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S. Sorrentinoa,∗, A. Fasanab and S. Marchesiellob
aDepartment of Mechanical Engineering, The University of Sheffield, Mappin Street, S1 3JD Sheffield, United
Kingdom
bDipartimento di Meccanica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

In ricordo di Bruno, dei suoi insegnamenti, della sua umanit à, grati per l’opportunità offertaci. Le sue buone
vibrazioni continuino ad accompagnarci.

Abstract. This paper deals with the effects of generalized damping distributions on vibrating linear systems. The attention is
focused on continuous linear systems with distributed and possibly non-proportional viscous damping, which are studied in terms
of modal analysis, defining and discussing the orthogonality properties of their eigenfunctions.

Exact expressions of the frequency response functions obtained by direct integration of the equations of motion are compared
with the analogous formulas based on the superposition of modes. In addition, approximate expressions of the frequency response
functions of both continuous and discrete (finite element models) systems in terms of their undamped eigenfunctions/eigenvectors
are also considered and discussed.

The presented methods are explained, compared and validated by means of numerical examples on a clamped-free Euler-
Bernoulli beam.

1. Introduction

The effects of generalized dampingdistributions on vibrating linear mechanical systems have been not exhaustively
studied in terms of modal analysis, especially as regards to continuous systems, i.e. distributed parameter systems.
In fact, continuous systems are seldom modelled considering damping distributions, and when this is the case, the
models are almost always based on the proportional damping assumption, i.e. the damping operator can be expressed
as a linear combination of the mass and stiffness operators [1]. This way of modelling is of course so often adopted
since it carries little analytical and computational further effort in addition to the undamped case analysis. But
in many real situations the proportional damping assumption is not valid and such a simplified approach does not
describe the dynamics of the system with sufficient accuracy. So, in this paper the more general case in which the
damping distributions result to be non-proportional is considered.

Since the existing bibliography about modal analysis for distributed parameter systems with generalized damping
concerns particular cases [2,3], a complete theoretical statement valid in the general case is herein included. It is
nothing but the natural extension of the undamped continuous system theory [1], in which the well-known results
for the discrete systems are easily found as a particular case.

After reducing the differential boundary problem to an eigenvalue problem through the separation of variables,
the existence of orthogonality relations valid for the general case of non-proportional damping is demonstrated. By
means of such relations, the general solution can then be expressed through the so-called expansion theorem. A
discussion about the meaning of the modal parameters in case of non-proportional damping is also included.
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Since the solution of the above mentioned differential eigenproblem is often a very difficult task, several methods
giving approximate solutions have been proposed [1]. Among them, this paper includes the description and
application of a technique presented in [4], valid when the solution is known for the undamped system only.

For a rather large class of continuous systems, however, analytical solutions (i.e. analytical expressions of the
eigenfunctions) can be found. According to [5], a method for the solution of the differential eigenproblem is
described, suitable for a class of vibrating continuous systems with non-proportional damping distributions,according
to different damping models.

This method, starting from a partition of a continuous system in homogeneous substructures or segments, matches
a reduction of the differential equation order with a transfer matrix technique. So it can be easily applied to a large
number of continuous vibrating systems with non-proportional damping, provided that closed-form solutions of the
undamped case for each substructure are known. Moreover, this approach leads to an easy computer implementation
and presents a high computational efficiency, due to the invariance of the matrix dimensions with respect to the
number of substructures considered.

The particular case of non-homogeneous Euler-Bernoulli beams with different non-proportional internal and
external damping distributions is considered. Actually, only little changes in the coefficients would be required to
solve the problem for strings, rods, shafts or Timoshenko beams with viscous or more complicated damping models.
The possibility of extending the proposed method also to several kinds of membranes and plates is intrinsic in its
formulation.

The attention is then focused on the expression of the frequency response functions (FRFs). This result can now
be achieved through the modal analysis approach, since both the modal parameters and modal shapes are available
applying the above mentioned analytical methods. The same techniques, however, allow to express the FRFs in a
different way, which does not require either eigenvalues or eigenfunctions, i.e. which does not need the solution of
any eigenproblem. This result is simply achieved by direct integration of the equations of motion, and since in this
case the solution is not expressed by means of a series (indeed it is the sum of the series resulting from the modal
approach), it could be very useful for high frequency analysis.

Numerical examples are then included in order to show and to compare both the accuracy and efficiency of the
proposed methods. Non-proportional damping distributions are tested on a non-homogeneous Euler-Bernoulli beam
in bending vibration and consequently a discussion on the related frequency response diagrams is presented.

Finally, the results are validated by means of a finite element (FE) model, thus showing their reliability in problems
involving non-proportional damping distributions.

2. Modal analysis of continuous systems with viscous generalized damping

In this section some fundamentals of modal analysis for distributed parameter systems are presented. Among
them, a statement of the expansion theorem, leading to the general solution, a discussion about the meaning of the
modal parameters and finally the expression of the frequency response functions, both in exact and approximate
form.

2.1. General solution: The expansion theorem

The dynamic behaviour of a continuous system with viscous generalized damping can be described by the
following equation of motion

M
[
∂2

∂t2
w(x, t)

]
+ C

[
∂

∂t
w(x, t)

]
+ K [w(x, t)] = f(x, t), x ∈ D (1)

whereM,C,K are linear homogeneous differential operators and are referred to as mass operator, damping operator
(generally non-proportional) and stiffness operator, respectively,f is the external force density,w andx are the
displacement and the spatial coordinate in a domain of extensionD, respectively (the spatial coordinate as well as
the displacement and the external force density can be scalars or vectors, but here the scalar notation is adopted,
since in what follows this does not represent a loss of generality) andt is time.
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To solve Eq. (1), appropriate boundary and initial conditions must be satisfied byw.
If the damping operator can be expressed as a linear combination of the mass and stiffness operators, it is said to

be proportional [1], but in this paper the more general case in which it results to be non-proportional is considered.
Recalling that self-adjointness of differential operators in continuous systems corresponds to symmetry of matrices

in discrete systems, in the following the operatorsM,C andK will be supposed to be self-adjoint. This assumption
is unnecessary and could easily be removed, as it will be clarified in the end of the present section. Nevertheless
it will be adopted since such properties hold in most of the existing models, carrying less cumbersome analytical
developments.

With the notation

(w1, w2) =
∫

D

w1w2dD (2)

denoting the inner product between two scalar functionsw 1 andw2 over a domain of extensionD (if w1 andw2 are
vector functions, then the integrand in Eq. (2) represents their scalar product), a linear differential operatorL is said
to be self-adjoint if

(w1,L[w2]) = (w2,L[w1]) (3)

which is a property of symmetry with respect to the inner product.
As usual in modal analysis, the differential boundary problem will be reduced to a differential eigenvalue

problem by separating the variables, so the solution will be given by a linear combination of terms in the form
w(x, t) = φ(x)q(t). Note that although the global solution will always be real, complex termsφ(x)q(t) are expected:
in the case of non-proportional damping the phase ofφ(x) will not be constant with respect tox, and consequently
the motion will be non-synchronous [5].

Equation (1) can then be rewritten in the state-space form as follows

A[ẇ] +B[w] = f (4)

the dot denoting derivation with respect to time, where A and B are linear homogeneous differential operators,w
andf are the state vector and the external force density vector, respectively. They can be expressed as

A =
[
C M
M 0

]
, B =

[
K 0
0 −M

]
, w =

[
w
ẇ

]
, f =

[
f
0

]
(5)

so that, ifM,C andK are self-adjoint, A and B result to be self-adjoint as well.
The state-space Eq. (4) leads to the differential eigenproblem

sA[z] +B[z] = 0 with eigenvectorsz = [φ sφ(x)]T (6)

The solution of this eigenproblem forms an infinite set of pairs of discrete values, each pair characterizing a mode
and being related to a pair of eigenvectors (i.e. to a pair of eigenfunctions). In the case of underdamped modes,
complex conjugate pairssn, s∗n of eigenvalues are expected, yielding pairs of complex conjugate eigenvectorsz n,
z∗

n (i.e. pairs of complex conjugate eigenfunctionsφn, φ∗n). On the other hand, in the case of overdamped modes,
pairs of real negative eigenvalues are expected, yielding pairs of real eigenvectors (in the following, the notation for
the underdamped case will be adopted, but the results are valid in both cases).

The eigenvectors orthogonality properties can be derived rewriting Eq. (6) for the nth and mth mode, respectively,
pre-multiplying the first byzT

m and the second byzT
n , then integrating them both over the spatial domainD, i.e.{

snA[zn] +B[zn] = 0
smA[zm] + B[zm] = 0 ⇒

{
sn(zm, A[zn]) + (zm, B[zn]) = 0
sm(zn, A[zm]) + (zn, B[zm]) = 0 (7)

which, taking into account the self-adjointness of A and B, yield{
(sn − sm)(zm, A[zn]) = 0
(s−1

n − s−1
m )(zm, B[zn]) = 0 ⇒

if n = m then
{

(zn, A[zn]) = an

(zn, B[zn]) = bn
,

{
(z∗n, A[zn]) = 0
(z∗n, B[zn]) = 0 (8)

if n �= m then
{

(zm, A[zn]) = 0
(zm, B[zn]) = 0
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Due to the orthogonality properties of the eigenvectorszn, any other vector in the same space of functions can be
expressed as their linear combination. This statement constitutes what is usually known as the expansion theorem,
so that the free response can be written in the form

w(x, t) =
∞∑

n=1

[γnφn(x)esnt + γ∗nφ
∗
n(x)es∗

nnt

] (9)

whereγn is a complex scaling factor which depends on the initial conditions. Note thatan andbn, if taken separately,
are known unless an indeterminate scaling factor albeit their ratio is fixed, i.e.bn/an = −sn.

When at least one of the differential operators involved in the model results not to be self-adjoint the expansion
theorem still holds, but the orthogonality relations Eq. (8) have to be replaced by a set of biorthogonality relations,
which require the solution of two eigenproblems for the so-called right and left eigenvectors, respectively [1].

2.2. Expression of the frequency response functions

A harmonic excitation force of amplitudef0 acting with angular frequencyω at a coordinatexf is now considered.
Since the system is linear-time-invariant, the responsew will still be a harmonic oscillation at the same angular
frequencyω. So, taking into account the expansion theorem and dropping the time dependent terms, the state-space
equation of motion Eq. (4) can be rewritten as

∞∑
n=1

Γm{(iω)A[zm] +B[zm]} = f0 (10)

whereΓm is a scaling factor andf0 = [f0δ(x− xf )0]T , δ being the Dirac distribution.
Pre-multiplying byzT

n , integrating over the spatial domainD and remembering the orthogonality properties
Eq. (8), Eq. (10) gives

Γn =
(zn, f0)

an[(i, ω) − sn]
=

φ0(xf )f0
an[(iω) − sn]

(11)

where the expression of the modal forcefn = (zn, f0) in terms ofφn and f0 is due to the Dirac distribution
properties.

Finally, if the eigenfunctions are normalized with respect toan, i.e.

φ̂n(x) =
1√
an
φn(x) (12)

taking into account again the expansion theorem and Eqs (9) to (11), it is possible to express the system receptance,
defined as the ratio of the amplitude of displacement at a coordinatex to the intensity of a single harmonic force
acting at a coordinatexf as follows

xαxf (ω) =
W

f0
=

∞∑
n=1

[
φ̂n(xf )φ̂n(x)

(iω) − sn
+
φ̂∗n(xf )φ̂∗n(x)

(iω) − s∗n

]
(13)

The expressions of other frequency response functions, such as accelerance or mechanical impedance, follow
immediately from Eq. (13).

2.3. Meaning of the modal parameters

The definitions of the modal parameters which hold in the case of proportional damping, usually referred to as
modal mass, modal damping and modal stiffness, can be extended to the non-proportional case according to

mn − (φ∗n,M[φn]), cn = (φ∗n,C[φn]), kn = (φ∗n,K[φn]) (14)

Despite their dimensions are coincident with those of a modal mass, a modal damping and a modal stiffness,
respectively, their properties are not the same. To highlight this concept, it is necessary to put in explicit form their
relationships with the eigenvaluessn.
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Remembering the previous definitions, the orthogonality relations (8a) yield

(z∗
n, A[zn]) = 0 ⇒ Re[sn] = − cn

2mn
, (z∗

n, B[zn]) = 0 ⇒ |sn|2 =
kn

mn
(15)

Since these expressions are formally the same as in the case of proportional damping, then by analogy it is possible
to define

ω
(np)
n =

√
kn

mn

ζ
(np)
n = cn

2
√

knmn

⇒
{

Re[sn] = −ζ(np)
n ω

(np)
n

Im[sn] = ω
(np)
n

√
1 − ζ

(np)
n ,

,

{
|sn| = ω

(np)
n

Arg[sn] = π − arccosζ(np)
n

(16)

Soω(np)
n represents the modulus of the related eigenvaluesn andζ(np)

n defines its phase, but it is very important to
underline thatω(np)

n is not the modal natural angular frequencyωn and its magnitude depends on the rate of damping,
whilst ζ(np)

n is not the modal damping ratioζn which holds in the case of proportional damping. As a consequence,
the nth modal natural frequency cannot be extracted directly from the corresponding eigenvalues n.

The gap betweenω(np)
n andωn gives a measure of the non-proportionality effects, therefore it suggests the

definition of the following “modal” index of non-proportionality

NPn =
ω

(np)
n

ωn
(17)

which is a dimensionless, real, non-negative parameter. For different definitions of non-proportionality indexes the
reader is referred to [6].

2.4. Approximation of the solution

The solution of the eigenproblemEq. (6) is often a very difficult task (in Section 3, however, an analytical technique
suitable for an important class of continuous systems will be described) and several methods have been proposed to
by-pass the problem when closed-form expressions for the eigenfunctions are not known. Suffice is to remember
the Rayleigh-Ritz approach where the eigenfunctions are defined by a sum of functions, referred to as admissible
functions, satisfying the geometric boundary conditions only [1].

In this section a method giving approximate results is presented, valid when the solution is known for the undamped
system only. According to this method, as clearly explained in [4], the solution can be approximated by a finite
expansion in terms of the undamped system (known) eigenfunctionsϕ, i.e.

w(x, t) ∼=
N∑

j=1

ϕj(x)rj(t) = ϕT r (18)

Substituting this expanded form of the solution in the equation of motion Eq. (1) and taking into account the
orthogonality relations of the eigenfunctionsϕ with respect toM andK, it is possible to rewrite the state-space
Eq. (4) as follows

Av̇ + Bv = f̃ (19)

where

A =
[

C M
M 0

]
, B =

[
K 0
0 −M

]
, v =

[
r
ṙ

]
, f̃ =

[
(ϕ, f(x, t))

0

]
(20)

and theN × N matricesM,C andK are built up by means of the following inner products involving the
differential operators M, C, K and the eigenfunctionsϕ

M = [(ϕi,M[ϕj])], C = [(ϕi, C[ϕj ])] = CT , K = [(ϕi,K[ϕj ])] (21)

with i, j = 1, . . . N . It is worth noticing that bothM andK are diagonal.
The solution of the related algebraic eigenvalue problem, consisting of a set of2N eigenvalues (say:s (r)

n ) and
2N eigenvectors (say:un), allows to uncouple the equations of motion Eq. (19) introducing the usual coordinate
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transformationv = Uη (U denoting the eigenvector matrix), which in the frequency domain yields

ηn =
fn

a
(r)
n [(iω) − s

(r)
n ]

(22)

wherea(r)
n is the nth element of the diagonalization ofA andfn is the nth component of the modal force vector

UT f̃ .
If a harmonic excitation force of amplitudef0 acting with angular frequencyω at a coordinate xf is considered,

according to Eq. (20)fn can be expressed by means of the eigenfunctionsϕ of the undamped system as follows

fn =
N∑

i=1

uinϕi(xf )f0 (23)

Introducing Eqs (23) in (22) and taking into account backwards the links amongη, v andr, the expansion Eq. (18)
yields the system receptance

xαxf
(ω) =

W

f0
∼=

2N∑
n=1

[∑N
i=1 ûinϕi(xf )

] [∑N
j=1 ûjnϕj(x)

]
iω − s

(r)
n

(24)

the superscript∧ denoting normalization with respect to the square root ofa
(r)
n .

3. Further investigations for a class of continuous systems

In this section an analytical method for the solution of the differential eigenproblem is presented, valid for a
class of vibrating continuous systems with non-proportional damping distributions, according to different damping
models [5]. The results are then applied to the calculation of the FRFs. Such methodology will in particular be
implemented for non-homogeneousEuler-Bernoulli beams in bending vibration. However, it could be easily applied
also to strings, shafts, rods and Timoshenko beams with any possible boundary conditions.

3.1. Solution of the eigenproblem

In the special case of an Euler-Bernoulli beam in bending vibration, the mass, damping and stiffness operators
consist of

M = m(x), C = c(x) or C =
∂2

∂x2

[
cin(x)

∂2

∂x2

]
, K =

∂2

∂x2

[
k(x)

∂2

∂x2

]
(25)

wherem(x) is the mass per unit length of beam,c(x) is the external viscous damping distribution,c in(x) is the
internal viscous damping distribution (according to the Kelvin-Voigt model, used in conjunction with the assumption
that cross-sectional areas remain planar during deformation) andk(x) = EI(x) is the bending stiffness, or flexural
rigidity, in whichE is the Young’s modulus of the material andI is the area moment of inertia [1].

In order to highlight the effects of non-proportional viscous damping, the differential eigenvalue problem Eq. (6)
will be solved in the special case in whichm(x), c(x) (or c in(x)) andk(x) can be considered piecewise constant on
D.

Dividing the beam intoP segments of lengthDxp = xp − xp − 1 (wherex0 = 0, xP = l, length of the beam),
and assumingm(x), c(x) (orcin(x)) andk(x) constant on each segment, the differential eigenvalue problem reduces
to a set ofP fourth-order ordinary differential equations with constant coefficients of the type (the roman number
denoting the derivative order with respect to the spatial coordinate)

φIV
P (x) = a4

pφp(x) (26)

with appropriate boundary conditions, where
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ap = 4

√
−mps2 + cps

κp
with κp = kp (27)

which holds for external distributed damping and

ap = 4

√
−mps2

κp
with κp = cin,ps+ kp (28)

which holds for internal damping.
Note that more complicated damping laws, even involving fractional derivatives, could be easily taken into account

simply by modifying the definition ofap as a function ofs. In any case,s is obviously the same for every segment.
At this stage it is convenient to convert Eq. (26) into a set of four first order equations.
According to the state vector definition

y(x) = [φIII(x) φII(x) φI(x) φ(x)]T (29)

the solution for each segment can then be expressed as

yp(x) = Φpe
Λpx

cp (30)

whereΦp is the pth segment eigenvector matrix,Λp is the pth segment eigenvalue matrix (with eigenvaluesλ1 = a,
λ2 = −a, λ3 = ia, λ4 = −ia) andcp is the pth segment constant vector.

Moreover, it is possible to show [5] that the solution at any pointxp can be written as

yp(xp) = Π1
py1(0) with Π1

p =
1∏

i=p

[Φie
Λi(xi−xi−1)Φ−1

i Bi−1] (31)

where the ith segment eigenvectors matrix and its inverse, written as functions ofa i, have the form

Φi =



a3

i −a3
i −ia3

i ia3
i

a2
i a2

i −a2
i −a2

i

ai −ai iai −iai

1 1 1 1


 Φ−1

i =
1
4




a−3
i a−2

i a−1
i 1

−a−3
i a−2

i −a−1
i 1

ia−3
i −a−2

i −ia−1
i 1

−ia−3
i −a−2

i ia−1
i 1


 (32)

andBi−1 are 4× 4 matrices obtained by imposing the continuity of displacement, rotation, moment and shear in
x = xi − 1. Clearly, these constraints represent the inner boundary conditions between the adjacent beam segments.

Note thatB0 = I and that in the absence of external constraints inx i−1, Bi−1 can be written as

Bi−1 =



κ−1

i κi−1 0 0 0
0 κ−1

i κi−1 0 0
0 0 1 0
0 0 0 1


 (33)

A more general expression forB, taking into account external constraints of different kinds, is given in [5].
It is now possible to relate the solutiony(l) at one end of the beam to the solutiony(0) at the other end, which

enables to express the boundary conditions at the ends of the beam in the following form{
Be0y1(0) = 0
BelΠ1

py1(0) = 0 (34)

whereBe are 2× 4 matrices depending on the kind of constraints andy 1(0) = φ1c1. For example, in case of a
clamped end, a pinned end or a free end, they simply are

Be =
[
0 0 1 0
0 0 0 1

]
champed

Be =
[
0 1 0 0
0 0 0 0

]
pinned

Be =
[
1 0 0 0
0 1 0 0

]
free

(35)

Equation (34) form a linear homogeneous system of four algebraic equations in four unknowns (i.e. the constants
c1).
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Table 1
Short notation for the modal parameters

ψn ζn βp ν

(φn,M[φn]) (φ∗n,M[φn]) mp 0
(φn,C[φn]) (φ∗n,C[φn]) external damping cp 0

internal damping cin,p 4
(φn,K[φn]) (φ∗n,K[φn]) kp 4

Thus the solution of the eigenproblem follows directly by setting to zero the determinant of the coefficient matrix of
system Eq. (34), due to the fact that an algebraic system possesses non-trivial solutions if and only if the determinant
of its coefficient matrix is zero, and recalling that the elements of the coefficient matrix of system Eq. (34) depend
on the (unknown) eigenvalues.

It should finally be noted that mathematically the eigenfunctionsφ result to be classical solutions (i.e. four times
continuously differentiable in D) everywhere, except in a finite subset ofD (i.e.x = x p, with p = 1, . . . , P − 1):
here they result to be weak (in this case at least one time continuously differentiable) as a consequence of the
discontinuities introduced in the functionsm(x), c(x) andk(x), which have been assumed piecewise constant onD.

3.2. Frequency response functions through modal analysis

If the differential eigenproblem has been solved (i.e. both the eigenvalues sn and eigenfunctionss n are available),
the FRFs can be calculated according to Eq. (13) after the parameters an have been determined.

To this purpose, it is necessary to write in explicit form the relations among the parametersa n, bn, the differential
operators M, C, K and the eigenfunctionsφn, i.e.

an = (φn,C[φn]) + 2sn(φn,M[φn])
(36)

bn = (φn,K[φn]) − s2n(φn,M[φn])

which are a direct consequence of Eq. (8).
Thus, since the eigenfunctionsφn are known, it is possible to calculatean andbn as well as the modal parameters

defined in Section 2.3 simply by applying the definition of inner product.
Introducing the notation of Table 1, according to definition Eq. (2) and taking into account the spatial domain

partition of Section 3.1, the above inner products can be written in quite similar form as

ψn =
p∑

p=1

{
βpa

v
np

∫
∆xp

φ2
n(x)dx

}
, ξn =

p∑
p=1

{
βpa

v
np

∫
∆xp

|φn(x)|2dx
}

(37)

Substituting the eigenfunction expressions given by Eqs (30)–(31) into Eq. (37), straightforward but tedious
integrations eventually give

ψn =
p∑

p=1

βp{av
pH

T
p E(1)

p Hp}n, ξn =
p∑

p=1

βp{av
pH

H
p E(2)

p Hp}n (38)

whereHp = Φ−1
p Π1

p=1y1(0), Π1
0 = I, (4× 4 identity matrix) andE(1)

p , E(2)
p are 4× 4 matrices whose elements

are respectively

ε
(1)
ij =

e(λi+λj)∆xp − 1
λi + λj

, ε
(2)
ij =

e(λ
∗
i +λj)∆xp − 1
λ∗i + λj

(39)

in which the eigenvaluesλ depend from both the modal indexn and the spatial domain partition indexp, according
to the definitions Eqs (27) and (28).
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3.3. Frequency response functions through direct integration

Besides the modal approach just described, the analytical tools developed in Section 3.1 allow to express the FRFs
in a different way, which does not require either eigenvalues or eigenfunctions, i.e. which does not need the solution
of the eigenproblem.

This result is achieved by direct integration of the equation of motion, and it is nothing but the sum of the series
in Eq. (13).

The Euler-Bernoulli beam model with piecewise constant distributions described in Section 3.1 is now considered
under the effect of a harmonic excitation force of amplitudef 0 acting with angular frequencyω at a coordinate
xf . Since the system is linear-time-invariant, the response will still be a harmonic oscillation at the same angular
frequencyω. So, dropping the time dependent terms, the equation of motion for each segment of the beam reduces
to

W IV (x) + a4
ωpW (x) = κ−1

ωpf0δ(x− xf ) (40)

where the coefficientsaωp andκωp, which are constant within each segment, can be defined according to Eqs (27)
and (28) by substitutings with iω.

Equation (40) is a non-homogeneous ordinary differential equation with constant coefficients, since the angular
frequency is considered as a given parameter.

As in Section 3.1, in order to find the global solution, the four coefficients of c1 have to be determined by imposing
four boundary conditions at the ends of the beam.

By assuming, without loss of generality, that the external force acts at a separation point between two segments
(say:xf = xp), and defining the external force vector in the state-space as follows

f = [κ−1
ωf f0 0 0 0]T (41)

(κωf beingκω evaluated inxf ) then the system yielding the unknown coefficients ofc1 is simply{
Bel

[
Π1

p

]
ω

Φ1ωc1 = −Bel

[
Πp=f

p

]
ω
f

Be0Φ1ωc1 = 0
if xf ∈ (0, l]

or (42){
Bel

[
Π1

p

]
ω

Φ1ωc1 = −Bel

[
Π1

p

]
ω
f

BelΦ1ωc1 = −Be0f
if xf = 0

where it is important pointing out the following remarks:

– the matricesBe are the same as in system Eq. (34);
– the matricesΠ, Φ (andΛ) retain their own definitions as in system Eq. (34), but the subscriptω means thata np

has been substituted byaωp (i.e. in every definition sn has been changed iniω).

As an example, if a homogeneous beam with two different external damping levels forced inx f (with x1 � xf � l)
is considered, the system Eq. (42) simply reduces to{

Bel[Φ2ωe
Λ2ω(l−x1)Φ−1

2ω Φ1ωe
Λ1ωx1 ] = c1 = −Bel[Φ2ωe

Λ2ω(l−xf )Φ−1
2ω ]f

Be0Φ1ωc1 = 0
(43)

so the receptance at a coordinatex (with 0 � x � x1) can be easily written in function of the four coefficientsc1

xαxf
(ω) =

1
f0

[c11ea1ωx + c12e
−a1ωx + c13e

ia1ωxc14e
−ia1ωx] (44)

The coefficientsc1 are generally rather complicated functions of bothx f andω. However, in some particular cases
such functions take a very simple form, as for example in the case of a clamped-free homogeneous Euler-Bernoulli
beam forced at its free end (xf = l), whose receptance at a coordinatex is given by

xαl(ω) =
1
κa3

S+(al)C−(ax) − C+(al)S−(ax)
c2+(al) − S+(al)S−(al)

(45)



252 S. Sorrentino et al. / Frequency domain analysis of continuous systems with viscous generalized damping

where

C±(·) = cosh(·) ± cos(·)
(46)

S±(·) = sinh(·) ± sin(·)
As it is expected, if the angular frequency tends to 0, the system receptance Eq. (45) tends to the static deflection

of the beam, i.e.

lim
ω→0

xα1(ω) = lim
a→0

xα1(ω) =
x2

2k

(
1 − x

3

)
(47)

and this limit still holds whatever non-proportional damping distribution is added to the beam model.
Note that the described method could also be applied to the calculation of the response to distributed harmonic

loads, retaining the notation of system Eq. (42) and introducing a convolution integral.

4. Numerical example

A numerical example is presented in order to test and to compare the described methods, and eventually to validate
the results by means of a FE model, showing their reliability in problems involving non-proportional damping
distributions.

As already shown in [5], the proposed approach is characterised by a high computational efficiency, due to the
reduced dimensions of the matrices involved in the numerical procedure. The most crucial point of the modal
approach is the zero finding routine needed to solve the algebraic system Eq. (34). This problem has been solved
applying the secant method to a real function of complex variable [7]. All the codes have been written in Matlab
and computed by an AMD-Athlon XP1600+ processor. The zero finding routine runs in less than one second and
the finite element model presented in Section 5 runs in some tens of seconds.

4.1. Analysis of non-proportional damping effects

The selected numerical example concerns a homogeneous Euler-Bernoulli beam clamped inx = 0 and free in
x = l with a non-proportional damping distribution consisting of two different levels of external damping according
to Fig. 1 (as regards to the effects of internal damping in similar cases, the reader is referred to [5]).

The parameters for each of the two segments in which the beam is divided are as follows:

– lengthl = 0.30 m, l1 = 0.10 m, l2 = 0.20 m;
– mass densitym1 = m2 = m = 0.243 kg/m;
– bending stiffnessk1 = k2 = k = 4.725Nm2.

In this example the distributed external damping density on the second segment(l 1 � x � l) is kept constant,
c2 = 1.675Ns/m2, while on the first segment(0 � x � l1) it varies from (proportional damping case) to infinity
(non-proportional damping limit case). So, different levels of non-proportionality can be obtained by increasing the
damping on the first segment only.

In the following, the dimensionless parameter

χ =
c1
c2

(48)

will provide a measure of both the non-proportionality and damping levels.
Figure 2 shows the root loci for the first four modes of the beam under the effect of non-proportional external

damping. The curves in the proportional damping case can be obtained by varying bothc 1 andc2 keepingχ = 1:
for underdamped modes they are a quarter of a circle. For each mode, the two trajectories (proportional and non-
proportional case) start from the same point s(prop) corresponding toc 2 = c1 = 1.675 Ns/m2. Due to the particular
choice of the damped segment lengths, even for the first and second mode relevant differences can be observed
between proportional and non-proportionalexternal damping. The curves are nearly coincident with the proportional
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c(x)

0

x0 = 0 x1 = l1 = 0.1 m x2 = l = 0.3 m

x

x

c2

c1

Cantilever E-B homogeneous beam

Non-proportional external damping distribution

Fig. 1. Cantilever homogeneous beam with non-proportional external damping.

(a) (b) 

Fig. 2. (a) root loci for external damping;c1 increases andc2 remains unchanged (non-proportional damping); (b) zoom on first mode.

case only in the neighbourhood of the starting points (prop), then they strongly diverge at higher values of damping
and never reach the real axis.

The third mode behaves more like the proportional case and becomes overdamped at high values ofχ. On the
contrary, the fourth mode curve never reaches the real axis but intersects and then tends to fors

(lim)
4 for χ→ ∞.

The asymptotic behaviour of the root loci of the first, second and fourth mode can be explained considering that
asχ → ∞, the clamped-free beam under analysis tends to transform into a clamped-free beam of total lengthl 2

as shown for a similar example in [5], where the same clamped-free beam with a different damping variation gives
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(a) 

 

(b) 

(c) 

 

(d) 

Fig. 3. Modal index of non-proportionalityNP versus damping levelχ (five equally spaced damping levels fromχ=1 to χ5 = 801) for mode
1 (a), mode 2 (b), mode 3 (c) and mode 4 (d).

completely different root loci.
In order to highlight the effects of a non-proportional damping distribution on the frequency response functions,

five equally spaced damping levels fromχ1 = 1 toχ5 = 801 are considered.
In Fig. 3 the modal indexes of non-proportionalityNP for the first four modes are depicted versus the five damping

levelsχ.
Figure 4 shows a FRF corresponding to a displacement measured at a coordinatex = l1

2 due to a single harmonic
force acting at a coordinatex = l1 + l2

2 with χ = 1 (proportional damping). The receptance modulus| xαxff
(ω)|

obtained by the modal approach (Section 3.2) with the first four modes is compared with that obtained by direct
integration (Section 3.3) and by FE analysis (Section 5.1) with eight undamped modes. The three curves are in a
very good agreement, except for the antiresonances, where the modal truncation error becomes important, and away
from the natural frequencies of the first four modes (the only terms included in the modal approach).

The influence of the damping levelχ on the receptance is highlighted in Fig. 5, where the measurement and
forcing points are the same as in the previous case. The curves obtained with direct integration and FE model are
perfectly superimposed, while those obtained with the modal approach and four FE modes (not shown) exhibit a
modal truncation error of the same order of magnitude as in Fig. 4. Similar results have been obtained for the phase
plots as well.
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Fig. 4. Receptance moduli|xαxf (ω)| obtained by direct integration (solid line), by FE analysis with eight undamped modes (dashed line) and
by modal approach with four damped modes (dotted line).

5. Finite element numerical validation

In this section the results of the analytical methods presented previously are numerically validated by a finite
element model, which has been designed with elements based on an assumed displacement field.

5.1. The finite element model

A standard beam element has been chosen, i.e. with transverse displacement wi and rotationθ i as degrees of
freedom at each nodei and cubic interpolation, so that its mass and stiffness matrices can simply be computed or
even found in any textbook [8].

As regards the damping matrix, it is written with the same structure of the mass matrix [9], which corresponds to
the case of external distributed viscous damping (see Eq. (25)). It would be possible to assume the same structure of
the stiffness matrix, which would lead to the case of internal damping.

The damping matrix can be non-proportional and the expression of the FRF can be found using the state space
approach, i.e. solving a complex eigenproblem. This technique is not commonly implemented in FE procedures
because it doubles the dimensions of the matrices, thus significantly increasing the computational effort.

However, it is possible to by-pass this limitation by solving two smaller eigenproblems, i.e. by following a
procedure which is very close to that described in Section 3.4.

Two important concepts have to be underlined at this point:

– the expansion of the solution is now written in terms of eigenvectors (namelyϕ j , not to be confused with the
eigenfunctionsϕ(x)) of the undamped discrete system;

– to cut down the computational effort, the order of the system can be reduced by taking into account a subset of
onlyN eigenvectorsϕj with N � M , M being the number of degrees of freedom of the FE model. It should
be stressed that the selected sequence of eigenvectors does not necessarily include the firstN or even a set of
N close toϕj , albeit this has been che choice for the numerical examples herewith presented.

Under the hypothesis of a single force of amplitudef 0 acting with angular frequencyω on the physical d.o.f. m,
it is then possible to demonstrate that the receptance at a d.o.f. h is
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Fig. 5. Receptance moduli|xαxf (ω)| obtained by direct integration (or by FE analysis with eight undamped modes) for five different damping
levelsχ.

hαm(ω) =
Wh

f0
∼=

2N∑
n=1

[∑N
i=1 ûi,nϕm,i

] [∑N
j=1 ûj,nϕh,j

]
iω − s

(r)
n

(49)

The frequency response functions can therefore be expressed as functions of a subset of real eigenvectorsϕ j of

the undamped system, and of the complex eigenvalues and eigenvectorss
(r)
n , un of the (low order) damped system.

5.2. Numerical results

The numerical results achieved with the analytical methods have been compared with a model consisting of 132
elements. As expected, the modal frequencies of this FE model without damping are in a very good accordance with
those of a classical Euler-Bernoulli beam, as confirmed also by convergence tests. Note also that the parameters of
the system are those of a proper beam with a very high length to thickness ratio.

The root loci represented in Fig. 2 show an almost perfect coincidence between the analytical and numerical
results, and also the comparison of the FRFs both in modulus (Figs 4 and 5) and phase is completely satisfying.

In the selected frequency band and taking into account the first eight modes of the undamped system, the FE
model receptances are exactly superimposed on the curves obtained through the exact theoretical approach, whilst
the absence of higher modes becomes significant in the upper part of the frequency domain (not represented in the
figures). Finally, it should be noted that the analytical dotted line in Fig. 4 (modal approach with four modes) is also
representative of the effects of using four modes in the FE method.

6. Conclusions

In this paper two general methods have been proposed to compute the exact frequency response functions of
continuous systems with non-proportional damping distributions, focusing the attention on the Euler-Bernoulli beam
model.

The first method is based on the modal approach and takes advantage from the orthogonality properties of the
eigenfunctions, which have been demonstrated for vibrating continuous systems whose equations of motion are
characterized by self-adjoint differential operators.
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On the contrary, the second method exploits a direct integration of the equations of motion, thus being not affected
by any modal truncation error at high frequencies.

Both methods, starting from a partition of a continuous system in homogeneoussubstructures, have been developed
combining the reduction of the differential equation order with a transfer matrix technique.

As a result, they have shown a high computational efficiency, due in part to the invariance of the dimensions of
the matrices involved in the numerical procedures with respect to the number of substructures in which the system
has been divided.

The presented methods have then been applied to test the accuracy of a technique based on the approximation of
the solution by a finite expansion in terms of the undamped system eigenfunctions, showing its reliability.

Finally, the numerical results have been successfully validated by means of a finite element procedure, in which
the computational effort due to the non-proportional damping distributions has been significantly reduced applying
again the same technique of approximation based on a selected set of undamped eigenvectors.

The described analytical tools enable a complete frequency domain study of the effects of generalized damping
distributions on continuous systems. However, the fundamentals to extend the analysis to the time domain are
included as well.

In particular, the introduction of a new modal index of non-proportionality has been proposed, following a
discussion about the meaning of the modal parameters in case of non-proportional damping.

Possible applications of these methods could regard the analysis and passive control of vibrating elements
consisting of non-homogeneous bars, shafts beams, or more complicated systems, such as for example ducts or
pipe-lines, in which the proportional damping assumption could not be valid to describe the dynamics with sufficient
accuracy.

Future work will extend the proposed approach to different vibrating continuous systems including more com-
plicated damping laws, even involving fractional derivatives, and possibly the effects of random or/and moving
loads.

NOMENCLATURE

Bold characters indicate matrices and vectors

a, b complex scalars due to the decoupling of the state-space equation of motion
a transmission factor in the Euler-Bernoulli beam model
A,B state-space dynamic matrices
Bi inner boundary condition matrix
Be external boundary condition matrix
cn modal damping
c complex constant vector
D spatial domain
E Young’s modulus
f force density
f0 amplitude of the force density
f force density vector
f0 amplitude of the force density vector
I area moment of inertia
I identity matrix
l total length of the beam
kn modal stiffness
mn modal mass
N number of selected eigenfunctions/eigenvectors of the undamped system
NP modal index of non-proportionality
P total number of homogeneous substructures
q, r generalized coordinates
r generalized coordinate vector
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s eigenvalue
t time
u eigenvector of the discretized system
U matrix of the eigenvectorsu
w displacement
W amplitude of the displacement
w state vector of the whole system
x spatial coordinate
y state vector related to a single homogeneous substructure
z eigenvector of the whole system
α receptance
β exponent in the short notation for the modal parameters
χ damping level
δ Dirac distribution
η modal coordinate vector
Γ, γ complex scaling factors
ϕ eigenfunction of the undamped system
φ eigenfunction of the damped system
Φ eigenvector matrix related to a single homogeneous substructure
κ stiffness component in the transmission factora
λ eigenvalue related to a single homogeneous substructure
Λ matrix of the eigenvaluesλ
ν dimensional factor in the short notation for the modal parameters
ξ, ψ generic modal parameters
ω angular frequency
ζ damping ratio

Operators

A[·], B[·] state space dynamic operators
|.| modulus of a complex number
Arg[·] phase of a complex number
c(x) damping distribution of the beam
C[·] damping operator
Im[·] imaginary part of a complex number
k(x) flexural stiffness of the beam
K[·] stiffness operator
L[·] linear operator
m(x) mass per unit length of the beam
M [·] mass operator
Re[·] real part of a complex number

Subscripts

e ends of the beam
n modal index
p spatial domain partition index

Superscripts

H hermitian of matrices and vectors
(np) non proportional damping
(r) reduced order system
T transpose of matrices and vectors
∗ complex conjugate
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I–IV first to fourth derivative with respect tox
∧ normalization
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