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Abstract

Recent advances in single-cell technologies are providing exciting opportunities for dissecting tissue heterogeneity and

investigating cell identity, fate and function. This is a pristine, exploding field that is flooding biologists with a new wave of

data, each with its own specificities in terms of complexity and information content. The integrative analysis of genomic

data, collected at different molecular layers from diverse cell populations, holds promise to address the full-scale

complexity of biological systems. However, the combination of different single-cell genomic signals is computationally

challenging, as these data are intrinsically heterogeneous for experimental, technical and biological reasons. Here, we

describe the computational methods for the integrative analysis of single-cell genomic data, with a focus on the integration

of single-cell RNA sequencing datasets and on the joint analysis of multimodal signals from individual cells.
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Introduction

As -omics data generated at single-cell resolution are rapidly

increasing in throughput and quality, there is a great expectation

that their analysis will provide fundamental insights into

the regulatory interactions underlying complex phenotypes.

However, the capacity to transform collections of single-cell

signals into models of cellular functions depends on the efficacy

to integrate multi-view information acquired from different

biomolecular layers and cell populations. Multi -omics data

entangle the cross-sectional hierarchy of biological phenomena

and their integration allows accessing a systemic view of the

molecular processes that is deeper than the one returned by

the sum of the signals analyzed separately [1]. The integrative

analysis of single-cell multimodal data provides a powerful
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framework to determine the correlations that occur among

differentmolecular signals in the various cell types and to quan-

tify the impact of these relationships in defining cell identities

[2, 3]. Multimodal data from individual cells can be obtained

simultaneously profiling multiple types of molecules within

a single-cell or assembling signals collected from separate

assays and distinct cells. In both cases, their integration requires

computational approaches specifically designed to reconcile the

immense heterogeneity observed across individual datasets.

As for bulk experiments, multi-view single-cell data are high-

dimensional and comprise many distinct yet interdependent

signals, each with specific characteristics, dimensionality and

noise. Across modalities, data are commonly collected in

different genomic locations (genes, genomic regions), scales and
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formats (levels, states). Moreover, datasets vary widely in the

number and type of profiled cells, of investigated biological sam-

ples (e.g. treatments, individuals) and for technical aspects (as

sample processing, library preparation or sequencing depth). All

these heterogeneities pose additional computational challenges

to the application of methods previously developed for bulk

experiments [4–7]. In recent years, a variety of approaches have

been proposed to specifically address the integration of single-

cell signals produced in various studies using multiple assays.

Some methods deal with specific issues, such as the integration

ofmultiple single-cell RNA sequencing (scRNA-seq) experiments

or the classification of cell types in different studies, while some

others address all aspects of single-cell integrative analysis,

including the harmonization of multimodalities and the joint

analysis of transcriptional and spatial expression. A majority of

these methods build on machine learning techniques, owing

to their ability to extract rules from multiple feature sets

(multi-view learning; [8]), and obtain the integration either

relating elements that have an attribute in common across

diverse data types and datasets or combining features singularly

extracted from each data view. Most approaches adopt a

transformation-based integration, meaning that each data type

is first transformed into an intermediate form (e.g. through

dimensionality reduction) and then all transformations are

merged to perform the downstream integrative analysis [1, 9,

10]. This strategy borrows elements from the standard analysis

of individual scRNA-seq samples where the identification of

a set of latent variables enables the algorithms to distinguish

groups of cells sharing common genomic traits despite the

intrinsic heterogeneity of the data. Under the assumption that,

in a low-dimensional embedding, cells with the same identity

or in the same state map close together although profiled

with different assays, most approaches adopt computational

techniques for the exploration of multidimensional data (such

as multiple factor analysis, canonical correlation analysis or

nonnegative matrix factorization) to match observations from

different experiments and to identify functional correlations

between data from single cells.

The goal of this survey is to present an overview of com-

putational methods for the integrative analysis of single-cell

data.We discuss the various approaches in the context of differ-

ent types of single-cell data integration problems although this

classification is largely instrumental to applications (Figure 1).

Most of the tools reviewed here are also listed in the ‘integra-

tion’ and ‘classification’ categories of the scRNA tool database

(scrna-tools.org; [11]).

Integration of multiple scRNA-seq datasets

scRNA-seq is the most widely used technique for the analysis of

gene expression levels within individual cells, and the number

of scRNA-seq experiments has been constantly growing since

its first application. With the rapid accumulation of scRNA-

seq data, a major computational challenge is the integration of

single-cell transcriptomes collected across different studies to

increase the inference power (Figure 1A). As compared to single

experiments, integrated scRNA-seq data account for a larger

number of cells, thus facilitating the identification of both com-

mon and rare cell types and a finer definition of cell identities.

Merging multiple scRNA-seq datasets requires to first remove

all variations caused by batch effects (as differences in sample

processing, library preparation or sequencing technology) or

biological factors (e.g. treatments, individuals),which cause cells

to cluster by sample, dataset or experiment, rather than by type

Figure 1. Schematic representation of the different types of single-cell data

integration scenarios.

[6, 12, 13]. When integrating bulk RNA-seq data, the batch

effect is considered to be uniformly distributed across all

samples and is removed using linear models that generate

batch-corrected signals [14–16]. However, the assumption of

uniformly distributed batch effects across cells and of conserved

gene expression structure across datasets is not necessarily

verified in scRNA-seq data. In addition, different scRNA-seq

experiments generally capture cell types and populations that

are unbalanced or only partially shared across experiments,

making the integration further challenging. Therefore, compu-

tational strategies for the integration of bulk transcriptomes

might result inadequate and several ad hoc procedures have

been specifically developed to integrate multiple scRNA-seq

experiments (Table 1). Before integration, essentially allmethods

preprocess each batch independently (through normalization
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Table 1. Methods for the integration of multiple scRNA-seq datasets

Tool name Category Algorithm Output Language Availability Reference

batchelor Anchor-based PCA and mutual nearest

neighbor

Corrected gene expression

matrix and integrated data

in low-dimensional space

R https://bioconductor.org/packages/devel/bioc/

html/batchelor.html

[13]

SMNN Anchor-based PCA and mutual nearest

neighbor

Corrected gene expression

matrix

R https://github.com/yycunc/SMNN [17]

Scanorama Anchor-based SVD and mutual nearest

neighbors matching

Corrected gene expression

matrix and integrated data

in low-dimensional space

Python https://github.com/brianhie/scanorama [18]

BEER Anchor-based PCA and mutual nearest

neighbor

Selected PCA subspaces R https://github.com/jumphone/BEER [19]

Seurat v3 (IntegrateData) Anchor-based CCA and mutual nearest

neighbor

Corrected gene expression

matrix and integrated data

in low-dimensional space

R https://github.com/satijalab/seurat/releases/tag/

v3.0.0

[20]

Seurat v2 Other CCA and dynamic time

warping

Integrated data in

low-dimensional space

R https://github.com/satijalab/seurat/releases/tag/

v2.0.0

[21]

Harmony (RunHarmony) Anchor-based PCA, fuzzy clustering and

linear combination

Integrated data in

low-dimensional space

R https://github.com/immunogenomics/harmony [22]

scNCA Anchor-based Context likelihood

neighbors, NCA

Integrated data in

low-dimensional space

R https://github.com/gongx030/scNCA [23]

scMerge Anchor-based Mutual nearest clusters

(pseudo-replicates) and

RUV-III factor analysis

Corrected gene expression

matrix

R https://github.com/SydneyBioX/scMerge [24]

Conos (buildGraph) Graph-based Dimensionality reduction

(PCA, CPCA, CCA, JNMF),

mutual nearest neighbor,

clustering

Corrected gene expression

matrix and integrated data

in low-dimensional space

R/C++ https://github.com/hms-dbmi/conos [26]

BBKNN Graph-based PCA, KNN and UMAP Integrated data in

low-dimensional space

Python https://github.com/Teichlab/bbknn [27]

scPopCorn Graph-based PCA, PageRank and graph

k-partitioning

Integrated data in

low-dimensional space

Python https://github.com/ncbi/scPopCorn [28]

LIGER (quantileAlignSNF) Combined anchor- and

graph-based

iNMF and joint graph Integrated data in

low-dimensional space

R https://github.com/MacoskoLab/liger [30]

scAlign Deep learning Dimensionality reduction

(PCA, CCA), neural

networks

Corrected gene expression

matrix and integrated data

in low-dimensional space

R/Python https://github.com/quon-titative-biology/scAlign [31]

For the methods that perform multiple types of integrative analysis, the corresponding function for the integration of multiple scRNA-seq datasets is specified in the tool name. PCA, principal component analysis; SVD, singular
value decomposition; CPCA, common PCA; JNMF, joint nonnegative matrix factorization; UMAP, Uniform Manifold Approximation and Projection.
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and scaling) and perform feature selection to identify a set

of highly variable genes (HVG) in any dataset, sufficiently

large to guarantee the detection of even rare cell populations.

The union of the HVGs that are expressed in all datasets

constitutes the base for the subsequent integration of the

different batches. For most methods, the integrative process

comprises the identification of a low-dimensionality space,

common to all datasets, where it is assumed that cells with

the same identity or in the same state map close together

although obtained from diverse experimental conditions and

biological contexts. The identification of this space presupposes

that the different batches share at least one population of cells.

In the common low-dimensional space, distances among cells

are used to estimate batch alignment vectors or to construct a

joint-graph representation. In the first case, correction vectors

are obtained from selected groups of cells in different batches

that are used as anchors to align the various datasets. In

the second, edges connecting cells in the joint graph are

weighted according to cell distances and the batch align-

ment is obtained through community detection methods on

the graph.

Methods for anchor-based alignment exploit a variety of

unsupervised and supervised approaches to identify the anchor-

ing cell pairs. For all thesemethods, the accuracy in determining

the anchors is a critical factor for an effective data integration.

ThemnnCorrect and fastMNN functions of the batchelor R package

determine anchors taking advantage ofmutual nearest neighbor

(MNN) cells, i.e. identifying pairs of cells that aremutually closest

to each other across batches [13]. The difference between the

expression profiles of MNN cells is then used to estimate the

batch effect and compute the local correction vectors for each

cell. The MNN concept is also used in SMNN [17], Scanorama

[18], BEER [19] and Seurat v3 [20]. In SMNN, the detection of

MNNs is restrained within cell populations matched on the base

of user-defined marker genes. Scanorama generalizes the MNN

approach implemented in batchelor to the simultaneous integra-

tion of multiple datasets, including time series. In BEER, MNN-

based anchors are used to identify dimensions that account

for latent batch effect and need to be discarded. Differently

from these methods that apply principal component analysis

or singular value decomposition for dimensionality reduction,

Seurat v3 uses canonical correlation analysis (CCA) to identify

a low-dimensional space where the correlation between the

canonical variates is maximized. Anchors are defined as MNN

cells in this reduced low-dimensional representation, filtered

according to the original high-dimensional expression values

and scored based on the shared overlap of mutual neighbor-

hoods [20]. Instead of using anchors, a previous version of the

Seurat suite (Seurat v2) integrates multiple scRNA-seq datasets

in the CCA space aligning the canonical correlation vectors with

the dynamic time warping algorithm, a nonlinear transforma-

tion also used for the comparison of single-cell trajectories [21].

In Harmony, anchors are determined in the principal component

space as the dataset-specific centroids of clusters defined using

a soft k-means algorithm [22]. Another approach similar to MNN

correction has been proposed to integrate different scRNA-seq

time series experiments. Specifically, the method named single-

cell neighborhood component analysis (scNCA) determines cell

context likelihood neighbors by comparing, within each time

point, the distances between cells from two batches with a

null model. Then, it applies a batch-specific linear transforma-

tion (similar to neighborhood component analysis, NCA) that

maximizes the closeness of cells with high context likelihood,

preserving the local trajectories [23]. The anchor concept under-

lies also the approach developed in scMerge [24]. Here, cells

that form the core of mutual nearest clusters across datasets

are considered as pseudo-replicates. Pseudo-replicates are then

used as replicates in an extended version of the RUV-III normal-

ization strategy [25] to estimate the unwanted variation of stably

expressed genes (negative control) and to return a single batch-

corrected expression matrix that can be used for downstream

analyses.

Conos [26], BBKNN [27] and scPopCorn [28] implement joint

graph-based approaches. In Conos (Clustering on network of

samples), the integration of different datasets is obtained gener-

ating aweighted graph representationwhere shared populations

are identified by community detection methods. The graph is

constructed considering as nodes the cells of all datasets con-

nected by both inter- and intra-dataset edges. Weights of the

inter-dataset edges are calculated given a neighbor mapping

strategy in a rotation space (e.g.MNN in common principal com-

ponents space). The intra-dataset edges are weighted accord-

ing to distances calculated, within each batch, in the space of

the top principal components and downscaled to reduce their

contribution in the joint graph. The graph is then clustered

using Walktrap, Louvain or Leiden community detection meth-

ods to identify joint clusters connecting cell populations across

datasets. BBKNN (batch balanced k-nearest neighbors) returns a

joint graph where inter- and intra-dataset edges are computed

independently on each batch using KNN and edge weights are

assigned according to the UniformManifold Approximation and

Projection strategy [29]. In scPopCorn, the inter-dataset edges are

defined by a cosine similarity matrix computed on the intersec-

tion of the HVGs. Instead, the intra-dataset edges are obtained

from a co-membership propensity graph constructed within

each batch applying an adaptation of the PageRank algorithm

to the cosine similarity matrix. The resulting joint graph is pro-

cessed using a k-partitioning method to define connected com-

ponents that represent subpopulations shared by the different

datasets.

Linked inference of genomic experimental relationships

(LIGER) exploits concepts of both the anchor- and graph-

based approaches [30]. Here, integrative non-negative matrix

factorization (iNMF) is first applied to determine a low-

dimensional space in which each cell is defined by factors

specific to each dataset and by factors shared among batches.

A shared factor neighborhood graph that connects cells with

similar factor loading across batches is then constructed in the

factor space and analyzed with Louvain community detection to

identify joint clusters across datasets. The final data alignment

is obtained correcting the factor loadings within each joint

cluster through the match of their quantiles across datasets.

Finally, in scAlign, data integration is obtained using a deep

learning approach based on neural networks [31]. Specifically,

first a neural network encoder is trained to learn a low-

dimensional embedding where cells in the same state overlap

across batches and then a decoder network is used to recreate

the gene expression signals of each input dataset projecting cells

from the alignment space back to the input space.

Depending on the method, the integrative analysis returns

data corrected in the low-dimensional space, corrected expres-

sion signals or both. However, the use of corrected expression

values to perform downstream analyses, other than visualiza-

tion, must be carefully evaluated since dataset alignment may

introduce artificial expression difference that affects the identi-

fication of cell type and the interpretation of results [32].
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Cell label transfer from reference scRNA-seq datasets

The integration of multiple scRNA-seq datasets can also be

used to annotate cell populations. The annotation of cell types

is a typical step in the analysis of scRNA-seq data and is

commonly addressed first clustering cells based on their gene

expression profiles and then annotating the clusters using cell

type-specific markers. Although effective, this process is mostly

manual, requires prior knowledge of genes and signatures

that specifically mark different cell types and suffers the

complexity of acquiring ground truth from experimentally

purified subpopulations [33,34]. An alternative approach for

cell annotation is to take advantage of well-annotated scRNA-

seq atlases and automatically transfer cell type classifications

from a reference to a query dataset (Figure 1B; Table 2). Some

of the tools previously described for the integration of scRNA-

seq data contain routines for the automatic transfer of cell

labels [20, 26]. In particular, Seurat v3 identifies the anchors

between reference and query sets and uses the anchor weights

to predict labels of the query cells [20]. Conos, once integrated

a reference and a query scRNA-seq dataset in a joint graph, can

propagate cell labels between graph vertices, thus annotating

the unlabeled cells of the query set [26]. Notably, both Seurat

v3 and Conos can transfer labels across multiple modalities,

as for instance annotate cells from a scATAC-seq experiment

using transcriptional profiles as reference. A similar approach is

exploited by cellHarmony that, although not directly integrating

reference and query data, first defines cell communities in each

dataset, then align individual cells withinmatched communities

and finally assign to each query cell the label of the closest

matching reference cell [35].

Several other methods formulate cell label transfer as a clas-

sification problem and construct a classification model on the

reference dataset to predict the query cell labels. These tools

implement a variety of classification strategies ranging from the

quantification of the similarity between clusters in the reference

and in the query to the adoption of supervisedmachine learning

algorithms. In scmap, each cell of the query dataset is classified

based on its similarity with each reference cluster centroid

(scmap-cluster) or based on the annotation of its KNN in the ref-

erence (scmap-cell) [36]. Cell types are predicted through cluster

comparison also in scIDwhere a Gaussianmixturemodel is used

to assign the query cells to the reference cluster with the highest

likelihood, given a score defined by cluster-specific genes iden-

tified in the reference dataset [37]. Similarly, in Moana, the cell

types of the query dataset are predicted using linear support vec-

tor machine (SVM) models trained on the clusters identified in

the two-dimensional PC space of the reference set [38]. In scPred

[39], a SVM model is trained using the most informative princi-

pal components of the training set. SuperCT [40], ACTINN [41]

and LAmbDA [42] exploit the knowledge encoding of artificial

neural networks to predict unknown cell types from binarized

or digital transcriptional data, and CaSTLe [43] and singleCellNet

[44] implement an ensemble of boosted regression trees and

a Random Forest classifier, respectively. Finally, some methods

transform the reference set into a hierarchy of cell types that

is further used to predict the query labels. The hierarchy can

be constructed in an unsupervised manner directly from the

reference data as in CHETAH [45] or defined using a priori knowl-

edge as in Garnett [46] and OnClass [47]. In general, it is worth

noting that the robustness of cell classification relies not only

on the algorithmic choice but also on the quality and detail of

the reference annotation. Specifically, as reported by two recent

comparison studies, the various methods are diversely affected

T
a
b
le

2
.
M
e
th

o
d
s
fo
r
th

e
a
u
to
m

a
ti
c
ce

ll
la
b
e
l
tr
a
n
sf
e
r
fr
o
m

re
fe
re
n
ce

sc
R
N
A
-s
e
q
d
a
ta
se

ts

N
a
m

e
C
a
te
g
o
ry

A
lg
o
ri
th

m
L
a
n
g
u
a
g
e

A
v
a
il
a
b
il
it
y

R
e
fe
re
n
ce

S
e
u
ra
t
v
3
(T
ra
n
sf
er
D
a
ta
)

In
te
g
ra
ti
o
n
-b

a
se

d
W
e
ig
h
te
d
v
o
te

cl
a
ss

if
ie
r
b
a
se

d
o
n
in
te
g
ra
ti
o
n

a
n
ch

o
rs

R
h
tt
p
s:
//
g
it
h
u
b
.c
o
m

/s
a
ti
ja
la
b
/s
e
u
ra
t/
re
le
a
se

s/
ta
g
/v
3
.0
.0

[2
0
]

C
o
n
o
s
(p
ro
p
a
g
a
te
La

b
el
s)

In
te
g
ra
ti
o
n
-b

a
se

d
L
a
b
e
l
p
ro

p
a
g
a
ti
o
n
w
it
h
in

jo
in
t
g
ra
p
h

R
/C

+
+

h
tt
p
s:
//
g
it
h
u
b
.c
o
m

/h
m

s-
d
b
m

i/
co

n
o
s

[2
6
]

ce
ll
H
a
rm

o
n
y

In
te
g
ra
ti
o
n
-b

a
se

d
C
lo
se

st
n
e
ig
h
b
o
r
w
it
h
in

co
m

m
u
n
it
y
cl
u
st
e
rs

P
y
th

o
n

h
tt
p
s:
//
g
it
h
u
b
.c
o
m

/A
lt
A
n
a
ly
z
e
/c
e
ll
H
a
rm

o
n
y
-A

li
g
n

[3
5
]

sc
m

a
p

C
la
ss

if
ic
a
ti
o
n
m

o
d
e
l

S
im

il
a
ri
ty

m
e
a
su

re
s

R
h
tt
p
:/
/b
io
co

n
d
u
ct
o
r.
o
rg
/p

a
ck

a
g
e
s/
re
le
a
se

/b
io
c/
h
tm

l/
sc

m
a
p
.h
tm

l
[3
6
]

sc
ID

C
la
ss

if
ic
a
ti
o
n
m

o
d
e
l

L
in
e
a
r
d
is
cr
im

in
a
n
t
a
n
a
ly
si
s
a
n
d
m

ix
tu

re

G
a
u
ss

ia
n
m

o
d
e
l

R
h
tt
p
s:
//
b
a
ta
d
a
la
b
.g
it
h
u
b
.i
o
/s
cI
D
/

[3
7
]

M
o
a
n
a

C
la
ss

if
ic
a
ti
o
n
m

o
d
e
l

S
u
p
p
o
rt

v
e
ct
o
r
m

a
ch

in
e
s
w
it
h
li
n
e
a
r
k
e
rn

e
l

P
y
th

o
n

h
tt
p
s:
//
g
it
h
u
b
.c
o
m

/y
a
n
a
il
a
b
/m

o
a
n
a

[3
8
]

sc
P
re
d

C
la
ss

if
ic
a
ti
o
n
m

o
d
e
l

S
u
p
p
o
rt

v
e
ct
o
r
m

a
ch

in
e
s
w
it
h
ra
d
ia
l
k
e
rn

e
l

R
h
tt
p
s:
//
g
it
h
u
b
.c
o
m

/p
o
w
e
ll
g
e
n
o
m

ic
sl
a
b
/s
cP

re
d

[3
9
]

S
u
p
e
rC

T
C
la
ss

if
ic
a
ti
o
n
m

o
d
e
l

A
rt
if
ic
ia
l
n
e
u
ra
l
n
e
tw

o
rk

K
e
ra
s
A
P
I

h
tt
p
s:
//
sc

t.
li
fe
g
e
n
.c
o
m

/
[4
0
]

A
C
T
IN

N
C
la
ss

if
ic
a
ti
o
n
m

o
d
e
l

A
rt
if
ic
ia
l
N
e
u
ra
l
N
e
tw

o
rk

P
y
th

o
n

h
tt
p
s:
//
g
it
h
u
b
.c
o
m

/m
a
fe
iy
a
n
g
/A

C
T
IN

N
[4
1
]

L
A
m

b
D
A

C
la
ss

if
ic
a
ti
o
n
m

o
d
e
l

A
rt
if
ic
ia
l
N
e
u
ra
l
N
e
tw

o
rk

P
y
th

o
n

g
it
h
u
b
.c
o
m

/t
st
e
e
le
jo
h
n
so

n
9
1
/L
A
m

b
D
A

[4
2
]

C
a
S
T
L
e

C
la
ss

if
ic
a
ti
o
n
m

o
d
e
l

B
o
o
st
e
d
re
g
re
ss

io
n
tr
e
e
s

R
h
tt
p
s:
//
g
it
h
u
b
.c
o
m

/y
u
v
a
ll
b
/C

a
S
T
L
e

[4
3
]

si
n
g
le
C
e
ll
N
e
t

C
la
ss

if
ic
a
ti
o
n
m

o
d
e
l

R
a
n
d
o
m

Fo
re
st

R
h
tt
p
s:
//
g
it
h
u
b
.c
o
m

/p
ca

h
a
n
1
/s
in
g
le
C
e
ll
N
e
t/

[4
4
]

C
H
E
T
A
H

C
e
ll
ty
p
e
h
ie
ra
rc
h
y

C
o
rr
e
la
ti
o
n
to

re
fe
re
n
ce

tr
e
e

R
h
tt
p
s:
//
g
it
h
u
b
.c
o
m

/j
d
e
k
a
n
te
r/
C
H
E
T
A
H

[4
5
]

G
a
rn

e
tt

C
e
ll
ty
p
e
h
ie
ra
rc
h
y

E
la
st
ic
-n

e
t
re
g
re
ss

io
n
o
n
re
fe
re
n
ce

tr
e
e

R
h
tt
p
s:
//
co

le
-t
ra
p
n
e
ll
-l
a
b
.g
it
h
u
b
.i
o
/g
a
rn

e
tt
/

[4
6
]

O
n
C
la
ss

C
e
ll
ty
p
e
h
ie
ra
rc
h
y

C
e
ll
o
n
to
lo
g
y
p
ro

je
ct
io
n
in
to

a
lo
w
-d

im
e
n
si
o
n
a
l

sp
a
ce

P
y
th

o
n

h
tt
p
s:
//
g
it
h
u
b
.c
o
m

/w
a
n
g
sh

e
n
g
u
iu
c/
O
n
C
la
ss

/
[4
7
]

Fo
r
th

e
m
e
th

o
d
s
th

a
t
p
e
rf
o
rm

m
u
lt
ip
le

ty
p
e
s
o
f
in
te
g
ra
ti
v
e
a
n
a
ly
si
s,

th
e
co

rr
e
sp

o
n
d
in
g
fu

n
ct
io
n
fo
r
th

e
a
u
to
m
a
ti
c
ce

ll
la
b
e
l
tr
a
n
sf
e
r
is

sp
e
ci
fi
e
d
in

th
e
to
o
l
n
a
m
e
.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article-abstract/doi/10.1093/bib/bbaa042/5828125 by B.U

. - Area M
edica user on 18 June 2020

https://github.com/satijalab/seurat/releases/tag/v3.0.0
https://github.com/hms-dbmi/conos
https://github.com/AltAnalyze/cellHarmony-Align
http://bioconductor.org/packages/release/bioc/html/scmap.html
https://batadalab.github.io/scID/
https://github.com/yanailab/moana
https://github.com/powellgenomicslab/scPred
https://sct.lifegen.com/
https://github.com/mafeiyang/ACTINN
github.com/tsteelejohnson91/LAmbDA
https://github.com/yuvallb/CaSTLe
https://github.com/pcahan1/singleCellNet/
https://github.com/jdekanter/CHETAH
https://cole-trapnell-lab.github.io/garnett/
https://github.com/wangshenguiuc/OnClass/


6 Forcato et al.

by the size and cell type proportions of the reference [33] and

tend to underperform in the presence of overlapping and overly

detailed annotations [34].

Integrative analysis of multimodal single-cell
data

Multimodal single-cell data can be obtained directly using

multimodal technologies,which simultaneously profilemultiple

types ofmoleculeswithin a single cell, or through computational

methods that integrate, into a single-cell multi-omics dataset,

signals collected from separate assays (Figure 1C). Technologies

for the simultaneous profiling of single-cell multi-omics have

been extensively reviewed in [2, 3, 6, 48, 49]. Here, we will

discuss only computational approaches for the integrative

analysis ofmultimodal data (Table 3). The integration ofmultiple

modalities from a single experiment benefits from the fact that

all measurements are from the same cells. This obviates the

need to reconcile cell identity across modalities and restricts

the analysis to the implementation of procedures to correlate

complementary information from multiple sources. The corre-

lation of different modalities commonly starts summarizing the

signals of onemodality relatively to the genomic entities assayed

by the other before testing for association. This approach is

clearly exemplified in two studies that integrated data from

the parallel single-cell profiling of DNA methylation and gene

expression [50,51]. First, average binarized methylation rates

of genomic regions (as gene bodies, promoters and enhancers)

have been assigned to the closest gene, considering windows

of 10 kb upstream and downstream the gene transcription

start and end sites. Then, weighted Pearson correlation

coefficients [50, 51] and multi-omics factor analysis (MOFA),

an adaptation of group factor analysis to multimodal -omics

data [52], have been used to identify coordinated changes and

heterogeneous associations between methylation states and

transcriptional profiles in individual cells. Recently, MOFA has

been generalized in the MOFA+ approach to support large-

scale datasets and to handle multiple batches among the

modalities [53].

Conversely, the integration of different types of data that

are not measured on the same cell not only requires to aggre-

gate signals measured by distinct technologies but also to align

data collected from different cells. The analysis builds on the

assumption that cells of the same type or in the same state

share a set of correlated features. These features guide both the

combination of signals from the different modalities and the

matching of profiles across datasets. Signal pairing and dataset

integration can be obtained either exploiting models formulated

on bulk data or through algorithms that directly align multiple

datasets based on the sole single-cell data. The first approach

has been used to integrate scRNA-seq and scATAC-seq data in

[54, 55]. Here, linear models to estimate gene expression levels

from chromatin accessibility of gene regulatory elements have

been first constructed using paired RNA- andATAC-seq bulk data

and then applied to guide the matching of single-cell profiles. In

[54], scRNA-seq profiles are assigned to scATAC-seq cells based

on the correlation between the gene expression levels measured

by scRNA-seq and those inferred by the model for each scATAC-

seq cell. In CoupledNMF, the linear model is used to combine

the non-negative factorization of the scATAC-seq and scRNA-

seqmatrices through a coupling term that imposes thematching

between features of one dataset and linear transformed features

of the other [55]. T
a
b
le

3
.
M
e
th

o
d
s
fo
r
th

e
in
te
g
ra
ti
o
n
o
f
si
n
g
le
-c
e
ll
d
a
ta

fr
o
m

d
if
fe
re
n
t
m

o
d
a
li
ti
e
s

T
o
o
l
n
a
m

e
C
a
te
g
o
ry

A
lg
o
ri
th

m
L
a
n
g
u
a
g
e

A
v
a
il
a
b
il
it
y

R
e
fe
re
n
ce

sc
M
T
-s
e
q
a
n
a
ly
si
s

In
te
g
ra
ti
o
n
o
f
m
u
lt
im

o
d
a
l
d
a
ta

fr
o
m

th
e
sa

m
e
ce

ll
s

W
e
ig
h
te
d
P
e
a
rs
o
n
co

rr
e
la
ti
o
n

R
h
tt
p
s:
//
g
it
h
u
b
.c
o
m

/P
M
B
io
/s
cM

T
-s
e
q

[5
0
]

M
O
FA

+
In

te
g
ra
ti
o
n
o
f
m
u
lt
im

o
d
a
l
d
a
ta

fr
o
m

th
e
sa

m
e
ce

ll
s

B
a
y
e
si
a
n
fa
ct
o
r
a
n
a
ly
si
s
fr
a
m

ew
o
rk

R
/P
y
th

o
n

h
tt
p
s:
//
g
it
h
u
b
.c
o
m

/b
io
FA

M
/M

O
FA

2
[5
2
,5

3
]

A
T
A
C
_R

N
A
_F

IT
M
o
d
e
l
fr
o
m

b
u
lk

d
a
ta

L
in
e
a
r
m

o
d
e
l
fr
o
m

b
u
lk

d
a
ta

a
n
d

P
e
a
rs
o
n
co

rr
e
la
ti
o
n

M
a
tl
a
b

h
tt
p
s:
//
a
rs
.e
ls
-c
d
n
.c
o
m

/c
o
n
te
n
t/
im

a
g
e
/1
-s
2
.0
-

S
0
0
9
2
8
6
7
4
1
8
3
0
4
4
6
X
-m

m
c4

.z
ip

[5
4
]

C
o
u
p
le
d
N
M
F

M
o
d
e
l
fr
o
m

b
u
lk

d
a
ta

L
in
e
a
r
m

o
d
e
l
fr
o
m

b
u
lk

d
a
ta

a
n
d
N
M
F

M
a
tl
a
b

h
tt
p
:/
/w

e
b
.s
ta
n
fo
rd

.e
d
u
/&

#
x
0
0
7
E
;z
d
u
re
n
/C

o
u
p
le
d
N
M
F
/

[5
5
]

S
e
u
ra
t
v
3
(T
ra
n
sf
er
D
a
ta
)

M
a
tc
h
in
g
o
n
th

e
sa

m
e
g
e
n
o
m

ic
e
n
ti
ti
e
s

C
a
n
o
n
ic
a
l
co

rr
e
la
ti
o
n
a
n
a
ly
si
s

R
h
tt
p
s:
//
g
it
h
u
b
.c
o
m

/s
a
ti
ja
la
b
/s
e
u
ra
t/
re
le
a
se

s/
ta
g
/v
3
.0
.0

[2
0
]

C
o
n
o
s
(b
u
il
d
G
ra
p
h
)

M
a
tc
h
in
g
o
n
th

e
sa

m
e
g
e
n
o
m

ic
e
n
ti
ti
e
s

D
im

e
n
si
o
n
a
li
ty

re
d
u
ct
io
n
,m

u
tu

a
l

n
e
a
re
st

n
e
ig
h
b
o
r
a
n
d
cl
u
st
e
ri
n
g

R
/C

+
+

h
tt
p
s:
//
g
it
h
u
b
.c
o
m

/h
m

s-
d
b
m

i/
co

n
o
s

[2
6
]

L
IG

E
R

(q
u
a
n
ti
le
A
li
g
n
S
N
F
)

M
a
tc
h
in
g
o
n
th

e
sa

m
e
g
e
n
o
m

ic
e
n
ti
ti
e
s

iN
M
F
a
n
d
jo
in
t
g
ra
p
h

R
h
tt
p
s:
//
g
it
h
u
b
.c
o
m

/M
a
co

sk
o
L
a
b
/l
ig
e
r

[3
0
]

cl
o
n
e
a
li
g
n

M
a
tc
h
in
g
o
n
th

e
sa

m
e
g
e
n
o
m

ic
e
n
ti
ti
e
s

In
fe
re
n
ce

m
o
d
e
l
o
f
g
e
n
e
e
x
p
re
ss

io
n
o
n

co
p
y
n
u
m

b
e
r

R
h
tt
p
s:
//
g
it
h
u
b
.c
o
m

/k
ie
ra
n
rc
a
m

p
b
e
ll
/c
lo
n
e
a
li
g
n

[5
7
]

S
O
M
a
ti
c

M
a
tc
h
in
g
o
n
th

e
sa

m
e
g
e
n
o
m

ic
e
n
ti
ti
e
s

S
e
lf
-o

rg
a
n
iz
in
g
m

a
p
s

R
/C

+
+

h
tt
p
s:
//
g
it
h
u
b
.c
o
m

/c
sj
a
n
se

n
/S
O
M
a
ti
c

[5
8
]

M
A
T
C
H
E
R

M
a
tc
h
in
g
o
n
th

e
p
se

u
d
o
ti
m

e
v
a
lu
e
s

G
a
u
ss

ia
n
p
ro

ce
ss

la
te
n
t
v
a
ri
a
b
le

m
o
d
e
l

(G
P
LV

M
)
a
n
d
ti
m

e
w
a
rp

in
g

P
y
th

o
n

h
tt
p
s:
//
g
it
h
u
b
.c
o
m

/j
w
1
5
6
6
0
5
/M

A
T
C
H
E
R

[5
9
]

Fo
r
th

e
m
e
th

o
d
s
th

a
t
p
e
rf
o
rm

m
u
lt
ip
le

ty
p
e
s
o
f
in
te
g
ra
ti
v
e
a
n
a
ly
si
s,

th
e
co

rr
e
sp

o
n
d
in
g
fu

n
ct
io
n
fo
r
th

e
in
te
g
ra
ti
o
n
o
f
m
u
lt
im

o
d
a
l
si
n
g
le
-c
e
ll
d
a
ta

is
sp

e
ci
fi
e
d
in

th
e
to
o
l
n
a
m
e
.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article-abstract/doi/10.1093/bib/bbaa042/5828125 by B.U

. - Area M
edica user on 18 June 2020

https://github.com/PMBio/scMT-seq
https://github.com/bioFAM/MOFA2
https://ars.els-cdn.com/content/image/1-s2.0-S009286741830446X-mmc4.zip
https://ars.els-cdn.com/content/image/1-s2.0-S009286741830446X-mmc4.zip
http://web.stanford.edu/&#x007E;zduren/CoupledNMF/
https://github.com/satijalab/seurat/releases/tag/v3.0.0
https://github.com/hms-dbmi/conos
https://github.com/MacoskoLab/liger
https://github.com/kieranrcampbell/clonealign
https://github.com/csjansen/SOMatic
https://github.com/jw156605/MATCHER


Computational methods for the integrative analysis 7

Multimodal integration can be obtained from single-cell data

alone using some of the methods previously described to align

scRNA-seq datasets from different experiments, provided that

the signals from the two modalities are previously matched on

the same genomic entities. In particular, Seurat v3 [20] andConos

[26] have been applied to the integration of scRNA-seq and chro-

matin accessibility data, after the transformation of scATAC-seq

accessibility peaks into gene-centered scores of accessibility-

based activity. This can be obtained either summing scATAC-seq

signals intersecting the gene body and an upstream region of

given length (e.g. 2 kb) or combining signals of proximal and dis-

tal cis-regulatory regions predicted on the base of co-accessibility

scores, as done by Cicero [56]. Similarly, LIGER has been used to

integrate gene expression levels and DNA methylation after the

annotation of the methylated regions according to the nearest

gene [30].

Approaches specifically designed for the integration of

single-cellmultimodal data have been implemented in clonealign

[57], SOMatic [58] andMATCHER [59]. In clonealign, a cell profiled

with scRNA-seq is assigned to a specific clone assayed with

scDNA-seq based on the probability that the observed gene

expression levels are consistentwith the copy number profiles of

the clone. SOMatic uses self-organizing maps (SOM) to integrate

scRNA-seq and scATAC-seq data. Briefly, distinct SOM are con-

structed for each data type and aggregated into meta-clusters

using a k-means algorithm. Then,meta-clusters are used to link

transcriptional and chromatin accessibility data based on the

overlap between genes and regions with scATAC-seq peaks. In

the case it is possible to assume an intrinsic order of cells as,

for instance, in differentiation or reprogramming experiments,

the integration of multimodal single-cell data can be achieved

through the identification of a one-dimensional space, encoding

the common developmental process, where equivalent cells,

although assayed by different modalities, are aligned. The

approach implemented in MATCHER (Manifold Alignment to

CHaracterize Experimental Relationships) determines this one-

dimensional alignment space first inferring, separately for each

dataset, a single latent variable (pseudotime) with a Gaussian

process latent variable model and then aligning the pseudotime

values from the different modalities through a warping function

[59]. In the alignment space, signals from the differentmodalities

(e.g. gene expression, DNA methylation, chromatin accessibility

and histone modifications) are directly comparable, allowing

to investigate the correlation between several features across

individual cells.

Integrative analysis of scRNA-seq and spatial
expression data

The spatial localization of cells within tissues plays a crucial

role in determining their functions and states. Thus, assessing

the topological arrangement of single cells within their multi-

cellular context is of paramount importance to fully characterize

cell identity and behavior. Unfortunately, information about the

spatial organization in the original tissue is not entirely con-

served in single-cell expression data since tissues are commonly

dissociated before cell isolation and transcriptional profiling.

This experimental limitation can be overcome through the inte-

gration of gene and spatial expression data, and consequently,

several computational approaches have been designed to infer

the topological location in the original tissue of cells profiled by

scRNA-seq (Figure 1D; Table 4). Most of these methods require,

in addition to single-cell expression profiles, the availability of a T
a
b
le
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spatial reference map consisting of measurements, in the intact

tissue, of the spatial expression for landmark genes [60–63]. The

key step of these approaches is the formulation of a statistical

model to infer, given the values in the scRNA-seq matrix and

the spatial expression of the landmark genes, the probability

that a cell originated from any of the locations probed in the

referencemap (e.g. voxel, bin or layer). Inmodel construction, the

spatial expression data are either inputted as continuous values

or transformed into binarized on/off states.The variousmethods

implement different computational strategies to formulate the

inference models. In [60], binarized vectors, accounting for the

specificity of each gene’s expression in a cell of the scRNA-

seq dataset and in a voxel of the reference atlas, are com-

pared to define a cell-voxel correspondence score. DistMap [62]

calculates, for each cell, a confusion matrix summarizing the

agreement between its binarized gene expression and the gene

expression patterns of all positional bins of the reference atlas.

The Matthews correlation coefficient, a measure of the quality

of the agreement, is used to assign a cell-bin score and perform

positional assignment of each cell. Other methods formulate

complete probabilistic inference framework building models of

gene expression for the measured landmark genes in each bin

or layer to infer the cell’s spatial location [61, 63].

Interestingly, it has been recently proposed amethod, named

novoSpaRc, that reconstructs the spatial organization of cell

from scRNA-seq data using either a very limited reference atlas

or no spatial information at all [64]. novoSpaRc can map cells on

tissues with intrinsic shapes either with the support of spatial

data of a small number of marker genes or starting from the

sole transcriptional signals (de novo reconstruction). The recon-

struction of the spatial cellular arrangement is formulated as

a generalized optimal-transport problem that is resolved using

an iterative algorithm under the assumption that physically

contiguous cells tend to share overall similar transcriptional

profiles.

With the advent of technologies for the high-throughput pro-

filing of spatial expression, the integrative analysis of transcrip-

tional profiles and spatial information can also be addressed

in terms of conventional multimodal integration. In SCHEMA,

the integration of expression and localization data, simultane-

ously measured with Slide-seq [65], is obtained through the

identification of an affine transformation of the gene expression

matrix constrained on the correlation between top NMF factors

of the transcriptional data with the kernel-derived spatial den-

sity scores and the categorical labels of cell types [66]. Seurat

v3 [20] and LIGER [30] have been applied to combine different

scRNA-seq datasets with high-throughput single-cell transcrip-

tional profiles measured in situ using the STARmap technique

[67]. As for the integration of scRNA-seq with other modalities,

the two methods exploit anchors determined through CCA and

factors identified by iNMF, respectively, to transfer expression

levels and cell types from the RNA sequencing matrix to the

spatial transcription data. This information transfer enables a

finer functional classification of spatially resolved cells and the

prediction of spatial transcriptional signals for genes that were

not probed by STARmap. Finally, also Harmony [22] has been

applied to the integration of scRNA-seq with spatial expres-

sion data from multiplexed error robust fluorescence in situ

hybridization (MERFISH).

Concluding remarks

Single-cell technologies are boosting the capacity to resolve

cellular and tissue complexity at an unprecedented pace and

to move towards more systemic landscapes, where the study

of the cell components is elevated to higher hierarchies, as

genomic domains, regulatory modules and networks of inter-

actions. An essential prerequisite to advance in this endeavor

is the availability of computational approaches to simultane-

ously analyze the different, interconnected layers of informa-

tion encoded by multimodal signals at the single-cell resolu-

tion. Although sophisticated and precise, current methods for

the integrative analysis of bulk multi -omics data suffer the

heterogeneous nature of single-cell data where confounding

factors, intrinsic of each modality, hamper their effective longi-

tudinal combination. To overcome this limitation, in the recent

years, major efforts have been committed in the development

of computational strategies for the integration of single-cell

data obtained from different cell populations, in different stud-

ies and using different assays. The majority of these methods

exploit algorithms commonly adopted in multi-view machine

learning and build on sophisticated techniques for dimension-

ality reduction, pattern recognition, graph analysis, maximum

likelihood estimation and statistical modeling. In most applica-

tions, the integrative analysis is approached in an unsupervised

manner to identify cell types shared by different datasets or

previously unknown correlations between modalities. In some

other cases, the integration is conducted supervising the transfer

of information from one dataset to another (as in cell label

transfer from well-annotated atlases) or across different layers

(as in the joint analysis of transcriptional and spatial expres-

sion). Tools are mostly implemented in Python, R, C++ and

Matlab taking advantage of packages that efficiently imple-

ment machine learning and statistical models for the analysis

of large, multidimensional data. However, considering the pace

of data production, a primary issue will be the development of

methods able to integrate larger and larger compendia of high-

resolution datasets using reasonable computational resources

and processing time. Another priority will be a systematic eval-

uation of the robustness of the different methods in producing

biologically sound results from the analysis of multiple types

of data and the definition of guidelines to efficiently integrate

different data sources [68]. This benchmarking requires gold-

standard experiments and standardized performancemetrics to

assess the quality of the integration approaches and to ratio-

nally tune the parameters of the various algorithms, thus lim-

iting the heuristics inherent in any method. Although compli-

cated by difficulties in simulating realistic multi-omics single-

cell data [69, 70] and by the unsupervised nature of most anal-

yses, benchmarking frameworks and performance tests have

been proposed for the computational tools used in the inte-

grative analysis of multiple scRNA-seq datasets [70–72] and in

cell type classification [33, 34]. The performance and usability

of the various tools for scRNA-seq batch integration have been

critically evaluated in a recent benchmarking paper by Tran

and colleagues [73]. This comparison indicates that there is no

method that can be considered the gold standard under all

scenarios. Nonetheless, Harmony, LIGER and Seurat v3 stand,

overall, as the most effective methods for batch integration,

while scMerge is the recommended tool to quantify differential

expression on the corrected data. It is advisable that similar

comparison approaches are extended to all types of single-cell

data integrations. We believe that, in the years to come, the

integrative analysis of multimodal single-cell data will have to

face major methodological and applicative challenges but will

also be instrumental to characterize novel exciting aspects of the

fundamental mechanisms that regulate cell identity and tissue

complexity.
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Key Points

• We review computational methods for the integrative

analysis of single-cell data obtained from different

experiments and modalities.
• The integration of multiple scRNA-seq experiments

comprises the identification of a common low-

dimensionality space where cells with the same iden-

tity or in the same state map close together even if

obtained from diverse experimental conditions and

biological contexts.
• The integration of multiple scRNA-seq datasets can

guide the annotation of cell populations.
• The integration of different types of single-cell data

that are not measured on the same cell requires to

aggregate signals measured by distinct technologies

and to align cells from different experiments.
• The integration of gene and spatial expression allows

inferring the topological location in the original tissue

of cells profiled by scRNA-seq.
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