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vibrazioni continuino ad accompagnarci.

Abstract. This paper deals with the effects of generalized damping distributions on vibrating linear systems. The attention is
focused on continuous linear systems with distributed and possibly non-proportional viscous damping, which are studied in terms
of modal analysis, defining and discussing the orthogonality properties of their eigenfunctions.

Exact expressions of the frequency response functions obtained by direct integration of the equations of motion are compared
with the analogous formulas based on the superposition of modes. In addition, approximate expressions of the frequency response
functions of both continuous and discrete (finite element models) systems in terms of their undamped eigenfunctions/eigenvectors
are also considered and discussed.

The presented methods are explained, compared and validated by means of numerical examples on a clamped-free Euler-
Bernoulli beam.

1. Introduction

The effects of generalized damping distributions on vibrating linear mechanical systems have been not exhaustively
studied in terms of modal analysis, especially as regards to continuous systems, i.e. distributed parameter systems.
In fact, continuous systems are seldom modelled considering damping distributions, and when this is the case, the
models are almost always based on the proportional damping assumption, i.e. the damping operator can be expressed
as a linear combination of the mass and stiffness operators [1]. This way of modelling is of course so often adopted
since it carries little analytical and computational further effort in addition to the undamped case analysis. But
in many real situations the proportional damping assumption is not valid and such a simplified approach does not
describe the dynamics of the system with sufficient accuracy. So, in this paper the more general case in which the
damping distributions result to be non-proportional is considered.

Since the existing bibliography about modal analysis for distributed parameter systems with generalized damping
concerns particular cases [2,3], a complete theoretical statement valid in the general case is herein included. It is
nothing but the natural extension of the undamped continuous system theory [1], in which the well-known results
for the discrete systems are easily found as a particular case.

After reducing the differential boundary problem to an eigenvalue problem through the separation of variables,
the existence of orthogonality relations valid for the general case of non-proportional damping is demonstrated. By
means of such relations, the general solution can then be expressed through the so-called expansion theorem. A
discussion about the meaning of the modal parameters in case of non-proportional damping is also included.
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Since the solution of the above mentioned differential eigenproblem is often a very difficult task, several methods
giving approximate solutions have been proposed [1]. Among them, this paper includes the description and
application of a technique presented in [4], valid when the solution is known for the undamped system only.

For a rather large class of continuous systems, however, analytical solutions (i.e. analytical expressions of the
eigenfunctions) can be found. According to [5], a method for the solution of the differential eigenproblem is
described, suitable for a class of vibrating continuous systems with non-proportional damping distributions, according
to different damping models.

This method, starting from a partition of a continuous system in homogeneous substructures or segments, matches
a reduction of the differential equation order with a transfer matrix technique. So it can be easily applied to a large
number of continuous vibrating systems with non-proportional damping, provided that closed-form solutions of the
undamped case for each substructure are known. Moreover, this approach leads to an easy computer implementation
and presents a high computational efficiency, due to the invariance of the matrix dimensions with respect to the
number of substructures considered.

The particular case of non-homogeneous Euler-Bernoulli beams with different non-proportional internal and
external damping distributions is considered. Actually, only little changes in the coefficients would be required to
solve the problem for strings, rods, shafts or Timoshenko beams with viscous or more complicated damping models.
The possibility of extending the proposed method also to several kinds of membranes and plates is intrinsic in its
formulation.

The attention is then focused on the expression of the frequency response functions (FRFs). This result can now
be achieved through the modal analysis approach, since both the modal parameters and modal shapes are available
applying the above mentioned analytical methods. The same techniques, however, allow to express the FRFs in a
different way, which does not require either eigenvalues or eigenfunctions, i.e. which does not need the solution of
any eigenproblem. This result is simply achieved by direct integration of the equations of motion, and since in this
case the solution is not expressed by means of a series (indeed it is the sum of the series resulting from the modal
approach), it could be very useful for high frequency analysis.

Numerical examples are then included in order to show and to compare both the accuracy and efficiency of the
proposed methods. Non-proportional damping distributions are tested on a non-homogeneous Euler-Bernoulli beam
in bending vibration and consequently a discussion on the related frequency response diagrams is presented.

Finally, the results are validated by means of a finite element (FE) model, thus showing their reliability in problems
involving non-proportional damping distributions.

2. Modal analysis of continuous systems with viscous gener alized damping

In this section some fundamentals of modal analysis for distributed parameter systems are presented. Among
them, a statement of the expansion theorem, leading to the general solution, a discussion about the meaning of the
modal parameters and finally the expression of the frequency response functions, both in exact and approximate
form.

2.1. General solution: The expansion theorem

The dynamic behaviour of a continuous system with viscous generalized damping can be described by the
following equation of motion
62
M| —
ke
whereM, C, K are linear homogeneous differential operators and are referred to as mass operator, damping operator
(generally non-proportional) and stiffness operator, respectiyely,the external force density; andx are the
displacement and the spatial coordinate in a domain of exteDsioespectively (the spatial coordinate as well as
the displacement and the external force density can be scalars or vectors, but here the scalar notation is adopted,
since in what follows this does not represent a loss of generality) Eniime.

w(m,t)} +C {%w(m,t)] + Kw(z,t)] = f(z,t), €D (1)
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To solve Eq. (1), appropriate boundary and initial conditions must be satisfied by

If the damping operator can be expressed as a linear combination of the mass and stiffness operators, it is said to
be proportional [1], but in this paper the more general case in which it results to be non-proportional is considered.

Recalling that self-adjointness of differential operators in continuous systems corresponds to symmetry of matrices
in discrete systems, in the following the operafvfsC andK will be supposed to be self-adjoint. This assumption
is unnecessary and could easily be removed, as it will be clarified in the end of the present section. Nevertheless
it will be adopted since such properties hold in most of the existing models, carrying less cumbersome analytical
developments.

With the notation

(wlawz):/lewde (2)

denoting the inner product between two scalar functiopngndw, over a domain of extensiaP (if w; andw, are
vector functions, then the integrand in Eq. (2) represents their scalar product), a linear differential dpsratod
to be self-adjoint if

(w1, L[ws]) = (w2, L{w:]) €©)
which is a property of symmetry with respect to the inner product.

As usual in modal analysis, the differential boundary problem will be reduced to a differential eigenvalue
problem by separating the variables, so the solution will be given by a linear combination of terms in the form
w(z,t) = ¢(x)q(t). Note thatalthough the global solution will always be real, complex teiimg; (¢) are expected:
in the case of non-proportional damping the phasé(ef will not be constant with respect tg and consequently
the motion will be non-synchronous [5].

Equation (1) can then be rewritten in the state-space form as follows

Alw] + Blw] = f (4)

the dot denoting derivation with respect to time, where A and B are linear homogeneous differential operators,
andf are the state vector and the external force density vector, respectively. They can be expressed as

= [G4]. 0 [3 8] w2 e[

so that, ifM, C andK are self-adjoint, A and B result to be self-adjoint as well.
The state-space Eq. (4) leads to the differential eigenproblem
sA[z] + Blz] = 0 with eigenvectorg = [¢ sp(z)]” (6)

The solution of this eigenproblem forms an infinite set of pairs of discrete values, each pair characterizing a mode
and being related to a pair of eigenvectors (i.e. to a pair of eigenfunctions). In the case of underdamped modes,
complex conjugate pairs,, s, of eigenvalues are expected, yielding pairs of complex conjugate eigenveeiors
z; (i.e. pairs of complex conjugate eigenfunctiahs, ¢.). On the other hand, in the case of overdamped modes,
pairs of real negative eigenvalues are expected, yielding pairs of real eigenvectors (in the following, the notation for
the underdamped case will be adopted, but the results are valid in both cases).

The eigenvectors orthogonality properties can be derived rewriting Eq. (6) for the nth and mth mode, respectively,
pre-multiplying the first by:' and the second !, then integrating them both over the spatial domairi.e.

SnA[Zn] + B[Zn] =0 = Sn(z'rn; A[Zn]) + (Z'rn; B[Zn]) =0 (7)
SmA[Zm] + B[Zm] =0 Sm (Zn; A[Zm]) + (Zn; B[Zm]) =0
which, taking into account the self-adjointness of A and B, yield

(5n - Sm)(z'rn; A[Zn]) =0
{(Snlsnz1>(zm;B[zn]) =
00— then d (@ Alznl) = an [ (2, Alzy]) = 0
it =mth {(vaB[zn])bn ’ {( * Blz,]) =0 (8)

i . (Z'rn; A[Zn]) =
f n # m then { 2 ]



246 S Sorrentino et al. / Frequency domain analysis of continuous systems with viscous generalized damping

Due to the orthogonality properties of the eigenvectgysany other vector in the same space of functions can be
expressed as their linear combination. This statement constitutes what is usually known as the expansion theorem,
so that the free response can be written in the form

w(z,t) = Y [mdn(@)e’ + v (x)e ™) 9)
n=1
wherey,, is a complex scaling factor which depends on the initial conditions. Note thandb,,, if taken separately,
are known unless an indeterminate scaling factor albeit their ratio is fixetl, i/e,, = —s,.
When at least one of the differential operators involved in the model results not to be self-adjoint the expansion
theorem still holds, but the orthogonality relations Eq. (8) have to be replaced by a set of biorthogonality relations,
which require the solution of two eigenproblems for the so-called right and left eigenvectors, respectively [1].

2.2. Expression of the frequency response functions

A harmonic excitation force of amplitudg acting with angular frequenceyat a coordinate ; is now considered.
Since the system is linear-time-invariant, the respanseill still be a harmonic oscillation at the same angular
frequencyw. So, taking into account the expansion theorem and dropping the time dependent terms, the state-space
equation of motion Eq. (4) can be rewritten as

> To{(iw)Alzm] + Blzm]} = fo (10)
n=1
wherel',,, is a scaling factor anfl, = [fod(z — x£)0]7, & being the Dirac distribution.
Pre-multiplying byz”', integrating over the spatial domain and remembering the orthogonality properties

n’

Eq. (8), Eqg. (10) gives

r, = (?naﬁ)) _ ¢0.(=’Cf)f0 (11)
a’fl[(l7 w) - Sn] an[(lw) - Sn]
where the expression of the modal forfg = (z,,fy) in terms of¢,, and f, is due to the Dirac distribution
properties.

Finally, if the eigenfunctions are normalized with respeci fQi.e.

- 1

Pn(z) = \/—ajﬁbn(x) (12)
taking into account again the expansion theorem and Eqs (9) to (11), it is possible to express the system receptance,
defined as the ratio of the amplitude of displacement at a coordintatehe intensity of a single harmonic force

acting at a coordinate; as follows

W _ 3 [Gnlendnta) | 6uan)dn ) (13)

wa;cf(w) = % - o (Zw) — Sn (ZW) -5

The expressions of other frequency response functions, such as accelerance or mechanical impedance, follow
immediately from Eq. (13).

2.3. Meaning of the modal parameters

The definitions of the modal parameters which hold in the case of proportional damping, usually referred to as
modal mass, modal damping and modal stiffness, can be extended to the non-proportional case according to

mp — (¢:w M[¢n])7 Cn = (¢:w C[¢n])7 kn = (¢:w K[Qj)n]) (14)

Despite their dimensions are coincident with those of a modal mass, a modal damping and a modal stiffness,
respectively, their properties are not the same. To highlight this concept, it is necessary to put in explicit form their
relationships with the eigenvalues.
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Remembering the previous definitions, the orthogonality relations (8a) yield
(zr,Alzn]) = 0= Re[s,] = — Cn (25, Blzn]) = 0= |s,]? =

kn
n? no

2my, My,

(15)

Since these expressions are formally the same as in the case of proportional damping, then by analogy it is possible
to define

Wr(znp) _ % Re[Sn] _ 7<’r(lnp)wgnl)) |Sn| _ w’gnp)
(np) cnn = (np) (np) A - (np) (16)
n T e Im([s,] = wn 1-GY, rg[s,] = m — arccos(y,

Sow!"” represents the modulus of the related eigenvajuandc™” defines its phase, but it is very important to
underline tha:tu,(L"p) is not the modal natural angular frequengyand its magnitude depends on the rate of damping,

whilst Q(Z”’) is not the modal damping ratig, which holds in the case of proportional damping. As a consequence,
the it modal natural frequency cannot be extracted directly from the corresponding eigenyalue
The gap between ™™ and wn gives a measure of the non-proportionality effects, therefore it suggests the

definition of the following “modal” index of non-proportionality

(np)
NP, = (17)
W,
which is a dimensionless, real, non-negative parameter. For different definitions of non-proportionality indexes the

reader is referred to [6].

2.4. Approximation of the solution

The solution of the eigenproblem Eq. (6) is often a very difficult task (in Section 3, however, an analytical technique
suitable for an important class of continuous systems will be described) and several methods have been proposed to
by-pass the problem when closed-form expressions for the eigenfunctions are not known. Suffice is to remember
the Rayleigh-Ritz approach where the eigenfunctions are defined by a sum of functions, referred to as admissible
functions, satisfying the geometric boundary conditions only [1].

In this section a method giving approximate results is presented, valid when the solution is known for the undamped
system only. According to this method, as clearly explained in [4], the solution can be approximated by a finite
expansion in terms of the undamped system (known) eigenfungtidres

N
w(z,t) = Z j(x)r;(t) = @'r (18)

Substituting this expanded form of the solution in the equation of motion Eq. (1) and taking into account the
orthogonality relations of the eigenfunctiopswith respect taM andK, it is possible to rewrite the state-space
Eq. (4) as follows

Av+Bv=f (19)
where
53] e[S e [ o[

and the N x N matricesM, C and K are built up by means of the following inner products involving the
differential operators M, C, K and the eigenfunctigns
M = [(¢i,M[g;])], C = [(¢i,Cle;])] = CT, K = [(¢i, Kp;))] (21)
with i, 7 = 1,... N. Itis worth noticing that botiM andK are diagonal.

The solution of the related algebraic eigenvalue problem, consisting of a 8&t efgenvalues (says 51”) and
2N eigenvectors (sayu,,), allows to uncouple the equations of motion Eqg. (19) introducing the usual coordinate



248 S Sorrentino et al. / Frequency domain analysis of continuous systems with viscous generalized damping

transformationy = Un (U denoting the eigenvector matrix), which in the frequency domain yields

fn

- 22
a'P](iw) — s8] (22)

TIn =

w~herea5l') is the nth element of the diagonalizationffand f,, is the nth component of the modal force vector
UTf.

If a harmonic excitation force of amplitud& acting with angular frequency at a coordinate xf is considered,
according to Eq. (20f,, can be expressed by means of the eigenfunctioofsthe undamped system as follows

N
fn = Zuinsﬁi(lﬂf)fo (23)

i=1

Introducing Egs (23) in (22) and taking into account backwards the links amarandr, the expansion Eq. (18)
yields the system receptance

w2V SE i) | |0 @ ()
2Ol (w) = E = Z:l { 1 — } [Sgr) 1 } (24)

the superscriph denoting normalization with respect to the square roat't.

3. Further investigationsfor a class of continuous systems

In this section an analytical method for the solution of the differential eigenproblem is presented, valid for a
class of vibrating continuous systems with non-proportional damping distributions, according to different damping
models [5]. The results are then applied to the calculation of the FRFs. Such methodology will in particular be
implemented for non-homogeneous Euler-Bernoulli beams in bending vibration. However, it could be easily applied
also to strings, shafts, rods and Timoshenko beams with any possible boundary conditions.

3.1. Solution of the eigenproblem

In the special case of an Euler-Bernoulli beam in bending vibration, the mass, damping and stiffness operators

consist of
0? 0? 0? 0?

M =m(z), C=c¢(z) or C= 922 [cin(:c)w} , K= 92 {k(x)w] (25)
wherem(z) is the mass per unit length of beanty) is the external viscous damping distributien, (x) is the
internal viscous damping distribution (according to the Kelvin-Voigt model, used in conjunction with the assumption
that cross-sectional areas remain planar during deformatior@nd= EI(z) is the bending stiffness, or flexural
rigidity, in which F is the Young’s modulus of the material ahds the area moment of inertia [1].

In order to highlight the effects of non-proportional viscous damping, the differential eigenvalue problem Eq. (6)
will be solved in the special case in whiel(z), c(x) (or cin(x)) andk(z) can be considered piecewise constant on
D.

Dividing the beam inta” segments of lengthz, = x, — z, — 1 (wherexq = 0, xp = [, length of the beam),
and assumingn(z), c¢(z) (or¢in (x)) andk(z) constant on each segment, the differential eigenvalue problem reduces
to a set ofP fourth-order ordinary differential equations with constant coefficients of the type (the roman number
denoting the derivative order with respect to the spatial coordinate)

P (z) = apop(x) (26)
with appropriate boundary conditions, where
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2
o) MpsT +Cps

ap = with k), =k, (27)

Kp
which holds for external distributed damping and

2
ap = { -5 Gith Kp = CinpS + kp (28)
Kp

which holds for internal damping.

Note that more complicated damping laws, even involving fractional derivatives, could be easily taken into account
simply by modifying the definition o, as a function ok. In any cases is obviously the same for every segment.

At this stage it is convenient to convert Eq. (26) into a set of four first order equations.

According to the state vector definition

y(z) = [6"(2) ¢"(x) ¢'(z) o(x)]" (29)
the solution for each segment can then be expressed as
yp(z) = q)pepr Cp (30)

where®,, is the pth segment eigenvector matrl, is the pth segment eigenvalue matrix (with eigenvahigs- a,
A2 = —a, A\3 = ia, Ay = —ia) andc,, is the pth segment constant vector.
Moreover, it is possible to show [5] that the solution at any ppintan be written as
1
Ypl(@p) = My1(0) with TI} = [ (@it im0 1B, 4] (31)
i=p

where the ith segment eigenvectors matrix and its inverse, written as functienstave the form

9 . 3 o 1
al —a} —ia} ia? a;® a;? a; 1
2 2 2 _ 2 3 o _1
B, |G @ —ap ey | g1 1| —a;” a;" —a; 1 (32)
Tl ag —ay ta; —iay i 4| da? 2 —qa; 1
i —a; 1a; i ia;° —a; © —ia;
11 1 1 —ia;® —a;? da;' 1

andB,_; are 4x 4 matrices obtained by imposing the continuity of displacement, rotation, moment and shear in
x = xz; — 1. Clearly, these constraints represent the inner boundary conditions between the adjacent beam segments.
Note thatB, = I and that in the absence of external constraints;iny, B;_; can be written as

ki 'kic1 000

B 0  w;'ki—100
Bi1 = 0 0 10 (33)
0 0 01

A more general expression fBr; taking into account external constraints of different kinds, is given in [5].
It is now possible to relate the solutigril) at one end of the beam to the solutip(0) at the other end, which
enables to express the boundary conditions at the ends of the beam in the following form

Beoy1(0) =0
{B;niyl(m —0 (34)

whereB, are 2x 4 matrices depending on the kind of constraints gr@) = ¢1c;. For example, in case of a
clamped end, a pinned end or a free end, they simply are
0010 0100 1000
Be = [0001] Be = {0000} Be = {0100]
champed pinned free

(35)

Equation (34) form a linear homogeneous system of four algebraic equations in four unknowns (i.e. the constants
Cl).
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Table 1
Short notation for the modal parameters
Yn ¢n Bp
(¢n, M[pn]) (7, M[pn]) mp

(¢n, Clon])  (¢5,Clpn]) external damping ¢

internal damping ¢y, p

(0n, Kipn]) (47, K[on]) kp

A DMOO|XR

Thus the solution of the eigenproblem follows directly by setting to zero the determinant of the coefficient matrix of
system Eg. (34), due to the fact that an algebraic system possesses non-trivial solutions if and only if the determinant
of its coefficient matrix is zero, and recalling that the elements of the coefficient matrix of system Eq. (34) depend
on the (unknown) eigenvalue

It should finally be noted that mathematically the eigenfunctidbnssult to be classical solutions (i.e. four times
continuously differentiable in D) everywhere, except in a finite subsél ¢fe.x = x,, withp =1,..., P — 1):
here they result to be weak (in this case at least one time continuously differentiable) as a consequence of the
discontinuities introduced in the functiong x), ¢(x) andk(z), which have been assumed piecewise constaft.on

3.2. Frequency response functions through modal analysis

If the differential eigenproblem has been solved (i.e. both the eigenvalues sn and eigenfunctiasvailable),
the FRFs can be calculated according to Eq. (13) after the parameters an have been determined.

To this purpose, it is necessary to write in explicit form the relations among the paramgtéys the differential
operators M, C, K and the eigenfunctiops, i.e.

an = (¢n, Cldn]) + 250 (¢n, M[dn])

which are a direct consequence of Eq. (8).

Thus, since the eigenfunctions are known, it is possible to calculaig andb,, as well as the modal parameters
defined in Section 2.3 simply by applying the definition of inner product.

Introducing the notation of Table 1, according to definition Eq. (2) and taking into account the spatial domain
partition of Section 3.1, the above inner products can be written in quite similar form as

(36)

p

p
_ v 2 _ v 2
Yn = pz:; {ﬁpanz) /Awp ¢7L($)d$} v &n = Z {ﬁpanp /Awp |¢n(x)| dm} (37)

p=1

Substituting the eigenfunction expressions given by Egs (30)—(31) into Eq. (37), straightforward but tedious
integrations eventually give

p p
Yo = BlatHIEWH, ), &= B,{alHIEPH,}, (38)

p=1 p=1

whereH,, = I} _,y:1(0), IIj = I, (4 x 4 identity matrix) andEl, E?) are 4x 4 matrices whose elements
are respectively

1 e(/\i+)‘j)Amp —1 @ e()‘:+/\j)AIP —1

€ij i + )\j » Fig T )\;F + )\j

(39)

in which the eigenvaluesdepend from both the modal indexand the spatial domain partition indgxaccording
to the definitions Eqgs (27) and (28).
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3.3. Frequency response functions through direct integration

Besides the modal approach just described, the analytical tools developed in Section 3.1 allow to express the FRFs
in a different way, which does not require either eigenvalues or eigenfunctions, i.e. which does not need the solution
of the eigenproblem.

This result is achieved by direct integration of the equation of motion, and it is nothing but the sum of the series
in Eq. (13).

The Euler-Bernoulli beam model with piecewise constant distributions described in Section 3.1 is now considered
under the effect of a harmonic excitation force of amplity@deacting with angular frequency at a coordinate
x¢. Since the system is linear-time-invariant, the response will still be a harmonic oscillation at the same angular
frequencyw. So, dropping the time dependent terms, the equation of motion for each segment of the beam reduces
to

W () + al W (x) = k) fod(z — zf) (40)

where the coefficients,,, andx.,, which are constant within each segment, can be defined according to Eqgs (27)
and (28) by substituting with iw.

Equation (40) is a non-homogeneous ordinary differential equation with constant coefficients, since the angular
frequency is considered as a given parameter.

As in Section 3.1, in order to find the global solution, the four coefficients of c1 have to be determined by imposing
four boundary conditions at the ends of the beam.

By assuming, without loss of generality, that the external force acts at a separation point between two segments
(say:xz; = xp), and defining the external force vector in the state-space as follows

f=[k,1fo 000" (41)
(ko beingsk,, evaluated inc ;) then the system yielding the unknown coefficients pfs simply

B L] ®i.c1 =By [I=/] £
{Beoqhzcl =0 P it zy € (0,

or (42)

Bel [Hl]w <I>1wc1 = _Bel [Hl}w f . o
{Belq)loi)cl = —Beof ! if vr =0

where it is important pointing out the following remarks:

— the matriceB. are the same as in system Eq. (34);
— the matricedl, ® (andA) retain their own definitions as in system Eqg. (34), but the subsenpeans that ,,,,
has been substituted ly,, (i.e. in every definition sn has been changed.n

As an example, if a homogeneous beam with two different external damping levels forcedwith 2, < ¢ <)
is considered, the system Eq. (42) simply reduces to

Bel[(I)QweAQW(l_xl)q)ijq)lwej\lwwl] =C1 = _Bel[q)QweAZW(l_wf)q)gu}]f
Be®1,c1 =0

so the receptance at a coordinat@vith 0 < = < 1) can be easily written in function of the four coefficients

(43)

a1,T —QA1wT 1a1,6T

1 _
2, (W) = —[c11e™“" + cize + cizet et epe T (44)

fo
The coefficients, are generally rather complicated functions of hothandw. However, in some particular cases
such functions take a very simple form, as for example in the case of a clamped-free homogeneous Euler-Bernoulli
beam forced at its free end { = [), whose receptance at a coordinate given by

1 Si(al)C_(ax) — Cy(al)S_(az)

kas % (al) — Sy (al)S—(al) (45)

cai(w) =
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where
C4 () = cosh(-) % cos()
S (+) =sinh(-) % sin()

As it is expected, if the angular frequency tends to 0, the system receptance Eq. (45) tends to the static deflection
of the beam, i.e.

(46)

2

_ ) x x
ilg%)xal(w) = ilir%)woq(w) =% (1 - g) (47)

and this limit still holds whatever non-proportional damping distribution is added to the beam model.
Note that the described method could also be applied to the calculation of the response to distributed harmonic
loads, retaining the notation of system Eq. (42) and introducing a convolution integral.

4. Numerical example

A numerical example is presented in order to test and to compare the described methods, and eventually to validate
the results by means of a FE model, showing their reliability in problems involving non-proportional damping
distributions.

As already shown in [5], the proposed approach is characterised by a high computational efficiency, due to the
reduced dimensions of the matrices involved in the numerical procedure. The most crucial point of the modal
approach is the zero finding routine needed to solve the algebraic system Eq. (34). This problem has been solved
applying the secant method to a real function of complex variable [7]. All the codes have been written in®atlab
and computed by an AMD-Athlon XP16@0processor. The zero finding routine runs in less than one second and
the finite element model presented in Section 5 runs in some tens of seconds.

4.1. Analysisof non-proportional damping effects

The selected numerical example concerns a homogeneous Euler-Bernoulli beam clampediand free in
x = [ with a non-proportional damping distribution consisting of two different levels of external damping according
to Fig. 1 (as regards to the effects of internal damping in similar cases, the reader is referred to [5]).

The parameters for each of the two segments in which the beam is divided are as follows:

—lengthl = 0.30m,; =0.10 m,l> = 0.20 m;
— mass densityn; = ms = m = 0.243 kg/m;
— bending stiffnesg; = ky, = k = 4.725Nm?2,

In this example the distributed external damping density on the second segmegtr < [) is kept constant,
c2 = 1.675Ns/n¥, while on the first segmerfd < z < [4) it varies from (proportional damping case) to infinity
(non-proportional damping limit case). So, different levels of non-proportionality can be obtained by increasing the
damping on the first segment only.

In the following, the dimensionless parameter

x=2 (48)
C2

will provide a measure of both the non-proportionality and damping levels.

Figure 2 shows the root loci for the first four modes of the beam under the effect of non-proportional external
damping. The curves in the proportional damping case can be obtained by varying, e c, keepingy = 1:
for underdamped modes they are a quarter of a circle. For each mode, the two trajectories (proportional and non-
proportional case) start from the same point s(prop) correspondingtoc; = 1.675 Ns/n¥. Due to the particular
choice of the damped segment lengths, even for the first and second mode relevant differences can be observed
between proportional and non-proportional external damping. The curves are nearly coincident with the proportional
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Fig. 1. Cantilever homogeneous beam with non-proportional external damping.
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Fig. 2. (a) root loci for external damping; increases and: remains unchanged (non-proportional damping); (b) zoom on first mode.

case only in the neighbourhood of the starting peitit°), then they strongly diverge at higher values of damping
and never reach the real axis.

The third mode behaves more like the proportional case and becomes overdamped at high values tie
contrary, the fourth mode curve never reaches the real axis but intersects and then tengigifﬁ?fﬁm X — 0.

The asymptotic behaviour of the root loci of the first, second and fourth mode can be explained considering that
asy — oo, the clamped-free beam under analysis tends to transform into a clamped-free beam of totdllength
as shown for a similar example in [5], where the same clamped-free beam with a different damping variation gives
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Fig. 3. Modal index of non-proportionalityV P versus damping leve} (five equally spaced damping levels frogl to x5 = 801) for mode
1 (a), mode 2 (b), mode 3 (c) and mode 4 (d).

completely different root loci.

In order to highlight the effects of a non-proportional damping distribution on the frequency response functions,
five equally spaced damping levels fromp = 1 to x5 = 801 are considered.

InFig. 3 the modal indexes of non-proportionallyP for the first four modes are depicted versus the five damping
levelsy.

Figure 4 shows a FRF corresponding to a displacement measured at a coordinégedue to a single harmonic
force acting at a coordinate= [, + % with x = 1 (proportional damping). The receptance modulus, s, (w)|
obtained by the modal approach (Section 3.2) with the first four modes is compared with that obtained by direct
integration (Section 3.3) and by FE analysis (Section 5.1) with eight undamped modes. The three curves are in a
very good agreement, except for the antiresonances, where the modal truncation error becomes important, and away
from the natural frequencies of the first four modes (the only terms included in the modal approach).

The influence of the damping levgl on the receptance is highlighted in Fig. 5, where the measurement and
forcing points are the same as in the previous case. The curves obtained with direct integration and FE model are
perfectly superimposed, while those obtained with the modal approach and four FE modes (not shown) exhibit a
modal truncation error of the same order of magnitude as in Fig. 4. Similar results have been obtained for the phase
plots as well.
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Fig. 4. Receptance modq;jaxf (w)| obtained by direct integration (solid line), by FE analysis with eight undamped modes (dashed line) and
by modal approach with four damped modes (dotted line).

5. Finiteelement numerical validation

In this section the results of the analytical methods presented previously are numerically validated by a finite
element model, which has been designed with elements based on an assumed displacement field.

5.1. Thefinite element model

A standard beam element has been chosen, i.e. with transverse displacement wi andéptsialegrees of
freedom at each nodeand cubic interpolation, so that its mass and stiffness matrices can simply be computed or
even found in any textbook [8].

As regards the damping matrix, it is written with the same structure of the mass matrix [9], which corresponds to
the case of external distributed viscous damping (see Eq. (25)). It would be possible to assume the same structure of
the stiffness matrix, which would lead to the case of internal damping.

The damping matrix can be non-proportional and the expression of the FRF can be found using the state space
approach, i.e. solving a complex eigenproblem. This technique is not commonly implemented in FE procedures
because it doubles the dimensions of the matrices, thus significantly increasing the computational effort.

However, it is possible to by-pass this limitation by solving two smaller eigenproblems, i.e. by following a
procedure which is very close to that described in Section 3.4.

Two important concepts have to be underlined at this point:

— the expansion of the solution is now written in terms of eigenvectors (namglnot to be confused with the
eigenfunctions(z)) of the undamped discrete system:;

— to cut down the computational effort, the order of the system can be reduced by taking into account a subset of
only N eigenvector$j with N < M, M being the number of degrees of freedom of the FE model. It should
be stressed that the selected sequence of eigenvectors does not necessarily includétioe éivet a set of
N close toyp;, albeit this has been che choice for the numerical examples herewith presented.

Under the hypothesis of a single force of amplity@deacting with angular frequeney on the physical d.o.f. m,
it is then possible to demonstrate that the receptance at a d.o.f. his
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e

The frequency response functions can therefore be expressed as functions of a subset of real eigenveictors
the undamped system, and of the complex eigenvalues and eigen\séﬂotsL of the (low order) damped system.

5.2. Numerical results

The numerical results achieved with the analytical methods have been compared with a model consisting of 132
elements. As expected, the modal frequencies of this FE model without damping are in a very good accordance with
those of a classical Euler-Bernoulli beam, as confirmed also by convergence tests. Note also that the parameters of
the system are those of a proper beam with a very high length to thickness ratio.

The root loci represented in Fig. 2 show an almost perfect coincidence between the analytical and numerical
results, and also the comparison of the FRFs both in modulus (Figs 4 and 5) and phase is completely satisfying.

In the selected frequency band and taking into account the first eight modes of the undamped system, the FE
model receptances are exactly superimposed on the curves obtained through the exact theoretical approach, whilst
the absence of higher modes becomes significant in the upper part of the frequency domain (not represented in the
figures). Finally, it should be noted that the analytical dotted line in Fig. 4 (modal approach with four modes) is also
representative of the effects of using four modes in the FE method.

6. Conclusions

In this paper two general methods have been proposed to compute the exact frequency response functions of
continuous systems with non-proportional damping distributions, focusing the attention on the Euler-Bernoulli beam
model.

The first method is based on the modal approach and takes advantage from the orthogonality properties of the
eigenfunctions, which have been demonstrated for vibrating continuous systems whose equations of motion are
characterized by self-adjoint differential operators.
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On the contrary, the second method exploits a direct integration of the equations of motion, thus being not affected
by any modal truncation error at high frequencies.

Both methods, starting from a partition of a continuous system in homogeneous substructures, have been developed
combining the reduction of the differential equation order with a transfer matrix technique.

As a result, they have shown a high computational efficiency, due in part to the invariance of the dimensions of
the matrices involved in the numerical procedures with respect to the number of substructures in which the system
has been divided.

The presented methods have then been applied to test the accuracy of a technique based on the approximation of
the solution by a finite expansion in terms of the undamped system eigenfunctions, showing its reliability.

Finally, the numerical results have been successfully validated by means of a finite element procedure, in which
the computational effort due to the non-proportional damping distributions has been significantly reduced applying
again the same technique of approximation based on a selected set of undamped eigenvectors.

The described analytical tools enable a complete frequency domain study of the effects of generalized damping
distributions on continuous systems. However, the fundamentals to extend the analysis to the time domain are
included as well.

In particular, the introduction of a new modal index of non-proportionality has been proposed, following a
discussion about the meaning of the modal parameters in case of non-proportional damping.

Possible applications of these methods could regard the analysis and passive control of vibrating elements
consisting of non-homogeneous bars, shafts beams, or more complicated systems, such as for example ducts or
pipe-lines, in which the proportional damping assumption could not be valid to describe the dynamics with sufficient
accuracy.

Future work will extend the proposed approach to different vibrating continuous systems including more com-
plicated damping laws, even involving fractional derivatives, and possibly the effects of random or/and moving
loads.

NOMENCLATURE

Bold charactersindicate matrices and vectors

a,b  complex scalars due to the decoupling of the state-space equation of motion
a transmission factor in the Euler-Bernoulli beam model

A,B state-space dynamic matrices

B; inner boundary condition matrix

B. external boundary condition matrix

Cn modal damping

c complex constant vector

D spatial domain

E Young’s modulus

f force density

fo amplitude of the force density

f force density vector

fo amplitude of the force density vector
1 area moment of inertia

I identity matrix

l total length of the beam

kn, modal stiffness

My, modal mass

N number of selected eigenfunctions/eigenvectors of the undamped system
NP modal index of non-proportionality

P total number of homogeneous substructures

g,  generalized coordinates

r generalized coordinate vector
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eigenvalue
time
eigenvector of the discretized system
matrix of the eigenvectors
displacement
amplitude of the displacement
state vector of the whole system
spatial coordinate
state vector related to a single homogeneous substructure
eigenvector of the whole system
receptance
exponent in the short notation for the modal parameters
damping level
Dirac distribution
modal coordinate vector
complex scaling factors
eigenfunction of the undamped system
eigenfunction of the damped system
eigenvector matrix related to a single homogeneous substructure
stiffness component in the transmission faetor
eigenvalue related to a single homogeneous substructure
matrix of the eigenvalues
dimensional factor in the short notation for the modal parameters
generic modal parameters
angular frequency
damping ratio
Operators
state space dynamic operators
modulus of a complex number
phase of a complex number
damping distribution of the beam
damping operator
imaginary part of a complex number
flexural stiffness of the beam
stiffness operator
linear operator
mass per unit length of the beam
mass operator
real part of a complex number

Qubscripts
ends of the beam
modal index
spatial domain partition index
Quperscripts

hermitian of matrices and vectors
non proportional damping
reduced order system

transpose of matrices and vectors
complex conjugate
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I-1V first to fourth derivative with respect to
A normalization
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