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Abstract

Using 3D anatomical landmarks from adult human head MRIs, we assessed the magnitude

of inter-operator differences in Procrustes-based geometric morphometric analyses. An in

depth analysis of both absolute and relative error was performed in a subsample of individu-

als with replicated digitization by three different operators. The effect of inter-operator differ-

ences was also explored in a large sample of more than 900 individuals. Although absolute

error was not unusual for MRI measurements, including bone landmarks, shape was particu-

larly affected by differences among operators, with up to more than 30% of sample variation

accounted for by this type of error. The magnitude of the bias was such that it dominated the

main pattern of bone and total (all landmarks included) shape variation, largely surpassing

the effect of sex differences between hundreds of men and women. In contrast, however, we

found higher reproducibility in soft-tissue nasal landmarks, despite relatively larger errors in

estimates of nasal size. Our study exemplifies the assessment of measurement error using

geometric morphometrics on landmarks from MRIs and stresses the importance of relating it

to total sample variance within the specific methodological framework being used. In sum-

mary, precise landmarks may not necessarily imply negligible errors, especially in shape

data; indeed, size and shape may be differentially impacted by measurement error and differ-

ent types of landmarks may have relatively larger or smaller errors. Importantly, and consis-

tently with other recent studies using geometric morphometrics on digital images (which,

however, were not specific to MRI data), this study showed that inter-operator biases can be

a major source of error in the analysis of large samples, as those that are becoming increas-

ingly common in the ’era of big data’.
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Introduction

Procrustes-based geometric morphometrics (PGMM) is the leading methodology in modern

morphometrics [1–3]. Its flexibility and relative simplicity make this powerful method suitable

for applications to a variety of images, such as the many types of digital images, which have

become increasingly common in medicine and other fields of science. Among these, magnetic

resonance imaging (MRI) is one of the most interesting examples of computerized anatomical

images, as it allows to see both soft and hard-tissues and to perform quantitative investigations

in either 2D or 3D. Although computed tomography (CT) might offer higher resolution and

accuracy of hard tissues, it is considered as an increasing source of radiation and its use for

research purposes is prohibited in most countries and is associated with many ethical issues

due to radiation exposure and the subsequent effects it carries on humans. The use of MRI

eliminates the exposure to the ionizing radiation encountered in CT and it is considered as a

safe and robust imaging modality that can be incorporated into epidemiological and popula-

tion-based studies.

The potential of MRI data has been promptly recognized in modern morphometrics, that

employed it for some of the first pioneering biomedical applications of PGMM. As follows,

Bookstein and colleagues performed a series of analyses on the shape of the corpus callosum

using sagittal brain MRIs [4–6]. They were able to find characteristic traits associated with devel-

opmental and neurological anomalies, including increased variance in individuals affected by

schizophrenia and a morphological ‘signature’ typical of the fetal alcohol syndrome. This work

helped to move beyond simple measurements of size (inter-landmark distances, volumes etc.) in

diagnostic MRI studies and to explore shape variation in relation to disease and other factors. In

fact, although landmark-based approaches to the analysis of MRI data has been mainly per-

formed, until now, in a biomedical context, as technology improves and instruments become

more accessible, MRIs could provide useful data in many other disciplines such as, among oth-

ers, evolutionary biology[7] and the study and conservation of museum specimens[8].

In all quantitative investigations, measurement error is a crucial aspect to be investigated

and carefully considered in designing a study. This is becoming even more central in the era of

‘big data’ and digital data sharing, as large samples from longitudinal population studies, and

big datasets obtained by merging information from multiple centers, become available, offer-

ing new exciting avenues for powerful analyses. However, at the same time, ’big data’ often

imply a degree of heterogeneity in how data are acquired. This happens not only when differ-

ent datasets are merged, but also in long-term investigations, such as in longitudinal studies, in

which different instruments and/or operators are used to collect the data over time.

In general, and especially in recent years, there has been a renewed interest in studies of

measurement error using images for PGMM analyses. Arnqvist & Mårtensson[9] and Klingen-

berg et al.[10] have been among the first studies to clearly frame protocols for the assessment

of measurement error in PGMM. Viscosi & Cardini[11] exemplified some of their suggestions

in the context of taxonomic studies on plant leaves. Fruciano[12] provided an extensive review

on a variety of methods for the analysis of measurement error using Procrustes shape data,

while von Cramon-Taubadel[13] mostly focused on landmark precision. Even more recently,

Fruciano et al. [14] and Shearer et al.[15] emphasized the importance of errors arising from

combining PGMM data from multiple operators and different devices. Both studies suggested

that inter-operator errors could be particularly important, often larger than intra-operator var-

iability and typically much larger than differences related to the type of device used to acquire

the data. They also suggested that increasing operator expertise and/or focusing on subsets of

precise landmarks might help to reduce the effect of measurement error. Nevertheless, Shearer

et al.[15] showed, using specimens of multiple species of macaques, representing well

Inter-operator bias in 3D landmarks on MRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0197675 May 22, 2018 2 / 20

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0197675


separated and fairly distant evolutionary lineages, that variation due to inter-operator differ-

ences could be substantial. In this respect, Fruciano et al. [14] reported comparatively smaller

inter-operator variability (ca. 8–12% of the total sum of squares for shape) but focused on a

higher taxonomic level (macropodoid marsupials including eight different genera), and thus

likely had a much larger total variance in their dataset.

Measurement error is routinely quantified in morphometric analyses using MRI data[16–

18]. However, this assessment is rarely done within the framework of PGMM and no study

using landmarks obtained from MRI seems to have focused on inter-operator differences in

estimates of Procrustes size and shape in relation to sample variance. As measurements are

made often by different operators, the correspondence between landmark data digitized by dif-

ferent operators on the same sample of individuals is termed as “reproducibility” [19, 20]. As

with any type of measurement error, reproducibility can be assessed in absolute or relative

terms. In the first case, one estimates the absolute differences of the replica measurements; in

the second instance, however, differences are related to the ’true’ variability among subjects in

the sample. Sometimes, this second type of assessment is referred to as “reliability”[19].

In the present study, we used PGMM on a configuration of soft and hard tissue 3D facial

landmarks that were digitized by different operators on MRI images from a sample of adult

individuals of Caucasian ancestry. We assessed the amount of digitizing error among the oper-

ators using either the full set of landmarks or the two subsets of respectively hard- and soft-tis-

sue landmarks. Throughout the study, our main focus was on the precision of measurements,

which refers to “the extent to which repeated observations conform”[20]. Therefore we only

assessed the component of measurement error related to differences in landmark data digi-

tized by different operators on the same MRI images. As mentioned earlier, this potential bias

is often the largest component of measurement error in PGMM analyses[14, 15] and will likely

become even more crucial in the context of analyses of big datasets, where measurements are

rarely collected by a single individual. Therefore, besides exemplifying the assessment of inter-

operator differences using multiple digitizations of landmarks on the same sample of MRI

data, we will explore how using multiple operators might affect the results of analyses in a pop-

ulation based cohort of more than 900 individuals, and to what extent does the inter-operator

error influence the analysis in large population based MRI studies.

Materials and methods

MRI data acquisition and image analysis

The head scans were performed on a 1.5-T magnetic resonance system (Magnetom Avanto;

Siemens Medical Solutions, Erlangen, Germany) as a part of a whole-body MRI scan protocol.

The complete protocol was previously described elsewhere[21, 22].

The ethics committee of University of Greifswald approved the study protocol, and written

informed consents were obtained from all the subjects who agreed to participate.

The analysed head scans comprised of an axial T1-weighted head scans (ultra-fast gradient

echo sequence using the following imaging parameters: repetition time of 1900 ms; echo time

of 3.37 ms; flip angle of 15o; matrix of 176 × 256 × 176 and a voxel size of 1 × 1 × 1 mm. The

post-processing of the axial T1-weighted sequences comprised multi-planar reconstruction

(MPR) with 1 mm slice thickness for further image interpretation and was performed auto-

matically by the viewing software Osirix (Osirix version 3.8.1. Pixmeo, Geneva, Switzerland).

Landmarks were digitized by three different operators on those images in Osirix. All opera-

tors were dentists with previous training on the use of Osirix software and craniofacial land-

mark identification. For investigator blinding, the images were identified by code and

analyzed anonymously in random order. The landmark configuration (Fig 1) was selected to
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focus on adult facial variation in humans. Strictly speaking, Sella (landmark Nr. 5) is not part

of the facial skeleton but was included as it helps to relate facial proportions to the anterior cra-

nial base region. Each digitized landmark gave positional values in the form of (x,y,z), whereby

the X-axis represented the right-left direction, the Y-axis and Z-axis corresponded to the pos-

terior-anterior and superior-inferior directions respectively.

Inter-operator differences were assessed in 20 women randomly selected from a larger sam-

ple. The MRI sequences were assessed by three blinded operators, thus producing a sample of

60 observations (for brevity, called the “replica sample”). A single sex was chosen to focus on a

highly homogeneous sample. Also, women tend to be smaller than men, thus making errors in

size potentially more relevant [23].

A larger sample (“study sample”) was also used to explore whether possible differences

among operators may produce an evident bias in a big dataset. This sample contained 906

adult individuals of both sexes digitized by the same three operators (each measuring different

study subjects). More precisely, female/male sample sizes split by operators (OP1, OP2 and

OP3) were: OP1) 102/61; OP2) 106/163; OP3) 252/222).

Procrustes-based geometric morphometrics

Landmark data were analysed using geometric morphometrics[2, 3]. 3D anatomical land-

marks were aligned using a Procrustes superimposition[24]. This mathematical procedure

estimates size as the square root of the sum of squared distances from the centroid of a land-

mark configuration. This is called centroid size (CS), although we will often informally refer to

it simply as “size”. Thus, size was computed for each individual in a sample, removed from the

original data, and the resulting ‘size-free’ coordinates were superimposed by overlapping the

centroids of all individuals and by minimizing the sum of inter-landmark squared distances in

the sample. These operations took size out of the original raw coordinates and reduced irrele-

vant positional differences. The resulting new coordinates are called Procrustes shape coordi-

nates. The magnitude of their differences in the multivariate shape space is measured by the

Procrustes shape distance. In most biological applications this distance is a good approxima-

tion of the Riemannian Procrustes Distance computed on the curved manifold [1].

Landmark reproducibility

Reproducibility was assessed in three steps: (I) the estimation of absolute error for the raw

coordinates of each landmark, similarly to previous studies of MRI data[17, 18]; (II) the

Fig 1. Landmark detection using multi planar reconstruction (MPR) with axial view as the centre of orientation. Plotted landmarks: 1. Glabella, 2. Soft Nasion, 3.

Hard Nasion, 4. Pronasale 5. Subnasale 6. Anterior nasal spine, 7. Sella 8 & 9. Alare 10 & 11. Orbitale 12 & 13 Porion 14 & 15 Zygion.

https://doi.org/10.1371/journal.pone.0197675.g001
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quantification of size and shape reliability and the proportion of inter-operator differences in

the replica sample; (III) the exploration of the impact on the analysis of size and shape using

data collected by different operators in the larger study sample of 906 men and women.

In the first step (analysis I) we preliminarily explored whether there are differences depend-

ing on the tissue type (soft or hard) on which landmarks are digitized. Analyses (II) and (III)

were performed on the total configuration of 15 landmarks, as well as separately on the 10

hard-tissue facial landmarks and on the five nasal soft-tissue ones but focused on size and

shape obtained using PGMM.

(I) Absolute error. Because landmarks were digitized by all operators on the same MRI

sets, it was possible to quantify the absolute inter-operator digitizing error of each landmark in

any individual. This was achieved by computing, for each landmark in each of the 20 individu-

als, the variation of the distances between each landmark and its average computed from the

three replicas. For instance, for landmark 1 (L1) on individual 1, using the raw coordinates, we

computed the distance in mm of L1 digitized by the first operator from the average position of

L1 measured by all three operators, and then we did the same for the second and third opera-

tors, thus obtaining the operator deviations (ODEV) from the centroids. ODEV was used to

assess if one or the other operator had larger absolute errors, as well as to summarize the aver-

age deviation (AVEDEV) of all three operators. To this aim, to obtain AVEDEV, we computed

the mean of the three ODEV of a given landmark.

(II) Reproducibility of size and shape in the 20 women sample. The replica dataset was

analysed as explained in Viscosi & Cardini[11] and Fruciano[12]. Thus, using a Procrustes

ANOVA (analysis of variance), we partitioned variance in size or shape among individuals

(i.e., averaged replicas representing the ‘true’ sample variance) and residual component (i.e.,

variation among replicas).

The ANOVA tests whether individual variation is significantly larger than error. However,

it should be noted that with this type of test, highly significant individual variation can be

found despite large measurement error (including significant biases: e.g. Fruciano et al [14].

Therefore, we mainly focused on estimates of effect size. To this aim, we used the proportion

of sum of squares accounted for by each factor (individual and measurement error), which we

will refer to as R2, and also used the mean sum of squares from the ANOVA to calculate the

intraclass correlation coefficient, ICC[12]. ICC offers an alternative, but related method to R2,

for assessing how much variation can be attributed to ‘true’ individual differences, with ICCs

closer to 1 suggesting almost perfect reproducibility and thus smaller measurement error[19].

R2 and ICC are computed similarly for size and shape, but for shape the computations are

fully multivariate and therefore simultaneously assess reproducibility across all landmarks and

shape coordinates, as appropriate for Procrustes data[11, 12].

Reproducibility was also explored using correlational analyses and summary diagrams.

Correlations provide an additional tool for exploring congruence among operators but cannot

be used to investigate biases[20]. Thus, they should be interpreted with caution and only in

relation to findings from other analyses such as R2s and ICCs from the ANOVAs. For size, we

used pairwise (inter-operator) Pearson correlations together with the corresponding scatter-

plots of centroid size. For shape, we computed, pairwise between all operators, matrix correla-

tions of Procrustes shape distances. Also, Procrustes shape similarity relationships in the

replica sample were graphically summarized using a UPGMA (unweighted pair group method

using arithmethic average) phenogram. In this tree diagram, replicas by different operators

should cluster ‘within individual’ in triplets or at least in pairs, if inter-operator differences are

small (i.e., high reproducibility and small measurement error).
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Finally, R2 for the effect of operators (i.e., using operators as a grouping variable in an

ANOVA) were used to approximately estimate the magnitude of potential inter-operator

biases. This analysis was done for both size and multivariate shape.

(III) Inter-operator bias: Exploratory analysis in the 906 individuals sample. The

ANOVA R2, that estimates the variation accounted for by operators as a grouping factor (as

explained in the last paragraph of the previous section) was employed as an approximate quan-

tification of the inter-operator bias in the total 906 individuals sample. As both men and

women were present in the study sample, the hierarchical ANOVA was run adding sex as a

main factor above the level of operator. This allowed to control for the effect of sex on total var-

iance before estimating inter-operator differences. It also provided a ‘biologically meaningful’

factor against which to compare the magnitude of the inter-operator error. In the absence of

inter-operator biases (and using fairly balanced samples—see Discussion), the expectation is

that there should not be any appreciable inter-operator difference. In contrast, as men and

women display sexual dimorphism in facial morphology[25] (e.g., Fink et al., 2005), sex is a

genuine factor that, in a large sample, should explain a significant amount of variance. Thus,

the operators’ R2 should be clearly smaller than the R2 of sex.

Software
Analyses were mainly performed in R (2017) using the packages Vegan[26], Geomorph[27]

and Morpho[28]. However, absolute errors (and the corresponding profile plots) were com-

puted in a spreadsheet using Gnumeric (http://www.gnumeric.org/); the Procrustes ANOVA

was performed both in R (2017) and MorphoJ 1.06d[29]; correlational analyses, scatterplots

and phenograms were done in in PAST 2.17c[30].

Results

(I) Absolute error in the 20 women sample

AVEDEVs and ODEVs showed a similar trend of variation among operators and across land-

marks (Fig 2), as expected form correlated measurements (r�0.88). Both ranged on average

from slightly less than 1 mm to ca. 3 mm, with the largest absolute deviation being almost 6

mm. However, some landmarks clearly had smaller error and higher reproducibility, and these

included all the nasal soft-tissue landmarks plus a few bone landmarks. On average, absolute

errors estimated using both metrics were approximately 65% larger in bone compared to soft-

tissue landmarks.

(II) Reproducibility of size and shape in the 20 women sample

Table 1 summarizes the results of the Procrustes ANOVA testing individual variation relative

to measurement error (i.e., the differences between replica digitization done by the three oper-

ators). In all cases (size and shape, and different landmark configurations) individual differ-

ences accounted for significantly more variance than error. However, both R2 and ICC

congruently showed that reproducibility varied widely depending on the type of data being

analyzed.

In general, reproducibility was very high or fairly high for size. The full configuration and

the bone landmarks were, in this respect, better than nasal soft-tissue landmarks with errors in

size estimates accounting for 2–3% of variance compared to 18% for the nose. This trend was,

however, reversed for shape data. With shape, reproducibility was low for the full and bone

landmark configurations (with errors accounting for about 30% of total variance) and moder-

ately high for nasal soft-tissue landmarks (less than 20% of variance due to measurement

error).
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The generally high reproducibility of size was consistent with the correlational analyses

(Table 2, Figs 3 and 4). Inter-operator pairwise correlations were always high (� 0.93) and

only slightly smaller for the nose. In contrast, correlations of Procrustes shape distance

matrices varied more across landmark configurations, with bone landmarks having the

lowest inter-operator pairwise correlations (on average, r = 0.62), and the total and nose

configurations having on average intermediate (r = 0.75) and highest (r = 0.81) correlations

respectively.

In the total shape phenogram (not shown), 12 out of 20 cases clustered in triplets of replicas,

‘within individual’, using all landmarks, but that happened only four times for both the bone

(not shown) and nose (Fig 5) subsets of landmarks. However, for the nose and total configura-

tions, at least two of the three replicas clustered as nearest neighbours in respectively 17–18 of

the 20 individuals, while for the bone landmarks that happened only in 13 of the 20 women

sample.

Fig 2. (I) Absolute error: AVEDEV and ODEV averaged for each landmark across all 20 individuals; soft-tissue landmarks are emphasized using a grey background: a)

mean AVEDEV shown with a solid black line with its 2.5th-97.5th percentiles shown using broken grey lines; b) mean ODEV: solid line, operator 1; broken line, operator

2; dotted line, operator 3.

https://doi.org/10.1371/journal.pone.0197675.g002
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Finally, the variance accounted for by inter-operator differences (Table 3) in the replica

sample was less than 2% for size in the total and bone configurations, but more than 13% in all

other cases using either size (nose) or shape (all three configurations). Indeed, the nose stood

out for the large inter-operator differences in size but also showed smaller variation among

operators for shape (13% vs 15–18% in respectively the total and bone configurations).

(III) Inter-operator bias: Exploratory analysis in the 906 individuals sample

When we explored the magnitude of sex (’true’ effect) and inter-operator (bias) differences in

the study sample of 906 men and women (Table 3), we found that sex accounted for between

40% (nose) and almost 60% (all landmarks) of size variance, but only 1% (bone) to 5% (nose)

of shape variance. In contrast, inter-operator differences were tiny for size, with the exception

of the nose, where they accounted for 7% of sample variance (controlled for—i.e., unrelated

to—sex). This means that the magnitude of sex differences in size was hundreds of times larger

than inter-operator variation using all landmarks or just those on the bone. Even for the nose,

despite fairly large differences among operators, sex accounted for six times more variance

Table 1. Reproducibility (analysis II) of size and shape in the 20 women sample with three replicas: Procrustes ANOVA comparing individual variation, in centroid

size and shape, to measurement error.

data landmarks factor SS MS df F P R2 ICC Pillai_tr. P

CS all indiv. 2548.6 134.1 19 87.55 < .0001 98% 0.98 - -

error 61.3 1.5 40 2%

total 2609.9

bone indiv. 1905.4 100.3 19 61.06 < .0001 97% 0.97 - -

error 65.7 1.6 40 3%

total 1971.1

nose indiv. 458.2 24.1 19 9.68 < .0001 82% 0.81 - -

error 99.6 2.5 40 18%

total 557.8

SHAPE all indiv. 0.1467 0.000203 722 5.46 < .0001 72% 0.69 17.46 < .0001

error 0.0566 0.000037 1520 28%

total 0.2032

bone indiv. 0.1314 0.000301 437 4.42 < .0001 68% 0.63 13.34 < .0001

error 0.0626 0.000068 920 32%

total 0.1940

nose indiv. 0.2995 0.001970 152 9.56 < .0001 82% 0.81 5.74 < .0001

error 0.0660 0.000206 320 18%

total 0.3655

https://doi.org/10.1371/journal.pone.0197675.t001

Table 2. Reproducibility (analysis II) of size and shape in the replica sample: Between operators pairwise correlations of centroid size (Pearson correlation) and

shape (correlation of shape Procrustes distance matrices).

landmarks all bone nose

data operators OP2 OP3 OP2 OP3 OP2 OP3

CS OP1 0.98 0.98 0.98 0.96 0.96 0.98

OP2 - 0.99 - 0.98 - 0.93

averaged 0.99 0.97 0.95

SHAPE OP1 0.77 0.73 0.65 0.65 0.81 0.82

OP2 - 0.75 - 0.56 - 0.82

averaged 0.75 0.62 0.82

https://doi.org/10.1371/journal.pone.0197675.t002
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than operators. Thus, overall, inter-operator biases were mostly negligible for size compared to

sexual dimorphism.

Results were remarkably different for shape using all landmarks or just those on bones.

Here, inter-operator differences accounted for 6–7% of total variance, which means that, con-

trary to size, operators’ error were larger than sexual dimorphism, accounting for three to

seven times more variation than sex. This was also suggested by Fig 6, where groups were plot-

ted on PC1-PC2 of shape for the total configuration, as an example. This figure showed that,

despite PCs maximizing total variance regardless of any a priori group, operators displayed a

degree of separation whereas females and males overlapped almost completely. PC scatterplots

(not shown) of bone shape produced the same pattern (not shown) as the total configuration,

whereas those of the nose did the opposite, suggesting some separation between sexes and

large overlap among operators. Indeed, for the nose, contrary to the other two configurations,

results for shape were comparable to those of size, with sex accounting for three times more

variance than operators, which only accounted for 2% of non-sex-related variance.

In summary, the outcome of the exploratory analysis of inter-operator bias in the study

sample (III) was in good agreement with results from the reproducibility study (II): measure-

ment error due to operator differences was negligible for size in all datasets, although more

pronounced in the nose soft-tissue landmarks; however, despite significantly larger variation

among individuals compared to differences among replicas (II), measurement error was large

for shape with operator bias accounting for more variance than sex differences in two of the

three configurations. The main exception for shape was the nose, that consistently with the rel-

atively small absolute error (I) of its soft-tissue landmarks, showed approximately similar

amounts of measurement error in both size and shape (II), with sex variance three to six times

bigger than operator differences (III).

Fig 3. (II) Reproducibility of centroid size visualized using jitter plots for the three sets of landmarks (nose, bone and all landmarks) using estimates from the

three operators.

https://doi.org/10.1371/journal.pone.0197675.g003
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Discussion

Preliminary considerations

In this study, we assumed that instrumental errors, that we did not assess, were likely to be

negligible compared to the inter-operator differences. Indeed, we found that inter-operator

absolute errors in our study were more than one order of magnitude larger than scanners’

errors generally reported in previous work. For instance, Figs 1–3 of Han et al.[31] show that

absolute differences in cerebral cortical thickness related to different manufacturers or MRI

field strength, as well as to differences in smoothing parameters, are likely to be in the order of

a fraction of a mm (ca. 0.02 to 0.3 mm). In contrast, inter-operator absolute errors in our

Fig 4. (II) Reproducibility of size: Scatterplot of nasal size used as an example of the graphical exploration of

similarities across different operators: Operators 1 and 2 are shown respectively on the horizontal and vertical

axes, while the size of the circles is proportional to size estimated from operator 3.

https://doi.org/10.1371/journal.pone.0197675.g004

Inter-operator bias in 3D landmarks on MRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0197675 May 22, 2018 10 / 20

https://doi.org/10.1371/journal.pone.0197675.g004
https://doi.org/10.1371/journal.pone.0197675


Fig 5. (II) Reproducibility of shape: UPGMA phenogram based on Procrustes shape distances for the 20 women (each indentified by a progressive number from 1

to 20) digitized by all three operators: With high reproducibility, all three replicas, or at least two of them, should cluster together ’within’ individual (black

numbers); when this does not happen, numbers are shown using light grey. As in Fig 4, nasal data are used as an example.

https://doi.org/10.1371/journal.pone.0197675.g005

Table 3. Inter-operator bias (analyses II-III): R2 of centroid size and shape estimated in ANOVAs using operator as a grouping factor in the replica sample and the

study sample. For the study sample, R2 for sex, as main factor above operator, is also shown.

replica sample� study sample (N = 906)

data factor all bone nose all bone nose

CS sex - - - 57% 53% 40%

operator 1% 1.5% 15% 0.1% 0.3% 7%

residual 99% 99% 85% 43% 47% 53%

SHAPE sex - - - 2% 1% 5%

operator 15% 18% 13% 6% 7% 2%

residual 85% 82% 87% 92% 92% 93%

�For the replica sample, the R2 for individuals is not reported as it is in fact both individuals and replicas.

https://doi.org/10.1371/journal.pone.0197675.t003
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analyses ranged on average from about 1 to 3 mm. These estimates are consistent with those of

Maudgil et al.[18] and Chollet et al. [17], who reported average absolute errors of 1–2 mm or

more. Thus, as assumed, it does seem that MRI acquisition and processing introduce a source

of measurement error which is negligible compared to inter-operator differences in landmark

coordinates.

Implicitly, we also assumed that inter-operator differences indirectly address also the issue

of intra-operator variability. This is plausible, as the 15 landmarks used in the study are a sub-

set from a larger set of points from which low precision landmarks had been excluded[32, 33].

Also, it is reasonable because generally inter-operator differences are at least as large as the

intra-operator variability plus, potentially, an extra amount of variation due to the fact that dif-

ferent observers might consistently place at least some landmarks in slightly different posi-

tions. This type of bias has been found for instance by Fruciano et al.[14] using PGMM

analyses of 3D surface models of marsupial crania. Similarly, Shearer et al. [15] observed that

“inter-observer error was consistently higher than all other potential error types observed

among researchers” in their study of 3D landmarks from surface scans of macaques. Chollet

et al.[17], however, surprisingly found smaller absolute differences between operators than

among replicas by the same operator but, in agreement with our study, and consistently with

Fig 6. (III) Inter-operator bias: Scatterplots of the first two PCs (principal components) of total shape (all 15 landmarks) accounting for respectively 15.5% and 11.0% of

total variance; sex (a) and operator (b) are shown using different symbols. Despite PCs being computed regardless of a priori groups, operators (a meaningless grouping

factor in the absence of bias) show less overlap than sexes (i.e., biological groups).

https://doi.org/10.1371/journal.pone.0197675.g006
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the conclusions of Fruciano et al.[14] and Shearer et al.[15], Maudgil et al.[18] found inter-

operator absolute errors on average about two times bigger than intra-operator ones.

Thus, even if it is always desirable to assess all components of measurement error, including

differences in methods or devices for image acquisition and intra-operator variability[9], it

seems likely that we quantified the largest source of error in our dataset and probably in simi-

larly acquired sets of data.

Although inter-operator differences could have been explored in our main study sample of

906 subjects, no statistical test of the bias was possible. This type of test requires replicated

readings and can be done pairwise between operators, using a paired t- test, or simultaneously

for all three operators, using a repeated measures ANOVA (or for shape, the multivariate ver-

sion of these tests should be used). In fact, we could have performed such tests in the replica

sample, but we chose not to do it. This is because, as in the Procrustes ANOVA, we were more

interested in the relative magnitude of measurement error and much less in whether that is sta-

tistically significant.

Another cause for caution before testing inter-operator differences in the main study sam-

ple was that the data was partly unbalanced. The three operators in this study digitized differ-

ent numbers of individuals and only OP3, who digitized almost half of the data, measured

similar numbers of men and women. In contrast, OP1 measured more females than males and

OP2 did the opposite. For this reason, when operator differences in such heterogeneous sam-

ples are large (i.e., mainly in shape from the bone and total landmark configurations), esti-

mates of sexual dimorphism could have been slightly inflated. On the other hand, for the same

reason (i.e., unbalanced samples), one cannot exclude that the opposite happened, that is that

inter-operator variability was slightly overestimated because one operator digitized more men

and another more women. Indeed, this is more likely to have happened for size, where sexual

dimorphism is much larger (R2 between 40% and almost 60%) than differences between

operators.

Overall, however, the effect of unbalanced sampling in the exploratory analyses of the study

sample should be small. This is because, as said, OP3 measured almost balanced samples, but

also because the sex bias in the other two operators was small. Besides, in terms of estimates of

inter-operator differences, results from the study sample (III) are supported by those from the

replica sample (II), which was perfectly balanced and only included one sex: both analyses

(Table 3) showed a relatively modest amount of error in nasal size and shape, a totally negligi-

ble error in size using either all or just the bone landmarks and a proportionally large amount

of shape variation due to operator biases in the same two configurations. Finally, that estimates

of sex and operator effects are likely to be accurate regardless of the unbalanced samples was

suggested by repeating the ANOVAs (results not shown) after randomly selecting 50 individu-

als within each sex and operator (i.e., total N = 300) to have a fully balanced design: the result-

ing estimates of R2 for sex and operator from the perfectly balanced analyses were very similar

to those from the unbalanced samples (r>0.99, with largest difference in R2 between balanced

and unbalanced design being respectively for operator 8.7% vs 6.8% and for sex 31.7% vs
40.5%, both found in data from nasal size, and absolute differences across all datasets and

effects being on average just 1.4%).

Finally, as a conclusion to the preliminary considerations, we would like to remark that,

when analyses are performed on symmetric structures, it is possible to further split total vari-

ance into symmetric and asymmetric components using the Procrustes ANOVA[10]. We did

not do it as we were not specifically interested in asymmetry in this study and chose to keep

the design of the ANOVA simple. However, researchers interested in patterns of asymmetry

could further partition variance but would have to assess (at least in a subsample with replicas)

that asymmetry is larger than measurement error, which is especially important for fluctuating

Inter-operator bias in 3D landmarks on MRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0197675 May 22, 2018 13 / 20

https://doi.org/10.1371/journal.pone.0197675


asymmetries (i.e., small non-directional differences between left and right sides). This is, for

instance, exemplified by the recent paper of Fruciano et al.[14]. In their analysis on kangaroo

crania, they found that fluctuating asymmetry was significantly larger than measurement error

only using a subset of higher precision landmarks. However, it is interesting to observe that,

even in that case and despite statistical significance, R2 for fluctuating asymmetry was about

1% whereas total error (device plus operator) accounted for more than 4% of total variation.

If in our replica sample we had done the same type of variance partitioning for symmetric

and asymmetric components (results not shown), we would have been in a situation similar to

Fruciano et al. [14] for the total and bone configurations, with fluctuating asymmetry signifi-

cantly larger than error despite being about 1/3 of its magnitude when estimated using R2. For

the nose, in contrast, fluctuating asymmetry would have been significant and of similar magni-

tude as inter-operator differences, both accounting for approximately 18% of variance. In

cases when, despite significance, the size of the effects being tested is small or similar (in rela-

tive terms), the decision whether or not to interpret one or the other effect becomes more diffi-

cult and, if done, the problem should be explicitly stated and great caution in the

interpretation should be suggested. Especially in small samples, the use of resampling methods

based on tests that do not assume isotropic variation around landmarks[10] (Klingenberg

et al., 2002) may lead to more reliable tests, whereas increasing the number of landmarks may

not necessarily produce an improvement[34].

Why different amount of error in size and shape across sets of landmarks?

In the previous subsection we clarified a few points and most importantly that inter-operator

differences are likely to be the main source of measurement error and results seem fairly robust

with replica and study samples providing largely congruent answers. Focusing now on the

interpretations of these findings, one of the most evident outcomes of the study is that all anal-

yses consistently indicated that soft-tissue nasal landmarks are less strongly affected by error

(especially in absolute terms and in relation to shape variation). At a first glance, this may look

counter-intuitive, as we might expect that landmarks on bones should be more precise and

easy to locate than landmarks on soft-tissues. However, one has to consider the specific type of

image data being used and, in fact, probably the simplest explanation of why soft-tissue land-

marks are so reproducible is in relation to how MRI works. As stated by Morooka et al.[35]:

“In biological tissues, MRI signals are generated by hydrogen atoms, with water and fat content

accounting for the majority of the signal. All soft-tissues and cancellous bone contain a large

fraction of water, so the magnetic susceptibility can be approximated by that of water. In con-

trast, cortical bone and air do not generate significant MRI signals. Nevertheless cortical bone

can distort magnetic fields in nearby tissues that do generate MRI signals, thereby resulting in

geometric distortion near these interfaces”. The operators in this study found that the soft-tis-

sue landmarks on MRIs have better visibility and are easier to locate and therefore may pro-

duce smaller errors and higher reproducibility, something that had already been shown, for

instance, on knee joint measurements by Wilcox et al.[16].

If soft-tissue landmarks on MRI are more precise in absolute terms and in terms of shape

data, why did they perform relatively worse for size than both bone landmarks and the total

configuration? Before answering this question, we want to stress again that, although one can

try to estimate absolute errors, the most important assessment is always relative. This means

that, within the methodological framework that will be used to analyze the data, measurement

error should be assessed for the specific measurements under study and in relation to sample

variance. For instance, in terms of absolute errors, glabella and soft nasion are two of the most

reliable landmarks; orbitale is also highly precise, while porion is not. Thus, one might expect
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measurements between precise landmarks to be less affected by error compared to distances

involving one or more unreliable landmarks. However, if we measured inter-landmark dis-

tances between glabella and the other three aforementioned points, ICC would tells us a differ-

ent story with glabella to nasion (ICC = 0.43) and glabella to orbitale (ICC = 0.72) faring much

worse than glabella to porion (ICC = 0.96). Why has this happened? Simply because, compared

to longer measurements such as glabella to porion, and regardless of absolute errors, short dis-

tances (and thus especially glabella to nasion) are typically much more strongly affected by

measurement error in relative terms. This effect, for which a small error is proportionally

more relevant as the distance being measured becomes smaller, has been known for a long

time, as nicely reviewed by Polly et al.[23].

If we go back to the question of why nasal size is less reliable, it should be clear that this is

mainly because the nose is small compared to the rest of the face, thus making errors in the

estimate of its size relatively more important. In contrast, the size of the landmark configura-

tion is largely irrelevant for shape data, because size is standardized and therefore Procrustes

shape data are scale free. However, as their errors are summed over the entire landmark con-

figuration, especially if sample variance is not particularly large, even small absolute errors can

become large, as happened in our study when we used all landmarks or just those on bones.

It should also be borne in mind that our main estimates of the magnitude of measurement

error are relative to total sample variance. Taking this into account, we might be able to suggest

another reason why reproducibility was higher in nasal shape. This is simply because the nose

soft-tissue may vary more among individuals compared to bones. Unfortunately, we cannot

assess if this is the case directly, as one cannot compare variance of different landmark configu-

rations[3]. However, we may get a hint to whether this explanation is reasonable by comparing

the range of variation within each configuration in relative terms. One approach for doing this

is to compute the ratio between the largest and smallest shape distances to the sample mean.

This is like expressing the range of a measurement in relative instead of absolute terms. If this

is done in our samples (replica or study sample), the largest distance for nasal shape can be up

to eight times larger than the smaller, whereas for the total and bone landmark configurations

the range is only two to four times. This difference in the relative range of variation is robust to

the presence of outliers (which may strongly influence estimates of ranges), as using trimmed

ranges that leaves out the 5% most extreme individuals within each set of data, the relative

range of shape distances for the nose is approximately four but it is just about two for the two

other configurations. Thus, regardless of the effect of extreme observations, the nose seems to

vary twice as much as the other landmarks.

Assessing measurement error in PGMM studies of MRIs

Despite more than two decades of applications of PGMM to MRI data, and a large number of

studies, most of the PGMM analyses in the literature did not explicitly mention whether mea-

surement error was assessed, and when it was done, often only absolute errors were reported

[17, 18]. For instance, Bookstein et al.[4] stated that average inter-operator differences in digi-

tized landmarks (averaging over 5 randomly selected subjects) ranged from 0.5 mm to 2.0 mm

for most landmarks, and thus they decided to have all landmarks digitized by a less experi-

enced operator reviewed by a more experienced one. By doing so, they presumably removed

the bias and obtained reliable landmarks for comparing groups. The magnitude of the absolute

differences they found is similar to the one we observed on average. This seems to suggest that

the amount of inter-operator bias we found is not atypical. However, absolute errors, although

informative, fail to relate the magnitude of measurement errors to that of the ‘real’ biological

variation being studied. Indeed, although they did not report how relative error was assessed,
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Bookstein et al.[4] concluded that, for semilandmarks in their study, error was “comparable to

the standard error of the better landmark points and . . . considerably smaller than the magni-

tude of the effects reported in the present analyses (reported in units of Procrustes distance,

not mm)”.

Gharaibeh et al.[36] also used MRIs to compare normal and diseased groups mostly to

explore whether time from the onset of schizophrenia produced significant changes in brain

morphology. They confirmed some specific localized differences related to schizophrenia,

which had been detected by the pioneering work of DeQuardo et al.[37], and suggested that

their work was consistent with previous research showing that brain plasticity in schizophrenic

patients is different than in normal individuals. However, the detailed protocol of Gharaibeh

et al.[36], which included randomization of MRIs to keep operators blind to information on

groups and to control for time effects in the digitization, did not include an assessment of mea-

surement error. Presumably, they assumed that, using a single operator, errors would be small

relative to sample variance and group differences, and the same assumption probably was

made in other PGMM MRI studies [38] that did not report measurement error. Although this

assumption may sound reasonable, one should test it at least in an appropriate subsample and

insure that the observed measurement error is representative of the main study.

Sometimes landmarks are placed on images by an algorithm instead of a human operator.

This may increase precision but could introduce large inaccuracies. For instance, Marečková

et al.[39], in a study on sex differences in human faces, used an automatic procedure to place

landmarks on 3D images reconstructed from MRIs. They computed absolute differences

between landmarks placed by the automatic procedure with those digitized manually on the

same image by an operator and reported differences ranging from about 1.6 mm to 1.1 cm.

They argued that the systematic error by the automatic procedure was more desirable than low

precision landmarks placed by a human operator. However, they did not relate either source

of error to sample variance and the effect size of the factor they were measuring, which inevita-

bly prevents the assessment of the effect of misplacing landmarks up to more than 1 cm from

where a human operator would have digitized them.

In contrast to most of the aforementioned studies, Weinberg et al.[40] and Barbeito-Andrés

et al.[7] provided estimates of reproducibility in a way which relate them to sample variance.

First, they reported ICC for landmark coordinates from repetitions of the digitizations. Wein-

berg et al.[40] computed ICC directly from raw landmark coordinates. In contrast, Barbeito-

Andrés et al.[7] did it using Procrustes shape coordinates. This second option seems more rea-

sonable, as, using raw coordinates, size and shape components of form have not been sepa-

rated and sample variance is inflated by (generally) biologically meaningless nuisance

parameters (i.e., translational and rotational differences).

In fact, despite being done after removing size and positional differences, even using Pro-

crustes shape coordinates for computing univariate ICCs for each of them, as in Barbeito-

Andrés et al.[7], is not the most desirable option. This is for two reasons: 1) the data are multi-

variate and the error should be assessed in terms of how it simultaneously affects all variables;

2) the Procrustes superimposition is a convenient but arbitrary choice, which precludes any

analysis of variation at specific landmarks [11, 41]. This second issue requires a brief clarifica-

tion of what we mean by “arbitrary choice”. Procrustes is simply a least square method to min-

imize positional differences after mean centering the data and standardizing size. It is not a

model of biological variation but it has been shown that, as long as all analyses and interpreta-

tions are considering simultaneously all landmarks, results are likely accurate[1]. To appreciate

why reporting ICC one coordinate at a time is undesirable one can use an intuitive 2D example

(as in Fig 9 of Viscosi & Cardini [11]. With 2D data, the Bookstein’s baseline superimposition

[42] offers an alternative method for registering the data, which is simpler, more intuitive and,
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for a reasonable choice of the baseline, as accurate as the Procrustes methods. Thus, after select-

ing two points, all individual configurations are rescaled, translated and rotated so that those

two points overlap. This removes positional and size differences and creates a new set of shape

coordinates. Now, if one decided to report ICC from replicas of data superimposed using Book-

stein’s baseline method, the two baseline points would have ICC of exactly one. This is not

because they have higher precision but simply because of an artifact due to the arbitrariness of

the superimposition. Although with Procrustes, being a least square method, differences are

spread over all landmarks in a configuration, so that none will have ICCs of exactly one, as in

the baseline example, the problem is the same: those univariate ICCs are, to a smaller or larger

extent, a by-product of the choice of the superimposition and are therefore unreliable.

However, Barbeito-Andrés et al.[7] also assessed measurement error in a correct and fully

multivariate fashion using the same ANOVA model as we did. These results were reported in

their paper and allowed to compute both R2 for the sum of squares and the multivariate ICC

for the symmetric component. This shows that both R2 and ICC are high for the symmetric

component of individual shape (respectively, 84% and 0.93). Measurement error accounts for

just 7% of variation. However, despite finding significance for fluctuating asymmetry, the mag-

nitude of fluctuating asymmetry is the same (7%) as measurement error, which suggests that

analyses at individual level will be fine whereas the interpretation of asymmetric patterns may

require great caution, as we stressed in the preliminary considerations. Indeed, that P values

may be less important than the size of the effect they are testing was also implicit in our own

analysis, which showed significantly larger individual variation in all ANOVAs despite inter-

operator differences accounting for up to 32% of sample variance.

Conclusions and recommendations

Our study shows that measurement error is crucial in PGMM studies using MRIs, and as

already stressed in a broader context[43], it must be done in a way which is specific to the type

of data and the set of methods being employed. For instance, the precision of raw landmark

coordinates, or their inter-landmark distances, does not guarantee a negligible error in the

Procrustes shape coordinates derived from those same points. Also, absolute error is much less

relevant than relative error, in which the importance of measurement error is assessed in rela-

tion to the amount of variation in the sample. Finally, and critically, consistently with findings

from other recent PGMM studies[14, 15], when data from different operators are used, inter-

operator differences must be quantified before one can decide whether it is appropriate or not

to merge them in a single dataset. As we showed, in this respect, size and shape may behave dif-

ferently and, again, as in the two recent studies we cited, different subsets of landmarks may be

more or less affected by measurement error. Indeed, by comparing landmarks on hard and

soft tissues we did find that errors were larger on bones, as expected in MRI data, but also

unexpectedly found that this only applied to shape and not size, a finding that we hope will

stimulate future studies of the same type in order to assess whether this is specific to our data-

set or a common pattern in MRI PGMM analyses of relatively small structures.

Likely, assessing measurement error, and especially inter-operator (and/or instrumental)

biases, will become more important as ’big data’ becomes more accessible. Data sharing via

online databases or journal webpages will also contribute to make more data available. Some-

times, however, as often in the case of data coming from different sources, one might not have

the information to assess error, which leaves open the question of whether the combined data-

set might be reliable. Alternatively, in a more optimistic scenario, if data to assess biases are

available, one could potentially quantify and try to control those errors, but, in order to do that

accurately, very large samples with replicas might be necessary.
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In conclusion, to summarize the main points on reproducibility in PGMM studies on MRI

data, we recommend the following:

1. Always test measurement error at least in a representative subsample before proceeding

with a bigger study. Although it cannot replace an accurate test of error using replicas,

exploring any suspicious pattern of group structure by plotting the data using different

symbols for different operators (or instruments etc.) may also provide interesting prelimi-

nary clues on potential problems with measurement error, as exemplified in Fig 6.

2. Whenever possible, try to include in the assessment all sources of errors (device and opera-

tor, intra- and inter-operator etc.) or at least the error source which is presumably larger.

3. Explore absolute errors to flag, and potentially exclude, unreliable landmarks while bearing

in mind that some of the conventional methods may be inappropriate for raw landmark

coordinates

4. Perform fully multivariate analyses for Procrustes shape data and, using superimposed

data, avoid analyses and interpretations of single coordinates or landmarks.

5. Relate measurement error to the magnitude of the effect being tested (as using R2 or ICC—

both of them multivariate in the case of shape data) and bear in mind that effect sizes might

be more important than P values.

6. If a larger configuration of landmarks is split into subsets (e.g., soft- vs hard-tissues; differ-

ent regions of the head or developmental modules etc.), measurement error should be re-

assessed in each subset.
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