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Abstract: An analysis of the confinement losses in photonic crystal
fibers due to the finite numbers of air holes is performed by means of
the finite element method. The high flexibility of the numerical method
allows to consider fibers with regular lattices, like the triangular and the
honeycomb ones, and circular holes, but also fibers with more compli-
cated cross sections like the cobweb fiber. Numerical results show that
by increasing the number of air hole rings the attenuation constant
decreases. This dependence is very strong for triangular and cobweb
fibers, whereas it is very weak for the honeycomb one.
c© 2002 Optical Society of America
OCIS codes: (060.2400) Fiber properties; (060.2280) Fiber design and fabbrica-
tion

References and links
1. T. P. White, R. C. McPhedram, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement

losses in microstructured optical fibers,” Opt. Lett. 26, 1660-1662 (2001).
2. V. Finazzi, T. M. Monro, and D. J. Richardson, “Confinement losses in highly nonlinear holey

optical fibers,” in Optical Fiber Communication 2002, vol. 70 of OSA Trends in Optics and
Photonics Series (Optical Society of America, Washington, D.C. 2002), paper ThS4.

3. K. Saitoh, and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based
on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron.
38, 927-933 (2002).

4. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Perturbation analysis of dispersion properties
in photonic crystal fibers through the finite element method,” J. Lightwave Technol. 20,(2002).

5. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analysis through the finite element
method,” IEEE Photon. Technol. Lett. 14, 1530-1532 2002.

6. S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical
waveguides with PML boundary conditions,” Opt. Quantum Electron. 33, 359-371 (2001).

7. J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth and P. St. Russell,
“Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett., 12, 807-809
(2000).

8. S. E. Barkou, J. Broeng, and A. Bjarklev, “Dispersion properties of photonic bandgap guiding
fibers,” in Optical Fiber Communication Conference , OSA Technical Digest (Optical Society of
America, Washington DC, 1998), FG5.

9. A. Ferrando, E. Silvestre, P.Andrés, J. J. Miret, and M. V. Andrés, “Designing the prop-
erties of dispersion-flattend photonic crystal fibers,” Opt. Express 9, 687-697 (2001).
http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-687

(C) 2002 OSA 18 November 2002 / Vol. 10,  No. 23 / OPTICS EXPRESS  1314
#1677 - $15.00 US Received September 23, 2002; Revised October 30, 2002

mailto:zoboli.maurizio@unimore.it
mailto:vincetti.luca@unimore.it
mailto:annamaria.cucinotta@unipr.it
mailto:stefano.selleri@unipr.it
http://www.dii.unimo.it
http://www.dii.unipr.it
http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-687


1 Introduction

Photonic crystal fibers (PCFs) guide the electromagnetic field by means of an arrange-
ment of air holes that run down the entire fiber length. In the holey fibers the air holes
reduce the average index around the solid core and the guidance can be ascribed to the
total internal reflection. Conversely in the photonic band gap fibers the average core
index could be lower than the average cladding index and the guidance is due to the
photonic band gap in the transverse direction. In both cases a lossless propagation is
possible only if the air hole arrangement is of infinite extent and, of course, if a lossless
material is used. In practice, a finite numbers of holes can be made and so the modes of
such fibers are leaky. Furthermore the material introduces losses due to absorption and
to Rayleigh scattering. If the latter cannot be eliminated, the former can be reduced
by means of a proper design. Thus a fiber can be seen as confinement lossless if the
field leakage is negligible with respect to the material losses. To investigate leaky modes
properties, in order to find guidelines for the design of lossless fibers, numerical models
with proper boundary conditions must be adopted. In fact, periodic boundary condi-
tions or perfect electric or magnetic conductor boundary conditions which usually are
employed in the numerical models affect the transverse Poynting vector flow of the nu-
merical solutions. Recently the multipole method has been proposed to investigate losses
in microstructured fibers [1]. This method, based on cylindrical function expansion, is
useful when the holes are circular and it has been successfully applied to investigate
confinement losses in fibers with a triangular lattice [1], [2]. The same kind of fiber has
been also investigated through the finite element method (FEM) based on the imaginary
distance technique and using perfectly matched layers (PML) as boundary conditions
[3]. The finite element method is a useful tool to analyze PCFs. It has been already suc-
cessfully applied to investigate dispersion properties of triangular and cobweb PCFs [4],
[5]. The fiber cross section representation is very accurate as the domain is divided into
sub-domains with triangular or quadrilateral shape where any refractive index profiles
can be properly represented. Unfortunately, the imaginary distance approach is time-
consuming as it calculates just one mode for each run through a iterative procedure [3].
A FEM formulation for modal analysis based on anisotropic perfectly matched layers
able to calculate as many modes as desired in a single run without setting any iterative
procedure has been recently presented and applied to the analysis of leaky modes in
antiresonant reflecting optical waveguides [6]. In this work this formulation is applied to
the analysis of the leakage properties of holey fibers with both circular and non-circular
holes as well as photonic band gap fibers. Triangular, honeycomb and cobweb PCFs
have been analyzed by changing number, size, and pitch of holes as well as the wave-
length. Despite their interesting applications, to authors’ knowledge, data about losses
in photonic band gap fibers as well as cobweb fibers has been not published yet. The
results show that with a proper design, fibers with confinement losses negligible with
respect to those due to the medium can be obtained for both triangular and cobweb
fibers. On the contrary it has been observed that honeycomb fiber exhibits high loss
also with cross section having many air holes.

2 The Finite Element Method Formulation

Both electric field and magnetic field based formulations can be developed. Here for the
sake of simplicity a magnetic field formulation is presented. The reader can find more
details in [6]. The formulation starts from the curl-curl equation obtained decoupling
the Maxwell equations:

∇× (ε−1
r ∇× h)− k2

0µrh = 0 (1)
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where h is the magnetic field, εr and µr are the relative dielectric permittivity and
magnetic permeability complex tensors, respectively, and k0 = 2π/λ the wave number
in the vacuum, λ being the wavelength. The magnetic field of the modal solution is
expressed as h = He−γz where H is the field distribution on the transverse plane and
γ = α+ jβ is the complex propagation constant with α the attenuation constant and β
the phase constant. By applying the variational finite element procedure, the full vector
equations (1) yields the algebraic problem [6]:

([A]− (
γ

k0
)2[B]){H} = 0

where the eigenvector {H} and the eigenvalue ( γ
k0
)2 provide, respectively, the full vec-

torial magnetic field distribution and the effective index of the mode. In the present
formulation triangular high order edge elements have been used. In order to enclose
the computational domain without affecting the numerical solution, anisotropic per-
fectly matched layers are placed before the outer boundary. This formulation is able
to deal with anisotropic material both in terms of dielectric permittivity and magnetic
permeability allowing anisotropic PMLs to be directly implemented. Furthermore fiber
symmetry can be used to reduce the computational domain and consequently both time
and memory required.

3 Results

3.1 Triangular fiber

The PCF first considered in the analysis consists of a triangular lattice of air holes.
An example of its cross section is reported in figure 1(a) in the case of four rings.
The different colors show different rings. Figure 1(b) shows the magnetic field main
component of one of the two polarizations of the fundamental mode. The fiber considered
consists of two rings of holes having diameter d = 0.69µm and pitch Λ = 2.3µm. Notice
that due to fiber symmetry just a quarter of the cross section can be considered for the
analysis. The hexagonal symmetry as well as the leakage due to the interruption of the
lattice are evident. The field confinement and its decay rate play a fundamental role in

�

d

(a) (b)

Fig. 1. (a): triangular fiber with four hole rings. The lines with different colors show
different rings: black first ring, red second one, yellow third one, and blue fourth
one. The dashed lines shows the quarter of the structure considered in the analysis.
(b): main component of the magnetic field for a fiber having two rings, d/Λ = 0.3
and Λ = 2.3µm.

the leakage properties. They depend on the hole diameter, on their pitch and on the
number of rings. Figure 2 shows the losses versus the diameter d normalized to the pitch

(C) 2002 OSA 18 November 2002 / Vol. 10,  No. 23 / OPTICS EXPRESS  1316
#1677 - $15.00 US Received September 23, 2002; Revised October 30, 2002



value Λ = 2.3µm. As expected, the losses quickly decrease by increasing the numbers
of rings and the hole diameter. Also the slope increases with these parameters. In fact,
with d = 0.69µm, that is d/Λ = 0.3, going from a ring to eight rings losses decrease
from 105dB/m to a value a little lower than 10dB/m. Notice that this corresponds to
pass from six to two hundred and sixteen holes. By increasing the hole diameter to
d = 0.92µm = 0.4Λ, the upper value of the range goes to 0.5 × 105dB/m, whereas the
lower value goes to 10−5 which is negligible with respect to all the other causes of losses,
like to absorption and the Rayleigh scattering. Figure 2(b) shows that a loss reduction
is also obtained by fixing the ratio d/Λ and by increasing the pitch Λ. The pitch and
the hole diameter are changed of the same scale factor, consequently greater pitches
correspond to greater core size and thus more confined fields. Specific dispersion profile
can be obtained playing on ratio d/Λ and on the scale factor [9]. Thus, the dependence
on these parameters is very important to design fibers with a good trade-off between the
dispersion and loss properties. In this frame, another important aspect to investigate
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Fig. 2. (a): confinement loss as a function of hole diameter d normalized to pitch
Λ = 2.3µm for different numbers of rings. (b): confinement loss as a function of
pitch Λ for different ratios d/Λ. In both cases a wavelength λ = 1.55µm is assumed

is the wavelength dependence. Figure 3 shows the results of this analysis. As expected,
the losses increase with the wavelength because the field confinement decreases. The
numbers of rings still affects this dependence. For few rings the dependence is weak,
whereas for many rings it becomes stronger. Passing from 1300nm to 1700nm with one
ring, the losses are almost wavelength-independent, conversely, with five rings, the losses
increase of about two orders of magnitude. This variation decreases of one order going
from a pitch Λ = 2.3µm to a pitch Λ = 4.6µm. In fact greater pitches correspond to
larger cores and thus more confined fields. As a consequence, a wavelength increment
corresponds to a little increment of the confinement with a little reduction of the losses.

3.2 Honeycomb fiber

It is very interesting also to investigate the loss phenomena in fibers where guiding can
be ascribed to photonic band gap as, for example, the honeycomb fibers. The cross
section of the honeycomb fiber considered in the analysis is reported in figure 4(a). The
defect consists on a extra hole with the same diameter as that of the lattice holes. The
holes belonging to different rings are highlighted with different colors. Notice that in
this kind of fiber the number of holes increases with the number of rings more quickly
than in the triangular one. Passing from two to three rings in a triangular fiber the
numbers of holes pass from eighteen to thirty-six while in a honeycomb they pass from
fifty-four to ninety-six. However, due to the lower air filling factor, that is the ratio
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Fig. 3. Confinement loss as a function of the wavelength λ for different numbers of
rings and d/Λ = 0.5. (a) Λ = 2.3µm; (b) Λ = 4.6µm
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Fig. 4. (a): honeycomb fiber with three hole rings. The circles with different colors
show different rings: red first ring and black second one. The dashed lines shows the
quarter of the structure considered in the analysis. (b): fundamental mode profile of
a honeycomb fiber having three rings and d/Λ = 0.41 at the wavelength λ = 1.55µm.

between the areas of the air holes and the unitary cell, the mode is less confined as
shown in figure 4(b). This causes higher losses and above all a weaker dependence on
the number of rings. Figure 5(a) shows this aspect. Comparing the results of figure 5 and
2, for few rings, the losses are a little bit higher than those of the triangular fiber, but by
increasing the rings the difference grows reaching six orders of magnitude for eight rings.
As a consequence in the considered fibers, the losses are always higher than 10dB/m.
The figure also shows another important difference with respect to the triangular fiber.
Higher ratios d/Λ exhibit lower losses only up to six rings, after that the losses slightly
increase. This can be ascribed to the fiber guidance mechanism. In fact the lattice of
the fiber determines a truly photonic band gap only if the number of rings is very high.
Also the wavelength dependence, shown in figure 5(b), is weaker than in the triangular
one. It slightly increases with ring numbers and it reaches a order of magnitude with
nine rings, over the wavelength range here considered.

3.3 Cobweb fiber

Finally the cobweb fiber is considered. This fiber is very interesting for its small effective
area [7] and very high negative dispersion [5]. It consists of a aperiodic arrangement of
non-circular air holes. Figure 6(a) shows the cross section of two cobweb fibers having
one and three rings, respectively at the top and at the bottom. The thickness of the silica
bridges which separate the holes is about 120nm. This low value combined with very
large holes assures very low losses as showed in figure 6(b). The wavelength dependence
is stronger than in the previous fibers and it increases by increasing the number of rings.
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Fig. 5. (a): confinement loss as a function of numbers of rings at the wavelength
λ = 1.55µm and for d/Λ = 0.41 red line and for d/Λ = 0.55 green line. (b):
confinement loss as a function of the wavelength λ for different numbers of rings
and d/Λ = 0.41. In both cases Λ = 1.62µm is assumed.
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Fig. 6. (a): cross sections of the cobweb fiber with one (top) and three (bottom) rings.
(b): confinement loss as a function of the wavelength for different ring numbers.

For two rings, passing from 1300nm to 1700nm of wavelength, the losses change of six
orders of magnitude. However, for all wavelengths here considered, with just three rings
the losses are lower than 10−5dB/m. The losses are due mainly to the field which passes
through the silica bridges.

4 Conclusion

In this work confinement losses in PCFs have been analyzed through a modal solver
based on the finite element method. Three kinds of PCFs have been considered. PCFs
with triangular lattice and the cobweb fiber show a strong dependence of the confinement
losses on the number of rings, especially for high air filling factor. This allows to obtain
fibers with confinement losses negligible with respect to those given by the medium. Also,
by increasing the pitch the losses decrease. Conversely confinement losses in honeycomb
fibers exhibit a weaker dependence on the number of rings and the air filling factor.
However for this fiber and for the considered number of rings, the losses are always
higher than 10dB/m, values which could affect their applications. Several aspects, like
the role of the bridge thickness in the cobweb fibers, the dimension of the central defect
in honeycomb fibers or the influence of the confinement losses on dispersion parameters,
must be still investigated and will be the object of future works.
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