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Abstract
Between group PCA (bgPCA) has been developed to summarize group differences in high dimensional spaces like in geo-
metric morphometrics and microarray data where the number of variables is often larger than sample size. However, it has 
been very recently shown that this technique inflates apparent differences as seen in scatterplots and, in extreme cases, can 
even create differences where there are none, an effect that becomes more exaggerated as dimensionality increases. In this 
study, we explore whether leave-one-out cross-validated scatterplots, in which cross-validated scores are used to construct the 
final ordination instead of the conventional ones, can mitigate the issue. Using simulated data with both isotropic variation or 
covariance, and increasing the number of variables, we show that cross-validated bgPCs reduce but do not completely remove 
the distortion of mean differences. However, although scatterplots might still depict inaccurate relationships between group 
means and must therefore be interpreted with great caution, cross-validation largely solves the issue of spurious separation. 
Thus, cross-validated bgPCA offers a big improvement for faithfully summarizing overlap or separation among groups in 
high dimensional spaces and its results will be largely consistent with distance-based permutation tests of significance for 
group mean differences in the full data space.

Keywords  Classification · Covariance · Geometric morphometrics · Group differences · Multivariate analysis · Sampling 
error

Introduction

Recently, it has been shown that bgPCA, a multivariate alter-
native to canonical variates analysis (CVA) for exploring 
between-group differences in high dimensional data sets 
(Culhane et al. 2002), can produce scatterplots that spuri-
ously separate groups when individuals are projected into 
the space defined by axes derived from differences between 

group means (Cardini et al. 2019; Bookstein 2019). Spurious 
differences appear when small random variation on the p 
variables is projected into a g-1 bgPCA space (with g being 
the number of groups), especially when g < < p. Thus, it has 
been suggested either to avoid bgPCA altogether (Book-
stein 2019) or to use it with caution (Cardini et al. 2019). 
In particular, Cardini et al. (2019), who first discovered it, 
provided several clear examples of the problem with this 
method, but also discussed various scenarios in which the 
issues may be less serious (data with strong covariance; large 
samples; small p thanks to a careful selection of variables in 
relation to the study aims) and (p. 313) strongly emphasized 
that “scatterplots are not the only tool for assessing group 
differences” and, thus, argued that “results from a bgPCA 
should be complemented by tests of significance”.

However, bgPCA can also be employed as a classification 
method (Culhane et al. 2002; Schlager 2017) and classifi-
cation accuracy is not affected by the same dimensionality 
issue as long as the classification is cross-validated (x-vali-
dated) using, for instance, a leave-one-out approach (Cardini 
et al. 2019). This type of x-validation simply consists of 
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excluding one observation at a time and using the remaining 
N-1 individuals to build the functions used to classify the 
omitted case. The same method is commonly used in dis-
criminant function analyses (DAs) to avoid circularity that 
would otherwise occur by deriving functions from the same 
individuals that are being classified by those functions and 
therefore inflating classification accuracy (Kovarovic et al. 
2011). Building on the x-validation strategy, in this short 
communication we explore whether it can mitigate the prob-
lem of spurious group differences in bgPCA scatterplots.

Methods

Simulated Data

Keeping the design simple in this first exploratory study, 
we investigated the case of g = 3 with constant total sample 
size (N = 120) and balanced samples (i.e., three groups, each 
having a sample size of 40). We varied p from four to 60, 
120, 360 and, when possible (see below) 720. For each value 
of p we generated random numbers with either no differ-
ences between group means (this experiment is referred to 
as example 0, which is abbreviated ex0) or with systemati-
cally controlled differences (examples 1, 2 and 3, abbrevi-
ated as ex1, ex2 and ex3, respectively). The effects of the 
number of variables and distance between groups were then 
assessed by running the simulated data through bgPCA. For 
each combination of p and group difference, the simulation 
was repeated 100 times.

For the simulations in which groups were given dif-
ferent means, we constrained the three means to lie on a 
straight line in the multidimensional space with equal spac-
ing between them. In the first simulations differences were 
introduced only in three of the p variables (ex1), but in the 
others all p variables were given a different mean (ex2-ex3, 
with ex3 having differences approximately twice bigger than 
ex2). Random normally distributed data were generated in 
R (R Core Team 2018) using the mvrnorm() function of 
the package MASS (Venables and Ripley 2002). As in Car-
dini et al. (2019), we used both isotropic data (independent 
variables with a standard deviation of one) and data with 
covariance among the variables, as described in more details 
below. For brevity, we will call ISO the isotropic model, and 
VCV the one using empirical covariances.

To generate the VCV simulated data we employed covari-
ance matrices estimated from a set of traditional linear 

morphometric measurements obtained from a sample of 171 
adult male vervet monkey skulls, which are part of a larger 
published dataset (Cardini and Elton 2017). The linear meas-
urements were calculated from Cartesian coordinates of ana-
tomical landmarks using PAST (Hammer et al. 2001). Where 
pairs of variables were highly redundant (r > 0.85), the one 
with the highest average correlation with other variables 
was removed before selecting random subsets of p variables 
for estimating covariance matrices for the sampling experi-
ments. This reduced the total number of variables available 
to estimate covariances to 384, thus limiting the maximum 
number of covarying variables that we could simulate (the 
maximum number for the uncorrelated simulations was 
720). The selection of less highly correlated variables may 
seem unnecessary, but it makes the model more consistent 
with actual morphometric practice (Marcus 1990) where an 
author is unlikely to include multiple variables that provide 
almost identical information (e.g., many slightly different 
measurements of cranial lengths, as one might get from a 
matrix of pairwise distances between all landmarks, as in 
the vervet cranial sample used in our study).

Estimates of Distortions of Group Relationships

bgPCAs were performed using the package Morpho in R 
(Schlager 2017). For the datasets with no differences (ex0 
using ISO or VCV), we tested the significance of group 
mean differences using a permutational ANOVA (1000 
permutations) based on the Euclidean distance between 
the means (adonis() function in the Vegan package for R 
(Oksanen et al. 2013)). In each run of a simulation, the test 
was performed first in the full dataspace (as it is customarily 
done) and then using only bgPCs without and with x-valida-
tion. The test in full data space provides unbiased estimates 
of the significance of the between-group differences. The 
same test was then performed in the reduced dimensional 
bgPCA space (with and without x-validation) as a measure 
of how much the between-group differences are inflated by 
the method. If bgPCA did not introduce any distortion, the 
P values in the bgPCA space would be the same as in the 
full space (i.e., with a nominal threshold α for type I errors 
of 0.05, which implies at least 95% of non-significant tests 
when there are no real differences). Like with CVA, one 
would not normally use bgPCA space to test for between-
group differences, because it is constructed to emphasize 
those differences relative to within-group variation, and the 
test is only used here for the specific aim of quantifying the 
degree of inflation of group structure in the bgPCA space.

We also estimated the percentage of variance explained 
by group differences (R2) using the same R function as for 
the permutation test. This was done for all sets of simula-
tions (without or with real differences in both ISO or VCV 
data). As with the estimation of P values, we calculated R2 

Fig. 1   bgPCAs scatterplots of isotropic random data with no real 
groups (ISO-ex0). In this figure (as well as in Figs. 2, 3 and 4) a–c 
are the conventional bgPCA scatterplots and d–f their leave-one-out 
cross-validated (xval) version. All bgPCA graphics were created with 
Adegraphics (Siberchicot et al. 2017)
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first in the full space (correct estimate) and then in the two 
reduced spaces (bgPCA and x-validated bgPCA). If bgPCA 
is immune from distortion, R2 should be the same in full and 
bgPCA spaces. R2 is a valid test statistic but is a biased esti-
mator of effect size because R2 increases along with group 
number or with decrease in sample size. A useful unbiased 
alternative is the multivariate Z-score proposed by Collyer 
et al. (2015). However, R2 is intuitive and customarily used 
in studies of group differences (including our previous con-
tribution on bgPCA – Cardini et al. 2019). More importantly, 
the bias does not affect comparability of results in this study, 
because N is constant in all simulations and datasets. Thus, 
R2 will not be zero even when there are no real group differ-
ences, but this provides a useful warning for the readers that, 
because of sampling error, one should always expect to find 
differences and the stronger the error the larger they might 
be (which underscores again the importance of statistical 
testing in the context of studies of group variation).

Finally, we evaluated how much the relative positions of 
the group means are altered in bgPCA spaces (without or 
with x-validation) compared to the theoretical model used 
to generate the data (for instance, no differences-ex0- or 
three different means on a line-see above). For simulated 
data with no group differences, the three means should lie 
in precisely the same position (with some difference due 
to sampling error) and for those with simulated differences 
the means should lie equally spaced on a straight line. We 
used Procrustes superimposition (with no size standardiza-
tion) to measure the difference in the positions of the three 
group means, which are equivalent to a triangle of three 
multidimensional points, to measure bgPCA’s distortion by 
computing the Euclidean distances between the bgPCA and 
original positions. This is akin to measuring differences in 
form space (size and shape) of the two pairs of triangles 
(theoretical vs observed in bgPCA space, and theoretical vs 
observed in x-validated bgPCA space). Note that Procrustes 
fails if the three points lie in precisely the same location. To 
compensate for this, we added a tiny mean difference to the 
groups whose magnitude was less than 1/400 of the stand-
ard deviations used to generate the data to the means in the 
simulations. Because the added differences were so small 
relative to the variance in the simulated datasets, the three 
means were virtually identical. For brevity, we will abbrevi-
ate these Euclidean distances between triangles formed by 
the means (theoretical vs observed) using the acronym EDM.

Although observed means in simulated data will always 
be different from theoretical ones because of sampling error, 
if there was no distortion when p variables are ‘squeezed’ 
into g-1 bgPCs, EDM should not change as p increases. For 

both the R2 as well as the EDM, we used the median of the 
100 runs in each simulation as a summary.

Results

The first two figures show several example bgPCA scatter-
plots generated from isotropic data of three different dimen-
sionalities (p = 4, 120, and 720) where there were no real 
group differences (Fig. 1) and with small differences (Fig. 2; 
R2 ~ 3%). Without x-validation and no real differences 
(Fig. 1a-c), the apparent group separation in bgPCA space 
spuriously increases along with the number of variables so 
that separation appears complete when p = 720 (Fig. 1c). In 
contrast, x-validation bgPC mitigates the spurious separa-
tion regardless of p (Fig. 1d-f). When the simulated data 
had small group differences in each of the p variables, 
bgPCA produced increasingly large group separations that 
also increased with p (Fig. 2a–c). This should not happen 
because adding new variables, each with the same amount 
of simulated difference (and thus also the same amount of 
variance unexplained by groups), does not change the overall 
multivariate difference in relation to the total variance in 
the p-dimensional space (i.e., the R2). In this case, however, 
x-validation did not completely mitigate the effect, although 
it did reduce the bias somewhat (Fig. 2d-f). The distortion of 
the pattern of mean differences is clearly more pronounced 
if scores are not x-validated, especially with high p = 120 
and 720, as indicated by the sharp deviation of the mean of 
group 2 from a straight line. Thus, the x-validated results 
not only mitigated the spurious differences between groups 
in bgPCA space, but they somewhat helped maintain their 
spatial relationships.

Results for data with covariance (VCV, Figs. 3, 4) are 
similar to those of the isotropic data (ISO). Spurious group 
separation increases with p in the non-x-validated bgPCA-
x-validated bgPCA space (Fig. 3a–c) and the distortion of 
the positioning of group means is also stronger in non-x-val-
idated bgPCAs (Fig. 4a–c). However, as shown by Cardini 
et al. (2019), spurious differences are much less pronounced 
when variables covary, as it is as if the real dimensionality of 
the data was smaller than p. Likely, the smaller effect of p on 
group separation in VCV datasets also depends on the strong 
pattern of covariance, which stretches bgPC1 so much that 
group means look closer and overlap larger. Interestingly, 
however, if covariance helps to reduce spurious separation, 
it also increases the distortion of the pattern of group mean 
differences (see also below). Yet, the distortion is again less 
pronounced after x-validation (Fig. 4d, e).

Figure 5 shows the percentage of runs from ex0 (no real 
differences) in which the test produced statistically sig-
nificant differences between groups. As expected, spurious 

Fig. 2   bgPCA scatterplots of isotropic data with small group differ-
ences on all p variables (ISO-ex2; full space median R2 ~ 3%)
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Fig. 3   bgPCA scatterplots of covarying data with no real group differences (VCV-ex0)
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Fig. 4   bgPCA scatterplots of covarying data with larger group differences on all p variables (ISO-ex3; full space median R2 ~ 4%)
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significant differences occur in the full data space only 
about 5% of the time. This indicates that the type I error rate 
(rejection of the null hypothesis of no differences when there 
are indeed no differences) is generally appropriate (using 
a nominal α of 0.05 or 5%) in all datasets and simulations 
when tested in the full data space. In sharp contrast with this, 
when tests without x-validation are performed in bgPCA 
space, even with just four variables (p = 4), type I error rates 
are clearly higher than expected, as significance is found in 
approximately 25–30% of tests. With p = 60 or larger, virtu-
ally all tests in bgPCA space become significant, despite 
the absence of real differences and regardless of the model 
(ISO or VCV). However, if bgPC scores are x-validated, for 
both ISO and VCV data, significance is found only ca. 15% 
to about 25% of times. This is on average larger than the 5% 
expected using the conventional α=0.05, but clearly much 
better than in non-x-validated bgPCA space.

Figure 6 summarizes the proportion of variance explained 
by group membership (R2) using the median of the 100 
runs in each simulation. When no differences exist between 
groups (ex0, Fig. 6a), R2 should remain close to zero, which 
it does in the full data space and the x-validated bgPCA 
space for both ISO and VCV models. The fact that R2 
remains low in the x-validated space is congruent with the 
lack of separation in the x-validated space in Figs. 1, 2. In 
sharp contrast, non-x-validated bgPCAs produce increasing 
R2 in relation to p, with a very strong effect for the ISO data 
(up to more than 75% of explained bgPCA variance) and a 
definite but less pronounced one for the VCV data (up to ca. 
10% of explained variance). This is again consistent with the 
scatterplots of Figs. 1, 2, which suggested a much less seri-
ous problem of spurious group separation when data covary 
and also indicated that x-validated scores further mitigate or 
even completely control for this artefact.

For simulated data with real between-group differences 
(Fig. 6b–d) the patterns are more complex, but they still 
consistently indicate that x-validated bgPCs more accu-
rately represent between group differences than do the con-
ventional bgPCs. In fact, in simulated data with co-varying 
variables, the x-valided bgPCA produces R2 values that 
are close to the correct estimates obtained in the full data 
space. In Fig. 6b (VCV-ex1), the R2 values in the full data 
space decrease as p increases because the simulated differ-
ences only involved three variables, which are progressively 
swamped with random noise as p gets larger. In contrast, 
the R2 values in the full data space remain more or less con-
stant, with a median of 3–7% and 2–4% respectively for ISO 
and VCV data, when all the variables were simulated with 
a smaller (ex2) or larger (ex3) between-group difference 
(Fig. 6c–d). In these simulations, ISO bgPCAs always lead 
to inflated R2, although inflation is smaller after x-validation. 
In the same simulations, non-x-validated bgPCAs of VCV 
data always produce R2 much smaller than those of ISO 
data and only slightly bigger than those from x-validated 
bgPCAs, which are, in turn, fairly close to the correct R2 
value obtained in full data space.

Collectively, these results confirm that the spurious 
between-group separations introduced by bgPCA is worse 
in isotropic, uncorrelated variables, as already shown by 
Cardini et al. (2019). While this model is unlikely to cor-
respond to any real biological data where most variables 
covary, the mitigating effect of covariance simply means that 
the spurious separation is less in covarying data for the same 
p. With covariance, spurious separation is very modest but 
does increase with p. With x-validated scores, however, the 
inflation of differences is very small (Fig. 6b–d) and almost 
absent when there are no real differences (Fig. 6a). Thus, 
larger p will always result in larger spurious differences in 
bgPCA if x-validation is not used.

Fig. 5   Tests of group differences in data with no real differences 
(ex0). Profile plots of the percentage of simulations in which a per-
mutation test for group mean differences (using the Euclidean dis-
tance between the means as a test statistics) was significant, as it 
should be not, given the absence of real groups. Tests were performed 
in the full space (as it is conventionally done), but also in the bgPCA 
space (i.e., using only bgPCs) without and with cross-validation. 
Note that normally one should not test differences using only bgPCs 
(which is circular reasoning, as it is, by definition, a space built ad 
hoc to capture differences) and this was done here only to provide 
an index that suggests how much differences are inflated in bgPCA 
space. With inflated differences, 5% or less of tests in bgPCA space 
should be significant, which is the expectation using α = 0.05 and 
what is observed in the full data space. The same reasoning applies to 
R2 in Fig. 6, that is also computed both in full space and in its bgPCA 
subspace
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Finally, Fig. 7 summarizes the estimates of the distortion 
of the group mean relationships using the median EDM of 
results from the 100 runs of each simulation. In this respect, 
these findings are congruent with the previous analyses, 
but this analysis nevertheless has an element of novelty. 
In agreement with all previous findings, x-validated bgPC 
scores outperform conventional non-x-validated analyses by 
showing less distorted patterns of between-group separa-
tion. However, the results in Fig. 7 show that the spatial 
arrangement of group means in the x-validated bgPCA space 
is more distorted with the VCV data than with ISO.

Conclusions

In conclusion, our study reconfirms that bgPCA potentially 
inflates group differences and can even introduce apparent 
differences where none exist. This effect is more pronounced 
as the number of variables increases. However, using x-val-
idation to construct the bgPCA space can completely coun-
teracts these spurious effects or largely mitigates them. Thus:

Fig. 6   Median percentage of 
variance explained by groups 
(multivariate R2). As anticipated 
in Fig. 5, R2 was computed 
not only in the full space, 
but also in the subspaces of 
the bgPCA (without or with 
cross-validation). The R2 in the 
bgPCA space only serves as an 
index of the inflation of group 
differences in this subspace: 
the further from the full space 
R2, the stronger the inflation of 
differences
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(1)	 bgPCA inflates spurious group differences as p 
increases, as reported in previous studies (Cardini et al. 
2019 and Bookstein 2019).

(2)	 The spurious effects of bgPCA are less evident in data 
sets where the variables covary, which is the case in 
most real biological datasets, because the bias increases 
more slowly as p increases than in data where the vari-
ables are uncorrelated.

(3)	 x-validation almost completely removes the spurious 
separation between groups from bgPCA scatterplots. 
Nevertheless, we recommend that users report an esti-

mate of effect size such as R2 or Z and the P value of 
a test for group mean differences, both calculated in 
the full multivariate dataspace. For instance, finding a 
small but significant percentage of variance accounted 
for by group differences will tell users that, even if 
groups may look well separated in the x-validated plot, 
differences are likely to be real but most of the variation 
in the total sample is not due to group structure. On the 
other hand, regardless of how large R2 is and what the 
scatterplot may suggest, non-significance will indicate 

Fig. 7   Median EDM used to 
estimate the distortion of rela-
tionships between group means 
in bgPCA spaces (without or 
with x-validation) relative to 
the theoretical pattern of mean 
differences used in the model 
which generated the random 
data: with no distortion, EDM 
should be about zero
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that samples are not large enough for confidently infer 
patterns of group variation.

(4)	 In all instances, and especially for covarying variables, 
the relative positions of group means in bgPCA space 
become increasingly distorted as p increases, even with 
x-validation (although in this latter case the impact is 
less pronounced).

If the results we obtained using g = 3, balanced samples 
and the covariance structure of traditional morphometric 
measures from adult male vervet skulls generalize, it would 
seem that x-validated bgPC scores almost completely solve 
the issue of spurious and inflated group separation when the 
variance present in a set with a large number of variables 
is ‘squeezed’ in the small g-1 space of a bgPCA. Because 
increasing g (with the same p and within group sample size) 
mitigates the problem of spurious and inflated group differ-
ences in bgPCAs, it is likely that our results will be robust 
when applied to data with a larger number of groups, as, for 
instance, in most taxonomic studies (see Table 1 of Cardini 
et al. 2019). However, the effect of highly heterogeneous 
sample size should be explored and, when p is large, the 
pattern of group mean differences captured by a bgPCA will 
definitely become less reliable. This, as suggested also by 
other morphometric studies (Cardini et al. 2015; Cardini 
and Elton 2007), reinforces the general observation that 
accurate estimates of group means require large samples 
and samples must be especially large if many variables are 
analysed. As obtaining large numbers of variables becomes 
more common, thanks to new technologies and methodolog-
ical advancement (e.g., semilandmark analyses in geometric 
morphometrics (Adams et al. 2013) and microarray data in 
genetics (Culhane et al. 2002), the importance of very large 
samples to achieve accuracy becomes even more crucial, 
an observation that raises profound questions especially for 
vertebrate palaeontologists and student of human evolution, 
that almost inevitably have to rely on small sample sizes of 
precious, but rare and frequently fragmented material.
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