ERROR BOUNDS FOR SOLUTIONS OF SYSTEMS
OF QUASILINEAR HYPERBOLIC PARTIAL
DIFFERENTIAL EQUATIONS IN BICHARACTERISTIC FORM

RITA CEPPITELLI (Perugia) - MASSIMO VILLARINI (Perugia) (*) (**)

The purpose of this paper is to obtain a theoretical estimate of the
effect of a nonlinear perturbation on the solution of a boundary value
problem for quasilinear hyperbolic systems in bicharacteristic canonic form
with the same boundary data which L. Cesari introduced in [9], [10]. The
estimate is given by the difference between the solutions of the linear and
the perturbed systems. '

1. Introduction.

In this paper we consider a boundary value problem for quasilinear
hyperbolic systems in bicharacteristic canonic form with the same
boundary data which L. Cesari introduced in [9], [10]. For this problem
Cesari in [10] proved a theorem of existence, uniqueness and continuous
dependence on the data. '

The formulation of systems studied in the present paper is equivalent
to one of Cesari’s paper [10], but here we split the linear from the
nonlinear terms. Precisely, having introduced two parameters p > O,

- (*) Entrato in Redazione il 4 ottobre 1988.
(**) This research was carried out within the Gruppo Nazionale per I’Analisi Fun-
zionale e le sue Applicazioni, Consiglio Nazionale delle Ricerche.
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n > 0, we consider the quasilinear system

> (WBij(=,y) + nTyi(z,y, 2))

J=1
(C-l) sz ! 82]'
: a—x+k§=;<uez-k<z,y>+nxm,y,z))—a—y; =

= uvi(z, y) + nwi(z, y, 2), (z,y) €[0,a]l x E", i=1,2,...;m.

Here 7 is the nonlinearity parameter. We consider this system either
with Cauchy data

Z;(O,y)=¢¢(y), yEETa 7’.=1:"'>m:

or with Cesari [9], [10] boundary data
m
Dbz ) =diy) yEE, i=1,...,m,
j=1

where ¢; : E" - E, bj; : E" — E, ¢¥; : E" — E, 1,7 =1,...,m, are given
functions, the a;, 0 < a; < a, 2 =1,...,m, are given numbers and the
m x m matrix (b;;) has dominant diagonal.

Adapting Cesari’s proof of theorems I and II in [10] to system (c.1)
we reprove in Sections 2 and 4 his theorems of existence, uniqueness and
continuous dependence on the data. Our version of these theorems holds
in a suitable slab [0,a] X E", 0 < a < ag, where the constant ”o” satisfies
a system of algebraical inequalities depending on the parameters 1 and
n. In detail, in Section 2 we prove a theorem of existence, uniqueness -
and continuous dependence on the initial data for the Cauchy problem
relative to system (c.1). Then we use, according to Cesari’s method [10],
this result in Section 4 to obtainthe mentioned theorem for the boundary
value problem.

The aim of -this paper is to give a theoretical estimate of the effect
of the nonlinear perturbation on the solution. That is, we esﬁimate the
difference between the solutions of the nonlinear problem and these
of the purely linear one. Indeed, in Section 3, by virtue of Cesari’s
demonstrative technique, we obtain an evaluation of Hz("’) — z(O)H, where
2™ and 2© are the solutions of the Cauchy problem for (c.1), studied
in Section 2, in the nonlinear case (n > 0) and the linear case (n =0),
respectively.
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In Section 5 we obtain an evaluation of |[z™ — z(O)H where here
2™ and 2@ are the solutions of the boundary problem for (c.1) in the
case 11 > 0, n =0, respectively.

The results obtained in- this note are a continuation of the one
proved in [7]. Indeed in [7], by using Cesari’s method introduced in [9],
we obtain analogous estimates of ||z — 29|| for quasilinear hyperbohc
systems in diagonal form.

The results in [8], [9], [10] have been applied in [11] to the analysis
of the phenomenon of duplication of frequency of laser radiation through
a nonlinear medium (problem of Graffi-Cesari). From a numerical point .
of view, P. Bassanini [1,2,3] continued the work of Cesari. Numerical -
results were obtained in [12], [5], [6], [14]. A survey of a number of these
. results is presented in [4]. In all these numerical papers the solutions of
the nonlinear problems have been confronted with the solutions of the
linear one.

We wish to thank Professor L. Cesari who suggested this research
and supported it with stimulating conversations, and Professors C. Vinti
and P. Brandi for their helpful advice..

2. The Cauchy Problem.

Here, z is a scalar, y = (y1,...,y,) is a vector in E’ and
z=(21,...,2m) is a vector in E™. Let |y| = max, luk|, |2| = max; |z]| be
the norms in E” and E™, respectively. '

We consider the following Cauchy problem (O)

S WBi(z, 1) + 1Ty @, 3, 2))

j=1
(c.1) %z +i:(u9 k(2 y) + nhi(z, y 2))——
. afL' po 3 1 3 k

= uvi(z,y) + nwi(z,y,2) a.e.in D, =[0,a] x ET, i = I,...,m

(c.2) 2;(0, y) = ¢;(y) for every yeEE, i=1,..., m.

We remark that (c.1) is a system in bicharacteristic canonic form. If
p =0, n=1 the problem (C) has been studied in [10], while if n=0 it
is a linear system.
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In this section we state a theorem of existence, uniqueness and
continuous dependence on initial data for the solution of (C). This
theorem is essentially a particular case of an analogous one in [10],
with few slightly modifications, but we will however briefly sketch the
proof. Indeed, adapting Cesari’s proof in [10] to the particular form
of problem (C), we obtain a sharper estimate of the size of the slab
domain of the solution. Moreover, and above all, a sketch of the proof
gives the algorithm of the solution that we will use to obtain the
requested estimates of approximation error with respect to the parameter

of non-linearity 7.

THEOREM 1. (An existence theorem for the Cauchy problem (C)). Let
€2 denote a given positive constant and the interval [—Q, Q)™ C E™, too.
Let 11,1 be nonnegative constants. Let By;(z,y), I'ij(z,y,2), 1,7 =1,...,m,
be continuous functions defined in Dy, = [0, ap] X E7, Dy, x € respectively,
ag > 0, with det (B;;) > 7> 0, det(uBi; +nl'y;) > 7 > 0 in their respective
domain for some constant 7. Let us assume that there exist constant H > 0,
C >0, and a function m(z) >0, 0 < z < ag, m € L]0, agl, such that,
for every (z,y), (Z,y), (z,9) € Dq, (z,9,2), (x,7,2), (Z,y,2) € Dyy X Q
and 1,] =1,...,m, we have v

(2.1) | |Bij(@, )| < H, [Iy(z,y,2)| < H;

IBij(z: y) - B;’j(fL‘, g)‘ S Cly - gla

(2.2) | |

By, v) — By(@ )| < | / )],
(2.3) T i
Ty (3,9, 2) — Ty (F,9,2)] < | / )],

Let 0(z,y), vi(z,y), t=1,...,m, k=1,...,7r, be given functions
defined in D,, which are measurable in z for every y and continuous
in y for every z. Let \iy(z,y,2), wi(z,y,2), 1=1,....m, k=1,...,r, be
functions defined in Dy, x £, all measurable in x for every (y,z) and
continuous in (y, z) for every .
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Let us assume that there are nonnegative summable functions m(z),
(z), n(z), L), 0< x < ap, such that for every (z,y), (z,9) € Dy,
(z,y,2), (@,7,2) €EDgyx Qand i=1,...,m, k=1,...,7 we have

0:x(z, »)| < m(z), [Miez,y, 2)| < m(z),

2.4)
lvi(z, )| < z), |wilz,y,2)| < (z);
|0:c(z, ¥) — Oz, D)| < 1)y — 7],
(2.5)
Mie(z, y,2) — iz, 7, 2)| < 1@y — §| + |2 — 2[]
‘U{(CU, y) - 'U;'(CL', g)l S l1(:z:)]y "— gla
(2.6) :

Let ¢(y) = ($1(v),...,dm(¥)), y € E™ be a given vectorial function
and let w, A be nonnegative costants with 0 < w < €, such that, for every

y, € E and i=1,...,m we have
@.7) 16: @) <w, [¢:W) — g < Aly — 7.

Then, there exist a sufficiently small a, 0 < a < ao, a costant () > 0,
a summable function x(z) >0, 0 < z < a, and a vectorial function

z(z,y) = (21,...,2m), continuous in D, =[0,a] x E", such that for every
(z,y), (z,9), (T,y) € D, and i=1,...,m we have

(2.8) 2@, )| < Q, |2z, 9) — z:(z, D] < Qly — 7,

(2.9) |zi(z, ) — 2i(Z,v)| < I/ xt)dt],

satisfying (c.1) a.e. in D, and (c.2) everywhere in E". Furthermore this
solution is unique and depends continuously on ¢ = (¢1,...,Pm)-

Proof. For every (z,y,z) € Dy x Q and every 4,7 =1,...,m,
k=1,...,r we put

Ai]'(za Y, Z) = ,LLB,']'(CC, y) + nrfj(m; Y, Z)a
(2.10) pie(z,y, 2) = plix(z, y) + nhi(z, v, 2),

filz,y, 2) = pvi(z, y) + nw;(z, y, 2).
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~ The functions A;;(z,y,2), 4,7 =1,...,m, are continuos in Dy, x Q
and the functions p;i(z,vy, 2), f,(z,y,z), 1=1,...,m, k=1,... r are all
measurable in z for every (y,z) and continuous in (y,z) for every z.
Moreover by (2.1) - (2.6) the following properties hold in Dg, x Q

2.11) |Aij(z,y,2)| < (uw+m4H,

(2.12) [Aij(z,y,2) — Aij(2,7,2)] < (w+nCly — §| +nC|z — 3|,
@13) Ay 2) — Ay v 2)] < (u+ ) / B,

o1 lpie(z, v, 2)| < (w+mmz), |filz,y,2)| < (u+n)nlz),
| pik(z,y,2) — pi(z, 7, 2)] < (w+MI@)|y — §| + 1)z — 2|,

Q.15 |fi(z,y,2) — filz, 7, 2| < @+ i@y — §| + nl1(@)|z — 2.

Let us remark that by hypothesis on (Bij)» (Tij), w, m, it result that
det(A;;) > 7> 0.

So, the functions A;;(z,y,2), pil(z,v,2), fi(z,vy,2), 1,7 =1,...,m,
k=1,...,r, satisfy the same hypotheses of Cesari’s theorem I in [10]
with sultable constants and summable functions. Let us point out that
in (2.12) and (2.15) we have distinguished the Lipschitz property of the
functions with respect to the variables y and 2.

From now on, we will follow the outline of Cesari’s proof of theorem
I in [10].

(a) Choice of constants p,a and function y. As det(A4;;) > 7> 0,
1,/ =1,...,m, we can introduce the transpose of the inverse of the
matrix (A,,) that we denote by (wi;) = (a;(z, y, 2)). So (ai5) = ((Aiy)~ .
The relations (2.11)-(2.13) yeld analogous relations for the elements
aij (z,y,2). Thus, there are constants H > 0, C' > 0 and a function
m'(z) >0, 0 < z < ag, m' € L1[0, ap], such that

(2.16) | lovij(z,y, 2)| < H',
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(217} IOL’,‘]'(.'II, Y, 21) - aij(xa g) E)I S O/[Iy - gl + 'Z _ 2|])

%
2.18) iz, , 2) — i (&, 9, 2)| < | / &' (£)dt].
T
For every a, 0 < a < ap, we define the following constants:

M, = / m(z)dz, N, = / n(z)dz, M, = / fa(z)dz,
0 0 0

a a

La=/ 1(z)dz, Lla=/ 11(z)dz.
0 0

Let us choose constants p, (J, k, Ro, Ri, R, R3 with

219) O0<p<l, Q>AQ+m*HH Q+p)u+mn), 0<k<1,

(2.20) Ry > m(u+mH', Ri,Ry>0, R3>m*H HA(—k)y (u+n)*
Let us take
x(z) = Ron(z) + Rim(z) + Rom’(z) + Ram(z), 0 < z < ao,

and for every a, 0 < a < ag, we define

= =/ x (z)dz.
0

We shall have to impose some limitations on the size of a. Though
this could well be done at this stage, we prefer to introduce the
restrictions on ¢ as need comes in the course of the argument.

(b) The classes Ky and Ki. Let I, = [0,a] and D, = I, x ET,
A, =1, x I, x E". Let Ky be the class of all systems

9 =loum,y), i=1,....m, k=1,...,7]
of continuous functions g;; in A, satisfying

(2.21) giv(zyz,y) =y, for all (z,y) € D,,
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3
(2.22) 19k (&5 2, 9) — g (€5 2, v)| < l/ m(t)dt|(u +n),
£

192, 9) — 9i s 2, §) — wi + Tk| < ply — 7
(2.23) i
for all (§;z,y),(€;2,9), (¢ z,9) € A,.

For every i =1,...,m we put §i(&;z,y) = (gue(&; 2, 9), k=1,...,7).
Moreover let K; be the class of all vectorial continuous functions

z = [2i(z,y),1=1,..., m], satisfying the following conditions
(2.24) |2:(z, )] < Q,

(2.25) |2z, y) — z:(z, §)| < Qly — 7,

(2.26) |zi(z, y) — 2:(3, y)| < | f x(@)dt]

for all (z,y), (z,9), (Z,y) € D,.

(c) The characteristic system of (C).
Let us consider the characteristic integral system (A) of problem (C)

T

(A1) guc(ff;w,y)=yk—/ pie(t, §i(t x,9), 2(t, it =, ¥)))dt a.e. in A,
¢

A2 ui(z,9) = i)+ Y sz, y, 2(z,))-
s=1

- { > Ash(0,55(0 7,9, 2(0, 30 7, Y4 §(0; 2, y))+
h=1

_‘.E Asn(z, gs(z; 2, 9), 2(z, Gs(@; T, YNGR(Gs(z; T, y)+
h=1

Z m

b [ 13 @AnGE 56 790,26, 5,6 7,10 )
0 h=1

~un(€, G565 T, Y+
+f5(6,3:(& 7, ), 26, 356 y)))]df} a.e. in D,
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(A.3) z:(z,y) = ui(z,y) everywhere in D,
with initial data (A")
A1) gik(z;3,9) = Uk, (,Y) € D,
A2  u0,9=¢), y€E",
A3 z0y)=¢@), yeEE, i=1,....m k=1,...,7,

If (g,u,2), g € Ko, u,z € Ky, is a solution of (A) with initial data
- (A", then z is a solution of Cauchy problem (C) (see [13]). To prove the
existence of a unique solution of problem (A) — (4'), we introduce three
transformations which we will prove to be contractions with respect to

uniform topology.

(d) The tranformation T,. Let z € K be fixed. We define in Ko the
transformation 7, by G =T.g, g € Ko where

T

G 2,9) = Yk — / pik(t, Gt z, v), 2(¢, §:(t; =, y)))dt.
£

At first, we prove that T, has range in Ko. The continuity and the
properties (2.21), (2.22) are straightforward consequences of the definition
of T,. Moreover by (2.15), (2.23), (2.25)

IGi(&; 7, 1) — Gir €33, 9) — vk — Gkl < ((w+m+1Q)La(1 +p)ly — 7]
and so, for a sufficiently small a, 0 < a < ap, such that
(2.27) w+n1+Q)L.(1+p)<p

the property (2.23) holds.

As shown in [10] in the proof of theorem I, step (c), to proveb
that the transformation 7, has a unique fixed point we show that
|G — G'|| < kllg — ¢||, where 0 < k <1, G=T,g, G' =T.9g', g, g' € Ko.

From (2.15), (2.25)

1Gie (& 2, 9) — Gip &3, 9)] < (u+n(1+ Q) Lallg — ¢l
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for every (§;z,y) € A,. So, if a, 0 < a < ag is sufficiently small such
that

(2.28) (w+n1+QNLe < k<1

the transformation 7, has a unique fixed point g =glz].
Each component g;; (£;z,y) of g[z] is absolutely continuous in z for

every (¢, ).
Indeed, for every (£;z,y), (£;%,y) € A, we have

l9i (& 2, y) — gin (&5 T, v)| < (u +n)l/ m)dt|+

(2.29) o v
y / [+ MIOGiE: 3, 9) — e85 5, )|+
3

+n1()Q|9:(t; =, y) — §:(t; T, y)|1dt]
where we have used (2.14), (2.15) and (2.25).

If, for every fixed z, %,y and 4, we define

§ = max max 19k T, ) — gi (€5 T, )]

from (2.29) it follows that

I

/ m(t)dt

§ < (u+m) +((w+n)+nQ)L.6

or

/ m(t)dt

(2.31) A=[1—(u+n(l+Q)L,]".

(2.30) |96 (€5 2, 9) — 9i (6 7, 9)| < (u+mX

where we have put

Finally, we prove that g[z] depends continuously on 2z in Ki. Let
z,2' € K1 and let g =g[z], ¢’ = g[2'}. By (2.15), (2.25) we have

|96 &5 3,9) — 95 (& 2, 9| < (w+mLallg — o'l +1La@llg — ¢']| + ||z — 2'|)
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and so
(2.32) lg = g'll < nLaX|lz = 2']]. -

(e) The transformation Tz*¢; Let T be the class of all functions
d@W) = (¢1,...,¢m), v € E7, which satisfy (2.7). Moreover, let K14 be the
class of all systems z =(z1,..., 2n), such that z € K; and
(2.33) 20,9 =¢;(y), 1=1,...,m, y€ E".

For every fixed 2z € K1, let g = g[2] be the corresponding fixed point

of transformation 7. Now, fixed z € Ky and ¢ € I, we consider the
linear transformation U =T u defined in K14 by

Us(z,y) = Y esi(@, v, 2(, y)):
s=1

: { D Ash(0,§5(0 3, 9), 2(0, G503 2, YD) 5 (0; 7, Y))+
h=1

z

gl

+f3(t,§3(t;$,y),2(t., gs(t; m)y)))il dt},(m,y) € Da,i = 1, R ur

[Z(dAsh(t; G5t 2, ), 2(¢, §s(t; @, ¥D))/ dyun(t, §s(t; =, y))+
h=1

First we prove that T;¢ has range in Xy4. From the definition of T;¢
it is straightforward that the function U = T;,u satisfies the property
(2.33). To prove the properties (2.24)-(2.26) is useful to consider the
following equivalent definition of T :¢ (see [10D:

(2.34) Uiz, 9) = i) + Y 0si(, ¥, 2(z, 1)) (As1 + Az + As3)

s=1
where

Agi(3,y) = / £t 65653, 1), 206, Gt 3, )L
0
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As2($: y) = Ash(O, gs(O; z, y)a
(2.35) ;

2(0,350; z,9))) - [¢n(Gs(0; 7, ¥)) — Pr(Gs(z; 2, y))],

B,y = [ S @A 5t ), 260, 5.3, ) )
0 h=1

[unt, g5t z, ¥)) — Pn(Gs(z; , y))ldt.

By the usual chain rule and properties (2.12), (2.13), (2.22), (2.25),
(2.26) we obtain

(2.36) |dAsn/dt] < (u+m)mh(t)+ (u + MrC(u +n+mnQ)m(t) + mnCx (t).

Again by using the chain rule and the properties (2.22), (2.25),
2.26) we have

(2.37) ldun/dt| < x(t) + (u + NrQm(t).
Moreover, put N
A = up(?,§s@ 2, ¥)) — n(Gs(z; 2, 1)) =
= [un(, §s( 7, ¥)) — ui(0, §s(E; z, y)) 1+
+[ur(0,3s(; z, y)) — un(0, §s(z; 7, v))]
by the properties (2.22), (2.25), (2.26) we have
(2.38) |A| < Bq + (1 + 10)QM,.
So, by (2.7), 2.11), (2.14), (2.36) and (2.38)
[Ast] < W +mNa, A < mu+n)’HAM,
(2.39) Asa| < ml(u + MM, + 70 + 1+ mnQ) M)+
+mnCEJ(E, + (u +mQM,)

and hence

[Ui(z,v)] < w+mH{(u+1)N, + m(u +n)>HAM,+
+m[(u + (M, + TC(u + 1+ mnQ)M, )+

+mnCEJ(E, + (u + mMQM,)}.
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If we assume a sufficiently small in order that

(2.40)
mH' {(u+n)Na + m(u + n)* HAM .+

+ml(u +1) - Mg +7C(u + 1+ mnQ)M,) + mnCEI(Eq+

+u+MIMa)} < Q—w

then the function U(z, y) satisfies (2.24).
By using (2.34) we can write

Ui(z,y) — Ui(z, §) = 8o + 6y + &1 + &2 + 63

Where

8o = ¢i(y) — ¢i(D),

8= > lesi(z, v, 2(x, 1)) — esi(z, §, 2(z, ) (As1(z, y)+

s=1

+.A32($, y) + As3(x> y))a

81=)  0ui(z, §, 2(z, An (@, 1) — Aai(z, P)].

s=1

b= as(x, §, 2(xz, DAa(z, ) — Az, D),
s=1

8= asi(x, §, 2(x, MAaa(z, ) — As(z, D).

s=1

- By (2.7)
18] < Aly — gl
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By the properties (2.17) and (2.39)
1651 < mC'(1+ Q)L +m)Na + mp + M HAM, +ml(u + )Mo+
+rC(u + 1+ mnQ)M,) + mnCE,]-
- Eat MMy — .
By using (2.15), (2.16), (2.23) and (2.25)
61] < mH'(L+p)(u +1+nQ)L1aly — 7.
Moreover, by (2.7), (2.11), (2.12), (2.16), (2.22), (2.23) and (2.25)
|62 < m*H'(u + MIHAQ +p) + CAQ + 1+ nQ)(1 + p)Mally — gl

Finally, by (2.7), (2.12), (2.16), (2.23), (2.25) (2.26), (2.35), (2.36) and
(2.37) and integration by parts we have

185] < m2H'{(u+n1+nQCEq + (u + 1+ 1QCA + p)(u + MNQ M+
+(u+1+1QC + p)(Ea + TQM,) + ((u + )M+

+(u +mrCu +n+mnQ)Me + mnCEq) - QU +p)+ M}y — 7.
Combining the previous estimates we have
|Ui(z,y) — Ui(z, P)| < [nNa+ 1M, + Y3 L1a+

+ My +5Ee + AL+ (u +mm*H' HQ2 + p)l|y — 7,

where
7 = +m)mC'(1+Q),

12 = (u+mm*[C' A+ QEa + (u + MQMo) + H'(QU +p) + A,
v3 =mH'(1+p)(u + 1+ nQ),
v = (u+nmC'AHQ + Q) +rCC' (1 + Q) + 1 + mnQ)-
(2.41) Ea+ (w+ QM) + H'CAQ + 1+ nQ)(1 + p)+
+(r+ DH'CQu +n+nQ)1 +p) +rH'C(u +n+mnQ)-
QU +A),
s = m*[mnCC (1 + Q)Eq + (1 + MQM,)+
+ H'Cu +1+nQ)2+p)+mH nC(QA +p)+ A)].
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Hence, if o is sufficiently small in order that
(2.42) 71Na+'721</Ia+fy3Lla+’y4Ma+'75Ea < Q—A(1‘+(u+77)m2H'H_(2+p))

then the function U(z,y) satisfies the property (2.25).
In order to prove that U(z,y) satisfies (2.26) we put

Ui(z,y) — Ui(Z,y) = 0p + 01 + 02 + 03

where

00 = Y lesi(z, v, 2(3, 1)) — 0ai(E, v, 2(Z, y))-
s=1

(2.43) (A, ) + Az, v) + As(z, )

m
O']" = Z Oés’i(j) Y, Z(.’Z‘, y))(ASJ'(z) y) - AS]'(:E: y)))] = 1’ 2’ 3
s=1

By (2.17), (2.18), (2.26) and (2.39) we have

loo] < m[(u +n)Na + mHAW + 1)* M, + m((u + n)-

- (Mo + 7O+ + mnQ)M,) + mnCE,):

/ m'(t)dt

By the relations (2.14), (2.15), (2.16) and (2.30)

T

/ x(t)at

+C

: (Ea + (M + U)QMa)] ' (

/ m(t)dt / n(t)dt

By (2.7), (2.8), (2.11), (2.12), (2.16), (2.22), (2.30) and (2.35)

+

|

|o1] < mH'(u+m) {k(u +n+nQ)Lia

T

/ m(t)dt

+

loa| < m*H'(u + 1) [HA(M + 1A

T

/ m(t)dt

+C(u + 1+ nQANM,
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Finally, by (2.12), (2.22), (2.25), (2.30), (2.36) and (2.37) and
integration by parts

o3| < mZH’{<Ea+

z

/ [+ mya() + (u + MrCu+

T

+QM.)

+ 1+ mnQ)m(t) + mnCx(t)]dt |+

I

/ m(i)dt

+2C(u + 1+ Q) + MAE, + ( +MrQM,) +

+ QM + M + m)Mg+

I

/ m(t)dt }

+ (@ +mrCu +n+mnQ)M, + mnCE,]

Combining the previous estimates we deduce

I

/ n(t)dt
/ m(t)dt

T

/ m(t)dt

Uiz, v) — Ui, v)| < mH (u+mn) +

T

/ m(t)dt

I

/ x (t)dt

+m2H' H(u +n)*AX + 1) +

/ / !
L) 7 %

]

/ ()t

where
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Vi =mPH (b +n)Ea + QM)

¥ = ml(p +nNa + mHAQp +1)* Mo + m((u +n)-
(M, + rC( + 1+ mnQ)Ma) + mnCEq).
- (Ba + (0 + MQMa)],

Vs = mH (u+ M +n+nQ) L1+

+m2H' (u + O + 1+ nQ)AN M+
(2.44) C HrmPH @+ m)C - (u+ 1+ mnQ)(Es + QM)+
+2m 'O+ + Q) + MAEa + o+ QM)

+m?H' QM + n)(u + mMg+
+ (u +mrCu +n+mnQ)M, + mnCE,],

Yo = mC'l(u +MNa + mHAp +n)* M+
+m((u + MMy + 1O + 1+ mnQ) M)+

+mnCE,) - (B + (1 + MQM)] + m° H'nC(E, + QM,).
From the relation (2.20) we derive
 1—Ry'mH'(u+m)>0, 1—Ry'm?H'HAMu+n)?>0
so we can take o sufficiently small such that
vh < 1 —Ry'mH (u+n), 4 < 1 — Ry 'm>H' HANu + n)?,
(2.45) A <A =1)R1, < —0)Rz,
Ah < (1 — 4h)Rs — m>H' H(u + n)*AX.
Then by (2.44), (2.45) and the definition of the function x(t) we

obtain

|Ui(z,y) — Ui(@, v)| < / [Ron(t) + Rim(t) + R’ (t) + Ram(t)]dt| =

I

/ x (t)dt
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So, we have proved that Tz*¢ maps Ki4 into itself.

Let us prove that T* is a contraction. Let z € }C1¢ and g = g[z]
be the relative ﬁxed pomt of T,. Let U =Ty yu, U' = Tju', where u,
u' € Kig.

By (2.36) we have

\Ui(z,y) = Uj(z, )| < lJu —4'||,s=1,...,m, where

(2.46) ~= mzH'[(p + n)Ma +(u+mMrClu+n+mnQ)M, + mnCZE,].

Then
U= Ul < Allu — o]

and so by taking a sufficiently small in order that

(2.47) y< k<1

the transformation T;"¢ is a contraction in Ki4. Therefore T;¢ has a
unique fixed point u = u[z,¢], which is the solution of the integral
equation (A.2) with initial data (A’.2).

Let us prove that this solution u = u[z, ¢] is a continuous function
of z and ¢.

Let 2,2/ € K1 and ¢, ¢’ € T. Let g = glz], ¢’ = g[2'] be the
corresponding elements of Ky, g = T,9, g’ = Txg' and let u = ulz, ¢],
u' = u[2', ¢'] be the corresponding elements of K14, u = T u, o = T,¢,u
With these notations we have u(z, y)—u'(z, y) = ¢(y)— ¢’(y)+£o+£1+£2+83,

where -

0= Y losi(m,v,2(x, 1)) — 0ai(3, ¥, 2/ (z, y)][As1 (&, y)+

s=1

(2.48) +As(z,y) + As3(z, y)]

= 0,4, 2 (@, 1) Ay (3, v) — Az, 9), § =1,2,3.

By (2.17) and (2.39)

leo] < mC'{( + MmNy + mu +n)>HAM, + ml(p + n)(M,+

+rC(u+n+mnQ)M,)+ mnCEa] (B + (w+mMQM)}|z — 2.
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By (2.15), (2.16), (2.25) and (2.32)
le1] < mBnL1gl1+ G+ 7+ nQMLall|z — /|
and by (2.7), (2.11), (2.12), (2.16), (2.22) and (2.32)
2] < 2m*(u+ )H'H||¢ — ¢'|| + m*H'A[2(u + m) HXLyn+
+nCA + (u+n+nQALa) M|z — 2/|].

Moreover by (2.12), (2.22), (2.25), (2.26), (2.36), (2.37), (2.39) and
integration by parts

el < m?H'{nCEq +20(n + (u + 1+ nQIALa)(Ea + (u + mrQ M)+
+ [+ Mg + (u + rCu + 1+ mnQ)M, + mnCEIQnALe Y|z — 2+
+mH'[(u + MM, + (u + mrCu + 1 + mnQ) M+
+mnCEaI(lu — u'|| + |6 — 4'ID.
Combining the previous estimates we have
|ui@, ) —ui(z, )| < Allu—u/||+A+y+2m>(w+n) HH)||¢— /|| +7])z— 2|
where 7 is defined in (2.46) and
3 =mC'{(u+n)Na + m(u + N> HAM,+
Fml( + M, + 1O+ + mgQ) M)+
+mnCEJEs + (u+ mMQMy)} + mnH'Li,[1+
+(u+n+nQNLe] +m?*H'ARn(w + n) HAL, + nC(1+
+(u+n+nQAL) M+
+m*H'{nCZ, + 2nC A + (u + 1 + nQAL,)(E, +

(2.49)

+(+MrQMa) + [+ MM + (u +mrClu +n + mnQ) M, +
+mnCE,JQMAL,}.
Then by (2.47), if we assume a > 0 sufficiently small such that

(2.50) 1-y"9<k<1
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the estimates above yield

H’LL[Z, QZS]—’U:[Z,, ¢/]” S

(2.51)
<A =) A+ y+2mPu+mHH)||G — 8|+ kl|z — 2|

i.e. the requested continuity of u[z,$] with respect to z and ¢.

. /
(f) The transformation Ty. Since K14 C K1, fixed ¢ € T we can define
the transformation Ty : K1g — Ki1s by Tz = ulz, ¢], i.e. Tz is the fixed
point of operator 77,. The transformation 7y so defined is a contraction in

the uniform topology of K14. Indeed, put u = Tyz, u' = T2, 2, 2’ € Ky,
u=ulz,4], v =u [/, 4], by (2.51) we have

lu —u'|] = ||ulz, $] — w'[2, $1]] < Kl|z — ]|, 0 <k < 1.

Thus, for every ¢ € T, the functions z = z[¢] € K14, u = u[z, ¢] € Kyg,
g = g[z] € Ko represent the unique solution of the integral system (A)
with inital data (A'). So, z = z[¢] is the unique solution of the Cauchy
problem (C).

Finally, let us prove that z(#] depends continuously on ¢ € T. Let
b, ¢ €T and z = z[¢], 2’ = 2z[¢'].

By (2.51) we derive

|2 — 2'|| = ||2[¢] — 2[¢']]] = |Julz, ¢] — ul2’, ¢']]| <
< kllz — 2|+ A =P A+ y+2mP(u+mHH)||$ — 4|

where 0 < k < 1 and so
252) |z—2|| <A~k A =T A+y+2mP @+ mHH)||¢ —¢].

Let us remark that the restrictions we had to impose on the size
of a, 0 < a < ag, are relations (2.27), (2.28), (2.40), (2.42), (2.45), (2.47)
and (2.50). If 4 =0 and 7 =1 the above relations are exactly the same
of theorem I in [10]. ‘
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3. An estimate of approximation error for the Cauchy problem.

In this section we will refer to Cauchy problem (C) as problem (C, ).
In this way we point out the dependence of the hyperbolic differential
system (c.1) on parameter 7, n > 0. Here the parameter uy,u > 0 is
considered as a fixed number. The solution of problem (C,7) will be
denoted by z™.Thus, for n =0, 2@ is the solution of the Cauchy
problem relative to the linear system

3.1 EuBu(w Y) +Zu9,k(w y)—— = pvi(z,y)
J=1

with inital data (c.2).

Applying the successive approximation method provided by theorem
I in [10], we obtain an estimate of ||z™ — 2| with respect to the
parameter of nonlinearity 7. This estimate is well-defined for every value
of 7 > 0 because both the solution 2™ and 2 are defined in the
slab [0,a(n)] x E", where a(n) is the size of a, 0 < a < qp in the
Cauchy problem (C,n). Indeed from inequalities (2.27), (2.28), (2.40),
(2.42), (2.45), (2.47) and (2.50) it follows that a = a(n) is a nonincreasing
function of 7, so that a(n) < a(0) for every 1 > 0. Let us point out that
in the present Section we will suppose that the constant H’ introduced
in (2.16) of Section 2, satisfies the inequality ||(B;;)~!|| < uH’, too.

Let z € Ky be fixed. Here we name T the transformation defined
in step (d) of theorem 1: so we point out its dependence on 7, 7 > 0.
Moreover let g™, n > 0 be the fixed point of the transformation T, For
every 1 > 0 and for arbitrarily fixed g € Ky, 2z € K1 let us inductively
define g =g, gl = 7 (0" Thuys we have g™ = lim g™"

n—+0o0

without respect to the choice of function g = g(”'o) € Ko.
At first, fixed arbitrarily 7 > 0, we estimate ||g™ — ¢g(@||. As we have
remarked above, it is not restrictive to choose g(0,0) = g(n,O) =g € K.
For every (¢;z,y) €Ay, 1=1,...,m,k=1,...,r, we have
oo
1990 2, y) — g0 P 3, 9)| <

z

gn/ﬁ%m@mawxm@mmwmaSnMa
13

and so
(3.2) g™ — gOP)| < M.
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For ¢ > 1, (¢ z,y) €A, 1=1,...,m, k=1,...,r, we have

9509 (& 2, y) — 900 7, 1) < / (6 t, 5V (t; 7, y))—

— i, 5OV, ) dt |+

T

1 / Mot §it, 30Dt 3,9, 22, 50Dt 3, )| <
3

< pLallg®P — g 4,
which leads to

(3.3) ”g(n,q) (Oq)“ <ML ”g(nq IV (O,q 1)||+?7M

By recursion, from (3.2) and (3.3) we have

g—1 -
197 —g®2| < 1Moy (uLa)’, for every g € N*.
h=0

As by (2.28), 4L, < 1, we obtain
(3.4) g™ — g < M, — pL,)™

which is the requested estimate relative to transformation 7). We remark
that in the linear case 7 =0 the transformation T® does not depend on
the choice of the function z € K. Therefore, the estimate (3.4) does not
depend on the choice of z € X, too.

Let us estimate now |[u™ — 4©@||, where u™, 5 > 0 is the fixed
point in K4 of transformation T*“7 , 2 E Ki,peT. We have emphasized
the dependence of. the transformatlon ; ¢, defined in step (e) of theorem
1, on parameter 7,7 > 0.

From the definition of T and (2 10) we have

s UM (z,y) = (TP u(z, )i = Z((“B + D) Di(z, y, 2(z, v))-
. s=1

: (Snu)(z:y)’ (z,y) € Dgyi=1,...,m
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where B,T" denote the matrices B = (B;;), I' = (I';;) and

(Spu)(@,y) = Y (uB +1D)s (0,3 (0; 2, ),
h=1

2(0, 3 (0; 2, )N pr @GP (O; z, y))+

T

= / [ S @B +nD)ant, 50t 7, ),
0 h=1

2(t, 5 (¢ z, )/ db)-
cup@, Gz, ) + pvst, FE T, )+

+ nws(t, G (¢t x, ), 2(t, G (¢; =, y)))} dt.

(3.6)

For every > 0 and for every fixed z € K1, ¢ € T let us define
by induction u™® =4y € Ky, o = T;;,”)u(”’”““l), n € IN*. Therefore,

v = lim ", n> 0, without respect to the choice of u in Kig.
n—+o0o

By (3.5) and (3.6), for every (z,y) € D,, 1 =1,...,m, we have

0@, ) — Pz, )] < D WB + D) Dy(z, v, 2(z, 9)—

s=1

— ((wB) Vi, )| - [(Spu)z, )|+
+ (B Dz, )| - [(Squ)(z, v) — (Sou) (@, v)|].

(3.7)

From now on we supposé that
(3.8) 1B~ < uH’
where H' is the same constant of (2.16). Then
|(B+aD) ™ — @By Y| = |wB + D) — wB) || <
(3.9) < (@B +1I)™ = @B) (B +nD)|| [} <
= ||wB) ™ al| fled| < nHH.

Here « is the matrix a = (¢y;). By using (2.2), (2.3), (2.22), (2.25),
(2.26) and the chain rule, for every (t,z,y) € A, we have

(3.10) |dBsi(t, §s(t; 2, 9))/dt| < (@) +rCu + mm(),
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GB.11) |dTsn(t, 3s(t; z, ), 2(t, §s(t; 7, y)))/dt| < talt)+
' + 10 + NmE)(1 + mQ) + mCx(@).

So by (2.7), (2.11), (2.14), (2.24), (3.10) and (3.11) for every (z, y) € D,
we have

1(Spu)(@, v)| < m{(u+ ) Hw +pM, + 70 + n)M,)Q+

(3.12) + (Mg + 7C(u + M Mo (1 + mQ) + mCE,)Q}+
+ (4 +MN,.
By (3.8)
(3.13) 1B Y| = lwB) || < H.

From relations (2.1), (2.2), (2.4), (2.6), (2.7), (2.25), (2.37), (3.10),
(3,11) and integration by parts, for every (z,y) € D, we have

G149 (S V) — (Sou)z, )| <
< Z{l(uB +nD)5(0, 65703 7, ), 2(0, G (0; 2, 1)) —
wB)sh(o G5 ©O; 3, )| - [$n (g (0; z, y)|+
+| B0, 33 O;.2, 9| - |¢a @G (0; 2, 1)) — g GR0; 7, y)|+

fu / |dBar(t, 572 7, 9) — Bon(t, 06 2, 1))/t

Nun(t, GP(t; 3, v))|dt + / |dBah(t, §0(t; 3, v))/ dt|-
lum G0t 3, 9)) — ualt, G0 T, v))|di+

+n / (AT a(t, 555 7, v), 22, GoCt: 7, 9 |-
0

Nun(t, G0t T, v)|dt} + / lvs(t, 50t 2, 1) — vs(t, §O; 2, v)|di+
0

+1 / lws(t, 67 3, 9), 2, G (8 7, v)))|dE <
0
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< (O™ — gO||+ nEYo + wHAg® — g®|1+
h=1
+ 1| Ban©, §™(0; z,y) — Bsn(0, 3005 3, )| [us (0, 9P 0; z, y))|+
+ / |Ban(t, 57 7, 1)) — Ban(t, 60 2, )| |dunt, G0t o, v))/ dt|di+
0
+ u@L, + 7O + MM)Qlg™ — g©|| + n(M,+
+7C(u +MM,(1+ mQ) + mCE)Q} + pL1a||g"™ — g@|+
+ 1N < m{@Cllg® — gO| +nH)w + pHA||g® — g+
+uCllg™ — g@)[Q + uCllg™ — gV||(Ea + (u + MTQ M)+
+ (M, + 100 + DMQ|g™ — g@| + QM+

+ 10 + MM + mQ) + mCEo)} + uLa)|g™ — ¢©|] + 1N,

By (3.7), (3.9), (3.12), (3.13) and (3.14), for every (z,y) € D.,

i=1,.

where

(3.15)

and so

(3.16)

.., m, we deduce

qu.”’l)(as,y) . ugo,l)(x’ y)l < & Hg(”)) —_ g(O)H + &3

£1 = m?uH'[Cw + HA+ GQ+

+ C(Ea + (u +MrQM,) + (M, + rC(u + MMo)Q1 + muH' Lig,

& = mPnHH[(u+mHw + pM, + rC(u + ) M)Q+

+ (M, + rC(u + MM, (1 + mQ) + mOE,)Q+
+mnHH *(u+n)N,+
+ m2H' [nHw + nQM, + 10 + mMa(1 + mQ)+

+mCE,)] +mnH'N,

”u(n,l) _ u(n,O)” < z;1“9(11) _ g(O)” +&5.
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Now let ¢ be a positive integer. From (3.5) and (3.6), for every
(z,y) €D, and 1 =1,..., m we have

luffﬂﬂ)(x, y) — UEO,q)(Z, )| < E[I((UB + 771“)"1)2,-(&:, y,2(z,y))—

s=1

— (WB) L@, 9)| - |(Squ™=V)(z, )|+
+ (B iz, »)| [(Syu D)z, y) — (Sou®TV)(z, y)|].

Only the last term has to be estimated.
In analogous way as we have obtained (3.14), we have

1Sy u™ D)z, 1) — (Spu®iV)(z, y)| <

< Z{(MC“g(n) _ g(O)” +nH)w +uHAHg("7) _ Q(O)||+
h=1

+ 1 / |d(Bsn(t, 3V (¢, =, 1)) — Ban(t, G0 m, )/ di|.
0

Jup I, GO, y)|dE + / |dBs(t, §0t; =, y))/dt|
[P, 30 ¢ 3, )) - uiz"qo*“(t, §O T, v+
+ e P, O 3, 1)) — w0, 60 3, )| 1dt+
w1 1T, 60 7,0, 26,595 2, )/ |-

0
Juph R, GO @ 3, )/ i) + pLial g™ — g@| + 1N, <
< m{uCllg™ — g +nH)w + pHAlg™ — g+
+uCllg™ - gNQ+ uCllg® — gV||(Ea + w + MrQ M)+
+ Mo + 7O+ MMIQIIg™ — g @[+ [[u1~D — uOa-D 14
+nQM, + 70 + )M, (1 + mQ)+
+mCE)} + pLalg™ — g9+ nN,.

So, by (3.9), (3.12), (3.13) and (3.17), for every (z,y) € D, and
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i=1,...,m we have
169z, 9) — uP9 (@, )| < mPnHH[(u+n)Hw + p(M, +rClu+
+ M)Q+ (M, + rCu + M1 + mQ) + mCEL QI+
+ mnHle(u + M) Ny+
+m?H'n[Hw + QM, + 7C(u + nM,(1 + mQ) + mCE,) ]+
+ mH’nN; + {m*H u[Cw + HA+ CQ+ C(Eq + (u + n)erMaﬂ
+ (M, + rO( + MM)Q1+ mH pLia} g™ — ¢+
+ mZH’u(l\o/Ia +rC(u + n)Ma)Hu(”‘q”l) — u(O’q_l)H.
- From (3.4) and (3.15) we deduce
(3.18) [[u™® — u®9|| < &+ EM(1 — pLa) " +&3u™ Y — O]
where
(3.19) &y = m2H u(M, +rC(u + 1) Ma).

By recursion from (3.16) and (3.18) we have

g—1
w0 — uO9|| < (5 + EmML( — pLay 1Y &,
h=0

As by (247) &3 < -1 we obtain
(3.20)  |Ju® —u®|| < [&+EnM.1 — pLa) 1A —&3) 7

Now we are able to give an estimate of Hz("’) — z(O)H.

Let ¢ € T and let TZ;S(") : Kig — K1y be the transformation defined
in step (f) of theorem 1, in which we have emphasized, as usual, the
dependence on the parameter 1, 7 > 0. For every n > 0 and for every
fixed ¢ € T let us inductively define 200 = 5 ¢ Kigs 2m = ’.Z;(")z(”’"_l) ,
n € N*.

So, denoted by 2™ the fixed point of 7;(") in K14, we have
2™ = lim 2™, n > 0, without respect to the choice of z in Ki4. On

n—+00
(m

the other hand, from the definition of T¢ we deduce

(3.21) 2 - u(’f))[z(ﬂ,"—l) él, neN, n>0
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where u™[z, $] is the fixed point of the transformation T:(;").

It is immediate to observe that 7;(0) : K1 — K1y is a constant

transformation such that Z;(O)z =20, for every choice of z € K14. So for
1 =0 the following equalities hold

(3.22) 20 = 20m = O, 4]

for every n € N* and without respect to the choice of z in K14. Moreover,
the estimate (3.20), which we can write more precisely as

3:20Y  |[u™lz2, 4] — u L2, 8]|| < 62+ EynMa(l — L) 1 1(1 — &5)

does not depend on z € K14. So, by (3.20), (3.21) and (3.22) for every
n € N we have :

“z(n,n) . 2(0’")H — ”u(n)[z(n,n~l) L hl—
— vz, 8]|| < [E2+ E1ML(1 — pLo) " I(1 - £3) !
or
(3.23) 127 — 2O < [& + &M (1 = pL) 111 — &5)°!

which is the requested estimate.
If the exact solution z©@ fo linear Cauchy problem is known, (3.23)
represents a bound for the perturbation due to the nonlinearity.

4. The boundary value problem.

In this section we consider the following hyperbolic system in
bicharacteristic canonic form:

> (uBi(z, 1)+ 1Ty (z, v, 2))

J=1

0z; . » ' | 0z; B
(c.D) - [Bz +k2=;(u9uc($,y)+ﬂ>\;k($,y,2))ayJ =

= pvi(z, y) + nwi(z, y, 2),

ae.in D, =[0,al x E", 1=1,...,m
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with boundary conditions

(6.2) > biiWzany) = Vi), yE ET, i=1,...,m
j=1
where b;; : E" — E, W; : E" — E, 1,j =1,...,m are given functions

with det (bj;) #0 and a;, i =1,...,m, are given numbers, 0 < a; < ... <
an < a. We name this boundary value problem, problem (B).

We will briefly sketch the proof of a theorem of existence, uniqueness
and continuous dependence on the boundary data for problem (B). This
theorem is essentially the same of theorem II in [10], but its proof
provides the algorithm of the solution of problem that will be used in
the next section to obtain the requested estimate of approximation error.

We assume that the m x m matrices (b;;) and (A;;) = (uBj; +nl5;)
(see definition 2.10 in Section 2) have «dominant» diagonal terms. By
possibly multiplying each equation (c.1) and (b.2) by suitable nonzero
factors, we shall assume that

A'i]'(myyaz) = 51] +Aij($;ysz)) (.’E,y,Z) S Aa;
(4.1) .
b'i]'(y) = 61']' + bij(y): ye ET} 7’).7 = 1) cee, M,

where 51',' = 1, 5,‘;’ =0 for '1,7-/]
As in Section 2 we denote by (aj;) the transpose of the inverse of
the matrix (4;;), and we take '

(42) O!,‘j(a?, Y, Z) = 61] + &i]'(w,ya Z), (m)y: Z) € Aaa 7’;] = 1) ERERL2
Now let | |

4.3) 0o = max supz |bin ()],
h=1

where sup is taken for all y € E", and

m
o = maxsupz IAih(xa Y, Z)I:
!
h=1

@44  oca=maxsup) |&(zv,2),
h=1

O3 = mflx Supz Z !&si(zy Y, Z)I lf’i,gh(ﬂ?, Y Z)',

s=1 h=l
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where sup is taken for all (z,y,2) € A, and let
(4-5) o =01+ 09+ 03.

THEOREM 2. (An existence theorem for the boundary value problem)
Let Q> 0, Byj(z,y), Tij(@,y,2), Oulz,v) Mz, v,2), vi(z,y), wilz,y,2),
,j=1,...,m, k=1,...,, satisfy the same hypotheses of theorem 1.

Let WWi(y), bi;(y), y € E", 1,7 =1,..., m be given continuous functions,
and let us assume that there are constants wy, Ag, 7, 0 < wg < , Ag > 0,
0 > 0 such that for all y, § € E" and 1=1,..., m, we have

[Fi@)] < wo, [Wiy) — ¥i@)| < Aoly — 4],

m

S [by @) — b @] < mly — ]

J=1

- (4.6)

With the notations (4.1), (4.3), (4.4) let us assume that
4.7) o+0g+o00p < 1.

Then, for a, wo,n,C,C' (see (2.12) and (2.17) sufficiently small,
0 <a < ap wonC,C >0 and for every system of numbers a;
0<a;<a,i=1,...,m there are a constant QQ > 0, a function x(z) > 0,
0< z<a, x € Li[0,a], and a vector function 2(z,y) = (21,...,2m)
(z,y) € D,, continuous in D,, satisfying (c.1) a.e. in D, and (b.2)
everywhere in ET. Moreover z(z,y) is unique, depends continuously on
boundary data ¥(y) and for all (z,y), (Z,y) (z,7) € D,, i=1,...,m
satisfies the following properties

|zi(z, y)| < Q, |zi(z,y) — 2zi(z, 9)| < Qly — 7],

T

/ x(t)dt

(4.8)

|zi(z, y) — 2i(Z, y)| <

Proof. Let us recall the definitions (2.10):
Aij(z,y,2) = uBij(z,y) + nlii(z,y, 2),
pik(z,y,2) = ubix(z, y) + nhi(z, y, 2),

fi@,y, 2) = pvi(z, y) + nwilz, y, 2),

(z,y,2) €Ay, 1,7 =1,...,m, k=1,...,r
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The functions A;;j(z,y,2), pu(z,y,2), fi(z,y,z) satisfy the same
hypotheses of theorem II of Cesari’s paper [10] with suitable constants
and summable functions. So we can report the Cesari’s proof of theorem

IT in [10].
Let 7 be the class of functions defined in step (e) of theorem 1. Let
us choose wp, 0 < wyp < w < Q, and Ay, A > Ay such that

(4.9) (c+op+ qu)w <w-—wg, MN+(oc+0o9+009A<A.

In section 2, for every fixed ¢ € I, we have determined a unique.
element z = z[¢] and a corresponding element g = g[2], z € Kis C Ky,
g € Ky, satisfying the characteristic integral system (A). In particular,
. we recall that g = g[z] is the unique Carathéodory solution of the Cauchy
problem (A.1) — (A'.1) and so the function §; = [gi,k =1,...,7] allows
us to define the 1 — 1 transformation of D, onto itself (see Cesari [10],
pag. 321) given by

(4.10) y =3i(z;0,v), v =Gi(0; 2, ).

We consider now the transformation 7™**, or @ = T™¢, ¢ € T,
defined by

D;(v) = [D;(G:(0; ai, YD ]y=pi@is00), ¥ € ET,i=1,...,m,
. m -
(4.11) D;(§i(0; ai, 1)) = i) — Y bi; @)z (ai, v) — Cilas, ),
j=1

yeE, 1=1...,m,

where

412) G 9= ) An0,5:(0; 3,9), 200, §5:(0; 7, y))pn(Gi(0; 7, y))+

o>
i
N

Gn(z, Y, (3, Y)on(Gn(0; 7, y))+

Mz 10

Gsi(z,y, 2(z, Y)Ash (3, ¥, 2(z, Y))Pn(G5(0; 7, v))+

-+

%
Mz 11

&si(, , 2(z, YAk (0, §5(0; 7, ), 2(0, §o(0; 7, 1)))—

M

[
1l
—
>
{1

1



236 . RITA CEPPITELLI - MASSIMO VILLARINI
— Asn(z,y, 2(z, YD1 Pn (G0 z, )+
m , T~ m

+3 i, 9, 2(2,9) / [ > (A, §s(t; 2,9),

s=1 0 h=1

2(t, Gs(t, =, y)))/dt)-
' Zh(t) gs(t’ .’E, y)) + fS(t) §8(t’ CE, y)7 Z(t) gs(t; SII, y))):l dt =
=¢g| +&) +ey+¢) +es.

We will prove that 7** is a contraction in the uniform topology on
T. At first we show that its range is contained in T.

By (2.7) (2.12), (2.13), (2.25), (2.26) and (4.4) we have

4] < moawl(u + MM, +1Cxa + (u +MC( + 1+ nQM,]
and by (2.14), (2.16) and (2.36) we have
el < MPH[(u+ Mo + (u + n)rC(u +n+maQMet+
+mnCE,]||z|| + mH' (u +n)N,.
By these partial estimates and (2.7),
¢i(z, »)| € o1w + 02w + 3w + MOoW-
[+ MM +1CEq + (u+m)Clu + 1 + Q)M+
+m2H'[(u + MM, + (g + n)rC(u + 1+ mnQ)Ma + mnCE,]||2||+
+mH' (u+n)N,.
By using (2.46) ana (4.5) we have
(4.13) I<i(z, )| < ow +4||2|| + Ra
where
R, = moaw[(u + )M, + nCE+

+(u+ O+ 1 +nQMgl + mH (u+n)N,.

(4.14)
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As shown in [10] we can write
(4.15) zi(z,y) = ¢:(3:(0; 7, ¥)) + (i, v)
and so by (2.7), (4.13)

|l2]] < w+ow +1|2]| + Ra

or
(4.16) l2]] < (1 = )N + o)w + Ry,)
and finally
e 6@, 9 < ow + AL — 1)@ + 0w + Ra) + B =
= (1 — y) ow +yw + Ry).
By (4.6), (4.12) and (4.17)
lcpi(VjI = |®;(§i(0; z, )| < [Fi(w)] +i 18:; ()| |25(as, v)| + |Gilas, v)| <
=1
< wo+ ool — ) HA +o)w +]Ra) +(1 =N ow+w+ Ry) =
= wo +(1 = V(o + 00+ aao)u} + Ra(1+ 00) + yw).
If we determine o sufficiently small such that
(4.18) (1 — )M + 09)Rs + Aw + (0 + 0g + 0op)w] < w — wo

we can deduce

|D:(v)| < w.

Now we prove that @ satisfies a Lipschitz condition with costant A.
For any two y, § € E" and 1 =1,...,m, by using (4.12) and the same
manipulations applied by Cesari in step (c) of theorem II (see [10], pag.
348) we can write

Ei(z,y) — Gz, §) =61 + b+ 63+ b4+ 65

where 6;,1,=1,...,5 have the same meaning as in Cesari’s proof.
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Let us denote by H, A’ constants such that
(4.19) [Aij(@,y, 2| < H, |Gij(z,y,2)| < H'

for all (z,y,2) € A, and 1,7 = 1,...,m.So we can take H,H' <
l+o,H H <o. :

By force of (2.7), (2.12), (2.13), (2.15), (2.17), (2.18), (2.22), (2.23),
(2.25), (2.26), (2.36), (4.4) and (4.16) we have

161] < {0 +moal(u+ MM, +nCE,+
+(p+mC+n+nQMIIAN +p)ly — §;

|62] < [mp + 1+ Q)1 +p)-
-(L+mHAYCw +m1 + Q)1 +mH)C'wlly — 7l;

185 < mC'(1+ Qm(u + Mg + (u + MrClu +n + mnQ)M,+
+mnCE)1 — 7)) (1 + 0w + Ra) + (u + N, 1|y — 7;

|64] < mH'L1o(u +n+ Q)1+ p)ly — 7.

By integration by parts and the use of (2.12), (2.23), (2.25), (2.36),
(2.37) and (4.16) we also have

165] < m*H'[CQu+n+nQ)A — 3" (A + 0w + Ra)+
+Cu+ 1+ QA +p)(L — )71+ 0w + Ra )+
+C(u+n+ Q)1 +p)Es + (u +MrQ M)+
+ (b + MM, + (u +rC + 0+ mnQ) My+

+mnCENQ( +p)ly — gl
Combining the estimate above we obtain

(4.20) Ii(z, ) — Gz, )| < (K + So)|y — 7|
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where

421) K'=oA(l+p)+mu+n+nQ +p)1+mH)Cw +m(l+Q)(1+
+mH)C'w +m* H'(u +n+nQ)(1 +0)(1 — )~ (2 +p)Cuw,
Sa = mo2 AL + p)( + MM, + 70, + (u + MO + 1 + Q) M1+
+m2C (1 + Q)L — ) [+ Mg + ( + )rCu +n+
b mnQ M, + mnCE)((1 + o)w + Ra) + mC' (1 + Q)(u + n)Na_-f-
A mH (wHn+ Q) +p)Lig + m*H'Cu + 1+ nQ)A — )L
2+ p)Re + m H'C(u + 1+ 1Q)-
(1 +p)Ea + (u+ MrQMa) + m*H' QUL + p)[(u + m)M,+

+(u+mrClu +n+mnQ)M, + mnCE,].
By force of (2.7), (2.23), (4.15) and (4.20) we have also

|zi(z, y) — 2i(z, P)| < |9i(Gi(0; z, y)) — $i(G:(0; =, G|+

4.22)
+[Gi(, 9) — G, D] < [AQ +p) + (K" + S|y — .

So by (4.3), (4.6), (4.11), (4.16) and (4.22) we deduce
|D;(3:(0; ai, ) — Pi(@:i(0; a;, )| < |Wily) — Vi (@)|+

+ Z |bi; W) — by D] |25 (as, )|+

J=1
+Z 16:;@)| |25 (as, ¥) — 25(as, D]+
j=1
+1¢i(ai, v) — Giar, P < Ao+ (1 — VA — o)w + Ro)+
+ooAL+p)+ K’ + S)+ K'+ S, 1|y — ] =
= [Ag+ (1 +p)(o + 0p + 00g)A + Synyw + SjwC + S5C w+

+(1+00)S, + (1 — ) 'R,y — 7]
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where
Sh=1+0)1 -y

S1 = m(l+00)(u +n+nQ)(L +p)(L+mH )+
+mH'(1+0)(1 — )~ 2+p)],

S5 =m(1 +oo)(1 + Q)1 + mH).
It we choose a sufficiently small in order that

Ao + (1 +p)o + g + 0og)A + Symow + SjwC + SHwC'+

(4.23)

| +(1+00)Ss + (1 — ) Ra < (L+p)T'A
we obtain '
(4.24) |®(G:(0; a4, 1) — (@0 a4, )| < (1+p) " Aly — 7

and so, by (4.11), we have for all v, 0 € E" and 1 =1,...,m
|D;(v) — ©;@)| < A+p) 'AQ +p)|lv — 5| =Aly — |

Thus we have proved that the transformation 7** maps T into T.

Now let us prove that the transformation T* : T — T is a
contraction. Let ¢, ¢’ € T, and 2,2’ € K1y, g = glz], ¢’ = gl[2'], © =T"*¢,
@ =T*¢, {i(z,y), {}(z,y) be the corresponding elements. Then, by using
the same manipulations of step (d), pag. 352, of Cesari’s theorem II in
[10], we have

Gz, y) -z, y)=e1+er+e3+es+es

with the same meaning of the symbols. We now estimate these terms g;,
i=1,...,5 one by one. By (2.12), (2.13), (2.15)-(2.17), (2.22), (2.36), (4.4),
(4.5), (4.16) and (4.19) we obtain

le1] < {0+ moal(n + MM, + (u + MO + 1 +nQ)M, + nCEq]}-
(lé — ¢l +Allg — ¢'lI;

le2| < mu +1+1Q)A +mHNCw|lg — ¢'|| + ml(1 + mHA )MCuw+
+(1+mH)Cwl||z — 2]|;

o] < mC{m(1 — 7)" [ + ML, + (o + DrCu + e+
+ mnQ)M, + mnCE,] - (1 +0)w + Ra) + (u+mNa Y|z — /||

lea| < mH'Ligl(u +n+1Qllg — ¢'l| +nllz — 2/|]1.



ERROR BOUNDS FOR SCLUTIONS OF SYSTEMS OF QUASILINEAR HYPERBOLIC,... 241

By integration by parts we have also

les| < mPH'Cllz — 2'[|(1 — 71+ 0)w + Ra)+
+m2H'Clu +n+1Qllg — ¢l +nllz =210 = N~ + 0)w + Ra)+
+m* H'Clu +n+1Qlg = ¢l +nllz — 2/[[1Ea + (u + mrQMa)+
+mH'[(u + )M, + (@ +mrC +n+mnQ)Ma+
+mnCE1Qllg — ¢'ll + 11z — ).
By using the previous estimates and (2.32) we obtain

|Gz, ) — Cilz, )| < ler] + |ea| +[ea] + [ea] + es| <
< {o +moal(p +mMMa + (g +n)Clu + 1+ NQ) M, +nCE]}-
[llé ~ &'l + nANLa||z — 2|1+ {mu + n + nQ)(1+
+mHNYCwAInL, + mlA +mACw + (1 + mﬁ)C’w]}Hé — 2|+
+mC {m(l — M) [+ )M, + (u + MO +n+
+mnQ)M, + mnCE,] - (1 + o)w + Re) + (u + Ny} |z — 2| |+
+mnH Lig[(uw + 1+ nQ)L\ +1]||z — 2|+
+m? BEmO( — 7)" (L + o + Ro)l|z — 2|+
2 H O — 7 (4 o) + R + 1+ n@A Lo + 1)z — 2+
+m>H'On(E, + (u + mrQMa)[(u + 1+ Q)X La . 1]z — 2'|[+
+m? H'[(u + M, + (u + n)rClu + n+ mnQ) M+
+ mnCEJQnNLe + 1)||z — 2.

So by (2.52) we can write

- (4.25) |Ci(z, 1) — (@, 0| < (L +Tol|d — ¢l
where '

L =0+ [m+mAWMCw+m +mH)C'w+2m*nH'(1+~)" L.
- 4.26)
(1+0)Cwl = k)M =T A +y+2mi(u+n)HH),
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and

Ty = moa[(u + MM, + (u + 0)Cu + 1+ 1Q) M, + nCE, ]+
+{[o +moa((u + M, +
+(u+mMC+n+nQ)M, +nCZ)InANL,+
+m(u +n+nQ)(1 + mHNCwn\L, + mC'(u + n)N,+
+m*O' (L — ) [+ MM, + (u + mrClu + 1+ mnQ) M+

(4.27) +mnCE,]- (1 +0)w + Ry) + mnH'[1+ (u+n+nQNLe)L1a+

+m*H'nC(1 — Y) 'Ry + m*H'nC(1 — ) (1 + o)w(u + 1+
+ QLo +m*H'nC(L — ) [1+ (u+ 1+ nQ)NLe) Ryt
+m? H'nOL + (u + 1 + nQALa](Ea + (u + 7)rQM, )+
+mH'[(u + MM + (s + n)rC +n + mn@Q)M, + mnCE,).
L+ QML) = k) A =) A+ y+ 2mPu + HH).

Finally, by (2.7), (2.32), (2.52), (4.3), (4.11), (4.15) and (4.25) we have
|D:(G:(0; asi, v)) — D'(GHO0; a;, v)| <

< B @IlbG50; as, 1)) — $5(50; as, )|+

j=1
+[¢i(ai, ) — Cilai, 1+ [Gilas, v) — ¢Hlas, )| <

< oolllg — ¢l + Allg — g'l| + (L + To)|p — ¢'|[1+
+(L+ To)l|é — ¢'|| < oolll¢ — ¢'|] + nAXL||z — 2/||+
HL+T)ll¢—¢'1+ L +Tlg - ¢l <

< [oo+ (1 +00)L + oonANLo(1 — k)11 — 4)~ L.

(4.28)

Uy +2m*(u+HH) + 1 +00)Ta||6 — ¢/||.

Also
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|®;(5:(0; a;, v)) — D;(Gi(0; a5, )| <
< |D@i(Gi(0; as, ) — P(F(0; as, )| + nAXLe||z — 2]].
So, by using (4.28) and (2.52) we obtain
|® - || < [&0 + (1 + og)L+
4.29)  +1+0o)nANLa(1 — k)11 — ) A+ + 2mP(u + ) HH')+
+ (1 +00)Toll|¢ — ¢'l].

Now by force of (4.26), (4.27) and by manipulations in the previous
inequality we have

||® — @'|| < [(0 + 00 + 00p) + T1Cw + TH,C'w+

+(1+ oo)nANLa(1 — k)11 — N A + 4+ 2mP(u + ) HH' )+

+ (1 + o0)TLl||¢ — &
where |

Tt = (1 +oo)lmn + mH") + 2m*nH'(1 — 1)1 + o)}
A=k A= A+ v+ 2miu+ ) HH,

(4.30) )

=1 +o)m(l+mE)(1 - k)'a -y

c(L+y+2m*(u+n)HH').
If we choose g sufficiently small in order that

(04 00+000) +TICw + T30 w + (1 + o)1 — k)1 — )~
(4.31)
A+ +2mPu+ ) HHYMANL, + (1 + 00)T, < k'

where k' denotes any number such that 0 < &’ < 1 we have

(4.32) | — @] < Kllp — ¢]l.
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Thus, T**I — T is a contraction. By Banach’s fixed point theorem
there is a unique element ¢ € T with ¢ = T**¢. For this element by
(4.11) and (4.15) we have

¢:(3:0; ai, v)) = i) — > bijz;(as, v) — Cilas, v)

j:l ' .

or

zi(a;y) = W;(y) — E bi;2;(as, )
=1

and by using (4.1) also

m _
Zbi;'(y)zj(a;,y) =Yi(y), y€E", 1=1,..., m.
J=1

Thus z = z[¢] is the unique solution of the boundary value problem
®B). - ' '

As in theorem II of Cesari’s paper [10], we prove that the fixed point
¢ € L of transformation 7** is also a continuous function of V. Let ¥,
V' two functions satisfying (4.6) and 2,2’ the corresponding elements.

By (4.11) and (4.32) we have
6 = &Il <I¥ =¥+ |6 - |
o — &'l < X =&)WY - ¥

and by (2.52)

Iz —2']| <A - kB)7'A — )7 A + 4+

(4.33)
+2m(u+ mMHH)1 - k)Y — .

By (4.33) we have proved the continuous dependence of the solution
of the boundary value problem on the boundary data.

We remark that the new restrictions imposed on the size of q,
0 < a < ap, derive from (4.18), (4.23) and (4.31).
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5. An estimate of approximation error for the boundary value

problem.

In this section we will denote the boundary value problem (B) by
(B, n): in this way we point out explicitely the dependence of the system
(c.1) on parameter 1,1 > 0. Analogously, we refer to the Cauchy problem
(C) as problem (C, 7). The parameter u,u > 0, will be considered fixed.
We name z(”),n > 0, the solution of the problem (B,7n). When 7 = 0,
2©® is the solution of the boundary value problem for the linear system
(8.1) with data (b.2). As in Section 3, we suppose that ||(B;;)~}|| < pH/,
where H' is the same constant introduced in (2.16). Moreover, to apply
theorem 2 of Section 4 to the linear system (3.1) we suppose that the
matrix (A4;;) = (uBi;) has «dominant» diagonal terms; i.e. it satisfies (4.7)
with the notations (4.1)-(4.5).

Let o™ be the fixed point of the transformation Ty*:1 — 1. Inthese
notations we have emphasized the dependence of the transformation 7°**
on 7. At first, we estimate ||#™ — ). For every > 0, let us inductively
define ¢ = € T, g™ = T;*gb("’"_l) and so ¢ = lim ¢ without

respect to the choice of function ¢ = ¢ ¢ T. 'l:ll?ez:fore it is not
restrictive to choose gb(”’o) = ¢(0,0) = ¢. Let. z("’)[gb], n > 0, be the
solution of the Cauchy problem (C,7) with initial data ¢ € T, and let
g [p] = g[z™[4]] be the corresponding function in Kj. _

We remark again that the estimate (3.4) is independent on the choice
of function z € Kj, so the estimate (3.4) is independent on the choice of
function ¢ € T, too. Indeed, from the definition of the transformation 7,
it easily follows that g(o) [z(o)[qS]] does not depend on ¢: from now on we
will simply write ¢@ instead of g©@[¢].

Forevery y€ E", 1=1,...,m we have

6@V 18105 a5, 9) ~ ¢ GV [910; 01, 9))] <
(5.1) < PGP 18100 as, v)) — 40P GO0; as, v))|+

+ 160 @GO0; a5, ) — 6P GP 181005 04, 1)),
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By definition (4.11) and (4.15) we obtain
168D G (6105 as, v)) — 6OPEO0; a4, )] <
(5.2) < 3 By @)l 120181, v) — 2 161, v+
j=1

+ ¢ 1810, ) — (181, ),
where Cz-(”)[gb] = Ci(")[d), 2M[$]], n>0,i=1,..., m, and also, by (2.7),

1CP1¢1(as, v) — ¢, v)| < |27 [$)(as, v) — 20 [P)as, v)|+
(5.3) +16:GP[1(0; ai, 1)) — ¢ (G V0; ai, v))| <

< Hz(")[gb] _ z(O)[d)]” +AHQ(")[¢] _ g(O)”_
Therefore for every 1=1,...,m and y € E” we deduce

167D GP 61005 a1, 1) — $OPGO0; 0, )] <

(5.4)
< (1+00)[|2P[¢] — 21| + Allg™ (4] — ¢

and so, by (3.4), (3.23) we can conclude

5 1™ — $OD|| < (1 + 0o)[E2 + E1nMa(l — pLo) (1 — &)+
(5. |
| + 2AnM,(1 — uLo) "

Let ¢ be a positive integer, ¢ > 1. We have

169G 69 D1(0; as, 1)) — $OPGPIHMITDIO0; as, )| <
(5.6) < |2 @GP [¢97DY(0; as, 1)) — 6P G V(05 as, )]+

+1622G00; a5, 1)) — ¢V G [6MIVO0; as, ).
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At first we estimate the term

(6P G 10105 01, )) — $00 G103 as, v <

< 1B @) 2P 6™ Y as, ) — 20109 V)(ay, y)|+
J=1

+1¢GP16MD 1as, v) — P10 V)i, )| <

< o0l|2” (6™ D(ai, v) — 2 16D 1(as, )|+

+ 12 6™ D) (as, ) — 2[00V 1(as, )1+

+ ¢ 1™ D (as, v) — (1D (as, )|+

G167, 9) — O Nl <

< 00l]z® — 29| + ool|6" V(GO as; 7, ) — BTG Oais 3, )|+
16719 0) @i, ) — V16 e, )| 1+

15 177 V)ai, ) — 201 D lasy)|+

L ) [N B ORI CRE R
G as, ) = (O18% as, v)| <

< 00)|2™ — 29| + o1 + LO + TO)|| gD _ 4Oa-Dy 15
+[2 = 2O+ Allg® — )|+ @O+ TO|preD — g0

Here, we have used the continuous dependence with respect to the
data of the function ¢ (see (4.25) in Section 4). We remark that we have
applied (4.25) in the case 7 = 0. So (4.25) signifies

(4.25) 1€P161 — ¢O1N)| < WO+ T — ¢)|
with

(2.46Y Y = mPH (uM, + p*rCM,),
(4.14Y RO = mcrzw(ul\o/la + P CM,) + muH'N,,

4.26Y LO = o+m(1+mD)C'wd —k) (1= 11 +4Q+2m2u HHY),
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and
Téo) = moy(uM, + p*CM,) + [muC' N+

+m20' (1 — 4O UL, + p2rOM (A + 0w + RO+
4.27) .
+ m2H' (uM, + p>mCOM)IA — k)11 +4O)~L

A+ 4 2mPuHH).
So, by using (3.4) and (3.23), forevery y € E" and 1 =1,..., m we
have
162G 1810 01, ) — 600G 16T P10; a4, )| <
< (L+0p)E2 + E1nMa(1 — pLa) 11 — &3) '+
67 + AnMo(1 — pLg)~' + [0 + (1 + o) L@+
+TéQ))]“¢(n,q—l) _ ¢(0,q-1)|l'
Then, (5.6) and (5.7) provide
169 — ¢O2| < (1 + o0)[Er+
(5.8) +E1MMa(l — pLa) ' 11 — £3) 7! + 2AnMa(1 — pLa) ™'+

+[o0 + (1 +00)LQ + T |p™e~D — gD,

By recursion, from (5.5) and (5.8) it follows that

o™ — ¢OD|| < {1 + 0p)[E2 + EiNMa(l — uLa) 111 — &) 1+
+ 2AnM,(1 — L)'}

q—1
> oo+ (L + o)L + TN
h=0

As [o0+ (1 +00)L @ +T)] < 1 (see (4.31) of Section 4) we conclude
that

6™ — || < {A +00)é2 +E1nM. (1 — pLa) 1A — &)+
1

1 — [og+ (1 + o) (LO + Ty

(5.9)

+ 2AnM,(1 — puLg) '}
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Finally, we can evaluate an estimate of ||z — 2||. By using (3.23)
and the continuous dependence on the data of the function z (see (2.52)
of Section 2) applied in the linear case n =0, we have

”z(n) _ z(O)“ - Ilz(n)[¢(n)] _ Z(O)[d)(o)”l <
< (]2 [¢D] = 2 O™+ ]|z O[p™] — O[O <
< [E2+EMa(l— uLa) ™11 — €3) 1+
+ (1= kYA =y A+ 4 2mPu HH||6® — 69| <
619 < [E+ &Ml — pL,) 1A — &)+
+(1 = k)71 — 4Oy 11— 4O 422, 7 1.

) {(1 + GO)[E—Z +5—l'r]Ma(1 — I[,[,La)wl](l — 53)”1_*_
1
1 — [oo + (1 + 00)(LO® + T

+ 2AnM,(1 — pLy)"'}

which is the approximation estimate we were looking for.
Let us remark that the estimate (5.10) vanishes as 7 approaches to

Zero.
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