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Wilson loops to remain BPS when quantum corrections are included. We analyze the M-
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1 Introduction

It is by now a widely substantiated fact that BPS Wilson loops provide a powerful probe

of supersymmetric gauge theories. While Wilson loops in general enable us to study gauge

theories and their phases, the BPS ones are particularly interesting as they also allow to

perform exact calculations, via localization [1]. The prototypical example of such operators

is the 1/2 BPS Wilson loop of N = 4 super Yang-Mills (SYM) theory in four dimensions,

which is defined in terms of a gauge connection augmented by a scalar coupling [2–4]. In

the case of the circular geometry, this is evaluated by the Gaussian matrix model [5, 6].

The same is true for a much larger class of theories with N = 2 supersymmetry, where

again a scalar coupling allows to turn the loop for any gauge group in a quiver gauge theory

(or a theory of class S) to be BPS and they provide rich probes of the theory [1, 7–9].

In three dimensions the story is quite similar, if we consider Chern-Simons (CS) theo-

ries with N = 2 supersymmetry. The 1/2 BPS Wilson loops there again involve a coupling

to a scalar from the vector multiplet [10] and can be evaluated by localization to a matrix

model [11]. The same is true for Yang-Mills theories with N = 4 supersymmetry [12].

Things are however more complicated when considering Chern-Simons theories with more

extended supersymmetry. In the ABJ(M) theory [13, 14], which has N = 6 supersymme-

tries, the loops with only scalar couplings turn out to be only 1/6 BPS [15–17], while the 1/2

BPS ones require a much more complicated structure, involving couplings to both gauge

groups and the inclusion of fermionic terms [18]. Technically, the proof of supersymmetry

invariance for those 1/2 BPS loops becomes more complicated, since the connection itself

is not invariant under the supersymmetry variations, but gives a total derivative which

needs to be integrated along the Wilson loops.

In this paper, we initiate the study of 1/2 BPS Wilson loops in theories with Chern-

Simons couplings and N = 4 supersymmetry. The case of CS theories with N = 3 super-

symmetry was already studied in [19], where it was found that the only supersymmetric

loops are 1/3 BPS. The structure of N = 4 theories is much more restrictive and we may

hope that there could be 1/2 BPS loops. Indeed we shall present an embarrassingly large

number of Wilson loops that seem to be 1/2 BPS and will discuss how this degeneracy

may be lifted.

Before outlining the results, we proceed by specifying the theories analyzed in this

paper.

1.1 The theories

The first N = 4 superconformal Chern-Simons-matter theories in three dimensions were

constructed in [20]. These were generalized in [21] by the inclusion of “twisted” hypermul-

tiplets and further generalized in [22], whose notations we mainly use, see appendix A for

– 2 –



J
H
E
P
1
0
(
2
0
1
5
)
1
4
0

details. The theories we consider are circular or linear quivers with U(NI) gauge group

nodes. Adjacent nodes can be connected by bifundamental fields which are either hyper-

multiplets or twisted hypermultiplets. We assume that there are p hypermultiplets and q

twisted hypermultiplets. A circular quiver has then p+ q nodes, while a linear quiver has

p+ q + 1 nodes. The supersymmetry enhancement of these extended theories was studied

in [23] and, in particular, it was shown that ABJ(M) lies in this class of theories.

The vector multiplets associated to the nodes with vanishing CS levels may be inte-

grated out to obtain a non-linear theory [24]. We do not adopt this approach and work

with the UV description.

We label our nodes by the index I, so the vector field is A(I)µ. The gaugino and

auxiliary scalar (in N = 2 language) are λ(I) and ϕ(I), though we will integrate them

out for nodes with non-vanishing CS levels. The hypermultiplets in the bifundamental

representation of nodes I and I+1 have a scalar qĀ(I) and fermion ψ(I)B. They are doublets

of the SU(2)A and SU(2)B subgroups of the SO(4) = SU(2)A×SU(2)B R-symmetry group

and are indicated by underlined and overlined indices, respectively. The same multiplet

includes also q̄(I)Ā and ψ̄
B
(I). The field content of the twisted hypermultiplets is obtained

by exchanging underlined and overlined indices.

The CS level of the Ith node, kI , is fixed by the condition

kI =
k

2
(sI − sI+1) , sI = ±1 , (1.1)

where sI = 1 for a hypermultiplet at the Ith link and sI = −1 for a twisted hypermultiplet.1

With these conditions, it is apparent that kI ∈ {k,−k, 0}.

1.2 The Wilson loops

The theories we study have an SO(4) = SU(2)A × SU(2)B R-symmetry. We shall look for

Wilson loops which preserve the SU(2)A subgroup. There will be other Wilson loops which

preserve the SU(2)B subgroup, of course. Those can be studied by replacing the theory

with another one where all hypermultiplets are exchanged with twisted hypermultiplets

and vice-versa.

To be specific, we choose to preserve the supersymmetries generated by the four pa-

rameters (see the supersymmetry transformations in appendix A)

ξ+
Ā1

, ξ−
Ā2

, Ā = 1̄, 2̄ . (1.2)

The Wilson loops preserving those supercharges are straight lines in Euclidean space and

will also preserve four superconformal generators. In section 3 we write down circular loops,

which preserve eight linear combinations of the Poincaré and conformal supersymmetries,

but will also preserve SU(2)A.

An important point about the supersymmetries in (1.2) is that there is a pairwise

symmetry under exchange of chirality ± and SU(2)B index 1, 2. The construction of

the Wilson loops below mirrors that in ABJM theory and includes fermions from the

1We adopt the convention that in quiver diagrams I increases from left to right.
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hypermultiplet, which carry the same type of indices. Hence the choice of fermionic coupling

in the Wilson loops breaks this pairwise symmetry and consequently we find a pairwise

degeneracy in all our constructions. We refer to those below as the “ψ1-loops” and “ψ2-

loops”, reflecting the SU(2)B label of the fermionic coupling.

There are several different cases of loops, the details of which are presented in the next

section, but most possess this degeneracy. We do not see a trace of this degeneracy in

M-theory and we expect it to be lifted by quantum corrections. We discuss this in some

more detail in the discussion section.

The paper is organized as follows. In the next section we present the construction of

the 1/2 BPS Wilson loops. We start with the case of segments of the quiver with alter-

nating k,−k CS levels. We then consider linear quivers, by removing a hypermultiplet or

twisted hypermultiplet from a circular quiver. Finally, we consider the cases of segments

of the quiver with vanishing CS levels. In section 3 we study the case of the circular Wil-

son loop. In section 4 we discuss how to calculate those Wilson loops using localization.

The main point is that all those Wilson loops for quivers with alternating CS levels are

classically cohomologically equivalent to 1/4 BPS loops, which can be evaluated in the

matrix models of these theories. We expect, though, that this analysis receives quantum

corrections and only a certain linear combination of those Wilson loops will be in fact quan-

tum mechanically equivalent to the 1/4 BPS loops. For segments of the quiver comprising

successive hypermultiplets, we have been able to show only for one of our proposed BPS

loops that it is cohomologically equivalent to a 1/4 BPS loop. The situation with the other

possible BPS Wilson loops supported on this part of the quiver the situation is not clear.

In section 5 we discuss the M2-brane duals of these Wilson loops and comment on their

degeneracies. We finally conclude with a discussion of the many remaining questions left

open. The notations and some technicalities are relegated to appendices.

During the course of our work, a manuscript addressing the same question has ap-

peared [25]. This prompted us to present the rich class of observables we have found,

leaving their further study to the future. The Wilson loop found in [25] is one of those

presented below for the particular theories which are orbifolds of ABJM. To be specific, it

is the loop coupling to ψ1 and in a representation of all of the nodes of the quiver.

2 Infinite straight line

Wilson loops are traditionally defined as the holonomy of the gauge connection. It was

however found in [18] that the 1/2 BPS Wilson loops in ABJ(M) theory must be expressed

in terms of the holonomy of a superconnection L, with modified connections for the two

U(N1) and U(N2) vector multiplets on the diagonal blocks and bifundamental Fermi fields

in the off-diagonal blocks. The Wilson loop is then

W = trR P exp

(

−i

∫

dτL(τ)
)

, (2.1)

where R is a representation of the supergroup U(N1|N2).
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The supersymmetry variation of the superconnection does not vanish, rather it is a

total differential. In [26] this was expressed in terms of a supercovariant derivative of a

supermatrix valued in the superalgebra, i.e.,

δL = DτG ≡ ∂τG− i{L, G] . (2.2)

This is enough to guarantee that the Wilson loop is invariant under the corresponding

supersymmetries. One must furthermore ensure that the trace is such that the boundary

terms from integrating this term cancel each other. Our construction below of 1/2 BPS

loops in N = 4 theories will be based on similar principles.

In this section, we start by considering an infinite spacelike line in the x1-direction in

R
3 parametrized by

x1 = τ , x2 = x3 = 0 . (2.3)

2.1 Alternating CS levels

The theories we consider have a number of vector multiplets coupled by p hypermultiplets

and q twisted hypermultiplets forming a circular or linear quiver. We study different

possible sections of the quiver and find the Wilson loops supported on the relevant nodes.

We start by considering a segment of the quiver of the form

N1 N2

k −k

,

where a solid link corresponds to a hypermultiplet and a dashed link to a twisted hy-

permultiplet. Each node represents a U(NI) vector multiplet with Chern-Simons level kI
indicated above.

We begin by considering the variation of the gauge connection of the first node. Before

proceeding, we define following [22], the useful bilinears

ν(I) = qĀ(I)q̄(I)Ā, ν̃(I) = q̄(I)Āq
Ā
(I) ,

(µ(I))
Ā
B̄ = qĀ(I)q̄(I)B̄ − 1

2
δĀB̄(ν(I))

C̄
C̄ , (µ̃(I))

Ā
B̄ = q̄(I)B̄q

Ā
(I) −

1

2
δĀB̄(ν̃(I))

C̄
C̄ ,

j
ĀBa
(I) =

√
2qĀ(I)ψ̄

Ba
(I) −

√
2ǫĀC̄ǫBDψa

(I)Dq̄(I)C̄ , j̃
ĀBa
(I) =

√
2ψ̄

Ba
(I)q

Ā
(I) −

√
2ǫĀC̄ǫBD q̄(I)C̄ψ

a
(I)D .

(2.4)

The currents j and j̃ are descendents of the moment maps µ and µ̃.

The variation with supersymmetry parameters (1.2) is (see appendix A)

δA(1)1 =
1

k
ξ+
Ā1

(

j
Ā1
(1)+ − j̃

1Ā
(0)+

)

− 1

k
ξ−
Ā2

(

j
Ā2
(1)− − j̃

2Ā
(0)−

)

. (2.5)

In CS-matter theories, it is natural to allow for a bilinear of the scalars in the con-

nection [10, 15–18]. The variation of the moment map (2.4) associated to the twisted

hypermultiplet on the left is

δ(µ̃(0))
1
1 =

i

2
ξ+
Ā1

j̃
Ā1
(0)+ − i

2
ξ−
Ā2

j̃
Ā1
(0)− . (2.6)
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We can eliminate all the terms in the variation of A(1) (2.5) that depend on the twisted

hypermultiplets by taking the linear combination

δ

[

A(1)1 −
2i

k
(µ̃(0))

1
1

]

=
1

k
ξ+
Ā1

j
Ā1
(1)+ − 1

k
ξ−
Ā2

j
Ā2
(1)− . (2.7)

Since µ̃ is traceless, this is the same as adding 2i
k (µ̃(0))

2
2.

We can also include terms from the scalars in the untwisted hypermultiplets. A term

proportional to their moment map will lead to a connection invariant under half of the

supercharges in (1.2), that is a 1/4 BPS Wilson loop. But our choice of of supersymmetries

(1.2) distinguish between the twisted and untwisted fields. So for the untwisted fields

consider the variation of ν

δν(1) = i
√
2
(

ǫĀB̄ǫ12ξ−
B̄2

ψ(1)1−q̄Ā + ǫĀB̄ǫ21ξ+
B̄1

ψ(1)2+q̄Ā + ξ+
Ā1

qĀ(1)ψ̄
1
(1)+ + ξ−

Ā2
qĀ(1)ψ̄

2
(1)−

)

.

(2.8)

This does not package nicely in terms of the currents, so let us also expand (2.7) in terms

of the component fields

δ

[

A(1)1 −
2i

k
(µ̃(0))

1
1

]

=

√
2

k

(

ξ+
Ā1

qĀ(1)ψ̄
1
(1)+ − ξ−

Ā2
qĀ(1)ψ̄

2
(1)− − ǫĀB̄ǫ21ξ+

B̄1
ψ(1)2+q̄(1)Ā + ǫĀB̄ǫ12ξ−

B̄2
ψ(1)1−q̄(1)Ā

)

.

(2.9)

We see that we have all the same terms in those two expressions, but with different signs.

We can therefore add or subtract ν(1) from the gauge connection and reduce the variation

to just two terms

δ

[

A(1)1 −
2i

k
(µ̃(0))

1
1 −

i

k
ν(1)

]

=
2
√
2

k

[

ξ+
Ā1

qĀ(1)ψ̄
1
(1)+ + ǫĀB̄ǫ12ξ−

B̄2
ψ(1)1−q̄(1)Ā

]

, (2.10a)

δ

[

A(1)1 −
2i

k
(µ̃(0))

1
1 +

i

k
ν(1)

]

= −2
√
2

k

[

ξ−
Ā2

qĀ(1)ψ̄
2
(1)− + ǫĀB̄ǫ21ξ+

B̄1
ψ(1)2+q̄(1)Ā

]

. (2.10b)

In each case we find a non-vanishing variation, which we will have to cancel by con-

sidering a superconnection, with fermionic couplings either ψ̄
1
(1)+ and ψ(1)1− for the first

sign choice, or ψ̄
2
(1)− and ψ(1)2+ in the second case. We refer in the following to the two

respective loops as “ψ1-loops” and “ψ2-loops”.

2.1.1 The ψ1-loop

Thus, following [18, 26], we try introducing a super-connection whose top left block is given

by (2.10a). On dimensional and Graßmann odd/even grounds, it can be seen that the (1,2)

and (2,1) component of the superconnection will be of the form, c̄
A
a ψa

(1)A and caAψ̄
A
(1)a, where

the spinor couplings c̄
A
a and caA are Graßmann even. The supersymmetry conditions (2.2)

tell us that we must write the variation of this entry with respect to the supersymmetries

as a covariant derivative with respect to some specified modified bosonic connections. By

assumption, we firstly consider taking the modified bosonic connection of the first node is

– 6 –
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given by (2.10a), and we fix the form of the second connection such that the conditions

(2.2) are satisfied.

As such, we must choose the fermionic couplings such that the covariant derivative

in the variation of the fermions is projected along the x1 direction. This requires c−1 =

c+2 = c̄
1
− = c̄

2
+ = 0. Motivated by the lack of an appearance of ψ2 and ψ̄2 in (2.10a) in the

context of the supersymmetry conditions (2.2), let us further assume that c−2 = c̄
2
− = 0.

We thus write the superconnection as

Lψ1 =

(

A(1)1 − 2i
k (µ̃(0))

1
1 − i

kν(1) c̄ψ+
(1)1

cψ̄
1
(1)+ ⋆

)

, (2.11)

where c, c̄ and ‘⋆’ remain to be fixed.

As the variation of the bosonic connection contains no derivatives, the supermatrix G

of (2.2) is of the form

Gψ1 =

(

0 g

ḡ ⋆

)

. (2.12)

Towards this, consider

δψ+
(1)1 =

√
2( /D)++q

Ā
(1) ξ

+
Ā1

−
√
2

k
ξ+
Ā1

(

ν(1)q
Ā
(1) − qĀ(1)ν̃(1)

)

− 2
√
2

k
ξ+
Ā1

(µ̃(0))
1
1q

Ā
(1) +

2
√
2

k
ξ+
Ā1

qĀ(1)(µ(2))
1
1.

(2.13)

Thus, we may write

c̄ δψ+
(1)1 = Dτg, (2.14)

with
g ≡

√
2(c̄1)+q

Ā
(1)(ξĀ1)

+ ,

Dτg ≡ Dτg + i

(

i

k
ν(1) +

2i

k
(µ̃(0))

1
1

)

g − ig

(

i

k
ν̃(1) +

2i

k
(µ(2))

1
1

)

,

Dτg ≡ ∂τg − iA(1)1g + igA(2)1 ,

(2.15)

in agreement with the modified connection for the loop in (2.10a). We are now furthermore

find that the bottom right block has be be A(2) − 2i
k (µ(2))

1
1 − i

k ν̃(1).

Similarly, we may use the variation of the bottom left block

δψ̄
1
(1)+ =

√
2( /D)+−q̄

Ā
(1)ǫ

ĀB̄ǫ12ξ−
B̄2

+

√
2

k
ǫĀB̄ǫ12ξB̄2+

[

ν̃(1)q̄(1)Ā − q̄(1)Āν(1)

]

− 2
√
2

k
ǫĀB̄ǫ12ξB̄2+q̄(1)Ā(µ̃(0))

1
1 +

2
√
2

k
ǫĀB̄ǫ12ξB̄2+(µ(2))

1
1q̄(1)Ā,

(2.16)

to write

c δψ̄
1
(1)+ = Dτ ḡ, (2.17)

where

ḡ ≡ −
√
2 c q̄Ā(1)ǫ

ĀB̄ǫ12ξB̄2+, (2.18)

– 7 –
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and the modified bosonic connections agree with (2.15). It now remains to check the

variations of the bosonic connections satisfy the conditions coming from (2.2), i.e.,

δ

[

A(1)1 −
2i

k
(µ̃(0))

1
1 −

i

k
ν(1)

]

= −ic̄ (ψ(1)1)
+ḡ + igc (ψ̄

1
(1))+, (2.19a)

δ

[

A(2)1 −
2i

k
(µ(2))

1
1 −

i

k
ν̃(1)

]

= −ic (ψ̄
1
(1))+g + iḡc̄ (ψ(1)1)

+. (2.19b)

A simple calculation shows that these conditions hold, provided cc̄ = −2i
k . The value of

c itself is immaterial, as it always will appear in the combination cc̄ in the trace of the

superconnection. We choose therefore c = c̄ = 1−i√
k
. In summary, we find that the loop

with super-connection

Lψ1 =

(

A(1)1 − 2i
k (µ̃(0))

1
1 − i

kν(1)
1−i√

k
ψ+
(1)1

1−i√
k
ψ̄
1
(1)+ A(2)1 − 2i

k (µ(2))
1
1 − i

k ν̃(1)

)

(2.20)

preserves the supersymmetries (1.2).

2.1.2 The ψ2-loop

We now consider the second modified bosonic connection (2.10b) A(1)1 − 2i
k (µ̃(0))

1
1 +

i
kν(1)

and proceed similarly to the previous section.

We find that this works with

ḡ ≡
√
2 c q̄(1)Āǫ

ĀB̄ǫ21ξB̄1−, (2.21)

and the super-connection of the ψ2-loop is given by

Lψ2 =

(

A(1)1 − 2i
k (µ̃(0))

1
1 +

i
kν(1)

1−i√
k
ψ−
(1)2

1−i√
k
ψ̄
2
(1)− A(2)1 − 2i

k (µ(2))
1
1 +

i
k ν̃(1)

)

. (2.22)

Indeed using

δψ−
(1)2 =

√
2( /D)−−q

Ā
(1) ξ

−
Ā2

−
√
2

k
ξ−
Ā2

(

ν(1)q
Ā
(1) − qĀ(1)ν̃(1)

)

− 2
√
2

k
ξ−
Ā2

(µ̃(0))
2
2q

Ā
(1) +

2
√
2

k
ξ−
Ā2

qĀ(1)(µ(2))
2
2 ,

(2.23)

and the variation of the bosonic connections we find that the supermatrix appearing in the

covariant derivative (2.2) is

Gψ2 =





0 −
√
2(1−i)√

k
qĀ(1) ξ

−
Ā2√

2(1−i)√
k

q̄(1)Āǫ
ĀB̄ǫ21ξB̄1− 0



 . (2.24)

We find for each hypermultiplet in a quiver connecting nodes with CS levels k to

−k a pair of superconnections. Out of each of them we can construct a Wilson loop in

an arbitrary representation of the supergroup U(N1|N2). We in fact expect to find only

one Wilson loop for each representation of such a pair. We comment about this in the

discussion section.
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2.2 Linear quivers

Before proceeding to the case of quivers with nodes with vanishing CS levels, let us comment

on linear quivers. We can construct any linear quiver by starting from a circular quiver

and removing a hypermultiplet or a twisted hypermultiplet (or a pair and the intermediate

vector multiplet). The relevant loops are gotten from those constructed above by erasing

the coupling to the removed fields.

We start from the segment of the quiver considered above

N1 N2

k −k

.

The loops we constructed couple to scalars and fermions of the hypermultiplet between the

nodes and to the scalars of the two adjacent twisted hypermultiplets.

Consider removing the twisted hypermultiplet to the right of the second node. Erasing

it from the ψ1-loop (2.20) gives

Lψ1 =

(

A(1)1 − 2i
k (µ̃(0))

1
1 − i

kν(1)
1−i√

k
ψ+
(1)1

1−i√
k
ψ̄
1
(1)+ A(2)1 − i

k ν̃(1)

)

, (2.25)

and it is easy to check that this is indeed is 1/2 BPS, with the appropriate supersymmetry

transformations of the linear quiver in appendix A. Similarly, the ψ2-loop (2.22) becomes

Lψ2 =

(

A(1)1 − 2i
k (µ̃(0))

1
1 +

i
kν(1)

1−i√
k
ψ−
(1)2

1−i√
k
ψ̄
2
(1)− A(2)1 +

i
k ν̃(1)

)

. (2.26)

Likewise we can remove the twisted hypermultiplet from the left which will remove the

coupling to the µ̃(0) moment map from the above.

If we instead remove the hypermultiplet connecting the N1 and N2 nodes we expect

to lose the structure of the superconnection. Indeed, in that case we find two indepen-

dent 1/2 BPS Wilson loops, each with a gauge connection and a coupling to the twisted

moment maps

L(1) = A(1)1 −
2i

k
(µ̃(0))

1
1 , L(2) = A(2)1 −

2i

k
(µ(2))

1
1 . (2.27)

Note that both ψ1 and ψ2-loops give the same loops via this process, so we lose that two-

fold degeneracy. Also, these loops are essentially the same as the usual 1/4 BPS loops

one gets from a modified connection with the scalar ϕ of the vector multiplet. In this

formulation this scalar has been integrated out giving rise to the couplings to µ. Those

loops are 1/2 BPS in theories with N = 2 supersymmetry and in this particular case get

enhanced to preserve 4 supercharges, rather than 2.

A similar story holds when considering linear quivers that end on nodes with vanishing

CS levels. The case with vanishing levels inside a quiver are studied in the following two

sections. Again, one can remove a hypermultiplet or twisted hypermultiplet to open up

the quiver and the Wilson loops with those fields removed would remain 1/2 BPS. We do

not list all the examples or repeat the algebra for all of them.
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2.3 Vanishing CS levels: Repeated untwisted hypermultiplets

We have thus far considered Chern-Simons-matter quivers with alternating ±k Chern-

Simons levels. Here we study the Wilson loops in the case with extra nodes of vanishing

CS levels [20, 22] that preserve N = 4 supersymmetry.

Let us consider the quiver with a node with vanishing CS coupling to a pair of untwisted

hypermultiplets

N1 N2 N3

k 0 −k

.

We have removed for convenience the twisted hypermultiplets from the left and the right,

but they can be incorporated by adding the moment maps to the gauge connection.

We start by mimicking the construction of superconnections in the alternating levels

case and find several different possible connections involving pairs of nodes. Then in

section 2.3.4 we find a new structure of a superconnection which couples to all the different

fields of the three nodes. We expect this structure to be more fundamental than the ones

involving only pairs of nodes.

2.3.1 The ψ1-loop for the first link

We begin by constructing the ψ1-loop for the first link. The analysis proceeds as in sec-

tion 2.1.1: We take the same connection for the first node, since it couples to the same

fields as previously (only that now, since we don’t have twisted hypermultiplets, we don’t

need to include a µ̃(0) contribution). We then continue to study the fermions and the

connection on the second node.

Requiring that the variation of the bosonic connection in the first node is a commutator

with ψ(1) gives
2

Lψ1

(1) =

(

A(1)1 − i
kν(1) c̄ ψ+

(1)1

c ψ̄
1
(1)+ ⋆

)

, (2.28)

where it remains to fix ‘⋆’ and the fermionic couplings c and c̄.

We fix the form of the bosonic connection of the second node by studying the variation

of the fermionic terms

δψ+
(1)1 =

√
2Dτq

Ā
(1)ξ

+
Ā1

−
√
2

k
ξ+
Ā1

[

ν(1)q
Ā
(1) − qĀ(1)ν̃(1)

]

− 2
√
2

k
ξ+
Ā1

(µ̃(0))
1
1q

Ā
(1) −

√
2ξ+

Ā1
qĀ(1)(ϕ(2))

1
1.

(2.29)

If we require that the variation of the fermion is a total derivative this fixes the second

connection to A(2)1 + i(ϕ(2))
1
1 − i

k ν̃(1).

Furthermore, it fixes

g(1) =
√
2c̄qĀ(1)ξ

+
Ā1

. (2.30)

2The ‘(1)’ subscript for L indicates that we are attempting to construct a U(N1|N2) valued connection.
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It is also in agreement with the bosonic connection of the first node given above. The

variation of the conjugate fermion suggests the same bosonic connections as well as

ḡ(1) = −
√
2c q̄(1)Āǫ

ĀB̄ǫ12ξB̄2+, (2.31)

cf. the calculation in section 2.1.1. This suggests that the form of the supermatrix G(1) is

identical to that of the alternating level case.

We see that if we take

Lψ1

(1) =

(

A(1)1 − i
kν(1)

1−i√
k
ψ+
(1)1

1−i√
k
ψ̄
1
(1)+ A(2)1 + i(ϕ(2))

1
1 − i

k ν̃(1)

)

, (2.32)

then we verified that the variation of all but the bottom right block are total covariant

superderivatives. The variation of that block is

δ

[

A(2)1 + i(ϕ(2))
1
1 −

i

k
ν̃(1)

]

(2.33)

=
2
√
2

k

[

ξ+
Ā1

ψ̄
1
(1)+q

Ā
(1) + ξĀ1−q̄(1)Āψ(1)1−

]

+
1

2k

(

ξ+
Ā1

[

j
Ā1
(2)+ − j̃

Ā1
(1)+

]

− ξ−
Ā2

[

j
Ā2
(2)− − j̃

Ā2
(1)−

])

.

The first two terms are exactly as for the variation of the bosonic connection of the second

node in section 2.1.1. Thus we can write

δLψ1

(1) ≡ D
ψ1

(1)τG
ψ1

(1) +∆J

(

0 0

0 1

)

, ∆J =
1

2k

(

ξ+
Ā1

[

j
Ā1
(2)+ − j̃

Ā1
(1)+

]

− ξ−
Ā2

[

j
Ā2
(2)− − j̃

Ā2
(1)−

])

,

(2.34)

where D
ψ1

(1)τ is a supercovariant derivative with respect the superconnection Lψ1

(1).

We shall come back to discuss the ∆J term in section 2.3.5. For now we examine more

possibilities for superconnections.

2.3.2 The ψ2-loop for the first link

We can also take the superconnection

Lψ2

(1) =

(

A(1)1 +
i
kν(1) c̄ ψ−

(1)2

c ψ̄
2
(1)− A(2)1 + i(ϕ(2))

1
1 +

i
k ν̃(1)

)

, (2.35)

and find

δLψ2

(1) ≡ D
ψ2

(1)τG
ψ2

(1) +∆J

(

0 0

0 1

)

, (2.36)

where Gψ2

(1) is the supermatrix for the alternating level case.

2.3.3 Superconnections in the second link

We can also consider superconnections involving the vector fields A(2) and A(3) and the

hypermultiplet connecting them. By reflection it is clear that the resulting loops would

have superconnections

Lψ1

(1) =

(

A(2)1 + i(ϕ(2))
1
1 − i

kν(2)
1−i√

k
ψ+
(2)1

1−i√
k
ψ̄
1
(2)+ A(3)1 − i

k ν̃(2)

)

, (2.37)
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satisfying

δLψ1

(2) = D
ψ1

(2)τG
ψ1

(2) −∆J

(

1 0

0 0

)

, (2.38)

where Gψ1

(2) is the supermatrix found in the alternating level case.

Likewise

Lψ2

(2) =

(

A2)1 + i(ϕ(2))
1
1 +

i
kν(2)

1−i√
k
ψ−
(2)2

1−i√
k
ψ̄
2
(2)− A(3)1 +

i
k ν̃(2)

)

, (2.39)

satisfies

δLψ1

(2) = D
ψ2

(2)τG
ψ2

(2) −∆J

(

1 0

0 0

)

, (2.40)

where Gψ2

(2) is the supermatrix found in the alternating level case.

2.3.4 A 4× 4 construction

Thus far we have found four superconnections involving pairs of vector fields and the

relevant hypermultiplets. We can construct from them Wilson loops in arbitrary repre-

sentations of U(N1|N2) and U(N2|N3). We can also combine pairs of them together, to

form block diagonal superconnections with a 4 × 4 block structure, with the central node

represented twice. Those will allow to write Wilson loops in arbitrary representations of

U(N1 +N3|2N2).

In fact, this 4× 4 ansatz allows for a more general superconnection, which is not block

diagonal. In addition to bosonic entries transforming in the adjoints of the individual

nodes, and fermions in the bifundamentals of adjacent nodes, we have two bosonic entries

transforming in bifundamentals of U(N1) × U(N3). On dimensional and representation

grounds, they have to take the form d̄ĀB̄q
Ā
(1)q

B̄
(2) and dĀB̄ q̄(2)Āq(1)B̄, respectively. We got the

construction below to work with the antisymmetric couplings d̄ĀB̄ = d̄ǫĀB̄ and dĀB̄ = dǫĀB̄.

Starting from a general ansatz we have been able to show that the structure of the

superconnection has to be either the block diagonal ones made of pairs of superconnections

discussed above or the superconnection

L =













A(1)1 c̄
1
(1)ψ

+
(1)1 c̄

2
(1)ψ

−
(1)2 d̄ǫĀB̄q

Ā
(1)q

B̄
(2)

c(1)1ψ̄
1
(1)+ A(2) 0 c̄

2
(2)ψ

−
(2)2

c(1)2ψ̄
2
(1)− 0 A′

(2) c̄
1
(2)ψ

+
(2)1

dǫĀB̄ q̄(2)Āq(1)B̄ c(2)2ψ̄
2
(2)− c(2)1ψ̄

1
(2)+ A(3)1













, (2.41)

with A(2) ≡ A(2)1+i(ϕ(2))
1
1+

i
2k

(

ν(2) − ν̃(1)
)

and A′
(2) ≡ A(2)1+i(ϕ(2))

1
1− i

2k

(

ν(2) − ν̃(1)
)

.

The connection in the top left and bottom right corners involve only the gauge fields (and

one could include the appropriate moment maps, if coupling to extra twisted hypermul-

tiplets). It is rather interesting that in the case of alternating levels we had to augment

all gauge connections by a coupling to ν with a coefficient ±i/k. Indeed that is also what

we found in the loops associated to the first and second link. But here we have the third

option of not including this coupling for the external nodes.3

3We were not able to find BPS Wilson loops with any other values for the coupling to ν.
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The supermatrix G is given by

G =













0 g(1)1 g(1)2 0

ḡ
1
(1) 0 0 g(2)2

ḡ
2
(1) 0 0 g(2)1

0 ḡ
2
(2) ḡ

1
(2) 0













, (2.42)

where

g(1)1 =
√
2c̄

1
(1)q

Ā
(1)ξ

+
Ā1

, g(1)2 = −
√
2c̄

2
(1)q

Ā
(1)ξ

−
Ā2

,

g(2)1 =
√
2c̄

1
(2)q

Ā
(2)ξ

+
Ā1

, g(2)2 = −
√
2c̄

2
(2)q

Ā
(2)ξ

−
Ā2

,

ḡ
1
(1) = −

√
2c(1)1q̄(1)Āǫ

ĀB̄ǫ12ξB̄2+ , ḡ
2
(1) =

√
2c(1)2q̄(1)Āǫ

ĀB̄ǫ21ξB̄1− ,

ḡ
1
(2) = −

√
2c(2)1q̄(2)Āǫ

ĀB̄ǫ12ξB̄2+ , ḡ
2
(2) =

√
2c(2)2q̄(2)Āǫ

ĀB̄ǫ21ξB̄1− .

(2.43)

We firstly consider the variations of the bosonic components, listing below the correspond-

ing conditions which must be imposed for supersymmetry.

11 entry: c
1
(1)c̄(1)1 = c

2
(1)c̄(1)2 = − i

k
,

44 entry: c
1
(2)c̄(2)1 = c

2
(2)c̄(2)2 = − i

k
,

14 entry: −c̄
1
(1)c̄

2
(2) = c̄

2
(1)c̄

1
(2) = d̄ ,

41 entry: −c(1)1c(2)2 = c(1)2c(2)1 = d .

(2.44)

The supersymmetry conditions corresponding to the 22 and 33 entries are then automati-

cally satisfied.

As for the central 23 and 32 entries in (2.41) the difference between the supersymmetry

variation and the super-covariant derivative of G gives

(δL −DτG)23 = −i
(

c(1)1c̄
2
(1)j̃

Ā1
(1)+ + c(2)1c̄

2
(2)j

Ā1
(2)+

)

ξ−
Ā2

,

(δL −DτG)32 = i
(

c(1)2c̄
1
(1)j̃

Ā2
(1)− + c(2)2c̄

1
(2)j

Ā2
(2)−

)

ξ+
Ā1

,
(2.45)

where Dτ is the super-covariant derivative with respect to the super-connection L. Im-

posing the bilinear constraints (2.44), we see that (δL − DτG)23 and (δL − DτG)32 are

proportional to j
Ā1
(2)+ − j̃

Ā1
(1)+ and j

Ā2
(2)− − j̃

Ā2
(1)−, respectively. This is similar to the 2 × 2

cases discussed above.

With the constraints (2.44), the supersymmetry conditions for the fermionic entries

of (2.41) are satisfied, up to a remainder term, which is proportional to (µ(2))
Ā
B̄−(µ̃(1))

Ā
B̄.

We present the example of the 12 entry. Consider

(DτG)12 = ∂τg(1)1 − iA(1)1g(1)1 + ig(1)1A(2) − id̄ǫĀB̄q
Ā
(1)q

B̄
(2)ḡ

2
(2). (2.46)

With some manipulation it may be seen that

ǫĀB̄q
Ā
(1)q

B̄
(2)ḡ

2
(2) =

√
2c(2)2

(

ν(1)q
Ā
(1) −

1

2
qĀ(1)

(

ν̃(1) + ν(2)
)

ξ+
Ā1

−ǫĀB̄q
Ā
(1)

(

(µ(2))
B̄
C̄ − (µ̃(1))

B̄
C̄

)

ǫC̄D̄ξD̄1−

)

.

(2.47)
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This identity, coupled with (2.44) gives us that

(δL −DτG)12 = −id̄ǫĀB̄q
Ā
(1)

(

(µ(2))
B̄
C̄ − (µ̃(1))

B̄
C̄

)

ǫC̄D̄ξD̄1−. (2.48)

Indeed all fermionic entries have such a remainder term, proportional to (µ(2))
B̄
C̄ −

(µ̃(1))
B̄
C̄ . We discuss these remainder terms in the next section.

We have also tried to construct Wilson loops with 3 × 3 and 6 × 6 block structure,

but couldn’t find any useful ones. We expect then that the Wilson loops will be given

by this connection, or that made of a pair of the previous 2 × 2 connections, or a linear

combination thereof. In any case the Wilson loops will be classified by representations of

U(N1 +N3|2N2).

The story for longer segments of the quiver with vanishing CS levels should be similar.

The even entries will be along the diagonal or in the bifundamental of U(NI) × U(NI+2)

and made of a bilinear of the scalars. In the 4-node case the resulting connection would be

a U(N1 + 2N3|2N2 +N4) matrix, and the generalization to longer quivers is obvious.

2.3.5 On ∆J and ∆µ

In the alternating level case we found a pair of superconnections whose variation is a total

derivative. In the case with a single k = 0 node we found five possible superconnections but

in all cases we found an extra term in the variation proportional to ∆J (2.34). One can add

more hypermultiplets and more nodes with vanishing CS levels and the same construction

leads to superconnections whose variation includes terms proportional to ∆J terms on the

different nodes with k = 0. For the construction with the 4 × 4 connection we also found

the remainder ∆µ term (2.48)

In the case of alternating levels we found a superconnection whose variation doesn’t

vanish, but like in ABJM theory, it is a total derivative. So the variation of the Wilson

loop constructed out of the superconnection does vanish. In this case, the variation of the

Wilson loop built out of any of the four superconnections will not vanish, but will rather

give the insertion of the integral of ∆J into the Wilson loop.

Still, we expect there to be a BPS Wilson loop associated with this segment of the

quiver. Indeed, examining the action [22] for the vector multiplets with k = 0 one notices

that the gaugino λ appears only linearly and multiplying ∆J . Thus the variation of the

Wilson loop is an insertion of δ
δλ into the Wilson loop and the path integral over λ of any

observable will be a total Graßmann derivative and will therefore vanish. We conclude that

the variation of the Wilson loop is zero in the weak sense — all correlation functions with

it vanish.

As for the ∆µ piece (2.48). Again the action of the vector multiplet includes this com-

bination multiplied by an auxiliary field. Integrating it out identifies (µ(2))
B̄
C̄ = (µ̃(1))

B̄
C̄ ,

so this term does not obstruct the supersymmetry analysis, and the 4 × 4 loops are thus

also supersymmetric in the weak sense.

2.4 Vanishing CS levels: Repeated twisted hypermultiplets

One last simple case to consider is a segment of the quiver of the form
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N1 N2 N3

k0−k

The nodes on the left and on the right will couple to extra nodes through the hyper-

multiplets (solid lines) and form superconnections with them (or if we remove the hyper-

multiplets and consider a linear quiver, will have 1/2 BPS connections like in (2.27)). In

either case we can construct a 1/2 BPS Wilson loop coupling to the central node alone

L(2) = A(2)1 + i(ϕ(2))
1
1 −

i

k

(

(µ(2))
1
1 + (µ̃(1))

1
1

)

. (2.49)

3 Circular Wilson loops

For every straight BPS Wilson loop we expect to also find a circular one which will have

a finite expectation value calculable using the localization matrix model. We study those

here. The circle is given by

x1 = cos τ , x2 = sin τ , x3 = 0 . (3.1)

Whereas the straight line preserved half of the Poincaré supersymmetries and half of the

superconformal ones, we expect the circular loop to preserve eight linear combinations of

the two. Concretely, we look for Wilson loops that preserve supersymmetries where the

superconformal variation parameters η are related to the superpoincaré ones ξ by

ηaĀ1 = i(σ2)ab ξ
b
Ā1 , ηaĀ2 = −i(σ2)ab ξ

b
Ā2 . (3.2)

The superconformal transformations of the fields are given in the usual way [27] by replacing

(ξĀB)
a → xµ(γµ)

a
b(ηĀB)

b, except for the variations of the fermions which pick up an extra

term (see appendix A).

3.1 Alternating levels

Let us consider the same segment as for the straight line case in section 2.1

N1 N2

k −k

.

As in the straight line case, contribution to the variation of the gauge field from

the adjoining twisted hypermultiplet may be cancelled by considering the combination
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A(1)1 − 2i
k (µ̃(0)

1
1. Futhermore, we may consider the two combinations

δ

[

ẋµA(1)µ − 2i

k
(µ̃(0))

1
1 −

i

k
ν(1)

]

=
2
√
2

k

{[

(1− sin τ)ξ+
Ā1

+ cos τ ξ−
Ā1

]

qĀ(1)ψ̄
1
(1)+ +

[

cos τ ξ+
Ā1

+ (1 + sin τ)ξ−
Ā1

]

qĀ(1)ψ̄
1
(1)−

+
[

(1 + sin τ)ǫĀB̄ǫ12ξ+
B̄2

− cos τ ǫĀB̄ǫ12ξ−
B̄2

]

ψ(1)1+q̄
Ā
(1)

+
[

− cos τ ǫĀB̄ǫ12ξ+
B̄2

+ (1− sin τ)ǫĀB̄ǫ12ξB̄2

]

ψ(1)1−q̄
Ā
(1)

}

,

(3.3)

and

δ

[

ẋµA(1)µ − 2i

k
(µ̃(0))

1
1 +

i

k
ν(1)

]

= −2
√
2

k

{[

(1 + sin τ)ξ+
Ā2

− cos τ ξ−
Ā2

]

qĀ(1)ψ̄
2
(1)+ +

[

− cos τ ξ+
Ā2

+ (1− sin τ)ξ−
Ā2

]

qĀ(1)ψ̄
2
(1)−

+
[

(1− sin τ)ǫĀB̄ǫ21ξ+
B̄1

+ cos τ ǫĀB̄ǫ21ξ−
B̄1

]

ψ(1)2+q̄
Ā
(1)

+
[

cos τ ǫĀB̄ǫ21ξ+
B̄1

+ (1 + sin τ)ǫĀB̄ǫ21ξ−
B̄1

]

ψ(1)2−q̄
Ā
(1)

}

.

(3.4)

From the straight line case, we expect that these two choices correspond to the ψ1 and

ψ2-loops respectively. We assume the form of the superconnections and verify that they

are indeed supersymmetric.

3.1.1 The ψ1-loop

We take the superconnection to be of the form

Lψ1 =

(

ẋµA(1)µ − 2i
k (µ̃(0))

1
1 − i

kν(1) c̄aψ
a
(1)1

caψ̄
1a
(1) ẋµA(2)µ − 2i

k (µ(2))
1
1 − i

k ν̃(1)

)

, (3.5)

and the supermatrix G to be of the form

G =

(

0 g

ḡ 0

)

. (3.6)

As in [18], we consider the projector

P+ ≡ δab + ẋµ(γµ)
a
b =

(

1− sin τ cos τ

cos τ 1 + sin τ

)

, (3.7)

and demand that the fermionic couplings be eigenstates of this projector. In particular,

we choose

ca = (cos τ, 1 + sin τ)a c(τ) , c̄a =

(

1− sin τ

cos τ

)

a

c̄(τ), (3.8)
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where c(τ) and c̄(τ) are functions of τ . The variation is given by

δ
[

c̄aψ
a
(1)1

]

=2
√
2Dτq

Āc̄aξ
a
Ā1 −

2
√
2

k

[

(ν(1))
B̄
B̄q

Ā
(1) − qĀ(1)(ν̃(1))

B̄
B̄

]

c̄aξ
a
Ā1

+ i
√
2c̄a(σ

2)abξ
b
Ā1q

Ā
(1).

(3.9)

We wish to write this as a covariant derivative. We may impose

∂τ c̄a =
i

2
c̄b(σ

2)ba, (3.10)

which tells us that

c̄(τ) =
C̄

cos τ
2 − sin τ

2

, (3.11)

where C̄ is a constant. With this choice of c̄(τ), we have

δ
[

c̄a(ψ(1)1)
a
]

= Dτ

(

2
√
2qĀc̄aξ

a
Ā1

)

, (3.12)

where Dτq
Ā
(1) ≡ Dτq

Ā + 1
kν(1)q

Ā − 1
kq

Āν̃(1). The supersymmetry conditions demand

g = 2
√
2qĀ(1)c̄aξ

a
Ā1. (3.13)

Similarly, we find

δ
[

ca(ψ̄
1
(1))a

]

= Dτ

(

−2
√
2q̄(1)Āc

aǫĀB̄ǫ12ξB̄2a

)

, (3.14)

where we have imposed that

∂τ c
a = − i

2
cb(σ2)ab, (3.15)

which is solved by

c(τ) =
C

cos τ
2 + sin τ

2

, (3.16)

where C is a constant. We thus have

ḡ = −2
√
2q̄(1)Āc

aǫĀB̄ǫ12ξB̄2a. (3.17)

A simple calculation, as in the straight line case in section 2.3.1 gives that CC̄ = − i
k .

The story for the segment of the quiver with vanishing CS level is very similar, where

for example the circular analog of the straight line presented in section 2.3.1 is the same as

(3.5) with the lower right corner replaced by ẋµA(2)µ+ i(ϕ(2))
1
1− i

k ν̃(1), which is essentially

the same as in (2.32). The variation of the super-connection is then

δLψ1 ≡ D
ψ1
τ G+∆J

(

0 0

0 1

)

, (3.18)

with G as in (3.6) and ∆J is as defined in (2.34). The other loops for this case may be

similarly obtained in analogy with the straight line case.
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3.1.2 The ψ2-loop

To construct a loop coupling to ψ2, we take the fermionic couplings to be eigenstates of

the projector P− = δab − ẋµ(γµ)
a
b, given explicitly by

P− =

(

1 + sin τ − cos τ

− cos τ 1− sin τ

)

. (3.19)

We take the fermionic couplings to be

ca = c(τ)
(

− cos τ, 1− sin τ
)a

, c̄a = c̄(τ)

(

1 + sin τ

− cos τ

)

a

, (3.20)

with the superconnection given by

Lψ2 =

(

ẋµA(1)µ − 2i
k (µ̃(0))

1
1 +

i
kν(1) c̄aψ

−
(1)2

caψ̄
2
(1)− ẋµA(2)µ − 2i

k (µ(2))
1
1 +

i
k ν̃(1)

)

. (3.21)

Proceeding as in the previous section, studying the variations of the fermions gives us

g = −2
√
2qĀc̄a(ξĀ2)

a , c̄(τ) =
C̄

cos τ
2 + sin τ

2

,

ḡ = 2
√
2 q̄Āc

a(ξĀ2)a , c(τ) =
C

cos τ
2 − sin τ

2

,

(3.22)

as well as compatibility with the conjectured bosonic connection of the two nodes. An

examination of the variation of the bosonic connections gives CC̄ = i
k .

3.1.3 The boundary conditions

We have shown that the supersymmetric variation of L may be written as a super-covariant

derivative. In order for the circle, which is compact, to be invariant under supersymmetry

we must ensure that there are no boundary terms when integrating this total derivative

term. We follow the analysis in [26].

We define W to be the untraced Wilson loop and analyze its transformation by the

total derivative viewed as a super gauge transformation. Consider the matrix G (for either

the ψ1 and ψ2-loops) found above, then we find

G(2π) = −G(0) . (3.23)

This can be written as

G(2π) = T G(0)T −1 , with T =

(

i 0

0 −i

)

. (3.24)

This implies that the finite gauge transformation U = exp(iG) also satisfies

U(2π) = T U(0)T −1 . (3.25)
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Now we consider the transformation of WT . It is invariant under the

supersymmetry/supergauge transformations.

sTr(WT ) → sTr(U−1(0)WU(2π)T ) = sTr(U−1(0)WT U(0)) = sTr(WT ) . (3.26)

We thus should consider the supertrace of WT rather than of W. Equvalently, examining

that form of T , we see that the trace of W (rather than the supertrace) is a supersymmetric

operator. This is similar to the result for ABJM in [18].

4 Localization and the matrix model

We would now like to show that we can calculate the expectation value of the 1/2 BPS

Wilson loops using localization. The idea, as in [18], is to show that the 1/2 BPS loops are

cohomologically equivalent, under the localization supercharge, to certain combinations of

1/4 BPS loops for which the localization calculation has already been done. This reduces

the calculation of the Wilson loop to that of an observable in a matrix model, as in [28–31].

We shall leave the solution of the matrix model to future work.

4.1 The straight line

We now demonstrate, following closely [18], that both the ψ1-loops and ψ2-loops are in the

same cohomology class — that of a certain 1/4 BPS straight loop. We should note that

this is a classical calculation and we expect it to be modified by quantum corrections and

in fact only a single linear combination of these loops will be exactly equivalent to the 1/4

BPS loop. We discuss the lifting of the degeneracy in section 6.

The appropriate 1/4 BPS operator has a purely bosonic connection from two adjacent

nodes

L1/4 =





A(1)1 − 2i
k

(

(µ(0))
1
1 + (µ(1))

1̄
1̄

)

0

0 A(2)1 − 2i
k

(

(µ̃(1))
1̄
1̄ + (µ(2))

1
1

)



 . (4.1)

We note that this shares its four supersymmetries with our 1/2 BPS loops. As our localizing

supercharge, we consider the linear combination

Q ≡ Q
1̄2
− +Q

2̄1
+ . (4.2)

4.1.1 The ψ1-loop

The difference between the ψ1-loop (2.20) found in section 2.1.1 and the 1/4 BPS loop is

given by

Wψ1 −W1/4 = trP
[

e−i
∫

dτ Lψ1 − e−i
∫

dτ L1/4
]

. (4.3)

We wish to demonstrate that this is a Q-exact quantity by finding a V such that Wψ1 −
W1/4 = QV . Following [18], we take

V ψ1 = −i trP
[∫ ∞

−∞
dτ e−i

∫ τ
−∞

dτ1 L1/4

Λψ1(τ)e−i
∫

∞

τ dτ2 Lψ1

]

, (4.4)
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where Λψ1 is to be determined by the requirement QΛψ1 = Lψ1

F and Lψ1

F is the connection

with fermionic entries equal to that of Lψ1 and zeros everywhere else. We find

Λψ1 =
i√
2

(

0 c̄ q2̄(1)
−c q̄(1)2̄ 0

)

, (Λψ1)2 =
1

2
L̃ψ1

B ≡ 1

2

(

Lψ1

B − L1/4
B

)

, (4.5)

where the subscript ‘B’ indicates the bosonic part of and L̃ψ1 ≡ Lψ1 − L1/4.

Acting with Q on V ψ1 gives

QV ψ1 = −i trP
[∫ ∞

−∞
dτ e−i

∫ τ
−∞

dτ1 L1/4
(

Lψ1

F (τ) + Λψ1Q
)

e−i
∫

∞

τ dτ2 Lψ1

]

. (4.6)

We pick up a boundary term from acting with the supercharges on the exponent. Noting

that

Qψ+
(1)1 =

√
2Dτq

2̄
(1) , Qψ̄

1
(1)+ = −

√
2Dτ q̄(1)2̄ , (4.7)

we find

QV ψ1 = −i trP
[∫ ∞

−∞
dτ e−i

∫ τ
−∞

dτ1 L1/4
(

Lψ1

F (τ) + L̃ψ1

B

)

e−i
∫

∞

τ dτ2 Lψ1

]

,

= −i trP
[∫ ∞

−∞
dτ e−i

∫ τ
−∞

dτ1 L1/4L̃ψ1(τ)e−i
∫

∞

τ dτ2 Lψ1

]

.

(4.8)

As in [18], upon Taylor expansion, we see that this is equal to the expansion of

Wψ1 −W1/4 = trP



e−i
∫

∞

−∞
L1/4

∞
∑

p=1

(−i)p
∫

dτ1 · · · dτp L̃ψ1(τ1) · · · L̃ψ1(τp)



 , (4.9)

demonstrating the cohomological equivalence of the ψ1-loop and 1/4 BPS loop.

4.1.2 The ψ2-loop

The ψ2-loop (2.22) of section 2.1.2 is also cohomologically equivalent to the 1/4 BPS loop.

The result follows almost identically to that of the ψ1-loop, with

V ψ2 = −i trP
[∫ ∞

−∞
dτ e−i

∫ τ
−∞

dτ1 L1/4

Λψ2(τ)e−i
∫

∞

τ dτ2 Lψ1

]

, (4.10)

where

Λψ2 = − i√
2

(

0 c̄ q1̄(1)
c q̄(1)1̄ 0

)

, (Λψ1)2 =
1

2
L̃ψ2

B ≡ 1

2

(

Lψ2

B − L1/4
B

)

. (4.11)

Noting also that

Qψ−
(1)2 = −

√
2Dτq

1̄
(1) , Qψ̄

2
(1)− = −

√
2Dτ q̄(1)1̄ , (4.12)

it is straightforward to see that both loops are cohomologically equivalent to each other.
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4.1.3 Vanishing CS levels

In the case of the quivers with vanishing CS levels discussed in section 2.3 We have not

demonstrated the cohomological equivalence to 1/4 BPS loops for the loops based on 2× 2

blocks. Below we do it for the 4 × 4 superconnection (2.41). For the 1/2 BPS loop in

section 2.4 it is in fact identical to the 1/4 BPS loop.

We found the U(N1 +N3|2N2) valued superconnection (2.41) in section 2.3.4 We now

apply the arguments of the previous section to this loop. It is useful to rearrange the

superconnection to make manifest its U(N1 +N3|2N2) structure:

L =













A(1)1 d̄ǫĀB̄q
Ā
(1)q

B̄
(2) c̄

1
(1)ψ

+
(1)1 c̄

2
(1)ψ

−
(1)2

dǫĀB̄ q̄(2)Āq(1)B̄ A(3)1 c(2)2ψ̄
2
(2)− c(2)1ψ̄

1
(2)+

c(1)1ψ̄
1
(1)+ c̄

2
(2)ψ

−
(2)2 A(2) 0

c(1)2ψ̄
2
(1)− c̄

1
(2)ψ

+
(2)1 0 A′

(2)













. (4.13)

As in (4.4) we define

V 4×4 = −i trP
[∫ ∞

−∞
dτ e−i

∫ τ
−∞

dτ1 L1/4

Λ4×4(τ)e−i
∫

∞

τ dτ2 Lψ1

]

, (4.14)

where L1/4 is the combination of 1/4 BPS connections

L1/4 = diag

{

A(1)1 −
2i

k
(µ(1))

1̄
1̄, A(3)1 −

2i

k
(µ̃(2))

1̄
1̄, (4.15)

A(2)1+i(ϕ(2))
1
1−

i

k

(

(µ̃(1))
1̄
1̄+(µ(2))

1̄
1̄

)

, A(2)1+i(ϕ(2))
1
1−

i

k

(

(µ̃(1))
1̄
1̄+(µ(2))

1̄
1̄

)

}

.

We determine Λ4×4 by the requirement that QΛ4×4 = LF , with LF the fermionic part of L.
Given the same supercharge and many of the same fermionic entries as in the examples

above, we may read build Λ4×4 from (4.5), (4.11)

Λ4×4 = − i√
2













0 0 −c̄
1
(1)q

2̄
(1) c̄

2
(1)q

2̄
(1)

0 0 c(2)2q̄(2)1̄ c(2)1q̄(2)2̄
c(1)1q̄(1)2̄ c̄

2
(1)q

1̄
(2) 0 0

c(1)2q̄(1)1̄ −c̄
1
(1)q

2̄
(2) 0 0













. (4.16)

A short computation ( making use of the constraints (2.44)) shows that

(Λ4×4)2 =
1

2
L̃B − 1

2













0 0 0 0

0 0 0 0

0 0 0 c(1)1c̄
2
(1)

(

(µ(2))
1̄
2̄ − (µ̃(1))

1̄
2̄

)

0 0 c(1)2c̄
1
(1)

(

(µ(2))
2̄
1̄ − (µ̃(1))

2̄
1̄

)

0













.

(4.17)

As before, L̃B is the bosonic part of the difference L − L1/4. We note that both of the

non-zero entries are proportional to (µ(2))
Ā
B̄ − (µ̃(1))

Ā
B̄, for fixed Ā, B̄. For notational

convenience, we define (Λ4×4)2 ≡ 1
2 L̃B +∆µ.
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Continuing as before, using the action of the supercharges on the fermions given in

(4.7) and (4.12), we see that

QLF = −2iDτΛ, (4.18)

where Dτ is the supercovariant derivative with respect to L.
Acting with the supercharge on V thus gives

QV = −i trP
[∫ ∞

−∞
dτ e−i

∫ τ
−∞

dτ1 L1/4

(LF (τ) + ΛQ) e−i
∫

∞

τ dτ2 L
]

= −i trP
[∫ ∞

−∞
dτ e−i

∫ τ
−∞

dτ1 L1/4
(

LF (τ) + L̃B +∆µ
)

e−i
∫

∞

τ dτ2 Lψ1

]

= −i trP
[∫ ∞

−∞
dτ e−i

∫ τ
−∞

dτ1 L1/4
(

L̃(τ) + ∆µ
)

e−i
∫

∞

τ dτ2 L
]

.

(4.19)

As in the previous cases, the first term in brackets matches the expansion of W − W1/4

exactly, where W is the loop defined with superconnection L. The second term is however

new.

In section 2.3.5, we argued that the variation of the loop (2.41) vanishes inside corre-

lation functions. Indeed there too we found terms proportional to µ(2)− µ̃(1), which vanish

once the auxiliary field is integrated out. This is enough to conclude that the expectation

value of W and W1/4 are equal.

4.2 The circle

We now consider the circle. This will be cohomologically equivalent to the circular analogs

of the 1/4 BPS loops above, which have a finite expectation value, which can be calculated

by localization [11]. We take Q to be the same supercharge used for localization

Q = (Q
1̄2
− − S

1̄2
+ ) + (Q

2̄1
− + S

2̄1
+ ). (4.20)

4.2.1 The ψ1-loop

We begin by considering the difference Wψ1 − W1/4 between the ψ1-loop (3.5) found in

section 3.1.1 and the 1/4 BPS circle, similar to (4.1). We again look for V ψ1 as in (4.4),

this time perturbatively in a power series. It will be useful to consider the insertion

Λψ1 =
i√
2

(

0 c̄(τ)q2̄(1)
−c(τ)q̄(1)2̄ 0

)

, (4.21)

with c(τ) and c̄(τ) as in (3.16), (3.11)). It satisfies

QΛψ2 = Lψ2

F , 4 cos τ(Λψ1)2 = L̃ψ1

B . (4.22)

Furthermore, the action of the supercharges on the fermionic components of the ψ1-loop is

given by

QLψ1

F = 2
√
2Dτ

[

cos τ

(

0 c̄(τ)q2̄(1)
−c(τ)q̄(1)2̄ 0

)]

= −4iDτ

[

cos τ Λψ1

]

. (4.23)
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Order-by-order, we define

V ψ1

1 = −i trP
{

e−i
∫ 2π
0

dτ1 L1/4(τ1)

∫ 2π

0
dτ2 Λ

ψ1

}

,

V ψ1

2 = −1

2
trP

{

e−i
∫ 2π
0

dτ1 L1/4(τ1)

∫ 2π

0
dτ2

∫ 2π

τ2

dτ3

(

Λψ1(τ2)Lψ1

F (τ3)− Lψ1

F (τ2)Λ
ψ1(τ3)

)

}

V ψ1

3 = trP
{

e−i
∫ 2π
0

dτ1 L1/4(τ1)

(

−
∫ 2π

0
dτ2

∫ 2π

τ2

dτ3

(

L̃ψ1

B (τ2)Λ
ψ1(τ3) + Λψ1(τ2)L̃ψ1

B (τ3)
)

+i

∫

τ2<τ3<τ4

dτ2 dτ3 dτ4

(

Λψ1(τ2)Lψ1

F (τ3)Lψ1

F (τ4) + Lψ1

F (τ2)Λ
ψ1(τ3)Lψ1

F (τ4)

+Lψ1

F (τ2)Lψ1

F (τ3)Λ
ψ1(τ4)

))}

.

(4.24)

The action of the supercharges on these operators is given by

QV ψ1

1 = −i trP
{

e−i
∫ 2π
0

dτ1 L1/4(τ1)

∫ 2π

0
dτ2 Lψ1

F

}

,

QV ψ1

2 = − trP
{

e−i
∫ 2π
0

dτ1L1/4(τ1)

∫ 2π

0
dτ2

(∫ 2π

τ2

dτ3 Lψ1

F (τ2)Lψ1

F (τ3) + iL̃ψ1

B (τ2)

)}

,

QV ψ1

3 = trP
{

e−i
∫ 2π
0

dτ1 L1/4(τ1)

(

−
∫

τ2<τ3

dτ2dτ3

(

L̃ψ1

B (τ2)Lψ1

F (τ3) + Lψ1

F (τ2)L̃ψ1

B (τ3)
)

+i

∫

τ2<τ3<τ4

dτ2 dτ3 dτ4 Lψ1

F (τ2)Lψ1

F (τ3)Lψ1

F (τ4)

)}

.

(4.25)

These indeed match the terms in the expansion of Wψ1 − W1/4, demonstrating that to

third order in the expansion the ψ1-loop is cohomologically equivalent to the 1/4 BPS loop.

However, as in the case of ABJM, we expect this relationship to hold to all orders, and the

corresponding localization calculation to reduce to the known matrix model calculation of

the 1/4 BPS loops [11].

4.2.2 The ψ2-loop

The calculation for the ψ2-loop, (3.21) found in section 3.1.2, proceeds very similarly.

Defining

Λψ2 =
i√
2

(

0 c̄(τ)q1̄(1)
−c(τ)q̄(1)1̄ 0

)

, (4.26)

we see that it satisfies

QΛψ2 = Lψ2

F , 4 cos τ(Λψ2)2 = L̃ψ2

B , (4.27)

and

QLψ2

F = 2
√
2Dτ

[

cos τ

(

0 c̄(τ)q1̄(1)
−c(τ)q̄(1)1̄ 0

)]

= −4iDτ

[

cos τ Λψ2

]

. (4.28)
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Equations (4.27) and (4.28) are the corresponding identities for the ψ2-loop as (4.22) and

(4.23) for the ψ1-loop. As these are identical, it immediately follows that the action of the

supercharge on

V ψ2

1 = −i trP
{

e−i
∫ 2π
0

dτ1 L1/4(τ1)

∫ 2π

0
dτ2 Λ

ψ1

}

,

V ψ2

2 = −1

2
trP

{

e−i
∫ 2π
0

dτ1 L1/4(τ1)

∫ 2π

0
dτ2

∫ 2π

τ2

dτ3

(

Λψ1(τ2)Lψ1

F (τ3)− Lψ1

F (τ2)Λ
ψ1(τ3)

)

}

V ψ2

3 = trP
{

e−i
∫ 2π
0

dτ1 L1/4(τ1)

(

−
∫ 2π

0
dτ2

∫ 2π

τ2

dτ3

(

L̃ψ1

B (τ2)Λ
ψ1(τ3) + Λψ1(τ2)L̃ψ1

B (τ3)
)

+i

∫

τ2<τ3<τ4

dτ2 dτ3 dτ4

(

Λψ1(τ2)Lψ1

F (τ3)Lψ1

F (τ4) + Lψ1

F (τ2)Λ
ψ1(τ3)Lψ1

F (τ4)

+Lψ1

F (τ2)Lψ1

F (τ3)Λ
ψ1(τ4)

))}

, (4.29)

will exactly match the expansion of Wψ2 − W1/4, thus demonstrating the equivalence of

the two loops with respect to the localizing supercharge.

5 Holographic description

The goal of this section is to find the M2-brane configurations which preserve half of the

supersymmetries of the vacuum and are the holographic duals to the gauge theory operators

discussed above.

We limit our attention to the case of circular quivers whose corresponding space-time

metric is AdS4 ×Mp,q,k [32], where the compact manifold is an orbifold of the 7-sphere

Mp,q,k =
(

S7/(Zp ⊕ Zq)
)

/Zk , (5.1)

with radius R6 = 25π2Nkpq (in units of ℓs = 1). The gauge group rank N corresponds

here to the number of M2-branes located at the orbifold point.

For the AdS4 factor, we consider a metric with an AdS2 foliation

ds2AdS4
= du2 + cosh2 u ds2AdS2

+ sinh2 u dφ2 , (5.2)

where for a time-like (straight) Wilson loop we take a Lorentzian AdS2

ds2AdS2
= dρ2 − cosh2 ρ dt2 , (5.3)

and for the space-like circle we consider the Euclidean metric

ds2AdS2
= dρ2 + sinh2 ρ dψ2 . (5.4)

The M2-brane world-volume will be along these AdS2 coordinates in AdS4, while on the

internal space it will wrap an S1 (i.e., the M-theory circle) and sit at a fixed point in the

remaining coordinates, which is determined by supersymmetry, as we shall see.
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The orbifold action giving rise to the space Mp,q,k is most easily described in terms of

complex embedding coordinates zi (i = 1, . . . , 4) subject to the constraint

4
∑

i=1

|zi|2 = 1 , (5.5)

and to the identifications [32]

(z1, z2, z3, z4) ∼ (ωm
kpz1, ω

m
kpz2, ω

−m
kq z3, ω

−m
kq z4) , ωr = e2πi/r , m ∈ Z . (5.6)

This last line alone without the constraint (5.5) would define the manifold

Mp,q,k =
(

C
2/Zp ⊗ C

2/Zq

)

/Zk . (5.7)

The SU(2)A subgroup of the R-symmetry acts on C
2/Zp and SU(2)B acts on C

2/Zq.

The supersymmetries preserved by the Wilson loops (1.2) are doublets of the R-

symmetry subgroup SU(2)B, which is left unbroken. We therefore expect that the M2-

brane embedding will be at a fixed point of the SU(2)B action. This is the tip of the C/Zq

cone in Mp,q,k. A similar story applies of course if we were to consider loops invariant

under SU(2)A with the two cones exchanged.

5.1 Parameterizations of the 7-sphere

To be explicit, we parametrize the S7 by the coordinates [16]

z1 = cosα cos
θ1
2
eiξ1 , z2 = cosα sin

θ1
2
eiξ2 ,

z3 = sinα cos
θ2
2
eiξ3 , z4 = sinα sin

θ2
2
eiξ4 .

(5.8)

This choice induces the following metric

ds2 =
1

4

[

4dα2 + cos2 α

(

dθ21 + 4 cos2
θ1
2
dξ21 + 4 sin2

θ1
2
dξ22

)

+sin2 α

(

dθ22 + 4 cos2
θ2
2
dξ23 + 4 sin2

θ2
2
dξ24

)]

,

(5.9)

with appropriate ranges for the coordinates to cover the entire sphere once, namely 0 ≤
α ≤ π/2, 0 ≤ θ1,2 ≤ π and 0 ≤ ξi ≤ 2π.

To make the action of Zp and Zq more transparent, we can relabel the ξi as

ξ1 =
φ1

2
+ x , ξ2 = −φ1

2
+ x , ξ3 =

φ2

2
+ v , ξ4 = −φ2

2
+ v , (5.10)

which results in

ds2S7/(Zp⊕Zq)
=

1

4

[

4dα2 + cos2 αds2S3/Zp
+ sin2 αds2S3/Zq

]

, (5.11)

with
ds2S3/Zp

= dθ21 + dφ2
1 + 4dx2 + 4 cos θ1 dx dφ1 ,

ds2S3/Zq
= dθ22 + dφ2

2 + 4dv2 + 4 cos θ2 dv dφ2 .
(5.12)
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We are implicitly assuming that k = 1, so that Zk is trivial. The action of Zp and Zq then

identify [32, 33]

(z1, z2, z3, z4) ∼ (ωm
p z1, ω

m
p z2, ω

n
q z3, ω

n
q z4) , m, n ∈ Z , (5.13)

and therefore impose the following periodicities on the angular coordinate x and v

x ∼ x+
2πm

p
, v ∼ v +

2πn

q
. (5.14)

With these coordinates the action of SU(2)A and SU(2)B is manifest on the two S3 orbifolds

in (5.12).

The full metric of the space (before the Zk orbifold) is given by [33]

ds2 = R2
(

ds2AdS4
+ 4ds2S7/(Zp⊕Zq)

)

. (5.15)

The Killing spinor for this 11-dimensional geometry is derived in appendix B and is given by

η = ΨΞ η0 , (5.16)

with

Ψ = e−
α−π/2

2 Γ4Γ⋆ e
θ1−π/2

4 (Γ45+Γ67) e
θ2−π/2

4 (Γ9#−Γ8Γ⋆) e
x
2 (Γ46+Γ57)

× e
v
2 (Γ8#−Γ9Γ⋆) e−

φ1

4 (Γ47+Γ56) e−
φ2

4 (Γ89−Γ#Γ⋆) ,

Ξ = e
u
2 Γ2Γ⋆e

ρ
2Γ1Γ⋆e

t
2Γ0Γ⋆e

φ
2 Γ23 ,

(5.17)

where η0 is a 32-component constant spinor and Γ⋆ ≡ Γ0123. The gamma matrices live in

the tangent space and the indices 0, 1, . . . , 9,# are flat indices.

A second parameterization of the angles is useful to study the general case of k ≥ 2

and is obtained by setting

ξ1 =
1
4 (−2φ1 + χ+ ζ) , ξ2 =

1
4 (2φ1 + χ+ ζ) ,

ξ3 =
1
4 (−2φ2 − χ+ ζ) , ξ4 =

1
4 (2φ2 − χ+ ζ) , (5.18)

in the metric above. This results in [16]

ds2Mp,q,k
=

1

4

[

4dα2 + sin2 α
(

dθ21 + sin2 θ1 dφ
2
1

)

+ sin2 α
(

dθ22 + cos2 θ2 dφ
2
2

)

+cos2 α sin2 α (dχ+ cos θ1 dφ1 − cos θ2 dφ2)
2 +

1

4
(dζ +A)2

]

,
(5.19)

where

A = cos 2αdχ+ 2 cos2 α cos θ1 dφ1 + 2 sin2 α cos θ2 dφ2 . (5.20)

In these coordinates, the action of the Zk orbifold is along the ζ direction, i.e.

ζ ∼ ζ +
2πm

k
, m ∈ Z . (5.21)

The Killing spinor for these coordinates was obtained in [16] and is as in (5.16), with

Ψ replaced by

Ψ̃ = e
α
2
(Γ4Γ⋆−Γ7#)e

θ1
4
(Γ5Γ⋆−Γ8#)e

θ2
4
(Γ79+Γ46)e−

ξ1
2
Γ#γ⋆e−

ξ2
2
Γ58e−

ξ3
2
Γ47e−

ξ4
2
Γ69 , (5.22)

where the ξi are given by (5.18).
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5.2 Supersymmetry analysis

The task at this point is twofold. First, we want to check that the three orbifolds of Mp,q,r

preserve half of the supersymmetries of the vacuum, namely 16 supercharges. Secondly, we

want to find an M2-brane embedding that is 1/2 BPS, breaking these 16 supersymmetries

down to 8.

To address the first point, we consider the first parameterization, equations (5.11)

and (5.17) above, and use the procedure employed in [16] for the ABJM case. This begins

by choosing a basis for the gamma matrices such that

Γ0123456789# = 1 , (5.23)

and by writing the constant spinor η0 in a basis which block-diagonalizes as follows

Γ46η0 = s1η0 , Γ57η0 = s2η0 , Γ8#η0 = s3η0 , Γ9Γ⋆η0 = s4η0 . (5.24)

All si eigenvalues take values ±1, see [16]. A translation in x corresponds to an action of

the Zp orbifold and rescales the Killing spinor by

ΨΞ η0 → ei(s1+s2)δ/2ΨΞ η0 , (5.25)

as can be readily seen from (5.17). In order for this to be a symmetry of the Killing spinor

(for a generic translation parameter δ), we are restricted to

(s1, s2, s3, s4) ∈ {(+,−, · , · ) , (−,+, · , · )} , (5.26)

where ± indicates ±1 and · indicates an unrestricted value. The action of the Zq orbifold

(i.e., a translation in v) similarly gives

(s1, s2, s3, s4) ∈ {( · , · ,+,+) , ( · , · ,−,−)} . (5.27)

Now we notice that ζ ∝ x + v, so that the action of the Zk orbifold rescales the Killing

spinor as

ΨΞ η0 → ei(s1+s2+s3−s4)δ/2ΨΞ η0 . (5.28)

This restricts to the following choices

(s1, s2, s3, s4) ∈ {(+,−,−,−) , (−,+,−,−) , (−,−,+,−) ,

(−,+,+,+) , (+,−,+,+) , (+,+,−,+)} .
(5.29)

Note that each set of si eigenvalues represents four supercharges. Thus, the Zk orbifold

by itself restricts us to 24 supercharges, i.e., the ABJM theory, as expected. Taking the

intersection of the three sets of allowed eigenvalues, we are left with

(s1, s2, s3, s4) ∈ {(+,−,−,−) , (−,+,−,−) , (−,+,+,+) , (+,−,+,+)} , (5.30)

namely 16 supercharges.

The supersymmetry analysis of the M2-brane embedding is most easily carried out

using the second parametrization, equations (5.19) and (5.22) above. As anticipated earlier,

– 27 –



J
H
E
P
1
0
(
2
0
1
5
)
1
4
0

the M2-brane is taken to be oriented along the AdS2 directions in AdS4 (while sitting at

u = 0) and to wrap the S1 parametrized by ζ. The world-volume coordinates are then

given by (t, ρ, ζ), with the remaining coordinates on the sphere assuming constant values.

The induced metric is thus simply given by

ds2
ind

R2
= dρ2 − cosh2 ρ dt2 +

1

4
dζ2 , (5.31)

where R6 = 25π2Nkpq, as seen above [32]. The amount of supersymmetry preserved by

this embedding is obtained by considering the projection equation [34]

Γη = η , (5.32)

for the Killing spinor (5.22), with the projector being given by

Γ =
1√− det g

∂tx
µ∂ρx

ν∂ζx
σγµγνγσ = Γ01# . (5.33)

This is formally identical to the ABJM case considered in [16], so that we can quote the

results from that case. Setting therefore α = 0 and θ1 = 0 the projection equation for

ǫ reduces to an equation for ǫ0 and the brane breaks half of the supercharges in (5.30).

Selecting α = π/2 and θ2 = 0 also gives 1/2 BPS embeddings, which are the loops invariant

under SU(2)A.

Unlike the ABJM case, in the present case there are also the Zp and Zq orbifolds. A

crucial fact is that α = 0, where our M2-brane is located, is a fixed point of the Zq orbifold.

In fact, we expect q different states at the singular point and find holographic duals for

q different fundamental Wilson loops. This mirrors (part of) the degeneracy of 1/2 BPS

loop operators we have uncovered in the gauge theory side. We expect there to be a single

fundamental Wilson loop for every one of the q twisted hypermultiplets, represented by

a dashed line in the graphs in section 2. It would be advantageous to use the type IIB

description [33, 35–37], where this singularity is resolved, and which allows also to study

linear quivers. See more in the discussion below.

The computation of the renormalized on-shell action for the M2-branes also follows

from the ABJM theory case. The brane action (after renormalization) will be proportional

to R3
∫

dζ. Using the explicit expression of the radius written above and that the range of

ζ goes up to 1/kp, the expectation value would then seem to be given by

〈W 〉 ≃ e
π
√

2Nq
kp . (5.34)

It is actually unlikely that this expression be valid for all the q different Wilson loops, as

the answer should depend on the details of the resolution of the orbifold singularity (and

fluxes, and fractional branes). This expression does in fact hold at least in the simplest

case where the Wilson loops are all equivalent, so theories with p = q and alternating ±k

CS levels. Those in fact are orbifolds of the ABJM theory.
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6 Discussion

The structure of N = 4 Chern-Simons-matter theories in three dimensions is very rich

and the story of the 1/2 BPS Wilson loops in those theories is even richer and rather

complicated.

We expect that a theory with p untwisted hypermultiplets and q twisted hypermulti-

plets possesses q independent 1/2 BPS Wilson loops (not accounting for possible represen-

tations) preserving our supercharges (1.2). There are p other Wilson loops preserving the

supercharges with the underlined and overlined indices interchanged. They can be easily

written explicitly, and one can also study them by looking at a quiver with the untwisted

and twisted hypermultipets exchanged.

In the M-theory picture we found that the Wilson loops are indeed dual to M2-branes

wraping a circle in
(

S7/(Zp ⊕ Zq)
)

/Zk which is at a fixed point of the Zq orbifold and of

circumference proportional to 1/kp. We expect that there are in fact q different degenerate

states at the singular point, representing the holographic duals of the q Wilson loops in

fundamental representations. To resolve the singularity one can study the type IIB duals

of these theories [33, 35–37]. These also allow to study linear quivers, while M-theory is

only a good description for the circular quivers. It is also easier to specify the different

ranks of the gauge groups and the location of the k = 0 nodes in the IIB language. The

holographic duals of the Wilson loops will be fundamental strings at q specific points on

one of the boundaries of the strip/annulus which appears in the metric. This mirrors the

brane construction of these theories [33, 37] and the possible ways to add fundamental

strings to them [12].4

On the field theory side the story is more convoluted. In the simple case of alternating

levels we found 2q possible superconnections. A pair for each pair of vector multiplets

connected by a hypermultiplet, coupling to the fermion ψ+
1 or to ψ−

2 . Each of those

superconnections is invariant under supersymmetry up to a total derivative, that cancels

when we consider the entire Wilson loop. We expect the degeneracy between those Wilson

loops to be lifted by quantum corrections.

This is a phenomenon that has so far not afflicted the study of BPS Wilson loops, but

is in fact common in other settings. The Wilson loop is a composite operator made of the

fields at arbitrary points along the curve and whose interactions could lead to quantum

effects. The variation performed here is classical and does not take into account possible

interactions between the fields. If there is a unique operator carrying some set of quantum

numbers (in the case of the Wilson loop it is the contour and representation), then the

classical calculation should suffice. In our case we found a pair of operators with the same

quantum numbers that are classically BPS. As a simple analog, consider scalar operators

in N = 4 SYM (in 3d or 4d). We can take two complex scalar fields Z and X in the vector

multiplet. Tr(ZJ) and Tr(XJ) are both 1/2 BPS operators, but Tr(Z2X2) is not. The

first two are the only operators of classical dimension J carrying J units of charge, so they

must be BPS. The fields Z and X are each annihilated by half of the supercharges, but

there is another operator Tr(ZXZX) which has the same classical dimension and charge as

4We thank B. Assel and J. Estes for explaining some of these points to us.
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Tr(Z2X2), so the classical analysis is not enough and indeed only one linear combination

of these is BPS once one-loop effects are included.

We expect the same to be true in the case of the Wilson loops and only one combination

(presumably the sum of the loop made of Lψ1 and the loop made of Lψ2) to be BPS. This

story should hold also for the case of the circle and also for the equivalence to the 1/4 BPS

loop in section 4. The matrix model will only calculate the expectation value of the correct

linear combination.

One possible way to check this is to calculate the expectation value of the circular

Wilson loops in perturbation theory. We expect that the Wilson loops with either Lψ1 or

Lψ2 to not be BPS and therefore to suffer from UV divergences. Only the correct linear

combination will be finite and equal to the result of the matrix model calculation.5 This

calculation should follow along the lines of the perturbative calculations of the Wilson loops

in ABJM theory [38–40].

Further complications arise when one considers quivers with nodes with vanishing

CS levels, as studied in section 2.3. In the case studied there, we found five possible

superconnections. Their variation does not vanish and is not a total derivative, but we

argued that the remainder cancels in every expectation value. Four of the connections

involve a pair of nodes and the last one has a richer structure involving all three nodes

(one of them doubled). This last one is a superconnection in U(N1 + N3|2N2). Indeed it

would seem natural to also combine the other connections into four possible pairings of

block-diagonal U(N1|N2)⊕U(N2|N3) ⊂ U(N1 +N3|2N2) superconnections. The resulting

Wilson loop are classified by representations of U(N1 +N3|2N2) and we again expect only

one linear combinations to be BPS. It is not clear actually why a Wilson loop involving

only a pair of nodes would not be BPS. We leave this question for the future.

It may also be interesting to look for 1/2 BPS loops in the non-linear sigma model

of [24] which arise from integrating out all the fields of the k = 0 nodes.

We have shown that the 1/2 BPS Wilson loops are cohomologically equivalent to

certain 1/4 BPS Wilson loops which can be reduced using localization to simple observables

in the Chern-Simons-matter matrix models [11]. We leave the evaluation of these matrix

integrals to future work.

In fact, one way to address the open questions is to look at the structure of the Wilson

loops in the matrix model. In ABJM theory one can calculate the expectation value of

either the 1/6 BPS Wilson loop or the 1/2 BPS one [28–31]. But the calculation of the

latter is significantly easier. One can try to evaluate possible Wilson loops in the matrix

models for arbitrary N = 4 CS-matter theories. For theories with equal ranks there is

an elegant Fermi-gas formulation of the partition functions of those theories [41], which is

given to all orders in the 1/N expansion by an Airy function dependent on two parameters

(one of which was found explicitly for all N = 4 circular quivers in [42]). Our expectation

is that in the alternating CS level case, the simple Wilson loops will be in representations

of U(NI |NI+1), with a vanishing level U(NI + NI+2|2NI+1), with two vanishing levels

5The Wilson loop found in [25] is a linear combination of loops on all the nodes of the quiver, and all of

them are made of the appropriate Lψi , so we don’t expect it to be BPS.
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U(NI +2NI+2|2NI+1+NI+3), etc. Note though, that in the case considered in section 2.4,

the 1/2 BPS loops are simply in representations of U(NI+1). In fact, it is not clear that

the matrix model will see a distinction between the q loops we constructed in this paper

and the p other 1/2 BPS loops preserving the set of supersymmetries invariant under

SU(2)A. In fact, we would expect both type of operators to give simple observables in the

matrix model.

Another approach would be to try to derive the form of the Wilson loops by Higgsing

part of the gauge groups and finding the resulting operators as was done for the ABJM

theory in [43].

It would be interesting to also study the transformation of these loops under mirror

symmetry, where we would expect them to become vortex loop operators [44]. This was

studied in other 3d theories in [12, 45]. Note also that in the case of the ABJM theory

there were 1/3 BPS vortices preserving 8 supercharges [44]. An analog Wilson loop was

never found. Possibly a linear combination of two 1/2 BPS Wilson loops with different

couplings (the analogs of ψ1 and ψ2) should be considered the appropriate dual.
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A Notation and conventions

We consider the loop in R
3. Spinor indices are raised and lowered as

ψa = ǫabψb , ψa = ǫabψ
b , ǫ+− = −ǫ+− = 1, (A.1)

and we employ the gamma matrix basis

(γµ)ab = {σ3, σ1, −σ2}, (A.2)

satisfying γµγν = ηµν + iǫµνργρ (with ǫ123 = 1).

As in [22], we use the epsilon symbol to raise and lower the indices of the super-

symmetry parameters via ξĀB = ǫĀC̄ǫBDξC̄D, with ǫ12 = ǫ12 = 1 for both overlined and

underlined indices. In the main text, we shall always write the supersymmetry parameters

with lowered indices.

In this gamma matrix basis, the supersymmetry transformations are given by [22]

δqĀ(I) = i
√
2(ξĀB)a(ψ(I)B)a , δq̄(I)Ā = i

√
2(ξĀB)

a(ψ̄
B
(I))a , (A.3a)
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δ(ψ(I)A)
a =

√
2( /D)abq

B̄
(I)(ξB̄A)

b −
√
2sI
k

(ξB̄A)
a‘
[

ν(I)q
B̄
(I) − qB̄(I)ν̃(I)

]

+
(√

2(ξC̄B)
a(ϕ(I))

B
Aq

C̄
(I)

)

kI=0
−
(

2
√
2sI
k

(ξC̄B)
a(µ̃(I−1))

B
Aq

C̄
(I)

)

kI 6=0

−
(√

2(ξC̄B)
aqC̄(I)(ϕ(I+1))

B
A

)

kI+1=0

+

(

2
√
2sI
k

(ξC̄B)
aqC̄(I)(µ(I+1))

B
A

)

kI+1 6=0

,

(A.3b)

δ(ψ̄
A
(I))a =

√
2( /D)abq̄

B̄
(I)(ξ

B̄A)b +

√
2sI
k

(ξB̄A)a

[

ν̃(I)q̄(I)B̄ − q̄(I)B̄ν(I)

]

+
(√

2(ξC̄B)aq̄(I)C̄(ϕ(I))
A
B

)

kI=0
−

(

2
√
2sI
k

(ξC̄B)aq̄(I)C̄(µ̃(I−1))
A
B

)

kI 6=0

−
(√

2(ξC̄B)a(ϕ(I+1))
A
B q̄(I)C̄

)

kI+1=0

+

(

2
√
2sI
k

(ξC̄B)a(µ(I+1))
A
B q̄(I)C̄

)

kI+1 6=0

,

(A.3c)

δA(I)µ = −
(sI
k
(ξĀB)

a(γµ)ab

[

(j
ĀB
(I) )

b − (j̃
BĀ
(I−1))

b
])

kI 6=0

−
(

(ξĀB)
a(γµ)ab

(

(λ
ĀB
(I) )

b +
sI
2k

[

(j
ĀB
(I) )

b + (j̃
ĀB
(I−1))b

]))

kI=0
,

(A.3d)

δ(ϕ(I))
A
B = 2i(ξC̄B)

a(λ
C̄A
(I) )a − δABi(ξC̄D)

a(λ
C̄D
(I) )a , (A.3e)

where for the hypermultiplet fields the label (I) indicates the link between the Ith and (I+

1)st node and sI = 1 for a hypermultiplet. The bracketed terms vanish unless the condition

in the subscript is satisfied. To obtain the transformations for the twisted multiplets, we

replace the overlined SU(2)A indices for underlined SU(2)B indices and choose sI = −1.

The superconformal transformations of the fields are found by replacing ξa →
xµ(γµ)

a
bη

b, with the exception of the fermions. The variation of the fermions with re-

spect to the superconformal supercharges are given by

δ(ψ(I)A)
a =

√
2( /D)abq

B̄
(I)x

µ(γµ)
b
c(ηB̄A)

c +
√
2qB̄(I)η

a
B̄A

−
√
2sI
k

xµ(γµ)
a
b(ηB̄A)

b
[

(ν(I))
C̄
C̄q

B̄
(I) − qB̄(I)(ν̃(I))

C̄
C̄

]

+
(√

2xµ(γµ)
a
b(ηC̄B)

b(ϕ(I))
B
Aq

C̄
(I)

)

kI=0

−
(

2
√
2sI
k

xµ(γµ)
a
b(ηC̄B)

b(µ̃(I−1))
B
Aq

C̄
(I)

)

kI 6=0

−
(√

2xµ(γµ)
a
b(ηC̄B)

bqC̄(I)(ϕ(I+1))
B
A

)

kI+1=0

+

(

2
√
2sI
k

xµ(γµ)
a
b(ηC̄B)

bqC̄(I)(µ(I+1))
B
A

)

kI+1 6=0

,

(A.4)
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δ(ψ̄
A
(I))a =

√
2( /D)abq̄

B̄
(I)x

µ(γµ)
b
cη

B̄A)c +
√
2q̄(I)B̄η

B̄A
a

+

√
2sI
k

xµ(γµ)
a
bη

B̄A)b
[

(ν̃(I))
C̄
C̄ q̄(I)B̄ − q̄(I)B̄(ν(I))

C̄
C̄

]

+
(√

2xµ(γµ)
a
bη

C̄B)bq̄(I)C̄(ϕ(I))
A
B

)

kI=0

−
(

2
√
2sI
k

xµ(γµ)
a
bη

C̄B)bq̄(I)C̄(µ̃(I−1))
A
B

)

kI 6=0

−
(√

2xµ(γµ)
a
bη

C̄B)b(ϕ(I+1))
A
B q̄(I)C̄

)

kI+1=0

+

(

2
√
2sI
k

xµ(γµ)
a
bη

C̄B)b(µ(I+1))
A
B q̄(I)C̄

)

kI+1 6=0

.

(A.5)

B Derivation of the Killing spinor (5.17)

In this appendix we work out the explicit expression for the Killing spinor associated to

the first parameterization of the space employed in the main text, namely equations (5.11)

and (5.15).

The AdS part is standard. For example, for a time-like line the vielbeins can be chosen

as follows

e0 = R coshu cosh ρ dt , e1 = R coshu dρ , e2 = Rdu , e3 = R sinhu dφ , (B.1)

and the relevant non-vanishing components of the spin connection are given by

ω01 = sinh ρ dt , ω02 = sinhu cosh ρ dt , ω12 = sinhu dρ , ω32 = coshu dφ , (B.2)

The indices 0, 1, . . . , 9,# are on the tangent space and in the following we denote them by

the letters from the beginning of the Latin alphabet a, b, . . .. We can take the background

4-form field-strength to be proportional to the volume form of AdS4

H(4) = κ e0 ∧ e1 ∧ e2 ∧ e3 = κR4 cosh2 u cosh ρ sinhu dt ∧ dρ ∧ du ∧ dφ , (B.3)

with κ a constant to be determined. The Killing spinor equation is given by the variation

of the gravitino and reads [46]

Dµη +
1

288
(γµνρστH

νρστ − 8Hµνρσγ
νρσ) η = 0 , (B.4)

where Dµ = ∂µ + 1
4ω

ab
µ Γab and γµ = eaµΓa (lower case γ’s are in the curved space, while

upper case Γ’s are in the tangent space). Now we distinguish between the AdS and the

sphere directions. Using the expression for the 4-form we arrive at

Dµη = −κ

6
γµΓ⋆η , µ along AdS4 ,

Dµη =
κ

12
γµΓ⋆η , µ along S7 , (B.5)
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with Γ⋆ ≡ Γ0123. To find the solution it is useful to use the following identities. If

[X,Y ] = 2Z and [X,Z] = −2Y then

e
1
2 θXY = (cos θ Y + sin θ Z) e

1
2 θX . (B.6)

If, on the other hand, [X,Y ] = ±2Z and [X,Z] = ±2Y then

e
1
2 θXY = (cosh θ Y ± sinh θ Z) e

1
2 θX . (B.7)

The AdS4 part of the Killing spinor is given by

e
u
2 Γ2Γ⋆e

ρ
2Γ1Γ⋆e

t
2Γ0Γ⋆e

φ
2 Γ23η0 . (B.8)

It can be readily checked that it must be κ = −3/R.

On the other hand, the vielbeins for the 7-sphere (5.11) are given by

e4 = 2Rdα , (B.9)

e5 = −R cosαdθ1 , e6 = −R cosα (2dx+ cos θ1 dφ1) , e7 = R cosα sin θ1 dφ1 ,

e8 = R sinαdθ2 , e9 = R sinα (2dv + cos θ2 dφ2) , e# = −R sinα sin θ2 dφ2 ,

and the non-vanishing components of the spin connection are

ω54 =
1

2
sinαdθ1 , ω64 = sinα

(

dx+
1

2
cos θ1 dφ1

)

, ω74 = −1

2
sinα sin θ1 dφ1 ,

ω48 = −1

2
cosαdθ2 , ω49 = − cosα

(

dv +
1

2
cos θ2 dφ2

)

, ω4# =
1

2
cosα sin θ2 dφ2 ,

ω65 = −1

2
sin θ1 dφ1 , ω75 = dx− 1

2
cos θ1 dφ1 , ω76 =

1

2
dθ1 ,

ω98 = −1

2
sin θ2 dφ2 , ω#8 = dv − 1

2
cos θ2 dφ2 , ω#9 =

1

2
dθ2 . (B.10)

The Killing spinor equations for the sphere components are

∂αη = −1

2
Γ4Γ⋆η ,

∂θ1η =
1

4
(sinαΓ45 + Γ67 + cosαΓ5Γ⋆) η ,

∂xη =
1

2
(sinαΓ46 + Γ57 + cosαΓ6Γ⋆) η ,

∂φ1
η = −1

4

(

sinα (cos θ1 Γ64 − sin θ1 Γ74) + sin θ1 Γ56 + cos θ1 Γ57

− cosα (cos θ1Γ6Γ⋆ − sin θ1 Γ7Γ⋆)
)

η ,

∂θ2η = −1

4
(cosαΓ84 + Γ9# + sinαΓ8Γ⋆) η ,

∂vη = −1

2
(cosαΓ94 + Γ8# + sinαΓ9Γ⋆) η ,

∂φ2
η = −1

4

(

− cosα (cos θ2 Γ49 − sin θ2 Γ4#) + sin θ2 Γ89 + cos θ2 Γ8#

+sinα (cos θ2Γ9Γ⋆ − sin θ2 Γ#Γ⋆)
)

η . (B.11)

With a little bit of algebra it can be checked that η = Ψ η0, with Ψ given by (5.17), is

indeed a solution of these equations.
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