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Motivated by the unexpected appearance of shear
horizontal Rayleigh surface waves, we investigate
the mechanics of antiplane wave reflection and
propagation in couple stress (CS) elastic materials.
Surface waves arise by mode conversion at a
free surface, whereby bulk travelling waves trigger
inhomogeneous modes. Indeed, Rayleigh waves are
perturbations of the travelling mode and stem from its
reflection at grazing incidence. As well known, they
correspond to the real zeros of the Rayleigh function.
Interestingly, we show that the same generating
mechanism sustains a new inhomogeneous wave,
corresponding to a purely imaginary zero of the
Rayleigh function. This wave emerges from "reflection"
of a bulk standing mode: This produces a new type of
Rayleigh-like wave that travels away from, as opposed
to along, the free surface, with a speed lower than
that of bulk shear waves. Besides, a third zero of
the Rayleigh function may exist, which represents
waves attenuating/exploding both along and away
from the surface. Since none of these zeros correspond
to leaky waves, a new classification of the Rayleigh
zeros is proposed. Furthermore, we extend to CS
elasticity Mindlin’s boundary conditions, by which
partial waves are identified, whose interference lends
Rayleigh-Lamb guided waves. Finally, asymptotic
analysis in the thin-plate limit provides equivalent 1-D
models.

© The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.
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1. Introduction
The discovery of surface waves by Lord Rayleigh [1] revealed that bulk waves may interact with1

a free surface to produce a substantially different type of wave, that still propagates along the2

surface and yet it decays exponentially in the interior. The recognition of surface waves came3

timely, for it explained the large vertical tremors (ground roll) that could be clearly identified4

in those early days of seismogram recording. Yet, as pointed out in [2], large low-frequency5

horizontal vibrations, similar in nature to Rayleigh waves, appear in seismograms, which can6

be only explained, within the classical theory, assuming a layered (inhomogeneous) structure for7

the earth. Indeed, [3] shows “how the layering in the earth affects surface waves far more strongly8

than it does body waves” [2, §2.9]. Consequently, one is led to understand that horizontally9

and vertically polarized surface waves are fundamentally different in nature, for the former are10

an outcome of the double boundary, while the latter are embedded in the mechanics of wave11

reflection at a surface [4].12

Although this might well be the situation in classical elasticity (CE), the recent discovery13

that antiplane surface waves are supported by the indeterminate couple stress (alias constrained14

micropolar) theory suggests that horizontally polarized surface waves may also be incorporated15

in the theory of surface reflection [5,6]. Immediately, the question arises with regard to what16

specific feature of the theory is required for that to be the case. In fact, shear horizontal surface17

acoustic waves are also retrieved in the context of the complete Toupin-Mindlin gradient theory,18

that involves 5 microstructural parameters, although they are no longer supported by the19

simplified version of gradient isotropic elasticity [4]. In [7], the appearance of SH surface waves is20

interpreted as a general perturbation (relaxation) of the CE boundary conditions, which binds21

“otherwise essentially skimming bulk SH waves to the limiting surface”. To the same effect,22

several approaches are possible: from material inhomogeneity to surface periodicity (grating),23

from multiple interfaces (layering) to magneto-elastic coupling. A combination of the above24

is considered in [8], dealing with piezoacoustic (Bleustein–Gulyaev) SH surface waves in a25

functionally graded material (FGM).26

This notwithstanding, no study appears in the literature investigating the mechanics of surface27

reflection in the presence of SH surface waves, in an attempt to single out the characteristic28

feature that triggers their appearance. This analysis is most easily carried out in the context of the29

indeterminate couple stress (CS) theory, that is perhaps the simplest strain-gradient theory [9–11].30

Indeed, for isotropic materials, it introduces, alongside the classical Lamé moduli, two extra31

elastic constants, which incorporate the role of the microstructure, for a total of four material32

parameters. In the case of antiplane motion, only three of these really matter, plus the possible33

contribution of rotational inertia. In contrast to CE, this theory is no longer self-similar and34

therefore it successfully predicts some important observable phenomena, such as dispersion of35

bulk and surface waves [6,12] and size effects [13,14].36

A number of contributions have appeared in the literature investigating wave propagation37

in CS materials. In their pioneering work [15], Graff and Pao consider wave reflection and38

propagation in the sagittal plane (i.e. plane-strain) of an isotropic CS half-space, in the absence39

of rotational inertia. In particular, study of mode conversion at a free surface “is found to be more40

complicated because of the existence of three types of waves”. Even greater complexity is recently41

encountered in [16], dealing with wave reflection in the context of plane-strain propagation within42

gradient isotropic elasticity. Indeed, although the simplified version of the theory is considered,43

four different waves are triggered upon reflection. In [17], sagittal guided wave propagation in44

a plate (Rayleigh-Lamb waves) made of isotropic CS material is investigated, in the absence of45

rotational inertia, and dispersion relations are obtained. Very recently, dispersion of Rayleigh-46

Lamb waves within three CS theories, including indeterminate CS, was analysed in [18]. [12]47

studies propagation of Rayleigh waves in the sagittal plane for CS materials in the absence of48

rotational inertia. A similarity between Rayleigh wave dispersion in CS materials and in lattice49

structures is pointed out in [19]. Steady-state mode III fracture propagation is considered in [20],50
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Figure 1: Wave propagation in a homogeneous plate of couple stress elastic material

which extends the results already obtained in [13] for statics and shows the dispersion diagram of51

bulk SH waves. Scattering of antiplane shear waves at the interface of a cylindrical nano-fibre in52

CS materials is investigated by [21]. Diffraction of waves originating from time harmonic loading53

of a semi-infinite crack is discussed in [6].54

In this paper, we extend the work of Graff and Pao to antiplane waves and upon this we55

develop the theory of surface and Rayleigh-Lamb antiplane waves in CS materials. With respect56

to the original work of Graff and Pao, the mechanical framework is simpler and thus we can57

develop full analytical insight. Besides, the important role of microstructure inertia is assessed.58

In the process, we discover analogies and differences with sagittal plane propagation in CE. In59

particular, a standing horizontally polarized bulk wave, associated to a purely imaginary branch-60

point in the Rayleigh function, takes the place of the familiar longitudinal P-wave in sagittal plane61

propagation of CE (Sec.3). Still, its role is essential in coupling with the bulk travelling SH-wave62

at the free surface to produce the antiplane surface wave, much like P and SV waves couple in CE63

to produce Rayleigh waves (Sec.3(b)). Indeed, Rayleigh waves arise in CE at grazing incidence,64

beyond the critical angle that is attached to reflected P waves being converted into surface waves.65

Such surface waves are precisely the form in which standing bulk waves appear at the free surface66

of CS materials. Interestingly, we investigate a novel type of "reflection" that involves standing67

waves and leads to a new Rayleigh-like wave, propagating in the interior of the material and68

exponentially exploding/decaying along the surface (Sec.3(c)). Clearly, this wave cannot exist69

on an infinite surface. However, it is precisely this wave, associated with a purely imaginary70

zero of the Rayleigh function, that is found in [6] radiating from the tip of a semi-infinite crack.71

Guided propagation in a plate is investigated in Sec.4, where reduced 1-D models for beams with72

microstructure are also obtained.73

2. Antiplane couple stress elasticity74

Let us consider a Cartesian co-ordinate system (O, x1, x2, x3) and a thin plate B0 = {(x1, x2, x3) :75

−h< x2 <h} made of isotropic elastic couple stress (CS) material, Fig.1. This is a polar material,76

for which, alongside the classical Cauchy stress tensor t, we define the couple stress tensor µ77

such that, for any surface of unit normal n, it determines the internal reduced couple vector78

q=µn acting across that surface. It is expedient to decompose the Cauchy stress tensor t into its79

symmetric and skew-symmetric parts, respectively σ and τ ,80

t=σ + τ , σ= Sym t, τ = Skw t. (2.1)

In addition, the couple stress tensor µ is split into its deviatoric and spherical parts81

µ=µD + µS , µS = 1
3 (µ · 1)1, (2.2)

where 1 is the identity tensor and · denotes the scalar product, i.e. componentwiseA ·B =AijBij82

and Einstein’s summation convention on twice repeated subscripts is assumed. According to the83

principle of virtual work [11,12], one has84

W =

∫
B

(
σ · gradT u+ µ · gradT ϕ

)
dV, (2.3)

where u and ϕ are, respectively, the displacement and micro-rotation vector fields, while the85

superscript T denotes the transposed tensor. Unlike Cosserat micro-polar theories, for which86
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displacements and micro-rotations are independent fields, CS theory relates one to the other,87

through [11, Eqs.(4.9)]88

ϕ= 1
2 curlu. (2.4)

Component-wise, this is ϕi = 1
2Eijkuk,j , where E is the rank-3 alternator tensor. Hereinafter,89

a subscript comma denotes partial differentiation, e.g. (gradu)kj = uk,j = ∂uk/∂xj . Thus, we90

speak of latent micro-structure, for micro-rotations are induced by the displacement field. As in91

CE, we define the linear strain tensor92

ε= Sym gradu (2.5)

and thereby observe that, according to (2.3), σ is work-conjugated to ε. Further, we introduce the93

torsion-flexure (wryness) tensor94

χ= gradϕ, (2.6)

that, in light of the connection (2.4), is purely deviatoric, i.e. χ=χD . Consequently, to any effect,95

µ may be replaced by µD in Eq.(2.3). Indeed, the CS theory is named indeterminate after the96

observation that the first invariant of the couple stress tensor, i.e. tr µ=µ · 1 = µ11 + µ22 + µ33,97

rests indeterminate and therefore it may be set equal to zero without loss of generality. Therefore,98

µ collapses on µD and it is work conjugated with χT [11, Eq.(2.22)]. For the sake of brevity, in the99

following we shall write µ, with the understanding that µD is meant.100

Within the framework of hyperelastic materials, the total strain ε and the torsion-flexure χ are
connected to the stress and to the couple stress through the constitutive relations [21, Eq.(12)]

σ=
∂U

∂ε
, µ=

∂U

∂χ
,

where U =U(ε,χ) is the stored energy potential. At leading order for small deformations of an101

isotropic material, we get [11, Eqs.(4.7)]102

σ= 2Gε+ Λ(tr ε)1, µ= 2G`2
(
χT + ηχ

)
(2.7)

whereΛ andG> 0 take up the role of Lamé moduli, ` > 0 is a characteristic length and−1< η < 1103

is a dimensionless number similar to Poisson’s ratio. The material parameters ` and η depend on104

the microstructure and can be connected to the material characteristic length in bending, `b, and105

in torsion, `t, through106

`b = `/
√

2, `t = `
√

1 + η. (2.8)

Values of `b and `t may be found in [22,23] and, as an example, for polyurethane foam we have107

`= 0.462 mm, η= 0.797

The limiting value η=−1 corresponds to a vanishing characteristic length in torsion, which is108

typical of polycrystalline metals. Clearly, the definitions (2.8) show that `t = `b for η=− 1
2 and109

`t = `=
√

2`b for η= 0, the latter situation being the strain gradient effect considered in [24]. For110

the limiting value η = 1, the constitutive equation (2.7) provides a symmetric couple stress tensor111

and, consequently, the present theory reduces to the modified couple stress theory of elasticity112

introduced in [25]. Indeed, the modified couple stress theory involves only the material length `,113

in consideration of the restriction `b = `t/2 = `/
√

2.114

The equations of motion read, in the absence of body forces,

div t= ρü, (2.9a)

axial τ + divµ= Jϕ̈, (2.9b)

where % is the mass density and J ≥ 0 is rotational inertia and a superposed dot denotes time115

differentiation. Here, (axial τ )i = Eijkτkj denotes the axial vector attached to a skew-symmetric116
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tensor. Eq.(2.9b) may be solved for τ117

τ = 1
2E (divµ− Jϕ̈) , (2.10)

whence the skew-symmetric part of the total stress tensor t is determined by rotational118

equilibrium. Clearly, CE is retrieved taking `= 0 and J = 0, for then µ= τ = o by Eqs.(2.7) and119

(2.10). As nicely discussed in [12,16], Eq.(2.10) is generally not objective, in the sense that, owing120

to the acceleration term, it does not fulfil the requirement of frame indifference. However, for121

time-harmonic motion, this issue is of no concern [21].122

Under antiplane shear deformations, the displacement field u= (u1, u2, u3) is completely
defined by the out-of-plane component u3 = u3(x1, x2, x3, t). The non-zero components of the
micro-rotation vector, of the strain and of the flexure-torsion tensor become

ε13 = 1
2u3,1, ε23 = 1

2u3,2, (2.11a)

ϕ1 = 1
2u3,2, ϕ2 =− 1

2u3,1, (2.11b)

χ11 =−χ22 = 1
2u3,12, χ21 =− 1

2u3,11, χ12 = 1
2u3,22. (2.11c)

Consequently, Eqs.(2.9) now read [11, Eqs.(2.7) and (2.9)]

σ13,1 + σ23,2 + τ13,1 + τ23,2 = ρü3, (2.12a)

µ11,1 + µ21,2 + 2τ23 = Jϕ̈1, (2.12b)

µ12,1 + µ22,2 − 2τ13 = Jϕ̈2. (2.12c)

The constitutive equations (2.7), in light of the definitions (2.5,2.6) and with the help of the
kinematic relations (2.11), give stress and couple stress in terms of displacement [6]

σ13 =Gu3,1, σ23 =Gu3,2, (2.13a)

µ11 =−µ22 =G`2(1 + η)u3,12, µ21 =G`2(u3,22 − ηu3,11), (2.13b)

µ12 =−G`2(u3,11 − ηu3,22). (2.13c)

We observe that the contribution of Λ is immaterial for antiplane deformations, cf. [24, Eqs.(8-9)].123

Besides, introducing Eqs.(2.11b,2.13) into (2.10) yields124

τ13 =− 1
2G`

24̂u3,1 +
J

4
ü3,1, τ23 =− 1

2G`
24̂u3,2 +

J

4
ü3,2, (2.14)

which correspond to Eqs.(9) of [20]. Here, 4̂ denotes the 2-D Laplace operator in the x1, x2 co-125

ordinates. Plugging Eqs.(2.13a) and (2.14) into (2.12a) gives, for a homogeneous material,126

G
(
1
2 `

24̂4̂u3 − 4̂u3
)
− J

4
4̂ü3 + ρü3 = 0. (2.15)

In the static case and in the absence of rotational inertia, we retrieve Eq.(18) of [26] and Eq.(11)127

of [24].128

At any point of a smooth surface we may specify the reduced force traction vector p and the129

tangential part of the couple stress traction vector q [11, Eqs.(3.5-6)]130

p= tTn+ 1
2 gradµnn × n, q=µTn− µnnn, (2.16)

where we have µnn =n · µn= q · n. The reason why only the tangential part of q may be131

enforced is discussed in [11] and [12]. In particular, at the bottom/top plate face x2 =∓h, it132

is n=±(0, 1, 0) and, according to Eqs.(2.16), the out-of-plane component of the reduced force133

traction and the in-plane components of the couple stress traction read, respectively,134

p3 =±
(
t23 + 1

2µ22,1
)
, q1 =±µ21, q2 = 0. (2.17)
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3. Time-harmonic solutions135

We introduce the reference length Θ` and the reference time T = `/cs by which we define the136

dimensionless co-ordinates (ξ1, ξ2, ξ3) = (Θ`)−1(x1, x2, x3) and the dimensionless time τ = t/T .137

Here, cs =
√
G/ρ is the shear wave speed of classical elastic media and Θ is a convenient scaling138

parameter to be defined in the following. Besides, we let the dimensionless plate half-thickness139

H = h/`. With these definitions, the equilibrium equation (2.15) becomes140

44u3 − 2Θ24u3 + 2Θ4
(
`20
Θ2
4u3,ττ − u3,ττ

)
= 0, (3.1)

where4 is the 2-D Laplace operator in ξ1 and ξ2 and we have let the dimensionless parameter [20]141

`0 =
`d
`
, with `d = 1

2

√
J

ρ
.

We observe that `d is proportional to the dynamic characteristic length, ld = 2
√

6`d, introduced142

in [21].143

Under the time-harmonic assumption and considering straight-crested waves in the sagittal144

plane (ξ1, ξ2), we let145

u3 =W (ξ1, ξ2) exp(−ıΩτ),

independent of ξ3. Here, ı is the imaginary unit and Ω = ωT > 0 the dimensionless (time)146

frequency. Then, Eq.(3.1) yields the bi-harmonic PDE [19, Eq.(19)] for the function W :147 [
44− 2

(
1− `20Ω2

)
Θ24− 2Ω2Θ4

]
W = 0. (3.2)

This homogeneous equation may be easily factored out148 (
4+ δ2

)
(4− 1)W = 0, (3.3)

provided that Θ is chosen as to satisfy the bi-quadratic equation

2Ω2Θ4 + 2(1− `20Ω2)Θ2 − 1 = 0.

We select the positive root149

Θ2 =

√
(1− `20Ω2)2 + 2Ω2 − 1 + `20Ω

2

2Ω2
(3.4)

and observe that Θ is frequency dependent (Fig.2). Indeed, it is a strictly monotonic increasing150

(decreasing) function of Ω, inasmuch as `0 ≷ `0cr ≡ 1/
√

2, that starts from `0cr at Ω = 0 and151

asymptotes to Θ= `0 for Ω→+∞. In fact, the special case `0 = `0cr gives the constant behaviour152

Θ≡ `0cr . In any case,Θ is a bounded function of Ω. By Vieta’s formulas applied to (3.2) and (3.3),153

we have the connection154

δ= 2δcrΘ
2, with δcr = `0crΩ, (3.5)

whence, by Eq.(3.4), we get155

δ=
1

2δcr

[√
(1− `20Ω2)2 + 2Ω2 − 1 + `20Ω

2
]
. (3.6)

In the special case `0 = `0cr , it is δ= δcr , that is linear in Ω. Fig.2 plots Θ and δ in terms of the156

dimensionless frequency Ω. We have the asymptotic behaviour for large Ω157

δ∼

{
2`20δcr, `0 6= 0,

1, `0 = 0,
+O(Ω−1), as Ω→∞, (3.7)

and for small Ω158

δ∼ δcr, as Ω→ 0+. (3.8)
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Figure 2: Rescaling parameter Θ (left) and bulk SH wavenumber δ (right) vs. Ω at `0 = 0 (black,
solid), `0cr (red, dotted) and 1 (blue, dashed)

For guided waves propagating along the plate, we have159

W (ξ1, ξ2) = `w(ξ2) exp (ıκξ1) ,

where K = k` denotes the dimensionless (spatial) wavenumber in the propagation direction ξ1
and we let the shorthand κ=ΘK. Letting V =Ω/K, the dimensionless phase speed along ξ1, we
get that

c= ω/k= V cs,

is the dimensional phase speed in the propagation direction. Similarly, we take

p3(ξ1, ξ2, ξ3, τ) =Gt(ξ2) exp ı (κξ1 −Ωτ) ,

q1(ξ1, ξ2, ξ3, τ) =G`m(ξ2) exp ı (κξ1 −Ωτ) .

The general solution of Eq.(3.3) is given by160

w(ξ2) = cosh (λ1ξ2) e1 + cosh (λ2ξ2) e2 + λ−11 sinh (λ1ξ2) o1 + λ−12 sinh (λ2ξ2) o2 (3.9)

where the wavenumbers in the thickness direction ξ2 are ıλ1,2, with161

λ1 =
√
κ2 − δ2, λ2 =

√
κ2 + 1. (3.10)

Branch cuts are taken as to warrant a positive real part for the square root on the real axis, see [6].162

The solution (3.9) produces plane bulk waves upon looking for the roots of λ1,2 = 0. In fact,163

according to this definition of bulk waves, the wavenumber κ is a branch-point of the Rayleigh164

function and, therefore, a multiple root (here a double root) of the characteristic equation.165

Consequently, the general form of a bulk wave is given by superposition of a homogeneous with166

an inhomogeneous mode, with linearly varying amplitude. The real solution κ= δ corresponds167

to SH travelling waves moving with phase speed168

VSH =
ΩΘ

δ
=

1√
2Θ

=

√
δcr
δ
. (3.11)

The purely imaginary solution κ= ı corresponds to a bulk evanescent mode. We name evanescent169

any harmonic solution (mode) whose wave vector has complex-valued components, as opposed170

to travelling modes for which the wave vector is real. Inhomogeneous waves that possess an171

exponentially varying amplitude are special evanescent modes; in the context of guided wave172

propagation they go under the name of surface waves [27, §7].173
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The plate is subjected to free surface conditions174

p3(ξ1,±Θ−1H, ξ3, τ) = 0, q1(ξ1,±Θ−1H, ξ3, τ) = 0. (3.12)

Using Eqs.(2.1,2.13, 2.14) into Eqs.(2.17), the free boundary conditions (3.12) give

(1− δ2)w′ −
[
−(2 + η)κ2w + w′′

]′
= 0, (3.13a)

w′′ + κ2ηw= 0, (3.13b)

where prime denotes differentiation with respect to the co-ordinate ξ2.175

(a) Extending Mindlin’s mixed conditions to antiplane CS176

As well known, in CE, Rayleigh-Lamb (RL) dispersion curves emerge from interference of177

fundamental waves, named partial (or resonant) waves, that are obtained imposing suitable178

boundary conditions [28–30]. For isotropic (transversely isotropic in general) materials, such179

conditions decouple into sagittal plane (plane-strain) and out-of-plane (antiplane) propagation180

[28].181

In plane-strain propagation, the boundary conditions required to single out partial waves were182

first illustrated by [31] and are either the "lubricated rigid wall" conditions183

u2 = 0, σ12 = 0, (3.14)

or the "flexible micro-chain" conditions184

u1 = 0, σ22 = 0. (3.15)

Mindlin’s conditions produce a pair of partial waves, named longitudinal (P) and shear vertical185

(SV) partial waves, which travel across the plate thickness with an even or an odd integral number186

of half wavelengths (transverse resonance). Their name stem from the observation that the Short-187

Wave High-Frequency (SWHF) limiting behaviour of P and SV partial waves asymptotes to188

longitudinal and shear bulk waves, respectively. Even P and even SV partial waves combine to189

give symmetric RL waves, while interference of odd P and odd SV waves gives antisymmetric190

(flexural) RL waves. Since no corresponding P partial wave exists in the region V < 1, symmetric191

and antisymmetric branches of the RL spectrum are guided, in the SWHF limit, by even and odd192

SV waves, respectively, the exception being the first branch which asymptotes to the Rayleigh193

wave speed.194

When considering the motion out of the sagittal plane (antiplane motion), Mindlin’s conditions195

are simply196

σ23 = 0, (3.16)

and only one family of shear horizontal (SH or antiplane) partial wave exists in CE, with even197

and odd behaviour. As a consequence, no interference may occur and SH partial waves coincide198

with the corresponding antiplane guided RL waves. Furthermore, no Rayleigh wave speed is199

supported.200

In the case of antiplane couple stress elasticity, the picture becomes more involved. We now201

prove that the generalization of Mindlin’s boundary conditions (3.16) for antiplane motion in CS202

is either203

w=m= 0, (3.17)

or204

w′ = t= 0. (3.18)

A graphical representation of such boundary conditions is given in Fig.3.205
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Figure 3: Sketch of the constraining conditions for the extended Mindlin’s boundary conditions
in the (x2, x3)-plane: (a) as in Eqs.(3.17), (b) as in Eqs.(3.18)

Figure 4: Travelling bulk shear plane wave B1, impinging on a free surface with the angle α1 to
the surface normal, and generating a reflected travelling bulk shear wave B2 plus a surface wave
B4

(b) Wave reflection and mode conversion206

The presence of a bulk evanescent wave gives rise to an interesting phenomenon of mode
conversion between travelling waves and evanescent modes which has no parallel in CE. To see
this, we consider a travelling wave impinging on either plate surface, say the top surface, at an
incident angle α1 with respect to ξ2, in the presence of an evanescent mode travelling along ξ1,

W (ξ1, ξ2) =B1 exp ı [δ(sinα1ξ1 + cosα1ξ2)] +B2 exp ı [δ(sinα2ξ1 − cosα2ξ2)]

+B4 exp ı

[
δ sinα1ξ1 ± ı

√
1 + (δ sinα1)2 ξ2

]
. (3.19)

Here,B1 is the amplitude of the impinging wave,B2 the amplitude of the reflected wave forming207

an angle α2 with ξ2 and B4 is the amplitude of the evanescent mode, see Fig.4. In particular, the208

evanescent mode is so constructed that (a) it possesses the same wavenumber along ξ1 as the209

impinging wave and (b) the wave vector has norm squared−1, i.e. it is indeed evanescent. Clearly,210

this evanescent mode is a surface wave. Such wave system satisfies the governing equation (3.3).211

We observe that, if reflection at the surface of an half-plane is considered, then wave212

propagation occurs in ξ2 ≤ 0 and only the minus sign has to be taken in (3.19) to warrant213

depthwise decay (on account of the definition for the square root). In fact, if we reversed the214

direction of ξ2, we would also need to change the sign of the ξ2-component of the wave vector for215

the impinging wave and results would turn out the same. When, however, a plate is considered,216

both signs can be retained, i.e. two evanescent modes are triggered. This non-uniqueness of the217

reflection occurs also in CE for P-waves at grazing incidence [32, §3.1.4.5].218
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Imposing the first set of generalized Mindlin’s boundary conditions, Eqs.(3.17), we find that219

α1 = α2 = α, (3.20)

and, as expected, no mode conversion occurs for

B2 =−B1, B4 = 0.

Indeed, this is a case of total reflection with π phase shift. This is at variance with respect to the220

behaviour of SH waves in CE, which reflect unaltered. In fact, this reflection scenario corresponds221

to that of P and SV waves hitting an in-plane constrained boundary, see [32, §3.1.1.2]. This result222

confirms that indeed (3.17) extends Mindlin’s mixed boundary condition to CS elasticity.223

Similarly, imposing the second set of Mindlin’s boundary conditions, Eqs.(3.18), we find again
(3.20) and the wave reflects in its likeness (i.e. no phase shift) with no mode conversion

B2 =B1, B4 = 0.

This result corresponds to mode conservation of SH waves in CE, see [32, §3.2.1].224

Moving now to the free surface conditions (3.12), we get a system of equations depending225

on the sign in (3.19) for the evanescent wave. Accounting again for (3.20), this system gives the226

displacement reflection coefficients227

B2/B1 =− exp(2ıθ2), B4/B1 =Φ4 exp(−ıθ4), (3.21)

with
θ2 =± arctan(b2/a2), Φ4 =

c4
|∆| , tan θ4 = cot θ2,

being

a2 =
√

2δ3
√

2 + δ2(1− cos 2α1) [(η + 1) cos (2α1)− η + 1]2 ,

b2 = 2 cosα1

[
δ2(η + 1) (1− cos 2α1) + 2

]2
,

c4 = 4δ2 cosα1 [(η + 1) cos (2α1)− η + 1]
[
δ2(η + 1)(1− cos 2α1) + 2

]
.

Here, ∆= a2 − ıb2 is the determinant of the system (3.13) and |∆|=
√
a22 + b22 its norm, that is228

always positive. Hence, we see that this is a case of total reflection, whereby the incident wave229

reflects with equal (in absolute term) amplitude and phase shift 2θ2 + π. At the same time,230

an evanescent wave is triggered with reflection coefficient Φ4 and phase shift θ4 = π/2− θ2,231

see Fig.5. A similar, but not equivalent, condition occurs in CE for the reflection of SV waves232

beyond the critical angle of incidence, with the P wave turning into a surface wave with complex233

amplitude [32, §3.1.4.5].234

Reflection coefficients (3.21) are plotted in Fig.5. We observe that the reflection coefficient235

B4/B1 is generally complex, which means that phase change occurs upon reflection into236

evanescent modes. The occurrence of complex reflection coefficients in CE is connected to the237

incidence of SV waves taking place beyond the critical angle, which determines complex reflection238

angles for P waves [32, §3.1.2.2].239

In light of (3.21), total mode conversion from travelling to evanescent modes is impossible,240

which result is expected in consideration of the fact that surface waves carry negligible energy241

compared to plane waves. Furthermore, total reflection generally triggers evanescent modes, with242

the notable exception of the critical incidence angle α0 ≥ π/4243

cos (2α0) = 1− 2

1 + η
, (3.22)

that exists provided that η≥ 0. For η� 1, we have the expansion244

α0 = 1
2π −

√
η +

η3/2

3
+ . . . (3.23)
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Figure 5: Real (solid, black) and imaginary part (dashed, red) of the reflection coefficients B2/B1

and B4/B1, phase angle θ2 and amplitude ratio Φ4 for an incident travelling wave, as a function
of the angle of incidence α1 (δ= 0.5, η= 0.1). Total reflection, in the absence of mode conversion
(i.e. B4 = 0), is obtained at α1 = 1.26452≈ 5π/12, according to Eq.(3.22). Here, minus has been
chosen in (3.19), the case of plus being obtained by reversing the sign of the imaginary part of B2

and B4.

Figure 6: Critical angle for total reflection in the absence of mode conversion as a function of η
(black, solid), alongside the two- (red, dashed) and three-term (blue, dotted) expansions

that is shown in Fig.6 alongside the exact curve. The plot is remarkable for it shows that, at η= 0,245

we have α0 = π/2, that is grazing incidence. As it will presently appear, the existence of Rayleigh246

waves is connected to the appearance of evanescent modes precisely at grazing incidence and, in247

fact, the situation η= 0 does not support antiplane Rayleigh waves.248
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Figure 7: Evanescent bulk standing wave B1, acting on a free surface with the angle α1 to the
surface normal and generating a "reflected" standing bulk wave B2 together with a Rayleigh-like
wave B4 travelling in the direction normal to the surface

Approaching grazing incidence, i.e. as the angle of emergence ε= 1
2π − α tends to zero, the249

O(1) term in the solution vanishes and we have250

W (ξ1, ξ2) = εW1(ξ1, ξ2) + ε2W2(ξ1, ξ2) + . . . . (3.24)

Thus, the leading order term in the expansion of the displacement is251

W1(ξ1, ξ2) =∓B′1eıδξ1 +B′2ξ2e
ıδξ1 ±B′4eıδξ1+

√
1+δ2ξ2 , (3.25)

with the coefficients252

B′1 = 2ı
ζ211(δ)

η2δ3
√

1 + δ2
B1, B′2 =

η2δ4
√

1 + δ2

ζ211(δ)
B′1, B′4 =

ηδ2

ζ11(δ)
B′1, (3.26)

where we have let

ζ11(κ) = (1 + η)κ2 + 1, ζ12(κ, δ) = (1 + η)κ2 − δ2.

Hence, we have an "incident" plane travelling wave, B′1, that generates a "reflected" travelling253

wave, B′2, whose amplitude is proportional to ξ2 and thereby it is sometimes denoted SHy, plus254

a surface waveB′4. All such waves move along ξ1 with speed cSH . Together, incident and reflected255

waves represent the most general form of bulk shear plane waves (see also [33]), while the surface256

wave is a bulk evanescent mode, for its wave vector is complex-valued with norm−1, and it exists257

only inasmuch as η 6= 0.258

At normal incidence, α= 0, we get259

θ2 =± arctan δ−3, Φ4 =
2δ2√
1 + δ6

, θ4 =± arctan δ3, (3.27)

depending on the sign in (3.19) and irrespective of η. This result differs substantially from the260

corresponding result in CE, where reflection at normal incidence occurs in the absence of mode261

conversion [32, §3.1.4.1]. Indeed, in CS elasticity, we always have the appearance of an evanescent262

mode, regardless of η.263

(c) Reflection of evanescent modes264

Eq.(3.19) does not exhaust all possible scenarios of wave reflection at a free surface. Indeed, with
an approach that has no counterpart in CE, we may consider reflection of evanescent modes. To
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see this, we consider a system of waves in the form

W (ξ1, ξ2) =B1 exp (− sinα1ξ1 − cosα1ξ2) +B2 exp (− sinα2ξ1 + cosα2ξ2)

+B4 exp ı

(
ı sinα1ξ1 +

√
sin2 α1 + δ2 ξ2

)
, (3.28)

where the first two contributions represent evanescent bulk plane standing waves and the last265

is an evanescent bulk wave (with wave vector norm δ) that travels along ξ2 and decays along266

ξ1, i.e. it is a surface wave, see Fig.7. Strictly speaking, B1 is not impinging on the boundary,267

for it is not travelling, yet its presence in the bulk is tied with the appearance, due to the268

boundary, of the other pair of waves. This wave system satisfies the governing equation (3.3) and,269

upon assuming (3.20), it is "reflected" with no mode conversion, when subjected to either of the270

extended Mindlin’s conditions (3.18) or (3.17). Consequently, these mixed boundary conditions271

work for evanescent modes just as well as for travelling modes.272

On a free surface, we get the displacement reflection coefficients273

B2/B1 = exp(2ıθ′2), B4/B1 =Φ′4 exp(−ıθ′4), (3.29)

with

θ2 = arctan(b′2/a
′
2), Φ4 =

c′4√
a′22 + b′22

, θ′4 =−θ′2,

being

a′2 = 4 cosα1

[
2δ2 + η + 1− (1 + η) cos (2α1)

]2
,

b′2 = 2
√

2
√

1 + 2δ2 − cos (2α1) [(η + 1) cos (2α1)− η + 1]2 ,

c′4 = 8 cosα1 [(η + 1) cos (2α1)− η + 1]
[
2δ2 + η + 1− (η + 1) cos (2α1)

]
.

Reflection coefficients (3.29) are plotted in Fig.8. They equal the corresponding coefficients274

for travelling waves (3.21) when δ= 1, for then the Rayleigh function is centrally symmetric.275

The critical angle that triggers no surface mode B4 is again given by Eq.(3.22). The reflection276

coefficients at normal incidence, α= 0, are given by277

θ′2 =−θ′4 = arctan δ−3, Φ′4 =
2δ2√
1 + δ6

. (3.30)

In the limit of grazing incidence, the zero order solution disappears and we consider an278

expansion in the angle of emergence ε= π/2− α1 as in (3.24). The leading order solution consists279

of two standing waves plus a Rayleigh-like wave, that travels away from the surface at a speed280

smaller than that of shear bulk waves,281

W1(ξ1, ξ2) =B′′1 e
−ξ1 −B′′4 e−ξ1+ı

√
δ2+1ξ2 +B′′2 ξ2e

−ξ1 +O(ε2), (3.31)

having let282

B′′1 = 2ı

(
δ2 + η + 1

)2
η2
√

1 + δ2
B1, B′′4 =

η

δ2 + η + 1
B′′1 , B′′2 = ı

η2
√

1 + δ2

(δ2 + η + 1)
2
B′′1 . (3.32)

(d) Classification of the Rayleigh zeros283

We consider the general decaying solution for an half-plane ξ2 ≤ 0 [32, §3.1.4.7]284

w(ξ2) = e1 exp (λ1ξ2) + e2 exp (λ2ξ2) , (3.33)

provided that branch cuts in the square root are taken as to give positive real part on the real axis,285

see [6]. Plugging this form into the boundary conditions (3.13) and demanding for non-trivial286
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Figure 8: Real (solid, black) and imaginary part (dashed, red) of the reflection coefficients B2/B1

and B4/B1, phase angle θ2 and amplitude ratio Φ4 for evanescent modes, as a function of the angle
of incidence α1 (δ= 0.5, η= 0.1). Total reflection, in the absence of mode conversion (i.e. B4 = 0),
is obtained at α1 = 1.26452≈ 5π/12, according to Eq.(3.22)

Figure 9: Branch-points (circles), zeros (dots) and branch cuts (dashed line) for the Rayleigh
function R(κ, δ), given by Eq.(3.34)

solutions to exist, yields the Rayleigh function287

R(κ, δ) = ζ211λ1 − ζ212λ2. (3.34)

Zeros and branch-points for the Rayleigh function are presented in Fig.9. The Rayleigh288

wavenumber κR is obtained looking for the real root of289

R(κ, δ) = 0, (3.35)
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and the corresponding eigenform is given by290

W (ξ1, ξ2) = eıκRξ1

[
e
√
κ2
R−δ2ξ2 − ζ12(κR, δ)

ζ11(κR)
e
√
κ2
R+1ξ2

]
. (3.36)

The special case η= 0 is interesting for we have

R(κ, δ) =−λ1λ2(λ31 − λ32)

which possesses the obvious order 1/2 roots κ=±δ and κ=±ı, respectively corresponding to291

bulk SH and bulk evanescent waves, i.e. as anticipated, for η= 0, Rayleigh waves collapse into292

bulk waves.293

The Rayleigh wavenumber κR may be expressed in terms of the distance from the bulk shear294

wavenumber δ,295

κR = δ
(

1 + κ21R

)
, with κ21R =

δ6(1 + δ2)

2ζ411(δ)
η4� 1, (3.37)

from which we see that κR > δ and therefore cR < cSH inasmuch as η 6= 0, i.e. the Rayleigh296

wave speed is lower than the bulk wave speed. Given that |η|< 1, we see that Eq.(3.37) is297

extremely accurate, in light of the fact that κ21R =O(η4). Rayleigh waves come in pairs and decay298

exponentially depth-wise with attenuation indices that may be expanded in powers of κ1R299

λ1 =
√

2δκ1R +O(κ31R), λ2 =
√

1 + δ2 +O(κ21R),

whence (3.36) lends (we take e1 =B′1)300

WR(ξ1, ξ2) =B′1e
ıδξ1 −B′4eıδξ1+

√
1+δ2ξ2 +B′2ξ2e

ıδξ1 +O(κ21R). (3.38)

We observe that Eq.(3.38) perfectly matches the leading order term in the expansion of the301

displacement (3.25), when approaching grazing incidence. Indeed, we can interpret the grazing302

incident solution as the expansion of the Rayleigh solution in the small parameter κ1R, expressing303

the distance of the Rayleigh wavenumber from the bulk shear-wave wavenumber. However,304

relating the two expansions is not straightforward, for the leading order term solution at grazing305

incidence, W1, matches the leading and first correction terms of the Rayleigh expansion WR.306

Indeed, B′2 =
√

2κ1RB
′
1 brings a small term correction in (3.38). Still, it is tantalizing to interpret307

Rayleigh waves as being originated from the reflection of bulk shear waves impinging on the308

free surface at "almost" grazing incidence, the distance from perfect grazing being related to their309

slowness with respect to bulk shear waves.310

Eq.(3.35) admits the pair of purely imaginary zeros ±κI , that are located close to the purely
imaginary branch points ±ı, see Fig.9. Writing κI in terms of the distance from ı, we find

κI = ı
(

1 + κ21I

)
, with κ21I =

1 + δ2

2(1 + δ2 + η)4
η4� 1.

Looking at the attenuation indices, it is311

λ1 = ı
√

1 + δ2 +O(κ21I), and λ2 = ı
√

2κ1I +O(κ31I),

and we have the expansion312

WI(ξ1, ξ2) =B′′1 e
−ξ1 −B′′4 e−ξ1+ı

√
δ2+1ξ2 +B′′2 ξ2e

−ξ1 +O(κ21I), (3.39)

with313

B′′1 =−δ
2 + η + 1

η
e1, B′′2 = ı

√
2κ1IB

′′
1 , B′′4 =

4

√
2κ21L
1 + δ2

B′′1 . (3.40)

Again, the wave system (3.39) with the coefficients (3.40) matches the expansion of the evanescent314

mode wave system (3.31,3.32) when approaching grazing incidence. We conclude that the315

purely imaginary zero of the Rayleigh equation expresses a perturbation of the grazing incident316

condition for bulk evanescent modes, the distance from it (along the imaginary axis) expressing317

how stronger the decay rate is with respect to the bulk mode. We note that none of the three318
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Figure 10: Domain (δ, η) for the complex root κL to sit in the physical Riemann sheet: when
moving outside the shaded area, κL slips through the branch cut out of the physical sheet. The
domain shape is independent of `0 and existence of the root is possible only inasmuch as η > ηL

Figure 11: The way the parameter `0 affects the shape of the domain of existence of κL can be
appreciated only in the plane (Ω, η)

terms in this system is a proper leaky wave, i.e. according to [34] “an inhomogeneous wave that319

propagates along the surface with a phase velocity larger than the shear wave but smaller than the320

pressure wave”. In fact, the B′′4 term looks more like a Rayleigh wave moving away from, rather321

than along, the free surface with speed c < cSH . This is precisely the wave found in [6] radiating322

from the tip of a semi-infinite rectilinear crack. Thus, the claim put forward in [34], according323

to which any complex solution of the Rayleigh function is a leaky wave, does not hold in CS324

elasticity.325

Eq.(3.34) possesses the extra pair of complex roots κ=±κL, provided that parameters (δ, η)

lay in the domain of Fig.10. This domain of existence is mapped onto the (Ω, η) plane, for different
values of `0, in Fig.11. The root κL sits close to the branch cut and for it we choose=(κL)<(κL)< 0

(see Fig.9). Its precise location may be found explicitly only for δ= 1, making the observation that
in such special situation κL lies on the fourth quadrant bisector

κL = γL exp(−ıπ/4), γL =
4

√
−1− 3η + 2

√
1 + 2η + 2η2

(1 + η)2(3− η)
.

Using (3.6), we see that δ= 1 corresponds to Ω = `−10 , provided that `0 6= 0. Under the326

connection ν =−η, γL becomes proportional to Konenkov’s well known constant γe =327 [
(1− ν)(3ν − 1 + 2

√
1− 2ν + 2ν2)

]1/4
arising in edge-wave propagation in a plate [35]. The root328

is admissible inasmuch as it rests inside the branch cut, i.e. |κL|<
√

2/2 that demands η > ηL329

where ηL =
√

2(5−
√

5)−
√

5≈ 0.1151. Interestingly, ηL is also the minimum value of η that is330
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Figure 12: Classification work-flow for the Rayleigh zeros

capable of supporting the root κL in the physical sheet in general, that is for any `0, see Fig.11.331

Indeed, γL is a decreasing function of η, whose minimum 0.492883 is attained for η= 1.332

Plugging κ=±κL into the eigenmode (3.36), we get

W (ξ1, ξ2) = e
± 1+ı√

2
γLξ1

(
e
√
−1−ıγ2

Lξ2 +
ı− γ2L(η + 1)

ı+ γ2L(η + 1)
e
√

1−ıγ2
Lξ2

)
,

and the first (second) exponential term inside the parenthesis has negative (positive) real part333

argument. Consequently, either root is associated with a pair of waves that propagate and explode334

(decay in the case of −κL) along the free surface, with a longitudinal speed cL =
√

2δcSH/γL335

greater than that of bulk shear waves cSH . One wave decays moving away from the surface,336

the other explodes. Consequently, these are not leaky waves either, at least according to the337

classical definition. Furthermore, it is unclear what bulk wave such roots couple with, for they338

are perturbations of none. We also point out that, at variance with [34], for an half-plane we are339

not free to chose the sign in front of square roots λ1,2, that is univocally determined by the choice340

of the branch cuts. Such choice is determined by Sommerfeld’s condition and by the boundedness341

requirement at infinity, as detailed in [36] and in [6].342

On account of these results, we suggest the classification work-flow of Fig.12 for the zeros343

of the Rayleigh function. This classification is not complete, for it only covers the possibilities344

explored in this paper.345

(e) Antiplane partial waves346

We now apply the extended Mindlin’s conditions for CS, Eqs.(3.17) and (3.18), to the case of347

guided propagation in a plate. Demanding that the even (odd) part of the boundary conditions348

vanishes, produces odd349

cosh
(
Θ−1λ1H

)
cosh

(
Θ−1λ2H

)
= 0, (3.41)

and even partial waves350

sinh
(
Θ−1λ1H

)
sinh

(
Θ−1λ2H

)
= 0. (3.42)

Only one family of antiplane travelling partial waves exist, namely those associated with λ1351

(Fig.13),352

κ2 − δ2 =−
(
n
Θπ

2H

)2

, n= 0, 1, 2, . . . , (3.43)

the first of which, attained for n= 0, corresponds to SH bulk waves. For this reason, and in353

analogy with RL partial waves in CE, we denote such waves as SH partial waves. It is important354
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(a) `0 = 0.1 (b) `0 = `0cr

(c) `0 = 1 (d) `0 =
√

2

Figure 13: Even (solid, black) and odd (dashed, red) antiplane travelling partial waves frequency
spectrum (η= 0.1,H = 10) superposed onto evanescent even (dotted, blue) and odd (dash-dotted,
green) partial waves

to observe that, in the SWHF limit, Eq.(3.43) gives κ→ δ from below and the bulk SH wave speed355

is approached from above, i.e. partial waves are supersonical. According to the parity of n, we356

distinguish even and odd partial waves, the former set being composed by the level curves357

sinh(Θ−1λ1H) = 0 and the latter by the solution curves cosh(Θ−1λ1H) = 0. Using Eq.(3.5), the358

group velocity of SH partial waves may be written as359

Vg =
2δcrδ −

(
nπ
2H

)2
2K

, (3.44)

that is always positive for the first branch in general and for all branches when a thick plate is360

considered, i.e. asH→+∞. Indeed, in the latter case, partial waves collapse into SH body waves.361

In light of Eqs.(3.10), we see that partial waves associated with λ2 are evanescent, for they362

are connected with a purely imaginary wavenumber κ= ıκ̄, κ̄ > 0. However, as we have just363

shown when discussing wave reflection, they are equally important, because they may combine364

with travelling waves at the boundaries. Besides, such waves originate localized effects when365
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(a) `0 = 0.1 (b) `0 = `0cr

Figure 14: Frequency spectrum for symmetric antiplane Rayleigh-Lamb waves (solid, black)
superposed onto the LWLF approximation (4.2) (dashed, red) (η= 0.1, H = 10)

semi-infinite or finite domains are dealt with, e.g. see [35]. They are given by366

κ̄2 = 1 +

(
n
Θπ

2H

)2

, n= 0, 1, 2, . . . , (3.45)

and the case n= 0 corresponds to bulk evanescent waves. Interestingly, evanescent modes
possess positive (negative) group velocity, inasmuch as `0 ≶ `0cr . Besides, in consideration of the
monotonic behaviour of Θ, see Fig.2, we see that evanescent modes exists in the bounded range
κ̄m < κ̄< κ̄M , where

κ̄m = min
(
κ̄(LWLF), κ̄(SWHF)

)
, κ̄M = max

(
κ̄(LWLF), κ̄(LWLF)

)
,

being

κ̄(LWLF) = 1 + 1
2

(
n
π

2H

)2
, κ̄(SWHF) = 1 +

(
n
`0π

2H

)2

.

In the SWHF regime, they asymptote to the wavenumber κ̄(SWHF).367

4. Antiplane Rayleigh-Lamb waves368

We are now in a position to discuss antiplane RL waves in CS isotropic materials. They will369

emerge from combination of travelling and evanescent partial waves through the boundary370

conditions. To a certain extent, the process is similar to what occurs in plane-stain CE, where371

two families of travelling waves interact.372

(a) Symmetric waves373

We now consider symmetric waves, i.e. waves whose profile is an even function of ξ2. Then, we
enforce that the odd part of p3 and the even part of q1 vanish at ξ2 =H/Θ, whence we get a linear
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Figure 15: Symmetric antiplane RL waves (solid, black) and even SH partial waves (dashed,
red) frequency spectrum (η= 0.1, `0 = 0.1, H = 10). In the SWHF limit, all branches but the first
asymptote to the bulk SH wavenumber κ= δ; instead, the first branch approaches the Rayleigh
wavenumber κR > δ from above (i.e. from lower speed)

system in the even vector ψe = [e1, e2]

Sψe = o,

where

S =

ζ11λ1 sinh
(
Θ−1λ1H

)
ζ12λ2 sinh

(
Θ−1λ2H

)
ζ12 cosh

(
Θ−1λ1H

)
ζ11 cosh

(
Θ−1λ2H

)  .
The frequency equation ds(κ,Ω) = 0, where

ds(κ,Ω) = ζ211λ1 sinh
(
Θ−1λ1H

)
cosh

(
Θ−1λ2H

)
− ζ212λ2 sinh

(
Θ−1λ2H

)
cosh

(
Θ−1λ1H

)
, (4.1)

is plotted in Fig.14. The SWHF behaviour of the real spectrum is guided from above by even374

partial waves, see Fig.15. In particular, the first branch of the plot rests little below the first even375

partial wave (that is the bulk shear wave), i.e. for a given Ω we have κ> δ. Consequently, since376

λ1 and λ2 are real numbers in the region κ> δ, we see that Eq.(4.1) tends to the Rayleigh equation377

(3.35) and therefore κ→ κR from above. Thus, as it occurs in CE, we obtain the well-known result378

by which, in the SWHF limit, the lowest travelling mode (that is even) propagates in a plate as379

a Rayleigh wave. Obviously, the same behaviour is retrieved letting H→∞. All other branches380

are located in the region κ< δ, wherein λ1 = ıλ̄1 is purely imaginary. Given that such branches381

are located in between two adjacent partial modes, like those they asymptote to the bulk shear382

wavenumber. This different limiting behaviour of the first branch than higher symmetric modes,383

is difficult to capture numerically. For example, in [18], in the context of sagittal propagation, it is384

claimed that “as the frequency increases, all modes converge to the Rayleigh wave propagation385

speed”.386

Upon considering Eq.(3.43) and the limit behaviour (3.8), the asymptotic model [37] for387

symmetric antiplane waves in the Long-Wave Low-Frequency (LWLF) range is, to leading order388

in Ω,389

K2 −Ω2 = 0, (4.2)

regardless of η, H and `0. In fact, this model is exact for the entire first branch, that is non-390

dispersive, when `0 = `0cr , see Fig.14b. This non-dispersive character of the lowest RL mode also391
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Figure 16: Antiplane symmetric (about the mid-plane x2 = 0) vibrations of a beam-plate made of
CS elastic material (for the sake of clarity, in this picture, an element of finite thickness along x3
is shown). Since antiplane vibrations are dealt with, shaded cross-sections move parallel to the
(x2, x3) plane

occurs in CE [15, §8.1.1]. The corresponding eigenform, to leading order, is simply392

w(ξ2) = e2 cosh ξ2.

Eq.(4.2) provides the leading order differential model for the lowest antiplane vibration mode for393

a plate made of CS elastic material394

∂2W

∂x21
− 1

c2s

∂2W

∂t2
= 0, (4.3)

corresponding to travelling waves moving at speed cs, that is the shear wave speed in CE. This395

model may be refined in the thin plate limit H� 1, for then Eq.(4.1) yields, to leading order in H ,396

dst(κ,Ω) = ζ211λ̄
2
1 + ζ212λ

2
2 = (1 + δ2)

[
−(1− η2)κ4 + (δ2 − 1)κ2 + δ2

]
, (4.4)

which corresponds to the differential model in the LWLF regime397

− 1
2 (1− η2)K4 −K2 + 1

2Ω
2K2 +Ω2 = 0. (4.5)

When moving back to operators, Eq.(4.5) gives the same governing equation as for Rayleigh398

flexural beam-columns399

− 1
2 `

2(1− η2)
∂4W

∂x41
+
∂2W

∂x21
+ 1

2T
2 ∂2W

∂x21∂t
2
− 1

c2s

∂2W

∂t2
= 0, (4.6)

where the second term accounts for a tensile loading and the third term provides rotational400

inertia. This differential model governs antiplane symmetric vibrations of thin beam-plates made401

of CS material, as in Fig.16. Remarkably, this model is independent on `d and therefore on402

rotational inertia. We point out that this PDE corresponds to Eq.(19) of [38], that provides403

the simplest description for waves propagating in microstructured continua whose internal404

lengthscale is much smaller than the propagating wavelength. As illustrated in [38], “The special405

feature of this approximation is that it can be used over the whole range of wavenumbers, since it406

does not represent a short-wave or long-wave approximation. The underlying assumption is that407

the influence of the microstructure is small”. Also, simplified versions of (4.6) are not accurate, as408

shown in Fig.14(a).409

It is worth marking the difference with CE, where thin-plate transversal vibrations are simply410

described by the wave equation (4.3). This limiting case may be easily retrieved from Eq.(4.6), by411

simply taking `= 0 (and consequently T = 0). Besides, we observe that, in the case of the modified412

couple stress theory, that occurs for η= 1, the first term of (4.6) drops out and the differential413

model reduces to that of a vibrating string with rotational inertia. In this case, we have a problem414
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(a) `0 = 0.1 (b) `0 = `0cr

Figure 17: Frequency spectrum for antisymmetric antiplane Rayleigh-Lamb waves (solid, black)
superposed onto the LWLF approximation (4.14) (dashed, red) (η= 0.1, H = 10)
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Figure 18: Antisymmetric antiplane RL waves (solid, black) and odd SH partial waves (dashed,
red) frequency spectrum (η= 0.1, `0 = 0.1, H = 10). All branches asymptote to bulk shear waves

accommodating the right number of boundary conditions. Indeed, this outcome is expected, for415

the case 1− η� 1 leads to a singularly perturbed model and to the appearance of a boundary416

layer.417

(b) Antisymmetric waves418

For antisymmetric RL waves, we have the linear system in the odd vector ψo = [o1, o2]

Aψo = o,

where

A =

 ζ11 cosh
(
Θ−1λ1H

)
ζ12 cosh

(
Θ−1λ2H

)
ζ12λ

−1
1 sinh

(
Θ−1λ1H

)
ζ11λ

−1
2 sinh

(
Θ−1λ2H

) .
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The dispersion relation do(κ,Ω) = 0, with

do(κ,Ω) = ζ211λ
−1
2 cosh

(
Θ−1λ1H

)
sinh

(
Θ−1λ2H

)
− ζ212λ−11 sinh

(
Θ−1λ1H

)
cosh

(
Θ−1λ2H

)
, (4.7)

is plotted in Fig.17. The frequency spectrum branches are guided by odd partial waves (3.41),419

see Fig.18. The cutoff frequencies Ω∗n are obtained from solving the transcendental equation420

do(0, Ω) = 0, that gives421

δ3 tan
(
Θ−1Hδ

)
= tanh

(
Θ−1H

)
. (4.8)

This equation, besides Ω, depends on the parameters `0 and H . It may be approximated, for422

H�Θ, to the simple form for the cutoff equation423

δ= δ∗ = 1, ⇒ Ω∗ = `0
−1. (4.9)

We observe that this is exactly the situation discussed in connection with the root κI of the424

Rayleigh function. Conversely, for H�Θ, a very good approximation is425

δ3 tan
(
Θ−1Hδ

)
= 1. (4.10)

For Ω� 1, we have Θ∼ `0cr and δ∼ δcr , whence δ/Θ=Ω and Eq.(4.8) gives426

Ω3

2
√

2
tan (HΩ) = tanh

(√
2H
)
, (4.11)

that, as expected, reduces to (4.9) when H� 1. Conversely, when H� 1, we have427

Ω∗1 ≈
π

2H
, δ∗ ≈ π

2
√

2H
,

that is exactly the situation depicted in Fig.18. For the first cutoff (4.9), we get the eigenform428

w(ξ2) = o1 sin(ξ2) + o2 sinh(ξ2). (4.12)

The thin-plate limit of the dispersion relation (4.1) gives, to leading order in H ,429

dot(κ,Ω) = (1 + δ2)
(
−2(1 + η)κ2 + δ2 − δ∗2

)
, (4.13)

that, to leading order in the LWLF approximation, provides the cutoff approximation (4.9). When430

Ω −Ω∗� 1, we have the expansion431

δ2 − δ∗2 =
√

2`30(Ω2 −Ω∗2) =
√

2`30Ω
2 −
√

2`0� 1,

whence we obtain the consistent differential model432

1 + η√
2`30

∂2W

∂x21
− 1

c2s

∂2W

∂t2
+

1

`2d
W = 0. (4.14)

The same PDE governs longitudinal (or torsional) vibrations of a beam with distributed elastic433

restraints. However, it should be pointed out that these elastic restraints possess negative elastic434

constant. This equation describes the lowest antiplane antisymmetric mode for a beam made of435

CS material, as in Fig.19. For this model, rotational inertia appears in the first and last terms.436

The equivalent model in CE may be obtained letting `→ 0, whence Ω∗ = `/`d→ 0 and cutoff
vanishes. Then, in the LWLF regime, Eq.(4.13) is dominated by the δ∗ term, that is O(1), whence
we get the trivial solution, which means that no lowest mode antisymmetric antiplane vibrations
are supported. When considering the case η=−1, that corresponds to no characteristic length in
torsion, the first term of (4.14) drops out and we are left with a simple ODE which warrants that
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Figure 19: Antiplane antisymmetric (about the mid-plane x2 = 0) vibrations of a thin beam-plate
made of CS elastic material (for the sake of clarity, in this picture an element of finite thickness
along x3 is shown). Since antiplane vibrations are dealt with, any unit cross-section deforms from
rectangular to rhombic, while remaining in the same (x2, x3) plane

solutions have an exponential form in time

W (ξ1, t) =W1(ξ1) exp

(
cs
`d
t

)
+W2(ξ1) exp

(
− cs
`d
t

)
.

Therefore, within this model, we cannot have proper vibrating antisymmetric LWLF modes either.437

438

5. Conclusions439

For an elastic theory to support Rayleigh waves, there needs to exist a form of mode conversion440

from travelling to inhomogeneous (surface) waves upon reflection at a free surface. Besides, this441

mechanism is required to stand right at grazing incidence. For instance, it may happen beyond a442

certain critical angle of incidence, like in sagittal plane propagation of SV waves within CE, or, as443

in antiplane motion for CS materials, the inhomogeneous wave may appear for all incident angles.444

Consequently, only one family of SV Rayleigh waves is supported in CE, for no mechanism445

of mode conversion exists for P- and SH-waves to trigger inhomogeneous waves. By the same446

reasons, SH Rayleigh waves cannot be sustained in CS materials when η= 0, because then mode447

conversion ceases to stand right at grazing incidence.448

In CS materials, a novel "reflection" mechanism occurs, according to which a bulk standing449

wave acts upon a surface, it is "reflected" in its likeness (still a standing wave) and simultaneously450

triggers a Rayleigh-like wave that travels away from, not along, the surface, with phase speed451

lower than that of bulk shear waves. Upon approaching the grazing condition, this displacement452

field may be expanded in terms of the emergence angle to yield precisely the Rayleigh-like wave453

expressed by the purely imaginary zero of the Rayleigh function. It is exactly this wave that is454

found in [6] radiating from the tip of a semi-infinite crack under dynamic loadings. It is pointed455

out that no Rayleigh-like wave is supported in CE, for no evanescent bulk mode exists. This456

wave is not a leaky wave in the classical sense, for it is travelling away from the surface (while457

standing along the surface), with speed lower than that of shear bulk waves. Therefore, in general,458

complex roots of the Rayleigh functions are not expressions of leaky waves. The same result holds459

true for the third root of the Rayleigh function, which appears for a restricted set of material460

parameters and represents a attenuating/exploding travelling wave in any direction. Yet, this461

root differs from the other two (i.e. the real and the purely imaginary root) in that it is located462

far from either branch-points expressing bulk waves. Consequently, we suggest a classification463

of the Rayleigh function zeros according to whether they sit in the neighbourhood of or far from464

a branch-point. In the former case they correspond to Rayleigh, Rayleigh-like or leaky waves465
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and represent a perturbation of the neighbouring bulk wave. In the latter case, they are waves466

attenuating/exploding in every direction.467

Moving to guided propagation in a plate, we determine a generalized set of Mindlin’s468

boundary conditions for identifying partial modes. Under such conditions, wave reflection occurs469

in the absence of mode conversion, equally so for travelling and for standing modes. Only one470

family of travelling partial modes exists in CS materials, along with a family of standing modes.471

As a result, travelling Rayleigh-Lamb modes are simply guided by and asymptote to travelling472

partial modes, with the exception of the first even mode (the lowest mode) that asymptotes to the473

Rayleigh wave speed. Hence, just like in plane-strain elasticity, lowest mode SWHF perturbations474

are guided by one boundary, as in a half-plane [39]. Conversely, standing Rayleigh-Lamb modes475

are more complicated, for they are obtained by interference of two families of partial waves.476

When considering travelling modes, a thin-plate approximation gives the equivalent 1-D model477

for describing lowest symmetric and antisymmetric modes. Such approximated models should478

be used when building a theory of antiplane vibrations of thin beam-plates made of CS material479

[38,40].480
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