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Abstract: Human learning is nowadays taken into account in several research fields, including the 
assembly line balancing problem. Despite the plethora of contributions and different approaches to 
solving the problem, the autonomous learning phenomenon, that is to say, the time-dependent or 
position-dependent reduction of assembly task times due to repetition, should also be explored using 
stochastic models which, to the best of our knowledge, have been disregarded. In this paper, a well-
established cost-based stochastic balancing heuristic has been coupled with a time-dependent learning 
curve in order to investigate the role of learning in the rebalancing of assembly lines with repetitive tasks. 
Finally, a real case study has been conducted with the aim of demonstrating the applicability of our 
proposal. 
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

1. INTRODUCTION 

The assembly line balancing problem (ALBP) represents one 
of the most debated problems in operations management, and 
aims to assign a set of assembly tasks to workstations in 
order to optimise a given performance measure while taking 
the precedence relations between the tasks into account. In 
particular, most approaches refer to type I and II ALBP, 
which aim to minimise the number of workstations for 
satisfying a given cycle time and vice versa respectively 
(Baybars, 1986). The pioneering work on ALBP dates back 
to 1955 (Salveson, 1955), and since then, a plethora of 
academic contributions have been made. Following the 
taxonomy proposed by Boysen et al. (2007), the contributions 
on ALBP may be classified into three families: single-model 
ALPB, where only one product is manufactured; mixed-
model ALPB, where one product is manufactured in multiple 
models on the same assembly line; and multi-model ALPB, 
where multiple products are manufactured in batches. A 
further classification factor is the nature of the task times, 
which may be either deterministic or stochastic. The reader 
can also refer to Battaïa and Dolgui (2013) for a review of 
this topic. In fact, a labour-intensive assembly line 
intrinsically exhibits a higher variability in task times because 
of the human nature of the work, and thus probabilistic 
modelling appears more appropriate in this case. The reader 
can refer to Bentaha et al. (2016) for a review of stochastic 
assembly/disassembly line balancing approaches. It is worth 
noting that a special case of ALBP, i.e. the simplest one 
without precedence constraints, is also an NP-hard problem 
in the strong sense (Erel and Sarin, 1998) because it may be 
modelled as a bin-packing problem, which is NP-hard. This 
remark justifies the large number of contributions in recent 
literature focused on heuristic and meta-heuristic strategies 
for solving practical size problems, which may be modelled 
both as single (e.g. Li et al., 2017) and as multi-objective 
problems (e.g. Yuguang et al., 2016; Chica et al., 2016). 

Learning is a crucial phenomenon in human-related activities, 
and deserves to be taken into account in several fields. 
Accounting (e.g. Lolli et al., 2016b), quality improvement 
(e.g. Lolli et al., 2016a; Lolli et al., 2017), inventory control 
(e.g. Jaber and Glock, 2013) and scheduling (e.g. Dolgui et 
al., 2012; Pan et al., 2014; Chutima and Naruemitwong, 
2014) are some examples of fields where the learning concept 
can be applied. With regard to assembly lines, one of the first 
attempts to deal with learning effects was made by Cohen 
and Dar-El (1998), where the optimum number of 
workstations was analytically derived via makespan 
formulation with deterministic task times. Cohen et al. (2006) 
investigated the inverse problem, i.e. allocating the task to a 
given number of stations to minimise the makespan, by 
adopting Wright’s (1936) standard time-dependent (or 
product-dependent) learning curve with homogenous learning 
slopes between workstations and deterministic (but dynamic) 
task times. A type I ALBP with learning effects has been 
solved by Toksari et al. (2008), who adopted the position-
dependent learning curve proposed by Biskup (1999) to 
demonstrate that simple and U-type line balancing problems 
with homogenous learning effects are polynomially solvable. 
Toksari et al. (2010) dealt once again with a type I ALBP by 
means of a mixed nonlinear integer programming model, but 
in this case by combining the position-dependent learning 
curve proposed by Biskup (1999) with a linear deterioration 
of jobs, which leads to an increase in the task time of a job 
due to the delay in its starting time. Again, the task times in 
these contributions are deterministic and dynamic. Hamta et 
al. (2013) introduced a meta-heuristic solution approach for a 
multi-objective ALBP with learning, which was modelled 
using Biskup’s position-dependent curve. Again, the task 
times are dynamic, but in this case they are forced to vary 
between lower and upper bounds. Hamta et al. (2011) called 
this type of processing time “flexible operation time”. 

Surprisingly, the stochastic ALBP with learning effects has 
not been investigated yet. However, the stochastic 
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components of task times, as well as the human-related 
learning effects, are relevant in the case of labour-intensive 
assembly lines. Moreover, non-negligible incompletion costs 
occur in stochastic assembly lines. This indicates the 
opportunity of adopting a cost-oriented heuristic approach 
involving total labour cost and expected incompletion costs. 
In particular, the Kottas-Lau heuristic (1973) is adopted here, 
where the task times are modelled by means of a time-
dependent learning curve with a plateau based on Wright’s 

well-known curve (1936). In short, the Kottas-Lau heuristic, 
which addresses a cost-based stochastic type I ALBP, has 
been coupled with learning effects resulting from repetitive 
tasks, with the aim of investigating the possibility of 
rebalancing the assembly line. In fact, the rebalancing 
problem represents a relevant issue in real situations when, 
for instance, changes in market conditions, product design 
and quantities occur (see Gamberini et al., 2006; Gamberini 
et al., 2009). This problem is addressed here solely as a 
consequence of the learning process involving the assembly 
workstations. 

The rest of the paper is organised as follows. After the 
problem assumptions are set out (Section 2), the solution 
approach is explained in detail (Section 3), and then applied 
to a real case study (Section 4). Section 5 closes the paper by 
presenting the conclusions and the further research agenda. 

2. PROBLEM ASSUMPTIONS 

The standard set of assumptions for the cost-based stochastic 
type I ALBP is imposed on the assembly tasks: 

 The assembly line is paced. Each operator stands at a 
station and has a fixed takt time 𝑇𝑇 to perform the assigned 
assembly tasks on a single product. 

 A precedence matrix is defined between the tasks. These 
precedences are the only constraints related to task 
execution. 

 The tasks that are still incomplete after 𝑇𝑇 are executed 
outside of the line at a higher cost, along with the tasks 
that were blocked due to the precedence constraints. Each 
task 𝑖𝑖 is thus assigned an out-of-line assembly cost 𝐼𝐼𝑖𝑖′. All 
the tasks which are not unfinished are still executed on 
the line. 

 All the operators are defined by the same characteristics 
and are paid the same hourly amount 𝑐𝑐. 

 Each task time is normal-distributed, with an expected 
value and variance that can differ from task to task. These 
probability distributions are independent between tasks. 

An extra set of assumptions related to the learning process: 

 The expected value for performing a task decreases as 
experience is accumulated. The driver of this learning 
phenomenon is the amount of products assembled by an 
operator (autonomous learning, i.e. simply ‘learning by 
doing’). 

 Each experience curve follows the shape of Wright’s 

curve: 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 = ((1 − 𝑟𝑟) ∙ 𝐶𝐶𝑖𝑖1) ∙ 𝑛𝑛−𝑏𝑏𝑘𝑘 + 𝑟𝑟 ∙ 𝐶𝐶𝑖𝑖1 (1) 

where 𝑛𝑛 is the number of products assembled, 𝐶𝐶𝑖𝑖1 is the 
initial expected time for the task 𝑖𝑖 (e.g. the standard task 
time), and 𝑟𝑟 is the fraction, fixed for all the tasks and 
stations, of 𝐶𝐶𝑖𝑖1 that is unaffected by the learning process. 
The learning curve will then converge to a plateau value 
of 𝑟𝑟 ∙ 𝐶𝐶𝑖𝑖1 for all stations. 𝑏𝑏𝑘𝑘 is the positive learning rate 
related to each assembly station 𝑘𝑘. 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 is the expected 
time for the task 𝑖𝑖 after 𝑛𝑛 products have been assembled 
by the station 𝑘𝑘. 

 For each task 𝑖𝑖, the relative standard deviation is given 
by: 

𝑠𝑠𝑖𝑖 = 𝜎𝜎𝑖𝑖 𝐶𝐶𝑖𝑖1⁄  (2) 

𝑠𝑠𝑖𝑖 is fixed, making the variance adjust to follow the 
changes in the expected value over time. This assumption 
avoids an unrealistic increase in relative task variability as 
a result of the learning phenomenon. Modelling variance 
decrease due to autonomous learning may be part of the 
further research agenda. 

 The operators rotate in order to evenly distribute the 
learning experience across all tasks. This prevents the task 
assignment from being stuck in a single configuration due 
to the operators becoming overspecialised. The 
experience gained for each product assembled is split 
evenly between the stations involved in the assembly 
process. This consideration is already accounted for by 
the value 𝑛𝑛,  calculated as:     

𝑛𝑛 = 𝑁𝑁 𝑆𝑆⁄  (3) 

where 𝑁𝑁 is the overall number of units produced and 𝑆𝑆 is 
the number of stations. 

3. SOLUTION APPROACH 

The objective is to find an effective and efficient way of 
computing the assembly line changes generated by the 
learning phenomenon without recalculating the whole line for 
each amount of processed products. Given a unitary 
increment of 𝑁𝑁, the Kottas-Lau methodology could be 
reinitialised, and the positioning of all the tasks could be 
redefined. Unless the learning effect is particularly effective 
or the initial solution is unstable under limited variations of 
𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖, the calculation would probably lead to the same initial 
solution with a unitary increment of 𝑁𝑁. This procedure could 
be continued for different values of 𝑁𝑁 until a change arises. 
At this point, some tasks would change their positions, being 
assigned to different stations. In this scenario, the learning 
curve for the moved tasks changes. In order to use the new 
curve while retaining the accumulated experience, a fictitious 

number of products 𝑛𝑛𝑖𝑖𝑖𝑖
𝑓𝑓  must be computed for each moved 

task 𝑖𝑖. From (1) it follows that: 

𝑛𝑛𝑖𝑖𝑖𝑖
𝑓𝑓 = (𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘′−𝑟𝑟∙𝐶𝐶𝑖𝑖1𝐶𝐶𝑖𝑖1∙(1−𝑟𝑟)

)
− 1
𝑏𝑏𝑘𝑘  (4) 
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components of task times, as well as the human-related 
learning effects, are relevant in the case of labour-intensive 
assembly lines. Moreover, non-negligible incompletion costs 
occur in stochastic assembly lines. This indicates the 
opportunity of adopting a cost-oriented heuristic approach 
involving total labour cost and expected incompletion costs. 
In particular, the Kottas-Lau heuristic (1973) is adopted here, 
where the task times are modelled by means of a time-
dependent learning curve with a plateau based on Wright’s 

well-known curve (1936). In short, the Kottas-Lau heuristic, 
which addresses a cost-based stochastic type I ALBP, has 
been coupled with learning effects resulting from repetitive 
tasks, with the aim of investigating the possibility of 
rebalancing the assembly line. In fact, the rebalancing 
problem represents a relevant issue in real situations when, 
for instance, changes in market conditions, product design 
and quantities occur (see Gamberini et al., 2006; Gamberini 
et al., 2009). This problem is addressed here solely as a 
consequence of the learning process involving the assembly 
workstations. 

The rest of the paper is organised as follows. After the 
problem assumptions are set out (Section 2), the solution 
approach is explained in detail (Section 3), and then applied 
to a real case study (Section 4). Section 5 closes the paper by 
presenting the conclusions and the further research agenda. 

2. PROBLEM ASSUMPTIONS 

The standard set of assumptions for the cost-based stochastic 
type I ALBP is imposed on the assembly tasks: 

 The assembly line is paced. Each operator stands at a 
station and has a fixed takt time 𝑇𝑇 to perform the assigned 
assembly tasks on a single product. 

 A precedence matrix is defined between the tasks. These 
precedences are the only constraints related to task 
execution. 

 The tasks that are still incomplete after 𝑇𝑇 are executed 
outside of the line at a higher cost, along with the tasks 
that were blocked due to the precedence constraints. Each 
task 𝑖𝑖 is thus assigned an out-of-line assembly cost 𝐼𝐼𝑖𝑖′. All 
the tasks which are not unfinished are still executed on 
the line. 

 All the operators are defined by the same characteristics 
and are paid the same hourly amount 𝑐𝑐. 

 Each task time is normal-distributed, with an expected 
value and variance that can differ from task to task. These 
probability distributions are independent between tasks. 

An extra set of assumptions related to the learning process: 

 The expected value for performing a task decreases as 
experience is accumulated. The driver of this learning 
phenomenon is the amount of products assembled by an 
operator (autonomous learning, i.e. simply ‘learning by 
doing’). 

 Each experience curve follows the shape of Wright’s 

curve: 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 = ((1 − 𝑟𝑟) ∙ 𝐶𝐶𝑖𝑖1) ∙ 𝑛𝑛−𝑏𝑏𝑘𝑘 + 𝑟𝑟 ∙ 𝐶𝐶𝑖𝑖1 (1) 

where 𝑛𝑛 is the number of products assembled, 𝐶𝐶𝑖𝑖1 is the 
initial expected time for the task 𝑖𝑖 (e.g. the standard task 
time), and 𝑟𝑟 is the fraction, fixed for all the tasks and 
stations, of 𝐶𝐶𝑖𝑖1 that is unaffected by the learning process. 
The learning curve will then converge to a plateau value 
of 𝑟𝑟 ∙ 𝐶𝐶𝑖𝑖1 for all stations. 𝑏𝑏𝑘𝑘 is the positive learning rate 
related to each assembly station 𝑘𝑘. 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 is the expected 
time for the task 𝑖𝑖 after 𝑛𝑛 products have been assembled 
by the station 𝑘𝑘. 

 For each task 𝑖𝑖, the relative standard deviation is given 
by: 

𝑠𝑠𝑖𝑖 = 𝜎𝜎𝑖𝑖 𝐶𝐶𝑖𝑖1⁄  (2) 

𝑠𝑠𝑖𝑖 is fixed, making the variance adjust to follow the 
changes in the expected value over time. This assumption 
avoids an unrealistic increase in relative task variability as 
a result of the learning phenomenon. Modelling variance 
decrease due to autonomous learning may be part of the 
further research agenda. 

 The operators rotate in order to evenly distribute the 
learning experience across all tasks. This prevents the task 
assignment from being stuck in a single configuration due 
to the operators becoming overspecialised. The 
experience gained for each product assembled is split 
evenly between the stations involved in the assembly 
process. This consideration is already accounted for by 
the value 𝑛𝑛,  calculated as:     

𝑛𝑛 = 𝑁𝑁 𝑆𝑆⁄  (3) 

where 𝑁𝑁 is the overall number of units produced and 𝑆𝑆 is 
the number of stations. 

3. SOLUTION APPROACH 

The objective is to find an effective and efficient way of 
computing the assembly line changes generated by the 
learning phenomenon without recalculating the whole line for 
each amount of processed products. Given a unitary 
increment of 𝑁𝑁, the Kottas-Lau methodology could be 
reinitialised, and the positioning of all the tasks could be 
redefined. Unless the learning effect is particularly effective 
or the initial solution is unstable under limited variations of 
𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖, the calculation would probably lead to the same initial 
solution with a unitary increment of 𝑁𝑁. This procedure could 
be continued for different values of 𝑁𝑁 until a change arises. 
At this point, some tasks would change their positions, being 
assigned to different stations. In this scenario, the learning 
curve for the moved tasks changes. In order to use the new 
curve while retaining the accumulated experience, a fictitious 

number of products 𝑛𝑛𝑖𝑖𝑖𝑖
𝑓𝑓  must be computed for each moved 

task 𝑖𝑖. From (1) it follows that: 

𝑛𝑛𝑖𝑖𝑖𝑖
𝑓𝑓 = (𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘′−𝑟𝑟∙𝐶𝐶𝑖𝑖1𝐶𝐶𝑖𝑖1∙(1−𝑟𝑟)

)
− 1
𝑏𝑏𝑘𝑘  (4) 
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where 𝑏𝑏𝑘𝑘 is the learning rate of the new station 𝑘𝑘 to which the 
task 𝑖𝑖 has been assigned, and 𝑘𝑘′ indicates the station to which 
the task was previously assigned. 

At this point, the accumulated experience calculation no 
longer relies on the overall relative number of products 
assembled 𝑛𝑛. The focus shifts to the incremental number of 
products after the last change ∆𝑁𝑁 and the incremental relative 
number of products ∆𝑛𝑛: 

∆𝑛𝑛 = ∆𝑁𝑁 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛⁄  (5) 

where 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛  is the number of stations after the last positioning 
change. It can differ from the initial 𝑆𝑆 since the movements 
that occurred might have eliminated one or more stations. 

These calculations lead to a different way of computing 
Wright’s curve: 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 = ((1 − 𝑟𝑟) ∙ 𝐶𝐶𝑖𝑖1) ∙ (𝑛𝑛𝑖𝑖𝑖𝑖
𝑓𝑓 + ∆𝑛𝑛)−𝑏𝑏𝑘𝑘 + 𝑟𝑟 ∙ 𝐶𝐶𝑖𝑖1 (6) 

This new curve starts from 𝐶𝐶𝑖𝑖𝑖𝑖𝑘𝑘′ , i.e. where the other curve 
stopped, and proceeds with the correct slope for the newly 
assigned station 𝑘𝑘. 

As has been shown, recalculation is a viable way for mapping 
the impact of the learning effect over time, but it is not very 
efficient. There is a different way of computing the changes 
generated by the produced units, without explicitly 
recalculating the system for each unitary ∆𝑁𝑁. This way can 
be slightly more efficient, and it also provides a technical 
framework for further improvements that could lead to a 
better long-term mapping of the learning effect for this 
assembly problem, as explained in the following. The Kottas-
Lau method is based on task categorisation. Given a set of 
tasks, free of precedence constraints, to be assigned to an 
open station 𝑘𝑘, a value of 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 is calculated for each task: 

𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑇𝑇−∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝐽𝐽

√∑ 𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖
2𝑖𝑖∈𝐽𝐽

  (7) 

where 𝐽𝐽 is the set of tasks already assigned to the station 𝑘𝑘. 
𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖

2  is the variance of the task 𝑖𝑖 as calculated from the 
expected task time 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 and the relative standard deviation 
𝑠𝑠𝑟𝑟: 

𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖
2 = (𝑠𝑠𝑖𝑖 ∙ 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖)2 (8) 

The value of 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 is directly affected both by the tasks 
already inside the station and by the learning phenomenon. 
This amount is confronted with a reference value, 
independent from the station and different among the tasks 
(named 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖

′ ), which is indirectly affected by the learning via 
the variations of 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖: 

𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖
′ = 𝑖𝑖𝑖𝑖𝑖𝑖 (1 − 𝑐𝑐∙𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖

∑ 𝐼𝐼𝑤𝑤′𝑤𝑤𝑤𝑤𝐾𝐾𝑖𝑖
)  (9) 

 

where 𝑖𝑖𝑖𝑖𝑖𝑖(𝑋𝑋) is the inverse normal standard distribution 
given a cumulative probability 𝑋𝑋. 𝐾𝐾𝑖𝑖 is a set containing the 
task 𝑖𝑖 and the tasks that cannot be executed unless the task 𝑖𝑖 
has already taken place. 

If the station is empty, the priority is given to the critical 
tasks where 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 < 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖

′ . Among these tasks, the ones with 
the largest amount of directly subsequent tasks in terms of 
precedence are prioritised. If no critical task is available, the 
task to be placed in the station is chosen among those where 
𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖

′ . Some of these tasks may have a value of 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 
higher than a certain safety level: 

𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑡𝑡𝑡𝑡 = 𝑖𝑖𝑖𝑖𝑖𝑖(0.995)  (10) 

If present, these safe tasks have priority over the unsafe ones, 
among which the choice is based on ∑ 𝐼𝐼𝑤𝑤

′
𝑤𝑤𝑤𝑤𝐾𝐾𝑖𝑖 , the higher the 

better. If only desirable tasks are available, i.e. tasks where 
𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑖𝑖𝑖𝑖𝑖𝑖(0.995) ≥ 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖

′ , the choice is performed based on 
the ∑ 𝐼𝐼𝑤𝑤

′
𝑤𝑤𝑤𝑤𝐾𝐾𝑖𝑖  value, this time the lower the better. The case 

with a non-empty station is similar, while in this scenario, the 
critical operations as defined above are not considered viable. 
If only such operations remain, a new station must be opened. 
It has been shown that both 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖

′  are affected by 
learning. In particular, both increase while 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 rises for an 
incremental 𝑁𝑁. This means that the difference between the 
two values fluctuates in response to an increase in the amount 
of produced units.  

A matrix 𝑃𝑃 can be introduced, having a number of columns 
equal to the assignment attempts and a number of lines equal 
to the number of tasks. The matrix is filled with these values: 

𝑃𝑃𝑖𝑖𝑖𝑖 = {
𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖

′      𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1
𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑖𝑖𝑖𝑖𝑖𝑖(0.995)

0     𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 3
     𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2 (11) 

Where the value of 𝑘𝑘 considered in each cell is the one 
corresponding to the attempt 𝑗𝑗. 

Case 1: 

 In the attempt 𝑗𝑗, either a desirable task different from 𝑖𝑖 or 
no task at all was chosen. While the attempt took place 𝑖𝑖 
was an unconstrained undesirable task and, if a different 
task was selected, ∑ 𝐼𝐼𝑤𝑤

′
𝑤𝑤𝑤𝑤𝐾𝐾𝑖𝑖  was equal to or smaller than 

the same characteristic on the selected task. 

 Or in the attempt 𝑗𝑗 the critical task 𝑖𝑖 was chosen. 

Case 2: 

 In the attempt 𝑗𝑗, a desirable task different from 𝑖𝑖 was 
chosen. While the attempt took place, the unconstrained 
task 𝑖𝑖 (desirable or not) had a ∑ 𝐼𝐼𝑤𝑤

′
𝑤𝑤𝑤𝑤𝐾𝐾𝑖𝑖  value equal to or 

higher than the same characteristic on the selected task. 

 Or in the attempt 𝑗𝑗 a safe task, different from 𝑖𝑖, was 
chosen. While the attempt took place 𝑖𝑖 was unconstrained 
and not safe, ∑ 𝐼𝐼𝑤𝑤

′
𝑤𝑤𝑤𝑤𝐾𝐾𝑖𝑖  was equal or higher than the same 

characteristic on the selected task. 

Case 3: 

 In the attempt 𝑗𝑗, the task 𝑖𝑖 was not described by the cases 
above. 

When the matrix is generated, all its values are zero or 
negative. The non-zero cells contain all the cases in which the 
chosen task for the attempt 𝑗𝑗 might have been different if 𝑖𝑖 
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had a positive matrix value. 𝑃𝑃 can be recalculated for 
different values of 𝑁𝑁. When a value in the matrix switches 
from negative to zero or to positive, it means that, in some 
assignments, the precedence has switched and the assembly 
line needs to be recalculated. For the 𝑃𝑃𝑖𝑖𝑗𝑗  cells exhibiting case 
2, it is also necessary to check 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖

′ ≥ 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖
′ ≥ 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 

If this condition is not satisfied, that cell automatically 
becomes a case 1 and must be verified accordingly. Since 
both 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖

′  grow while 𝑁𝑁 increases, a second matrix 𝑄𝑄 
is needed to assess the potential decreases of 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖

′  in 
the attempts in question. The second matrix is filled with 
these values: 

𝑄𝑄𝑖𝑖𝑖𝑖 = {𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖
′      𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 1

0     𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2  (12) 

Case 1: 

 In the attempt 𝑗𝑗, a desirable or safe task 𝑖𝑖 was chosen. 

 Or in the attempt 𝑗𝑗, a critical task different from 𝑖𝑖 was 
chosen. While the attempt took place, 𝑖𝑖 was an 
unconstrained desirable or safe task. It had an amount of 
directly subsequent tasks equal or larger than the selected 
task. 

Case 2: 

 In the attempt 𝑗𝑗, the task 𝑖𝑖 was not described by the case 
above. 

When this matrix is generated, all its values are zero or 
positive. Over time, some differences can switch as an effect 
of the learning process. This makes a task that was once 
suitable for the assignment at hand no longer valuable, or in 
the case of empty stations, makes some tasks more critical 
and worth rearranging. Starting with 𝑁𝑁 = 1 and increasing, 
both matrices can be recalculated. Their shapes do not change 
until an inversion is found. At this point, the initial assembly 
line structure is still valid, and the task positioning needs to 
be recomputed only from the attempt 𝑗𝑗, where the first 
inversion took place, to the end. The new line can feature a 
different number of stations and a different amount of 
attempts, thus the new matrices are shaped differently to the 
previous ones. While this search process is slightly more 
efficient than the standard line computation, it still requires 
various configurations of the same matrices to be checked 
before reaching a turning point. The process can be 
accelerated, for low learning coefficient, using numerical 
algorithms. For each non-zero cell, the approximate value of 
𝑁𝑁 required to make it zero can be computed. The turning 
point is achieved by constructing the lowest of these values. 
The difference between 𝑧𝑧𝑖𝑖𝑖𝑖  and 𝑧𝑧𝑖𝑖

′ can be expressed 
equivalently as: 

(∫ 1

√2𝜋𝜋𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖
2

∙ 𝑒𝑒
−

(𝑡𝑡−𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖−∑ 𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤∈𝐽𝐽 )
2

2 ∑ 𝜎𝜎𝑤𝑤𝑤𝑤𝑤𝑤
2𝑤𝑤𝑤𝑤𝑤𝑤 𝑑𝑑𝑑𝑑𝑇𝑇

−∞ ) − 1 + 𝑐𝑐∙𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖
∑ 𝐼𝐼𝑤𝑤′𝑤𝑤𝑤𝑤𝑤𝑤

  (13) 

While the difference between 𝑧𝑧𝑖𝑖𝑖𝑖  and 𝑖𝑖𝑖𝑖𝑖𝑖(0.995) becomes: 

(∫ 1
√2𝜋𝜋𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖

2 ∙ 𝑒𝑒
−(𝑡𝑡−𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖−∑ 𝐶𝐶𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤∈𝐽𝐽 )2

2 ∑ 𝜎𝜎𝑤𝑤𝑤𝑤𝑤𝑤
2𝑤𝑤𝑤𝑤𝑤𝑤 𝑑𝑑𝑑𝑑

𝑇𝑇

−∞
) − 0.995 (14) 

In both expressions, the 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 value can be substituted by the 
Wright’s curve formula described above, leading to a 
compact representation of the learning phenomenon on the 
single operation given a task selection attempt. While the 
derivative of the integral part of the expression is hard to 
compute, an approximate derivative can still be applied in 
order for the expression to converge to its first zero. Since an 
iterative method of this kind is more costly than the original 
matrix recalculation, it is recommended to only apply it if the 
learning coefficients are low. In fact, low learning 
coefficients may require values of 𝑁𝑁 far from 1 in order to 
achieve the first turning point. 

4. CASE STUDY 

The matrix methodology has been applied to a real assembly 
line. The assembly process involves 35 constrained tasks and 
a set of learning parameters with the values given in Table 1. 

Table 1. Task and learning parameters 

Parameter Min Max Mean STD 

𝐶𝐶𝑖𝑖1 [𝑚𝑚𝑚𝑚𝑚𝑚] 0.1030 3.0600 0.5336 0.5494 

𝑠𝑠𝑟𝑟  0.1178 1.0454 0.3354 0.1783 

𝐼𝐼𝑖𝑖
′ [€/𝑚𝑚𝑚𝑚𝑚𝑚] 0.0145 1.6830 0.2898 0.3048 

𝑏𝑏𝑘𝑘 0.0074 0.0515 0.0276 0.0144 

 

The line parameters are: 

Table 2. Line parameters 

𝑇𝑇 [𝑚𝑚𝑚𝑚𝑚𝑚] 𝑐𝑐 [€/ℎ] 𝑟𝑟 

2 22 0.5 

 

The calculations are performed via the following steps: 

 The assembly line is solved with the Kottas-Lau 
algorithm using the initial task characteristics. This is the 
same as computing the system for 𝑛𝑛 = 1. While 
performing the attempts, the two matrices are created. 

 The leaning process takes place and the non-zero 
elements of the matrix are recalculated with ∆𝑁𝑁 = 1. 

 If one or more elements of the matrices change their sign, 
the line is recalculated with the Kottas-Lau algorithm 
using the updated characteristics. If not, the previous step 
continues with a higher ∆𝑁𝑁 value, until a change is found 
or a maximum amount of iterations is reached – the latter 
is an early stopping condition. 

The algorithm stops when a given number of Kottas-Lau 
recalculations have taken place. This is the time the assembly 
line has been rearranged. 
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The initial line in our example contains 12 stations. It is filled 
by tasks 1, 2, 3 and 24. After 17 steps (∆𝑁𝑁 = 17) a change is 
triggered in the third attempt, the task 5 becomes safe and 
disputes the position of task 3. After a line recalculation, the 
number of stations is reduced to 11 and task 5 takes the place 
of task 3 at the first station. As expected, all the tasks 
assigned during the first two attempts, i.e. 1 and 2, remain 
unaffected, while the tasks assigned after the third attempt are 
moved. For example, task 24 is moved to the end of station 2. 
The matrices are recalculated, and the increment on ∆𝑁𝑁 
restarts from one. The system does not return to the previous 
state, since the second Kottas-Lau calculation has been 
performed using the values that have been updated to account 
for experience, and the matrices have been affected as well. 
In fact, the new matrix recalculations are based on these same 
updated characteristics. The next change takes place after 5 
steps and involves the fourth attempt. In this attempt, no 
suitable station had been found, but, after the learning phase, 
task 24 becomes desirable and takes place as the fourth task 
at the first station. No station is eliminated by this update, 
and the tasks are simply rearranged more efficiently. This 
process can continue as long as the learning effect is able to 
move the status quo. Over time, the average assembly time 
approaches a theoretical limit, generated by the plateau in the 
experience curve. At this point the changes are no longer 
meaningful enough to trigger a line change. If the various 
matrices are memorised after each change, interpreting them 
can help us understand which tasks are less stable and which 
zones are more prone to changes. Interestingly, in the 
scenario at hand, the second matrix is never relevant to the 
triggering of a change. The low values of the learning rate 
also generate a diluting effect. In the matrices priming a 
change, no more than a single inversion can be found in the 
first twenty switches. 

5.  CONCLUSIONS AND EXTENSIONS 

As has been shown, learning can significantly impact the 
performance of assembly systems. This is particularly true for 
those systems highly dependent on human labour. From the 
variability perspective, labour-intensive assembly lines 
cannot be correctly managed without taking their stochastic 
nature into account when assigning tasks to individual 
operators. In this paper, an effort has been made to join these 
two perspectives, by maintaining the algorithmic structure of 
a stochastic assembly line balancing and evaluating the 
changes imposed on the solution by the experience 
phenomenon over time. In particular, the recalculation of the 
whole system has been substituted by the calculation of two 
matrices signalling meaningful changes in the incumbent 
solution. Since this formulation slightly diminishes the 
computational effort, it could lead to even more significant 
savings if coupled with numerical algorithms, in particular in 
scenarios with low learning coefficients. A natural extension 
of this reasoning could focus on a deeper understanding of 
the savings brought about by the learning process. Changes in 
the assembly line take place after a defined numbers of units, 
and the unitary production cost follows a stair-shaped graph. 
A deeper analysis of the savings involved could lead to a 
more refined task allocation algorithm. At the present time, 
the Kottas-Lau heuristic does not account for the learning 

process, and a temporary, suboptimal solution could instead 
take advantage of the experience gained in the long term, 
leading to an overall better system. This strategy should take 
the product life cycle into account directly, since the final line 
configuration savings are not the only ones impacting on the 
production costs. 
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The initial line in our example contains 12 stations. It is filled 
by tasks 1, 2, 3 and 24. After 17 steps (∆𝑁𝑁 = 17) a change is 
triggered in the third attempt, the task 5 becomes safe and 
disputes the position of task 3. After a line recalculation, the 
number of stations is reduced to 11 and task 5 takes the place 
of task 3 at the first station. As expected, all the tasks 
assigned during the first two attempts, i.e. 1 and 2, remain 
unaffected, while the tasks assigned after the third attempt are 
moved. For example, task 24 is moved to the end of station 2. 
The matrices are recalculated, and the increment on ∆𝑁𝑁 
restarts from one. The system does not return to the previous 
state, since the second Kottas-Lau calculation has been 
performed using the values that have been updated to account 
for experience, and the matrices have been affected as well. 
In fact, the new matrix recalculations are based on these same 
updated characteristics. The next change takes place after 5 
steps and involves the fourth attempt. In this attempt, no 
suitable station had been found, but, after the learning phase, 
task 24 becomes desirable and takes place as the fourth task 
at the first station. No station is eliminated by this update, 
and the tasks are simply rearranged more efficiently. This 
process can continue as long as the learning effect is able to 
move the status quo. Over time, the average assembly time 
approaches a theoretical limit, generated by the plateau in the 
experience curve. At this point the changes are no longer 
meaningful enough to trigger a line change. If the various 
matrices are memorised after each change, interpreting them 
can help us understand which tasks are less stable and which 
zones are more prone to changes. Interestingly, in the 
scenario at hand, the second matrix is never relevant to the 
triggering of a change. The low values of the learning rate 
also generate a diluting effect. In the matrices priming a 
change, no more than a single inversion can be found in the 
first twenty switches. 

5.  CONCLUSIONS AND EXTENSIONS 

As has been shown, learning can significantly impact the 
performance of assembly systems. This is particularly true for 
those systems highly dependent on human labour. From the 
variability perspective, labour-intensive assembly lines 
cannot be correctly managed without taking their stochastic 
nature into account when assigning tasks to individual 
operators. In this paper, an effort has been made to join these 
two perspectives, by maintaining the algorithmic structure of 
a stochastic assembly line balancing and evaluating the 
changes imposed on the solution by the experience 
phenomenon over time. In particular, the recalculation of the 
whole system has been substituted by the calculation of two 
matrices signalling meaningful changes in the incumbent 
solution. Since this formulation slightly diminishes the 
computational effort, it could lead to even more significant 
savings if coupled with numerical algorithms, in particular in 
scenarios with low learning coefficients. A natural extension 
of this reasoning could focus on a deeper understanding of 
the savings brought about by the learning process. Changes in 
the assembly line take place after a defined numbers of units, 
and the unitary production cost follows a stair-shaped graph. 
A deeper analysis of the savings involved could lead to a 
more refined task allocation algorithm. At the present time, 
the Kottas-Lau heuristic does not account for the learning 

process, and a temporary, suboptimal solution could instead 
take advantage of the experience gained in the long term, 
leading to an overall better system. This strategy should take 
the product life cycle into account directly, since the final line 
configuration savings are not the only ones impacting on the 
production costs. 
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