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Abstract

We study a two periods entry game where the incumbent firm, who has private

information about his own production costs, makes a non observable long run invest-

ment choice, along with a pricing decision observed by the entrant. The investment

choice affects both post-entry competition and first period cost of production, so that

the cost of signaling becomes endogenous. The game is solved following Bayes-Nash

requirements, the intuitive criterion is used to constrain off-equilibrium beliefs. When

investment is publicly observable, it is shown that the unique intuitive equilibrium

is the separating equilibrium with limit pricing and no entry deterrence. When in-

vestment is not observable, quite remarkably, there exists a unique intuitive pooling

equilibrium which is Pareto superior, from the incumbent’s point of view, to the unique

intuitive separating equilibrium. In the pooling equilibrium no entry takes place and

the price is below the low cost monopoly price. Thus, when investment is secret, a

limit pricing policy supports entry deterrence. Our model provides an example of se-

cret barriers to entry and their relationship with limit pricing. We also contribute to

the analysis of a relatively under-researched class of games where the cost of signaling

unobservable characteristics is endogenously determined by unobserved actions.
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1 Introduction

In the context of a classical entry game with private information of the incumbent

about his costs (Milgrom and Roberts, 1980, 1982) we introduce the possibility of

investment in an otherwise standard signaling model. The main motivation for our

investigation is provided by a specific interest in the theory of limit pricing and its

relationship with barriers to entry. Indeed one of the original formulations highlighted

already the presumption that

the potential entrant regards the current pricing policy of established sellers

as being probably a statement of intentions rather than a bluff, (Bain, 1949,

p. 453).

The credible statement of future intentions built in the current pricing policy may

pertain to a persistent state variable (e.g. incumbent’s costs as in Milgrom and

Roberts, 1982) but it can also pertain to persistent effects of incumbent’s investment

choices. The analysis of the effects of publicly irreversible decisions affecting long run

competition and entry conditions is well developed and quite influential for business

strategy analysis1 and antitrust purposes. However, a more secretive character than

that required to ensure the commitment value of a public irreversible long run decision

can be a feature of many choices made by the firm about the production process,

such as the exploitation of the learning curve, investments in R&D, or about long

run contracts. Studying if and how the incumbent’s pricing strategy will convey

information about the performed investment or a long run secret contract, and hence

about the profitability of entry, is the specific aim of the present investigation.

To address these issues we consider a straightforward extension of the standard

entry game with private information on production costs where an incumbent may

also have the opportunity to secretly invest in a cost reducing technology. After secret

investment has been undertaken and pricing decisions have been made and publicized

to the market, the entry decision by the potential entrant is taken. If entry takes

place the post-entry stage is the standard Cournot-Nash outcome, with learning upon

1See Fudenberg and Tirole (1984) and Tirole, (1988).
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entry so that current pricing only affects the entry decision and not the post entry

game due to learning 2.

Our analysis unveils an important consequence of investment unobservablity for

limit pricing strategies. In a precise sense, equilibrium limit pricing can establish a

commitment value of secret investment and, more precisely, that equilibrium limit

pricing limits entry by signaling a sufficiently large secret investment. Interestingly

this outcome could not have been achieved if the same game had been played under

complete information of the entrant about the incumbent’s type. More importantly,

we show that entry deterrence obtained under private information and unobservable

investment would not obtain in the predicted equilibrium outcome of the game in the

presence of private information when investment is observable.

Two elements considered in the model can be highlighted here to understand these

results. Compared to the standard entry game with private information, the entrant

strives to infer both the incumbent’s type, an exogenous characteristics, and the in-

cumbent action (investment undertaken, an endogenous variable) since both pieces of

information are relevant and taken into account at the moment when entry is decided.

Which one of the two bits of information a pricing policy is able to convey, and to

what extent, is the new issue that will be carefully examined. The second feature

of our model is that signaling costs are endogenous to the incumbent: by reducing

the cost in both periods, investment will not only affect post-entry competition, but

will also lower the cost of signaling associated with pre-entry pricing policy. Thus,

the cost of signaling becomes endogenous and the incentives to invest are intertwined

with the incentives to signal faced by both types of incumbents.

Our analysis is performed under a few assumptions on the structural elements of

the industry in the aim to be as close as possible to the classical model of entry, so that

the key implications of the presence of secret investments for limit pricing are better

uncovered. Specifically, we assume that there are only two types of incumbents,

the high cost type and the low cost type; the low cost type is assumed to be on

the technology frontier so that he gains no direct benefit by further investing in

cost reducing activities. The high cost type, instead, can decide to modulate the

2As in Milgrom and Roberts, (1982).
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level of effort in cost reducing activities taking into account its impact on both the

entry decision and the post-entry market. Entry is always profitable by the potential

entrant facing a high cost type of incumbent, no matter what level of investment

has been undertaken. In contrast, entry is unprofitable in the face of a low cost

incumbent. Hence, in the context of the above model, the key question is whether

entry can be credibly deterred, whenever there exists a threshold level of investment

such that the expected profits to the entrant are zero when the incumbent’s costs are

private information. A related question is whether the observability of investment

makes any difference for the plausible outcome of the game. Notice that the above

assumptions guarantee that the possibility to invest for the high cost type would not

enable the incumbent to raise entry barriers in the same game played under complete

information so that the market will be contested whenever the established firm is of

a high cost type.

In our analysis we show that when the incumbent’s type is private information,

but investment is directly observable by the potential entrant, a unique intuitive sepa-

rating equilibrium emerges, where the low cost incumbent prices below his monopoly

level and where entry takes place when the incumbent has high costs. Pooling equi-

libria are possible, but they do not survive the intuitive criterion and they are not

plausible outcomes of the entry game. Thus, when investment is publicly observable,

limit pricing does not deter entry.

When the incumbent’s type is private information and, instead, investment is

secret, both a unique separating and a unique pooling equilibrium pass the intuitive

criterion. Most importantly, the pooling equilibrium is Pareto superior from the point

of view of the established firms and hence the pooling, rather than the separating

equilibrium, seems to be the most plausible solution of the entry game. In the pooling

equilibrium entry never takes place and both types of incumbent play a limit price

below the monopoly price of the low cost incumbent. Quite surprisingly, unobservable

investment takes on the power to deter entry through the pricing policy, a property

that investment does not have when it is itself publicly observable. In a precise sense,

limit pricing confers investment a commitment value: whenever there exists an entry

deterrence level of secret investment the pooling equilibrium pricing strategies will
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support it.

The above results are derived by introducing some adaptations of existing tech-

niques and solution concepts for standard signaling models to the case in which the

sender’s strategy set also includes private choices. The notion of Perfect Bayesian

Equilibrium is applied by taking into account that the entrant not only formulates

expectations about the sender’s type (costs), but also about the sender’s action (in-

vestment) and by requiring that expectations are consistent with the incumbent’s

choices, i.e. Bayes rule applies whenever possible. The intuitive criterion (Cho and

Kreps, 1987) is used to deal with the multiplicity of equilibria.

Our model is very much related to the classical analysis of the battle for market

shares (Roberts, 1987). Following this martial analogy, it is worth noticing that the

situation analyzed here can be described as one in which the incumbent is in the

condition to use secret traps rather than visible barriers, in order to affect the scale

and the occurrence of entry. In showing that commitment effects of unobservable

investments can emerge in association to limit pricing, and secret traps mined by the

incumbent can make entry unprofitable, our investigation is obviously related to the

large literature on entry deterrence through public irreversible investments barriers

(for a survey see Tirole (1986) and Ordover and Saloner (1989)).

The analysis of the benchmark model with observable investment and private in-

formation is more strictly related to contributions in Milgrom and Roberts (1986),

Bagwell and Ramey (1988)3 and, more recently in Bagwell (2007). A broad interpre-

tation of observable investment as effort in promoting sales, i.e. advertising with a

permanent effect on the installed base of customers as in Milgrom and Roberts (1986)

and Bagwell (2007), is consistent with the basic features of our model.

The problem of the commitment value of choices observed with noise is analyzed

in Bagwell (1995) and in Maggi (1999). Bagwell (1995) shows that, in a leader

follower relationship, imperfectly observable actions do not have any commitment

value. Maggi (1999) qualified this result by showing that imperfect observability of

a choice does not necessarily destroy its commitment value when the first mover has

3In this latter model advertising has no long run commitment value in that the level of sales in

the first period cannot directly affect sales in the second period.
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private information of a specific type, that allows him to abstract from signaling

considerations4. Although there are similarities, our analysis pertains to a different

situation. Since the entrant’s choice depends both on the expected type and on the

expected long run investment, information transmission about both emerges from

endogenous incentives in our case.

Our model with secret investment is also related to the analysis of a class of sig-

naling models discussed by In and Wright (2012) where, however, there is no type

heterogeneity and only signaling private choices is considered. There, an extensive

discussion of the relevance of this kind of games in recent contributions in topics un-

related to entry deterrence can be found. A similar problem is also studied in Brighi,

D’Amato and Piccolo (2005), albeit with a continuum of types for the incumbent and

the entrant. The focus there is on the separating equilibrium only.

The rest of the paper is organized as follows: section 2 presents the basic model

of entry in a monopolistic market and introduces the main assumptions; section 3

examines the benchmark entry deterrence model with observable investment; section

4 provides the results for the case of unobservable investments and compares the

results. Finally, some remarks are offered in the concluding section. The proofs are

collected in the appendix.

2 The entry model

We consider a standard two periods entry model where an incumbent firm faces the

potential entry of a competing firm in a market for a homogeneous good. In the

first period firm 1, the incumbent, who has private information about his costs of

production, decides how much to produce, q, and how much to invest, e, in a cost

reducing technology. In the second period firm 2, the entrant, after observing some

or all of the incumbent’s choices, decides whether to enter into the market. The

entrant’s choice is denoted by y ∈ {0, 1}, with y = 1 if entry takes place and 0

4The probability of different signals depends on the leader’s choice, but the leader’s type is

immaterial, in other words incentive compatibility constraints for different types of leaders are not

considered.
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otherwise. If entry occurs the two firms compete, the entrant pays an entry cost,

learns the incumbent’s production costs (learning upon entry) and firms compete à

la Cournot, otherwise firm 1 remains a monopolist and the entrant gains her outside

option, normalized to zero.

In each period, the market behaviour is described by an inverse demand function

p(q), where q ≥ 0 is the quantity of the homogeneous good. The function p(q) is

supposed to be differentiable and strictly decreasing. The marginal costs of firm 1 and

firm 2 are constant and the fixed costs of production are set to zero, for convenience.

The incumbent’s marginal cost may take on different values and may also depend on

the level of a long run investment in a cost reducing technology. Investment is made

by the incumbent in the first period and it affects marginal costs in both periods.

To simplify the analysis, we assume that there are only two types of incumbents, the

L type with a low cost and the H type with a high cost, and denote by θt(e), with

t = L,H, the marginal cost of type t when the amount of investment is e ≥ 0. The

cost reducing technology θt(e) is represented by a differentiable function of e, with

θt(e) ≥ 0, and satisfies the following assumptions:5

A.1 θL(e) = θL and θL < θH(e) for all e ≥ 0.

A.2 θ′H(e) < 0 for all e and θ′′H(e) > 0 for all e above some threshold, ẽ ≥ 0.

Assumption A.1 states that the low costs incumbent is on the technological frontier

and hence no additional benefits can be obtained from investment. Also, A.1 states

that investment may allow the high cost incumbent to reduce the cost gap with respect

to type L, even though it will never let the ranking of types, in terms of marginal

costs, be overturned. Assumption A.2 states that the high cost incumbent has strictly

decreasing marginal costs and that the cost reducing technology exhibits decreasing

returns to scale, at least for levels of investments above some given threshold. Two

examples of the H type cost technologies consistent with A.1 and A.2 are depicted in

Figure 1. The cost reducing technology θ1H(e) exhibits decreasing returns to scale and

is more effective than θ2H(e), since it reaches lower unit costs with less investment. The

cost technology θ2H(e) exhibits initial increasing returns and then decreasing returns

5For ease of notation we set θt = θt(0).
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Figure 1: Two examples of cost reducing technology

to scale. None of these technologies allow the high cost incumbent to reach the unit

cost of the H type.

The prior probability that the incumbent has high costs is denoted by β. The

cost technology θH(e), the marginal cost θL and the prior probability β are common

knowledge, as well as market demand p(q), while the type t and the amount of

investment e are incumbent’s private information.

The single period incumbent’s profits (gross of investment costs e) are given by

Πt(e, q) = [p(q)− θt(e)]q.

To simplify the analysis, let us assume that the profit function Πt(e, q) is strictly

quasiconcave in q, so that, for each level of e, the incumbent’s single period profit

maximization problem has a unique solution given by the monopoly quantity, mt(e).

The single period monopoly profit is Mt(e) = Πt(e,mt(e)).
6 It may be noticed that,

by A.2, the high cost incumbent’s functions mH(e) and MH(e) are continuous and

strictly increasing.

The second period incumbent’s profits depend on firm 2 entry decision. If firm

2 does not enter, the incumbent remains a monopolist and earns7 Mt(e), while firm

6For convenience of notation we set mt = mt(0) and Mt = Mt(0).
7The notation emphasizes that the incumbent’s profits in the second period are a function of the
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2 makes zero profits. If entry occurs, the entrant pays an ‘entry fee’, learns private

information about incumbent’s costs, i.e. the type t and the amount of investment

e, and the two firms compete à la Cournot. The equilibrium duopoly profits of the

incumbent depend on first period investments and are denoted by Dt(e). The duopoly

profits of the entrant, net of the entry fee, depend on incumbent’s type and investment

and are denoted by D2t(e).
8 For convenience of notation let us set Dt = Dt(0) and

D2t = D2t(0).

The incumbent’s decision about q and e, is based on total profits over the two

periods. Total profits include first period investment expenditures and, assuming no

time discounting, are given by

Vt(e, q, y) = Πt(e, q)− e+ yDt(e) + (1− y)Mt(e). (1)

The entry decision of firm 2 depends on second period expected profits. After

observing first period market quantity or equivalently the first period market price,

the entrant makes an inference about incumbent’s cost, i.e. on type and investment.

Let β̂ denote the entrant’s beliefs about the probability of the incumbent being of

type H and ê the conjectures about incumbent’s investment choice. The entrant

expected profits in the case of entry are given by

β̂D2H(ê) + (1− β̂)D2L, (2)

thus firm 2 enters if the expected profits are strictly positive. We make the following

assumption of the entrant’s duopoly profits.

A.3 D2H > 0 and D2L < 0; moreover βD2H + (1− β)D2L > 0.

The first part of A.3 is a standard assumption in entry games and states that the

entrant duopoly profits are strictly positive when the incumbent has high costs and

are strictly negative otherwise. Therefore, entry is profitable unless the incumbent

has low costs. The second part of A.3 states that the entrant expected profits at prior

first period long run investment choice.
8Clearly, the duopoly profits depend on a number of other factors, including marginal costs of

the potential entrant and fixed entry costs, which are not explicitly parameterized.
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beliefs, β, and in the absence of investment are positive. It rules out the possibility

that the incumbent avoids entry without making any investment.

The next assumption specifies how the investments made by the incumbent in the

first period affect the profitability of entry.

A.4 D2H(e) > 0 for all e ≥ 0. Moreover, there exists a level of investment, the zero

expected profit investment denoted by e0 > 0, such that the entrant’s expected

profit at prior beliefs is zero, i.e.

βD2H(e0) + (1− β)D2L = 0. (3)

According to the first part of A.4, entrant’s profits are always positive, when she

faces a high cost incumbent, regardless of the level of investment undertaken. This

assumption significantly limits the anticompetitive effect of investment, which, under

complete and perfect information, would not enable the high cost incumbent to raise

any entry barrier. However, the second part of A.4 ensures that there exists a level

of investment making entry unprofitable in expected terms. This is the minimal

assumption to let secret investment possibly support entry deterrence.

The entry model outlined above represents a sequential game with incomplete

information and, specifically, a signaling game, where the presence of unobservable

investments introduces into the analysis two new and interesting features. First, by

reducing the marginal cost in the first period, the choice to invest by the H type

lowers the cost of signaling, which becomes partially endogenous. This is one of the

key elements of our model since, as we shall see, a greater incentive to mimic by the

H type will also modify the incentive to signal by the L type. Second, because of the

unobservable character of investment, the information carried by the pricing policy

signal is two dimensional. Pricing policy may signal either the type, an exogenously

given private characteristic, or the amount of investment, an endogenous unobservable

action, or both. As we shall see, which dimension of the information will prevail in

the signal depends on different equilibrium outcomes of the game.

The concept used to solve the signaling game is the standard notion of Perfect

Bayes Nash equilibrium with an additional consistency requirement on the expecta-

tion about the secret investment. The intuitive criterion of Cho and Kreps (1987)
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is used to refine the multiplicity of equilibria, which is a typical characteristic of

signaling games. For simplicity we only consider equilibria in pure strategies. As

a benchmark for comparing later results, a signaling model with publicly observable

investment will be analyzed in the next section. The analysis of the model with secret

or unobservable investment is postponed to Section 4.

Finally, since general conditions for the existence of an equilibrium in separat-

ing strategies is not the scope of this paper, we shall make the following standard

assumption9

ML −DL ≥MH(e)−DH(e), for all e, (4)

which simply states that the low cost incumbent has greater benefits from entry de-

terrence, i.e. a greater difference between monopoly and duopoly profits, as compared

to the high cost incumbent.

3 Observable investment

A relevant benchmark for our model is the case when investment by the incumbent

is observable by the entrant. In this case investment plays a double role as a signal

and as a commitment variable. In fact, long run investment recovers its commitment

character because it is an irreversible and publicly observable choice affecting post

entry competition. However, notice that, by assumption A.3, the role of investment as

a commitment variable is limited because investment would not allow the incumbent

to deter entry under complete information.

On the other hand, investment also acts as a signal, as does the quantity. As it

is well known, quantity acts as a signal because producing a further quantity of the

good is cheaper for the low cost incumbent or, more formally, because the quantity

satisfies the ‘single crossing’ condition. Similarly, since by assumption A.1 investment

is purely dissipative for type L and cost reducing for type H, making a zero level of

investment is ‘more expensive’ for a high cost incumbent and may be interpreted by

9See, for instance, Tirole (1988) or Bagwell and Ramey (1988).
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the entrant as a credible signal of a low cost type.10 Therefore, the benchmark model

is actually a special case of a game with multiple signals and in fact, it has some

similarities with the signaling model with limit pricing and advertising studied by

Bagwell and Ramey (1987).

Let us first describe the strategies of the signaling game and the notions of equilib-

rium applied to derive the solution. A pure strategy for the incumbent is a function

which associates with each type a level of investment and a first period quantity and

consists of two pairs, (eH , qH) and (eL, qL). After observing incumbent’s choice, the

potential entrant makes an inference about incumbent’s costs. A system of beliefs for

firm 2 is a function β̂ which associate with any observable choice of the incumbent,

(e, q), the ex post probability of the H type. A pure strategy of firm 2 associates with

any observable choice of the incumbent the decision of whether to enter or not and is

denoted by y(e, q) ∈ {0, 1}. The incumbent’s payoff are given by (1) and the entrant’s

payoff by (2). A solution to the entry game is a Perfect Bayesian Equilibrium (PBE).

Definition 1. A profile of strategies (et, qt) and y(e, q), with t = H,L, is a PBE

of the signaling game with observable investment, if there exists a system of beliefs

β̂(e, q) satisfying the following conditions:

1. The incumbent’s strategy is optimal, i.e. for t = H,L

(et, qt) = argmax Vt(e, q, y(e, q)).

2. The entrant’s strategy is optimal, i.e. y(e, q) = 1 if and only if

β̂(e, q)D2H(e) + (1− β̂(e, q))D2L(e) > 0.

3. The beliefs β̂(e, q) are consistent with Bayes rule whenever possible.11

Signaling games usually have a multiplicity of equilibria arising from the lack of

restrictions on off-equilibrium beliefs. To deal with multiplicity we apply the intuitive

10Notice that investment retains its character of signal even when assumption A.1 is relaxed by

allowing the investment to be cost reducing for the L type but not as much as for the H type.
11Specifically, if (eH , qH) = (eL, qL) then β̂(eH , qH) = β and if (eH , qH) 6= (eL, qL) then

β̂(eH , qH) = 1 and β̂(eL, qL) = 0.
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criterion originally proposed by Cho and Kreps (1987) and based on the following

notion of dominated choice. Let V̂t denote the payoff of type t in a given equilibrium.

A deviation from the equilibrium choice, (ẽ, q̃) 6= (et, qt), is equilibrium dominated

for type t if, when entry does not take place, type t is worse off than in equilibrium,

i.e. if Vt(ẽ, q̃, 0) < V̂t. A system of beliefs supporting a given equilibrium satisfies the

intuitive criterion if whenever a deviation is equilibrium dominated for type t and

strictly preferred by type t′, the entrant assigns the deviation to type t′. For example,

if the deviation (ẽ, q̃) is equilibrium dominated for H and strictly preferred by L, i.e.

VH(ẽ, q̃, 0) < VH(eH , qH , y(eH , qH)) (5)

VL(ẽ, q̃, 0) > VL(eL, qL, y(eL, qL)), (6)

the off-equilibrium belief must be β̂(ẽ, q̃) = 0. An intuitive equilibrium is a PBE

which can be supported by a system of beliefs satisfying the intuitive criterion. It

turns out that, in the present setting, intuitive equilibria can be characterized as

follows.12

Fact 1. A PBE, (et, qt) and y(e, q), with t = H,L, is intuitive if and only if there

exists no deviation (ẽ, q̃) 6= (et, qt) such that (5) and (6) hold.

The next two subsections deal with two kinds of PBE, separating equilibria and

pooling equilibria.

3.1 Separating equilibrium

A separating equilibrium is a Perfect Bayesian Equilibrium where different types of

the incumbent firm make different choices or, equivalently, where (eH , qH) 6= (eL, qL).

In a separating equilibrium information is fully revealed and hence, by assumption

A.3, the entrant only enters when she believes she is facing a high cost incumbent.

The H type accommodates entry in the second period, i.e. he produces the monopoly

quantity in the first period and the duopoly quantity after entry, and decides a level

12This characterization is also used in Bagwell and Ramey (1988). A sketch of the proof can be

found in Appendix 1.
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of investment which maximizes total profits. The equilibrium choice for the H type

is eH = eA and qH = mH(eA), where eA is the level of investment maximizing total

profits, i.e. the solution to the problem

max
e

VH(e,mH(e), 1). (7)

The type H maximum total profit of accommodation is given by

V A
H = MH(eA)− eA +DH(eA). (8)

The equilibrium choice of the L type, (eL, qL), must satisfy the ‘incentive compat-

ibility condition’ of the H type, i.e.

VH(eL, qL, 0) ≤ V A
H . (9)

In other words, the high cost incumbent should prefer accommodating entry rather

than playing (eL, qL). Furthermore, the equilibrium choice of the L type must provide

him with total profits which are greater than the ‘accommodation profit’, i.e. the total

profit he may earn by making zero investment, playing the monopoly quantity in the

first period and by playing the duopoly quantity in the second, given entry. The type

L total profit of accommodation is given by

V A
L = VL(0,mL, 1) = ML +DL (10)

whereas the equilibrium choice (eL, qL) must satisfy the ‘participation condition’

VL(eL, qL, 0) ≥ V A
L , (11)

which is equivalent to ΠL(qL)− eL ≥ DL.13

In order to avoid the trivial case where the L type separates by simply choosing

its monopoly quantity, we must assume that the high cost incumbent has an incentive

to mimic the low cost one, i.e. that type H prefers to behave like type L, if this allows

him to avoid entry. Therefore, we assume that the following ‘mimicking condition’

holds throughout the paper:

VH(0,mL, 0) > V A
H . (12)

13Since the L type profit does not depend on e, for ease of notation, we set ΠL(q) = ΠL(e, q).
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It is not difficult to see that an incumbent strategy with (eH , qH) = (eA,mH(eA))

and (eL, qL) satisfying (9) and (11) supports a separating equilibrium. Indeed, one

can take the system of beliefs which assign to the high cost type any choice different

from (eL, qL), i.e. β̂(e, q) = 1 for any (e, q) 6= (eL, qL) and 0 otherwise, and the

entrant strategy y(e, q) = 1 for any (e, q) 6= (eL, qL) and 0 otherwise. This profile of

strategies and the given system of beliefs satisfy Definition 1.14

As it is well known, the freedom in choosing off equilibrium beliefs gives rise

to a multiplicity of equilibria. Indeed, the L type can be induced to choose any

pair (eL, qL) satisfying (9) and (11), by choosing ad hoc off equilibrium beliefs which

trigger entry in the case a deviation is observed. To refine the set of equilibria

we apply the intuitive criterion by using Fact 1. It turns out that there is a unique

intuitive separating equilibrium where the low cost incumbent is able to signal himself

by producing in excess of the monopoly level and setting investment to zero. In order

to formally prove the above statement, let us derive an intermediate result which

characterizes incumbent strategies supporting intuitive separating equilibria.

Lemma 1. An incumbent strategy, (et, qt) with t = H,L, supports an intuitive

separating equilibrium if and only if (eH , qH) = (eA,mH(eA)) and (eL, qL) is a solution

to the following maximization problem

max
e,q

ΠL(q)− e

subject to ΠH(e, q)− e+MH(e) ≤ V A
H (13)

ΠL(q)− e ≥ DL (14)

The proof of Lemma 1 is in Appendix 1. It can be noticed that, if the H type has

no incentive to mimic type L, i.e. if (12) does not hold, then (0,mL) trivially satisfies

the constraint (13) (and (14)) and maximizes the single period profit in Lemma 1.

14Indeed, β̂(e, q) fulfils Bayes rule, given the profile of strategies. The entrant strategy is optimal

since expected profits are negative only at (eL, qL) and y(e, q) = 0 only at (e, q) = (eL, qL). The H

type choice is optimal because of (7) and (9); the L type choice is optimal since any deviation from

(eL, qL) triggers the entry of firm 2 and lowers incumbent profits.
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As a result, (eL, qL) = (0,mL) supports the unique intuitive separating equilibrium.15

A unique intuitive separating equilibrium also exists under assumption (12) and is

characterized by the following proposition, which is proved in Appendix 1.

Proposition 1. In the entry model with observable investment, there exists a unique

separating equilibrium satisfying the intuitive criterion. The equilibrium is supported

by the incumbent strategy (eH , qH) = (eA,mH(eA)) and (eL, qL) = (0, q∗), where q∗ is

implicitly defined by the equation

VH(0, q∗, 0) = V A
H (15)

and q∗ > mL.

Due to the mimicking condition (12), the intuitive separating equilibrium quantity

q∗ will exceed the level of monopoly, as depicted in Figure 2. In equilibrium, the high

cost incumbent chooses the optimal level of investment accommodating entry, which

is the same as under complete information, and fixes his monopoly price. The low

cost incumbent makes zero investment, he chooses a price below his monopoly price

and he keeps the entrant out of the industry. The limit price, however, does not deter

entry, because entry does not take place exactly when it is unprofitable.

3.2 Pooling equilibrium

A pooling equilibrium is a PBE where all types of incumbent send the same signals

or, equivalently, where (eL, qL) = (eH , qH) = (eP , qP ). Since the entrant does not

learn any new piece of information from the observation of the equilibrium choice,

the beliefs about the incumbent type are unmodified and are equal to the prior prob-

abilities, i.e. β̂(eP , qP ) = β. If the entrant’s expected profits at prior beliefs were

positive, a pooling strategy would fail to deter entry of firm 2, therefore a pooling

strategy could not be an equilibrium, because any type of incumbent would rather

15By uniqueness we mean that the same incumbent strategy is shared by all the intuitive separating

equilibria.
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Figure 2: Intuitive separating equilibrium quantity.

choose his monopoly quantity in the first period and then accommodate entry. A

necessary condition for a pooling equilibrium is that, at prior beliefs, the expected

profits of the entrant are not strictly positive. Assumptions A.4 and A.5 imply that a

pooling equilibrium can only exist when the incumbent makes positive investments.

Specifically, the equilibrium level of investment can not be lower than the zero ex-

pected profit level defined by (3), otherwise firm 2 would not be induced to stay

out, thus eP ≥ e0. Furthermore, in a pooling equilibrium, the incumbent strategy,

(eP , qP ), must allow each type to obtain at least his respective ‘reservation payoff’,

which means that the following ‘participation conditions’ must hold:

VH(eP , qP , 0) ≥ V A
H (16)

VL(eP , qP , 0) ≥ V A
L (17)

The following lemma, which is proved in Appendix 1, provides a characterization of

pooling equilibria.

Lemma 2. The incumbent strategy (et, qt) = (eP , qP ), with t = H,L, supports a

pooling equilibrium if and only if (eP , qP ) satisfies (16), (17) and eP ≥ e0, where e0
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is the zero expected profit level of investment defined by (3).

The existence of a pooling equilibrium is not guaranteed in the model with ob-

servable investment. Indeed, e0 may be so high that none of the incumbent types

would find it worthwhile to invest. For instance, if e0 was greater than the maximum

gain from entry deterrence, ML−DL, the L type had no incentive to play the pooling

strategy. Similarly, it would not be worthwhile for type H to invest if the savings in

the costs of production were less than the expenditure e0. In such cases no pooling

equilibrium exists.

Conditions ensuring the existence of a pooling equilibrium require that the gains

from entry deterrence for both incumbent types exceed investment expenditures e0.

An example of sufficient conditions is ML−DL ≥ e0 and VH(e0,mL, 0) ≥ V A
H . Under

the above conditions there is a multiplicity of pooling equilibria and, specifically, there

exists a pooling equilibrium supported by the incumbent strategy (eP , qP ) = (e0,mL),

i.e. the equilibrium where both types play the minimum level of investment achieving

entry deterrence (zero expected profits to the entrant) and the monopoly quantity of

the low cost incumbent.16

It is interesting to notice that, in a pooling equilibrium, investment has a role

as a commitment variable vis à vis the entry decision. It is true that both eP and

qP act as signals, although they provide no new piece of information about the cost

type of the incumbent. It is the observed level of investment above e0 which modifies

the perceived profitability of entry of firm 2 and thus deters entry. Matched with

pricing policy, investment gains quite a strong commitment value when compared

to equilibrium investment arising in the model with complete information on θi. In

order to be supported, however, the pooling equilibrium requires type L to send a

completely dissipative signal in terms of investment expenditures. Is this dissipation

plausible?

Provided that a pooling equilibrium exists, in order to be a plausible outcome

of the game it must satisfy the intuitive criterion. By Fact 1, a pooling equilibrium

supported by the incumbent strategy (eP , qP ) is intuitive if there exists no deviation

16This claim is easily proved by using Lemma 2.
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(ẽ, q̃) such that

VH(ẽ, q̃, 0) < VH(eP , qP , 0)

VL(ẽ, q̃, 0) > VL(eP , qP , 0)

Indeed, if such a deviation existed then (eP , qP ) could be an optimal choice for type

L only if β̂(ẽ, q̃) = 1, which is an unintuitive belief. It turns out that no pooling

equilibrium passes the test of the intuitive criterion.

Proposition 2. In the entry game with observable investment there are no pooling

equilibria satisfying the intuitive criterion.

The proof of Proposition 2 is in Appendix 1. The purely dissipative nature of

investment expenses by type L explains the collapse of the pooling under the intuitive

criterion. By cutting down investment to zero and increasing quantities above the

level stipulated in the candidate pooling equilibrium, an incumbent of type L can

convince the entrant that such a low price in the deviation with no investment can

not be profitable by incumbents of types H, whereas it allows type L to save on

the dissipation of useless expenses. More generally, it is the fact that investment

has a different impact across types, and so can act as a signal, to make the pooling

equilibrium impossible to survive the application of the intuitive criterion in the

benchmark model.17

The main conclusion of section 3 follows from Proposition 1 and 2. The analysis

of the model with observable investment provides an unambiguous prediction of the

outcome of the game, which is the unique intuitive separating equilibrium character-

ized in Proposition 1. The high cost incumbent accommodates entry, while the low

cost incumbent leaves the potential entrant out of the industry by playing a price

below the monopoly level. Limit pricing, however, does not limit entry, since entry

does not take place exactly when it is unprofitable.

17It is interesting to notice that the intuitive criterion does not rule out, in general, pooling

equilibria either in the original formulation by Milgrom and Roberts (1982) or in the model with

advertising by Bagwell and Ramey (1987).
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4 Unobservable investment

This section deals with the case when long run investment is not observable by the

entrant. Since investment is not publicly observable it can not act directly either

as a signal or as a commitment variable for entry deterrence objectives. However

investment may affect the cost of signaling and, provided some information about the

level undertaken by the incumbent is contained in the pricing strategy, a commitment

value for entry deterrence purposes can emerge in equilibrium.

There are two main differences with respect to the benchmark model of section

3, which are worth noticing. First, there is a piece of information which is no more

available to the entrant. Without any information about investment, the entrant can

not determine the cost of signaling of the high cost incumbent and in addition, she

would not be able to make an ex ante assessment of entry profitability. Therefore, the

entrant now strives for making inferences not only about the incumbent’s type, but

also about the incumbent’s action. Second, the number of signals passes from two to

one. The price is the only signal left which may allow the entrant to receive infor-

mation relevant for her entry decision. Pricing policy may now convey information

not only about cost type, but also about the level of investment undertaken by the

high cost incumbent. Hence, the high cost incumbent may have incentives to convey

information about the level of investment undertaken being enough to make entry

unprofitable. The analysis of the present section, indeed, will show that the solution

to the entry problem depends on the information content that the price signal is able

to convey in equilibrium.

Let us start the analysis by describing strategies and solution concepts of our

model. Incumbent strategies are the same as in section 3, i.e. (et, qt) with t = H,L,

although the choice of e is not publicly observable. The entrant only observes the

choice of q and makes inferences about the cost type and about the level of investment

undertaken by the high cost incumbent.18 Formally, we denote by β̂(q) the belief,

i.e. the posterior probability that the incumbent has high costs, and by ê(q) the

18Since zero investment is a dominant choice for the low cost incumbent, the inference about the

L type investment is trivially zero.
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conjecture on investment, i.e. the estimate of the level of the H type investment made

by the entrant after the quantity q is observed. The entrant strategy is a function

associating a binary entry decision with first period quantities, i.e. y(q) ∈ {0, 1}. The

incumbent’s payoff is given by (1). The entrant’s payoff in the case of entry is given

by her expected profits, i.e. β̂(q)D2H(ê(q)) + (1 − β̂(q))D2L, and is zero otherwise.

The definition of Perfect Bayesian equilibrium is modified as follows.

Definition 2. A profile of strategies (et, qt) and y(q), with t = H,L, is a PBE of the

signaling game with unobservable investment if there exists a system of beliefs β̂(q)

and a system of conjectures ê(q), such that the following conditions are satisfied:

1. The incumbent’s strategy is optimal, i.e. for t = H,L

(et, qt) = argmax Vt(e, q, y(q))

2. The entrant’s strategy is optimal, i.e. y(q) = 1 if and only if

β̂(q)D2H(ê(q)) + (1− β̂(q))D2L > 0

3. The beliefs are consistent with Bayes rule, whenever possible, and the conjec-

tures on investment are consistent with the H type choice, i.e. ê(qH) = eH .

We notice that, by Definition 2.3, the entrant’s inference on type and investment

must be consistent with the incumbent’s strategy in equilibrium. Beliefs and in-

vestment conjectures off the equilibrium path are not restricted, however, and this

freedom of choice is the source of the multiplicity of equilibria.

A tailored version of the intuitive criterion will be applied to deal with the mul-

tiplicity of equilibria in our signaling model. To carry out the analysis, however, we

have to specify the way investment conjectures are made by the entrant and this

requires a closer look at the optimizing choices of the high cost incumbent.

To facilitate the analysis of our model we shall introduce two auxiliary mathe-

matical tools that will be used throughout this section. Let us define a hypothetical

investment function which provides the optimal level of investment chosen by the

high cost incumbent at a given quantity and under the hypothesis that entry does
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not take place. The investment function, denoted by φ(q), is obtained as the solution

to the problem of maximizing the H type total profit function at q and given no entry,

i.e.

φ(q) = argmaxe VH(e, q, 0) = ΠH(e, q)− e+MH(e). (18)

Under our assumptions on technology, the maximization problem defining the invest-

ment function has a unique solution for any q ∈ [mH , qc], where qc is the competitive

market quantity. The (maximum) value function of the maximization problem,

U(q) = VH(φ(q), q, 0), (19)

provides the maximum total profit of type H at the quantity q under the hypothesis

that entry does not take place and the incumbent chooses investment optimally. The

functions φ(q) and U(q) are well defined and continuous in the interval [mH , qc];

φ(q) is strictly increasing and U(q) is a strictly quasi-concave function with a global

maximum at m̄, the monopoly quantity of an unthreatened H type monopolist.19

The main characteristics of the value function are illustrated in Figure 3, where the

graph of U(q) is plotted against the graphs of the total profit functions of both types

of incumbent in the absence of investment and without entry.

The Intuitive Criterion is modified to fit our model by using the functions defined

by (18) and (19). In facing a deviation from a candidate equilibrium the entrant

is forced to think both about which type originated the deviation and what level

of investment corresponds to that deviation. By Definition 2 it is clear that, if the

deviation is ascribed to type L, then the associated investment behind that deviation

must be zero. If the deviation is ascribed to type H, then the associated investment

must be given by ê(q) = φ(q). Accordingly, the value function U(q) will provide the

highest payoff that the H type incumbent may obtain from the deviation.

The modified version of the Intuitive Criterion is a straightforward adaptation of

the definition given in section 3 using the above assumption on investment conjec-

tures. Let V̂t denote the payoff of type t in a given equilibrium. A deviation from

19In the absence of any entry threat, the high cost incumbent chooses a level of investment which

maximizes total profits, VH(e,mH(e), 0). If investment is profitable, the solution is a strictly positive

level of investment, ē, and the monopoly quantity is m̄ = mH(ē). The properties of φ(q) and U(q)

are proved in Appendix 2, Lemma A2.0.
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Figure 3: Total profits VH , VL and the value function U(q)

the equilibrium choice, q̃ 6= qt, is equilibrium dominated for type t if, when entry does

not take place and the incumbent makes his best investment choice given q̃, type t is

worse off than in equilibrium. The main difference with respect to section 3 is that

the total profit from deviation of the H type is the maximum profit given by the value

function U(q̃) = VH(φ(q̃), q̃, 0). The definition of the Intuitive Criterion is the same

as in section 3, with the modified notion of equilibrium domination, and the intuitive

equilibria can be characterized by a simple condition.

Fact 2. A PBE, (et, qt) and y(q), with t = H,L, satisfies the intuitive criterion if

and only if there exists no deviation q̃ 6= qt such that

U(q̃) < VH(eH , qH , y(qH)) and

VL(0, q̃, 0) > VL(0, qL, y(qL)).

As in Fact 1, the Intuitive Criterion requires that, under the best entry conditions

that the deviating firm may face, there is no deviation which is equilibrium dominated

for the H type and strictly preferred by the L type to the equilibrium choice.
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The two cases of pure strategies PBE, namely separating equilibria and pooling

equilibria, will be analysed in the following subsections.

4.1 Separating equilibrium

In a separating equilibrium different types choose different quantities and information

is revealed to the entrant. Therefore, Firm 2 enters when the incumbent has high

costs and remains out when Firm 1 is of type L. The H type will choose a monopoly

quantity in the first period and accommodate entry in the second. The choice of the

H type in a separating equilibrium, thus, is the same as that seen in Section 3, i.e.

eH = eA and qH = mH(eA).

The high cost incumbent makes zero investment, because by assumption A.1,

investment is purely dissipative. In the choice of the quantity qL, the L type takes into

account the maximum profits that the H type may earn if he chooses qL and avoids

entry, which is given by the value function U(qL) = VH(φ(qL), qL, 0). Therefore, the

choice of qL must satisfy an incentive compatibility condition given by

U(qL) ≤ V A
H . (20)

The inequality (20) states that the maximum profit at qL of the high cost incumbent

when entry does not take place, can not exceed his profits of accommodation. With

respect to the analysis of section 3, the unobservability of investment makes the

incentive compatibility condition more severe, because it allows the H type to choose

investment optimally increasing profits at any given signal.

The choice of the quantity qL in a separating equilibrium must also satisfy the

participation condition of type L, that is

VL(0, qL, 0) ≥ V A
L . (21)

Notice that (21) is equivalent to ΠL(qL) ≥ DL.

In the model with unobservable investment, separating equilibria exist under stan-

dard conditions stated in (4) as it is shown below. The next result characterizes in-

cumbent strategies supporting separating equilibria satisfying the intuitive criterion.
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Figure 4: Intuitive separating equilibrium quantities q∗ and q∗∗

Lemma 3. The incumbent strategy (eH , qH) = (eA,mA) and (eL, qL) supports an

intuitive separating equilibrium if and only if eL = 0 and the quantity qL is a solution

to the following maximization problem:

max
q

ΠL(q)

subject to U(q) ≤ V A
H

ΠL(q) ≥ DL

According to Lemma 3, whose proof is in Appendix 2, the separating quantity

is characterized as the solution to the problem of maximizing first period profits of

the low cost incumbent subject to the incentive compatibility constraint (20) and the

participation constraint (21). By applying Lemma 3, it turns out that there exists a

unique intuitive separating equilibrium.

Proposition 3. In the entry model with unobservable investment, there exists a

unique separating equilibrium satisfying the intuitive criterion. This equilibrium is

supported by the incumbent strategy (eH , qH) = (eA,mA) and (eL, qL) = (0, q∗∗),

25



where q∗∗ is implicitly defined by the equation

U(q∗∗) = V A
H . (22)

Moreover, q∗∗ > q∗, where q∗ is the intuitive separating equilibrium quantity with

observable investment, defined by (15).

The proof is in Appendix 2. In the unique intuitive separating equilibrium, the

high cost incumbent accommodates entry, while the low cost one keeps the entrant

out by producing a greater quantity as compared to the case where investment is

observable. The equilibrium quantities under observable and under unobservable

investment, respectively q∗ and q∗∗, are shown in Figure 4.

The further distortion in the limit price has a simple economic interpretation.

Secrecy allows now the high cost incumbent to invest without revealing any informa-

tion about his cost type, reducing his cost of mimicking, as compared to the case of

observability, i.e. increasing the signaling cost to type L. The entrant is aware that,

now, any price signal may be cheaper for the H type, who has a stronger incentive to

mimic the low cost incumbent. As a result the ‘old’ limit price cannot be a credible

signal of the cost type and the entrant requires an even more distorted price signal

to achieve separation. Clearly, the more effective is the cost reducing technology, the

greater will be the distortion of the limit price in equilibrium.

Finally, as we also noticed in section 3, the limit price in a separating equilibrium

does not deter entry, which takes place exactly when it is profitable.

4.2 Pooling equilibrium

In a pooling equilibrium, both types of incumbent choose the same quantity, qP , and

the potential entrant stays out of the market. The entrant does not learn anything

about the type of incumbent, but her conjecture ê(qP ) is that the high cost type

has made at least the ‘zero expected profit’ level of investment e0, i.e. ê(qP ) ≥ e0.

Indeed, any other conjecture would induce firm 2 to enter according to assumption

A.5. The investment choice of the H type in a pooling equilibrium, eH , must be
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optimal and since entry does not take place, it must be given by the investment

function, i.e. eH = φ(qP ). By Definition 2.3, the entrant’s conjecture must be

correct, i.e. ê(qP ) = eH , therefore the pooling equilibrium quantity must satisfy the

condition φ(qP ) ≥ e0. In other words, the entrant stays out of the market if she

observes a quantity sufficiently large, and particularly, greater than the deterrence

quantity q0, implicitly defined by

φ(q0) = e0. (23)

Indeed, since φ(q) is strictly increasing, any quantity greater than q0 reveals to the

entrant that the high cost incumbent has made at least the zero expected profit level

of investment.

The following result, which is proved in Appendix 2, characterizes the incumbent

strategy in pooling equilibria.

Lemma 4. An incumbent strategy (eH , qH), (eL, qL), with qH = qL = qP and eL = 0

supports a pooling equilibrium if and only if

(i) U(qP ) ≥ V A
H

(ii) VL(0, qP , 0) ≥ V A
L

(iii) eH = φ(qP ) and eH ≥ e0.

Conditions (i) and (ii) of Lemma 4 are the participation conditions of the two

types of incumbent. The maximum profit function U(q) in condition (i) is due to the

fact that, under unobservability, the high cost incumbent in a pooling equilibrium

can choose investment optimally given the signal and given no entry.

It may be noticed that, by condition (i) of Lemma 4, the equilibrium quantity

cannot exceed the separating equilibrium level q∗∗ defined by (22), otherwise the H

type would make higher profits by accommodating entry. Condition (iii), on the other

hand, sets a lower bound to qP , which is the deterrence quantity q0. Therefore, the

equilibrium quantity is to be found between q0 and q∗∗, and no pooling equilibrium

can exist if the deterrence quantity is too high, i.e. if q0 > q∗∗.
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The next result shows that, if q0 < q∗∗, there exist pooling equilibria satisfying

the intuitive criterion and, specifically, there is a unique intuitive pooling equilibrium

which is Pareto undominated according to the incumbent’s interim payoff, i.e. such

that none of the types of incumbent can be made better off in any other intuitive

pooling equilibrium.

Proposition 4. Let q0 < q∗∗, where q0 is the deterrence quantity defined by (23)

and q∗∗ is given by (22).

(i) Any intuitive pooling equilibrium is supported by a quantity qP such that q0 ≤
qP ≤ q∗∗, if q0 > mL, and mL ≤ qP ≤ q∗∗, if q0 ≤ mL.

(ii) The quantities qP = q0, if q0 > mL, and qP = mL, if q0 ≤ mL, support

the unique intuitive pooling equilibrium which is Pareto undominated, by other

intuitive pooling equilibria, according to the incumbent’s interim payoff.

The proof is in Appendix 2.20 Proposition 4 can be illustrated by means of Figure

5. Two cases are depicted, the case where the deterrence quantity is smaller than

the low cost monopoly quantity, i.e. q′0 < mL, and the the case where the deterrence

quantity is larger, i.e. q0 > mL. In the first case, consider the pooling equilibrium

supported by qP = q′0. The deviation q̃ = mL is equilibrium dominated for type H,

since U(q′0) > U(mL), and it is strictly preferred by type L since mL maximizes his

profits. Thus, according to Fact 2, the equilibrium supported by qP = q′0 does not

satisfy the Intuitive Criterion. In the second case depicted in Figure 5, the deterrence

quantity is q0 > mL. Take the pooling equilibrium supported by the quantity qP = q0.

Any deviation q̃ < q0 is not equilibrium dominated for type H, since U(q0) < U(q̃).

Moreover, any deviation q̃ > q0 is equilibrium dominated for both types of incumbent.

Therefore, qP = q0 satisfies the Intuitive Criterion according to Fact 2. Notice also

that, when the deterrence quantity is q′0, it is easily checked on Figure 5 that the

equilibrium supported by qP = mL satisfies the Intuitive Criterion, as stated by

20The result for q0 > mL requires an additional mild assumption stating that the low cost in-

cumbent profits are greater for quantities close to mL, rather than for quantities close to mH . This

assumption, together with the complete proof is in the appendix.
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Proposition 4. Finally, to see that the intuitive pooling equilibrium supported by q̂ is

Pareto undominated for the incumbent, it is sufficient to notice that both functions,

U(q) and VL(0, q, 0), are strictly decreasing for q ≥ mL and that intuitive pooling

equilibrium quantities must be greater than q̂, which in turns is greater than mL.

Proposition 3 and Proposition 4 provide us with two candidates for the solution to

the entry problem when investment is unobservable, a separating equilibrium and a

pooling equilibrium. Both equilibria are intuitive, but the pooling is Pareto superior

to the separating equilibrium, from the point of view of the incumbent, i.e. both

types of incumbent are better off in the pooling equilibrium.21 Since the outcome of

the intuitive pooling equilibrium characterized by Proposition 4 is strictly preferred

by both types of incumbent, it seems the most plausible solution to the entry problem

with unobservable investment.

21Indeed, since q̂ < q∗∗ we have U(q̂) > U(q∗∗) and VL(0, q̂, 0) > VL(0, q∗∗, 0). This result can

also be seen graphically by comparing incumbent’s payoff at q∗∗ and at q0 in Figure 5.
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The selection of the intuitive pooling equilibrium can also be justified on more for-

mal grounds by resorting to the notion of ‘defeated’ equilibrium proposed by Mailath,

Okuno-Fujiwara and Postlewaite (1993). This refinement places restrictions on off

equilibrium beliefs and, roughly speaking, relies on the following idea. A deviation

from an equilibrium, say E1, should be interpreted as a the signal that a different

equilibrium, say E2, was played, therefore the beliefs of the deviation from E1 should

be the equilibrium belief of E2. Let us apply this refinement to our model and, specif-

ically, to the deviation q̃ = q̂ from the separating equilibrium quantity q∗∗. By the

above argument, at the deviation =̃q̂ should by assigned the belief of the pooling

equilibrium quantity q̂, which is the prior belief β. However, if the off equilibrium

belief β̂(q̃) = β is assigned to the deviation q̃ = q̂, the optimal choice of firm 2 is to

stay out of the market if q̂ is observed, so that the choice of q∗∗ by the L type is not

optimal any more. Thus, the separating equilibrium collapses and it turns out to be

a ‘defeated’ equilibrium. By applying the analysis of Mailath, Okuno-Fujiwara and

Postlewaite (1993), it can also be shown that, the only ‘undefeated’ equilibrium in the

model with unobservable investment is the intuitive pooling equilibrium characterized

in Proposition 4.

In the presence of unobservable long run investments affecting the cost of signaling,

we expect to observe entry deterrence through a limit price which is not as low as it

would be if the price were to reveal with certainty that the incumbent has low costs.

In equilibrium, the ‘pooling limit price’ does not convey any information about the

cost type, but it conveys information about investment behaviour of the high cost

incumbent. By observing the equilibrium price the potential entrant learns that the

H type has made investments so as to make expected profits of firm 2 not positive

and decides to stay out of the market. Therefore, we conclude that limit pricing is

an effective strategy to deter entry, which does not occur even in those cases where

entry is profitable.
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5 Final remarks

In this paper we revisited what we think is an important aspect of the theory of limit

pricing: if and how public short run decisions by incumbents are intertwined with

long run irreversible secret investment choices made in order to affect the potential

entrant’s decision. To this aim we constructed a signaling game featuring a standard

entry model à la Milgrom and Roberts (1982), with private information about costs,

where the incumbent can attempt to forestall entry by his pricing policy and by

investing in a cost reducing activity, which is not directly observable by a potential

entrant. As in the standard model, it is assumed that entry is profitable for the

potential entrant only in the presence of a high cost incumbent, regardless of the

amount of investment undertaken. This does not rule out the existence of a level of

investment by the high cost incumbent such that the expected profit from entry are

negative, in the absence of information about types.

The key question addressed is the following: provided that such an ‘entry de-

terrence level of investment’ exists, can limit pricing deter entry? Moreover, does

observability of investment make any difference for the effects of pricing policy? Our

major result is that, limit pricing deters entry when investment is unobservable and

does not when investment is observable. In particular, the outcome of the signaling

game with observable investment has been shown to be an intuitive separating equi-

librium, where the limit price signals to the potential entrant that the incumbent has

low costs. The limit price, thus, does not limit entry, because entry does not take

place exactly when entry is unprofitable. When investment is unobservable, the most

plausible outcome of the signaling game is an intuitive (and Pareto undominated)

pooling equilibrium. Any type of incumbent chooses a limit price which does not

reveal his cost to the entrant, but credibly conveys the message that investment is

above the zero expected profits threshold. As a result, the potential entrant never

enters into the market and limit price limits entry when investment is unobservable.

The basic intuition for these results can be summarised as follows. When in-

vestment is observable pooling is quite expensive for the low cost incumbent, who is

required to make purely dissipative investments. Therefore, separation is preferred

to pooling, from the point of view of the low cost incumbent. When investment is
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unobservable, in contrast, separation requires a greater price distortion, since the

high cost incumbent can mimic the low cost one more easily, thus separation is more

expensive. Moreover, pooling is cheaper for the low cost incumbent, since no dis-

sipative investment is required. Therefore, with unobservable investment pooling is

preferred to separation, not only by the high cost, but also by the low cost incumbent

and the pooling equilibrium turns out to be the more plausible outcome.

It must be noticed that in our signaling game with unobservable investment, there

are two equilibria surviving the Intuitive Criterion, respectively a pooling and a sep-

arating equilibrium. The intuitive pooling equilibrium was selected because it Pareto

dominates, from the point of view of the incumbent, the intuitive separating one

and also because it satisfies another refinement criterion proposed in the literature.

Although we deem the pooling equilibrium the most plausible outcome, we recognize

that the thorny issue of selecting among equilibria of a signaling model, with endoge-

nous and unobservable actions affecting the costs of signaling, is a more fundamental

problem. A detailed analysis involving the application of more stringent selection

criteria is a natural development of the current investigation and is left for future

work.

We conclude with a few considerations about implications of our analysis for an-

titrust policies. This, as it is well known, is a highly debated issue. However, some

implications of the above results can be useful.22 The recent literature on limit pricing

was born with the explicit message that limit pricing does not limit entry (Milgrom

and Roberts, 1980). Although this view was subsequently softened, the interpretation

of signaling models as providing a foundation of the neutrality for entry deterrence

of the distortions associated with private information and the associated view that

limit pricing should not be part of the antitrust analysis, can be considered common

wisdom in many textbooks and overviews and somewhat influential. Our contribu-

tion, here, was to show that when the potential entrant is uncertain about the cost of

the incumbent firm, a limit price may be a signal that the incumbent has low cost, as

22Strictly speaking, the implications are inherently related to which equilibrium is predicted as the

outcome of the game. Therefore the importance of the selection criterion mentioned above cannot

be understated. Moreover, we did not include any welfare analysis including consumer surplus.
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shown by Milgrom and Roberts, but it may as well be a signal that the incumbent is

raising a strategic entry barrier through secret actions or investments. In this respect,

the analysis of our model preliminary suggests us to lean less towards a ”bright line”,

rule-based, approach to antitrust jurisdiction and to lean more towards a standard

case-based approach supported by investigation, dealing with secret investment. This

point also is a more proper matter for future work.

Finally, it is worth noticing that the model considered here is an example of a

signaling game where both, a hidden characteristic and a hidden action, are present

and where the hidden action (effort) affects the cost of the signal, as well as the payoff

of the receiver. To our knowledge this class of models has not received great attention

and is not been the object of a systematic investigation. Our work provides a first

analysis and suggests that in this class of signaling games a pooling equilibrium with

a signal conveying information on effort, but not on the hidden characteristic, seems

to be a more plausible outcome than that of a separating equilibrium.
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Appendix 1

Sketch of the proof of Fact 1.

Let the system of beliefs β̂(e, q) satisfy the intuitive criterion. We show that there

is no deviation (ẽ, q̃) from the equilibrium strategy satisfying (5) and (6). Indeed,

if such a deviation exists then β̂(ẽ, q̃) = 1 and, according to Definition 1.2, firm 2

does not enter at (ẽ, q̃). Thus, the system of beliefs cannot support the equilibrium

because the equilibrium choice (eL, qL) is not optimal, given (6). This contradiction

completes the first part of the proof.

To show the converse, let β̂(e, q) support a PBE and suppose there is no deviation

such that (5) and (6) hold. We have to show that there exists an intuitive system

of beliefs satisfying the PBE. This system of beliefs is built by modifying β̂(e, q)

whenever is needed. Since the deviations equilibrium dominated by H and strictly

preferred by L are ruled out by the hypothesis, let us take a deviation from equilib-

rium, (ẽ, q̃) 6= (et, qt),which is equilibrium dominated for L and strictly preferred by

H, i.e. such that

VH(ẽ, q̃, 0) > VH(eH , qH , y(eH , qH)).

Since (eH , qH) is an equilibrium choice it must be optimal, it thus follows that

VH(eH , qH , y(eH , qH)) ≥ VH(ẽ, q̃, y(ẽ, q̃)). Therefore, by the above inequalities it must

be true that y(ẽ, q̃) 6= 0, hence y(ẽ, q̃) = 1. Since firm 2 enters, according to Defini-

tion 1.2, we must have β̂(ẽ, q̃) > 0, and the initial system of beliefs can be possibly

modified at (ẽ, q̃) to fulfil the intuitive criterion, i.e. by choosing the modified belief

β̂′(ẽ, q̃) = 1. This completes the proof.

Q.E.D.

A preliminary result is needed to prove Lemma 1.

Lemma A1.1 An incumbent strategy supports a separating equilibrium if and only

if (eH , qH) = (eA,mH(eA)) and (eL, qL) satisfies (9) and (11).

Proof of Lemma A1.1

Let the incumbent strategy be (eH , qH) = (eA,mH(eA)) and (eL, qL) satisfying (9)

and (11). We have to show that it supports a separating equilibrium. Take the
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beliefs which assign to the H type any choice different from (eL, qL), i.e. β̂(e, q) = 1

for any (e, q) 6= (eL, qL) and β̂(e, q) = 0 for (e, q) = (eL, qL). These beliefs obey the

Bayes rule. Given these beliefs, firm 2 expected profits are strictly positive except

when (e, q) = (eL, qL), thus the entrant strategy, y(e, q) = 0 if (e, q) = (eL, qL) and 1

otherwise, satisfies Definition 1.2. Let us show that given these beliefs the incumbent

strategy is optimal. As for type H we have VH(eA,mH(eA), 1) ≥ VH(e, q, y(e, q)) for

all (e, q). Indeed, for (e, q) 6= (eL, qL), we have y(e, q) = 1 and the inequality holds

by definition of eA; moreover, for (e, q) = (eL, qL) the above inequality is satisfied

because of (9). As for type L, we have VL(eL, qL, 0) ≥ VL(e, q, y(e, q)) for all (e, q).

Indeed, for (e, q) 6= (eL, qL) firm 2 enters, then y(e, q) = 1 and the inequality holds

because of (11) and definition of V A
L ; if (e, q) = (eL, qL) firm 2 does not enter and the

above inequality holds as an equality. This completes the first part of the proof.

To show the converse let the incumbent strategy (eH , qH) = (eA,mH(eA)) and

(eL, qL) support a separating equilibrium. We have to show that (eL, qL) satisfies (9)

and (11). Let us suppose, to the contrary, that (eL, qL) violates (11); then (eL, qL)

cannot be an optimal choice for L because (0,mL) gives higher profits even when

Firm 2 enters. Similarly, if (eL, qL) violates (9), then (eA,mH(eA)) cannot be an

optimal choice for type H, since (eL, qL) induces no entry and give higher profits.

These contradictions complete the proof.

Q.E.D.

Proof of Lemma 1.

Let us suppose that (e∗, q∗) is a solution to the maximization problem. We have to

show that the incumbent strategy, (eH , qH) = (eA,mH(eA)) and (eL, qL) = (e∗, q∗),

supports an intuitive separating equilibrium. First, notice that (e∗, q∗) satisfies (9)

and (11) since these inequalities are equivalent to (13) and (14) respectively. There-

fore, by Lemma A1.1, (eH , qH) = (eA,mH(eA)) and (eL, qL) = (e∗, q∗), supports a

separating equilibrium. To show that the equilibrium is intuitive, let us suppose

that there exists a deviation (ẽ, q̃) 6= (e∗, q∗), which is equilibrium dominated for H,

i.e. VH(ẽ, q̃, 0) < VH(eA,mH(eA), 1), but not for L, i.e. VL(ẽ, q̃, 0) > VL(e∗, q∗, 0).

Therefore, (ẽ, q̃) satisfies (13), but from the last inequality ΠL(q̃)− ẽ > ΠL(q∗)− e∗.
Therefore, (e∗, q∗) is not a solution to the maximization problem contrary to the
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assumption. This contradiction completes the first part of the proof.

To show the converse, let us suppose that the incumbent strategy, (eH , qH) =

(eA,mH(eA)) and (eL, qL) = (e∗, q∗), supports an intuitive separating equilibrium.

We have to show that (e∗, q∗) is a solution to the maximization problem. Let us

proceed by contradiction and suppose that (e∗, q∗) is not a solution, i.e. there exists

a pair (e′, q′) satisfying (13) and (14) such that ΠL(q′)− e′ > ΠL(q∗)− e∗. From the

last inequality it immediately follows that VL(e′, q′, 0) > VL(e∗, q∗, 0). If the constraint

(13) is not binding, so that VH(e′, q′, 0) < V A
H , the deviation (e′, q′) violates Fact 1 and

(eL, qL) = (e∗, q∗) cannot support an intuitive separating equilibrium, contrary to the

assumption. Therefore, (13) must be binding so that VH(e′, q′, 0) = V A
H . Then, by

continuity of the profit functions ΠH and ΠL, one can find in a small neighbourhood

of q′ a quantity q′′ such that VL(e′, q′′, 0) > VL(e∗, q∗, 0) and VH(e′, q′′, 0) < V A
H , so

that the deviation (e′, q′′) violates Fact 1 and the equilibrium cannot be intuitive

contrary to the assumption. Therefore, we have shown that (e∗, q∗) is a solution to

the maximization problem and this completes the proof of the lemma.

Q.E.D.

In order to prove Proposition 1, a preliminary results is needed.

Lemma A1.2 There exists a unique solution to equation (15), i.e. there exists q∗

such that

ΠH(0, q∗) +MH = V A
H .

Moreover, q∗ > mL.

Proof of Lemma A1.2.

First of all we know that VH(0, q, 0) = ΠH(0, q) +MH is continuous in q. By assump-

tion (12), we have VH(0,mL, 0) > V A
H . Moreover, let qc > mL be the competitive

market quantity, i.e. a finite quantity such that ΠL(qc) = 0. Then ΠH(0, qc) < 0

and VH(0, qc, 0) < MH < V A
H , since V A

H ≥ MH + DH . Thus by continuity of VH ,

equation (15) has at least a solution in the interval ]mL, qc[. Finally, uniqueness of

the solution is established by showing that VH(0, q, 0), or equivalently ΠH(0, q), is

strictly decreasing for q in the interval ]mL, qc[. This is easily seen by noting that the
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profit function is strictly quasi concave and that its maximum is mH < mL. This

completes the proof of Lemma A1.2.

Q.E.D.

Proof of Proposition 1.

By Lemma A1.2, q∗ exists and q∗ > mL. By Lemma 1, we have to show that (0, q∗) is

a solution of the maximization problem, i.e. ΠL(q∗) > ΠL(q)−e for all (e, q) 6= (0, q∗)

satisfying (13) and (14). Let us first consider the maximization problem with only the

constraint (13) and separately consider the two cases (e, q) with q > q∗ and (e, q) with

q < q∗. If q > q∗ then q > mL and the profit function ΠL(q) is strictly decreasing.

Therefore, we have ΠL(q∗) > ΠL(q) so that ΠL(q∗) > ΠL(q) − e for all (e, q) with

q > q∗.

Let us turn to the second case, i.e. (e, q) satisfying (13) with q < q∗. By definition

of q∗, i.e. by equation (15), the constraint (13) can be rewritten as follows

ΠH(e, q)− e+MH(e) ≤ ΠH(0, q∗) +MH

or

ΠH(0, q∗) + (MH −MH(e)) ≥ ΠH(e, q)− e.

Since monopoly profits are decreasing in costs, MH −MH(e) ≤ 0 for e ≥ 0, therefore

if (e, q) satisfies (13) it also satisfies

ΠH(0, q∗) ≥ ΠH(e, q)− e

or

[p(q∗)− θH ]q∗ ≥ [p(q)− θH(e)]q − e. (24)

Moreover, since q < q∗ and θH ≥ θH(e), it must be true that

(θH − θL)q∗ ≥ (θH(e)− θL)q (25)

Adding term by term the inequalities (24) and (25) yields

(p(q∗)− θL)q∗ > (p(q)− θL)q − e

or ΠL(q∗) > ΠL(q)− e for all (e, q) satisfying (13) with q < q∗.
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In order to complete the proof we have to show that (0, q∗) also satisfies (14).

Notice that, by definition of q∗, we have

ΠH(0, q∗) +MH = MH(eA)− eA +DH(eA) (26)

By definition of V A
H it must hold

MH(eA)− eA +DH(eA) ≥MH +DH (27)

Thus, (26) and (27) imply ΠH(0, q∗) ≥ DH and after simple manipulations

DL −DH ≥ DL − ΠH(0, q∗) (28)

Next, let us consider

ΠL(q∗)− ΠH(0, q∗) = (θH − θL)q∗

> (θH − θL)mL

= ML − ΠH(0,mL)

> ML −MH (29)

where the first inequality follows from q∗ > mL and the last inequality from MH >

ΠH(0,mL). By assumption (4) for e = 0, we have ML−MH ≥ DL−DH so that from

(28) and (29) it follows

ΠL(q∗)− ΠH(0, q∗) > DL − ΠH(0, q∗)

and finally ΠL(q∗) > DL. This completes the proof of Proposition 1.

Q.E.D.

Proof of Lemma 2

Let (eP , qP ) satisfy (16) and (17) with eP ≥ e0. We have to show that it supports

a pooling equilibrium. Let us take the beliefs β̂(e, q) = β if (e, q) = (eP , qP ) and

1 otherwise. The beliefs are consistent with Bayes rule, Definition 1.3. Given the

beliefs, take the entrant strategy y(e, q) = 0 if (e, q) = (eP , qP ) and 1 otherwise.

The incumbent strategy is optimal for type H. In fact, if (e, q) 6= (eP , qP ) then
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y(e, q) = 1 and, by definition of V A
H , we have V A

H ≥ VH(e, q, y(e, q)) and finally, by

(16), VH(eP , qP , 0) ≥ VH(e, q, y(e, q)). With a similar argument it is easily shown

that (eP , qP ) is optimal for type L, so that the incumbent strategy satisfies Definition

1.1. Let us show that also the entrant strategy is optimal. If y(e, q) = 1, then

(e, q) 6= (eP , qP ) and β̂(e, q) = 1, thus the entrant expected profits are strictly positive.

Viceversa, if at (e, q) the expected profits are strictly positive then (e, q) 6= (eP , qP ),

because β̂(eP , qP ) = β and eP ≥ e0 imply, by assumption A.5 non positive expected

entrant profits. Thus, (e, q) 6= (eP , qP ) and by the definition of y we have y(e, q) = 1

and Definition 1.2 is satisfied.

Let us show the converse an suppose that (eH , qH) = (eL, qL) = (eP , qP ) supports

a pooling equilibrium. Then, by Definition 1.3, β̂(eP , qP ) = β and y(eP , qP ) = 0,

because if y(eP , qP ) = 1 the pooling strategy would not be an optimal strategy for

the incumbent. Therefore, the entrant expected profits must be non positive, which

means, by assumption A.5, that eP ≥ e0. Consider next the choice of L. Since

by Definition 1.1 VL(eP , qP , 0) ≥ VL(0,mL, y(0,mL)) and since VL(0,mL, 0) is the

highest total profit, it must be y(0,mL) = 1 thus VL(eP , qP , 0) ≥ VL(0,mL, 1) = V A
L

and (17) holds. Consider the choice of type H. Since by Definition 1.1 VH(eP , qP , 0) ≥
VH(eA,mH(eA), y(eA,mH(eA))) and since VH(ea,mH(eA), y(eA,mH(eA))) ≥ V A

H then

VH(eP , qP , 0) ≥ V A
H and (16) is satisfied. This completes the proof of Lemma 2.

Q.E.D.

Proof of Proposition 2.

Let (eP , qP ) be the pooling equilibrium strategy of the incumbent. We show that

there exists a deviation (0, q̃) which is equilibrium dominated for the H type and

strictly preferred to the equilibrium choice by the L type.

Let q̃ > mL be defined by the equality

ΠL(qP )− ΠL(q̃) = eP − ε (30)

where ε > 0 is arbitrarily close to zero so that eP − ε > 0. The quantity q̃ is well

defined and q̃ > max{mL, q
P}.23 Let us consider the deviation (0, q̃) and show that

23Let us consider the function of q, ΠL(q)− [ΠL(qP )− eP + ε] and notice that by (17) the term in
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it is strictly preferred to the equilibrium choice by the L type. Indeed,

VL(0, q̃, 0)− VL(eP , qP , 0) = ΠL(q̃) +ML − ΠL(qP ) + eP −ML

= ΠL(q̃)− ΠL(qP ) + eP

= ε− eP + eP = ε > 0

where we used (30).

Before showing that the same deviation is equilibrium dominated for the H type

let us derive the following result.

ΠH(eP , qP )− ΠH(0, q̃) − ΠL(qP ) + ΠL(q̃) =

= −θH(eP )qP + θH q̃ + θLq
P − θLq̃

= (θH − θL)(q̃ − qP ) + (θH − θH(eP ))qP > 0 (31)

where the second equality follows by adding and subtracting θHq
P and the last in-

equality from q̃ > qP . By (30) and (31) we have

ΠH(0, q̃)− ΠH(eP , qP ) + eP < ε

Subtracting to both sides MH(eP )−MH > 0 yields

ΠH(0, q̃) +MH − ΠH(eP , qP ) + eP −MH(eP ) < ε− [MH(eP )−MH ] (32)

where the LHS is the variation of type H total profits after the deviation (0, q̃), i.e.

VH(0, q̃, 0)− VH(eP , qP , 0) = ΠH(0, q̃) +MH − ΠH(eP , qP ) + eP −MH(eP ). (33)

(32) and (33) give

VH(0, q̃, 0)− VH(eP , qP , 0) < ε− [MH(eP )−MH ]

< 0

square brackets is strictly positive. Clearly, for q = mL the function is strictly positive and at the

perfectly competitive quantity, qc, the above function is strictly negative since ΠL(qc) = 0. Thus,

by continuity there exists q̃ satisfying (30) in the open interval ]mL, qc[. Moreover, since for q > mL

the profit function is strictly decreasing, q̃ is unique. Finally, if qP > mL, by inspection of (30) it is

easily seen that q̃ > qP .
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where the last inequality follows from the fact the the term in square brackets is

strictly positive and ε can be taken arbitrarily close to zero. Therefore, we have

shown that the deviation (0, q̃) is equilibrium dominated for the H type. Since for any

pooling equilibrium one can find a deviation which is equilibrium dominated for the H

type and strictly preferred by the L type, by Fact 1 there exists no pooling equilibrium

satisfying the intuitive criterion and this completes the proof of Proposition 2.

Q.E.D.

Appendix 2

This appendix contains the proofs of the results of Section 4. Let us first prove the

properties of the functions φ(q) and U(q) which are extensively used in the analysis

of this section.

Lemma A2.0. Let ē = argmaxe VH(e,mH(e), 0) and m̄ = mH(ē).

(i) The investment function φ(q) is strictly increasing and φ(m̄) = ē.

(ii) The value function U(q) has a global maximum at q = m̄, is strictly increasing

for q ≤ m̄ and strictly decreasing for q ≥ m̄.

Proof of Lemma A2.0.(i)

Let q′′ > q′, e′′ = φ(q′′) and e′ = φ(q′). We have to show that φ(q′′) > φ(q′). By

definition of e′ and e′′ we have

ΠH(e′, q′)− e′ +MH(e′) ≥ ΠH(e′′, q′)− e′′ +MH(e′′) (34)

ΠH(e′′, q′′)− e′′ +MH(e′′) ≥ ΠH(e′, q′′)− e′ +MH(e′)

Adding the two inequalities yields

ΠH(e′′, q′′) + ΠH(e′, q′) ≥ ΠH(e′, q′′) + ΠH(e′′, q′)

By rearranging we obtain

ΠH(e′′, q′′)− ΠH(e′, q′′) ≥ ΠH(e′′, q′)− ΠH(e′, q′)
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and then [θH(e′)− θH(e′′)](q′′ − q′) ≥ 0. Since q′′ > q′, we have θH(e′) ≥ θH(e′′) and

since θH is strictly decreasing, we obtain e′′ ≥ e′. Since, by assumption A.2 e′ 6= e′′,

we have e′′ > e′ or, by definition of e′ and e′′, φ(q′′) > φ(q′), so that the investment

function φ(q) is strictly increasing.

Next, let us show that φ(m̄) = ē and suppose that there exists e′ 6= ē such that

e′ = φ(m̄). By definition of e′, it holds VH(e′, m̄, 0) > VH(ē, m̄, 0) then

ΠH(e′, m̄)− e′ +MH(e′) > 2MH(ē)− ē (35)

Since ΠH(e′,mH(e′)) ≥ ΠH(e′, m̄), by (35) we have 2MH(e′)− e′ > 2MH(ē)− ē which

contradicts the assumption that ē maximizes VH(e,mH(e), 0). Thus, VH(ē, m̄, 0) ≥
VH(e, m̄, 0) for all e or ē = φ(m̄).

Proof of Lemma A2.0.(ii)

Let us notice first that

VH(e,mH(e), 0) ≥ VH(e, q, 0) (36)

for all e and q. Indeed, (36) is equivalent to the inequality ΠH(e,mH(e)) ≥ ΠH(e, q),

which is clearly satisfied. Moreover, by Lemma A2.0.(i) and the definition of ē we

have

U(m̄) = VH(φ(m̄), m̄, 0) = VH(ē, m̄, 0) ≥ VH(e,mH(e), 0) (37)

for all e. Therefore, (36) and (37) give U(m̄) ≥ VH(e, q, 0) for all e and q. Since this

also holds e = φ(q), we have U(m̄) ≥ U(q) for all q, i.e. m̄ is a global maximum for

U(q).

In order to prove the rest of Lemma A2.0.(ii) we need a preliminary result.

Lemma A2.1 Let q′ ∈ (mH ,mL), m̄ = mH(ē) and e′ = φ(q′). The following results

hold: (i) If q′ < m̄ then q′ ≤ mH(e′) < m̄. (ii) If q′ > m̄ then m̄ < mH(e′) ≤ q′.

Proof of Lemma A2.1. If q′ = mH(e′), (i) and (ii) hold. Thus, let q′ 6= mH(e′). From

q′ > mH and strict monotonicity of φ(q), we obtain e′ > 0 and then mH(e′) > mH .
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Let e′′ = φ(mH(e′)), then, from q′ 6= mH(e′) and strict monotonicity of φ(q), we have

e′′ 6= e′ and

VH(e′′,mH(e′), 0) > VH(e′,mH(e′), 0) (38)

Moreover, mH(e′′) 6= mH(e′) and ΠH(e′′,mH(e′′)) > ΠH(e′′,mH(e′)), thus we have

VH(e′′,mH(e′′), 0) > VH(e′′,mH(e′), 0) (39)

From (38) and (39) we obtain

VH(e′′,mH(e′′), 0) > VH(e′,mH(e′), 0) (40)

(i) If q′ < m̄, then, by Lemma A2.0.(i), e′ < ē and mH(e′) < m̄. Next, let us

suppose that mH(e′) < q′, then, by Lemma A2.0.(i), e′′ < e′ and since VH(e,mH(e), 0)

is increasing for e < ē we obtain VH(e′′,mH(e′′), 0) ≤ VH(e′,mH(e′), 0), which contra-

dicts (40). Therefore mH(e′) ≥ q′ and since q′ 6= mH(e′) we have mH(e′) > q′.

(ii) If q′ > m̄, then e′ > ē and mH(e′) > m̄. Next, let us suppose that mH(e′) > q′,

then e′′ > e′ and since VH(e,mH(e), 0) is decreasing for e > ē we obtain VH(e′′,mH(e′′), 0) ≤
VH(e′,mH(e′), 0), which contradicts (40). Therefore mH(e′) ≤ q′ and since q′ 6= m′

we have mH(e′) < q′. This completes the proof of Lemma A2.1.

Let us go back to the proof of Lemma A2.0.(ii) and show that U(q) is strictly

increasing for q ∈ [mH , m̄]. Let q′′ > q′, e′ = φ(q′) and e′′ = φ(q′′). By Lemma A2.1(i)

we have q′ ≤ mH(e′). There are two cases, (a) q′′ ≤ mH(e′) and (b) q′ ≤ mH(e′) < q′′.

(a) If q′′ ≤ mH(e′), by the properties of the profit function we have ΠH(e′, q′) <

ΠH(e′, q′′). Adding to both sides MH(e′)− e′ yields

U(q′) < VH(e′, q′′, 0) (41)

Moreover, since e′′ = φ(q′′) we have

VH(e′, q′′, 0) ≤ VH(e′′, q′′, 0) = VH(φ(q′′), q′′, 0) = U(q′′) (42)

Therefore, (41) and (42) give the result U(q′′) > U(q′).

(b) If q′ ≤ mH(e′) < q′′ we apply the following argument. By Lemma A2.1.(i),

mH(e′′) ≥ q′′, thus since mH(e′) < q′′ ≤ mH(e′′) and mH(e) is continuous, there
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exists e′ < ê ≤ e′′ such that mH(ê) = q′′. Therefore, since VH(e,mH(e), 0) is strictly

increasing for e < ē we have

VH(e′,mH(e′), 0) < VH(ê, mH(ê), 0) (43)

Moreover, we know that

VH(e′, q′, 0) ≤ VH(e′,mH(e′), 0) (44)

since ΠH(e′, q′) ≤ ΠH(e′,mH(e′)). Also

VH(ê, q′′, 0) ≤ VH(e′′, q′′, 0) (45)

since e′′ = φ(q′′). Thus (43), (44) and (45) give

U(q′) = VH(e′, q′, 0) < VH(e′′, q′′, 0) = U(q′′).

The proof that U(q) is strictly decreasing for q ≥ m̄ is similar. If q′ ≥ mL, the

inequality mH(e′′) < q′ holds, since by assumption A.1 mH(e) < mL for all e. Then,

ΠH(e′′, q′) > ΠH(e′′, q′′) since q′′ > q′ and ΠH is strictly decreasing for quantities

greater than the monopoly level mH(e′′). Adding MH(e′′) − e′′ to both sides yields

ΠH(e′′, q′) − e′′ + MH(e′′) > U(q′′) and, finally, by definition of U(q′) we obtain

U(q′) > U(q′′).

Let us show that U(q) is strictly decreasing for q ∈ [m̄,mL]. Let m̄ ≤ q′ <

q′′ ≤ mL. By Lemma A2.1.(ii), we have mH(e′′) ≤ q′′. There are two cases. (a)

If mH(e′′) ≤ q′ we apply the above argument. (b) If q′ < mH(e′′), we argue as

follows. By Lemma A2.1.(ii), mH(e′) ≤ q′, therefore we have mH(e′) ≤ q′ < mH(e′′).

By continuity of mH(e), there exists e′ ≤ ê < e′′ such that mH(ê) = q′. Since

VH(e,mH(e), 0) is strictly decreasing for e > ē we have

VH(e′′,mH(e′′), 0) < VH(ê, mH(ê), 0) (46)

Moreover, we know that

VH(e′′, q′′, 0) ≤ VH(e′′,mH(e′′), 0) (47)
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since ΠH(e′′, q′′) ≤ ΠH(e′′,mH(e′′)). Also

VH(ê, q′, 0) ≤ VH(e′, q′, 0) (48)

since e′ is the best investment given q′. Thus (46), (47) and (48) give

U(q′′) = VH(e′′, q′′, 0) < VH(e′, q′, 0) = U(q′)

Finally, if q′ < q′′ with q′ < mL < q′′ we apply the above results to show that

U(q′) > U(mL) > U(q′′). This completes the proof of Lemma A2.0.

Q.E.D.

In order to prove Lemma 3 we need the following preliminary result.

Lemma A2.2 An incumbent strategy (eH , qH), (eL, qL) supports a separating equi-

librium if and only if eH = eA, qH = mH(eA), eL = 0 and qL satisfies (20) and

(21).

The proof of Lemma A2.2 is similar to the proof of Lemma A1.1 and will be

omitted.

Proof of Lemma 3.

Let us suppose that q′ is a solution to the maximization problem. By Lemma A2.2,

the choice (eL, qL) = (0, q′) supports a separating equilibrium, since (0, q′) satisfies

(20) and (21). To show that the separating equilibrium also satisfies the intuitive

criterion, let us suppose that there exists a deviation q̃ such that U(q̃) < V A
H and

VL(0, q̃, 0) > VL(0, q′, 0). But, then ΠL(q̃) > ΠL(q′) and q′ can not be a solution to

the maximization problem. This contradiction completes the first part of the proof.

Let us show the converse and suppose that (eL, qL) supports an intuitive sepa-

rating equilibrium. We have to show that eL = 0 and that qL is a solution to the

maximization problem. First, notice that e > 0 is a dominated choice for the type L

so that the optimal choice must be eL = 0. Next, let us proceed by contradiction and

suppose that qL is not a solution, i.e. there exists q′ 6= qL such that ΠL(q′) > ΠL(qL)

and U(q′) ≤ V A
H . Thus, it follows that VL(0, q′, 0) > VL(0, qL, 0) and q′ ≥ mL.24 If

24Indeed, by the mimicking condition (12) and U(q) ≥ VH(0, q, 0), we have U(mL) ≥ V A
H . Thus,

by monotonicity of U(q), the inequality U(q′) ≤ V A
H implies q′ ≥ mL.
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U(q′) < V A
H the equilibrium is not intuitive, contrary to the assumption, therefore, it

must be U(q′) = V A
H . Since qL supports a separating equilibrium, by Lemma A2.2,

U(qL) ≤ V A
H . Thus qL > mL and U(qL) ≤ U(q′). Since q′ 6= qL and U(q) is strictly

decreasing (by Lemma A2.0.(ii)), we must have U(qL) < U(q′) so that qL > q′.

By continuity of ΠL and U , there exists q′′ > q′ sufficiently close to q′ such that

U(q′′) < U(q′) = V A
H and ΠL(q′′) > ΠL(qL) or VL(0, q′′, 0) > VL(0, qL, 0). Therefore,

(0, qL) does not support an intuitive equilibrium, contrary to the assumption. This

contradiction completes the proof.

Q.E.D.

The next result is needed to prove Proposition 3.

Lemma A2.3 A solution to the equation U(q) = V A
H exists and is unique in the

interval [mL, qc]. The solution, denoted by q∗∗, satisfies the condition q∗∗ > q∗, where

q∗ is the intuitive separating equilibrium quantity with observable investment.

Proof of Lemma A2.3. Since U(q) is continuous and, by Lemma A2.0.(ii), strictly

decreasing in the interval [mL, qc], it is sufficient to show that U(mL) > V A
H and

U(qc) < V A
H . By (12), we have VH(0,mL, 0) > V A

H , thus by definition of U(q) we

obtain U(mL) > V A
H . Next, since θH(e) > θL for all e ≥ 0, we have ΠH(e, qc) <

ΠL(qc) = 0. Since the incumbent’s duopoly profits are positive, i.e. DH(e) > 0, we

can write ΠH(e, qc) < DH(e) for all e ≥ 0. Adding to both sides MH(e) − e yields

VH(e, qc, 0) < MH(e)− e+DH(e), from which follows U(qc) < V A
H .

Finally, we show that q∗∗ > q∗. Notice that U(q∗) > VH(0, q∗, 0) = V A
H = U(q∗∗),

where the first inequality follows from the definition of V and the hypothesis that

investment is desirable. The equalities follow from the definitions of q∗ and q∗∗.

Finally, by Lemma A2.0.(ii), U(q∗∗) < U(q∗) implies q∗∗ > q∗. This completes the

proof of Lemma A2.3.

Q.E.D.

Proof of Proposition 3.

By Lemma A2.3, q∗∗ exists, is unique and q∗∗ > q∗. By Lemma 3, we have to show
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that q∗∗ is a solution to the following maximization problem

max
q

ΠL(q)

subject to U(q) ≤ V A
H

ΠL(q) ≥ DL

If mL < q < q∗∗, by Lemma A2.0.(ii), U(q) > U(q∗∗) = V A
H and q does not satisfy the

first constraint. If q > q∗∗ then ΠL(q∗∗) ≥ ΠL(q), since ΠL is decreasing for q ≥ mL.

Thus q∗∗ maximizes ΠL subject to the first constraint. To complete the proof we have

to show that q∗∗ also satisfies the constraint ΠL(q∗∗) ≥ DL. In fact, notice that, by

definition of q∗∗, we have

ΠH(e∗∗, q∗∗)− e∗∗ +MH(e∗∗) = MH(eA)− eA +DH(eA), (49)

where e∗∗ = φ(q∗∗). By definition of V A
H it must hold

MH(eA)− eA +DH(eA) ≥MH(e∗∗)− e∗∗ +DH(e∗∗). (50)

Thus, (49) and (50) imply ΠH(e∗∗, q∗∗) ≥ DH(e∗∗) and after simple manipulations

DL −DH(e∗∗) ≥ DL − ΠH(e∗∗, q∗∗). (51)

Next, notice that

ΠL(q∗∗)− ΠH(e∗∗, q∗∗) = (θH(e∗∗)− θL)q∗∗

> (θH(e∗∗)− θL)mL

= ML − ΠH(e∗∗,mL)

> ML −MH(e∗∗), (52)

where the first inequality follows from q∗∗ > mL and the last inequality fromMH(e∗∗) >

ΠH(e∗∗,mL). From condition (4) we have

ML −MH(e∗∗) ≥ DL −DH(e∗∗),

therefore (51) and (52) yield

ΠL(q∗∗)− ΠH(e∗∗, q∗∗) > DL − ΠH((e∗∗, q∗∗)
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and, finally, ΠL(q∗∗) > DL. This completes the proof of Proposition 3.

Q.E.D.

Proof of Lemma 4.

Let the incumbent strategy satisfy (i), (ii) and (iii). We have to show that it supports

a pooling equilibrium. Let us set the beliefs as follows: β̂(q) = β if q = qP and 1

otherwise. Moreover, let ê(q) = eH if q = qP and eA otherwise. Therefore, beliefs

and conjectures satisfy Definition 2.3. Given the above beliefs, the entrant strategy,

y(q) = 0 if q = qP and 1 otherwise, is optimal according to Definition 2.2, since,

by (iii), eH ≥ e0. As to the incumbent strategy, let us show that the L type choice

is optimal. In fact, for q 6= qP , VL(e, q, y(q)) = VL(e, q, 1) ≤ V A
L . Thus, by (ii),

VL(0, qP , 0) ≥ VL(e, q, y(q)) and the L type choice is optimal. Similarly, for q 6= qP ,

VH(e, q, y(q)) = VH(e, q, 1) and, by definition of V A
H , V A

H ≥ VH(e, q, 1). By (iii), eH =

φ(qP ) so that VH(eH , qP , 0) = U(qP ). Therefore, by (i) and the last inequality we

have VH(eH , qP , 0) ≥ VH(e, q, y(q)) and the H type choice is optimal. This completes

the first part of the proof.

To show the converse, let the incumbent strategy support a pooling equilibrium.

We have to show that (i), (ii) and (iii) hold. Since eH and qP support a pooling equi-

librium, by Definition 2.3, we have β̂(qP ) = β and ê(qP ) = eH . It must hold eH ≥ e0,

otherwise the entrant optimal strategy is y(q) = 1 for all q and qP cannot be optimal

for both the types of incumbent. Therefore, eH ≥ e0 and y(qP ) = 0. Let us consider

the L type choice. By optimality of qP we have VL(0, qP , 0) ≥ VL(0,mL, y(mL)) ≥ V A
L

and (ii) holds. Similarly, VH(eH , qP , 0) ≥ VH(eA,mH(eA), y(mH(eA))) ≥ V A
H . More-

over, eH = φ(qP ) otherwise (eH , qP ) can not be an optimal choice for H. Therefore,

(iii) holds and since VH(eH , qP , 0) = U(qP ) also (i) is satisfied, and this completes the

proof.

Q.E.D.

Proof of Proposition 4.

Using Lemma 5 we show that if q0 < q∗∗ there exists eH and qP , with q̂ ≤ qP ≤ q∗∗,

satisfying (i), (ii) and (iii), where q̂ = q0, if q0 > mL, and q̂ = mL otherwise. Take

eH = φ(qP ) and notice that (iii) holds, since by Lemma A2.0.(i) the function φ is
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increasing and eH = φ(qP ) ≥ φ(q0) = e0 since qP ≥ q̂ ≥ q0. That U(qP ) > V A
H is

easily seen by noting that U(mL) > V A
H , U(q∗∗) = V A

H and the value function U is

decreasing, so condition (i) of Lemma 4 also holds. Finally, (ii) trivially holds because

VL(0, q∗∗, 0) ≥ V A
L and VL(0, q, 0) is decreasing for q ≥ mL. Therefore, we have shown

that qP , with q̂ ≤ qP ≤ q∗∗, supports a pooling equilibrium.

To prove Proposition 4.(i) we have to show that qP < q̂ can not support an

intuitive pooling equilibrium. If q0 > mL, then q̂ = q0 and according to Lemma 4

there is no Pooling equilibrium supported by qP < q0. Thus let q= < mL and take a

pooling equilibrium supported by qP with q0 ≤ qP < mL. It is easily seen that the

deviation q̃ = mL is equilibrium dominated for type H and strictly preferred by type

L so that qP can not support an intuitive equilibrium.

To prove Proposition 4.(ii), consider the pooling equilibrium supported by q̂ and

show that it satisfies the intuitive criterion. If q0 ≤ mL, the quantity q̂ = mL

supports an intuitive pooling equilibrium; indeed, there is no deviation from mL

which is strictly preferred by the low cost incumbent since mL maximizes monopoly

profits.

If q0 > mL then any deviation q̃ > q0 is equilibrium dominated for both types. A

deviation q̃ < q0 has to be analysed more carefully and two cases are to be considered.

(a) If U(mH) ≥ U(q0), then, by Lemma A2.0.(ii), U(q̃) ≥ U(q0) and there is

no deviation equilibrium dominated for type H so that, according to Fact 2, q̂ = q0

satisfies the intuitive criterion.

(b) If U(mH) < U(q0) an additional mild assumption is needed which requires that

the low cost incumbent profits are greater for quantities close to mL, rather than for

quantities close to mH . More formally, let us consider the following assumption.

A.6 Let q0 > mL. If U(mH) < U(q0) then q′ < q′′, where q′ 6= q0 is given by

U(q0) = U(q′) and q′′ 6= q0 is given by VL(0, q0, 0) = VL(0, q′′, 0).

The quantities q′ and q′′ are well defined and are shown in Figure 6. If Assumption

A.6 holds any deviation q̃ < q0 which is equilibrium dominated for type H cannot

be strictly preferred by type L, since both the inequalities q̃ < q′ and q̃ > q′′ cannot
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Figure 6: Quantities q′ and q′′ in Assumption A.6

be satisfied. Therefore, we can conclude that q̂ = q0 supports an intuitive pooling

equilibrium.

Finally, to see that the quantity q̂ supports the unique Pareto undominated in-

tuitive pooling equilibrium, it is sufficient to notice that both functions, U(q) and

VL(0, q, 0) are strictly decreasing for q ≥ mL and that intuitive pooling equilibrium

quantities must be greater than q̂. Therefore, if qP 6= q̂ supports an intuitive pooling

equilibrium, then U(q̂) > U(qP ) and VL(0, q̂, 0) > VL(0, qP , 0) since qP > q̂.

Q.E.D.
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