messages are randomly-generated,
there are high probability that the generated messages are not seen in the time
windows, meaning that the injected message has an high informative meaning,
thus increasing the entropy evaluated in the window as a consequence.

ECU Inhibition

In this attack scenario no different assumptions have been made with respect
to the definition of the attack provided in Section 5.1.2. Since this attack
removes messages from the network, the number of messages removed from the
network changes according to the percentile of the removed ID, thus removing
a fixed number of messages from each time window is not representative of
a real-case attack scenario. The detection results of the algorithm against
this attack scenario are depicted in Figure 5.20, in which (left to right) each
plot represents the entropy evaluated over different time windows against the
removal of messages belonging to different percentiles (10, 50, 75, and 100).
The x-axis of each plot of Figure 5.19 represents the time, while the y-axis
represents the entropy value. Two horizontal lines in each plot are used to
define the normal entropy range within no anomaly is raised.

From the analysis of the results depicted in Figure 5.20 it is possible to
notice that the algorithm struggles to detect anomalies consistently inde-
pendently from the distribution of the ID removed. This result is explained
by considering the simulated attack scenario. Since the attack is simulated
by removing messages, the resulting time windows are composed by fewer
messages. The analysis of the resulting time windows depicted that each
time window is composed by up to 5 less messages compared to the time
windows used for the definition of the model, thus the resulting H value does
not change significantly from the normal reference.
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Figure 5.20: Entropy values evaluated over different ECU inhibition attack
scenarios

5.6 Detection algorithm based on bus utiliza-

tion

5.6.1 Fundamentals

The bus utilization is a metric used for the evaluation of the bandwidth used
by the nodes of the network for their communication. The utilization U of
each second of bus communication in which i messages are sent is defined
according to equation 5.6.

U “
ř

i lenpCANmsgiq

baudrate
(5.6)

where lenpCANmsgiq represents the number of bits of the message CANmsgi
belonging to the inspected time interval, while baudrate is a constant value
representing the operating bit-rate of the network. A feasibility study on this
detection technique is conducted by analyzing the first 30 minutes of the first
trace of the dataset. The results of this preliminary analysis are depicted in
Figure 5.21, which shows the distribution of the utilization evaluated over
the first minutes of traffic.

From the analysis of the preliminary results depicted in Figure 5.21 it is
possible to notice that the distribution of the utilization (x-axis) is comparable
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Figure 5.21: Distribution of the utilization in the first 1800 seconds of the
first trace of the dataset

to the distribution of a normal function centered around the mean value
(0.375257).

5.6.2 Comparison with the state-of-the-art

The state-of-the-art for the anomaly detection on CAN (described in Sec-
tion 3.3) is composed by algorithms that inspect the different features available
in CAN, one being the analysis of statistical indexes evaluated over the CAN
traffic. Compared to the state-of-the-art, to the best of our knowledge, the
algorithm proposed in this Section is the first algorithm that inspects the
CAN bus utilization as its detection feature.

5.6.3 Busload detection algorithm

The algorithm based on the evaluation of the bus utilization is composed
by two different phases: an initial training phase, in which the parameters
that minimizes the number of false positives are evaluated, and the detec-
tion phase, which is used for the detection of anomalies. The detection
algorithm uses the same assumptions used for the Entropy-based detection
algorithm (Section 5.5). Since the bus utilization values appear to be stable
over time and distributed according to a normal distribution, in each non-
overlapping time window t (fixed at 1.0 second), the utilization U is evaluated
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using equation 5.6 and compared to the normal utilization range defined as
rµ´ k ˆ σ, µ` k ˆ σs, where µ is the utilization mean value, σ is its standard
deviation, and k is a tuning parameter. If the utilization falls outside of the
defined normal range an anomaly is raised. The training phase is used for
the evaluation of the parameters µ and σ required for the validation of the
algorithm. In the validation process the value of k is initially set to 1, and it
is incremented by 1 each iteration to achieve 0 false positives on the clean
traces. The pseudocode for the training and validation phase is depicted in
Algorithm 8, while the detection phase is depicted in Algorithm 9.

For the tests proposed in this thesis, the bus utilization algorithm is
implemented with Python 3 and tested on a server equipped with an Intel®

Core™ i7–7700HQ CPU @3.8 GHz and with 16 GB of RAM running Fedora
27 x64.

5.6.4 Detection performances of the bus utilization al-
gorithm

The detection results of the bus utilization algorithm are tested against all
the attack scenarios described in Section 5.1.2, since the proposed detection
method inspects the utilization of the network, it is possible to apply it to the
different attack scenarios described in 2.3 by considering the manipulation
of the network required for the attack. For this purpose it is necessary to
define a novel description of the attack scenarios that do not considers only
the typology of the attack but inspects the required network manipulations.
The attacks previously defined as replay attack, fuzzing attack and denial of
service attack require the injection of extra messages on the network. Despite
the different characteristics of the different attacks, since the bus utilization
algorithm only inspects the number of bits in each second of the network,
all these attack scenarios could be inspected as an equivalent injection of
messages under the scenario of the Message injection attack scenario.
The attacks described as ECU shutdown and ECU inhibition both consider
the attack scenario in which messages are removed from the network. For this
purpose, since the ECU shutdown attack is a limited case of ECU inhibition,
only the detection results of the algorithm against the ECU inhibition are
inspected under the scenario of the Message removal attack scenario.

Message injection attack detection

For the simulation of the different message injection scenarios, a random
message is injected 1, 10, 25, 50, 75, and 100 times each second. The detection
results of the bus utilization algorithm against the message injection scenario
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Algorithm 8 Training and validation algorithm for the bus utilization in-
spection

1: function Utilization(messageWinCAN)
2: bitCountÐ 0
3: for msg in messageWinCAN do
4: bitCount` “ lenpmsgq

5: return bitCount{baudrate

6: function ModelCreation
7: utilListÐ emptyListpq
8: startTw Ð 0
9: endTw Ð 1

10: for win in dataseqrstartTw : endTws do
11: utilList.appendpUtilizationpwinqq
12: startTw Ð endTw
13: endTw Ð endTw ` 1

14: savepµutilList, σutilListq

15: function ModelValidation(model)
16: µtw, σtw Ð loadpmodelq
17: k Ð 1
18: startTw Ð 0
19: endTw Ð 1
20: for win in dataseqrstartTw : endTws do
21: currUtil Ð Utilizationpwinq
22: if not µtw ´ k ˚ σtw ă currEnt ă µtw ` k ˚ σtw then
23: k Ð k ` 1
24: startTw Ð 0
25: endTw Ð tw
26: else
27: startTw Ð endTw
28: endTw Ð endTw ` 1

29: savepµtw, σtw, kq
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Algorithm 9 Detection algorithm for the bus utilization inspection

1: function LiveDetection(model)
2: µ, σ, k Ð loadpmodelq
3: startTw Ð 0
4: endTw Ð 1
5: for win in dataseqrstartTw : endTws do
6: currUtil Ð Utilizationpwinq
7: if not µ´ k ˚ σ ă currEnt ă µ` k ˚ σ then
8: raise anomaly

9: startTw Ð endTw
10: endTw Ð endTw ` 1

are depicted in Figure 5.22, in which the x-axis represents the time of the
inspected traffic trace while the y-axis represents the evaluated percentage
of bus utilization. The values depicted in Figure 5.22 represent (bottom to
top) the utilization percentage evaluated by injecting 1, 10, 25, 50, 75, and 100
messages each second.
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Figure 5.22: Detection results of the bus utilization algorithm

The results depicted in Figure 5.22 show that to achieve stable detection
results against the injection attack it is necessary to inject 25 or more messages
each second. By injecting 1 single message each second the attack goes
undetected, while with an injection of 10 messages each second it is not
possible to achieve stable results, despite some anomalies are detected by the
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algorithm.

Message removal attack detection

The detection results of the bus utilization algorithm are depicted in Fig-
ure 5.23, in which the x-axis represents the time of the inspected traffic
trace while the y-axis represents the evaluated percentage of bus utilization.
The values depicted in Figure 5.23 represent (bottom to top) the utilization
percentage evaluated by removing messages representing the 10th, 50th, 75th,
and 100th percentile.
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Figure 5.23: Detection results of the bus utilization algorithm

The results depicted in Figure 5.22 show that the detection capabilities
of the bus utilization algorithm are related to the percentile of the removed
message. By removing messages representing lower percentile values (i.e.
messages that appears on the bus with higher frequencies) the algorithm is
able to detect those removal accurately in each second of the inspected traffic
trace, with an utilization that drops around 35.5%, 36.25% and 36.75% for
the messages representing the 10th, 50th and 75th percentiles, respectively. As
already presented in Section 5.3.3, in case of removing the ID representing
the 100th percentile only one message is removed from each trace, thus the
bus utilization algorithm fails to detect any anomaly.
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5.2 5.3 5.4 5.5 5.6

Message
Injection

Replay
Single ID X X X X

Valid
Sequence

X X X

Invalid
Sequence

X X X

Fuzzing
Random ID X X X

Random
Payload

X X X X

Denial of
Service

Lowest ID X X X
Zero ID X X X

Message
Removal

ECU
Shutdown

X X X X

ECU
Inhibition

X X X X

Table 5.2: Summary of the attack detection capabilities of the proposed
algorithms against the inspected attack scenarios

5.7 Detection method summary

This Section summarizes all the different approaches presented in this Chapter
and evaluates their effectiveness in the detection of the attack scenarios
presented in Section 5.1.2.

5.7.1 Single ID replay attack

The Single ID replay attack is tested against four detection algorithms pro-
posed in this Chapter: Algorithm 5.3 (message ID sequence), 5.4 (Hamming
distance), 5.5 (entropy), and 5.6 (bus utilization). From the comparison of
the detection results achieved by the aforementioned algorithms against this
attack scenario, different conclusions are inspected. At first, it is noticeable
that 5.4 achieves poor detection results against this attack scenario. Similar
results are achieved for both 5.5 and 5.6: despite both algorithms are proven
effective in the detection of the injection of a big number of messages, real
case attack scenario often uses a small number of message to achieve their
goals, thus the algorithms are not suitable to detect this typology of attack.
The only algorithm proven effective in the detection of a Single ID replay
attack is 5.3, which is able to achieve good detection results against any of
the inspected scenarios, despite it is necessary to deploy the detection model
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created with the highest value of the parameter n.

5.7.2 Valid and Invalid sequence replay attack

Both Valid and Invalid sequence replay attack are tested against the same
three detection algorithms proposed in this Chapter: Algorithm 5.3 (message
ID sequence), 5.5 (entropy), and 5.6 (bus utilization). From the comparison
of the detection results achieved by the aforementioned algorithms against
both attack scenarios, it is possible to notice that the detection results of Al-
gorithm 5.3 outperform the ones achieved by 5.5 and 5.6. With Algorithm 5.3
it is possible to detect the injection of both valid and invalid sequences of
messages, with different models achieving different results according to the
length of the attack (from a sequence of length 2 to a sequence of length 10).
In case of 5.5 and 5.6, by injecting a valid or invalid sequence composed by
10 messages in each time window, the evaluated entropy or utilization of the
window is not outside the normal range, thus the algorithms are not able to
detect any of this attacks. Moreover, in 5.3 the attacks are simulated with a
frequency of 1 sequence each second.

5.7.3 Fuzzing ID attack

The Fuzzing ID replay attack is tested against three detection algorithms
proposed in this Chapter: Algorithm 5.3 (message ID sequence), 5.5 (entropy),
and 5.6 (bus utilization). From the comparison of the detection results
achieved by the aforementioned algorithms against the Fuzzing ID attack
scenario, it is possible to notice that 5.3 is by far the most effective and simple
solution to deploy for the detection of IDs never observed on the network. The
model with length n “ 1 is composed by all the IDs observed in the training
phase of Algorithm 5.3, thus if an ID is not observed in the training phase, 5.3
automatically detects it. The only drawback of this approach is that, since 5.3
is limited on the analysis of the dataset collected for the inspected vehicle,
valid IDs never observed in the training dataset would be mistakenly classified
as anomalous. However, from the comparison of the results achieved by
both 5.5 and 5.6 it is noticeable that, despite the injected ID is created
randomly, both algorithms are able to detect anomalies consistently while
injecting 50 or more messages in the inspected time reference.

5.7.4 Fuzzing payload attack

The Fuzzing payload replay attack is tested against four detection algorithms
proposed in this Chapter: Algorithm 5.3 (message ID sequence), 5.4 (Hamming
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distance), 5.5 (entropy), and 5.6 (bus utilization). From the comparison of
the detection results achieved by the aforementioned algorithms it is possible
to notice that Algorithm 5.5 and 5.6 achieve the same results achieved against
the fuzzing ID attack scenario (5.7.3). Moreover, it is interesting to notice
that, despite 5.3 is not designed to detect anomalies on the payload and each
payload is related to a particular ID, it is possible to inspect this feature for
the detection of anomalies with good results by deploying models created
with high value of n. However, 5.4 is designed to detect anomalies directly
on the payload of the messages and provides good detection results against
this attack scenario, almost achieving 100% detection of anomalies in the
inspected class of IDs.

5.7.5 Denial of service attack

Since the assumptions in the generation of the infected dataset for this
attack scenario demonstrated that the Lowest ID and the Zero ID attacks
are equal, the results of the algorithms tested against this attack scenario are
presented for both attacks at the same time. Both Denial-of-Service replay
attacks are tested against three detection algorithms proposed in this Chapter:
Algorithm 5.3 (message ID sequence), 5.5 (entropy), and 5.6 (bus utilization),
and all of these algorithms are able to achieve high detection results against
both Denial-of-Service scenario attacks. Algorithm 5.3 achieves perfect results
by deploying a detection model created with a value of n ě 6, thus it does
not require memory-expensive models. Algorithm 5.5 and 5.6 both are able
to identify the injection of 100 messages in the respective time frame with
absolute precision. It is to notice that, despite the Denial-of-Service attacks
are simulated with the injection of 100 extra messages each second in 5.3
and 5.6, the attacks simulated in 5.5 injects 100 messages each time window
with duration of 0.1 seconds. Despite the inspected time window is different,
and since the Denial-of-Service attack targets the whole network by injecting
at least 100 messages to disrupt the communication for 0.2 seconds (see
Section 5.1.2), it is possible to deploy 5.5 for the detection of Denial-of-Service
attacks efficiently, since it is able to detect correctly anomalies achieved
by injecting 50 messages each window with duration 0.1 seconds (thus 100
messages spawned in a window of duration 0.2 seconds).

5.7.6 ECU shutdown attack

The ECU shutdown attack is tested against four detection algorithms pro-
posed in this Chapter: Algorithm 5.2 (missing message), 5.3 (message ID
sequence), 5.5 (entropy), and 5.6 (bus utilization). From the comparison of the
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detection results achieved by the aforementioned algorithms, it is possible to
notice that Algorithm 5.2 outperforms all the other detection methods, and is
the best performing detection algorithm in this attack scenario. Algorithm 5.6
is able to achieve good detection results, but its results are related to the
removed message. This result also applies for 5.3, but its overall detection
performances are lower. Algorithm 5.5 achieved the worst performance in the
inspected attack scenario, since the removal of messages does not reflects in a
consistent change of the entropy of the values.

5.7.7 ECU inhibition attack

The ECU inhibition attack is tested against four detection algorithms pro-
posed in this Chapter: Algorithm 5.2 (missing message), 5.3 (message ID
sequence), 5.5 (entropy), and 5.6 (bus utilization). The results presented
in Section 5.7.6 are the same achieved by the algorithms in this scenario.
Algorithm 5.5 is not able to detect any anomaly since the removal of messages
from the network does not affect the entropy to significant changes. Algo-
rithm 5.3 is able to detect anomalies but its performance are not as good as
the ones achieved with 5.6, which are tested against the removal of messages
with different percentiles. Algorithm 5.2 is still the best detection method to
deploy for the detection of any message removal attack.

5.8 Detection framework

Based on the results presented in Section 5.7, this Section proposes a unified
detection framework that leverages the best algorithm for each attack scenario.
Figure 5.2 depicts a summary of the effectiveness of the detection algorithm
against the different attack scenario, as already discussed in Section 5.7. The
detection performance of the algorithms are categorized with different symbols
and colors:

•
a

: good detection results against the simulated attack;

• ♦: the algorithm is able to detect anomalies despite some limitations;

•
`

: the algorithm is not able to detect anomalies.

From the final summary shown in Table 5.3 it is possible to notice that
for the definition of a minimal detection framework able to detect anomalies
generated as described in Section 2.3 it is necessary to deploy only 2 of the
inspected algorithms: the missing message algorithm 5.2 and the message
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5.2 5.3 5.4 5.5 5.6
Single ID

a ` ` `

Valid Sequence
a ` `

Invalid Sequence
a ` `

Random ID
a

♦
`

Random Payload
a

♦ ♦
`

Lowest ID
a a a

Zero ID
a a a

ECU
Shutdown

a
♦

`
♦

ECU
Inhibition

a
♦

`
♦

Table 5.3: Summary of the attack detection capabilities of the proposed
algorithms against the inspected attack scenarios

sequence algorithm 5.3, which are the best performing algorithms against the
message removal scenarios and the message injection scenarios, respectively.
As a final remark, it is necessary to recall that both Entropy and Utilization
detection algorithm are affected by the number of injected anomalies and,
despite they under-performed against the simulated attacks, their detection
capabilities against other attack scenario has already proven effective.



Chapter 6

Detection techniques based on
CAN data frame payloads

In this Chapter different algorithms for the detection of anomalies on the CAN
bus based on closed standard are proposed. Since these algorithms inspect
the values of the signals encoded in the data field of a CAN data frame, it is
necessary to extract those signals from the data field to inspect them. There
are two different ways to extract the signals from a CAN data frame. The first
solution requires access to the specification of the vehicle model, which are
encoded in a file called DBC. The DBC file contains all the specifications of
a particular vehicle model: the list of message IDs sent on the network, their
cycle-time, the ECUs that generates each ID, the encoding of the payload
of the messages, and the reference of each signal (the name, the offset, the
scaling factor, the measurement unit of the signal and so on). Since the DBC
allows us to obtain complete knowledge of the inspected CAN segment, car
manufacturers keep these files extremely confidential and they are not publicly
available. Another method to access the signals encoded in a CAN data frame
is to inspect the content of the messages to reverse-engineer the boundaries of
each signal. The reverse engineering of CAN data frames is a tasks that has
been used by security researchers to obtain knowledge of the network, allowing
them to inject maliciously forged messages for their purposes. Despite this
task has been widely used by many security researchers, each vehicle model
requires a dedicated reverse-engineering process, thus security researchers
often inspect the messages manually to reverse-engineer them, making the
whole process extremely time consuming. For this purpose an algorithm for
the Reverse Engineering of Automotive Data frames (READ) is presented
in this Chapter at first. The output of READ is used for the definition of
different detection algorithms focused on the analysis of the signals encoded
in the data field.
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6.1 Reverse Engineering of Automotive Data

frames

The Reverse Engineering of Automotive Data frame (READ) algorithm
proposed in this Section is used for the extraction of individual signals from
CAN traffic, by inspecting all the bits of the data field of all observed CAN
messages and evaluating their evolution over time.

ECUs communicate by exchanging messages that deliver values gathered
from different sensors to actuators that control several subsystems of the
vehicle. In particular, most of the signals generated by sensors encode the
current value of a given physical phenomena, such as the speed at which
a wheel is rotating or the acceleration measured along a given axis. The
evolution over time of similar signals is unpredictable, since it depends on
the road and driving conditions. However it is clearly limited by physical
constraints. Since many signals are issued on the CAN bus according to
a predefined cycle time (such as a hundredth or a tenth of a second), the
difference among two consecutive values of a signal representing a physical
phenomena is necessarily small, and constrained by the cycle time and by
the nature of the observed phenomena. As an example, consider the CAN
signal representing the rotation speed of the front left tire, assuming that this
signal is sent over the CAN bus every 10 milliseconds. Consecutive values will
necessarily be very similar, hence only their less significant bits will change.
However, over time the tire rotational speed will change significantly, thus
leading to the modification of the more significant bits of the signal.

READ analyzes the ordered sequence of payloads of CAN messages having
the same ID. Each bit of the payload is analyzed to determine the frequency
of changes in the bit value among consecutive payloads (bit-flip). The READ
algorithm applies several novel heuristics to:

• define and extract the boundaries of different signals within payload of
messages having the same CAN ID;

• label extracted signals according to different classes representing the
signal type.

The different phases of the READ algorithm are described in the following
sections.
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Figure 6.1: Preparation phase of READ

6.1.1 The READ Algorithm

Data preparation

The preliminary step required to execute READ is to create ordered lists
of CAN messages having the same ID. The input data consists of a CAN
traffic trace including all CAN messages exactly as they were transmitted
over the CAN bus of a licensed vehicle. The CAN traces are recorded by
an unmodified, licensed vehicle provided to us by an undisclosed industrial
partner, alongside the full specifications of the internal vehicle network. In
this preliminary phase, the single trace is split into several sub-traces, one
for each different ID included in the original input. Each sub-trace only
contains the payload of CAN messages having a single ID, in the same order
as they appear in the original input. Since READ analyzes each sub-trace
independently, it is possible to have multiple instances of READ running in
parallel on different sub-traces. An overview of the data preparation phase of
the READ algorithm is given in Figure 6.1.

READ processing steps

The algorithm does not rely on any a-priori knowledge about the nature of
the message payloads nor of the signals encoded within the payloads. The
input of the algorithm is composed by a list of payload values composed by
a number of bits dependent on the payload length as specified by the DLC
field. The output is represented by the list of signals included in the payload,
their boundaries, and a label describing the type of each signal. An overview
of the READ algorithm workflow is given in Figure 6.2.

Figure 6.3 shows the detailed steps performed by the READ algorithm.
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The pre-processing phase analyzes the message payloads and computes the
metadata used by the next phases. Phase 1 evaluates the preliminary refer-
ences for the signals that are further refined in Phase 2.

Pre-processing The bit-flip rate is evaluated for each bit of the payload,
independently of its neighbors. First READ counts the number of bit-flips
(from 0 to 1 and vice-versa) occurrences among consecutive messages. Then
the bit-flip rate is obtained by dividing the number of bit-flips for the number of
payloads. The result of this phase is an array of n elements, each representing
the bit-flip rate for a single bit of the data field of a given ID, where n
represents the number of bits included in the payload as defined by the value

Labeled References

PHY PHY PHY CTR CRC

PreProc.

Phase 1

Phase 2
#0 #1 #2

Preliminary References

Bit-flip rate

Raw payloads

Magnitude array

Figure 6.3: Processing steps of the READ algorithm
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of the DLC field.
This intermediate result is an input for the computation of another array

of n elements, defined as the magnitude array. The formula used to compute
the magnitude array is shown in Equation 6.1, where Mi is the ith element of
the magnitude array and Bi is the ith element of the bit-flip array.

Mi “ rlog10pBiqs, 0 ď i ă n (6.1)

Values of the magnitude array represent the different orders of magnitude
of the bit-flip rate for each bit of the payload. The pseudo-code describing
the pre-processing step of the READ algorithm is included in Algorithm 10.

Algorithm 10 Pseudo-code of the pre-processing step

1: function Pre-processing(messageList,DLC)
2: payloadLenÐ len(messageList)
3: bitF lipÐ array(DLC)
4: magnitudeÐarray(DLC)
5: previousÐ messageListr0s
6: while item in messageList do
7: for ix in range (1..DLC) do
8: if itemrixs ‰ previousrixs then
9: bitF liprixs ` `

10: for ix “ 0; ix ă DLC; ix`` do
11: bitF liprixs Ð bitF liprixs{payloadLen
12: magnituderixs Ð rlog10pbitF liprixsqs

13: return bitF lip,magnitude

After computing the bit-flip rate and magnitude arrays, the algorithm
inspects them to identify the signal boundaries. This process involves two
phases. The first phase only considers the magnitude array, and produces a
preliminary list of signal boundaries as output. The second phase leverages
these preliminary boundaries and the bit-flip rate to identify the precise
boundaries of each signal and to label them according to their nature.

Phase 1 In this phase the magnitude array is used for the definition of
preliminary signal boundaries. The algorithm scans the magnitude array
looking for couples of consecutive bits in which the first bit is characterized by
a bit-flip magnitude that is higher then the second one. Whenever a similar
couple is found, a preliminary boundary is set between the two bits. This
heuristic is effective in the identification of signal boundaries that represent
physical values, since drops in the bit-flip magnitude are caused by a less
significant bit of a signal immediately followed by the most significant bit of
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the adjacent signal. The pseudo-code describing the main processing steps of
Phase 1 is given in Algorithm 11

Algorithm 11 Signal boundary identification

1: function Phase1(magnitude,DLC)
2: ref Ð listpq
3: prevMagnitudeÐ magnituder0s
4: ixS Ð 0
5: for ix in range(1..DLC) do
6: if magnituderixs ă prevMagnitude then
7: ref.addppixS, ix´ 1qq
8: ixS Ð ix
9: prevMagnitudeÐ magnituderixs

10: ref.addppixS,DLC ´ 1qq
11: return ref

Phase 2 The second phase takes as input the preliminary boundaries
identified in the previous phase together with the bit-flip rate array to identify
and correctly label signals that do not represent physical values. Car manu-
facturers often include metadata in the payload of safety-critical messages
to implement two näıve protection strategies that are effective against basic
replay attacks [83]. Common solutions adopted by several car manufacturers
include two additional types of fields: Counters and CRCs. Since these
metadata are encoded in the payload of CAN messages together with other
signals that convey physical values, it is helpful for an analyst to quickly
identify them and tell them apart. This is the rationale behind the definition
of heuristics specifically tailored to identify counters and CRCs.

Counters are signals whose value always increases by one with respect
to the counter of the previous message with the same ID. Counters allow
the receiving ECU to recognize a re-transmission of a CAN frame that has
already been received correctly, as well as messages that are received out of
order. Similar conditions happen when an attacker that sniffed a message
from the CAN bus performs a replay attack by injecting the same message
over the bus.

Counters exhibit two peculiar features that differentiate them from mes-
sages conveying the value of a physical phenomena:

1. the magnitude of the least significant bit equals 0, since it has a bit flip
probability of 1;

2. the bit-flip rate of the elements doubles every step from the most to the
least significant one, reaching 1 in the least significant bit.
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By looking for similar patterns it is possible to identify counters within signals
extracted in the previous phase. As example let us consider the case of a 4-bits
counter having the following bit-flip rates: [0.125, 0.25, 0.5, 1]. By applying
Equation 6.1 the magnitude array will be: [0, 0, 0, 0]. Since magnitude values
do not change, Phase 1 will fail in identifying its boundaries, and the counter
will remain embedded in other signals. However, since bit-flip rates vary
according to the defined heuristic, the counter boundaries will be correctly
identified by Phase 2.

CRCs are signals that contain the result of a cyclic redundancy check on
the message payload to detect random transmission errors in safety-relevant
signals. We remark that CRC signals are included within the payload of CAN
messages, and do not replace (and should not be mistaken for) the CRC field
that follows the payload in CAN data frames (see Figure 2.3). The algorithm
for computing the CRC that follows the payload is public and described in
the CAN bus specifications [26], while the algorithm used for evaluating the
CRC signals within the message payload is proprietary. Empirical analyses of
CAN messages including CRC signals allows us to conclude that CRC signals
as exhibiting the following distinctive features:

1. the magnitude of all bits is equal to 0;

2. the bit-flip rate of all bits is distributed according to a normal probability
distribution centered in 0.5.

Similarly to the counter fields, boundaries of CRC fields are not detected in
Phase 1, and are identified in this phase by looking for the aforementioned
pattern of bit-flip rates. If this pattern is found, precise boundaries are set
and the signal is labeled as CRC. Algorithm 12 shows the pseudo-code related
to Phase 2.

The final output of READ is a list of all the IDs found in the input
CAN traffic traces, in which each ID is associated to the number of signals
identified by READ and their boundaries. Moreover, each signal is classified
as a Physical value, a Counter or a CRC.

Analysis of the READ algorithm

Three different aspects of READ are analyzed: computational complexity,
correctness and convergence requirements.

READ sequentially applies the three processing steps previously described,
hence it is possible to evaluate the computational complexity of each step.
The computational complexity of the pre-processing phase (see Algorithm 10)
depends from two factors: the size of the payload of the analyzed CAN
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Algorithm 12 Signal boundary enhancement and labeling

1: function Phase2(ref, bitF lip)
2: rRef Ð listpq
3: for sign in ref do
4: ixS, ixE Ð sign
5: muÐ meanpbitF liprixS : ixEsq
6: stdÐ stdDevpbitF liprixS : ixEsq
7: if bitF liprixEs “ 0 and matchCounterpbitF liprixS : ixEsq then
Ź matchCounter returns the bit-flip pattern defined in the Counter
heuristic

8: rRef.addppixS, ixE,COUNTERqq
9: else if all(bitF liprixS : ixEs “ 0) and 0.5´std ď mu ď 0.5`std

then
10: rRef.addppixS, ixE,CRCqq
11: else
12: rRef.addppixS, ixE, PHY Sqq

13: return rRef

messages and the number of messages included in the analyzed trace. While
the payload size varies among different CAN IDs it is constant for all messages
having the same ID. Moreover, it is bounded by the constant value of 64.
On the other hand, the number of iterations performed by the outer cycle
grows linearly with the number of messages included in the analyzed traffic
trace. Hence the computational complexity of the pre-processing step grows
linearly with the number of messages. The computational complexity of
Phase 1 (see Algorithm 11) only depends on the payload size, hence this
step has a constant computational complexity. Finally, the computational
complexity of Phase 2 (see Algorithm 12) depends on the number of signals
extracted by Phase 1. While the number of signals is not known a-priori, it is
limited by the payload size. Hence the computational complexity of Phase 2
is also constant. From the previous analysis it is possible to conclude that the
overall computational complexity of READ grows linearly with the number
of analyzed messages. An experimental evaluation of the execution times of
READ over real CAN traffic traces is provided in Section 6.1.2.

For READ, as for any data-driven reverse engineering approach, conver-
gence and correctness are two closely related concepts. READ results are
correct if they agree with the formal specification of CAN messages, that
represent an arbitrary design choice rather than a theoretical correct or opti-
mal solution. Moreover, READ can converge to correct results only after the
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analysis of a number of messages. In the worst case, all messages analyzed
by READ have an identical payload value. Borrowing from the information
theory, we can say that a similar sequence of messages has a conditional
entropy [28] equal to 0. Hence READ (nor any other algorithm) can acquire
any knowledge from analyzing the sequence of messages, independently of
its length. It is possible to conclude that in this worst, degenerate case
all reverse-engineering algorithms will never converge to a correct solution.
An example of this phenomena is included in Section 6.1.2 and shown in
Figure 6.7c.

On the other hand, in the best case READ can converge to optimal results
with a very low number of messages. For the correct extraction and labeling of
Physical signals, READ requires only two consecutive values in which just the
least significant bit flips while all other bits remain constant, independently
of the signal size. For CRCs READ needs to analyze only two consecutive
values in which all bits flip, independently of the signal size. For a Counter of
size c bits, in the best scenario READ needs to analyze 2c{2` 1 consecutive
values. As an example, let us consider the realistic case of 4-bit counters.
READ can properly extract and label these signals by observing 9 consecutive
values that range from 0 to 8. Hence, in this optimistic scenarios it is possible
to conclude that the theoretical lower bound to the number of messages that
READ has to analyze to converge to correct results is 9.

Both the worst and the best case scenarios are not representative of
real READ use cases. An evaluation of the convergence requirements in an
“average” scenario would require a-priori and arbitrary assumptions on the
evolution over time of signal values, that in reality are influenced by many
imponderable and unforeseeable factors such as driving path, traffic conditions
and driving style. Hence, an experimental evaluation of the correctness and
convergence requirements over real data are provided in Sections 6.1.2.

6.1.2 Performance evaluation

This section evaluates the performance of READ on two different datasets.
In both cases, the output generated by READ and by an implementation
of the algorithm already proposed in [57] are compared with respect to the
ground truth represented by formal specification of CAN messages. For a fair
comparison of execution times, both algorithms are implemented in Python,
run on the same hardware and analyze the same input CAN traffic traces.

The two algorithms have been evaluated according to three key perfor-
mance indicators:

• Correctness of signal extraction and labeling: this performance indicator
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measures the number of signals that the algorithm is able to correctly
extract and label;

• Execution time: the computational costs of the two algorithms are
evaluated in terms of their execution time;

• Convergence requirements: the number of messages that the two algo-
rithms need to analyze before achieving their best signal extraction and
labeling performance.

Datasets description

The two datasets used on the experimental evaluation are called the synthetic
dataset and the real dataset.

The former dataset is composed by synthetic messages generated using
manually reverse-engineered boundaries publicly available online as reference.
The latter dataset includes real CAN messages recorded from an unmodified
licensed vehicle together with their correct formal specifications provided by
an undisclosed industrial partner.

The synthetic dataset includes CAN messages that are generated from an
algorithm. To guarantee a high level of realism despite the lack of public formal
specifications, the reference signal boundaries of the Acura ILX 2016 CAN
messages available online [17] and manually reverse-engineered by researchers
of Comma.AI [18] have been used. It is necessary to remark that these reverse
engineering results are partial, and large portions of the payload have not
been analyzed for many CAN IDs. For the required evaluation three of the
CAN IDs for which the reverse-engineered process led to the definition of
almost complete message specifications are selected. The selected messages
have IDs 158 (Powertrain data), 1D0 (Wheel Speeds) and 201 (Gas Sensor).
A description of the signal boundaries used for the generation of the synthetic
dataset is given in Tables 6.1, 6.2 and 6.3, for messages 158, 1D0 and 201,
respectively.

The final synthetic dataset is composed by 1, 500, 000 messages, 500, 000
for each of the three IDs.

The real dataset is composed by 25 different CAN traffic traces. These
traces have been collected from the same unmodified licensed vehicle under
different driving conditions on real roads and subject to real traffic conditions.
The complete dataset represents more than 14 hours of data and more than
125 millions of CAN data frames. The longest trace lasts more than 38
minutes, while the shortest is just 32 minutes long. A quantitative description
of the real data set is given in Table 6.4, that summarizes the number of
messages for each trace and its duration.
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Table 6.1: Signals included in the message ID 158

Name Type Length (bit)

XMISSION SPEED Physical Value 16
ENGINE RPM Physical Value 16
XMISSION SPEED2 Physical Value 16
ODOMETER Physical Value 8
unlabeled N/A (constant) 2
COUNTER Counter 2
CHECKSUM CRC 4

Total 64

Table 6.2: Signals included in the message ID 1D0

Name Type Length (bit)

WHEEL SPEED FL Physical Value 15
WHEEL SPEED FR Physical Value 15
WHEEL SPEED RL Physical Value 15
WHEEL SPEED RR Physical Value 15
CHECKSUM CRC 4

Total 64

Signal extraction and labeling

The main performance indicator of READ is the total number of signals
correctly extracted from the CAN traffic traces included in the synthetic and
real datasets.

Signal extraction results of both READ and the algorithm described in [57]
(labeled as FBCA) for the synthetic dataset are represented in Figure 6.4. In
all the three charts of Figure 6.4, the x-axis represents the single bits of the
payload, ranging from 1 to n (with n being the size of the payload), while
the y-axis represents the outputs for both READ (top) and FBCA (bottom).
Vertical rows represent the correct boundaries of the signals as identified by
the message specifications of Tables 6.1, 6.2 and 6.3. To better identify the
signal boundaries extracted by the two algorithms, consecutive signals are
colored with different shades. Signal extraction is correct if vertical rows
overlap color changes that identify the boundaries of consecutive signals as
computed by READ and FBCA. Figures 6.4a, 6.4b and 6.4c represent the
signal boundaries that have been reverse engineered for IDs 158, 1D0 and
201, respectively. Since the payload of ID 201 is only 40 bits long, a white
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Table 6.3: Signals included in the message ID 201

Name Type Length (bit)

INTERCEPTOR GAS Physical Value 16
INTERCEPTOR GAS2 Physical Value 16
unlabeled N/A (constant) 2
COUNTER Counter 2
CHECKSUM CRC 4

Total 40
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Figure 6.4: Signal boundaries extracted from the synthetic dataset by READ
and FBCA

tail is used to represent the trailing unused bits of the payload.

From the analysis of Figure 6.4, it is clear that READ is able to correctly
extract all the signals of the synthetic dataset. On the other hand, none of
the boundaries identified by FBCA on this dataset is correct.

Another relevant metric is the number of labels that the READ algorithm
correctly associates to the extracted messages. It is necessary to highlight
that READ and FBCA use two different sets of labels: READ labels signals
as Physical, Counter and CRC, while FBCA labels signals as Constant, Multi-
Value and Counter/Sensor. This difference prevents a direct comparison
among the two algorithms. Moreover, while READ produces labels that
imply a different field semantic, the labels produced by FBCA are only
representative of the signal variability over time, and do not attempt to
describe their meaning. As a result, only the labels produced by READ
are comparable with respect to the ground truth represented by the formal
specifications of CAN messages. Moreover, FBCA did not manage to correctly
extract any signal from the synthetic dataset. Hence, we only evaluate labeling
correctness for signals correctly extracted by READ. For the ID 158 (Table 6.1)
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Figure 6.5: Comparison of the number of signals correctly extracted by READ
and FBCA from the analysis of the real dataset

READ correctly labels the first four signals as Physical, the sixth as Counter
and the seventh as CRC. For the ID 1D0 (Table 6.2) READ correctly labels
the first four signals as Physical and the fifth signal as CRC. For the ID 201
(Table 6.3) READ correctly labels the first two signals as Physical, the fourth
as Counter and the fifth as CRC. Since this evaluation is based on incomplete
specifications it is not possible to verify the labeling of the fifth signal of ID
158 and of the third signal of ID 201.

Concerning the real dataset, signal extraction performance are shown
in Figure 6.5. The two box plots represent the number of signals that are
correctly identified by READ and FBCA across 25 experiments carried out
over the available traffic traces (see Table 6.4).

From Figure 6.5 it is possible to notice that the overall number of correctly
identified signals varies among different traces for both READ and FBCA.
The main reasons behind this variability are the different number of CAN
messages included within each trace and the different values that the same
messages assumed in different traces. READ manages to extract a number
of signals that ranges from 159 to 206 with a median of 188, whereas FBCA
correctly identifies a number of signals ranging from 51 to 72, with a median
of 55.

By comparing results of the two algorithms on the same traffic trace it is
possible to observe that in all the 25 experiments READ correctly identifies
more than thrice the number of signals detected by FBCA. Comparing the
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Figure 6.6: Number of IDs for which one of the two algorithms (READ and
FBCA) outperforms the other one in the real dataset.

worst-case experiment for READ with the best case of FBCA, READ is
always able to recognize more than twice the number of signals.

Besides counting the aggregate number of extracted messages, an eval-
uation on the performance of the two algorithms on different message IDs
is made. This analysis is motivated by the fact that payloads of messages
associated to different IDs can have a completely different structure in terms
of number, position and types of embedded signals.

Results of this analysis are summarized in Figure 6.6. The first box plot
represents the number of IDs for which READ extracts more correct signals
than FBCA, the second box plot represents the number of IDs for which
READ and FBCA extracts the same number of correct signals, while the
third box plot represents the number of IDs for which FBCA extracts more
correct signals than READ.

From Figure 6.6 it is possible to observe that READ is always able to
match the results of FBCA, and to outperform it for the majority of IDs.
Depending on the traffic traces, the two algorithms correctly extract the same
number of signals for a number of IDs that ranges from 42 to 50. On the other
hand, the number of IDs for which READ extracts more correct signals than
FBCA ranges from 60 to 68. It is necessary to highlight that FBCA never
achieves better performance than READ. To provide a better understanding
of the performance achieved by READ and FBCA a graphical representation
of the outputs of both algorithms is shown in Figure 6.7.
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0 10 20 30 40 50 60

R
E
A
D

FB
C
A

0 10 20 30 40 50 60

R
E
A
D

FB
C
A

0 10 20 30 40 50 60

R
E
A

D
FB

C
A

(c) Message IDs for which READ is not able to correctly extract a signal

Figure 6.7: Representative examples of signal boundaries extracted by READ
and FBCA, compared with the ground truth for the real dataset.
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In all the nine charts of Figure 6.7, the x-axis represents the single bits
of the payload, ranging from 1 to n (with n being the size of the payload
for that particular ID), while the y-axis represents outputs of both READ
(top) and FBCA (bottom). Vertical rows represent the correct boundaries of
the signals as mandated by the formal specifications. To highlight the signal
boundaries extracted by the two algorithms, consecutive signals are colored
with different shades. Signal extraction is correct if vertical rows overlap color
changes that identify the boundaries of consecutive signals as computed by
READ and FBCA. Since for some payloads the number of bits n is lower
than 64, a white tail is used to represents the trailing unused bits.

Figures are grouped in three different rows based on the effectiveness
of READ in extracting correct signal boundaries. Row 6.7a includes three
representative examples of message IDs for which READ correctly extracts
all signals. For these three different message IDs the signals extracted by
FBCA have wrong boundaries. It is interesting to notice that many errors
in FBCA’s output are caused by the incorrect identification of spurious
signals that do not exist in the formal specifications. Row 6.7b shows three
representative examples of message IDs for which both READ and FBCA are
not entirely accurate. In particular, in all the three message IDs it is clear that
both algorithms exhibit sub-optimal performance in the extraction of small
signals. Those signals usually convey information that is unrelated to physical
phenomena, and are mainly composed by bit masks used for sensing and
controlling the state of specific functionality of the vehicle, such as fan speed
and air conditioning. Finally, row 6.7c shows three representative examples
of real message IDs for which both READ and FBCA are not able to extract
a single correct signal. This happens for the message IDs in which payloads
never change over the collected traffic traces (bit-flip rate is always equal
to 0 for all bits). This final result shows that the quality of the collected
data impacts the quality of results generated by both algorithms. However it
should be noted that these messages do not convey safety-critical information
related to the vehicle dynamics, and are mostly related to optional features.

An interesting aspect to notice is that Figure 6.7 does not contain any
example in which FBCA extracts all signals from an ID. This is due to the
fact that FBCA has never been able to achieve full accuracy for any of the IDs
included in the tested traffic traces. Besides signal extraction, an evaluation
of the correctness of signal labeling is also made. This evaluation has only
been performed on signals for which READ managed to correctly identify
the boundaries, since it cannot be performed for FBCA due to the different
labels that only describe the signal evolution over time and do not have any
semantic meaning. Results of this analysis are summarized in Figure 6.8. The
three box plots of this figure refer to signals that where correctly labeled as



6.1 - Reverse Engineering of Automotive Data frames 103

(a)

110

120

130

140

150

Physical Values

(b)

19

20

21

22

23

24

Counters

(c)

21.0

21.5

22.0

22.5

23.0

23.5

24.0

24.5

25.0

CRCs

co
rr

ec
t

la
b

el
ed

si
gn

al
s

Figure 6.8: Signals that are correctly extracted and correctly labeled by
READ

Physical values (Figure 6.8a), Counters (Figure 6.8b) and CRCs (Figure 6.8c).
In all three box plots the y-axis represents the number of correctly labeled
signals. Please note that for better readability the three y-axis use a different
scale.

Figure 6.8 shows that the number of Counter and CRC signals that are
correctly labeled by READ exhibit a small variability among all the different
traces. This implies that the heuristics used to recognize these fields lead to
stable results. Moreover, results shown in Figure 6.8 highlights that the correct
labeling of signals representing Physical values exhibit a higher variability
among the analyzed traffic traces, ranging from 104 in the worst case to
149 in the best case, with a median of 129. This variability is motivated by
the different driving styles, road conditions and lengths associated to each
traffic trace. Signal labeling performance have been further analyzed and the
results have been summarized in Table 6.5, which compares the number of
signals that were correctly extracted and labeled by READ with respect to
the vehicle specifications in the best and worst case scenarios.

Table 6.5 shows that, even in the worst scenario, READ correctly labels
more than the 90% of the extracted Physical signals, while in the best case it
is able to correctly label more than 98% of them. Results for both Counter
and CRC labels are exactly the same in both cases (85.71% and 96.00%
correct labeling percentage, respectively), meaning that the heuristics used
for labeling those particular signals are strong and consistent. With those
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Figure 6.9: Execution time of READ and FBCA over all CAN traffic traces

final considerations in mind, it is possible to notice that READ is better with
respect to the state of the art [56] at identifying signals within the payload
of CAN data frames by determining their exact boundaries. Moreover, for
all messages extracted correctly, READ performs labeling with a very high
accuracy. These results hold for both the synthetic and the real datasets.

Execution time

The time required to execute both algorithms on the traffic traces of the real
dataset (see Table 6.4) are compared. These evaluations are carried out on a
server equipped with an Intel® Core™ i7–7700HQ CPU @3.8 GHz and with
16 GB of RAM running Fedora 24 x64.

For this experiment, the running time is evaluated as the time an algorithm
requires to generate its final output starting from a raw CAN bus traffic
log. Both algorithms have been implemented in the Python programming
language and leverage the same boilerplate code for low-level operations
(such as reading files from memory and parsing the fields of a CAN message).
Execution times of both READ and FBCA are shown in Figure 6.9, where
the two box plots represent the time (expressed in seconds) needed for the
complete signal extraction and labeling over the 25 traffic traces by the two
different implementations. Please note that for the sake of readability the
two box plots refer to a different scale on the y-axis.

The execution times of READ are two orders of magnitude lower with
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Figure 6.10: Convergence of READ and FBCA

1.
0E

+
02

2.
5E

+
02

5.
0E

+
02

1.
0E

+
03

2.
5E

+
03

5.
0E

+
03

1.
0E

+
04

2.
5E

+
04

5.
0E

+
04

1.
0E

+
05

2.
5E

+
05

5.
0E

+
05

1.
0E

+
06

number of consecutive payloads used

60

80

100

120

140

160

180

200

n
u

m
b

er
of

co
rr

ec
tl

y
ex

tr
ac

te
d

si
gn

al
s

(a) READ Convergence
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(b) FBCA Convergence

respect to the execution times of FBCA. The minimum time required for the
complete extraction of FBCA is 1469.2 seconds (24 minutes) for a traffic trace
of 5.5 million messages, equivalent to approximately 38 minutes of driving.
On the other hand, the maximum execution time of READ on the same traffic
traces equals to 36.5 seconds.

Convergence requirement

The final metric evaluated for the comparison of these two algorithm is the
number of consecutive messages they need to analyze to produce their best
results. Since both algorithms learn their message boundaries by observing the
evolution of payloads over time, it is important to provide a sufficient number
of messages in the training process to achieve good and stable classification
results. To perform an unbiased and realistic evaluation these experiments
refer to the real dataset. This number is evaluated by extracting the first
N messages for each ID from the available CAN traffic traces, applying
the extraction algorithms to them and evaluating the number of correctly
extracted signals. The convergence results for READ and FBCA are shown
in Figure 6.10. Figure 6.10a and Figure 6.10b represent convergence results
of READ and FBCA, respectively. In both figures the x-axis represents
the number N of consecutive payloads analyzed by the reverse engineering
algorithm and the y-axis represents the number of correctly extracted signals
through the gathered traces. Please note that, for the sake of readability, the
y-axis of Figures 6.10a and 6.10b refer to different scales.

Results show that both READ and FBCA converge to their best results
with 100, 000 or more consecutive payloads. The authors of FBCA claim
that their algorithm only requires about 100 messages for each ID in order to
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produce stable results, and this experimental evaluation verified that FBCA
is capable to achieve near-optimal results after the analysis of 100 messages.
However, to achieve its peak performance over real CAN traffic, the FBCA
algorithm requires at least 100, 000 messages for each ID. Moreover, even
with as few as 100 messages in the training set, READ is able to correctly
extract a median of 61 correct messages, with respect to the 52 extracted with
FBCA. To summarize, the experimental evaluation shows that READ achieve
better performance than FBCA, with lower execution times and comparable
convergence requirements.

6.2 Analysis of signals extracted with READ

This Section provides an example of the different signals extracted with the
READ algorithm. The signals are grouped according to the labels assigned
by READ: Counter, CRC, or Physical signals. Moreover, an inspection of the
variability over time of the signals classified as “Physical signals” by READ
is provided, proposing two different detection metrics based on two different
typologies of signals.

6.2.1 Counter inspection

For the inspection of a counter-labeled signal an analysis of the values of
the signal evolution over time is provided. Figure 6.11 shows one of the
signals labeled as a Counter by READ, where the value of the counter (y-axis)
is compared with its evolution over time (x-axis). The depicted counter
signal is a 4 bit counter, with a minimum and maximum values of 0 and 15,
respectively.

From the inspection of Figure 6.11 it is possible to notice that the counter
signal follows the expected trend: the next value of the sequence is the
previous value plus 1, with an overflow taking place after the value 15 since
the next value requires at least one extra bit for its encoding. An anomaly
detector focused on the inspection of the counter of the messages only requires
to check that the counter value follows the trend described previously and
depicted in Figure 6.11. If the counter signal encoded in a message does not
follow the expected trend, it is possible to flag it as an anomaly.

6.2.2 CRC inspection

For the inspection of a CRC-labeled signal an analysis of the values of the
bits composing the CRC over time is provided. Figure 6.12 shows the bit-flip
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Figure 6.11: Counter signal value extracted with READ

probability (y-axis) over time for each bit of the signal (depicted on the x-axis)
for one of the signals labeled as a CRC by READ. From the inspection of
Figure 6.12 it is possible to notice that the values of the bit-flip probability
for each bit composing the signal is centered around 0.5 with little deviation.
As already depicted for many detection methods in Chapter 5, it is possible to
leverage this behavior of the bit-flip probability to define the normal values as
the values in the range rµ´ k ˚ σ, µ` k ˚ σs, in which the evaluated values of
µ and σ are equal to 0.5 and 0.01, respectively. In Figure 6.12 the boundaries
are defined with a value of k “ 3, since the distribution of the bits of the
CRC signals follows the normal distribution. An anomaly in any of the bits
is detected if its bit-flip probability is evaluated to be outside of the normal
range. However, for this type of analysis it is necessary to define the size of
the window on which evaluate the bit-flip probability periodically.

6.2.3 Physical signals inspection

Two different typologies of signals labeled by READ are inspected in this
Section. Each signal type depicts a different evolution over time, for which
an anomaly detection algorithm is proposed.

Step signal

The evolution over time of the step signal follows a discrete step function,
meaning that the next value of the signal is either the previous value or in
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Figure 6.12: CRC signal value extracted with READ

within a fixed offset. In the example depicted in Figure 6.13, the next value
of the signal is the previous value plus ´1, 0, or 1. From a manual analysis
of the signal depicted in Figure 6.13 it was possible to recognize the signal
as the value of the gear used by the vehicle (which has an automatic gear
mechanism). Signals like the one depicted in Figure 6.13 follow a particular
trend, thus it is possible to leverage this trend for the detection of anomalies
on this typology of signals. Since each value is the previous plus a value in a
defined range, after the identification of the valid range (in this case r´1,`1s),
it is possible to detect anomalies by checking the value of the signal. If the
difference of the current signal value with its previous value is outside of the
valid range, an anomaly is raised.

Generic signal

The evolution over time of a generic signal does not follows a particular trend,
thus it is extremely hard to define a generic rule for the definition of the
normal behavior of this kind of signals without inspecting its references in
the DBC. Figure 6.14 depicts the evolution over time (x-axis) of the vehicle
speed signal extracted using the references encoded in the DBC. The vehicle
speed signal is encoded in a signal with a length of 16 bits, thus with a
maximum encodable value of 8191. The specifications for this signal define
the maximum raw value equals to 5440, the scaling of the signal is 0.0625, and
the measurement unit as Km/h. Figure 6.14 shows the signal value decoded
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Figure 6.13: Step signal value extracted with READ
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Figure 6.14: Generic signal value extracted with READ
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by applying the scale to the raw values. The two horizontal lines depict
the minimum and maximum value of the signal. Using the specifications
encoded in the DBC file, it is possible to define multiple features to inspect
for the detection of anomalies. The first feature is to check that the raw
signal value is not outside of its boundaries. As an example, the vehicle speed
signal depicted in Figure 6.14 has a maximum raw value of 5440, meaning
that any value from 5441 to 8191 (which is its real maximum due to the
size of the signal) is to be considered anomalous. Another possible feature
to inspect is the difference between consecutive values of the signal. Since
this signal represents the vehicle speed expressed in Km/h, it is possible to
apply detection metric similar to the ones inspected in case of the step signal,
checking that the difference between consecutive readings of the vehicle speed
are withing a fixed offset, thus detecting sudden increases/decreases of the
vehicle speed as anomalies.
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Table 6.4: Number of CAN messages and duration of the 25 CAN traffic
traces that compose the real dataset

Trace Number of CAN Messages Duration (HH:MM:ss)

1 4,646,605 00:32:25
2 4,715,886 00:32:54
3 4,759,489 00:33:11
4 4,589,270 00:32:01
5 4,959,564 00:34:36
6 4,909,393 00:34:15
7 5,532,928 00:38:36
8 5,224,743 00:36:27
9 5,444,530 00:37:59

10 5,598,760 00:38:51
11 4,634,650 00:32:20
12 5,348,991 00:37:19
13 4,558,212 00:31:48
14 4,993,051 00:34:50
15 5,262,967 00:36:43
16 5,145,906 00:35:54
17 5,045,538 00:35:12
18 4,617,935 00:32:13
19 4,942,846 00:34:29
20 4,866,383 00:33:57
21 5,294,014 00:36:56
22 5,497,079 00:38:21
23 5,253,401 00:36:39
24 5,315,515 00:37:05
25 5,399,129 00:37:40

Total 126,523,785 14:42:41
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Table 6.5: Correct labeling of signals extracted from the real dataset

Label Extracted Correctly labeled Percentage

Worst Case
Physical 115 104 90.43%
Counter 28 19 85.71%
CRC 25 21 96.00%

Best Case
Physical 151 149 98.01%
Counter 28 24 85.71%
CRC 25 25 96.00%



Chapter 7

Anomaly reaction based on
control-based approaches

Since the introduction of microcontrollers in modern vehicles, automotive
industries began to deploy novel features to the vehicle, aiming to increase
the physical safety of all the passengers and to enhance the driving experience.
These microcontrollers are electronic devices connected with sensors and
actuators to the mechanical parts of the vehicle, that are programmed to
react to the different driving situations to increase the safety of the vehicle,
thus limiting potential injuries and road fatalities. These microcontrollers
are usually deployed in different parts of the vehicle, and are connected to
one or more sensors to collect data from the inspected mechanical system.
Some of these microcontrollers are also connected to actuators, allowing the
microcontroller to actively control the desired mechanical system. These
microcontrollers allow to deploy electronic-controlled features on the vehicle,
ranging from simple functions (such as the power windows or the power seats),
to more complex features such as the anti-braking system (ABS), the engine
control, or the electronic stability control (ESC). Although simple feature
require simple microcontrollers for their activation, more complex and safety-
related features require microcontrollers able to compute data generated by
heterogeneous sensors to drive actuators in real-time, that in most of the
cases require complete autonomy and do not allow for active intervention
from the driver. These microcontrollers are connected with each other via a
different communication network, including the CAN bus which has already
been depicted in Section 2.2 and its security issues have been described in
Section 2.3. The security issues described in Section 2.3 are a consequence of
the drive-by-wire capabilities of modern vehicles, where the driving system
(composed by the engine, brakes, and steer) is controlled by the values of
the signals encoded in CAN messages. One of the first features implemented
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in modern vehicles that provided drive-by-wire capabilities is the cruise
control, which drivers usually activate when road and traffic conditions allow
to proceed at a fixed-speed, for more efficient fuel consumption and driver
comfort. Since the combination of drive-by-wire capabilities and internet
connectivity without proper security countermeasures has severe consequences
on the safety of passengers and road users [45, 59], many security researchers
already proposed different detection algorithms that inspect the data and
the characteristics of the microcontrollers to detect anomalies in the CAN
bus [46,64]. The aforementioned detection techniques identify anomalies on
data transmitted over the communication network without inspecting the
associated information, thus preventing any possible detection in the case the
attacker is able to send malicious data by pretending to be a valid component
of the system [70,86]. To provide more information about the context of the
attack and to preventing them from being unnoticed, a combination of the
detection methodologies from Computer Science suited for the automotive
networks with cyber security solutions developed in the research field of the
control theory are inspected in this Chapter.

7.1 Control System

To provide a solution of the cruise control problem in a generic vehicle, it is
necessary to describe the vehicle system in a generic form:

9xptq “ fpxptq, uptqq (7.1)

yptq “ Cxptq (7.2)

where x P Rn is the state space, u, y P R are the input and the measured
output [33]. Since the car speed is required to be fixed at a desired value,
it is common to study (7.1) around an equilibrium point xeq and input ueq.
Hence,(7.1) can be considered linear:

9xptq “ Axptq `Buptq (7.3)

where

A fi
Bfpx, uq

Bx

ˇ

ˇ

ˇ

ˇ x “ xeq
u “ ueq

B fi
Bfpx, uq

Bu

ˇ

ˇ

ˇ

ˇ x “ xeq
u “ ueq

(7.4)

For analysis and controller design purposes it is also useful the transfer
function representation in the Laplace’s domain:

ypsq “ F psqupsq (7.5)
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where F psq “ CpsI ´ Aq´1B. In this context a proportional-integral-derivative
(PID) controller is used:

upsq “ K

ˆ

1`
1

sTi
` ¨sTd

˙

epsq. (7.6)

where K, Ti and Td are the proportional gain, integral time and derivative
time respectively. For the real implementation, Equation (7.6) is digitalized.

7.2 Powertrain Model

This Section presents the equations for modeling the powertrain and the
controller modules used for simulating a generic sparkle-ignited engine and
defines the content of the related CAN messages used in the simulated network.

7.2.1 Engine and Controller Models

The internal combustion (IC) engine has been modeled as a mean-value model
(MVMs) [33], in which the sparkle-ignited (SI) engine is described by the
models of eight interconnected subsystems. To solve cruise-control problem
the main blocks considered for the composition of the SI engine are the
throttle body, the intake manifold, the gas exchange, the combustion and
torque generation, and the engine inertia. The nonlinear form of the model is
described as:

dpmptq

dt
“

Rθm
Vd

p 9mαptq ´ 9mβptqq (7.7)

dωeptq

dt
“

1

θe
rTeptq ´ Tlptqs (7.8)

where pm is the intake manifold pressure, 9mα is the air-flow mass entering
from the throttle valve, 9mβ is the air-flow mass going out from the intake
manifold to the cylinders, we is the engine speed, Te the torque generated by
the engine, and Tl the load torque. Assuming that the air is a perfect gas
and the throttle is isenthalpic, 9mα is given by:

9mαptq “

#

Aαptq
pa?
Rθa

1?
2

pmptq
pa

ď 0.5

Aαptq
pa?
Rθa

b

pmptq
pa
r1´ pmptq

pa
s else

(7.9)

where 9mout “ 9mα and pout “ pm is the intake manifold pressure.
The throttle valve open area Aα is computed as follows:

Aαpαthq “
πd2th

4
p

cospαthq

cospαth,0q
q ` Ath,leak (7.10)



116 Anomaly reaction based on control-based approaches

αth “ αth,0 ` p
π

2
´ αth,0q ¨ uα (7.11)

where αth is the throttle angle, uα P r0, 1s is the control input. In (7.10)
and (7.11) it is assumed that the throttle actuation is neglected.

Neglecting the wall-wetting phenomena and the injectors dynamics,

9mβptq “
9mptq

1` 1
λσ0

(7.12)

where the air/fuel ratio is assumed constant and λl is the volumetric efficiency.
Then the air/fuel ratio λptq can be use to describe the fuel and air mass flows
ratio into the cylinder respect to the constant stoichiometric ratio σ0:

λptq “
1

σ0
¨
9mβptq

9mφptq
(7.13)

then, under the hypothesis that λptq is known, (e.g λptq « λ):

9mφ “
9mβptq

σ0λptq
(7.14)

which represents the mean value fuel mass flow. Then 9mptq “ 9mβ ` 9mφ

represents the gas-mixture mass flow aspired in the cylinder which is given
by:

9mptq “
pmptq

Rθm
¨ λlpωeptq, pmptqq ¨ Vd ¨

ωeptq

4π
(7.15)

The volumetric efficiency λl describes how far the engine differs from a
perfect volumetric device that can be approximated as:

λlpωe, pmq “ λlωpωeq ¨ λlpppmq (7.16)

where

λlωpωeq “ γ0 ` γ1ωe ` γ2ω
2
e (7.17)

λlpppmq “
Vc ` Vd
Vd

´
Vc
Vd

ˆ

pout
pm

˙
1
κ

(7.18)

Vc is the compression volume, Vd is the volume displacement, κ is the ratio of
the specific heat, κ « 1.4, pout is the pressure at the engine’s exhaust side.

Note that, (7.14) is also related to the engine speed we

9mφptq “ mφptq
weptq

4π
, (7.19)
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thanks to (7.14) and (7.19) Te is related to 9mφ. The break mean effective
pressure is given by:

pme “
Te ¨ 4π

Vd
. (7.20)

and the fuel mean effective pressure:

pmφ “
mφ ¨Hf

Vd
. (7.21)

The effective efficiency is:

ηe “
pme
pmφ

“
Te ¨ 4π

mφ ¨Hf

(7.22)

then:
pme “ ηep¨ ¨ ¨ q ¨ pmφ (7.23)

the value of ηep¨ ¨ ¨ q can be evaluated in different ways, and a possible approx-
imation uses the indicated mean pressure:

pme « pmipωeq ´ ppm0f pωeq ` pm0gpωeqq (7.24)

where:

pmi “
wi
Vd
“ ηi

mφ ¨Hf

Vd
(7.25)

where the indicated thermodynamic efficiency ηipωeq « η0` η1ωe refers to the
Williams approximation. The coefficients pm0f and pm0g represent the loss
due the friction and gas exchange. From (7.20), (7.23), and (7.24):

Teptq “ pmeptq ¨
Vd
4π
“ pηipωeqpmφ ´ pm0f pωeq ´ pm0gpωeqq

Vd
4π

(7.26)

Using (7.22):

Teptq “ ppη0 ` η1ωeq
Hf ¨mφptq

Vd
´ pm0f pωeq ´ pm0gpωeqq

Vd
4π

(7.27)

From (7.19), mφ Ñ 9mφ and from (7.14):

mφptq “
9mβ ¨ 4π

α ¨ ωe
(7.28)

where α “ λ ¨ σ0. Note that, gas-mixing transportation delays need to be
considered in (7.14), 9mφpt´ δq and 9mβpt´ δq, that are extremely important
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dpmptq

dt
“

Rθm
Vd

˜

Aαptq
pa

?
Rθa

1
a

p2q
´

ˆ

pmptq

Rθm

`

γ0 ` γ1ωeptq ` γ2ω
2
eptq

˘

˜

Vc ` Vd
Vd

´
Vc
Vd

ˆ

pout
pm

˙
1
κ

¸

Vdωeptq

4π

α

α ` 1

¸¸

(7.29)

dωeptq

dt
“

1

θe

«˜

pη0 ` η1ωeptqq
Hf ¨ pmptq

Rθm

`

γ0 ` γ1ωeptq ` γ2ω
2
eptq

˘

˜

Vc ` Vd
Vd

´
Vc
Vd

ˆ

pout
pm

˙
1
κ

¸

¨
Vd

α ` 1
´
`

β0 ` β2ω
2
eptq ` ppout ´ pmptqq

˘ Vd
4π

˙

´ Tlptq



(7.30)

Figure 7.1: Nonlinear model of an SI-engine for cruise-control problem.

param value units param value units

R 287 [J/KgK] γ1 3.42e-3 [s]
θa 298 [K] γ2 -7.7e-6 [s2]
θm 340 [K] η0 0.16 [J/Kg]
αth0 7.9 [deg] η1 2.21e-3 [Js/Kg]
dth 58.7e-3 [m] β0 15.6 [Nm]
Ath,leak 5.6e-6 [m2] β2 0.175e-3 [Nms2]
V d 2.77e-3 [m3] θe 0.2 [kg/m2]
V c 0.277e-3 [m3] Hf 45.8e6 [-]
pa 1e5 [Pa] kappa 1.35 [-]
pout 1e5 [Pa] α 14.70 [-]
γ0 0.45 [-]

Table 7.1: Values of the parameters used in the model
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for the idle control. For the case discussed in this scenario, those delays can
be neglected.

Assuming sonic condition and isothermal gas, (7.7) can be rewritten
using (7.9) and (7.12). Neglecting transportation delays, (7.8) is rewritten
using (7.27) and (7.28). See Figure 7.1 (7.29), and (7.30) respectively. The
values of the parameters used in our model are provided in Table 7.1, while
the meaning of these could be found in [33]

The state variables are pm and we

xptq fi

„

pmptq
weptq



(7.31)

For not overloading the representation of the final system, Aαptq is considered
as the system input, but using (7.10) and (7.11) it is possible consider directly
uα. The output of the system is we, which express the angular velocity of
the engine. The considered cruise-control problem assumes that the vehicle
speed is constant with the ratio between wheel speed and engine speed. This
scenario is very plausible for a replay attack.

The equilibrium point for a given vehicle speed v̄ is x̄ “ rp̄m, w̄es
T and

ū “ Āα. These values allow to linearize the system following the procedure
described in 7.1.

7.2.2 CAN message design

To propose a realistic model for the simulation of the powertrain system based
on the equations previously described, it is necessary to define the messages
used for data exchange over the simulated CAN bus. The following signals
are selected for being included in the messages:

1. Throttle request: the throttle request signal is sent from the controller
to the model and represents the throttle requested by the driver (i.e. by
increasing or decreasing the push on the acceleration pedal);

2. Engine speed: the engine speed signal (the model output) is sent from
the engine ECU to the cruise controller to compute the optimal throttle
for keeping the speed constant;

3. Controller reference: the controller reference signal is sent from an
ECU external to the inspected system and carries the reference speed
value for the controller (i.e. the fixed speed requested by the driver upon
activation of the cruise control).

Each message has a fixed payload length of 64 bits, which encodes the value
of the corresponding signal as read from the sensor.
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7.3 Threat Model

The adversary can physically or remotely compromise one or more ECUs via
numerous attack surfaces and means, as already inspected in [11,48]. Since
the powertrain model simulated in this Chapter is created by implementing
the different equations describing its subsystems, the threat model considered
for the security analysis of the model uses a modified version of the threat
model described in Section 2.3. The main difference between the threat model
described in 2.3 and the threat model considered in this scenario is that
only the attack scenario of the message injection attack (specifically only the
single ID replay attack) is inspected. This different scope of applicability
is explained by the analysis of the definition of the model itself: since the
model relies on the messages sent from the different sensors for its functioning,
removing the messages from the network would result in preventing the model
from functioning, thus it is not possible to inspect the consequences of the
message removal attack as a real-case attack scenario.

In the injection attack scenario the attacker is considered able to fabricate
and send on the CAN bus semantically valid messages. The objective of this
attack is to inject a maliciously forged message after the valid message is
sent, to subvert the behavior of the vehicle model. Three different types of
message injection attack are inspected:

1. Inject Speed attack: in this attack scenario a message with a fixed
value of the engine rotational speed lower than the reference speed is
injected;

2. Inject Reference attack: in this attack scenario a message with
a higher fixed value of the reference used by the cruise controller is
injected;

3. Inject Throttle attack: in this attack scenario a message with a fixed
value of the requested throttle higher than the one generated by the
cruise controller is injected.

The final goal of all the simulated injection attacks is to increase the speed
of the engine’s model. For simulation purposes, the reference speed is set at
4200 RPM.

7.4 Consequences of cyber-attacks

In this Section the consequences of the different cyber attacks described in
Section 7.3 are evaluated. All the results are depicted by comparing the values
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of the signals sent on the CAN bus with the actual engine speed generated
by the model. The attacks have a duration of 5 seconds and are triggered
after 20 seconds of normal conditions. The consequences of the injection of
messages on the model are inspected. The messages are injected after the
valid one is sent on the network.

7.4.1 Injection speed attack

In case of an injection speed attack the injected message encodes an engine
speed value equals to 4190 RPM, and the consequences of this attack on
the powertrain model are depicted in Figure 7.2, in which the engine speed
(y-axis, expressed in RPMs) is compared with the time (x-axis, expressed
in seconds). The solid line of Figure 7.2 represents the engine speed signal
extracted from its respective CAN message, while the dashed line represents
the real engine speed generated by the model. The vertical red line highlights
the start of the attack.
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Figure 7.2: Injection engine speed attack

7.4.2 Injection reference attack

In case of an injection reference attack the injected message encodes a
reference value equals to 4500 RPM, and the consequences of this attack on
the powertrain model are depicted in Figure 7.4, in which the engine speed
(y-axis, expressed in RPMs) is compared with the time (x-axis, expressed
in seconds). The solid line of Figure 7.4 represents the engine speed signal
extracted from its respective CAN message, while the dashed line represents
the real engine speed generated by the model. The vertical red line highlights
the start of the attack.
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Figure 7.3: Injection reference attack

7.4.3 Injection throttle attack

In case of an injection throttle attack the injected message encodes a
throttle value equals to 2.5 ˚ 10´4, and the consequences of this attack on
the powertrain model are depicted in Figure 7.3, in which both the throttle
(left y-axis) and the engine speed (right y-axis, expressed in RPMs) signals
are compared with the time (x-axis, expressed in seconds). The solid line
of Figure 7.3 represents the value of the throttle signal extracted from its
respective CAN message, while the dashed line represents the real engine
speed generated by the model. The vertical red line highlights the start of
the attack.
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Figure 7.4: Injection throttle request attack

As clearly depicted in Figures 7.2, 7.3, and 7.4, all the inspected cyber-
attacks achieve their goal of increasing the engine speed, either via a direct
attack (e.g. the inject throttle attack) or as consequence of indirect attacks
(e.g. the inject speed attack and inject reference attack).
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7.5 Possible solutions

Two different techniques from the control theory are inspected as possible
solutions for the mitigation of the consequences of cyber-attacks on the
powertrain model.

The first solution requires to apply watermarking [60] for the detection
of attacks on the system. The model with the watermarking technique is
deployed and simulated for 20 seconds, thus without any attack on the system.
The model is implemented and simulated in MATLAB on a laptop computer
running Windows 10.
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Figure 7.5: Model output with watermarking technique applied on the input
signal.

Figure 7.5 shows the engine speed signal value (y-axis) while applying
the watermarking technique to the powertrain model. As clearly depicted in
Figure 7.5 it is possible to notice that the engine speed value is oscillating
around the speed reference values (4200 RPMs). Such behavior may not be
acceptable from both mechanical stress and driver perspective, since it may
result in over-stressing mechanical parts of the powertrain section and it can
introduce severe discomfort while activating the cruise control system [23].
Hence watermarking is not applicable in this context.

The second solution is the software rejuvenation [76]. This method is
tested and applied to the system, allowing it to be periodically restored in
a safe state. As for the previous solution, the model with the rejuvenation
technique is simulated in conjunction with the anomaly detection algorithm
described in 5.3. The model is implemented and simulated in MATLAB on a
laptop computer running Windows 10, with an attack-free simulation for the
first 20 seconds, and the attack simulated for the following 10 seconds.

The results of the software rejuvenation process applied to the powertrain
model of a generic internal combustion engine are shown in Figure 7.6,
where the rejuvenation process is triggered every second while simulating the
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Figure 7.6: Software Rejuvenation triggered after the injection speed attack
is detected.

injection speed attack, as described in Section 7.4.1. Figure 7.6 compares the
value of the engine speed signal received on the CAN bus (continuous line)
with the real speed of the engine (dashed line) as evaluated by the model.
The left-most vertical line represents the instant the attacks is started, while
the right-most vertical line represents the instant the rejuvenation process
is concluded and where the system is recovered in a steady and observable
state. By the analysis of the results depicted in Figure 7.6 it is clear that the
software rejuvenation method is able to restore the engine model to a safe and
observable state. It is necessary to remark however, that the depicted case is
only one of the attacks described in 7.3 and represents only the promising
results achievable by means of Software Rejuvenation following the detection
of anomalies.



Chapter 8

Anomaly reaction exploiting
existing mechanisms

In this Chapter a solution designed for the reaction to the detection of a
cyber-attack is proposed. The proposed reaction mechanism leverages a
mechanical prevention mechanism deployed in modern vehicles that allows
ECUs to enter a safe-mode, preventing further mechanical and/or electronic
failures. This system, called limp back home mode, is usually triggered by
safety control units to avoid irreversible damages to the mechanical parts
of the vehicles. This reaction mechanism proposed in this Chapter is called
vehicle safe-mode, and it is designed to mitigate the consequences of identified
cyber-attacks. Two different modes for the vehicle safe-mode are introduced,
to provide a more flexible integration with future reaction mechanisms.

8.1 Limp back home mode

The limp back home mode is a mechanism designed to limit the potential
damage to either mechanical or electrical malfunction, allowing the driver to
operate the vehicle with limited functionality without forcing it to a complete
stop, preventing further damages. In modern vehicles, the limp back home
mode is activated automatically after an ECU detects a malfunction in one or
more vehicle subsystems. It is possible to distinguish between two different
types of Limp-modes: a local limp-mode that is limited to the operation of a
single ECU, and a global limp-mode affecting the global state of the vehicle.

The local limp-mode is a physical pin that, when activated by applying
the proper voltage, allows to override the normal behavior of the microcon-
troller and drive the output pins directly to pre-configured settings (e.g. the
technical documentation of the DRV8305-Q1 automotive micro-controller [87]).
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Local limp-mode can be easily deactivated by restoring the normal voltage to
the limp-mode pin, thus restoring the normal operation of the microcontroller.

Global limp-mode is activated when one of the central ECUs connected
to the in-vehicle network detects possible fail conditions by analyzing the
values of the messages received from the CAN bus (e.g., the Central BCM
produced by Infineon [40]). As an example, the global limp-mode may be
activated if the coolant temperature rises above safety values [34] or if the
powertrain control module detects a failure (or near-failure) condition in the
transmission [89]. Depending by the type and the severity of the failure,
the central ECU triggers a set of operations that restrict the vehicle to
a limited set of fail-proof and safe states. When the global limp-mode is
triggered, the vehicle speed might be electronically limited to a maximum
value, the transmission might be fixed in a specific low gear and, if an issue
related to the engine is detected, the limp-mode can be used for shutting
down the engine and gradually forcing the vehicle to a complete stop. The
exact countermeasures deployed when the limp-mode is activated depend
on the specific settings defined by the OEM. The global limp-mode may be
implemented by activating the local limp-mode of some peripheral ECUs,
allowing the main ECU to directly control their behavior. The deactivation
of the global limp-mode also depends from the nature and severity of the
detected failure. As an example, consider a limp-mode activated following the
detection of transient failure conditions, which is usually automatically reset
after the ignition of the vehicle or after a predefined amount of time. In some
cases, the car owner can perform a sequence of operations that resets the
limp-mode for non-severe failures, such as switching the car ignition on, and
pressing and releasing the throttle pedal for a given number of times [3]. On
the other hand, more severe failures may require a manual reset of the limp-
mode, which is usually performed by operators of authorized car services by
physically connecting to the OBD-II port and executing proprietary diagnostic
software procedures. In the remainder of the Chapter the term limp-mode
will be used for referring to the global limp-mode.

8.2 Adversary Model

The adversary model is analyzed by assuming that an attacker is able to
obtain access to the CAN bus of a modern vehicle and to inject forged CAN
messages. The number and the typology of injected messages is different
depending from the final goal of the attacker. Two different attack injection
scenarios are inspected: the internal-injection and the external-injection.

• Internal-injection: In this attack scenario the adversary is able to
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obtain full control over one or more ECUs, hence it has the ability
to directly control some functions of the vehicle by altering the logic
of the compromised ECUs. The attacker is also able to exploit the
compromised ECUs to inject arbitrary messages over the CAN bus.
This attack mode is depicted in Figure 8.1a.

• External-injection: In this scenario the adversary is not able to di-
rectly control any ECU but it is able to inject arbitrary CAN messages
over the CAN bus either by physical access (such as a direct connection
through the OBD-II diagnostic port) or remote access (e.g., by trans-
mitting malicious messages over a legitimate wireless channel). This
attack mode is shown in Figure 8.1b.

(a) Internal-injection (b) External-injection

Figure 8.1: Adversary models considered for this analysis. The attacker
position is highlighted in red.

8.3 Vehicle Safe-mode architecture

The concept of vehicle safe-mode proposed in this Chapter is similar in
principle to the limp-mode mechanism described in Section 8.1: the safe-mode
mechanism is activated to allow the driver to safely stop the vehicle in case a
cyber-breach is detected, while reducing the potential damage of these attacks
to the vehicle system and to mitigate possible safety-relevant accidents.

The vehicle safe-mode system operates as follows: when a cyber-attack
is detected, a safe-mode manager (SMManager) triggers the vehicle into
a safe-mode condition in which several operations are limited or disabled,
by sending an alert triggering message (TMessage) to other ECUs. The
SMManager evaluates the vehicle state by analyzing the output of any existing
intrusion detection system. The output of the SMManager also includes the
recommended alert level and the chosen reaction mechanism, which are both
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Figure 8.2: The system overview. Note that the SMManager can be connected
directly to the IDS system, or alternatively, get its feedback over the bus.

encoded into the broadcast TMessages. The system overview is depicted in
Figure 8.2.

Two different operational modes are presented for the implementation of
the system: the Transparent-mode and the Extended Mode. In the former
operational mode the SMManager only causes the ECUs in its same network
segment to enter into their pre-configured limp-mode state, thus limiting the
vehicle’s functionality and reducing potential dangers. The main advantage of
this mode is that it is deployable on all modern vehicles, since the introduction
of the SMManager does not affect the other ECUs. In particular, the system
may be deployed by adding a single OBD-connected entity to include the
SMManager, with optional IDS capabilities.

The latter mode requires the addition of a novel software component, called
the safe-mode client (SMClient) to the chosen ECUs. The main purpose of the
SMClient is to process and react to the TMessages sent by the SMManager.
The extended mode allows to increase the flexibility of the system, allowing
different implementation of customized reactions for each individual ECU.

It is necessary to define the recovery options that allow the vehicle to exit
from the safe-mode and to restore its complete functionality. This step is
required for the prevention of unwanted deactivation of the safe-mode and
for ensuring the driver with the ability to restore the vehicle when necessary.

8.3.1 Operation modes

Transparent-mode

In the transparent-mode of operation, the goal of the SMManager is to
trigger the limp-mode state on the target ECUs to reduce the potential
damage of an identified attack. This reaction mechanism requires to be
effective for the reduction of potential damages to both mechanical and
electronic components of the vehicle, while also ensuring the safety of the



8.3 - Vehicle Safe-mode architecture 129

Table 8.1: Table of TMessages that triggers the Limp-mode on different ECUs

ECU Msg ID Data

ECM 014 “Dangerous high engine temperature”
ECM 014 “Major engine malfunction”
ABS 004 “Dangerous low oil pressure”
TPM 020 “Dangerous low air pressure”

passengers.
For this purpose, the SMManager is required to maintain a list of all

relevant CAN bus messages that typically cause each ECU to enter limp-
mode. This list can be maintained by in a table that consists of all the
relevant TMessages for each different ECU (Table 8.1). This table may
include several different lines per ECU, in case multiple TMessages for each
ECU are available.

This operational mode allows to apply the safe-mode mechanism to any
existing vehicle, e.g., by connecting an after-market device (to include the
SMManager and some anomaly-detection component) to its OBD-II port.
A more sophisticated after-market device based on mobile devices allows to
include more sophisticated notification and recovery options to the vehicle.
However, the drawback of this operational mode is that the safe-mode re-
action mechanism is only limited in the activation of the limp-mode, thus
countermeasures that are designed specifically against cyber-breaches cannot
be implemented.

Extended-mode
In the extended operational mode the SMManager is able to trigger selected

ECUs into a particular safe-mode, instead of trigger their pre-configured limp-
mode. The extended mode offers higher flexibility at the cost of increasing
the requirements (thus the costs) of some software components (such the
SMClient). This operational mode provides high freedom in the decision of
the triggered reaction for each ECU, thus reducing the potential damage of a
cyber-breach to the overall safety of the vehicle and passengers. Furthermore,
this operational mode allows different reaction mechanisms according to the
type and severity of the identified attack. The extended-mode also increases
the flexibility for the definition of the notification and recovery options to
deploy. Moreover, these notification could also allow the driver to override
the suggested countermeasures with more strict ones, if desired.

In the extended mode the SMManager maintains a table of all the relevant
messages triggering the safe-mode TMessages, for each ECU and for each
different alert-level, including the type of desired reaction. It is necessary
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TMessage ID Alert Level Reaction Level [Counter] [MAC]

11 3 5 8 48

Figure 8.3: candidate structure of an Extended-mode TMessage. The numbers
represent the field length in bits. Note that the ID field is a regular CAN-
ID-field, while the other fields fit into the CAN 8 byte data-field; Both the
counter and the MAC fields are optional; Transparent-mode TMessages are
regular (Limp-mode triggering) CAN messages.

to highlight that this table can be used for both modes of operation, even
though the transparent-mode only requires a simplified version of the one
required by the extended-mode.

A generic TMessage is based on the underlying protocol (typically the CAN
protocol). Unlike the transparent-mode TMessage, the extended-TMessage
includes the vehicle’s Alert-level AL, the required Reaction-level RL, a replay
counter and a truncated MAC evaluated with a robust algorithm. AThe
candidate structure for an extended-TMessage is depicted in Figure 8.3.

The SMClient is a software component required to be included in all
the participating ECUs, thus allowing proper identification, processing and
reaction to the safe-mode TMessages. The SMManager is responsible for
the required management and distribution of cryptographic material for the
evaluation of the truncated MAC in the TMessages. Several solutions for key
management have already been proposed in literature, from factory serializa-
tion to specialized solutions, and have already been covered in Chapter 4.

Safe-mode Manager

The SMManager is responsible for processing the outputs of the intrusion
detection systems deployed in the network, evaluating the vehicle alert-level
(AL), the corresponding reaction-level (RL), and for triggering the vehicle
safe-mode by sending the appropriate TMessages.

The SMManager is also responsible for the management of cryptographic
materials required for the evaluation of the truncated MAC of the TMessages.
It is necessary to remark that the SMManager can implementable in both
hardware and software. Despite having a dedicated hardware component for
the SMManager tasks implies higher costs for the vehicle manufacturer, this
solution also increases the cyber-resistance of the suggested mechanism, thus
improving the security guarantees offered by the mechanism.

Topology

The SMManager can be implemented in two different ways according to
the topology of the internal networks and the computational load of each
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ECU: the Independent SMManager, and the Incorporated SMManager.
The Independent SMManager implementation allows to deploy the

logical operation performed by the SMManager on a dedicated hardware mod-
ule, as either an internal or external component. The internal SMManager is a
dedicated ECU responsible for collecting the different notifications generated
by the IDS deployed in the internal network to trigger the vehicle safe-mode
when necessary. The external SMManager can be implemented as a dedicated
OBD-II dongle (Figure 8.4a) and allows to provide an aftermarket solution for
the implementation of the vehicle safe-mode. The external solution requires
that the relevant internal networks are exposed on the OBD-II port, thus
allowing the SMManager to access the content of the powertrain section and
to inject the required TMessages.

The Incorporated SMManager implementation allows to deploy the
logical operation performed by the SMManager on an existing ECU of the
internal network (as shown in Figure 8.4b). This option implements the SM-
Manager as part of the vehicle system by design. An Incorporated SMManager
allows three different topologies for its implementation:

• Centralized SMM: the logic for the SMManager is embedded on a
centralized ECU (e.g., the ECM or BCM)

• Distributed SMM: the logic for the SMManager is embedded on multiple
ECUs of the network, each one with its specific set of operations allowing
both for monitoring and triggering of the vehicle safe-mode.

• Hybrid SMM: a composition of the two previous topologies: different
instances of the same SMManager are responsible for the monitoring
and the collection of different information, that are forwarded to the
centralized SMManager. The vehicle safe-mode is activated only by the
centralized SMManager.

8.3.2 The safe-mode client

To provide the necessary support required by the Extended-mode it is necessary
to deploy a SMClient allowing proper identification, processing and reaction
to the custom SMManager TMessages for the participating ECUs.

The reaction list for each reaction-level (RL) encoded in the TMessage is
maintained by the client. The reactions are defined by the manufacturer to
limit the potential damage of the possible attacks to the vehicle. To prevent
adversarial manipulation, the TMessages are authenticated and the SMClient
is responsible for the validation of the authentication tag embedded in the
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OBD-II

(a) External independent SMM

(b) Distributed incorporated SMM

Figure 8.4: Safe-mode Manager suggested topologies. The SMManagers are
marked in green, while the SMClients are marked in blue. Note that Figure
(a) shows one example for a system in Transparent-mode, while Figure (b)
shows an example for a system in Extended-mode.

TMessage. After a valid TMessage is received, the SMClient triggers the
safe-mode on the hosting ECU, thus performing the relevant pre-configured
actions encoded in his reaction table. The SMClient requires to support
the recovery mechanism, allowing proper recovery of the hosting ECU when
required. Recovery could be either triggered automatically depending on the
system configuration or upon reception of a special recovery message.

8.3.3 The vehicle alert-level

The SMManager is responsible for the evaluation of the vehicle alert-lever
(AL), independently from its implementation. Different alert level denotes
a different threat level, thus requiring to deploy appropriate reactions. For
the evaluation of the current AL the SMManager requires the deployment of
Intrusion Detection Systems designed for the detection of anomalies in the
inspected vehicle network. The IDS generates the main source of information
required for the evaluation of the AL. Intrusion Detection Systems designed
for the internal vehicle network could be either based on the inspection of
the messages (thus based on open standards 5), or based on the inspection
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of the signals encoded in the messages (thus based on closed standards 6).
The SMManager collects and analyzes the security alerts and evaluates the
current AL. For the purposes of this Section, five different levels of AL are
inspected, each one representing the increasing severity of the alert.

8.4 Possible reaction, recovery plans, and po-

tential problems

8.4.1 Reaction

In this paragraph the different actions triggered by the SMManager after
the detection of a cyber-breach are described. The two reaction steps of the
SMManager are described as follows:

• Notification: feedback to the driver and the vehicle surroundings about
the identified attack and the chosen reaction;

• Action: countermeasures deployed by the SMManager to mitigate the
consequences of the attack.

The trigger order for notifications and actions are defined in the relative
alert-level.

Reaction-Matrix

The reaction-matrix is used by the SMManager for the evaluation of the the
reaction-level (RL), and it encodes the steps required for the mitigation of a
cyber-attack. The RL is evaluated by using the current alert-level and the
current vehicle-condition (VC). The current VC represents the condition of
the vehicle dynamics (including speed, yaw, roll, pitch, lateral acceleration
and outputs of the ABS and ESP systems) evaluated by the SMManager.
It is important to consider the current vehicle conditions to allow proper
evaluation of the reaction level by the SMManager, preventing the vehicle
state to be forced in more dangerous state with respect to the state in
which the attack is detected. In the scenario in which countermeasures are
deployed without inspecting the current vehicle conditions, the decision of
the SMManager might be able to exclude the ESP or any of the ADAS
systems. While this decision might be appropriate for a vehicle running at
low speed on a straight road, it can increase the safety risks associated in
case the vehicle state is considered safety-critical (such as at high speed, or
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Figure 8.5: Example of a reaction matrix based on a 5ˆ 5 AL/VC structure.

under high lateral accelerations). To prevent similar situations the reaction-
matrix requires different countermeasures associated with the same AL, but
in different vehicle conditions. The evaluated RL is used to determine the
most appropriate reaction, aiming to secure the vehicle state, mitigating the
safety-risks of any detected cyber-breach.

An example for a RM is depicted in Figure 8.5, which includes different
RL matching the combinations of a given 5ˆ 5 AL/VC structure, where the
columns represent the different alert level and different colors are used to
highlight different reaction levels.

Actions

Following the activation of the safe-mode, the SMManager is responsible for
the activation of different actions for deploy the most appropriate reaction
mechanism, depending from the reaction-matrix. These actions could take
place before, after or during the notification phase, thus it is necessary to
define the timing sequence.

Some actions might differ depending from the triggered reaction-level,
hence requiring multiple intensity levels according to the generated AL. While
lower value of the RL only trigger limited actions to recover from not safety-
critical situations, higher RL values require more invasive solutions, reflecting
higher safety risks.

Triggered actions range from the already existing Limp-mode operations
(e.g., limit the vehicle speed) to custom actions such as those presented below:

• Ignore all non-critical messages: ECUs are allowed to ignore at-
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tacks that leverage non-critical messages, reducing the computational
power required by ECUs to operate the vehicle, thus increasing the
computational power required for the safe-mode;

• Shutdown specific ECUs: the ECU classified as responsible for a
cyber-attack is removed from the network operation, avoiding further
impact of the attack on the vehicle system.

• Reset specific ECUs: an extension of the previous action, allowing
the controller to reboot the ECU after the shutdown procedure is
complete.

• Authentication on some (CAN) messages: forces the usage of
cryptographic primitives for the authentication of the messages to
mitigate spoofing attacks.

• Encryption on some (CAN) messages: forces the usage of crypto-
graphic primitives for the encryption of the messages to mitigate a wide
scenario of cyber-attacks.

• Segment isolation: isolates a target network segment from the net-
work, containing the consequences of attacks.

• Parallel network: a secondary network implementation with limited
capabilities is used instead of the normal network, enabling communica-
tion between only critical ECUs on a different interface. It is necessary
to remark that an extra interface is required by critical ECUs.

Notification

Notifications are considered to be both internal or external. Internal noti-
fications are used to notify the driver that the SMManager is performing
different actions to react to the evaluated AL. These notifications could be
either acoustic, visual, or even include haptic feedback on different parts of
the cockpit, like the steering wheel or the pedals. A more articulated schema
for vehicle internal-notifications has already been proposed in [38]. External
notifications are mostly used to notify other drivers, vehicles, and nearby
pedestrians of a potentially dangerous situation. External notifications might
be implemented through visual feedback for fast reaction by all the involved
parties, but also includes external messages sent using vehicle-to-vehicle (V2V)
or vehicle-to-infrastructure (V2I) technologies.
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8.4.2 Recovery phase

The Recovery phase is the last phase of the vehicle safe-mode, and it is started
after the reaction phase is terminated. The recovery procedure aims to restore
the vehicle normal behavior under safe circumstances. The SMManager
evaluates when the recovery operations are started. Different recovery modes
are inspected: self recovery, driver-initiated recovery, and authorized-garage
recovery.

• Self-recovery allows the SMManager to trigger the recovery procedure
autonomously. The self recovery procedure should be applied only if
non-critical parts of the network are involved in the cyber-attack. An
example of a self-recovery procedure has already proposed in Section 7.5.

• Driver-initiated recovery allows the driver to trigger the recovery
procedure by requesting his authorization through the HMI of the
vehicle. This option allows to increase the robustness of the mechanism,
preventing the attacker to trigger the recovery procedure during the
attack.

• Authorized-Garage recovery allows to start the recovery procedure
only by authorized garages, following major attacks to the network or
in case the attack has not been mitigated properly by the deployed
reactions.

A proposal of the metrics used by the SMManager for triggering the
required recovery mode is provided as follows:

• iAL: the initial Alert-level, computed before the reaction phase;

• RL: the previously evaluated Reaction-level, computed before the reac-
tion phase;

• aAL: the actual Alert-level, computed after the reaction phase;

• aVC: the actual Vehicle-condition, computed after the reaction phase.

8.4.3 Potential problems

Limitations and side effects of the safe-mode mechanism are inspected in this
Section.
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False positives

The IDS or anomaly detection component is a critical, yet external, part
of the safe-mode system, which is responsible for the input provided to the
SMManager to trigger the safe-mode. This implies that the limitations of
the IDS affect the safe-mode mechanism, thus it is necessary to consider that
the safe-mode could be triggered when unnecessary in case of false positives.
However, it is necessary to remark that the false positive rate of any deployed
IDS might be previously considered while deploying the vehicle safe-state.
Moreover, a detection framework as the one proposed in Section 5.7 might
mitigate the false positive issue.

Adversarial triggering

Adaptive adversaries might be able to trigger the safe-mode mechanism
by sending maliciously forged TMessages while the system is deployed in
Transparent-mode or in a non-secured extended-mode. However, this scenario
could be similar to the false positive described above.

Transparent-mode TMessage collisions

It is necessary to ensure that no collisions between TMessages and legit
messages occurs while the SMManager is configured in transparent-mode. To
prevent message collisions, it is necessary to include the TMessages as part
of the design of the vehicle. This scenario only applies if the SMManager is
deployed in extended-mode, thus the collision issue in the transparent-mode
is not relevant.

Transparent-mode, TMessage overriding

Another issue related to the transparent-mode SMManager is that legit CAN
messages could override the content of TMessages sent by the SMManager.
For the prevention of this scenario, it is necessary to deploy the same coun-
termeasures deployed for the TMessage collision scenario.

8.5 Safe mode summary

This Chapter described a concept for the vehicle safe-mode, designed to
mitigate the damages of cyber-attacks to the vehicle network. Differently from
other defense mechanisms designed to block attacks or to simply notify their
existence, the mechanism proposed in this Chapter allows to actively respond
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to the detection of attacks by limiting the functionality of the vehicle and
triggering security countermeasures. The proposed mechanism exploits the
existing mechanism of the limp-mode, originally designed to limit the potential
damage of either mechanical and/or electrical malfunctions. The proposed
mechanism introduces two different modes for its safe-mode operation: the
transparent-mode, in which the pre-configured limp-mode is activated upon
detection of cyber attacks; and the extended-mode, in which custom messages
are used to increase the flexibility of both reaction and recovery phases.
The extended-mode requires heavy modifications to the participating ECUs,
either via software or hardware, while the transparent-mode is designed to
be deployable on existing vehicles by connecting a dedicate OBD-II dongle
to the OBD-II port of the vehicle, without requiring any modification of the
internal network.



Chapter 9

Conclusions

The increasing adoption of automatic and autonomous controls in modern
vehicles, together with vulnerabilities of automotive protocols and microcon-
trollers to a wide range of cyber attacks, motivates the current research efforts
aiming to improve the cybersecurity of the automotive ecosystem. Within
this scenario, this thesis improves the state of the art by proposing original
solutions designed to improve the security of the internal network of modern
vehicles.

Chapter 4 proposes an analysis of the current state-of-the-art solutions
for secure communications applied to intra-vehicular networks and Electronic
Control Units connected to the CAN network. This analysis considers the
full life-cycle of a modern vehicle (from design to disposal) and shows that
many solutions that may appear efficient and secure when deployed on a
single vehicle, present severe disadvantages when deployed at scale. Results of
this analysis also shows that solutions based on pre-shared symmetric secrets
complicate the management and maintenance of the vehicles. Moreover,
solutions not based on a centralized point of control managed by the car
manufacturer are not able to offer the desired security guarantees.

Chapter 5 presents five novel algorithms for the detection of attacks
and anomalies by analyzing CAN data frames. Each algorithm inspects
a different feature available from the analysis of network communications
gathered from a modern, licensed and unmodified vehicle. The detection
performance of the proposed algorithms are evaluated experimentally against
the same dataset. Moreover, this thesis designs a detection framework that
leverages the detection capabilities of the proposed attack detection algorithms,
highlighting that complete coverage of all realistic threats can be achieved
through a combination of two of the proposed algorithms, while improved
detection rate can be achieved by combining all of them.

To overcome the limitation posed by the lack of public specifications
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describing the content of CAN messages, this thesis also proposes READ (see
Chapter 6), a reverse engineering algorithm designed for the extraction of
signal boundaries from generic CAN traffic traces. Extensive experimental
evaluations against the ground truth represented by the full specification of a
modern, unmodified, licensed vehicle show that READ extracts more than
twice correct signals with respect to previous work. Moreover, READ is char-
acterized by lower execution times and comparable convergence requirements.
The results of READ enable the analysis of the behavior of CAN signals, and
different detection model are proposed for the different signal types extracted
by READ: counters, CRCs, and signals representing the evolution over time
of physical measures.

Chapter 7 proposes a novel detection and reaction approach that fuses
intrusion detection techniques with solutions borrowed from the domain of
control theory. This mixed approach is motivated by cyber-attacks that
can affect the cyber-physical model of the vehicle without being detected
by control-theory techniques alone. To overcome this critical issue, a novel
solution based on the software rejuvenation method is proposed and evaluated
through simulations carried out over a mathematical model representing the
powertrain section of a vehicle equipped with cruise control.

The last contribution of this thesis is the proposal of a safe-mode concept
for modern vehicles (see Chapter 8). The proposed reaction strategy exploits
the limp-home mode mechanisms to mitigate the physical effect of a cyber
attack after its detection.

Future research directions will expand on the significant results presented
in this thesis to improve the security of future, cooperative Intelligent Trans-
portation Systems (ITS).

At first it is necessary to adapt all the algorithms proposed in this thesis
for future bus technologies that will eventually replace CAN, such as CAN-
FD and automotive Ethernet. Moreover, since future bus technologies are
designed to include security solutions, it is necessary to integrate possible
flaws with the solutions proposed in literature. The lack of standardization for
the technologies used in the development of current in-vehicle communication
protocols and embedded devices exposed the necessity of a security test bed,
enabling a baseline for the definition of the security characteristics of future
automotive-grade microcontrollers.

Another possible expansion of the work proposed in this thesis is focused
on the inspection of the secure protocols used for vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) communications. These solutions are inspected
as part of the future generation of ITS, that will focus on the cooperation
between connected devices to increase the efficiency of the road management.
Despite the future ITS scenario paves the way to many different and inter-
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esting solutions, it is also necessary to grant authenticity, non repudiation,
and confidentiality of the communications. These security guarantees are
well established solutions in classical IT communication, but the ITS scenario
raises novel and unaddressed issues due to its composition of multiple dy-
namic objects, with limited computational capabilities, and operational time
constraints. Moreover, ITS are based on beacon-broadcast communication
between the nodes, with a maximum allowed latency for each communication.
Current ITS standard defines the maximum density for each communication
beacon of more than 150 devices. In this scenario, each device requires to
validate the authenticity of more than 150 messages sent from all the other
devices (in the worst-case scenario) with very strict time constraints.

To address these problems, future work will focus on the analysis, the de-
velopment, and the deployment of security protocols designed to be compliant
with the ITS standards.
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