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Abstract

We propose the reliability constrained k-rooted minimum spanning forest, a relevant optimization

problem whose aim is to find a k-rooted minimum cost forest that connects given customers to a

number of supply vertices, in such a way that a minimum required reliability on each path between

a customer and a supply vertex is satisfied and the cost is a minimum. The reliability of an edge is

the probability that no failure occurs on that edge, whereas the reliability of a path is the product

of the reliabilities of the edges in such path. The problem has relevant applications in the design of

networks, in fields such as telecommunications, electricity and transports. For its solution, we propose

a mixed integer linear programming model, and an adaptive large neighborhood search metaheuristic

which invokes several shaking and local search operators. Extensive computational tests prove that

the metaheuristic can provide good quality solutions in very short computing times.

Keywords: Networks, Minimum Spanning Forest, Reliability, Adaptive Large Neighborhood Search

1 Introduction

The minimum spanning tree (MST) is one of the most celebrated problems in the field of combinatorial

optimization. It is defined on a connected, undirected and weighted graph G = (V,E), where V is the set

of vertices and E is the set of edges. An MST of G is a tree composed of a subset of edges of E spanning all

the vertices of V and having minimum total weight. The MST has several applications, including design

of computer and communication networks, picture processing, automatic speech recognition, clustering

and classification problems (see, e.g., Wu and Chao 2004). Several polynomial time algorithms have been

proposed to solve it, starting from Kruskal (1956) and Prim (1957).
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A forest consists of a set of mutually disjoint trees, and a spanning forest (SF) is a forest that spans

all vertices of the graph. When the graph is connected, an SF is a forest where each vertex of the graph

is included in one of the trees (see, e.g., Mekking and Volgenant 2010; Da Cunha et al. 2011). When

instead the graph is not connected but consists of several connected components, an SF is a sub-graph

containing a spanning tree of each component (see, e.g., Kang and Bader 2009; Nobari et al. 2012). A

k-rooted spanning forest is an SF with k disjoint trees, where each tree has its own root. These problems

have different applications in designing supply chain networks, image processing (Tarabalka et al. 2010;

K. Bernard et al. 2012), political districting (Yamada 2009) and designing communication networks

(Yamada et al. 1996), among others.

In this paper, we study the reliability constrained k-rooted minimum spanning forest (RCKRMSF).

Essentially, in the RCKRMSF we are given two sets of vertices, one including demand vertices and the

other supply vertices. Demand vertices can be seen as customers and should be connected by means of a

path in the graph to one of the supply vertices. Each edge (i, j) of the graph is associated with a cost cij

and a reliability rij . The reliability of an edge is the probability that no failure occurs on that edge, and

the reliability of a path is the product of the reliabilities of all edges included in the path. The goal of

the RCKRMSF is to construct a k -rooted minimum-cost SF that connects all customers to one or more

supply vertices, and for which any path between a customer and its supply vertex satisfies a minimum

required reliability. An RCKRMSF example is depicted in Figure 1, where 2 supply and 18 demand

vertices are rooted using an SF with 2 trees. Costs and reliabilities are reported close to each arc. Three

paths are highlighted: Path 1 has cost 75+20+62+51=208 and reliability 0.97×0.90×0.98×0.94≈0.80;

similarly, path 2 has cost 207 and reliability 0.82 and path 3 cost 80 and reliability 0.86. It is easy to

check that the solution guarantees minimum reliability 0.80 on all paths.

Figure 1: An illustrative example of the RCKRMSF problem.

The RCKRMSF is of interest because models many real-world applications in different fields. Re-
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liability of paths is indeed a crucial component of systems arising in fields such as telecommunication,

electricity and transport networks, just to cite some (see, e.g., Edrissi et al. 2015). For example, when

broadcasting information or data from servers to terminal nodes of a network, it is often needed to guar-

antee that the data is received with at least a pre-specified reliability. Similarly, in radio communication

networks, in case of a critical situation, the reliability of communication among central departments and

stations should be greater than a minimum required level. Also, when a disaster occurs, reliability of

delivering services to people in declared areas should be taken into account besides the minimization of

delivery costs (Yücel et al. 2018). In all these examples, the design a network has to take into account

both costs and minimum reliability, and could be modeled as an RCKRMSF. In general, problems where

reliability matters in distributing services, data, information, or in general a given commodity from supply

vertices to customers can be viewed as instances of the RCKRMSF.

Despite its large number of applications, to the best of our knowledge the RCKRMSF has not been

previously addressed in the literature. In this paper, we first formally model the problem by using mixed

integer linear programming (MILP). As the MILP model is effective only on small-scale instances, we also

propose a metaheuristic, based on the concept of adaptive large neighborhood search (ALNS) and enriched

with several local search routines and shaking operators. We prove the computational effectiveness of the

proposed ALNS on a large set of instances. We also test the ALNS on other simplified versions of the

RCKRMSF that have been tackled in the optimization literature, obtaining interesting insights.

The paper is organized as follows. A concise literature review of the wide area of SF applications is

provided in Section 2. A formal problem description and a MILP model are presented in Section 3. The

details of the proposed ALNS are given in Section 4. Extensive computational tests on the RCKRMSF

and other problem variants are discussed in Section 5, and conclusions are drawn in Section 6.

2 Brief literature review

We are not aware of previous works focused on the RCKRMSF, but we found a large number of works

that address different constrained variations of the classical MST that are related to the RCKRMSF.

The capacitated MST (CMST) is an MST generalization in which each vertex i of the graph, with

the exception of a given supply vertex, has a non-negative demand di. The objective is to find an MST

such that the sum of the demands in each sub-tree, rooted at the supply vertex, does not exceed a

preset capacity value. The CMST is interesting because models many real-world situations and also

because it can serve as a lower bound for capacitated vehicle routing (see, e.g., Toth and Vigo 2014)

and pickup-and-delivery (see, e.g., Bruck and Iori 2017) problems. It has been tackled by many exact
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algorithms, including polyhedral approaches (Gouveia and Lopes 2005) and branch-and-cut-and-price

algorithms (Uchoa et al. 2008). In terms of heuristics, good computational results were obtained with a

biased random-key genetic algorithm by Ruiz et al. (2015) and with a quick greedy heuristic by Kritikos

and Ioannou (2017).

Narula and Ho (1980) proposed the degree constrained minimum spanning tree problem, an MST

variation in which a threshold on the maximum number of edges incident to each vertex is imposed.

The problem models a number of applications, including the branching of cables in offshore wind farms

(Klein et al. 2015). It has been addressed with several exact and heuristic techniques, such as variable

neighborhood search (de Souza and Martins 2008), branch-and-cut (Martinez and da Cunha 2014) and

branch-and-cut-and-price (Bicalho et al. 2016). An analysis of problem variants as well as new MILP

formulations have been recently presented by Dias et al. (2017).

Achuthan et al. (1992) studied the bounded diameter MST (BDMST). The objective of the BDMST is

to find an MST such that the number of edges between any pair of vertices does not exceed a given input

value. A relevant BDMST variation is the hop constrained MST (HCMST), where each path between a

designed root vertex and any other vertex should not contain more than δ edges (hops). Hop constraints

can be seen as a first attempt to guarantee a certain level of service with respect to some performance

constraints such as reliability. Indeed, if a certain reliability value β is associated with each edge of the

graph, then limiting the number of edges to δ has the effect of maintaining a minimum required level of

reliability βδ (see, e.g., Gouveia 1995; Leitner 2016).

More elaborated constraints are adopted in the (rooted) delay constrained MST (DCMST), also known

as the (rooted) distance constrained MST. The DCMST is a generalization of the HCMST in which a

delay lij is associated with each edge {i, j} ∈ E, and the sum of all delays in a path should not be greater

than a pre-specified threshold L (see, e.g., Salama et al. 1997; Gouveia et al. 2008).

Another aspect that is relevant for the RCKRMSF is that the optimized solution is divided into

clusters, at most one for each supply vertex. Clustering has been intensively studied in the area of

network design. Here we only mention the related generalized MST (GMST), originally proposed by

Myung et al. (1995). The GMST calls for finding an MST that either contains exactly one vertex for

each cluster (as in, e.g., Myung et al. 1995; Pop et al. 2018), or alternatively contains at least one vertex

for each cluster (as in Dror et al. 2000).

As previously mentioned, reliability is the probability of failure-free performance of a system for a

specified duration and under stated conditions. There are many measurements for the reliability of a

network, such as two-terminal, k-terminal and all-terminal reliability. Two-terminal reliability is defined

as the reliability between two specified vertices, whereas the reliability of communication between every
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pair of vertices in the network is called all-terminal reliability (see, e.g., Koide et al. 2001; Srivaree-

ratana et al. 2002). A general case, covering the two previous cases, is the k-terminal reliability, in which

minimum reliability in the designed network must be respected among all pairs of a specified subset of k

vertices (see, e.g., Canale et al. 2013; Roy et al. 2016; Heidarzadeh et al. 2018).

In designing communication networks, both reliability and installation costs are of great importance,

so many researchers have taken into account both these aspects when developing algorithms or models

to design such networks. In general, designing networks with the presence of budget and reliability con-

straints can be achieved in two different ways: the objective can be the cost minimization subject to

minimum reliability guarantee, or the reliability maximization subject to a maximum budget limit. In

our work, we consider cost minimization subject to minimum reliability. For the literature on this type of

problems, we mention the branch-and-bound algorithm by Jan et al. (1993), the method based on cross

entropy by Altiparmak and Dengiz (2009), and the ant colony optimization approaches by Watcharasit-

thiwat and Wardkein (2009) and Dengiz et al. (2010). For what concerns instead reliability maximization,

we mention the simulated annealing by Atiqullah and Rao (1993), the hill-climbing, simulated annealing

and genetic algorithms by Altiparmak et al. (2003), the so-called shrinking and searching algorithm by

Shao et al. (2005), and the artificial neural network by Dash et al. (2012). Bi-objective models have been

also studied to take care of the cost and reliability components in an integrated manner. Among these,

we cite the genetic algorithms by Azaron et al. (2009) and Konak and Smith (2011). We also mention

the recent label setting algorithm by Santos et al. (2018), which deals with multiple objectives and could

be adapted to take care of reliability.

We refer readers interested in further pointers to the literature to the surveys by Ball et al. (1995) on

network reliability, Bazlamaçci and Hindi (2001) and Nemani and Ahuja (2011) on MST algorithms, and

de Almeida et al. (2015) on multi-objective models for reliability.

3 Problem formulation and mathematical model

In this section, we provide a formal RCKRMSF description and a MILP model. The model is based

on a multicommodity network flow (see, e.g., Magnanti and Wolsey 1995), where each commodity is

assigned to a given customer and its flow is used to model the path connecting the customer to one of the

supply vertices. To this aim, we introduce a directed graph G′ = (V,A), obtained by replacing each edge

{i, j} ∈ G with two directed arcs (i, j) and (j, i). The vertex set is partitioned as V = S ∪D and the arc

set is defined as A = {(i, j) : i, j ∈ V }. Sets S = {1, 2, . . . ,m} and D = {m+ 1,m+ 2, . . . , n} represent

the supply and demand vertices, respectively. Two positive values, namely the cost cij and the reliability
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rij , are associated with each arc (i, j) ∈ A. Recall that the reliability of a path is the product of the

reliabilities of all arcs in the path, and let α be a minimum required level of reliability. The objective of

the RCKRMSF is to construct a k-rooted minimum-cost SF of the vertices in V, such that each demand

vertex (also denoted as customer) is connected by a path in the SF to exactly one of the supply vertices,

and by ensuring that each such path has reliability at least equal to α. Without loss of generality, to

ensure that a feasible solution exists we suppose that each demand vertex i ∈ D can be linked to at least

one source vertex j ∈ S by a direct arc having reliability rij ≥ α.

The MILP model that we introduce makes use of two families of binary variables and a family of

continuous non-negative variables, namely:

ysi =

 1 if customer i is allocated to supply vertex s,

0 otherwise
∀i ∈ D, s ∈ S,

xsij =

 1 if arc (i, j) belongs to a path originated from supply vertex s,

0 otherwise
∀(i, j) ∈ A, s ∈ S,

fhij = flow of commodity h along arc (i, j) ∀(i, j) ∈ A, h ∈ D.

A commodity is assigned to each customer h ∈ D, and the flow variables f are used to build paths

that start at one of the supply vertices and end at the customers. In particular, a unit of flow of each

commodity h is imposed to leave a supply vertex and reach h. Our model is then as follows:

(RCKRMSF) : min
∑
s∈S

∑
(i,j)∈A

cijx
s
ij (1)

∑
s∈S

∑
(i,j)∈A

xsij = n−m (2)

∑
s∈S

(xsij + xsji) ≤ 1 ∀ {i, j} ∈ E, (3)∑
s∈S

ysi = 1 ∀i ∈ D, (4)

yss = 1 ∀s ∈ S, (5)

xsij ≤ ysi ∀ (i, j) ∈ A : i ∈ D, s ∈ S, (6)

xsij ≤ ysj ∀ (i, j) ∈ A : j ∈ D, s ∈ S, (7)∑
j∈D

fhsj = ysh ∀s ∈ S, h ∈ H, (8)

∑
i∈V

fhih −
∑
j∈D

fhhj = 1 ∀h ∈ H, (9)

∑
i∈V

fhij −
∑
i∈D

fhji = 0 ∀h ∈ H, j ∈ D, j 6= h, (10)
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fhij ≤
∑
s∈S

xsij ∀h ∈ H, (i, j) ∈ A, (11)

∏
(i,j)∈A

r
fh
ij

ij ≥ α ∀th ∈ D, (12)

xsij ∈ {0, 1} ∀ (i, j) ∈ A, s ∈ S, (13)

ysi ∈ {0, 1} ∀i ∈ D, s ∈ S, (14)

fhij ≥ 0 ∀ (i, j) ∈ A, h ∈ H. (15)

The objective function (1) minimizes the total cost of the SF. Constraint (2) forces the SF to contain

exactly n − m arcs. Constraints (3) guarantee that each edge {i, j} ∈ E is assigned to at most one

supply vertex and carries flow in at most one direction. Constraints (4) impose that each customer is

assigned to exactly one supply vertex. Constraints (5) simply require that a supply vertex is allocated

to itself. Constraints (6) and (7) ensure that if arc (i, j) is assigned to a path originating from s ∈ S,

then both vertices i and j are allocated to s. Constraints (8)–(10) are used to impose flow conservation,

in particular: the flow of commodity h leaving supply vertex s is set to be equal to ysh; the difference

between the amount of commodity j entering and leaving a customer h is set to be 1 when j = h, and

0 when j 6= h. Constraints (11) link together x and y variables, by ensures that if a flow is sent along

an arc, then such arc must be included in the solution. Constraints (12) impose the minimum reliability

level α on each path in the solution. Then, constraints (13)–(15) define the domains of the variables.

Constraints (12) are non-linear, but can be linearized by using the logarithmic function (as in, e.g.,

Woolston and Albin 1988). Essentially, we can replace the left-hand side and the right-hand side of the

constraint by their logarithms, obtaining:

∑
(i,j)∈A

fhij ln (rij) ≥ ln (α) ∀h ∈ D. (16)

The resulting MILP model, composed of (1)–(11) and (13)–(16), has been solved by means of a

commercial solver, and the results that have been obtained are provided in Section 5 below.

4 Adaptive Large Neighborhood Search

The large neighborhood search (LNS) algorithm, originally proposed by Shaw (1998), attempts at improv-

ing a given solution by alternately destroying and repairing it (Mancinia and Steccab (2018)). The ALNS

is an extension of the LNS that has been first proposed by Ropke and Pisinger (2006) and since then

has obtained successful results for a large variety of optimization problems (Palomo-Mart́ınez et al. 2017;

Alinaghian and Shokouhi 2018). The ALNS allows the use of multiple destroy and repair algorithms
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within the same search, and adopts an adaptive selection mechanism to decide which operators should

be used. Essentially, at each iteration a given part of the solution is destroyed and repaired by applying

the appropriate destroy and repair rules, and these rules are selected on the basis of given probabilities

that depend on their performance during the search process.

In this section, we propose a heuristic algorithm for the RCKRMSF that is based on the ALNS

paradigm and follows the pseudocode given in Algorithm 1. We are given a set of n1 (resp. n2) local

search (resp. shaking) procedures. A weight wkls (resp. wksh) is associated with each local search (resp.

shaking) procedure k, and is initially set to 1 for all procedures. With each local search (resp. shaking)

procedure k, we also associate a score πkls (resp. πksh) representing the performance of the procedure

during the search process.

Our ALNS contains a given number φ1 of global iterations, called segments for short, each consist-

ing of φ2 inner iterations. At the beginning of each segment, all scores are set to zero. Then, at each

iteration, a local search procedure i and a shaking procedure j are chosen by the roulette-wheel mech-

anism with probability pi = wils/
∑n1

k=1 w
k
ls and pj = wjsh/

∑n2

k=1 w
k
sh, respectively. A new solution is

obtained by applying first the shaking and then the local search on a current solution. Then, the scores

are updated as follows: if the cost of the new solution is better than that of the incumbent, the scores

of the involved local search and shaking procedures are augmented by ζ1; if the cost of the new solution

is better than that of the previous temporary solution but not better than that of the incumbent, the

scores are augmented by ζ2; if the new solution is non-improving but accepted by a Simulated Annealing

(SA) criterion, the scores are increased by ζ3. Let Cost(X) be the cost of solution X. The SA criterion

works as follows: given a current solution CurrentSolution, a neighbor solution TempSolution is always

accepted if Cost(TempSolution) < Cost(CurrentSolution); otherwise, it is accepted with probability

e(Cost(TempSolution)−Cost(CurrentSolution))/θ, in which θ is the current temperature. The initial tempera-

ture is set to θ0 and is decreased gradually, by performing the update θnew = λθold where 0 < λ < 1 is

the cooling rate. In addition, the final temperature is set to ε.

When a segment ends, the weights associated with the local search and shaking procedures are updated

according to the scores obtained during the last φ2 iterations using the following equation:

wkµ =

 wkµ if γkµ = 0,

(1− η)wkµ + ηπkµ/γ
k
µ otherwise.

µ = sh, ls (17)

In (17), η ∈ [0, 1] is an input parameter called reaction factor, whereas γkls (resp. γksh) gives the number

of times a local search (resp. shaking) procedure k has been selected during the φ2 inner iterations of the

last segment.
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Inputs: θ: initial temperature; ε: final temperature; λ: cooling rate; η: reaction factor; n1: number of
local search procedures; n2: number of shaking procedures;

Output: BestSolution;
TempSolution = CurrentSolution = BestSolution = Initialization();

for each local search l ∈ {1, 2, · · · , n1} set wlls = 1;

for each shaking procedure k ∈ {1, 2, · · · , n2} set wksh = 1;
for (Segmentiter = 1 to φ1) do

for each local search l ∈ {1, 2, · · · , n1} set πlls = 0 and γlls = 0;

for each shaking procedure k ∈ {1, 2, · · · , n2} set πksh = 0 and γksh = 0;
for (Localiter = 1 to φ2) do

Local search = choose a procedure i using roulette wheel with weights wlls (l ∈ {1, 2, · · · , n1});
Shaking = choose a procedure j using roulette wheel with weights wksh (k ∈ {1, 2, · · · , n2});
γils += 1; γjsh += 1;
TempSolution = Shaking(TempSolution);
while (TempSolution can be improved) do

TempSolution = Local search(TempSolution);
end
if (Cost(TempSolution) < Cost(BestSolution)) then

CurrentSolution = BestSolution = TempSolution;

πils += ζ1; πjsh += ζ1;

end
else if (Cost(TempSolution) < Cost(CurrentSolution)) then

CurrentSolution = TempSolution;

πils += ζ2; πjsh += ζ2;

end
else if (θ > ε) then

ρ = e(Cost(BestSolution)−Cost(TempSolution))/θ;
τ = rand (0,1);
if (τ > ρ) then

TempSolution = BestSolution;
else

CurrentSolution = TempSolution;

πils += ζ3; πjsh += ζ3;

end
θ = θ × λ;

end
else

TempSolution = BestSolution;
end

end

for each local search procedure l ∈ {1, 2, · · · , n1} update wlls using (17);

for each shaking procedure k ∈ {1, 2, · · · , n2} update wksh using (17);

end

Algorithm 1: ALNS procedure for the RCKRMSF
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In what follows, we provide the details of the inner procedures invoked by Algorithm 1.

4.1 Initialization

To construct a feasible initial solution, we adopted an initialization procedure that applies the Prim

algorithm over a modified version of the input graph, namely: we set to 0 all costs associated with arcs

connecting two supply vertices; we execute the Prim algorithm on the resulting graph, so obtaining an

MST; we remove all arcs connecting two supply vertices from the solution, so obtaining an SF. Then, if

the SF is infeasible because does not satisfy the minimum reliability constraint, the procedure proceeds

to achieve feasibility as follows. Let L represent the set of all leaf vertices of the infeasible SF. The

procedure randomly selects a vertex l ∈ L for which the reliability of the path (i.e., the path from the

selected supply vertex to l) is not satisfied. Vertex l is removed from its position in the current SF and

allocated to a new position that is feasible and has minimum reinsertion cost. Note that this position

always exists because we assumed in Section 3 that there is at least a direct arc connecting a source

vertex to a demand vertex having reliability greater than or equal to α. The procedure is reiterated until

all vertices are assigned to feasible positions, thus producing a feasible solution in output.

4.2 Local search procedures

Given an initial feasible solution F , five different local search operators have been implemented to try to

improve the solution cost. Essentially, in all such procedures modifications of different parts of the initial

solution are examined to possibly find a better solution by reconnecting demand and supply vertices.

• Local search 1: a restricted solution RSS is obtained by removing an arc, chosen in random order,

from the initial solution F . As a result, a subset L′
of vertices are disconnected from the supply

vertices. The procedure examines relocating each vertex in L′
, one at a time, to feasible insertion

points in RSS. Essentially, insertion points can be an arc of RSS (insertion type I) or a vertex

(insertion type II). A vertex l ∈ L′
is selected in random order and allocated to its lowest-cost

feasible insertion point in RSS. The procedure iterates until all vertices in L′
are relocated. In

case the new solution has a better objective value than F , it is accepted, otherwise the procedure

proceeds by selecting a new random arc of F . The process is reiterated until all arcs have been

examined and no further improvement is possible. An example is represented in Figure 2: Vertices 6

and 9 are disconnected from the solution by removing arc (2, 6) (Figures 2-A and 2-B) and allocated

to new insertion points of types II and I, respectively (Figures 2-C and 2-D).

• Local search 2: the procedure chooses a random edge and removes it from F . As a result, a sub-tree
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Figure 2: An illustrative example of local search 1.

is disconnected in the restricted solution RSS that has been obtained. All insertion points of type

II in RSS are examined for the re-insertion of the entire sub-tree. If a feasible and lower cost

insertion point is found, then the sub-tree is moved there, otherwise it is put back in its original

position. The procedure iterates until all arcs in F have been tested for removal.

• Local search 3: let L represent the set of all leaves of F . The procedure selects a random leaf from L

and removes it from its current position. It then attempts to re-insert it by considering all feasible

insertion points of type I or II, and selecting the one having minimum cost and being feasible, if

any. The move is accepted if it leads to an improvement in the objective function of the problem,

and the procedure is re-iterated until all leaves have been examined and no further improvement is

possible.

• Local search 4: the procedure randomly selects two vertices of F and swaps them. The move

is accepted if the resulting solution is feasible and has a lower objective value. The procedure

terminates when all possible swaps are examined and no further improvement is possible.

• Local search 5: This rule is a math-based procedure that aims at improving the objective function

by finding a new rearrangement of the leaves’ positions in the initial solution F . The procedure

starts by selecting all leaves of F and removing them from the solution. A restricted solution RSS

is consequently obtained. Assuming L to represent the set of all extracted vertices, the procedure

tries to find an improved cost solution by reallocating the vertices of L to RSS by means of an

integer linear programming model.

To this aim, all sequences consisting of one or two customers belonging to L are generated. Let

SS′ and SS′′ denote the sequences of size one and two of the extracted vertices, respectively. We

represent a sequence s ∈ SS = SS′ ∪ SS′′ as s = (bs, ts), in which bs and ts are the vertices

belonging to s, and bs = ts in case s ∈ S′. The set of all feasible insertion points corresponding to
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the sequence s is represented by Js. Essentially, an insertion point is a demand or a supply vertex

in RSS to which sequence s could be allocated through an insertion type II move. We denote rej

the reliability of the path ending at vertex j and starting from one of the available supply vertices.

In addition, we denote res the reliability of the sequence s ∈ S. If s ∈ SS′ the corresponding

reliability is set to one, otherwise it is set to the reliability of arc (bs, ts). Finally, we represent by

SSl the subset of sequences in SS that contain customer vertex l ∈ L. We make use of the following

decision variable:

ysj =

 1 if sequence s ∈ SS is connected to the insertion point j ∈ Js,

0 otherwise,

for all s ∈ SS, j ∈ Js. The model for the optimal reallocation of the leaves is then:

min
∑
s∈S

∑
j∈Js

csjysj (18)

∑
s∈SSl

∑
j∈Js

ysj = 1 ∀l ∈ L, (19)

rej(1− ysj) + rej × res × rjbs × ysj ≥ α ∀j ∈ RSS, s ∈ SS, (20)

ysj ∈ {0, 1} ∀s ∈ SS, j ∈ Js. (21)

The objective function (18) is to minimize the total reallocation cost. For each l ∈ L, constraints

(19) impose that each extracted vertex is allocated to exactly one position of the restricted solution.

Constraints (20) impose the minimum required reliability. Essentially, the reliability of any path

obtained by adding a sequence s ∈ SS to a vertex j ∈ RSS cannot be less than the pre-specified

value α. Constraints (21) define the variables’ domain.

4.3 Shaking procedures

In this section, we describe six shaking procedures that are used within the developed ALNS. In all such

procedures, regardless of the change in the cost of the solution, new ways of connecting the vertices are

considered, so that a larger portion of the feasible space can be searched and new solutions can be given

in input to the local search operators above. All procedures start from an initial feasible solution F .

• Shaking procedure 1: The purpose of this procedure is to change a portion of F by substituting an

available path with a new one. To this aim, a demand vertex is randomly selected and the max-

reliability path is obtained. Essentially, the max-reliability path is the path that originates from

one of the supply vertices, reaches the selected demand vertex and has maximum reliability among
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all paths of this type. This path can be easily obtained by applying the Dijkstra algorithm. In case

of having several paths with the same maximum reliability, one of them is randomly selected. The

selected path is included in the solution, and the cycles that have been possibly generated by its

addition are erased by removing arcs from F . The new solution obtained by this shaking procedure

is always feasible from the reliability point of view. Figure 3 gives an example in which vertex 7 is

selected (Figure 3.A) and its corresponding max-reliability path is calculated (dotted path in Figure

3.B). As the newly generated solution has cycles, the procedure removes a subset of arcs belonging

to the arc set of the solution before adding the max-reliability path and connected to the vertices

visited by the new path (Figure 3.C), consequently restoring feasibility (Figure 3.D).

Figure 3: An illustrative example of shaking procedure 1.

• Shaking procedure 2: This procedure is a generalization of shaking procedure 1, in which three

demand vertices, instead of one, are randomly selected from F . Taking into account all the available

supply vertices, the max-reliability paths for the three vertices are obtained and implemented in

the new solution, and possibly generated cycles are removed.

• Shaking procedure 3: We select two demand vertices, say i and j, having distance (cij) greater than

a pre-specified input value C. The maximum-reliability paths for the two vertices are obtained and

implemented, and possible cycles are removed from the new solution that has been obtained. An

illustrative example is shown in Figure 4, in which demand vertices 4 and 23 are selected to perform

the shaking.

• Shaking procedure 4: In this procedure, two vertices of F are selected randomly, and their locations

are swapped with each other. If the move is feasible from the reliability point of view, it is accepted,

otherwise the procedure examines swapping other vertices to find the first feasible swap, if any.
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Figure 4: An illustrative example of shaking procedure 3.

• Shaking procedure 5: A restricted solution RSS is obtained by randomly removing an arc from

F . As a result, a sub-tree F ′
of F is disconnected from the forest. Then, a random vertex of

RSS is selected to reallocate the extracted sub-tree F ′
. If the solution obtained in this way is

not feasible because does not satisfy the minimum reliability constraint, another random vertex of

RSS is selected for the reallocation of F ′
. In case no feasible position exists to reinsert F ′

, F ′

is reallocated back to its original position, and the procedure iterates by selecting and removing a

new random arc from F .

• Shaking procedure 6: Similarly to what proposed for shaking procedure 5, in this procedure too an

arc is randomly chosen from F and removed. The disconnected component F ′
obtained by this

operation is then reattached to RSS. The only difference with respect to the previous procedure

is that now the position in which F ′
has to be connected to RSS is randomly selected. In case the

resulting solution is infeasible, the procedure continues by selecting a new random vertex of RSS

as insertion point.

5 Computational results

In this section, we provide extensive computational tests to evaluate the effectiveness of the proposed

ALNS. All algorithms have been implemented in C++ and tested on a PC with a 2.8 GHz Intel Dual

Core and 4 GB of RAM. We used ILOG Cplex 12.3 to run the RCKRMSF model of Section 3. We present
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results on new RCKRMSF instances that we randomly generated and on DCMST benchmark instances

from the literature. The ALNS has been executed five times on each attempted instance. Due to the

large number of tests, in this section we only report aggregated results, so as to facilitate comprehension.

5.1 Instance generation

We generated two sets of instances, the first having Euclidean distances and the second non-Euclidean.

The first set contains 180 instances having number of vertices n ∈ {20, 30, 40, 50} and number of sources

m ∈ {2, 3, 4}. Three values were selected for the minimum path reliability, namely α ∈ {0.95, 0.90, 0.80},

and the reliabilities of the arcs were created as random numbers in the interval [α, 1]. The coordinates

of the vertices were randomly selected in the square [0, 100]× [0, 100], and, for each i, j ∈ V , cij was set

equal to the Euclidean distance between the coordinates of i and j. To take randomness into account,

for each combination of n, m and α, five random instances have been generated, differing one another in

the distances and reliabilities on the arcs. The second set was created mainly to compare Euclidean with

non-Euclidean distances. This set was indeed generated as the first one for what concerns n, m, α and

arc reliabilities, but it contains distances that have been randomly generated for each arc in the interval

[1, 100]. For each combination of n, m and α, two random instances have been generated.

All instances that we generated are provided as on-line supplemental material to this paper.

5.2 Parameter tuning

The ALNS of Section 4 contains a number of parameters that have to be finely tuned. To find their best

configuration, we opted to use a simple genetic algorithm (GA). GAs (see, e.g., Sastry et al. 2014) are

well suited for the optimization of complex problems, and parameter tuning is one of the fields in which

they have been successfully applied, as recently shown in, e.g., Liu et al. (2014); Yu and Xu (2014). The

sketch of the GA that we adopted for selecting the best ALNS parameters is described in Algotithm 2.

1. Generate an initial random population of individuals (each being a combination of parameters)

2. Calculate the fitness of each individual

3. Produce the next population by using the following operators

• Selection: Individuals with high fitness values are selected to breed a new generation

• Crossover: Groups of two parents are selected and combined to create offspring solutions

• Mutation: Each solution is locally randomly modified to increase diversity

4. Repeat steps 2 and 3 until the stopping criterion is met

5. Return the last population

Algorithm 2: The general framework of the GA adopted for the ALNS parameter tuning

For this preliminary tuning, a test set of 20 instances having 20 or 40 vertices have been randomly
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Table 1: ALNS parameters

Parameter Description Different tested values Adopted value

θ initial temperature {500, 1000, 2000, 5000, 10000, 15000} 1000
ε final temperature {0.0001} 0.0001
λ cooling rate {0.1, 0.01, 0.001, 0.0001, 0.00001} 0.1
η reaction factor {0.1, 0.2, 0.3, 0.4, 0.5} 0.2
C distance between two vertices in shaking 3 {20, 30, 40, 50, 60} 50
φ1 number of segments {3, 5, 10, 20, 30, 40} 5
φ2 number of iterations in each segment {3, 5, 10, 20, 30, 40} 10
ζ1 π increment value 1 {30, 50, 70, 90, 110, 130} 50
ζ2 π increment value 2 {10, 20, 30, 40, 50, 60} 20
ζ3 π increment value 3 {3, 5, 10, 15, 20, 25} 5

generated as in the first set of Section 5.1. The initial GA population was set to 20 random individuals.

The chromosome of each individual consists of a list of the ALNS parameters to be tuned, and its fitness

is the average value of the 20 solutions found by executing the ALNS with this list of parameters on

the 20 instances in the test set. We adopted a simple truncation selection, in which the top (1/s)th

of the individuals get s copies each in the mating pool, with s = 2 in our tests. One-point crossover

was chosen as the operator for recombining the two parent chromosomes (a point is randomly selected

over the chromosome length, and all data beyond this point is swapped between the two parents). As

mutation procedure, we opted to change an arbitrary bit in a chromosome from its original state. We

decided to stop the GA after the generation of 30 populations.

Table 1 shows the list of ALNS parameters, their brief descriptions, the sets of parameter values that

have been tested with the GA, and, in the last column, the final values that have been adopted on the basis

of the results. It is worth mentioning that the performance of the ALNS was not very sensitive to the set

of parameters. We applied indeed the Wilcoxon signed rank test, a well-known nonparametric statistical

test from Wilcoxon (1945), to perform a pairwise comparison of parameters. To do so, we selected

the two parameter combinations having, respectively, the best and the worst average performance (by

considering the average objective function over the 20 test instances). The Wilcoxon test showed that

these combinations do not dominate each other at a significance level of α < 0.05. This confirms the

robustness of the developed ALNS.

5.3 Computational results on DCMST benchmarks

With the aim of assessing the effectiveness of the ALNS, we considered the DCMST discussed in Section

2. The DCMST is a special case of the RCKRMSF in which a single source is used to serve demand

vertices and a maximum delay is allowed on each path. Our ALNS can be easily adapted to solve this

problem by considering delays instead of reliabilities on the arcs.

A relevant work on the DCMST is that of Gouveia et al. (2008), who proposed a number of instances

and solved most of them to proven optimality in one day of CPU time by means of algorithms based on
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Lagrangian relaxation and column generation. The authors considered instances with 20 and 40 demand

vertices, divided into three main groups, namely TR, TC and TE. While the TR group contains instances

for which the edge costs are random values, the TC and TE groups both include instances with Euclidean

costs, with the only difference that the source vertex is near the center of the grid of vertices for the TC

group and near the border for the TE. Instances are denoted as X,Y [Z,W], where X is the group, Y

is the number of demand vertices and [Z,W] gives the range in which the arc delays have been created,

with Z=1 and W ∈ {2, 5, 10, 100, 1000}. For each such configuration, four instances have been generated

by using different values on the maximum delay bound, resulting in a total of 120 instances. The ALNS

was executed five times on each instance.

Similarly to Gouveia et al. (2008), we present separate results for the classes involving small and

large delays. The former results are in Table 2 and the latter ones in Table 3. For each group of four

instances per line, each table provides the average (over the four instances per line) of the best (over

the five attempts) gap between the ALNS solution value and the best known solution value reported by

Gouveia et al. (2008), and the average ALNS execution time (over the four instances and five attempts).

The ALNS was executed with the default parameters proposed for the RCKRMSF. It is clear from the

tables that the ALNS is very effective in tackling the DCMST, being able to achieve very low gaps in a

matter of seconds. The average best gap is usually below 0.5% and just in two cases (both for TR,40)

reaches 0.71%. Essentially, the average gap over all the available DCMST instances, with respect to the

best know solutions, is around 0.21%, and the average CPU time is just 2.38 seconds.

Table 2: ALNS comparison with best solutions on DCMST benchmarks – small delays (4 instances per line)

Class 1 Avg. Avg. Class 2 Avg. Avg. Class 3 Avg. Avg.
best gap time best gap time best gap time

TR,20 [1,2] 0.00 1.61 TR,20 [1,5] 0.00 1.56 TR,20 [1,10] 0.00 1.64
TC,20 [1,2] 0.00 1.59 TC,20 [1,5] 0.00 1.68 TC,20 [1,10] 0.08 1.63
TE,20 [1,2] 0.00 1.27 TE,20 [1,5] 0.00 1.30 TE,20 [1,10] 0.03 1.31
TR,40 [1,2] 0.40 2.82 TR,40 [1,5] 0.52 3.16 TR,40 [1,10] 0.47 3.06
TC,40 [1,2] 0.11 2.82 TC,40 [1,5] 0.22 2.98 TC,40 [1,10] 0.22 3.08
TE,40 [1,2] 0.25 3.25 TE,40 [1,5] 0.64 3.24 TE,40 [1,10] 0.35 3.32

Table 3: ALNS comparison with best solutions on DCMST benchmarks – large delays (4 instances per line)

Class 4 Avg. Avg. Class 5 Avg. Avg.
best gap time best gap time

TR,20 [1,100] 0.35 1.69 TR,40 [1,1000] 0.20 1.76
TC,20 [1,100] 0.06 1.81 TC,40 [1,1000] 0.00 1.86
TE,20 [1,100] 0.00 1.29 TE,40 [1,1000] 0.00 1.35
TR,40 [1,100] 0.71 3.44 TR,40 [1,1000] 0.71 2.57
TC,40 [1,100] 0.17 3.05 TC,40 [1,1000] 0.25 2.19
TE,40 [1,100] 0.74 3.62 TE,40 [1,1000] 0.52 3.72

We use this set of instances also to provide a sensitivity analysis for φ1 (number of global ALNS

iterations) and φ2 (number of inner iterations). Figure 5 shows the average best gap for all DCMST
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instances of the three groups with respect to different values of φ2, by keeping φ1 = 5. It can be noticed

that the gap tends to zero by increasing the value of φ2, showing that the ALNS tends not to be stuck

in local optima. Figure 6 shows the same analysis for the case in which φ2 = 10 and φ1 takes different

values ranging from 5 to 40. Also in this case, by increasing the number of iterations the optimality gap

for all TR, TC and TE groups decreases and gets below 0.1%.

Figure 5: The effect of parameter φ2 on the average best gap for the three DCMST groups

Figure 6: The effect of parameter φ1 on the average best gap or the three DCMST groups

5.4 Computational results on Euclidean RCKRMSF instances

In this section, we focus on the solution of the new RCKRMSF instances that we generated. Tables 4, 5

and 6 give the results that we obtained on Euclidean instances with α=0.95, 0.90 and 0.80, respectively,

by running the MILP model composed of (1)–(11) and (13)–(16) with CPLEX and the ALNS of Section

4. CPLEX was allowed a maximum run time of 18000 CPU seconds. Each line in the tables report

average results on the selected group of five instances having the same values of n, m and α. For the
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MILP model, we provide the lower bound value reported at the end of the run in column “LB”, the

solution value in column “UB”, and the elapsed CPU seconds in column “time”. For the ALNS, which

was run five times on each instance, we provide, in order, the best, average and worst solution values,

the average and best percentage gaps from the UB of the MILP model, and the average execution time.

The gaps have been computed as 100×(UBALNS−UBMILP )/UBMILP .

Table 4: Computational results on Euclidean instances with α = 0.95 (5 instances per line)

n m MILP model ALNS

LB UB Time Best Worst Avg. Avg. Best Avg.
UB UB UB gap gap time

20 2 325.82 325.82 531.83 325.82 329.83 326.62 0.23 0.00 1.40
20 3 281.06 281.06 201.60 281.06 281.06 281.06 0.00 0.00 1.72
20 4 255.60 255.60 106.52 255.60 256.05 255.96 0.13 0.00 1.36
30 2 418.77 445.85 18000.00 446.04 447.46 446.58 0.16 0.04 1.76
30 3 394.98 420.63 18000.00 421.42 423.89 422.71 0.46 0.17 1.44
30 4 366.06 383.04 15701.08 383.04 387.12 384.71 0.45 0.00 1.69
40 2 483.48 556.20 18000.00 527.58 539.12 533.44 −3.86 −4.93 2.57
40 3 447.38 490.20 18000.00 488.15 494.41 490.49 0.08 −0.40 2.24
40 4 425.12 460.64 18000.00 459.61 463.28 460.64 0.01 −0.20 2.45
50 2 524.96 677.13 18000.00 605.31 617.26 610.20 −9.52 −10.23 5.88
50 3 495.23 622.93 18000.00 567.68 576.16 570.42 −8.24 −8.67 4.56
50 4 466.33 567.37 18000.00 530.30 538.87 533.77 −5.77 −6.37 4.68

Average 407.07 457.20 13378.42 440.97 446.21 443.05 −2.16 −2.55 2.65

Table 5: Computational results on Euclidean instances with α = 0.90 (5 instances per line)

n m MILP model ALNS

LB UB Time Best Worst Avg. Avg. Best Avg.
UB UB UB gap gap time

20 2 332.77 332.77 431.80 332.77 334.93 333.21 0.12 0.00 1.14
20 3 293.89 293.89 166.57 293.89 294.65 294.19 0.10 0.00 1.30
20 4 266.55 266.55 44.40 266.55 267.64 266.77 0.08 0.00 1.44
30 2 402.61 444.93 18000.00 443.75 453.15 446.56 0.34 −0.27 1.62
30 3 382.78 406.83 16023.94 406.83 408.20 407.51 0.17 0.00 1.65
30 4 358.15 376.43 14631.73 376.43 377.71 376.85 0.11 0.00 1.67
40 2 483.34 551.44 18000.00 537.47 543.89 540.42 −1.97 −2.52 2.61
40 3 451.25 497.56 18000.00 496.57 501.25 498.68 0.22 −0.20 2.62
40 4 429.33 474.45 18000.00 472.62 477.42 474.29 −0.03 −0.37 2.59
50 2 524.00 702.91 18000.00 585.99 602.61 593.08 −14.70 −15.65 5.38
50 3 495.10 593.27 18000.00 550.57 560.99 554.76 −6.14 −6.82 4.92
50 4 466.72 560.15 18000.00 517.15 523.04 519.52 −6.90 −7.31 4.55

Average 407.21 458.43 13108.20 440.05 445.46 442.15 −2.38 −2.76 2.62

Out of the 180 instances addressed in the three tables, 49 instances were solved to proven optimality

by the MILP model in the given time limit. These include all 45 instances with 20 demand vertices, and

4 with 30 vertices. For the unsolved instances, the difference between the UB and LB values produced

by the model can be quite high. On average, the overall gap between these two values is slightly above

10%, for all values of α.

The ALNS finds all 49 proven optimal UBs in at least one of the five runs performed on those

instances. On the other instances, it usually produces very good gaps. The best gap varies from 0.17%

(for n = 30, m = 3 and α = 0.95) to −15.65% (for n = 50, m = 2 and α = 0.90). On average, the best
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Table 6: Computational results on Euclidean instances with α = 0.80 (5 instances per line)

n m MILP model ALNS

LB UB Time Best Worst Avg. Avg. Best Avg.
UB UB UB gap gap time

20 2 323.55 323.55 521.29 323.55 324.82 324.06 0.15 0.00 1.38
20 3 289.07 289.07 599.96 289.07 290.41 290.02 0.27 0.00 1.42
20 4 264.06 264.06 409.47 264.06 264.79 264.55 0.16 0.00 1.51
30 2 412.56 455.50 18000.00 455.33 461.63 457.85 0.51 −0.02 1.89
30 3 390.60 418.67 18000.00 419.20 419.98 419.51 0.20 0.13 1.84
30 4 363.04 379.28 16189.15 379.28 379.96 379.68 0.11 0.00 1.73
40 2 489.87 559.68 18000.00 546.71 559.95 552.10 −3.37 −4.30 2.60
40 3 453.61 503.92 18000.00 499.72 507.78 502.80 −0.15 −0.74 2.92
40 4 429.22 479.47 18000.00 474.93 479.34 476.88 −0.47 −0.90 2.61
50 2 514.04 647.95 18000.00 584.71 596.33 590.69 −8.56 −9.47 5.20
50 3 484.83 593.58 18000.00 548.41 562.12 552.54 −6.82 −7.49 4.70
50 4 455.51 563.24 18000.00 516.11 517.95 516.97 −7.78 −7.93 4.81

Average 405.83 456.50 13476.66 441.76 447.09 443.97 −2.14 −2.56 2.72

gap shows improvement of about 2.5% with respect to the UBs produced by the MILP model, but such

improvements can be very relevant on instances with 50 vertices, with values ranging between −6% and

−15%. The good performance of the ALNS can also be noticed by looking at the worst and average UBs,

which are not far away from the best ones. The overall average gap is between −2.1% and −2.4%, and

is quite consistent for the different values taken by α. These good-quality solutions are obtained in very

short times, involving less than 3 seconds on average and nearly 6 seconds in the worst case (for n = 50,

m = 2 and α = 0.95). By looking at these tables, we can conclude that the MILP model is effective up

to 20 demand vertices, whereas the ALNS is effective and fast on all instances. It can also be noted that

the algorithms are not particularly sensitive to the value of α.

Tables 7, 8 and 9 provide average results on the non-Euclidean set of instances, focusing again on

α=0.95, 0.90 and 0.80, respectively. The values reported have the same meanings as those in Tables 4–6,

but now refer to just two instances per line instead of five. Out of 72 instances, the ALNS outperforms

the UB value obtained by CPLEX in 36 cases at least once in the five runs for instance. For the remaining

instances, it always finds the same objective value of the MILP model, still at least once in the five runs.

Overall, all best gaps are always null or negative, whereas the average gaps might rarely take positive

values, although these are very small. More variability with respect to the results on the Euclidean

instances can be noticed on the overall average gaps, which vary from a minimum of −5.27% for α = 0.90

to a maximum of −2.22% for α = 0.80. This might be induced by the reduced number of instances in

the second test bed. The MILP model is now a bit more effective on the instances having 30 demand

vertices, but remains very slow for the larger instances. Also for this test bed, we can conclude that the

ALNS is fast and effective.
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Table 7: Computational results on non-Euclidean instances with α = 0.95 (2 instances per line)

n m Mathematical model ALNS

LB UB Time Best Worst Avg. Avg. Best Avg.
UB UB UB gap gap time

20 2 162.50 162.50 93.31 162.50 164.00 163.20 0.35 0.00 0.82
20 3 144.00 144.00 134.52 144.00 144.00 144.00 0.00 0.00 0.89
20 4 132.50 132.50 64.05 132.50 133.00 132.60 0.06 0.00 0.86
30 2 199.91 208.00 14578.21 207.50 208.00 207.60 −0.16 −0.20 2.05
30 3 176.50 176.50 8939.29 176.50 176.50 176.50 0.00 0.00 2.10
30 4 163.00 163.00 4301.67 163.00 163.00 163.00 0.00 0.00 1.73
40 2 177.14 219.00 18000.00 212.00 213.50 212.30 −3.06 −3.20 2.36
40 3 167.55 207.00 18000.00 199.50 202.50 200.30 −3.24 −3.63 2.32
40 4 157.36 195.00 18000.00 186.50 190.50 187.90 −3.34 −4.10 2.06
50 2 160.72 239.00 18000.00 204.00 210.50 207.10 −13.05 −14.29 4.42
50 3 151.06 205.50 18000.00 189.50 196.00 192.30 −5.80 −7.22 3.76
50 4 144.37 204.50 18000.00 180.50 190.50 183.70 −8.88 −10.62 3.64

Average 161.38 188.04 11342.59 179.83 182.67 180.88 −3.09 −3.60 2.25

Table 8: Computational results on non-Euclidean instances with α = 0.90 (2 instances per line)

n m Mathematical model ALNS

LB UB Time Best Worst Avg. Avg. Best Avg.
UB UB UB gap gap time

20 2 148.50 148.50 17.96 148.50 148.50 148.50 0.00 0.00 1.02
20 3 128.00 128.00 13.90 128.00 128.00 128.00 0.00 0.00 0.95
20 4 118.00 118.00 13.38 118.00 118.00 118.00 0.00 0.00 1.39
30 2 203.31 212.50 17624.33 211.50 217.50 213.90 0.79 −0.44 1.61
30 3 185.27 196.50 18000.00 196.50 198.00 196.80 0.14 0.00 2.61
30 4 170.89 183.50 14578.38 183.50 183.50 183.50 0.00 0.00 2.19
40 2 204.46 254.00 18000.00 245.50 249.00 248.30 −2.24 −3.31 2.68
40 3 188.65 252.00 18000.00 231.00 232.50 231.30 −7.95 −8.06 2.92
40 4 175.26 207.50 18000.00 205.00 205.00 205.00 −1.11 −1.11 2.17
50 2 157.98 299.50 18000.00 193.00 198.00 195.30 −34.82 −35.59 5.38
50 3 151.16 218.00 18000.00 184.50 190.50 187.30 −14.11 −15.38 3.94
50 4 142.21 184.00 18000.00 175.00 179.50 176.80 −3.93 −4.90 3.97

Average 164.47 200.17 13187.33 185.00 187.33 186.06 −5.27 −5.73 2.57

Table 9: Computational results on non-Euclidean instances with α = 0.80 (2 instances per line)

n m Mathematical model ALNS

LB UB Time Best Worst Avg. Avg. Best Avg.
UB UB UB gap gap time

20 2 186.00 186.00 73.26 186.00 186.00 186.00 0.00 0.00 0.84
20 3 145.00 145.00 103.29 145.00 145.00 145.00 0.00 0.00 1.02
20 4 117.00 117.00 6.54 117.00 117.00 117.00 0.00 0.00 1.33
30 2 189.89 204.00 10162.24 204.00 209.50 205.80 0.98 0.00 2.07
30 3 169.50 169.50 6125.59 169.50 170.00 169.90 0.31 0.00 1.72
30 4 158.00 158.00 6984.14 158.00 158.50 158.30 0.24 0.00 1.88
40 2 195.31 238.50 18000.00 231.50 234.50 232.50 −2.66 −3.07 2.47
40 3 181.05 244.00 18000.00 224.00 225.50 224.60 −7.86 −8.11 2.20
40 4 170.96 211.50 18000.00 203.00 204.00 203.30 −3.89 −4.02 2.38
50 2 167.49 230.00 18000.00 212.50 217.50 213.90 −7.01 −7.61 4.97
50 3 158.77 206.50 18000.00 197.00 207.00 199.10 −3.32 −4.28 3.87
50 4 148.10 191.50 18000.00 183.50 189.50 184.80 −3.45 −4.14 3.96

Average 165.59 191.79 10954.59 185.92 188.67 186.68 −2.22 −2.60 2.39

6 Conclusions

We proposed the reliability constraint k -rooted minimum spanning forest. The goal of the problem is

to find a k -rooted minimum cost forest that satisfies a minimum required reliability on each path from

a source to a demand vertex. The problem has relevant applications in the design of several types of
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networks. We solved it by means of a mathematical model and an adaptive large neighborhood search

metaheuristic. The model is effective in solving instances with up to 20 demand vertices, whereas the

metaheuristic is both fast and effective not only on all instances of the proposed problem, but also on the

special case known in the literature as the delay constrained minimum spanning tree. Such conclusions

are motivated by extensive computational tests on randomly created instances that have been now made

publicly available to stimulate further research.

Instances with just 30 demand vertices remain unsolved to proven optimality despite relevant com-

puting efforts, so, as future research, much could be done in terms of exact algorithms to attempt solving

larger instances. Another interesting research direction is that of studying the budget-constrained ver-

sion of the problem, that is, the problem variant in which the goal is to construct a maximum reliability

spanning forest with the presence of a limitation on the available network construction cost.
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